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ABSTRACT 

Title of Thesis: Development of an Adaptive Fuzzy Clustering Algorithm and 
Validity Measures 

Kurra Bhaswan, Master of Science in Mechanical Engineering, 1991. 

Thesis directed by: Dr. R. N. Dave, Assistant Professor in Mechanical Engineering 

department, New Jersey Institute of Technology. 

In objective functional based fuzzy clustering algorithms the weighted sum of the dis-

tances of the feature vectors from cluster prototype are minimized. The fuzzy member-

ships are utilized as weighing factors. The cluster prototype can be a point or a line or a 

plane, etc. This work extends the recent concept of using curved prototypes by utilizing 

the Adaptive Norm Theorem proposed by Davel  to develop an algorithm for the detection 

of fuzzy hyper-ellipsoidal shell prototypes. The Objective functional associates a norm 

for each cluster in which to measure the proximity of the shell prototype adaptively. The 

resulting implementation necessitates solving a set of non-linear equations through the 

application of the Newton's method which requires good starting values as a pre-requisite 

for convergence. A robust initialization scheme is presented to obtain good starting values 

for the partition and the prototype. The kind of substructures encountered are isolated and 

categorized into two groups and appropriate strategies suggested. Two schemes are sug-

gested for the initial partition and the spatial properties of the domain are used to generate 

starting values for the prototypes. An iterative algorithm is outlined to obtain the starting 

I R. N. Dave and K. J. Patel, FCES Clustering Algonthm and detection of ellipsoi-
dal shapes, Proc. of the SPIE Conf. on Intelligent Robots and Computer Vision IX , 
Boston, pp. 320-333, Nov. 



guesses for the Newton's method. The algorithm is coerced to find a good initial guess by 

the use of different prototypes at different phases during its operation. Examples typifying 

substructures commonly encountered are shown to demonstrate the combined results of 

the initialization and the subsequent application of the AFCS algorithm. The problem of 

validating the number of subsets present in the data and the evaluation of the resulting 

substructure is also addressed. The existing validity measures for fuzzy clustering are sur-

veyed and are shown to be partition based. Three new measures specifically designed to 

validate the shell substructure are introduced. Several examples are included to demon-

strate the superiority of the new measures over the existing measures. 
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CHAPTER 1 

Introduction 

1.1 Classification 

Decision making problems occur in numerous scientific and engineering applications rang-

ing from basic measurements of the environment to machine-intelligent operations such as 

vision and speech recognition. Systems that perform some sort of decision making sur-

round us daily. Examples of these systems are the burglar alarms that protect homes, 

offices, and automobiles; remote control devices that control home entertainment systems, 

and readers of UPC bar codes that expedite pricing and inventory of retail merchandise. In 

other words, decision making involves a classification of the real world data into one of a 

number of possible groups, the data variable can be assigned based on some objective en-

tenon. It seems apparent that for the most part, unless the classification is obvious and triv-

ial we still depend on human expertise to classify on the basis of observations. 

1 
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Even before computer use became common, statisticians and others devel-

oped fairly simple methods of objective classification based on standard probability theory. 

However, as the classification problem has proved so important in so many different fields 

of application it has suffered from being re-solved very many times. Each time a discipline 

has re-invented the subject of classification it has introduced its own jargon, its own nota-

tion and its own favonte methods. For example classification is known as pattern recogni-

tion, discriminate analysis, decision theory, assignment analysis etc. Perhaps the most 

recent and most important re-use of classification analysis is in the area of 'expert systems', 

programs winch seek directly to replace expert reasoning using AI (artificial intelligence) 

techniques. The particular type of classification referred to will be that of Pattern Recognition. 

1.2 Pattern Recognition 

The goal of Pattern Recogmtion is to classify objects of interest into one of a number of 

categories or classes. The objects of interest are generically called patterns and may be 

printed letters or characters, biological cells, electronic waveforms or signals, "states" of a 

system or any of a number of other things that one may desire to classify. Diday and 

Simon[15] give a definition of classification in the context of Pattern Recognition as fol-

lows: 

Let X be an object defined by n parameters or variables (x1, x2, . . . , xv). Let 

X be the "space" of these variables. Let E ={X1, . . . , Xm  } be the set of m of these objects. 

in a natural language, X is a variable object; x1, . . . , xn  are the results of measures on this 
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object. Usually a measure has the properties of a "quantitative value"; length, weight, 

amplitude etc. In an abstract machine language, the interpretation of X is a set of variable 

input data: x1, . . . , xn  are the atomic variable input data. X is the name of a data; x1, . . . xn  

are the states of the data of global name X. 

The mapping that defines the equivalence of the pattern classes Ci  on the space X is given 

by 

All the objects of the same Ci  having the same name ωi  are usually inter-

preted as different occurrences of the same object. The practical problem of classification 

is to find a constructive identification function (or program or operator) which will perform 

the above mapping. A detailed discussion of the form such a function can take is carried 

out in Chapter2. 

1.3 Fuzzy Clustering 

The main difficulties in a pattern recognition problem are: 

- to define the semantics of the pattern recognition, in other words to define what 

properties the pattern recognition function must have. 

- to find a constructive function which will satisfy the above semantics. 

Even while this is so in many decision making problems there is little prior information 

about the data and the decision maker wishes to make as few assumptions about the data as 

possible. This restricts one to studying the interrelationships among the data points to make 

a preliminary assessment of their structure. Cluster analysis is one tool of exploratory data 
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analysis that attempts to assess the interaction among patterns by organizing the patterns 

into groups or clusters such that patterns within a cluster are more similar to each other than 

are patterns belonging to different clusters. This work will be concerned with fuzzy clus-

tering which involves the application of fuzzy set theory to clustering. 

