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Abstract 

Title of the Thesis : The Performance of Training Pattern Sets in A New ART- 

Based Neural Architecture for Image Enhancement 

Name : Fu-Chun Chang 

Thesis Directed by : Dr. Frank Y. Shih 

Neural network can be applied on the image enhancement after adding another 

two layers into the Adaptive Resonance Theory architectures (ART 1). The 

analysis for selecting a nice training pattern set associate the appropriate vigilance 

values is the main concerns in this thesis. For a single training pattern ,the network 

can act as a mathematical morphology operators such as erosion , dilation, opening 

and closing. With more than one training patterns in the network, 16 experiments 

are tested and are compared to each other in order to find the best selection for 

doing the image enhancement work. With both the training pattern set and 

vigilance values fixed, the first iteration always show the best performance than the 

other iterations. The comparison between 16 experiments explores the criteria for 

selecting the better training pattern set. Increasing the local features in the 

network training and a little bit "flexibility" of the vigilance parameter can increase 

the performance of the image enhancement. With the vigilance changed in 

different iterations also can be the good way to choose the training pattern set. 
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CHAPTER I. INTRODUCTION 

Adaptive Resonance Theory ( ART ) architectures are neural networks that 

self-organize stable recognition codes in real time in response to arbitrary 

sequences of input patterns. Theorems have been proved that trace the real-time 

dynamics of ART networks in response to arbitrary sequences of input patterns. 

Until now, there are three classes of ART model has since been introduced by 

Carpenter and Grossberg. The first class, ART 1, self-organizes recognition 

categories for arbitrary sequences of binary input patterns (Carpenter & 

Grossberg, 1987a). A second class, ART 2, does the same for either binary or 

analog inputs ( Carpenter & Grossberg, 1987b). The most recent developed class, 

ART 3, incorporates a model of the chemical synapse into a new Adaptive 

Resonance Theory ( ART ) neural network architecture, which dynamics model 

a simple, robust mechanism for parallel search of a learned pattern recognition 

code. 

This report implements the ART 1 model to deal with the image enhancement 

problems and discusses more details about the training patterns operations for 

relating with the mathematical morphology operations involve erosions and 

dilations, which has been defined on binary images. For the image enhancement 

topic, many different training patterns were tested in order to find the best 

training pattern to do the image enhancement job. The results, then, were 

compare to each other for getting a better idea to select a good set of learning 
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patterns, which can do a better performance for dealing with the image 

enhancement problem. 

In the second chapter, the architecture and the learning processes of ART 1 

model were reviewed. Then , in chapter III, a review for the ART 1 

implementation for image enhancement ( Frank Y. Shih, Jenlong Moh and Fu-

Chun Chang, 1991) were also included for understanding the necessary researches 

in this report. The fourth chapter discusses the training patterns and vigilance 

parameter analysis in image enhancement, which implements the analysis for 

selecting a nice training pattern and vigilance values in the image enhancement. 

At the fifth chapter, the experiments for single pattern training are included, 

where the relations between the neural network training pattern operations ( ART 

1 based) and the mathematical morphology operations were discussed. In the sixth 

chapter, the experiments for the effects using different training pattern sets on 

image enhancement were included. Chapter VII, the effect of different vigilance 

values in iterations for the same training pattern is discussed. Chapter VIII, some 

conclusions are summarized. Chapter IX, the references are listed. Chapter X , list 

the figures . Chapter eleven, list the tables. Appendix I list the ART 1 simulator 

program which was firstly written by Henry Bourne has been improved and 

debugged to perform the necessary experiments. 
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CHAPTER II. ART 1 ARCHITECTURE AND LEARNING PROCESSES REVIEW 

An ART 1 model presents two subsystems in the architecture. One is the 

attentional subsystem and the other is the orienting subsystem, which is also called 

novelty detector (Fig.1). 

In the attentional subsystem, there are two layers of neurons , feature 

representation layer (F) and exemplar ( category ) representation layer. The 

neurons between these two layers are fully connected, which means every neuron 

in one layer is connected with all the neurons in another layer. The strength of 

connections ( i.e. weights) between neurons in the two layers , including bottom-

up adaptive filter and top-down adaptive filter , determines the long-term memory 

( LTM ) traces. The activation of neurons inside the F and E layers forms the 

short-term memory ( STM ). The weight of connections in LTM can be adjusted 

only during the training process, which is also the reason for calling it the long 

term memory trace. However, the activation of neuron in STM can be changed 

by input pattern codes while in training and recognition processes, which is the 

reason for naming short term memory. An ART 1 system is fully defined by a 

system of differential equations that determines STM and LTM dynamics in 

response to an arbitrary temporal sequence of binary input patterns. Theorems 

characterizing these dynamics have been proved in the case where fast learning 

occurs; that is, where each trial is long enough for the LTM traces to approach 

equilibrium values. 
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In the orienting subsystem, a matching threshold (p) called vigilance parameter 

( ranged between 0.0 and 1.0 ) was introduced to determine how close a new 

input pattern must be to a stored exemplar to be considered similar. In the Fig.1 

, an orienting subsystem is represented by a circle with p , which acts as a novelty 

detector and handles the vigilance testing tasks. 

The learning processes in ART 1 system active both subsystems together and 

classify every random input pattern into either a classified category if one category 

can be found similar or a new created category if there is no category can be 

found similar. First , we initialize the bottom-up filter and top-down filter 

connection according the eq.(1)&(2), supposing N neurons are in the F layer. 

The stimuli of input patterns lead to the activities of neurons in F. The signal then 

pass through the connections to neurons in E and are multiplied by their 

corresponding weights. Each neuron in E sums up all of those weighted activities 

according the eq.(3). 
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The layer E is designed as a competitive network where each neuron has lateral 

inhibitory connections to the others. This is capable of choosing the neuron which 

receives the largest total input, i.e., winner-take-all strategy is used. After this , the 

input pattern goes through the vigilance test according eq.(4). 

If the input pattern satisfies the above inequality, then it is classified into the 

category corresponding to the winning neuron. Otherwise, the orienting subsystem 

sends a reset signal through the excitatory connection to the winning neuron in 

order to temporarily disable its output so that the system may choose another 

winning neuron. Such a task will be repeated until either an exemplar similar to 

the input pattern being chosen or no more exemplar to choose, then a new neuron 

is created in E and assigned to represent the new category. Finally, the winning 

neuron represents a categories and triggers its associative pattern throughout the 

connections to F according to eq.(5)&(6). 

These processes repeat until each input pattern has been classified into a category. 
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This is very useful for applications with categorical perception - that is, classifying 

each input pattern as belonging under one and only one category. 
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CHAPTER III. IMAGE ENHANCEMENT ART 1 ARCHITECTURE REVIEW 

A. Overall Architecture 

Image enhancement can be regarded as selective emphasis and suppression of 

information in the picture, with the aim of increasing the picture's usefulness. 

When a picture is converted from one form to another, e.g., imaged, copied, 

scanned, transmitted , or displayed, the "quality" of the output picture may be 

lower than that of the input. So, image enhancement skill is necessary and 

important. With ART 1 model application , image enhancement can be easily 

performed by adding another two layers to ART 1 model. The overall architecture 

for image enhancement depicted in Fig.2 & Fig.3. The Fig.2 is an unit ART 1 

module , which is included in the Fig.3 as a block for dealing with every pixel in 

the image. The first two layers in the ART 1 module intend to determine whether 

or not the input pattern is matched with the exemplars of certain features 

previously learned and stored. The first layer consists of 25 neurons F, since the 

local 5x5 neighborhood is considered. The second layer contains N exemplar 

neurons En, where N is the total number of features necessary for image 

enhancement ( Fig.2 ). The third layer , or called region detection layer, made up 

of 5 neurons Dk  ( k = 1, 2, ... ,5) corresponding to the pixel P and its four 

neighbors, is used to determine whether P should be illuminated or not ( Fig.3 ). 

Each region detection neuron receives and sums the responses from all the 

exemplar neurons in the second layer. If any one of the exemplar neurons has a 
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positive response, indicating that p is classified into an exemplar category and 

should be illuminated as part of the object region, then the corresponding 

detection neuron will output "1" according to eq.(7). 

The fourth layer contains only one neuron corresponding to the pixel P. It has the 

input connections from five neurons related to the pixel P and its four neighbors 

so that a simple binary edge detection can be performed. The output neuron 

implements a simple binary edge detection algorithm whereby a pixel is illuminated 

only if it has no neighbor having value 1, indicating that it is a noise, and if it has 

all four neighbors having value 1, indicating that it is an interior point. The four 

neighbors labeled as P1, P2, P3, and P4, are located in the east, north, west, and 

south of the pixel P, respectively. The output neuron h(O) is given by eq.(8). 

