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ABSTRACT 

Title of Thesis: Multiresolution Techniques: 

Laplacian Pyramid Coding 

and its Comparison with Subband Coding 

Danmei Chang. Master of Science in Electrical Engineering. 1991 

Department of Electrical and Computer Engineering 

Thesis directed by: Dr. Chung H. Lu 

Associate Professor 

Department of Electrical and Computer Engineering 

The multiresolution pyramid and related structures have been developed as 

intermediate representations between the purely frequency domain and purely 

spatial domain. In this thesis. we discuss two important pyramid structures 

which are often used in multiresolution representation: Laplacian pyramid and 

subband coding. 

Laplacian pyramid. a typical pyramid structure, is studied in detail. By 

means of software implementation. we obtain a comprehensive understanding 

of its features and applications in image representation and data compression. 

Several modifications of pyramid structure are used to compress the data dy-

namic range, reduce the computational complexity and improve performance. 

Performance of the conventional Laplacian pyramid and the modified pyramid 

structures are studied and compared. 
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Chapter 1 

Introduction 

Recently there has been a lot of interest in the application of human visual 

models in image processing. Research in the area of vision has shown that there 

exist mechanisms in biological visual systems that are selective with regard to 

both spatial and frequency orientation [18]. A good image coding technique 

should (1) take into account the human visual system model. (2) manipulate 

the properties of both the spatial and transform domain. (3) achieve high data 

compression ratio while guaranteeing a faithful reconstruction of the original 

image. 

A variety of image processing techniques have been developed to achieve these 

general goals in representing and analyzing images over the past 10 years. 

Among these. multiresolution techniques have become the current trend in 

image processing and computer vision. 

The multiresolution pyramid and related structures have been developed as 

representations that are intermediate between the purely spatial and purely 
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frequency domain representations. The basic functions are 'compact' in space 

and in spatial frequency. Individual pyramid samples represent an image pat-

tern within a neighborhood. rather than at a point (pixel) or over the entire 

image (frequency component ). 

Similar multiresolution image representation techniques have been developed 

in diverse scientific disciplines. Three multiresolution representation approaches 

have attracted attention for applications in image compression: the Laplacian 

pyramid, subband decomposition, and most recently. the wavelet transform. 

These were developed by individuals in different field and with different mo-

tivations. yet present day implementations are virtually identical [T]. 

The Gaussian. or lowpass pyramid is a sequence of reduced resolution copies of 

the original image. Successive levels of the pyramid are obtained by applying a 

small kernel lowpass filter to the preceding level, then subsampling the filtered 

image. The Laplacian. or bandpass pyramid decomposes an image into a set 

of octave wide bandpass components. Each Laplacian image can be formed as 

the difference between Gaussian image at same layer and the expanded image 

of the Gaussian image at the next layer. 

Burt and Adelson [1] proposed such a Laplacian pyramid structure which was 

the first Laplacian pyramid applied to image compression. It provides good 

compression performance and exact image reconstruction. It has an advan- 
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tage in that the image analysis can be performed using the same structure 

as compression [1]. Laplacian pyramid structure [2] plays an important role 

in the development of multiresolution techniques. This is because pyramid 

coding combines features of predictive and transform coding methods, its hi-

erarchical structure is similar to that of the nervous system, it uses functions 

close to those of the human visual system. Image sensed by the eyes are de-

composed into bandpass components as they move to the visual cortex of the 

brain. Independent mechanisms. or channels. within the visual pathway carry 

visual information in roughly the same way as that in a level of the Laplacian 

pyramid. Furthermore, information carried by an individual neuron is analo-

gous to a sample in the pyramid [2]. Laplacian pyramid structure in 21 also 

has the elegant capabilities for progressive transmission or reconstruction. By 

studying the recent researches in multiresolution image processing, or multi-

channel image processing. one would be impressed by the wide applications 

of similar structures in the decomposition of images. As a matter of fact, 

Laplacian pyramid coding has significant effect on the later multiresolution 

techniques, such as subband coding and wavelet transformation used in image 

compression and pattern recognition. 

Subband coding (SBC), originally used for speech coding, has been successfully 

extended to image coding [31]. The basic idea behind subband coding is to 
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split up the frequency band of the signal and then to code each subband using 

a coder and bit rate accurately matched to the statistics of that band. 

A high data compression rate can be achieved through the subband coding, in 

addition to this, SBC offers two other advantages. First, the error in coding 

a subband is confined to that subband, thus exploiting the masking effect of 

speech. Second. by varying the bit assignment among the subbands, the noise 

spectrum can be shaped according to the subjective noise perception of the 

human ear or eye. 

Similar to SBC of speech. subband coding of images also suffers from the 

aliasing problem. Fortunately, it can be cancelled by choosing the suitable 

filter bank for the ideal case. The design of the filter bank is the most complex 

part of SBC. 

Wavelet representation is another new method for multiresolution signal de-

composition. In the wavelet approach to multiresolution decomposition, the 

difference of the information between the approximation of a function at two 

different resolutions is computed by decomposing the function into a wavelet 

orthonormal basis. In practice. we can compute the decomposition of a func-

tion into a wavelet orthonormal basis with a quadrature mirror filter (QMF) 

bank 1201. 