Zadeh[34] proposed the fuzzy set theory in which he defines a fuzzy set as 

a class of objects with a continuum of grades of membership. Such a set is characterized 

by a membership (characteristic) function which assigns to each object a grade of member-

ship ranging between zero and one. The theory of fuzzy sets is applied to clustering. Gen-

erally speaking, the clustering problem is formulated in the following way. Consider a 

finite set of elements X = {x1, x2, . . ., xn } being elements of a p-dimensional Euclidean 

space Rn. Perform a partition of this collection of elements (points) into "c" fuzzy sets, c 

fixed, with respect to a given criterion, i.e. assign membership grades to each element of X 

equal to uik, i = 1, 2, . . . , c, k = 1, 2, . . . , n. Usually the methods use a notion of distance 

or dissimilarity measure to classify the objects, which lead to metric or non-metric methods 

of clustenng. The results of a clustering are represented in a convenient way in the form of 

a partition matrix U indicating the detected structure of the studied data set. It consists of c 

rows and n columns, U = [uik], i = 1, 2, . . . , c, k = 1, 2, . . . , n. The rows correspond to 

the clusters obtained. The (i,k)th element of U indicates a belongingness of the kth object 

to the ith cluster. Two additional constraints are also introduced; their meaning being self-

evident. Firstly, a total membership of the element (object) xkE X to all classes is equal to 



Secondly, every cluster constructed is non-empty, and different from the entire set. This 

requirement is set down as follows, 

One of the widely used clustering methods, the fuzzy c-means(FCM) has been studied and 

developed in detail by Bezdek[4]. The Objective functional takes the form 

Mimmization is obtained by means of an iterative procedure. 

1.4 Statement of the Problem 

Dave[7] introduced the idea of hyperspherical fuzzy shell clustering that measures dis-

tances from a "shell" prototype. In an attempt to extend the concept of shell clustering to 

ellipsoidal shells and higher order derivatives, Pate1[27] employed the theory of residuals 

to solve the resulting non-linear system of equations. But his representation is suppositi-

tious in that the orientation is calculated in isolation from the prevalent formulation and 

thus suffers from becoming entrapped in local optima. The multipartite environment 

resulting from the utilization of fuzzy memberships compounded by the choice of a poor 

numerical model renders the algorithm's behaviour as unpredictable with even slight 

changes in the orientation. Thus there is clearly a need for a more well-founded approach 

to this problem. 

5 
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Dave[11] proposed an adaptive norm theorem for the detection of hyperel-

hpsoidal shells that is based on the extraction of the optimum resulting from an adaptive 

realization of the norm associated with each substructure being detected . The objective of 

this thesis is to develop an algorithm that uses the idea of an adaptive norm as proposed by 

Dave[11] and applying it to the detection of hyper-ellipsoidal shells. The numerical method 

chosen is the Newton's method. The need for a good initialization is exigent with the New-

ton's method. As a result, the investigation and development of an initialization scheme 

forms a significant proportion of the goal being sought. In order to evaluate the perfor-

mance of the resulting algorithm and the ascertainment of the validity of the structure being 

detected, there clearly exists the need for a figure of merit. In other words, some quantita-

tive measures of significance are needed for evaluating the cluster substructure. Thus a 

concommitant objective was to investigate the problem of cluster validity and to develop a 

set of indices to evaluate the substructure detected. 

1.5 Outline of the remaining Chapters 

Chapter 2 gives an insight into the semantics behind the clustering phenomenon by present-

ing the concept. A bnef survey of the various clustering techniques available in the liter-

ature is given. In doing so, the approach has been one of gaining a perspective on the 

diversity of algorithms present in the field of clustering as also the kind of data they are spe-

cifically suited to operating upon. A discussion of three particularly interesting and inno-

vative fuzzy clustering algorithms is also presented. 
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Chapter 3 discusses the importance of shell clustering as opposed to the tra-

ditional approach of searching for solid prototypes taken by most partitional clustering 

algorithms. It discusses the limitations of the FCS algorithm and presents the AFCS Norm 

algorithm as proposed by Dave in which the algorithm induces in each of its clusters a norm 

for it. A good deal of this chapter is devoted to discussing the implementation and the con-

straints of initialization imposed by the nature of complexity of the solution space of the 

theorem proposed. A robust initialization scheme is presented along with results of the 

AFCS algorithm. 

Chapter 4 discusses the need for performance measures as a result of apply-

ing a clustering technique. It gives a critique of the various schemes suggested by research-

ers in the past on validating the results of clustering and discusses the attendant problem of 

determining the number of subsets present in a given data. A number of numerical exam-

ples are given along with the graphical and tabular representations of the various measures. 

Finally Chapter 5 concludes the work with a summary of the various 

approaches presented within and briefly points to directions for future research. 

The appendices supplement most of the theory given in Chapters 3 and 4. Appendix A dis-

cusses some basic operations upon random vectors and the technique used in this work to 

solve systems of equations viz., factorization by LU decomposition. Appendix B presents 

some formal theorems on metrics, the norm and normed linear spaces. More specifically, 

the approach is one of attempting to portray through depiction in the two-dimensional 

Euclidean co-ordinate space, some of the critical properties of normed linear spaces in 
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higher dimensions. Appendix C gives a pseudo code for the initialization scheme presented 

in chapter 3 to help gain a good starting guess for the Newton's method given the skewness 

of the solution space. Appendix D gives the proof for the AFCS Norm theorem given in 

chapter 3 employing constrained optimization through the Lagrange multiplier method. 

Finally Appendix E concludes the appendices section by giving the term by term expansion 

of the Jacobian. 



CHAPTER 2 

Background 

2.1 Introduction 

The process of recognition and classification in its simplest sense is an activity that consists 

of sorting like items into groups. These groups are described by patterns and what is per-

formed is the act of recogmtion of certain patterns and then classification of them into 

groups. The word "pattern" follows the root of the word "patron" and reflects the concept 

of an ideal model of a set of objects or structures. Thus when an object gets classified as 

belonging to what we call a class, we render it classified. If there exists some set of patterns, 

the individual classes of which are already known, the phenomenon is known as supervised 

pattern recognition. 