Each exemplar neuron Ej  (j =1,...,M) has its inputs from each neighboring 

neurons F, through the bottom-up connections and a lateral inhibitory input from 

itself and the other exemplar neurons. The lateral inhibitory weight eab  from Ea  

to Eb  is defined as follows : 
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where a,b = 1, ..., M and e < 1/M. The purpose of this lateral inhibitory input 

made by the exemplar neuron is to suppress all the other exemplar neuron outputs 

toward zero but itself positive. This process will result an exemplar output greater 

than zero and that is the exemplar with the closest category to the input 

neighborhood of the pixel P. The updated output f(Ej) for exemplar neuron E1 is 

designed as follows : 

where fEa(t) is the output of exemplar neurons other than E3 and VEj  is the 

vigilance parameter for exemplar neuron E1. The function f(u) is a threshold logic 

type, i.e., 

The incorporation of the vigilance parameter into eq.(10) is to force the network 

to attempt classification into exemplar categories of lower vigilance first. This 

prevents the pixel neighborhood which does not meet with a high vigilance test but 

meets with a low vigilance test from misclassifying. 
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B. Algorithm Description 

(1) Network initialization. Top-down weights TEj,Fi(0)  are set to 1, bottom-

up weights BFi,Ej(0) are set to 1/(1+52), and vigilance parameters VEj  are 

set to 1.0. Both weights are updated by using eqs.(5) and (6). The 

detection and output layers are disabled. 

(2) A set of feature patterns are trained into the network and the initial 

output of the exemplar neuron Ej  is calculated by 

(3) The "Maxnet" procedure as described in Eq. (10) is performed until only 

one exemplar neuron is positive. 

(4) The exemplar neuron Ej pre-stored in the top-down weights TEj.Fi  is 

compared with the input pattern X by 

where ||X|| is the norm of the input pattern vector,i.e., the total 

number of one bits in the input vector. If eq. (13) is true, the input 

pattern belongs to the exemplar category represented by Ej and no new 

category is established. Otherwise, the input pattern does not belong to 

the most likely category and a new unused exemplar neuron if available 
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is selected and updated by using eqs. (5) and (6). 

(5) Steps (1) to (4) are repeated until all feature patterns are trained 

completely. Those steps can be done off-line. After learning, the task of 

image enhancement is executed. 

(6) Weight adjustment is disabled and suitable vigilance parameter VEj  is 

selected for each region exemplar. The different vigilance parameter 

reflects a different degree of importance of features with respect to 

image enhancement. Specific regions or contours could be easily 

extracted by the incorporation of a very high vigilance for the particular 

exemplar in question. 

(7) A binary input image is placed into the network and the processing 

proceeds in parallel for all pixels. One exemplar is selected as in steps 

(3), (4) and (5) in the learning phase for each pixel and the 

corresponding output will be positive. 

(8) Each detection neuron Dk outputs a 1 if any fEj  is positive and 0 

otherwise. 

(9) Each output neuron O outputs a value 1 or 0 according to eq.(8). 
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CHAPTER IV. TRAINING PATTERNS & VIGILANCE VALUES ANALYSIS 

The ART 1 training patterns & vigilance analysis is a very important and 

interesting subtopic for dealing with the image enhancement problem , especially 

for the feature extraction and noise removing from an image. 

The vigilance parameter is a threshold factor for determining whether the input 

pattern can be categorized into the exemplar pattern or not. If we disable the 

learning process and freeze the LTM weight after a single category was trained, 

a matching factor between the input pattern and the exemplar can be easily 

calculated only by the matched pixels with pixel value "1" between both input 

pattern and the only exemplar pattern divided by the norm of the exemplar 

pattern, which is a total number of pixel "1" in the exemplar pattern. By 

comparing the matching factor with the vigilance parameter, it can be easily 

decided whether or not the tested central pixel in local input pattern, at this report 

we use 5x5 local region, should be turned ON. The simplification in the equation 

is because there is only one exemplar in the E layer, and there is no other choice 

for categorizing the input pattern into the other exemplars. So, after passing the 

input signals through the bottom-up connections, the only category in E layer 

always receives the highest response in the E layer and is chosen as the winner 

neuron for doing the vigilance test through eq.(13). 

However, the condition doesn't look like all the same while the exemplar field 

has more than one categories after the learning process has been shut down. In 
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this case, whether the input pattern with 5x5 local feature can be categorized into 

a chosen exemplar is not just that simple for considering the matching factor which 

is calculated by the matched pixels with pixel value "1" divided by the norm of the 

exemplar pattern and then for considering whether the matching factor is greater 

than vigilance parameter or not. The reason is that vigilance test is performed only 

after a winner neuron has been found. When there are more than one neurons in 

the E layer after the learning process has been disabled, categorizing an input 

pattern into an exemplar can't be easily calculated just through the eq.(13) at first 

time. There may have more than one exemplars which pass the vigilance test in 

E layer. It just can't make so quick decision as long as you find the first exemplar 

passed the vigilance test and categorize the input pattern into that exemplar. In 

this case, the lateral inhibition and winner-take-all in the E layer must be 

considered first in order to chose a winner for doing the vigilance test. 

As so, a single pattern training in the ART 1 network model is just a special 

case in the system. But, it can be used to perform the feature extraction from an 

image, which means we can train a local feature as a single pattern and try to 

extract this local feature in an image by using the ART 1 model. 

Through the single pattern training in the ART 1 model and input an image 

for test, we found some more interesting similarity between the mathematical 

morphology operations such as erosion and dilation , and the feature extract ART 

1 model application. We analyze the responses of network activation by using a 

single template pattern. In eq (13), the term Σi  TEj.Fj  • Xi  is simply the inner 
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product of the two vectors: input pattern X and template pattern T retrieved, 

which indicates the number of matched elements between the two patterns. By 

dividing the inner product with the norm of input pattern , we obtains a fractional 

number ranging from 0.0 to 1.0 which indicates the degree of matching. By 

choosing a vigilance parameter equal to or less than 1 / I ITI I , any occurrence 

of a pixel "1" of input pattern matched with the template will result in passing the 

vigilance test. In this case, the networks acts like a expanding operator, erosion 

, in image processing. On the other hand, choosing a higher vigilance parameter, 

e.g., greater than (||T||-1)/||T||, makes the vigilance tests difficult to pass. Even 

though the total pixels ||T||-1 of input pattern matched with the template will 

result in failing the vigilance test. Thus, this situation is similar to shrinking 

operator, dilation. Also , when the vigilance value greater than (||T||-

1)/(2x||T||) and smaller than (||T||+3)/(2x||T||), the output result will have 

no change with the original input pattern. While the vigilance value equal to or 

greater than (||T||+3)/(2x||T||) but equal to or smaller than (||T||-1)/||T||, 

the network has partial dilation effect. While the vigilance value equal to or 

smaller than (||T||-1)/(2x||T||) but greater than 1/||T||, the network has 

partial erosion effect. 

The vigilance parameter can be viewed as making a "fuzzy" decision on the 

pixel concerning the probability of being noisy points. The method depends on first 

distinguishing noise from non-noise in the picture, then removing the noise and 

"mending" the picture by interpolation. 

14 



With more than one training patterns learned in the E layer after the learning 

process has been disabled, the meaning in the image processing seems to extract 

several local features at the same time. At this case, there may be N neurons in 

the E layer after learning process be disabled. Let us consider the 5x5 local region 

as an input pattern for each pixel in the image. To decide a pixel should be 

treated as a picture pixel or a noisy pixel , we first need to consider its 

neighborhood, suppose a 5x5 local region is considered throughout the report. 

Each pixel in the image along with its neighborhood pixels pass through the ART 

1 module (Fig.2). If one winner neuron in E layer can be found from the input 

pattern, the network process the winning neuron and the input pattern to pass the 

vigilance test (Fig.1). If the vigilance is passed, the input pattern is similar with 

winning neuron and is categorized into the exemplar. The third layer, the region 

detection layer, then receives and sums the responses from all the exemplar 

neurons in the second layer. Through the eq.(7), if any one of the exemplar has 

a positive response, central pixel of the input pattern p is classified into an 

exemplar category and should be illuminated as part of the object region. Then 

, the corresponding detection neuron will output "1", which means the pixel p is 

a picture pixel. If there is not any neuron in E layer can be found matching with 

the input pattern for passing through the vigilance test, the pixel in the local 5x5 

region must be a noisy point needed to be removed. In this case, the 

corresponding detection will output "0". Through this report, the output "1"s are 

symbolized as "*" for clearly viewing. From the above analysis, the image 
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enhancement can be performed well through the new ART1-based model which 

were developed by (Frank Y. Shih, Jenlong Moh and Fu-Chun Chang, 1991). 