Multiband image decomposition is also well adapted for coding images be-

cause it is possible to match the human visual system sensitivity and take 
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advantage of the intrinsic statistical properties of images. The sensitivity of 

human vision depends upon the frequency of stimulus. We want to quantize 

each frequency band with the minimum number of bits. and at the same time 

try to reconstruct the best possible image for human visual perception. For 

this purpose we adapt the quantization noise to the human sensitivities along 

each frequency band. The more sensitive the human visual system. the less 

quantization noise is introduced. This enables us to introduce a minimum 

amount of perceivable distortion in the reconstructed image. 

The statistical properties of images give another reason for using multiband 

decomposition in image coding. It is well known that the intensity of images is 

locally correlated. Predictive coding has been particularly successful in com-

pressing the number of bits used in coding an image. The wavelet coefficients 

give a measure of the local contrast at different scale. Since the image inten-

sity is locally correlated. these local contrasts generally have a small amplitude 

19], we can take advantage of this property for coding the wavelet coefficients 

on fewer bits without introducing any noticeable distortion. 

The rest of this thesis is organized as follows. Chapter 2 reviews the conven-

tional Laplacian pyramid coding scheme, the implementation of the structure 

and simulation results are included. The features of the multiscale images are 

then studied using simulation. This serves as the foundation for the subse- 
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quent chapters. 

Chapter 3 deals with subband coding and wavelet decomposition of images. 

The brief theoretical analysis of these two approaches is given, then some sim-

ulation results are presented for comparing the two methods and to show the 

similarities and differences between Laplacian pyramid coding and orthogonal 

decomposition. 

Chapter 4 presents some modifications to the conventional image coding. First 

we introduce a non-linear device — modulo limiter. and its application in 

predictive system. Then. the possibility of its application in pyramid coding 

is discussed and a scheme for combining the pyramid structure and modulo 

limiters is developed. 

We then deal with problem of Laplacian coding complexity by providing three 

modifications to simplify the coding procedures. Finally, we discuss the effect 

of the interpolation. 

Chapter 5 provides the conclusions based on the findings obtained, and sug-

gestions for further research. 
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Chapter 2 

Laplacian Pyramid Coding 

The Laplacian pyramid is a versatile data structure that represents an image 

as a sequence of spatially filtered and decimated versions of the original image. 

Basically the pyramidal representation involves the construction of a multi-

layered structure on which the original image is placed at the bottom. and 

the successive approximations. each one with a smaller resolution level, are 

piled on top. Thus. the overall structure resembles a pyramid. every layer 

having fewer elements than the underlying one and offering a coarser view of 

the original image [91. 

The Laplacian pyramid introduced by Burt and Adelson 12j has the structure 

shown in Figure 2.1, This scheme combines features of predictive and trans-

form coding. Noncausal prediction of the image is the lowpass filtered copy 

of the original image. The predicted value for each pixel is computed as a 

local weighted average. The prediction error is thus the difference between 

the image and its lowpass filtered copy. 
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2.1 Gaussian Pyramid 

In the scheme shown in Figure 2.1, the first step is to form a sequence of 

images go. g1, • • •,gi. gi _1 , • • • . (L is the number of pyramid layers) by-

reducing the image in both resolution and sample density. For example, 9111  

is obtained by lowpass filtering the image gi  and then subsampling the filtered 

image. Image gi _,1  can be considered as a reduced copy of the image gi , and the 

procedure to generate gi _i  can be called a 'REDUCE' operation. Figure 2.2 

shows this reduction operation. where h(m. n) is the impulse response of a two 

dimensional lowpass filter. and 211 denotes the subsampling in the horizontal 

direction which keeps one column out of two, and 2-1 is the subsampling 

in the vertical direction which keeps one row out of two. Usually, the two 

dimensional filter h(m,n) is a separable symmetric function which can be 

formed from a one dimensional lowpass filter h(n) as 
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If the filter used is an N-tap (N is odd)  symmetric lowpass filter, then the 

above convolution can be written as 

After subsampling, the reduced image is thus, equal to 

2.2 Laplacian Pyramid 

The Laplacian pyramid is a sequence of error images 10.11 , • • • Except on 

the top. where 1N  = gN. the Laplacian image is the difference between two 

levels of the Gaussian pyramid. Thus. for 0 < 1 < N.[2] 

Here, EXPAND is the reverse of REDUCE (we also use E to denote the EX-

PAND operator and R to REDUCE operator). It expands the reduced image 

to the original size by first interpolating new pixel values (usually zeros) be-

tween two samples (in both dimensions), and then filters it with the same 

lowpass filter as used in REDUCE function. Figure 2.3 shows the EXPAND 

function where 112 puts one column of zeros between two columns. and 1-2 

puts one row of zeros between two rows. The image resulting after interpolat-

ing zeros can be expressed as 
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then. the expanded image is 

The last equation contains only the terms for which m-k/2  and n-l/2 are both 

integers. A constant multiplier 4 is applied to correct the DC offset caused by 

zero insertion. 