2.2 Unsupervised Pattern Classification 

If all of the available patterns are unknown, and perhaps even the number of classes is 

unknown, then one has a problem in unsupervised pattern recognition or clustering. In such 

classification and decision-making problems, there is little pnor information available 

9 
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about the data and the decision-maker wishes to make as few assumptions about the data 

as possible. In such problems, one attempts to find classes of patterns with similar proper-

ties where sometimes even these properties may be undefined. This restricts one to study-

ing the interrelationships among the data points to make a preliminary assessment of their 

structure. Such situations come under the domain of exploratory data analysis that attempts 

to assess the interaction among patterns by organizing the patterns into groups or clusters 

such that patterns within a cluster are more similar to each other than are patterns belonging 

to different clusters. An object is described either by a set of measurements or by a set of 

relationships between the object and other objects. Cluster analysis does not use category 

labels that tag objects with prior identifiers. The objective of cluster analysis is simply to 

find a convenient and valid organization of the data, not to establish rules for separating 

future data into categories. Clustering algorithms are geared towards finding structure in 

data. 

2.3 Meaning of Clustering 

In order to classify an object into one of several sets of patterns, we will need quantized 

information about the object so that it can be used by some mathematical method. Since 

mathematical methods cannot deal with electrical signals, physical objects and optical 

images or any other such raw information directly, first a mathematical model of the phys-

ical world must be constructed. Thus these signals, images or events to be recognized are 

considered to be represented by points or vectors in an N-dimensional space. Each dimen-

sion expresses a property of the event, a type of statement that can be made about it. The 

entire signal that represents all the information available about the event is a vector v = (v1, 

v2,...., vN) the coordinates of which have numerical values that correspond to the amount 
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of each property the event has. For instance the photographic image of an object may be 

represented as a vector by scanning the photograph with a television raster and band limit-

ing the resulting video signal. This, in effect divides the photograph into N rectangular 

cells. The set of cell intensities, the N equally spaced sample heights of the television 

video, forms an N-dimensional vector representation of the photograph. In an N-dimen-

sional space, therefore, the entire picture can be thought of as a single point. 

More generally, however, an object or event can be represented by the 

numerical values of a set of descriptors, by the numerical outcomes of N quantitative tests 

performed on the nput. Each type of test is a descriptor of the physical world, and the set 

of descriptors may be likened to a vocabulary of finite size to which our communication 

between the physical world and the machine is restricted. In this representation the set of 

events belonging to the same class corresponds to an ensemble of points scattered within 

some region of the object space. One might expect that the set of points representing dif-

ferent events that belong to the same class would cluster in the N-dimensional space in the 

sense that "distances" between members of the same class would be small, on the average. 

One might also expect that members of another class would also cluster, but that the two 

clusters representing the two classes would remain separated from one another. A simple 

illustration of this idea in a two-dimensional space is shown in the figure 2.1, where the 

ensemble of points, A represents different samples of class A, and those labelled B repre-

sent samples of class B. As is evident from the illustration, distances between points within 

A are smaller than those between two points, of which one is in A and the other in B. 

Unfortunately this state of affairs cannot be expected to exist. Therefore the problem 

becomes one of developing functions from sets of finite samples of the classes so that the 

functions will partition the space into regions each contaimng the sample points belonging 

to one class. The practical result to be achieved would seem to lie in the automatic con- 
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MEMBERS OF 'A' LIE WITHIN C1  , 
THOSE OF '13' LIE WITHIN C2 

Fig 2.1 Separation of Classes 
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struction of many dimensional templates that optimally define the region of the N-space in 

which members of different classes are contained. In the two dimensional illustration of 

Fig 2.1, the areas enclosed by contours C1 and C2 are such templates. These templates 

specify how each point in the vector space should be classified. Thus the templates specify 

the decision rule with which membership in A or B is determined. These are areas within 

which members of A and B, respectively are densely distributed. 

2.4 Fuzzy Clustering 

The concept that plays a central role in clusterng is the notion that, in the object space, the 

ensemble of points which represents a set of non-identical events of a common category, 

must be close to each other, as measured by some - as yet unknown - method of measuring 

distance. Transformations of the vector space or measures of distance must be developed 

that increase the clustering of points within a class and increase the separation between 

classes. This proximity requirement is significant because the points represent events that 

are close to each other in the sense that they are members of the same categories. Mathe-

matically speaking, the fundamental notion is that similarity (closeness in the sense of 

belonging to the same class or category) is expressible by a metric (a method of measuring 

distance) by which the points representing samples of the category that are to be recognized 

are found to he close to each other. In order to give credence to this idea let us consider 

what we mean by the abstract concept of a class. According to one of the possible defini-

tions, a class is a collection of things that have common properties. By a modification of 

this thought, a class could be characterized by the common properties of its members. A 

metric by which points representing samples of a class are close to each other must operate 

chiefly on the common properties of the samples and must ignore to a large extent, those 
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properties not present in each sample. As a consequence of this argument if a metric were 

found that called samples of the class close, somehow it would have to exhibit their com-

mon properties. 

In order to present this fundamental idea in a slightly different way, we can 

restate that a transformation on the object space which is capable of clustering the points 

representing samples of a class must operate primarily on the common properties of the 

samples. A simple illustration of this idea is shown in Fig2.2, where the ensemble of points 

is spread out in the object space (only a two-dimensional space is shown for ease n illus-

tration), but where a transformation T of the space is capable of clustering the points of 

ensenible. In the example above, neither the object's property represented by coordinate v2  

is sufficient to describe the class, for the spread in each is large over the ensemble of points. 

Some function of the two coordinates, on the other hand, would exhibit the common prop-

erty that the ratio of the value of coordinate v2  to that of coordinate v1  of each point in the 

ensemble is nearly one. In this specific instance, of course, simple correlation between the 

two coordnates would exhibit this property; but in more general situations simple correla-

tion will not suffice. 

If the object space shown in Fig 2.2 were flexible (like a rubber sheet), the 

transformation T would express the manner in which various portions of the space must be 

stretched or compressed in order to bring the points together most closely. A mathematical 

technique is presented in chapter 3 that will find automatically the best metric or norm or 

transformation to achieve clustering accordng to a specified criterion which is in some 

sense the best. We present below some definitions on clustering proposed by researchers 

in the area of cluster analysis. 
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Fig 2.2 Clustering by transformation 
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Diday and Simon[15] give a workable definition of clustering. 

Clustering is a classification technique for which 

1) the semantic of the classification problem is given by similarities between the objects X. 

2) Usually all the objects X to be classified are known by their measurements. 