Because the training pattern and vigilance parameter value can be selected in 

many different combinations, the removing noise effects in the image enhancement 

are very different. What to choose and how to choose are the best concern in the 

thesis. Without a good knowledge to pick up a nice training pattern, the new 

ART1-based architecture cannot performed well in the image enhancement 

problem. Only select a good combination of the local features as a training pattern 

set but not considering the associated vigilance value along with each training 

pattern may get a worse result. For example, from the results of experiment 3 and 

experiment 11 , the vigilance values are set to 1.0 for each training pattern and 

the performance is the worst one for restoring the image in the eight combination 

sets. For choosing a better set of training pattern and a better vigilance value for 

each training pattern, the restoration of a noisy image can reach a higher 

performance. Several different training pattern sets and vigilance parameter value 

combinations have been experimented, only eight training pattern sets, Table 1 to 

16, are listed in the report for showing the performance results. Also, for each 

training pattern set, four iteration runs are applied . The effect of several 

iterations on the different combination training sets are also discussed in the 

report. 

What if we change the vigilance values in different iterations and apply the 

same training pattern set in every iteration is another interesting work for getting 
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the better performance in image enhancement. The effect seems like the 

mathematical morphology operations opening and closing. In the chapter seven, 

an experiment with the different vigilance values applied in the different iteration 

for the same training pattern is discussed. 
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CHAPTER V. EXPERIMENTS FOR SINGLE PATTERN TRAINED 

For single training pattern learned in the learning process, there is only one 

neuron in the E layer. That means no matter what kind of input patterns are fed 

into the system, the winner neuron in E layer is the trained pattern. Should the 

input patterns be categorized as the similar pattern as the trained pattern will be 

decided by the eq.(13). 

Experiments are held on the horizontal line pattern input with 10 pixels "1". 

After the horizontal training pattern ,with 5 pixels "1" , is trained, different 

vigilance values, ranged from 1.0 to 0.0, are assigned along the trained pattern. 

Several experiments with single trained pattern but different vigilance value are 

tested. The input pattern and the experimental results are listed in the Fig.4. 

As we can see from the Fig.4, the experimental results have some relationship 

with the vigilance value. With vigilance value equal to 1.0 ,the output has only 6 

stars( "1" ) comparing with the original input, which has 10 stars. That has the 

same effect with the erosion operator in the mathematic morphology with the 

structure element radius equal to (||T||-1)/2 = 2. The term ||T|| is the norm 

of the training pattern with pixel "1". In Fig.4, the ||T|| is equal to 5. After the 

erosion operator applied, the output has only 6 stars left. With the vigilance value 

equal to 0.2 , the output result shows 14 stars in the Fig.4. Comparing with the 

original input pattern which has 10 stars in one horizontal line, it has the same 

effect with the dilation operator in mathematic morphology by using the structure 
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element with radius equal to 2. Notice that, with the vigilance value equal to 0.6 

that will produce the result just the same with the original one, which means there 

is no any dilation or erosion operator used on the input pattern. 

Applied the same method on the vertical line will show the similar results. With 

the analysis in the last chapter, we know if the vigilance value is equal or less than 

1-/||T||, any occurrence of pixel "1" of input pattern matched with the template 

will result in passing the vigilance test. In this case , the network acts as a erosion 

operator in image processing. Choosing the higher vigilance parameter, greater 

than (||T||-1) /||T|| , makes the vigilance tests difficult to pass. The situation 

is similar with dilation operator in image processing. When the training pattern has 

odd pixel numbers, with the vigilance value greater than (||T||-1) / (2x||T||) and 

the vigilance value smaller than (||T||+3) / (2x||T||) , the output result will 

have no change with the original input pattern. For example , in a training pattern 

with norm equal to 5 (||T|| =5 ), when vigilance parameter has value between 

0.4 < v < 0.8, the result is the same with the original input pattern. If the training 

pattern has the norm equal to 7, then the vigilance value should between 3/7 < 

v < 5/7 in order to have the unchanged effect in output. 

We tried to use a character "B" and a bulb image to do the erosion and 

dilation operation with the vigilance parameter set equal to 1.0 and 0.2. Fig.5 (a) 

is the original "B" image and Fig.5 (b) is a original bulb image in 32x32 region. 

Fig.4 (b) is selected as the training pattern. Fig.6 (a) shows the erosion operation 

on "B" with vigilance equal to 1.0 , while Fig.6 (b) on bulb image with vigilance 
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value equal to 1.0. The Fig.7 (a) and Fig.7 (b) show the dilation results on 

character image "B" and bulb image with vigilance equal to 0.2 . The conditional 

probabilities in those figures shows the performance degree between the output 

images and the original nonnoisy image, which will be discussed more detail in 

next chapter. 
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CHAPTER VI. EFFECTS OF DIFFERENT TRAINING PATTERN SETS 

In order to get a better image enhancement effect on the noisy image, several 

different training pattern sets are provided to test the performance. Assume that 

the nonnoisy picture contains a large region of constant gray level, we can get 

some insight into the noise statistics by analyzing the gray level fluctuations in the 

corresponding region of the noisy picture. The region contrast is 100. Two different 

noisy images, character "B" and bulb image, are produced by adding the 

independent Gaussian noise having mean zero and standard deviation 35. Thus 

the signal to noise ratio (SNR -region contrast/noise deviation) of these images 

is 2.86. The original images are shown in Fig.5. The noisy images are shown in 

Fig.8. 

Three different training pattern sets, A,B and C, that are more meaningful in 

enhancing the noisy image are selected in the report for further test (Fig.9). Given 

the different vigilance values , three different pattern sets can then be expanded 

into eight experiments to each tested image. That means there are totally 16 

experiments included. For each experiment, four iterations are run in order to see 

the effect of the iteration. To compare the performance of different vigilance 

parameters and the number of iterations, we use the conditional probability of the 

labeled "object-point" given the true object-point, P(O'|O*) and the conditional 

probability of a true object-point given the labeled object-point, P(O*|O'). The 

performance probabilities were recorded for further comparison and discussion. 
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The adjustable parameters of each iteration and the number of iterations are 

chosen to equalize these two conditional probabilities. The quality of the neural 

architecture to image enhancement is determined by the value of 

P(O'|O*)=P(O*|O'). Although this performance measure is not in general 

applicable on all kinds of images, it is well suited for these simulated images. 

The output images through each iteration in every experiment are listed from 

Fig.10a to Fig.25b. Sixteen performance tables, which are labeled with the 

experiment sequence number and the iteration number are listed from Table 1 to 

Table 16. The performance value of 0th iteration from Table 1 to Table 16 means 

the conditional probability between the noisy image (Fig.8) and the original image 

(Fig.5). 

Training pattern set A use eight local features to enhance the noisy image. 

These eight local features including the vertical line, horizontal line, right diagonal 

line, left diagonal line , and four corners. These are the basic local features in 

enhancing the image. Training pattern set B adds another four training patterns 

to set A in order to smooth the circle corner. The new added training patterns 

all posses three local features. In the training pattern set C, the first four training 

patterns are the same with the other two set. However, the other eight training 

patterns are changed, which all posses two local feature in each pattern. The 

change in the set C try to smooth the circle corner and the perpendicular corner 

at the same time (Fig.9). 

The experiment 1 applies the network to the noisy image "B" after the network 
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were trained with training pattern A with the vigilance setting Al, A2, A3 and A4 

equal to 0.8 and A5, A6, A7 and A8 equal to 1.0. The performance values are 

recorded in the Table 1. 

The experiment 2 and experiment 3 are similar to experiment 1 except the 

vigilance settings are different. At the experiment 2, the vigilance setting from Al 

to A4 is 0.8 and from A5 to A8 are 0.9. While at experiment 3 , the vigilance 

setting of all eight training patterns is equal to 1.0 (Tab.2 & 3). 

The experiment 4 applies the network to noisy image "B" after the training 

pattern set B are trained with the vigilance setting B1, B2, B3, B4 equal to 0.8 and 

B5,B6,B7,B8 equal to 1.0 and B9,B10,B11,B12 equal to 0.8 again (Tab.4). 

The experiment 5 and 6 do the same thing as experiment except the vigilance 

setting is different. In experiment 5, the network is trained with the vigilance value 

all equal to 0.8 . In experiment 6, the first four pattern vigilance parameters are 

set to 0.8 but the others are set to 1.0 (Tab.5 & 6). 

Training pattern set is changed to C in the experiment 7 and 8. In these two 

experiment, the noisy image is "B" but the vigilance settings are different. The 

vigilance setting in experiment 7 is Cl,C2,C3,C4 equal to 0.8 and the others equal 

to 1.0. Vigilance setting in the patterns of experiment 8 are all equal to 0.8 (Tab.7 

& 8). 

The experiments from 9 to 16 apply the same testing set as the experiments 

from 1 to 8 except the noisy image is changed to bulb image (Tab.9-16). 