2.3 Reconstruction 

If no quantizer is used, the reconstructed image at top of the pyramid is 

For the layer below it, referring to Figure 2.1, 
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Continuing the procedure. we have 

The reconstructed image at each level is equal to the corresponding Gaussian 

images. So. exact reconstruction can obtained as long as there is no channel 

noise. 

2.4 Simulations and Discussions 

In order to illustrate the features of the Laplacian pyramid coding, we imple-

ment the whole scheme using the computer. By running the programs with 

different sets of parameters. we have obtained extensive knowledge of this 

scheme, its advantages and drawbacks, as well as its possible applications and 

improvements. 

First, the Laplacian pyramid as given in [21 is simulated. The two dimensional 

lowpass filter h(m, n) used here is the same as the one given in [21 which is a 

separable and symmetric function 

A 5-tap one dimensional filter h(n) is used to produce a 5-by-5 lowpass filter. 
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The filter coefficients are chosen to be 

The rest of this chapter includes the observations and discussions about the 

analysis of the simulated results 

Laplacian pyramid and predictive system 

Figures 2.4 to 2.7 show the Gaussian images and Laplacian images and their 

histograms when the number of pyramid levels is 4. Figure 2.4 gives a sequence 

of Gaussian images. The original image, measures 512 by 512. Each higher 

level image is half as large in each dimension as the preceeding one. Figure 

2.5 illustrates Laplacian images which are taken by subtracting the expanded 

Gaussian images from the preceeding Gaussian image. 

The reduced version of the Gaussian images can be viewed as the predicted 

images of the original one. and the Laplacian iAmages are then the error 

images. Actually, a two layer Laplacian pyramid structure is similar to an 

open-loop DPCM system (D*PCM) [11]. Figure 2.5 shows that the Laplacian 

images have the features that are similar to the error image in a predictive 

system. In a DPCM system a initial value is the key used to reconstruct the 

original image from the error image, while in a Laplacian pyramid structure 

the Gaussian image on the top of pyramid has to be transmitted in order to 

reconstruct the original image from Laplacian images. Figure 2.6 are the his-

tograms for Gaussian images. and Figure 2.7 are histograms for the first three 

Laplacian images ( the Laplacian image at the top is a Gaussian image). The 
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redundancy is reduced by subtracting a predicted value from each image pixel. 

The reduction of redundancy results in a concentration of pixel values around 

zero, and therefore, a reduced variance and entropy. in Laplacian pyramid 

coding, the noncausal prediction of each pixel based on a neighborhood of the 

pixel provides a better prediction than the linear, causal prediction. This per-

mits a good data compression rate for code words of. Substantial reduction is 

realized through quantization (particularly at low pyramid level) and reduced 

sample density (particularly at high pyramid levels). 

A characteristic property of the open-loop DPCM (D*PCM) is that predicted 

values at transmitter and receiver (unlike in closed-loop DPCM) are based on 

different inputs and therefore differ. As a result, the reconstruction error con-

sists of two terms. the quantization noise term plus an additional term equal 

to the difference between predictor outputs at transmitter and receiver. Quan-

tization error is approximately white noise if the number of quantizer levels 

is sufficiently high. Hence in D*PCM. the reconstruction noise is non-white. 

with each quantization error causing an infinite output sequence. The Lapla-

cian pyramid in Figure 2.1 also suffers from this error propagation problem. 

This problem can be solved by the quantization noise feedback technique. A 

Laplacian Apyramid with QNF was proposed in [13]. This scheme has a struc-

ture similar to the closed-loop DPCM. An important property of this scheme 

is that the reconstruction error is identical to the quantizer error. 

Coarse-to-fine structure 

Laplacian image at the lower layer contains finer detailed information than 

the ones at the higher layers. These fine details are the features such as edges 

and bars. In Laplacian pyramid representation, image features are enhanced 
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Figure 2.4: Gaussian Images 
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Figure 2.5: Laplacian Images 
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Figure 2.6: Histograms of the Gaussian Images 
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Figure 2.7: Histograms of the Laplacian Images 
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and are directly avaliable for various image processing and pattern recognition 

tasks. Also, because of this coarse-to-fine structure, the Laplacian pyramid 

is particularly well suited for progressive image transmission by transmitting 

the coarse version first. The transmission procedure can stop anytime when 

the reconstruction image from received images satisfied the requirements. 

Multichannel representation 

Another observation is that when generating the Laplacian pyramid. one au-

tomatically has access to quasi-bandpass copies of the image [2] because of the 

decimation, interpolation and subtraction. Just as the Gaussian images are a 

set of lowpass filtered copies of the original image, the Laplacian images are a 

set of bandpass filtered copies of the image. The scale of the Laplacian opera-

tor doubles from level to level of the pyramid, while the center frequency of the 

passband is reduced by an octave [2]. This feature allows the similar pyramid 

structures to be widely used in the SBC and wavelet transform techniques. 

Exact reconstruction 

Same structures and filters in encoder and decoder assure exact reconstruction 

of the original image when there is no channel noise. Lowpass filtering and 

round-off will not cause reconstruction error. This is a suitable structure for 

lossless data compression. The symmetric structure makes it easy to design 

and implement the filter. 