3) Usually no training set is given a priori. 

4) The set of Classes has to be determined by the process. 

Clustering algorithms orgamze data, and data are collected in several for-

mats, sizes, and shapes. There are two popular forms of data representations: the pattern 

matrix and the proximity matrix. Proximity data occurs as an n x n proximity matrix whose 

columns and rows both represent patterns and whose entries measure proximity (similarity 

or dissimilarity) between all pairs of patterns. A pattern matrix is an n x n matrix, where 

each row is a pattern and each column denotes a feature. Thep features are viewed as a set 

of orthogonal axes, and each pattern is represented as a point inp-dimensional space, called 

the pattern space. A proximity matrix can be derived from a pattern matrix using Euclidean 

distance techniques, but ordination techniques are needed to create a pattern matrix from a 

proximity matrix. 

The choice of variables or measurements or features to describe the patterns 

is very important. While this is dictated by the application area and the perception and prior 

experience of the investigator, it is important to keep the number of features small for ease 

in computation and interpretation of the results. Another important consideration in cluster 

analysis is whether or not the data should be normalized. Often the features are measured 

on different units, and the patterns need to be normalized so that no single feature over-

whelms the data merely because of scale. The most commonly used normalization replaces 

each feature with a new one whose mean value is zero and standard deviation is one. This 
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Fig 2.3 Sample Cluster Problems 
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normalization, however, should be used with caution since it can distort the clustering 

structure present in the data. 

Clustering algorithms group patterns based on some measure of similarity 

or dissimilarity between the patterns. Everitt[20] correctly points out that the output of a 

clustering algorithm will be only as meaningful as the input distances among the patterns. 

Euclidean distance is the most popular distance measure. In many situations, Mahalanobis 

distance is preferred because it takes into account the correlation among features and is 

unaffected by a change of scale of the feature. However, it is important to note that different 

distance measures can lead to different partitions of the same data. 

A number of definitions for a cluster have been proposed, but no single def-

inition of cluster is adequate, as seen in Fig 2.3. A cluster is comprised of a number of sim-

ilar objects collected or grouped together. Everitt [20] documents some of the following 

definitions of a cluster: 

1. "A cluster is a set of entities which are alike, and entities from different clusters are not 

alike." 

2. "A cluster is an aggregation of points in the test space such that the distance between any 

two points in the cluster is less than the distance between any point in the cluster and any 

point not in it." 

3. "Clusters may be described as connected regions of a p-dimensional space containing a 

relatively high density of points, separated from other such regions by a region containing 

a relatively low density of points." 

These traditional definitions are not well accepted because they do not take into consider-

ation any "Gestalt" concepts which people seem to use in grouping objects. 
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It is clear that the user's prior conception determines what a cluster means 

and sets the goal for a clustering method. One can formulate an idea of a cluster from an 

assumed mathematical model for data generation or from prior work in the subject matter. 

For example one can picture each cluster as a single point to which measurement noise has 

been added in the direction of each feature. A reasonable idea of a cluster would then be a 

spherical or hyperellipsoidal swarm of patterns. Several partitional clustering methods pro-

posed in the literature are based on idealized clustering structures of this type and essen-

tially fit a mixture of Gaussian distributions to the given data. Some clustering algorithms 

always place the two patterns which are the closest in the same cluster. 

The last two definitions assume that the objects to be clustered are repre-

sented as points in the measurement space. Usually "similarity" is defined as the proximity 

of the points according to some distance function, but measures of similarity could be based 

on other properties such as the direction of the vectors in the measurement space. The 

method for finding the clusters may have a heuristic basis or may be more rigorously depen-

dent on minimization of a mathematical clustering criterion. In either case, iterative pro-

cedures are generally used to find the clusters. We recognize a cluster when we see it in the 

plane, although it is not clear how we do it. While it is easy to give a functional definition 

of a cluster, it is very difficult to give an operational definition of a cluster. This is due to 

the fact that objects can be grouped into clusters with different purposes in mind. 

2.5 Clustering Techniques 

Clustering techniques offer several advantages over a manual grouping process. First a 

clustering program can apply a specified objective critenon consistently to form the groups. 
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Second, a clustering algorithm can form the groups in a fraction of the time required by a 

manual grouping, particularly if a long list of descriptors or features is associated with each 

object. The speed, reliability, and consistency of a clustering algorithm in organizing data 

together constitute an overwhelming reason to use it. A clustering algorithm relieves a sci-

entist or data analyst of the treacherous job of "looking" at a pattern matrix or a similarity 

matrix to detect clusters. Clustering is also useful in implementing the "divide and con-

quer" strategy to reduce the computational complexity of various decision-making 

algorithms in pattern recognition. In the clustering paradigm, no expert is available to define 

the categories. Cluster analysis is one component of exploratory data analysis, which 

means sifting through data to make sense out of measurements by whatever means are 

available. Cluster analysis is a child of the computer revolution and frees the analyst from 

time honored statistical models and procedures conceived when the human brain was aided 

only by pencil and paper. 

The user of a clustering technique is trymg to understand a set of data and 

to uncover whatever structure resides in the data. Clustering techniques are tools for dis-

covery rather than ends in themselves. Their application and their interpretation are sub-

jective, depending on the experience and perspicacity of the user. The subjective nature of 

the clustering problem precludes a realistic mathematical comparison of all clustering tech-

niques. 

The large number of clustering algorithms available m the literature can be 

broadly classified into one of the two types: (i) hierarchical or (ii) partitional. A hierarchi-

cal clustering technique imposes a hierarchical structure on the data which consist of a 

sequence of clusterings. 
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A partitional clustering technique organizes the patterns into a small number 

of clusters by labeling each pattern in some way. Unlike hierarchical techniques which give 

a sequence of partitions, a partitional clustering technique gives a single partition. A pat-

tern matrix is usually clustered in this way, which explains the popularity of these tech-

niques in pattern recognition and image processing. Partition techniques make use of 

criterion functions (square error), density estimators (mode seeking), graph structures, and 

nearest neighbors. Fuzzy partitional clustering deals with the overlapping case in which 

each pattern is allowed to belong to several classes with a measure of "belongingness" to 

each. 