From the Tab.1 to Tab.16 and from the Fig.10a to Fig.25b, we can find the 
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performance of the first iteration almost have the highest value in both P(O'|O*) 

and P(O*|O') although, sometimes, the second iteration's performance is very 

close to the first one. That's mean we can always use the first iteration result to 

representing the best result in each different combination test. The more iteration 

on the same training pattern set with the fixed vigilance value doesn't help to 

enhance the image. Because the first iteration result can be treated as a 

representative for that test. We just average both the conditional probabilities 

value of P(O'1O*) and P(O*1O') together and compare the average with the other 

experiments. For two arbitrary images, no matter those images are noisy or 

nonnoisy , both the P(O'|O*) and P(O*|O') equal to one if those two images 

are the same. So, the more equality and the higher performance those two 

conditional probability values have , the more similarity between two image is. 

Tab.17 lists the average of P(O'|0*) and P(O*|O') in the first iteration between 

the different experiments and different images. From the Tab.17 , we can see the 

experiment 3 and experiment 11 have the worst performance among the above 

experiments. Experiment 3 and experiment 11 belong to the same training pattern 

set A and have the same vigilance setting with vigilance all equal to 1. It is clear 

that the A training pattern set have only the simplest training patterns. When the 

vigilance values all are set to 1, the network lose the ability to adjust themselves 

and the coming out image got the lowest performance comparing with the others. 

Experiment 1 & 9 and experiment 6 & 14 all have the lower performance when 

comparing with other experiments. The same as experiment 3 & 11, experiment 
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1 & 9 use the training pattern set A that has only 8 basic patterns and half of 

them have the vigilance parameter set to 1.0. However, experiment 6 & 14 use 

training pattern set B that has 12 training patterns but two third of their vigilance 

are set to be 1.0. For character "B" image, experiment 5 has the best performance 

among the 8 experiments. The network use training pattern set B that has 12 

training patterns with all vigilance values set to 0.8. For bulb image, experiment 

16 has the best result. At this time , the training pattern set is C which has 12 

training patterns with all 12 vigilance values set to 0.8. It seems that both training 

pattern set B and C perform well in these test. Because they all use 12 training 

patterns in the network training. When you add more training patterns in the 

exemplar , the system performs better than those with the only a few training 

patterns in the system. Another important point of view is that the vigilance 

parameter value must have some kind of flexible in the system. Noticed that when 

all the vigilance value has been set to 1.0, the system lose its ability to adjust the 

image , to "mending" the image or to fill in the image. On the other hand, it 

persist so many erosion effects on the image that even the nonnoisy pixel can't 

pass the vigilance test and must be turn off. Experiment 5 and 16 all have these 

kind of "flexibility" that can sometimes fill in the gap and still posses the ability to 

get rid of the noisy point. The Tab. 18 list the performance order for each image. 
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CHAPTER VII. EFFECTS OF DIFFERENT VIGILANCE VALUES IN ITERATIONS 

As we see from the chapter IV and V, the higher vigilance will perform the 

erosion effect on the image and the lower vigilance will perform the dilation effect 

on the image. For a ART 1 model applied on the image enhancement, we may 

first apply some higher vigilance to do more erosion effect and get rid of the noisy 

pixel. The second iteration , we just lower the vigilance parameter in order to 

perform the "mending", dilation effect. From this point of view, we select the 

simple training pattern set A to do the test. But, at the first iteration , the first 4 

training patterns assigned the vigilance parameter equal to 0.8 and the others 

training patterns with vigilance value assigned 0.9. This is the experiment 2 and 10 

actually. And the performance order in the last chapter shows they are in the 

middle of the list. Differently, we change all the vigilance values equal to 0.6 at 

the 2nd iteration. The results were shown in the last paper (Frank Y. Shih, 

Jenlong Moh and Fu-Chun Chang, 1991) and will repeatedly show in this report 

for the completely research report. The results can be found in the Fig.26, which 

has the original images , noisy images and outputs of the region detection layer 

for both "B" image and bulb image. The Fig.27 show the output images after the 

4th layer operations in the network. The Tab.19 list the performance of this test 

with the 2nd, 3rd, 4th iteration vigilance values all be set to 0.6. 
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CHAPTER VIII. CONCLUSIONS 

From the single pattern training experiment, the results clearly show that the 

network acts as a erosion operator in image processing if the vigilance value is 

equal to or less than 1/||T|| and the network acts as a dilation operator in image 

processing if the vigilance value greater than (||T||-1)/||T||. Also , when the 

vigilance value greater than (||T||-1)/(2x||T||) and smaller than 

(|| T|| +3)/(2x||T||), the output result will have no chang with the original input 

pattern. While the vigilance value equal to or greater than (||T||+3)/(2x||T||) 

but equal to or smaller than (||T||-1)/||T||, the network has partial dilation 

effect. While the vigilance value equal to or smaller than (||T||-1)/(2x||T||) but 

greater than 1/||T|, the network has partial erosion effect. 

When the training pattern set has more than one neuron in the E layer, there 

are so many different combination training pattern sets to be selected. Three 

different training patterns sets are chosen to test both the character "B" and bulb 

noisy images. When we combine the three different training pattern set A,B,C 

with the different vigilance setting, totally sixteen experiments were performed. 

From the above 16 experiments, the results show one similar effect. That is no 

matter what kind of training pattern set is applied, the result from the first 

iteration can reach the best performance than results form the other iteration. The 

first iteration always shows a better performance than the other iterations. That 

means we can just apply a single training pattern set and get the best result from 

the first iteration if the vigilance setting is fixed. From this conclusion , we average 
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the performance of P(O'|O*) and P(O*|O') from the first iteration of each 

experiment and compare the performance between those eight different 

experiments in each noisy image. The experiment 5 and 16 show the best 

performance in "B" and bulb image, but the experiment 3 and 11 show the worst 

performance in both of these two images. The comparisons between the 16 

experiments show two important conclusions. First, increasing the training patterns, 

which means increasing the local features for enhancing the noisy image, will 

increase the performance for the image enhancement. Second, assign the vigilance 

parameter a little bit "flexible" in order to have both the erosion and dilation 

effect. With these two considerations, the training pattern set can get a better 

performance for doing the image enhancement. 

Another conclusion comes from the test of using different vigilance values in 

different iterations. We can also get a nice performance from changing the 

vigilance values in different iterations. Try to use the higher vigilance in the first 

iteration can perform a lot of erosion effect which get rid of the noisy pixels. 

Then, at the second iteration, we choose a lower vigilance value for providing a 

little bit dilation or "mending" effect. 
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CHAPTER X. FIGURES 
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Fig.1. ART 1 model. The activation in layers F and E forms a short term 
memory (STM) and the connections including bottom-up and top-down 
construct a long term memory (LTM). Squares with the label "G" 
indicate the gain control devices and the orienting subsystem with 
vigilance parameter P is represented by the circle. 
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Fig.2. An ART 1 module 
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Fig.3. An overall neural architecture for image enhancement. ART 1 modules 
(Fig.2) are included for each pixel in the input image. 
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Fig.4. Different vigilance effects on the original test 
image with a simple horizontal line trained. 
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Fig.5. Original Image of character "B" and bulb image. 

35 



Fig.6. Similar erosion effect with vigilance equal to 1.0. Input 
patterns are Fig.5. The training pattern is Fig.4 (b). 
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Fig.7. Similar dilation effect with vigilance equal to 0.2. Input 
patterns are Fig.5. The training pattern is Fig.4 (b). 
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Fig.8. The noisy images with added Gaussian noise having mean zero and standard deviation 35. 
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Fig.9. Three training pattern sets A, B, C 
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Fig.10a . The output image from the experiment 1. 
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Fig.10b . The output image from the experiment 1. 
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Fig.11a . The output image from the experiment 2. 
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Fig.11b. The output image from the experiment 2. 
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Fig.12a. The output image from the experiment 3. 
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Fig.12b. The output image from the experiment 3. 
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Fig.13a. The output image from the experiment 4. 
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Fig.13b. The output image from the experiment 4. 
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Fig.14a. The output image from the experiment 5. 
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Fig.14b. The output image from the experiment 5. 
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Fig.15a. The output image from the experiment 6. 
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Fig.15b. The output image from the experiment 6. 
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Fig.16a. The output image from the experiment 7. 
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Fig.16b. The output image from the experiment 7. 
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Fig.17a. The output image from the experiment 8. 
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Fig.17b. The output image from the experiment 8. 
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Fig.18a. The output image from the experiment 9. 
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Fig.18b. The output image from the experiment 9. 
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Fig.19a. The output image from the experiment 10. 
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Fig.19b. The output image from the experiment 10. 
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Fig.20a. The output image from the experiment 11. 
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Fig.20b. The output image from the experiment 11. 
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Fig.21a. The output image from the experiment 12. 
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Fig.21b. The output image from the experiment 12. 
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Fig.22a. The output image from the experiment 13. 
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Fig.22b. The output image from the experiment 13. 
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Fig.23a. The output image from the experiment 14. 
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Fig.23b. The output image from the experiment 14. 
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Fig.24a. The output image from the experiment 15. 
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Fig.24b. The output image from the experiment 15. 
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Fig.25a. The output image from the experiment 16. 
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Fig.25b. The output image from the experiment 16. 
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Fig.26. The effect with different vigilance setting in iterations. The training pattern set is A. The 
vigilance in 1st iteration are A1,A2,A3,A4 = 0.8 and A5,A6,A7,A8=0.9 , but in 2nd 
iteration are all be set to 0.6. (a) & (b) are original images. (c) & (d) are noisy images. 
(e) and (f) are the output images of the region detection layer in the network. 
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Fig.27. The output images from the 4th layer in the network. 
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CHAPTER XI. TABLES 
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Experiment 1 : 

Noisy image "B" 

Training pattern set A 

Vigilance setting A1=0.8 A2=0.8 A3=0.8 A4=0.8 

A5=1.0 A6=1.0 A7=1.0 A8=1.0 

Table 1. Performance of the 1st experiment in different iteration runs. 