Laplacian pyramid and data compression 

Table 2.1 lists the entropies for each Gaussian image and Laplacian image, as 

well as the total bit rate. 
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Table 2.1: Entropies of the Laplacian pyramid 

 'woman' j Gaussian Images  Laplacian Images 
level 0 1 7.445072 4.621148  
level 1 7.407004 4.811689  
level 2  7.356472 5.396242 
level 3 7.280909 7.280909 
BPP 9.870367 6.275100 

Total BPP for Laplacian images is close to the entropy of the original image. 

This leads to the conclusion that pure pyramid coding without quantizers will 

not achieve a high data compression rate. Further data compression will be 

achieved through proper quantization. 

The data compression rate obtained through Laplacian pyramid is approxi-

mate to 10:1 by using scale quantizers such as optimum quantizers. The vector 

quantizer has shown its advantages in pyramid coding but resulting data 

compression rate is still not satisfactory for some applications. For this rea-

son. Laplacian pyramid coding is classified as a first generation image-coding 

technique 12L 

Quantization and effects of quantization noise 

The simulations for Laplacian pyramid coding with quantizers were designed 

using optimum quantizers. The basic idea for the optimum quantizer appears 

in [3]. We use a similar method, and the Laplacian image data from ten 

given images is used so that the data set does not favor certain images. Table 

2.2 lists the simulation results including BPP and SNR for quantizers with 

different numbers of levels and pyramids with different numbers of layers. 

The SNR between original image and reconstructed image is mainly decided 
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Table 2.2: BPP and SNR using Optimum Quantizers 

by the number of pyramid layers and the number of quantization levels. The 

quality of the reconstructed image also depends on the features of the input 

image. Table 2.2 shows that the number of pyramid layers is an important 

parameter. The more pyramid layers, the bigger the BPP and the better is the 

resulting reconstructed image. Table 2.2 also shows that a 4 layer pyramid 

is a good compromise between BPP and SNR. The upper image in Figure 

2.8 is the reconstructed image for a 4 layer pyramid and 3 level quantization. 

The reconstruction error is tolerable and the BPP is small. The quantization 

noise effect on the image in pyramid coding is different from the effect on a 

reconstructed image in a DPCM system because of the multilevel structure and 

local non-causal prediction. The lower image in Figure 2.8 is the reconstructed 

image from DPCM coding with 3 level quantization. 

The quantization noise in the lower layer has less effect on the SNR. We can 
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assign more quantization levels to the Laplacian image on the high layer. In 

fact, we do not use the quantizer to the top image. This will not increase 

BPP considerably since number of pixels on the top is much less than number 

of pixels of the original image. We have show that the quality of the recon-

structed image will be reduced greatly if we quantize the image on top of the 

Laplacian pyramid. A lot of work has been done on reducing the quantization 

noise in pyramid coding [28] [13]. By quantization feedback techniques. the 

quantization noise can be reduced more or less. However, it is difficult to 

achieve optimum quantization with quantization noise feedback. 

Computational complexity 

One drawback of the pyramid coding is that the total number of the samples 

for Laplacian images are more then the samples of the original image. If 

original image measures N-by-N and the number of pyramid levels is L. then 

the total number of samples for transmitting is 

This number is close to 4/3N² when L is large.  

Laplacian pyramid coding requires large amount of additions and multipli-

cations. due to its multilevel structure, and because of the decimation and 

interpolation operations. The other problem with Laplacian pyramid coding 

is that the dynamic range of the Laplacian images is twice that of the original 

image. 

The coarse-to-fine feature and flexible structure makes pyramid coding a suit-

able method for image representation. Many researchers have contributed 
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Figure 2.8: Reconstructed Images from LP and DPCM 
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their modifications to this coding scheme. After careful study of pyramid cod-

ing and combining some other techniques used in signal processing or image 

processing, Chapter 4 will include some modifications we have worked out. 

Some further discussion on the performance and applications of the pyramid 

coding will be included in chapter 4. 
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Chapter 3 

Subband Coding of Images 

3.1 Subband Coding of Images 

Subband coding is an encoding technique to divide the input signal into a num-

ber of separate frequency components, and to encode each of these components 

separately. This division into frequency components reduces the redundancy 

in the input and provides a set of uncorrelated inputs to the channel. The 

frequency domain coding techniques have the advantage that the encoding ac-

curacy is always placed where it is needed in the frequency domain. In fact. 

bands with little or no energy may not be encoded at all ;11]. 

Figure 3.1 illustrates a basic block diagram of the subband coder for with 

one layer. In the subband coder, the input signal is divided into typically 

four or more subbands by a modulation process equivalent to single-side-band 

amplitude modulation. It is then sampled (or subsampled) and encoded. In 

this process, each sub-band can be encoded according to perceptual criteria 

that are specific to that band. In receiver, the subband signals are decoded 

and modulated back to their original locations. They are then summed to give 

a close replica of the original signal. 

Encoding in subbands offers several advantages. By appropriately allocating 
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Figure 3.1: Subband Coding 

the bits in different bands. the number of quantizer levels and hence recon-

struction error variance can be separately controlled in each band, and the 

shape of the overall reconstruction error spectrum can be controlled as a func-

tion of frequency. Take speech coding for example. In the lower frequency 

bands, where pitch and formant structure must be accurately preserved, a 

large number of bits/sample can be used; whereas in upper frequency bands, 

where fricative and noise-like signals occur, fewer bits/sample can be used. 