It is appropriate at this point to mention that there exists a clear distinction 

between clustering techniques or methods and clustering algorithms or programs. The 

same clustering technique can be implemented differently, resulting in several clustering 

algorithms. 

2.6 Partitional Clustering 

Partitional clustering techniques partition the given set of n patterns into C clusters, where 

C «n. The desired number of clusters, C is usually specified by the user. Partitional tech-

niques usually operate on a pattern matrix and result in a single partition. Unlike hierarchi-

cal techniques, partitional techniques allows patterns to move from one cluster to the other 

so that a poor initial partition can be corrected later. A majority of partitional techniques 

obtain that partition which maximizes some criterion function. 
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2.7 Hierarchical Clustering 

Hierarchical clustering techniques begin with a triangular dissimilarity matrix whose rows 

and columns correspond to patterns and whose entries measure dissimilarity between pat-

terns; the larger the entry, the more dissimilar the patterns. The entries are the Euclidean 

distance between the patterns in the pattern space. The output of a hierarchical clustering 

program is a dendrogram, which is a tree showing a sequence of nested clusterings. The 

graphical output is the outstanding feature of such programs since several clusters are rep-

resented on the same picture. The number of patterns is limited by computational consid-

erations. 

2.8 Graph Theoretical clustering 

Not all natural groupings of patterns are globular, or hyperellipsoidal in shape. For exam-

ple, patterns that are spaced along a straight line or on a sheet in pattern space are well struc-

tured. The squared error methods force a Gaussian-based model on such structures and as 

a result may fail. Graph-theoretic methods provide one means for uncovering unconven-

tional data structures. 

Zahn[35] gives an overview of graph-theoretic methods. The basic idea is 

to generate a minimum spanning tree for the complete graph whose nodes are patterns and 

whose edge weights are Euclidean distances in the pattern space. Cutting all edges having 

weights greater than a user-specified threshold creates subtrees, each of which represents a 

cluster. The threshold is actually computed as the sample mean of the edge weights in the 

tree plus a user-specified number of sample standard deviations. This procedure is equiv- 
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alent to cutting the dendrogram generated by the single-link hierarchical clustering proce-

dure at a level equal to the threshold. 

Zahn[35] suggests several heuristic tactics for uncovering various arrange-

ments of patterns. One finds the longest path in the minimum spanning tree and computes 

a measure of density for each node in the middle half of this path. An edge connected to 

the node at which the density is minimum is removed before the cutting process described 

above is begun. The density of a node is the reciprocal of the average of the edge weights 

over all edges connected to the clusters. This tactic is designed to separate touching clus-

ters. As we have mentioned before, our emphasis will be on partitional clustering tech-

niques. We describe below three interesting partitional clustering algorithms. 

2.9 Gath and Geva's UFP-ONC Algorithm 

Gath and Geva[21] developed a two layer partitional clustering strategy in order to obtain 

a satisfactory solution to the problem of large variability in cluster shapes and densities, and 

to the problem of unsupervised tracking of classification prototypes. During the first step, 

a modification of the fuzzy K-means algorithm is carried out. There are no initial condi-

tions on the location of cluster centroids, and classification prototypes are identified during 

a process of unsupervised learning. Using these prototypes, the second step involves the 

utilization of a second clustering algorithm in order to achieve optimal fuzzy partition. This 

scheme is iterated for increasing the number of clusters in the data set, computing perfor-

mance measures in each run, until partition of an optimal number of subgroups is obtained. 
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For hyperellipsoidal clusters, as well as in the presence of variable cluster densities and 

unequal numbers of data points in each cluster, an "exponential" distance measure 

de2(Xj, V

i 

 ), based on maximum likelihood estimation is defined. This distance is used in 

the calculation of h(i|Xj) posterior probability (the probability of selecting the ith cluster 

given the jth feature vector): 

where F1  is the fuzzy covariance matrix of the ith cluster, and P1, the a priori probability of 

selecting the ith cluster. The main difference in the fuzzy K-means algorithm is that of the 

calculation of centroids and of the memberships. The memberships are updated usng the 

expression for the posterior probability as given above. In addition to the computation of 

the new centroid, calculation of P,, the a priori probability of selecting the ith cluster is also 

needed as shown below: 

and of F,, the fuzzy covariance matrix of the ith cluster: 

Due to the "exponential" distance function incorporated m this algorithm it seeks an opt- 
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mum in a narrow local region. It therefore does not perform well, and might be even unsta-

ble during unsupervised identification of classification prototypes. Its major advantage is 

obtaining good partition results in cases of unequally variable features and densities, but 

only when starting from "good" classification prototypes. A goal directed approach to the 

cluster validity problem is chosen, where the goal is classification in the sense of minimi-

zation of the classification error rate. This criterion is discussed in Chapter 4. 

2.10 Gustafson and Kessel's Algorithm 

Gustafson and Kesse1[22] proposed an interesting modification of the fuzzy c-means algo-

rithms which attempts to recognize the fact that different clusters in the same data set X may 

have differing geometric shapes. Since the norm controls the basic shape of all clusters 

identified with the functional J  m(U, v) via the topological structure of open sets n the noun 

metric it induces, perhaps local variation of the norm would allow a modified objective 

function to identify clusters of various shapes which are locally compatible with different 

topological structures in the same data set. Mathematical realization of this idea is accom-

plished by considering the class of inner product norms induced on RP  by symmetric, pos-

itive-definite matrices in V. Let us denote by A a c-tuple of such matrices, 

A=(Ai,A2,...,Ac) and let the weighted inner product induced on RP  by Ai be 

< x, x >At  = || x|| 2At  =xTAtx ; the distance between x, y E RP in the weighted norm is II x-y "At  

The Functional will now take the form 

The functional defined above is the same as before. The basic difference is that all distances 

{did are measured by a pre-specified norm; whereas (possibly) c different norm metrics- 
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one for each u

i 

 E U - are being sought for the functional. To render the minimization of 

the functional with respect to A tractable, each Ai  is constrained by requiring the determi-

nant of Ai, det(Ai) to be fixed. Specification of det(A

i

)=pi  > 0 for each i=1 to c amounts to 

constraining the of cluster ui  along the ith axis. Allowing Ai  to vary while keeping its deter-

minant fixed thus corresponds to seeking an optimal cluster shape fitting the xks to a fixed 

volume for each u1. 