Iteration P(O' I O*) P(O* I O') 

0th 0.859 0.921 

1st 0.891 0.981 

2nd 0.832 0.976 

3rd 0.776 0.974 

4th 0.718 0.972 
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Experiment 2 : 

Noisy image "B" 

Training pattern set A 

Vigilance setting A1=0.8 A2=0.8 A3=0.8 A4=0.8 

A5=0.9 A6=0.9 A7=0.9 A8=0.9 

Table 2. Performance of the 2nd experiment in different iteration runs. 

Iteration P(O'1O*) P(O*|O') 

0th 0.859 0.921 

1st 0.909 0.978 

2nd 0.903 0.972 

3rd 0.903 0.972 

4th 0.903 0.972 
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Experiment 3 : 

Noisy image "B" 

Training pattern set A 

Vigilance setting A1=1.0 A2=1.0 A3=1.0 A4=1.0 

A5=1.0 A6=1.0 A7=1.0 A8=1.0 

Table 3. Performance of the 3rd experiment in different iteration runs. 

Iteration P(O' I O*) P(O* I O') 

0th 0.859 0.921 

1st 0.750 0.996 

2nd 0.676 0.996 

3rd 0.591 0.995 

4th 0.524 0.994 
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Experiment 4 : 

Noisy image "B" 

Training pattern set B 

Vigilance setting B1=0.8 B2=0.8 B3=0.8 B4=0.8 

B5=1.0 B6=1.0 B7=1.0 B8=1.0 

B9=0.8 B10=0.8 B11=0.8 B12=0.8 

Table 4. Performance of the 4th experiment in different iteration runs. 

Iteration P(O'|O*) P(O*|O')  

0th 0.859 0.921 

1st 0.938 0.973 

2nd 0.938 0.970 

3rd 0.932 0.969 

4th 0.932 0.969 
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Experiment 5 : 

Noisy image "B" 

Training pattern set B 

Vigilance setting B1=0.8 B2=0.8 B3=0.8 B4=0.8 

B5=0.8 B6=0.8 B7=0.8 B8=0.8 

B9=0.8 B10=0.8 B11=0.8 B12=0.8 

Table 5. Performance of the 5th experiment in different iteration runs. 

Iteration P(O'(O*) P(O*|O') 

0th 0.859 0.921 

1st 0.974 0.940 

2nd 0.991 0.880 

3rd 0.997 0.811 

4th 1.000 0.757 
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Experiment 6 : 

Noisy image "B" 

Training pattern set B 

Vigilance setting B1=0.8 B2=0.8 B3=0.8 B4=0.8 

B5=1.0 B6=1.0 B7=1.0 B8=1.0 

B9=1.0 B10=1.0 B11=1.0 B12=1.0 

Table 6. Performance of the 6th experiment in different iteration runs. 

Iteration P(O'|O*) P(O*|O') 

0th 0.859 0.921 

1st 0.903 0.978 

2nd 0.894 0.971 

3rd 0.891 0.971 

4th 0.891 0.971 
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Experiment 7 : 

Noisy image "B" 

Training pattern set C 

Vigilance setting C1=0.8 C2=0.8 C3=0.8 C4=0.8 

C5=1.0 C6=1.0 C7=1.0 C8=1.0 

C9=1.0 C10 = 1.0 C11 = 1.0 C12 = 1.0 

Table 7. Performance of the 7th experiment in different iteration runs. 

Iteration P(O' I O*) P(O* I O') 

0th 0.859 0.921 

1st 0.903 0.981 

2nd 0.876 0.971 

3rd 0.868 0.970 

4th 0.853 0.970 
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Experiment 8 : 

Noisy image 
"B" 

Training pattern set C 

Vigilance setting C1=0.8 C2=0.8 C3=0.8 C4=0.8 

C5=0.8 C6=0.8 C7=0.8 C8=0.8 

C9=0.8 C10=0.8 C11=0.8 C12=0.8 

Table 8. Performance of the 8th experiment in different iteration runs. 

Iteration P(O' I O*) P(O* I O') 

0th 0.859 0.921 

1st 0.962 0.945 

2nd 0.965 0.896 

3rd 0.971 0.853 

4th 0.971 0.813 
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Experiment 9 : 

Noisy image Bulb 

Training pattern set A 

Vigilance setting A1=0.8 A2=0.8 A3=0.8 A4=0.8 

A5=1.0 A6=1.0 A7=1.0 A8=1.0 

Table 9. Performance of the 9th experiment in different iteration runs. 

Iteration  

0th 

P(O' I O*) 

0.855 

P(O* I O') 

0.977 

1st 0.948 0.997 

2nd 0.920 0.997 

3rd 0.880 0.997 

4th 0.821 0.996 
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Experiment 10 : 

Noisy image Bulb 

Training pattern set A 

Vigilance setting A1=0.8 A2=0.8 A3=0.8 A4=0.8 

A5=0.9 A6=0.9 A7=0.9 A8=0.9 

Table 10. Performance of the 10th experiment in different iteration runs. 

Iteration P(O' |O*) 

0th 0.855 

1st 0.957 

2nd 0.951 

3rd 0.946 

4th 0.944 

P(O* |O') 

0.977 

0.997 

0.995 

0.995 

0.995 
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Experiment 11 : 

Noisy image Bulb 

Training pattern set A 

Vigilance setting A1=1.0 A2=1.0 A3=1.0 A4=1.0 

A5=1.0 A6=1.0 A7=1.0 A8=1.0 

Table 11. Performance of the 11th experiment in different iteration runs. 

Iteration P(O'|O*) P(O*|O') 

0th 0.855 0.977 

1st 0.761 0.998 

2nd 0.671 0.998 

3rd 0.590 1.000 

4th 0.535 1.000 

85 



Experiment 12 : 

Noisy image Bulb 

Training pattern set B 

Vigilance setting B1=0.8 B2=0.8 B3=0.8 B4=0.8 

B5=1.0 B6=1.0 B7=1.0 B8=1.0 

B9=0.8 B10=0.8 B11=0.8 B12=0.8 

Table 12. Performance of the 12th experiment in different iteration runs. 

Iteration P(O'|O*) P(0*  (O') 

0th 0.855 0.977 

1st 0.961 0.994 

2nd 0.957 0.994 

3rd 0.954 0.994 

4th 0.952 0.994 

86 



Experiment 13 : 

Noisy image Bulb 

Training pattern set B 

Vigilance setting B1=0.8 B2=0.8 B3=0.8 B4=0.8 

B5=0.8 B6=0.8 B7=0.8 B8=0.8 

B9=0.8 B10=0.8 B11=0.8 B12=0.8 

Table 13. Performance of the 13th experiment in different iteration runs. 

Iteration P(O'1O*) 

0th 0.855 

1st 0.988 

2nd 0.998 

3rd 1.000 

4th 1.000 

P(O* I O') 

0.977 

0.965 

0.923 

0.873 

0.832 
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Experiment 14 : 

Noisy image Bulb 

Training pattern set B 

Vigilance setting B1=0.8 B2=0.8 B3=0.8 B4=0.8 

B5=1.0 B6=1.0 B7=1.0 B8=1.0 

B9=1.0 B10=1.0 B11=1.0 B12=1.0 

Table 14. Performance of the 14th experiment in different iteration runs. 

0th 0.855 0.977 

1st 0.954 0.997 

2nd 0.946 0.997 

3rd 0.941 0.997 

4th 0.940 0.997 
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Experiment 15 : 

Noisy image Bulb 

Training pattern set C 

Vigilance setting C1=0.8 C2=0.8 C3=0.8 C4=0.8 

C5=1.0 C6=1.0 C7=1.0 C8=1.0 

C9=1.0 C10=1.0 C11=1.0 C12=1.0 

Table 15. Performance of the 15th experiment in different iteration runs. 