Further, quantization noise can be contained within bands to prevent mask-

ing of a low-level input in one frequency range by quantizing noise in another 

frequency range[11]. 

The most complex part of the coder is the filter bank [11]. The overlapping 

subband suggests that aliasing effects can occur. This problem is very ele-

gantly tackled in the quadrature—mirror filter (QMF) bank approach [11]. In 

order to cancel aliasing effects when reconstructing the subband signals, the 
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QMF filter bank should have the following properties: 

s lower band filter hi(n) and upper band hu(n) are respectively symmet-

rical and anti-symmetrical, FIR designs have an even number of taps. 

i.e.. 

• QMF filter bank should satisfy the condition 

• amplitude spectrum satisfy the condition 

Subband coding of images is similar to SBC of speech. The most important 

step is to design the 2-D filter banks. Wood and O'Neil 31] introduced an 

approach in which a 2-D QMF bank and pyramid structure are used to decom-

pose the input image. 1-D FIR QMF is extended to 2-D case to approximate 

the ideal subband filter. Separable filters are sufficient (not necessary) for the 

most natural four-band extension of the standard two-band QMF filters. A 

4-band splitting subband coding system is shown in Figure 3.2 i31. Where 

the two dimensional filters hii(m,n) to huu(m,n) are obtained from 1-D filters 

hi (n) and hu(n) as 
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Figure 3.2: 4-Band Subband Coding of Image 

and. for real hij, we have 

From Figure 3.2, we have 
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The final output is then 

It has been shown [31] that the aliasing will be cancelled when the filter bank 

in the receiver satisfies the following condition. 

The simulation of this scheme gives the results in Figure 3.3 to 3.5. When 

implement the subband coding of images, we use the 1-D filter in horizontal 

and vertical directions respectively. The 16-band splitting is implemented by 

doing 4-band splitting to each subband image again. 

Figure 3.3 is the original image. Figure 3.4 shows the 4-band subband images, 

and Figure 3.5 shows the 16-band subband images. Figure 3.4 and 3.5 show 

that the subband image has a certain orientation selectivity. In Figure 3.4, 

the upper left image is the lowpass filtered coarse image, the upper right is the 

image filtered by hiu(m, n). which contains the horizontal detail information, 

the lower left is the image filtered by filter hul(m, n) which contains the vertical 

detail information, and the lower right is the image with highest frequency 

which shows the diagonal information. 

Figure 3.6 shows Laplacian images. Note that Laplacian images do not have 

orientation selectivity. 
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Figure 3.3: Original Image 
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Figure 3.4: 4-Band Subband Images 
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Figure 3.5: 16-Band Subband Images 
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3.2 Wavelet Decomposition of Images 

Wavelet decomposition of an image mean decomposing the image into a family 

of images on a wavelet orthonormal basis. Morlet [7] defined the wavelet 

transform by decomposing the signal into a family of functions which are the 

translation and dilation of a unique function ψ( x). The function ii (x) is called 

a wavelet and corresponding wavelet family is given by 

The wavelet transform of a function f(x) E L2 (R) is defined by 

As we mentioned before. with pyramid coding of an image the number of 

samples is increased by a factor of 1/3 . The multiresolution wavelet model 

decomposes images into multiresolution components while maintaining the 

same number of pixels as the original images, and the exact difference can be 

extracted by decomposing the image into a wavelet orthonormal basis. Mallat 

[20] proved that in order to do so. the filter should satisfy the condition 

The discrete filters whose transfer function satisfy the above condition are 

QMF. 

At present, the implementation of multiresolution wavelet model using QMF 

is the same as the subband coding of images. 

3.3 Comparisons between Laplacian pyramid 
coding and Subband Coding 

Laplacian pyramid, subband coding and wavelet decomposition are three im-

portant multiresolution decomposition approaches. They have some features 
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Figure 3.7: Laplacian Pyramid Structure 

in common. First, they all decompose the input images into multichannels. 

and each channel has the bandpass characteristic. By appropriately assigning 

bits in different channels. the number of quantizer levels and hence reconstruc-

tion error can be separately controlled in each of the channels according to the 

features of the decomposed signals. The high data compression performance 

can be obtained through this method. 

There are three different structures which are often used to represent images 

with multiresolution. Figure 3.7 is the structure which is used in the Laplacian 

pyramid representation of the images. And Figure 3.8 shows these two trees 

structures which are mostly used in subband coding or wavelet decomposition. 

Structure (a) is a symmetric tree structure, while (b) uses an asymmetric tree 

structure. If the majority of the image power is contained in lower frequency 

band, the structure (b) is reasonable and will reduce the coding complexity. 
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Figure 3.8: Tree Structures of Image Decomposition 
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The decomposition with these tree structures will remain the same number of 

pixels as the original images. 

The Multiresolution concept and QMF are directly related to wavelet or-

thonormal bases. The subband coding scheme in Figure 3.2 can be considered 

as a special case of wavelet transform. 