2.10.1 Gustafson and Kessel's Adaptive Norm Theorem: 

Let TI :PD c  ----> R,n (A) = J ( U, v, A) where (U, v)E MfcXRcp  are fixed. If m>1 and 

for each j,det(Aj)=p

i 

 is fixed, then A* is a local minimum of 1 only if 

where 

is the fuzzy scatter matrix of ui. 

2.11 Dave's Fuzzy C-Shells Clustering 

In objective functional based fuzzy clustering algorithms the weighted sum of the distances 

of the feature vectors from cluster prototypes are minimized. The fuzzy memberships are 

utilized as weighting factors. The cluster prototype can be a point or a line or a plane, etc. 

The fuzzy c-shells clustering(FCS) method as introduced by Dave[7] assumes a cluster 

structure that is of some p-dimensional hyperspherical shells which are simply circles when 

p=2. Hyperspheres refer to boundaries (surfaces for p>2). The prototypes do not include 
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Fig 2.4 The FCS Prototype 
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interiors - whence the word "shells" to describe the cluster prototypes {Pi}. Thus, the ith  

prototypical shell (Pi) is parameterized by a shell center v

i 

 E RS  and a shell radius 

Note that Pi is used here both to denote the general prototypical 

entity (e.g., Pi is a line, plane, hyperplane, sphere, etc.); and the specific parameters that 

identify a member of the general family, Pi  (vi, ri ). For a given set of data X and choice 

of constant m>1, the corresponding FCS objective function 

is defined as 

Figure 2.4 depicts the geometry of the measure of (dis)similarity used by fuzzy c-shells for 

s=2. D

ik 

 is the (squared) Euchdean distance between data point xk  and (a line tangent to) 

circle Pi; more generally, this is the minimum (squared) Euchdean distance to the plane tan-

gent to hypersphere Pi at the point of intersection of Pi with the line connecting xk  to center 

v

i 

 in any number of dimensions. The general form of the FCS function in (2.8) is that of 

the fuzzy c-varieties (FCV) objective functions given in Bezdek[4]. The major difference 

between FCV and FCS is the nature of the cluster prototypes {Pi}. FCV fits linear varieties 

to clusters, whereas FCS uses hyperspheres for the class paradigms. 

The following description of the FCS algorithm uses the main iteration described below as 

soon as the distance between successive iterates is less than a certain threshold. 

2.11.1 Fuzzy C-Shells (FCS) Algorithm 

1. Choose c, 2 c < n and fix m, 1 < m < 00. 

2. Set the iteration counter q=0. Initialize a fuzzy c-partition U(0). 

3. Calculate centers v

i

(q+1)  and radii r

i

(q+1)  by solving (2.1) and (2.2) simultaneously 



4. Calculate the Dik  using equation 

5. Update memberships at qth  iteration to U(q+1)  using (2.14) and (2.15): For every k, 

define 

and 

6. Terminate if U(q)  is close to U(q+1)  in a convenient matrix norm. If II U(q)  - U(q+1)  II < E, 
then stop; else set q = q + 1 and go to step 3. 
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CHAPTER 3 

Adaptive Norm FCS Algorithm 

3.1 Introduction 

The concept of linear or piecewise linear separation plays an important role in pattern 

recognition and neural networks. Many existing methods use a single hyperplane or a number 

of hyperplanes as separators for classification. One of the main advantages in using hyper-

planes as separators is that there exist training algorithms for determining these separators. 

The problem with these methods is that in general one may have to use a large number of 

hyperplanes to separate a set of points belonging to different classes. For instance, to form 

a bounded region in a d-dimensional Euclidean space Rd, at least d+1 hyperplanes are 

needed. In contrast, if hyperspheres are adopted as separators, many classification prob-

lems can be simplified. In the worst case, one needs to a maximum of m hyperspheres to 

separate the m points because there are at most m different classes. 

Dave proposed the FCS (Fuzzy C-Shells Clustering) algorithm using the 

shell as the prototype to partition the data into hyperspheres. The FCS algorithm measures 

the distances in a Euclidean norm. This introduces a certain measure of error in measuring 

30 
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distances that are non-Euclidean. Dave also proposed an adaptive norm theorem in which 

a positive definite matrix induces a norm for points "in" its cluster. The adaptive fuzzy c-

shells clustering algorithm incorporates the adaptive norm theorem and is shown to provide 

with an optimal classification. 

3.2 Fuzzy C-Shells Clustering and its limitations 

The fuzzy c-shells clustering(FCS) method assumes a cluster structure that is of some p-

dimensional hyperspherical shells which are simply circles when p=2. In the case of a sub-

structure that has a norm other than the Euclidean norm or in a case where the data has a 

tendency to cluster with variable norm, a significant amount of error will result from mea-

suring distances in a norm that is not Euclidean. Thus there is a need to develop an algo-

rithm that will induce for each cluster a norm "in" it. In other words, a positive definite 

matrix Al  is assumed to induce a not  for points "in" its cluster. The hyperellipse resulting 

from such a formulation for each cluster derives its center from the data, and its orientation 

and axial stretch in the principal directions from the eigen structure of Ai. It is clear that 

one cannot specify a priori possible starting norms for a given set of data. Thus one would 

expect that an algorithm would adaptively adjust the shape of the shells during the compu-

tation much like the adaptive version of FCM discussed by Gustafson and Kesse1[19]. This 

requires making the matrices {A1} variables of the optimization problem itself. Dave pro-

posed the Adaptive Norm theorem that makes the norm a variable of the optimization as 

given below. 
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3.3 The Adaptive Norm Theorem 

be fixed. For m > 1 and for each 1, det(Ai) = pi  fixed, the 

A* is a local minimum of the functional only if 

where 

The above theorem provides the necessary conditions for mimmization with respect to Ai's. 

The proof for the above theorem can be obtained through the Lagrange multiplier technique 

and is given in Appendix D. 