Iteration P(O' I O*) P(O* I O') 

0th 0.855 0.977 

1st 0.975 0.992 

2nd 0.978 0.988 

3rd 0.983 0.980 

4th 0.986 0.971 
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Experiment 16 : 

Noisy image Bulb 

Training pattern set C 

Vigilance setting C1=0.8 C2=0.8 C3=0.8 C4=0.8 

C5=0.8 C6=0.8 C7=0.8 C8=0.8 

C9=0.8 C10=0.8 C11=0.8 C12=0.8 

Table 16. Performance of the 16th experiment in different iteration runs. 

Iteration P(O'1O*) P(O*|O') 

0th 0.855 0.977 

1st 0.981 0.989 

2nd 0.988 0.976 

3rd 0.994 0.960 

4th 0.998 0.945 
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Table 17. Average of P(O' |O*) and P(O* |O') in 1st iteration 

Exp. No. "B" Image Exp. No. Bulb Image 

1 0.936 9 0.973 

2 0.944 10 0.977 

3 0.873 11 0.880 

4 0.956 12 0.978 

5 0.957 13 0.977 

6 0.941 14 0.976 

7 0.942 15 0.984 

8 0.954 16 0.985 

Table 18. The performance order for "B" and bulb image. 

"B" 5 > 4 > 8 > 2 > 7 > 6 > 1 > 3 

Bulb 8 > 7 > 4 > 2 = 5 > 6 > 1 > 3 
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Test of different vigilance value in iterations 

Noisy image "B" 

Training pattern set A 

Vigilance setting 

1st iteration A1=0.8 A2=0.8 A3=0.8 A4=0.8 

A5=0.9 A6=0.9 A7=0.9 A8=0.9 

2nd - 4th iterations A1=0.6 A2=0.6 A3=0.6 A4=0.6 

A5=0.6 A6=0.6 A7=0.6 A8=0.6 

Table 19. Performance of the different vigilance in different iteration runs. 

Iteration P(O'1 O*) P(O* 1 O') 

0th 0.859 0.921 

1st 0.909 0.978 

2nd 0.947 0.944 

3rd 0.947 0.915 

4th 0.947 0.899 
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APPENDIX I. 

The ART 1 SIMULATOR PROGRAM LISTING 

This program will simulate the entire network as described in this paper, from noisy 

binary input image to edge detected output. The input training patterns must be 

stored in a previously created text file of the form: 

<data> <data> <data> <data> <data> 

<data> <data> <data> <data> <data> 

<data> <data> <data> <data> <data> 

<data> <data> <data> <data> <data> 

<data> <data> <data> <data> <data> 

<up to twelve training patterns as shown above are provided for> 

Where: <data> is a one character representation of a binary value with the 

character '*' representing a value of one and any other character, except a space, 

representing a value of zero. The input image file must also be of the above form 

except that it will be 32 x 32 instead of 5 x 5. The program is interactive with the 

user being prompted for the necessary inputs when required. Flexibility is also 

provided for altering vigilance parameters and re-running, writing results to files, etc. 
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#include <stdio.h> 
#include <stdlib.h> 
#include <conio.h> 

/***************************************************************************1 

EXTERNAL CONSTANTS 

#define CATEGORIES 12 
#define FEATURES 25 
#define ALPHA 0.01 
#define EPSILON 0.05 

float VIGILANCE; 

7******************************************************************************/ 

EXTERNAL VARIABLES 
7******************************************************************************7 

struct pattern 
{ 
int template[FEATURES]; /* 5 x 5 pixel array */ 

struct pattern *nxtptr; 
}; 

struct pattern * INPUT_PATTERNS; 

struct category_neuron 
{ 
float vigilance; 
int active; /* 0=inactive, 1=active */ 

float bottoni_up[FEATURES]; 
float output; 

}; 
struct category_neuron F_2[CATEGORIES]; 

struct feature_ neuron 
{ 
int top_down[CATEGORIES]; 
int feature value; /* 1 or 0 *1 
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1; 
struct feature_neuron F 1[FEATURES]; 

int X, T_X, H; 
float criteria, perl, per2; 
int active _nodes, match1, match2; 
char inp_pic[36][36]; 
char oup_pic[32][32], org_pic[32][32]; 

FUNCTION DECLARATIONS 

void train_ network(); 
void get_training_patterns(); 
void get_input  picture(); 
int view_pixel(int i, int j); 
int maxnetO; 
void compute_weighted_sums(); 
int apply_input(struct pattern *input_pointer); 
void update_exemplar(int node); 
void print_categories(); 
void ori_input(); 
void no_ classification(); 
int activate new node(); _ new_ node(; 

initialize_weighted links(); _ 
void print_output(); 
void matching(); 
void see_input(); 
void write to file(); 
void filter(); 

main() 
{ 
char buffer[8], ans; 

get_training  patterns(); 
initialize_weighted_links(); 
train network(); 
print_categories(); 
ori_input(); 
get_input picture(); 
matching(); 
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print_ output(); 
buffer[0] = 3; 
while (buffer[2] != '1') 

{ 
gotoxy(1, 25); 
clreol(); 
printf("< 1>done <2>write file <3>new vigilance\n"); 
printf("<4>new file <5> retrain <6>run <7> edge detect:"); 
cgets(buffer); 
switch (buffer[2]) 

{ 
case '1': 

clrscr(); 
printf(" Are you sure ? (y / n)"); 
ans= getch(); 
if(ans=='Y' I I ans=='y') exit(1); 
else buffer[2] = '0'; 
break; 

case '2': 
write to file(); 
buffer[2] = '0'; 
break; 

case '3': 
print_categories(); 
buffer[0] = 3; 
buffer[2] = '0'; 
break; 

case '4': 
get_inputpicture(); 
print_ output(); 
buffer[2] = '0'; 
break; 

case '5': 
get_trainingpatterns(); 
initialize_weighted links(); _ 
train_ network(); 
print_categories(); 
buffer[2] = '0'; 
break; 

case '6': 
see_input(); 
print_output(); 
printf("\a\a\a"); 
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matching(); 
buffer[2] = '0'; 
break; 

case '7': 
filter(); 
print_output(); 
buffer[2] = '0'; 

} 
} 

} 

void get_trainingpatterns() 

This function will get the 5 x 5 training patterns from a file and store them in a linked list 
pointed to by INPUT_PATTERNS. It will also set the vigilance parameter to 1.0 to disable 
updating of previously committed exemplars during the training phase. 

{ 
struct pattern *temp_ptr, *prev_ptr =0; 
int i, ch=0; 
FILE *inp; 
char path[12]; 

clrscr(); 
system("dir/w *.pat"); 
printf("\n\n"); 
printf("Training file name > > ?"); 
printf("\n\n"); 
gotoxy(wherex()-1, 1); 
i = -1; 
do 

{ 
i = i + 1; 
if (i = = 13) 

{ 
printf ("\nFilename too long! Shorten it and rerun... .XXX\n"); 
exit(0); 

} 
path[i] = getche(); 
if (path[i] = = '\x08') 

i = i - 2; 
} 
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while (path[i] != '\x0d'); 
path[i] = NULL; 
INPUT PATTERNS = (struct pattern *) malloc(sizeof(struct pattern)); 
temp_ptr = INPUT PATTERNS; 
inp = fopen(path, "r"); 
if (inp == NULL) 

{ 
printf ("\n\nTraining file %s doesn't exist!", path); 
exit(0); 

} 
else 

{ 
while (ch != EOF) 

{ 
for (i=0; i<FEATURES; i++) 

{ 
while ((ch = getc(inp)) == '\x20' I I ch == '\x0d' I I ch == '\x0a'); 
if (ch == EOF) 

{ 
prev_ptr->nxtptr = (struct pattern *)NULL; 
break; 

} 
if (ch ==-- '*') 

temp_ptr->template[i] = 1; 
else 

temp_ptr->template[i] = 0; 
} 

temp_ptr->nxtptr = (struct pattern *) malloc(sizeof(struct pattern)); 
prev_ptr = temp_ptr; 
temp_ptr = temp_ptr->nxtptr; 

} 
fclose(inp); 

} 
for (i=0; i<CATEGORIES; i++) 

{ 
F_2[i].vigilance = 1.0; 

} 
VIGILANCE = 1.0; 

} 
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int maxnet() 

This function will select the category neuron with the highest exemplar match using lateral 
inhibition and return an integer pointer into the array F_2 of category neurons. 