Figure 3.9 gives histgrams for the 4-band subband images. The orthogonal 

decomposition by QM generates a sequence of images in which the redun-

dancy is removed efficiently. This feature permits subband coding and wavelet 

decomposition to achieve a very higher data compression rate. 

In Laplacian pyramid coding. the encoder and decoder structures are identical. 

which makes it easy to design filters. We have shown that a 5-tap filter is 

adequate in our case. The filter bank used in subband coding is much more 

complex. The filter bank is difficult to design and implement. the filtering 

procedures require more computations. 

The identical structure in transmitter and receiver of a Laplacian pyramid 

also permits the exact reconstruction of the original image. But for subband 

coding. the exact reconstruction can be achieve only when the infinity word 

length is used. 

QMF decompose the image into different channels each with certain orienta-

tion selectivity, while the Laplacian images combine the edge information in 

all directions. 

In Laplacian coding, the coarse image on top of the pyramid is usually assigned 

to a greater bit rate. This will not increase the total bit rate too much since 

the size of this image is much smaller than the size of all other Laplacian 

images. The symmetric tree structure subband coding will generate a lowpass 

filtered image with the same size as all of the other subband images. The bit 
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rate of lowpass images will have the same effect as the other images have. 
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Figure 3.8: Histgrams of 4-band subband images 
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Chapter 4 

Modifications to Laplacian 
Pyramid Coding 

In this chapter we will propose some modifications to the pyramid coding. and 

compare the features among the different structures. 

4.1 Compressing Dynamic Range of the Lapla- 
cian Images 

In Laplacian pyramid coding, the Laplacian images are obtained by subtract-

ing the two Gaussian images. So the gray level range for Laplacian image is 

twice as much as the original input image. Suppose the input image is a 8-bit 

gray level image, the Laplacian image will need 9 bits for directly storing or 

transmitting each pixel when perfect reconstruction is required. Unless other-

wise stated, all the images used as input images are digitized with a 512 by 512 

raster and quantized to 256 levels, thereby permitting an 8-bit representation. 

In the following section. we will deal with a method to compress the dynamic 

range of the Laplacian images. We will see that a modulo limiter can solve 

the problem efficiently. 
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Figure 4.1: Modulo Limiter 

4.1.1 Introduction to Modulo Limiter 

A modulo limiter (ML) is a nonlinear device which repeatedly applies a preset 

offset to the input until the output falls within a preset range 15i. The 

relation between the input and output is given in Figure 4.1. Mathematically. 

the modulo limiter can be represented in terms of a modulo function. Its 

digital implementation is very simple. In actuality, application of the modulo 

limiter in a digital system results in the need for less hardware [15] . 

Modulo limiting has been successfully applied in PCM system for speech cod-

ing (MPCM) [27,221. The modulo limiter has also been applied in DPCM 

system for image coding [15]. 

In predictive coding systems. the error signal is obtained by subtracting the 

predicted value from the original signal. If the dynamic range of the original 

signal is d. dynamic range of the error signal will then be doubled. The error 

signal usually remains about zero if the predictor is well designed, in this case 

one can simply truncate the error signal to limit it to the same dynamic range 

as the original signal and the output will not have significant distortion. This 

limitation is particularly useful for image processing, since the input images 

we use are mostly character images in which each pixel value is stored as a 
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Figure 4.2: DPCM with Modulo Limiting 

byte. By using modulo limiters. one can reduce the dynamic range of the error 

image without introducing error. 

Figure 4.2 shows a DPCM system with modulo limiters. One modulo limiter 

at the transmitter compresses the dynamic range of the prediction error to 

ease the design of the quantizer and consequently to improve coding efficiency 

[15]. Another limiter at the receiver expands the compressed prediction error 

to the original range. Modulo limiters can also be used to improve dynamic 

range or reduce noise level of a signal 141. 

The modulo limiter can be represented by the relation 

Let xn  be the ith input sample and xn  be the nth reconstructed sample. The 

prediction xn  is a function of the reconstructed value xn-1 , xn-2, xn-3 ..., that  

is 

The prediction error is therefore. 

If both the input and reconstructed values are limited in the range [-d/2,d/2), the 

range of the prediction error en  will be [Ed, d). Using equation ( 4.1), output 
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of the modulo limiter is 

where 

Assume the quantization noise for sample en  is nn , then the reconstructed 

value xn  is 

If nn  is negligible, the above representation for in  can be written as 

Therefore, in the case of no quantization noise the reconstructed value in  

is equal to the input value in. This means that a DC offset which may be 

added by the first ML, will be automatically corrected by the second ML. The 

prediction-error modulo limiter reduces the dynamic range of the prediction 

error by 6 dB. 

One problem with the modulo limiter is that when quantization noise exists 

and the value of en  is around the break points, the DC offset might not be 

corrected properly. 
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To use a modular limiter in a predictive system, first we need a feedback 

circuits, and second we have to use an identical structure with that of the 

feedback mechanism in the decoder. Figure 4.2 is an example that the output 

of the decoder yn  is equal to the input signal xn  when channel is noise free 

and quantization noise can be neglected. 