3.4 Implementation 

Standard Picard iteration is used to set up an algorithm for the method. To solve the non-

linear equations that result from the constrained optimization of the objective functional, 

the Newton's method is used. Bezdek and Hathway [12] show that an exact solution of 

(3.1) and (3.2) is not required at every step of the fixed point iteration. They recommend 

performing only a single step of Newton's method, this may save computer time, since 

every step of Newton's method requires significant amount of computations. On the other 

hand, doing a single step may require a greater overall number of iterations. Both the strat- 
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egies, namely, single step and full step are tried for the above algorithm. The overall fixed 

point iteration scheme using the above algorithm is not guaranteed to converge to a global 

minima. Due to the complexity of the solution space, a global minima can be achieved only 

if the initial partition is close enough to the expected partition. If the initial partition is close 

enough to the expected partition, the chances of convergence to the solution are improved. 

This is a problem that is conimon to all such algorithms. Furthermore, the non-linearity of 

the resulting equations imposes the constraint of a good initial guess. 

In order to ensure a good imtialization, a two layer strategy was developed. Two methods 

of Initialization of the fuzzy c-partitions were fashioned to deal with the two classes of sub-

structures that arise as described below. After the initial fuzzy c-partition is obtained in 

such a manner, an iterative initialization scheme to be described later is eniployed. 

3.4.1 Initialization of the fuzzy c-partitions: 

One could classify the commonly encountered range of substructures occurring in the data 

into one of the following two categories: 

1. Type 1: those that are either well separated or contain a mix of well separated and over-

lapping clusters or 

2.Type 2: those that contain either concentric clusters or those that contain predominantly 

overlapping clusters 

In the first case, we hope to obtain good partitions by using a quick partition algorithm 

whose only objective will be to do a single pass through the objects and provide a favorable 

starting partition based on a proximity heuristic. Appendix C describes the quick partition-

ing algorithm. In the second case, we let the data assume an arbitrary or random partition. 

The utility of such an approach lies in the propensity of such an initialized sub-structure 

towards convergence. In both the cases, the starting values for the prototypes are computed 

from 
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We fix the norm by using the Euchdean norm. We then proceed to apply an iterative ini-

tialization algorithm as described below to provide us with a good partition. 

3.4.2 Iterative Initialization Scheme: 

Once we have the initial fuzzy c-partition as obtained m the manner discussed in the previ-

ous section and the corresponding starting values for the prototypes from equations (3.3) 

and (3.4), we can apply an iterative algorithm to help us m achieving good starting guesses 

for the Newton's method to work on. Essentially the aim is to apply a specific technique 

depending on the kind of data set one encounters. The process of automating the choice 

can be carried out by picking the partition with a lower functional value at the point of 

application of the AFCS algorithm. 

The iterative scheme we have in mind assumes an iterative form very simi-

lar to that of the FCM algorithm. However, rather than measure the distances from a point 

prototype, we will let the algorithm take a course that will involve the measurement of the 

distance from a point prototype and the measurement of the distance from a shell prototype 
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at different times. The scheduling of the points of entry of the measurenient of distance 

from a specific prototype are pre-determined empirically. The proportion of the algorithm 

to be used for a specific prototype is varied between two values one each for the two classes 

of sub-structures we are most likely to encounter. For the first type, we allow the point pro-

totype to be used for the first four iterations and the shell prototype to be used for the next 

six iterations. For the second type of structure we let all the iterations use the measurement 

from the shell prototype. As this scheme is primarily meant to provide with good starting 

guesses, we restrict the maximum number of iterations to 10. As we have said, the norm 

used is Euclidean at this point and is fixed. The other two parameters viz., the centers and 

radii are computed from the fuzzy mean as given by (3.3) and the fuzzy radius as given by 

(3.4). The reasoning behind the usage of two different prototypes during the initialization 

scheme hes in the fact that the FCM type algorithm has a tendency to split the data and 

hence its applicability to the data of type1 during the early stages. The FCS prototype on 

the other hand can detect concentric shapes and is thus applicable to the kind of data 

described by the structure in type2. 

More formally, we can describe the initialization scheme as follows: 

1. Choose c, 2 c n and fix m, 1 < m < co. 

2. Set the iteration counter q=0. Initialize a fuzzy c-partition U(0) as explained in the 

above(i.e., either by using the quick partitioning algorithm or through an arbitrary choice). 

3. Calculate centers vi(q+1)  and radii ri(q+1)  by solving (3.3) and (3.4) sequentially. 

4. Calculate the distance using Dik  as follows: 

If type1 then 
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else if type2 then 

use the FCS prototype. (3.6) 

5. Update memberships at qth iteration to 

U

(q+1)  using equations given by 2.12 - 2.15 

Once the Initialization is done, the Newton's method is used to solve the resulting non-lin-

ear equations. The Jacobian constructed to apply the Newton's method is symmetric and 

so the numerical method is well behaved. The Jacobian is reproduced in its entirety in 

Appendix E. To render the minimization of the functional with respect to A tractable, each 

Ai  is constrained by requiring the determinant to be fixed. We denote this fixed value by 

pl. It is given the value unity. This results in the conservation of the volume even after the 

transformation which seems reasonable enough. Appendix B gives some formal theorems 

along with a brief discussion on the norm and what it represents. The fixed point iteration 

solves for the centers and radu for fixed Al  and then solves for Al  keeping the centers and 

radII fixed. Convergence is tested by using the max norm. 

3.5 Adaptive Norm Fuzzy C-Shells (FCS) Algorithm 

The algorithm consists of two phases. In the first phase we use an iterative initialization 

scheme as described in the previous section to obtain good initial guesses following which 

we apply the AFCS algorithm in its actual form. 

Phase I: 

Iterative Initialization algorithm (refer to the previous section). 

Phase II: 

The AFCS Algorithm 

1. Choose c, 2 c < n and fix m, 1 < m < 00. 
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2. Set the iteration counter q=0. Initialize a fuzzy c-partition U(0) as explained in the above. 