{ 
int i, j, k, positive_nodes, last_positive_node=0; 
float temp, temp_alpha, temp_epsilon, temp_output[CATEGORIES]; 

if (active _nodes = = 0) 
return(activate new node()); 

temp_alpha = ALPHA; 
temp_epsilon = EPSILON; 
positive_nodes = 0; 
while (positive_nodes != 1) 

{ 
positive_nodes = 0; 
for (j =0; j<CATEGORIES; j++) 

{ 
if (F 2[j].active = = 1) 

{ 
temp = 0; 
for (i=0; i<CATEGORIES; i++) 

{ 
if ((j != i ) && (F 2[i].active = = 1)) 

temp = temp + F_2[i].output; 
} 

if (temp < 0) 
temp = temp * -1.0; 

if(F 2[j].vigilance!= 0) 
temp_output[j] = temp_alpha * (F_2[j].output - temp_epsilon * temp) 

* (1.0/F_2[j].vigilance); 
else temp_output[j] = 0; 

if (temp_output[j] > 0) 
{ 
positive_nodes = positive_nodes + 1; 
last_positive_node = j; 

} 
else 
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temp_output[j] = 0; 
} 

} 
for (k=0; k<CATEGORIES; k++) 

{ 
if (F 2[k].active == 1) 

F 2[k].output = temp_output[k]; 
} 

if (positive_nodes == 0) 
{ 
return(last_positive_node); 

} 
} 

for (j=0; j<CATEGORIES; j+ +) 
{ 
if ((F 2[j].active == 1) && (F 2[j].output > 0)) 

return(j); 
} 

} 

void compute_weighted_sums() 

This function will compute the outputs for the category neurons based upon the bottom 
up weights for each category neuron and also the input pattern loaded into the 
corresponding feature neurons. 

{ 
int i, j; 
float temp_alpha; 

temp_alpha = ALPHA; 
for (i=0; i<CATEGORIES; i++) 

{ 
if (F 2[i].active == 1) 

F 2[i].output = 0; 
} 

for (j=0; j<CATEGORIES; j+ +) 
{ 
if (F 2[j].active == 1) 

{ 
for (i=0; i<FEATURES; i++) 

{ 
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F_2[j].output = F_2[j].output + F_2[j].bottom_up[i] * 
(float)F_1[i].feature_value; 

} 
F_2[j].output = F_2[j].output * temp_alpha; 

} 
} 

} 

void update_exemplar(node) 

This function will update both the top down and the bottom up weights for the selected 
exemplar category "node". 

int node; 
{ 
int i, coincedences; 

coincedences = 0; 
for (i=0; i<FEATURES; i++) 

{ 
F 1[i].top_down[node] = F l[i].top_down[node] * F_1[i].feature_value; 
coincedences = coincedences + F_ 1[i].top_down[node]; 

} 
for (i=0; i<FEATURES; i++) 

{ 
F 2[node].bottom_up[i] = (float)F l[i].top_down[node] / (0.5 + (float)coincedences); 

} 
} 

int apply_input(input_pointer) 
/******************************************************************************/ 

This function will get the input pattern stored in pattern->template and pointed to by 
input_pointer and load it into the array of feature neurons->feature_value. A value of 0 
will be returned if there are no more input patterns and a value of 1 will be returned if 
there are more input patterns. 
/******************************************************************************/ 

struct pattern *input pointer; 
{ 
int i; 

if (input_pointer == (struct pattern *)NULL) 
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return(0); 
else 

{ 
for (i=0; i<FEATURES; i++) 

{ 
F_ 1[i].feature value = input_pointer->template[i]; _ 

} 
return(1); 

} 
} 

void print_ categories() 

This function will type the exemplar categories established during the training phase on the 
screen and it will also get the individual vigilance parameters desired for each category. 

{ 
int i, j, k, 1; 
char ch, buffer[7]; 
char *p; 

clrscr(); 
gotoxy(23, 1); 
printf("Network Contour Template Exemplars"); 
gotoxy(23, 2); 
printf("); 
gotoxy(4, 3); 
for (i=0; i<CATEGORIES; i++) 

{ 
printf("E[%d]", i); 
gotoxy(4+i*6, 4); 
printf(" "); 

gotoxy(wherex()+1, 3); 
} 

gotoxy(4, 5); 
for (i=0; i<CATEGORIES; i++) 
{ 
if (F 2[i].active == 1) 

{ 
1 = 0; 
for (j=0; j<5; j++) 

{ 
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for (k=0; k<5; k++) 
{ 
if (F_1[1].top_down[i] == 1) 

{ 
printf("*"); 

} 
else 

{ 
printf(" "); 

} 
1 = 1 + 1; 
} 

gotoxy(wherex()-5, wherey()+1); 
} 

gotoxy(wherex() + 6, wherey()-5); 
} 

else 
gotoxy(wherex()+6, wherey()); 

} 
gotoxy(1, 25); 
printf("Enter the vigilance parameter for each exemplar {0 --> 1.0}"); 
buffer[0] = 5; 
for (i=0; i<CATEGORIES; i++) 

{ 
if (F_2[i].active == 1) 

{ 
gotoxy(4+i*6, 11); 
p = cgets(buffer); 
F_2[i].vigilance = (float)atof(p); 

} 
} 

gotoxy(1, 25); 
clreol(); 
printf("Enter > > <ret> to abort; <any key> to continue"); 
ch = getch(); 
if (ch = = '\x0d') 

{ 
clrscr(); 

exit(0); 
} 

} 
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void no classification() _ /******************************************************************************/ 

This function will indicate when all the available category neurons have been allocated. 

{ 
int ch, i, j, k; 

window(1, 6, 80, 25); 
clrscr(); 
gotoxy(1, 1); 
k = 0; 
for (i=0; i<5; i++) 

{ 
for (j=0; j<5; j++) 

{ 
if (F 1[k].feature value == 1) 

printf("*"); 
else 

printf(" "); 
k = k + 1; 

} 
gotoxy(1, wherey()+1); 

} 

gotoxy(9, 1); 
printf("UNABLE TO CLASSIFY THIS INPUT PATTERN 

CATEGORY"); 
gotoxy(9, 2); 
printf("NEURONS AND THE SPECIFIED VIGILANCE 

LOWER THE"); 
gotoxy(9, 3); 
printf("VIGILANCE PARAMETER OR ADD CATEGORY 

THIS"); 
gotoxy(9, 4); 
printf("PATTERN."); 
window(1, 1, 80, 1); 
gotoxy(58, 1); 
printf("p = %d / %d = %6.3f', T_X, X, criteria); 
window(1, 2, 80, 25); 
gotoxy(10, 1); 
printf("Hit any key to view next pattern or return to abort."); 
ch = getch(); 
if (ch == '\x0d') 
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{ 

window(1, 1, 80, 25); 
clrscr(); 
exit(0); 

} 
} 

int activate new node() _ _ 
/******************************************************************************/ 

This function will activate a new category node and return an integer pointer into the array 
F_2 of category neurons corresponding to that node. If no more category nodes are 
available a value of -1 will be returned. 

int i; 

if (active nodes != CATEGORIES) 
{ 

active nodes = active nodes + 1; 
for (i=0; i<CATEGORIES; i++) 

{ 

if (F 2[i].active = = 0) 
{ 

F_2[i].active = 1; 
return(i); 

} 
} 

} 

else 
return(-1); 

} 

void train network() 

This function will train the network by establishing exemplar categories for the training 
patterns pointed to by INPUT PATTERNS. 
/******************************************************************************/ 

{ 
struct pattern *pointer; 
int new node, largest_node, i; 
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pointer = INPUT PATTERNS; 
active _nodes = 0; 
new node = 0; 
while (apply_input(pointer) != 0) 

{ 
criteria = 0; 
while (criteria < VIGILANCE) 

{ 
compute_weighted_sums(); 
if (new_ node == 0) 

largest_node = maxnet(); 
new node = 0; 
X = 0; 
for (i=0; i<FEATURES; i++) 

{ 
X = X + F_ 1[i]leature_value; 

} 
T X = 0; 
for (i=0; i<FEATURES; i++) 

{ 
T_ X= T_ X+F_ 1[i].feature_value * F_1[i].top_down[largest_node]; 

} 

criteria = (float)T X/(float)X; 
if (criteria < VIGILANCE) 

{ 
new_ node = 1; 
largest_node = activate_new_node(); 

} 
if (largest_node == -1) 

{ 
no classification(); 
break; 

} 
} 

if (largest_node > = 0) 
{ 

update_exemplar(largest_node); 
} 

pointer = pointer->nxtptr; 
} 

} 
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void ori_input() 
{ 
int i,j; 
FILE *org; 
char ch, buf[14], *ptr; 

buf[0] = 13; 
clrscr(); 
org = NULL; 
while (org == NULL) 