4.1.2 Modulo Limiters in Pyramid Coding 

As we mentioned before. the Laplacian pyramid possesses features of the pre-

dictive system. The prediction value is a local weighted average instead of the 

combination of the previous pixels as in the DPCM. Besides the features such 

as multiresolution and realtime processing, pyramid coding is a lot like DPCM 

system. The Laplacian images are similar to the error image in DPCM. and 

its dynamic range is twice that of the input image. 

These features allow us to use the modulo limiters in a Laplacian pyramid. 

Following the analysis for the DPCM with the modulo limiter. we construct 

the following scheme which combines the Laplacian pyramid with modulo 

limiters. The Figure 4.3 shows the application of ML in Laplacian pyramid, 

for simplicity we only give the first four levels here. 

Let's consider a pyramid structure as shown in the Figure 4.3 first. The result 

can be easily extended to the pyramid with arbitrary number of levels. In the 

following proof, gl  denotes the Gaussian image in pyramid level 1 and gl(m,n) 

is the gray level value for the pixel at position (m, n). Similar notations apply 

for Laplacian image 11 , the quantized Laplacian image c1  and the reconstructed 

image rl . The original image is stored as an 8-bit character image, that is 

g0(m,n) E {0,256), since the REDUCE function keeps the dynamic range of 

the images. The error image  
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Figure 4.3: Pyramid with Modulo Limiter 
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where EXPAND{gi+1(m.m)} is the result from the EXPAND of gl+1(m,n). 

We are now ready to prove that the modulo limiter can be used in a pyramid 

coding scheme by first assuming no quantizer or negligible quantization noise. 

On the top level we have 

Then. for the level below it. we have 

where 

In the decoder, 

This shows that in a Laplacian pyramid with modulo limiters, the ML in the 

decoder can also automatically correct the DC offset which may be introduced 

by the ML in the encoder. 

By using the same procedure. we can prove at last 

Although we derived the above conclusion from a 4-level pyramid. This con-

clusion remains true, if and only if the following condition are satisfied 
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• The effect of the quantizers is negligible. On the top of the pyramid we 

• REDUCE and EXPAND operations do not change dynamic range of the 

images. 

• Modulo limiters should appear in pairs. one in encoder and other in 

decoder. 

• Channel noise can be ignored. 

The computer simulations also confirm the conclusion we obtained here. It 

is very easy to implement the modulo limiter using a computer program. 

Actually we are doing the modulo computation when we take lower 8 bits 

from a 9-bit number. When quantizers are used the modular limiter reduces 

the input's dynamic range and makes the design of the quantizer easier because 

it needs fewer levels. The problem arises when there are very few quantization 

levels, in this case the quantization noise will cause an error in correction. This 

occurs when the ML in the decoder doesn't compensate for the DC offset. 

Even with these problems, the modulo limiter used in the Laplacian pyramid 

is particularly useful for applications such as lossless progressive transmission, 

or lossless variable word length coding. The modulo limiters reduce the dy-

namic range of the signal to be transmitted or quantized, thus it improves the 

data compression gain. Improvement is substantial for some images, but can 

be minimal for others: in the other words, image signals are non-stationary. 

Obviously, the ML will help when the prediction error is large. The noncausal 

prediction based on a symmetric neighborhood centered at each pixel, yields 

a more accurate prediction, hence the compression rate by modulo limiter will 

usually be less then the rate in DPCM_ML. 
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Figure 4.4: Laplacian Model 

It is not necessary to use modulo limiter pairs at every layer of the pyramid. 

we need to can use limiters only in the layers in which the pixel gray values 

do not concentrate around zero. On the top of pyramid the application of 

modulo limiters will not cause any difference. 

4.2 Reducing Computational Complexity 

Although filtering in the Laplacian pyramid can be performed efficiently with a 

fast algorithm, it still needs too much computation compared to the predictive 

systems such as a DPCM system. In the conventional Laplacian pyramid data 

structure. two lowpass filtering operation are required to generate a Laplacian 

image. Figure 4.4 displays the procedures for generating a Laplacian pyramid 

at level l. We call it the Laplacian model. 

We will discuss the possibility of reducing the computation complexity in 

pyramid coding. Some schemes with simpler filtering approaches are developed 
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Figure 4.5: Modification 1 

and the features are compared with the original scheme. 

4.2.1 Modification 1—Mean Filtering 

A mean pyramid is formed by successively averaging over 2 x 2 neighboring 

nodes as shown in Figure 4.5. Here the averaging is a lowpass filtering of the 

image. 

At pyramid level 1 — 1. each pixel is formed by 

Comparing with Figure 4.4. we avoid the two convolution operations for gen-

erating the error images. Computer simulation shows the mean pyramid data 

structure has features similar to conventional pyramid structure. For certain 

images this scheme can achieve features which are even better than the con-

ventional pyramid scheme. 
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Figure 4.6: Modification 2 

4.2.2 Modification 2 

By examining the procedures for generating Laplacian images in Figure 4.4. 

we find the image li  is obtained by subtracting the lowpass filtered copy of the 

Gaussian image from gi . We can avoid the EXPAND operation by using the 

scheme as illustrated in Figure 4.6. The problem with this procedure is that 

we can not obtain the exact reconstruction because the input of EXPAND 

in the decoder is different from the one in encoder, but the distortion is very 

small and is hardly noticeable. 

4.2.3 Modification 3 

Another scheme shown in the Figure 4.7 makes use of the correlation feature 

in the image when generating a Gaussian image. The Gaussian image is taken 

by only decimating the image below it. The computation complexity of this 

scheme is similar to modification 2. 
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Figure 4.7: Modification 3 

4.2.4 Comparative Performances 

Simulations are designed for all the filtering methods. The quantizers used 

are optimum quantizer. The number of pyramid levels is 4 and number of 

quantization levels is 3. The BPP for each pyramid are computed by the 

formula 

and the SNR is the signal-to-noise ratio between the original image go  and the 

reconstructed image r0, which is calculated as 

Table 4.1 to 4.3 list all the related simulation results for the different methods. 

Three images with different features are used for comparison. We have made 

the following observations: 
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Table 4.1: Entropies and SNR for 'woman' 

• Mean pyramid is best in terms of the coding simplicity. 

• Modification 2 and modification 3 are similar to each other, but modifi-

cation 2 always introduces more reconstruction error. 

• All three modifications reduce the number of additions and number of 

multiplications. 

4.3 Non- Zero Int erp olat ion 

In the expansion operation shown in Figure 2.3, the Gaussian image at the 

higher layer is expanded in both dimensions by inserting zeros and then low-

pass filtering. If the filter is designed properly, the value to be inserted does not 
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Table 4.2: Entropies and SNR for 'girl' 

54 



Table 4.3: Entropies and SNR for 'pepper' 
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Table 4.4: BPP and SNR for 'woman' using zero and non-zero inserting 

make any difference for pyramid coding. especially when no quantizer is used. 

But we find this is not true when quantizers are used. The values inserted 

have something to do with the quality of the reconstructed image. In the 

following simulation we insert pixels whose gray level values are equal to left 

ones. The results show this interpolation can obtain about 2dB gain in SNR 

for the worst case. The other advantage of this scheme is that no DC offset 

is introduced. However, this method will slightly increase the computational 

complexity. Table 4.4 lists the data for image 'woman'. 
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Chapter 5 

Conclusion 

In this thesis we have analyzed two multiresolution representation approaches: 

Laplacian pyramid coding and pyramid subband coding using QMF. The 

wavelet decomposition of images, because of its current implementation is 

the same as subband coding with QMF, is also introduced. We found these 

three methods have many features in common. They all have a pyramid data 

structure, the images are decomposed into different resolutions, and resulting 

images form a coarse-to-fine image pyramid. The multiresolution representa-

tion permits the high data compression by appropriately designing the differ-

ent coders for different components. The orthogonal decomposition such as 

subband coding, can achieve higher data compression, because they generate 

a sequence of uncorrelated decomposed images, or in the other words. they 

remove redundancy. 

Subband coding and wavelet decomposition, although developed with different 

motivations, are implemented with similar pyramid structures and decomposi-

tion for both are obtained by QMF. Images are decomposed into orthonormal 

image family. 

Compared with subband coding and wavelet decomposition, Laplacian pyra-

mid coding has its advantage in implementation, because its filtering proce- 
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dures are simpler than the other two schemes. Laplacian pyramid also offers 

exact reconstruction because of its identical structure in the transmitter and 

receiver. The round-off in filtering computation will not result in reconstruc-

tion error as long as the filters used in the encoder and decoder are same. On 

the other hand. exact reconstruction of the original images through subband 

coding can only be obtained with infinity word length. 

In Laplacian pyramid coding. the Laplacian images are generated by subtract-

ing two Gaussian images. so  the dynamic range of Laplacian image is twice 

the original image. The modulo limiter can be used to reduce the dynamic 

range without introducing any reconstruction error. The implementation of 

the Laplacian pyramid with modulo limiters is very easy, and does not increase 

the complexity of the coding scheme. 

Laplacian pyramid is a versatile data structure. many related structures can 

be developed for different applications. The redundancy in original images 

can be used to simplify the pyramid structure. The 3 modifications given in 

Chapter 4 can reduce computational complexity greatly by eliminating one or 

two lowpass filters. 

Laplacian pyramid coding scheme has the features similar to predictive cod-

ing system. The predict image is the reduced copy of the image at the lower 

layer. For generating a error image at each level ( except at top of the Lapla-

cian pyramid) the reduced image at the higher layer is first expanded and 

then subtracted from corresponding Gaussian image. In order to expand the 

reduced image in size, a row of pixels has to be inserted between two rows, 

and a column of pixels has to be inserted between two columns. Usually, the 

value inserted is zero. This value will not make too much difference if the 

lowpass filter is well designed. Then, we found in our simulation. a non-zero 
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insertion will generate a better error image and therefore reduce the quanti-

zation noise. As a result a higher SNR can be obtained. The gain from this 

non-zero interpolation is more significant when number of the quantization 

levels is large. 

As we mentioned above, the proper quantization is the key to obtain data com-

pression. and the reconstruction error is caused mainly by quantization noise. 

Reducing quantization noise is another consideration when using multichannel 

coding. 
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