{ 
gotoxy(1, 1); 
clreol(); 
system("dir/w *.bin"); 
printf("\n\n"); 
printf("Enter the original binary input picture filename > > "); 

printf("\n\n"); 
ptr = cgets(buf); 
org = fopen(ptr, "r"); 
if (org == NULL) 
{ 

gotoxy(1, 1); 
clreol(); 
printf("File \"%s\" doesn't exist! <space> retry <ret> abort", ptr); 
ch = getch(); 
if (ch == '\x0d') 
{ 

window(1, 1, 80, 25); 
clrscr(); 
fclose(org); 
exit(0); 

} 
} 

} 

for (i=0; i<32; i++) 
{ 
if (ch == EOF) 

break; 
for (j=0; j<32; j++) 

{ 
if (ch == EOF) 

break; 
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while ((ch = getc(org)) = = '\x0d' I I ch == '\x0a'); 
if (ch != EOF) 

{ 
if (ch = = '*') 

org_pic[i][j] = '*'; 
else 

org_pic[i][j] = '.'; 
} 

} 
} 

fclose(org); 

} 

void get_inputpicture() 

This function will get the input picture from a file and store it in the array inppic. 
/******************************************************************************/ 

{ 
int i, j; 
FILE *inp; 
char ch, buffer[14]; 
char *p; 

buffer[0] = 13; 

clrscr(); 
inp = NULL; 
while (inp = = NULL) 

{ 
gotoxy(1, 1); 
clreol(); 
system("dir/w *.bin"); 
printf("\n\n"); 
printf("Enter the binary input picture filename > > "); 
printf("\n\n"); 
p = cgets(buffer); 
inp = fopen(p, "r"); 
if (inp = = NULL) 

{ 
gotoxy(1, 1); 
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cereal(); 
printf("File \"%s\" doesn't exist! <space> retry <ret> abort", p); 
ch = getch(); 
if (ch == '\x0d') 

{ 
window(1, 1, 80, 25); 
clrscr(); 
fclose(inp); 
exit(0); 

} 
} 

} 

for (i=2; i<34; i++) 
{ 
if (ch == EOF) 

break; 
for (j=2; j<34; j++) 

{ 
if (ch == EOF) 

break; 
while ((ch = getc(inp)) == '\x0d' I I ch == '\x0a'); 
if (ch != EOF) 

{ 
if (ch == '*') 

inppic[i][j] = '*'; 
else 

inp_pic[i][j] = '.'; 
} 

} 
} 

fclose(inp); 

for (i=0; i<36; i++) 
{ 
for (j=0; j<2; j++) 

{ 
inppic[j][i] = '.'; 
inppic[34+j][i] = '.'; 
inp_pic[i][j] = '•'; 

inppic[i][34+j] = '.'; 
} 

} 
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for (i=0; i<32; i++) 
{ 
for (j=0; j<32; j++) 

{ 
oup_pic[i][j] = inp_pic[i+2][j+2]; 

} 
} 

} 

int view_pixel(i, j) 

This function will determine, from the 5 x 5 neighborhood, if a pixel is close enough to 
any of the exemplars and their corresponding vigilance. If so then a value of 1 will be 
returned otherwise a value of 0 will be returned. 

int i; 
int j; 
{ 
int 1, m, n, largest_node, x, p, q; 

n = 0; 
X = 0; 
for (1=i-2; 1<i+3; 1++) 

{ 
for (m=j-2; m<j+3; m++) 

{ 
if (inp_pic[1][m] == '*') 

{ 
F_1[n].feature value = 1; 

X = X + 1; 
} 

else 
F 1[n].feature value = 0; 

n = n + 1; 
} 

} 
if (X >= 0) 

{ 
compute_weighted_sums(); 
largest_node = maxnet(); 
T_X = 0; 
for (1=0; l<FEATURES; 1++) 

T_X = T_X + F_1[1].feature value * 17  1[1].top_down[largest node]; _ _ _ 
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/*if (X < 5) 
X = 5;*/ 

if (F_ 2[1argest_node].active == 1) 
{ 
H = 0; 
for (1=0; l<FEATURES; 1+ +) 

if(F 1[1].top_down[largest node] == 1) H++;} 

criteria = (float)T X/(float) H; 
if (criteria < F_ 2[1argest_node].vigilance) 

return(0); 
else 

return(1); 
} 

else 
return(0); 

} 

void initialize weighted links() _ _ 

This function will initialize all top down links to 1 and all bottom up links to 1/(25+1). 

{ 
int i, j; 
float temp_features; 

temp_features = FEATURES; 
for (j=0; j<CATEGORIES; j++) 

{ 
F 2[j].active = 0; 
for (i=0; i<FEATURES; i++) 

{ 
F 2[Thbottom_up[i] = 1/(1+temp_features); 
F 1[i].top_down[j] = 1; 

} 
} 

} 

void print_output() 
/******************************************************************************/ 
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This function will type the current contents of ouppic to the screen. 

{ 
int i, j; 
char charpic[33]; 

clrscr(); 
for (i=0; i<32; i++) 

{ 
for (j=0; j<32; j++) 

{ 
char_pic[j] = ouppic[i][j]; 

} 
charpic[j] = ouppic[i][j]; 
charpic[32] = '\0'; 
printf("%s\n", char_pic); 

} 
} 

void matching() 
{ 

int i,j, tl, t2; 

match =0; t1 =0; 
match2=0; t2=0; 
for (i=0; i<32; i++) 

{ 
for (j=0; j<32; j++) 
{ if(org_pic[i][j]=='*') 

{ 
tl++; 
if(oup_pic[i]U]==org_pic[i][j]) match1++; 

} 

if(oup_pic[i][j]=='*') 
{ 

t2++; 
if(oup_pic[i][j]==orgpic[i][j]) match2++; 

} 
} 

} 
per1 = (float)match1 / t1; 
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per2 = (float)match2 / t2; 
printf(" P(0' 1O*) = %5.3f\n",perl); 
printf(" P(O*  |0') = %5.3f\n",per2); 
getch(); 

} 

void see_input() 
/******************************************************************************/ 

This function will scan the entire input image located in inppic, applying the network 
architecture to each pixel and its 5 x 5 neighborhood,to determine if the pixel should be 
s e t o r n o t 

{ 
int i, j, q; 

gotoxy(1, 25); 
printf("\n"); 
for (i=2; i<34; i++) 

{ 
for (j=2; j<34; j++) 

{ 
q = viewpixel(i, j); 
if (q == 1) 

oup  pic[i-2][j-2] = '*'; 
else 

oup pic[i-2][j-2] = '.'; 
} 

gotoxy(1, 25); 
printf("Input picture lines scanned > > %d", i-1); 

} 
} 

void write to file() 

This function will simply write the current contents of ouppic to a file. 
******************************************************************************/ 

{ 
char buffer[14], ch, charpic[33]; 
int i, j; 
FILE *oup; 
char *p; 
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buffer[0] = 13; 
gotoxy(1, 25); 
clreol(); 
printf("Enter the output picture filename > > "); 
p = cgets(buffer); 
oup = fopen(p, "r"); 
if (oup != NULL) 

{ 
gotoxy(1, 25); 
clreol(); 
printf("File \"%s\" exists, overwrite it <y or n>? > > ", p); 
if ((ch=getch()) == 'n' || ch == 'N') 

{ 
fclose(oup); 
return; 

} 
} 

fclose(oup); 
oup = fopen(p, "w"); 
for (i=0; i<32; i++) 

{ 
for (j=0; j<32; j++) 

charpic[j] = ouppic[i][j]; 
charpic[32] = '\0'; 
fprintf(oup, "%s\n", charpic); 

} 
fprintf(oup, " P(O' |O*) = %5.3f\n",per1); 
fprintf(oup, " P(O* |O') = %5.3f\n",per2); 
fclose(oup); 

} 

void filter() 
/******************************************************************************/ 

This function will apply the edge detetion operation mentioned in this paper to a pixel and 
set or reset that pixel accordingly. 
/******************************************************************************/ 

{ 
char buffer[34][34], char_pic[33]; 
int i, j, k, 1, count; 

for (i=0; i<34; i++) 
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{ 
buffer[0][i] = "; 
buffer[33][i] = "; 
buffer[i][0] = "; 
buffer[i][33] = "; 

} 
for (i=1; i<33; i++) 

{ 
for (j=1; j<33; j++) 

{ 
buffer[i][j] = ouppic[i-1][j-1]; 

} 
} 

for (i=1; i<33; i++) 
{ 
for (j=1; j<33; j++) 

{ 
if (buffer[i][j] == '*') 

{ 
count = 0; 
for (k=i-1; k<i+2; k++) 

{ 
if (buffer[k][j] == '*') 

count = count + 1; 
} 

for (1=j-1; 1<j+2; 1++) 
{ 
if (buffer[i][1] == '*') 

count = count + 1; 
} 

if (count == 2 I I count == 6) 
ouppic[i-1][j-1] = '.'; 

else 
ouppic[i-1][j-1] = '*'; 

} 
else 

ouppic[i-1][j-1] = '.'; 
} 

} 
} 
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