3. Calculate centers v

i

(q+1)  and radii ri(q+1)  by solving (3.7) and (3.8) simultaneously: 

4. Calculate the Dik using equation (3.9) 

5. Update memberships at qth iteration to U(q+1)  using equations 2.12 - 2.15. 

6. Terminate if U(q)  is close to U(q+1)  in a convenient matrix norm. If || U(q)  - 

U

(q+1)||< ε, 

then stop; else set q=q+1 and go to Step3 

3.6 Numerical Examples 

The Adaptive fuzzy c-shells algorithm was tested out on two dimensional data-sets. The 

coordinates of the points thus constitute the components of the feature vectors thus 

obtained. The number of clusters is given by c. The initialization in all of the cases was 

good. Fig 3.1 shows an ellipse and a circle each slightly overlapping the other. This data 

set could be treated as being of type1. Fig 3.2 shows two ellipses barely touching each 

other, again an example of the typel. Figs 3.3 and 3.4 show examples of type 2. Fig 3.3 

constitutes a set of concentric ellipses while fig 3.4 shows three overlapping ellipses. The 

last example shows three contiguous variable eccentricity ellipses. We can classify them 

as belonging to type 1. As can be seen the substructures detected by the AFCS algorithm 
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are optimal for the examples shown. Convergence in all of the examples occurred within 

5 iterations of the AFCS algorithm. 

3.7 Conclusions 

The algorithm has performed very well for the examples shown. Previous fuzzy clustering 

algorithms were not crafted to deal with concentric structures such as the data set contain-

ing concentric ellipses. The initialization scheme described in this chapter is specifically 

designed to detect the presence of such structures. The fact that the algorithm has been able 

to achieve global convergence with wide ranging differences in structures such as those 

shown in the examples can be attributed to the ability of the initialization scheme to provide 

with good starting values. The efficiency of the intialization scheme is conveyed by the 

small number of iterations(usually within five iterations for most of the data sets the algo-

rithm was tested on), that is needed for convergence. A comparison with FCES for similar 

data sets shows the AFCS algorithm to be superior and it's ability to detect circular as well 

as elliptical data in two dimensions is clearly of great significance. In the current algorithm 

an implicit form of the norm gets entrapped in the expression for the distance from the pro-

totype. It therefore remains to be seen if the norm can be solved for explicitly. It would 

also be interesting to explore the consequences of choosing a value other than unity for the 

restraint imposed on the determinant of the norm. 



Fig 3.1 

39 



Fig 3.2 
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Two Concentric Ellipses 
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Two ellipses and a circle 
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Three Touching Ellipses 

Fig 3.5 
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CHAPTER 4 

Cluster Validity 

4.1 Introduction 

In the previous chapter several numerical examples involving two-dimensional data 

sets were used to illustrate the effectiveness of the AFCS algorithm. It was assumed that 

the number of clusters present was known and that the structure resulting from the appli-

cation of the algorithm was somehow the "best". In practice, it may be plausible to 

expect a "good" partition at more than one value of c, the number of subsets. In the 

absence of quantitative indicators, the evaluation of the resulting structure becomes sus-

pect. In the case of two-dimensional data sets our ability to visualize the geometrical 

properties of the clusters can help us evaluate the results. But even such a vindication 

can prove to be subjective in the case of some prototypes. Thus it is natural to formulate 

a criterion or quantitative measure that will help in realizing an objective evaluation of 

the cluster substructure. The dilemma of deciding the number of clusters as well as the 

evaluation of the resulting substructure fall in the domain of what has come to be called 

cluster validity. 
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The Validity problem can be restated from Dubes and Jain[16] as follows: 

"Are the clusters achieved in a particular clustering significant enough to provide evi-

dence for hypotheses about the underlying structure of the data? In other words is the 

clustering "real" or merely an artifact of the clustering algorithm? The difficulty of val-

idating clusters lies in our nability to agree on the definition of the difficulty of deter-

mining the statistical distribution of the validity measure." 

Dubes and Jain[18] contend that validating the results of imposing a 

structure on data with a clustering method requires clear definitions of the following four 

structural criteria. These criteria are not independent and must be blended into a work-

able methodology. 

(1) Compactness criterion: measures the inner strength, or concentration or cohesion or 

uniqueness of an individual cluster with respect to its environment. 

(2) Isolation criterion: measures the distinctiveness or separation or gaps between a clus-

ter and its environment. 

(3) Global fit criterion: measures the accuracy with which the structure describes the 

relationships between clusters, as well as the extent to which all the clusters are individ-

ually valid. 

(4) Intrinsic dimensionality criterion: determines the "shape" of a cluster and provides 

information about representing the patterns in a cluster. 

They give an excellent review of the various problems related to cluster validity as 

applied to measuring the clustering tendency and the fit of hierarchical and partitional 

structures. 

In standard classification problems, a correct classification exists against 

which to evaluate, and often a measure of the "goodness" of such schemes involves a 
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simple count of misclassified points or a normalized percentage error of such a count. 

In the clustering situation, the operating algorithm's modus operandi is dictated by the 

data themselves and as such an absolute scheme cannot be readily constructed. As 

Bezdek[4] points out, the problem of formulating a cluster validity index for a "good" 

cluster rests on an even more delicate issue - that of what is meant by a "cluster". The 

principal difficulty is that the data X and every fuzzy partition U E Mfc  of X are sepa-

rated by the algorithm generating U (and defining "cluster" in the process). We will 

however focus our attention on evaluating structures given by the shell paradigm. 

We will give a bnef discussion of the validity indices proposed for fuzzy 

clustering algorithms following which we will introduce the new measures for the vali-

dation of the FCS algorithms. Our emphasis will be on understanding the basic 

approach of the old measures rather than analyzing how they were constructed or why 

they fail when they do. 

4.2 Validity Functionals 

It would seem that in the case of an objective functional based clustering algorithm, the 

functional could double as a performance measuring index. Duda and Hart[19] discuss 

formalizing such a notion by advancing a null hypothesis whose acceptance becomes 

contingent on the existence within limits of the corresponding probability of false rejec-

tion. They express the problem of formalizing the use of a criterion function to evaluate 

the structure as one of determining the practicality of computing the sampling distribu-

tion for the criterion function. 
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4.2.1 Partition Coefficient 

Bezdek[5] attempted to define a performance measure based on minimizing the overall 

content of pairwise fuzzy intersection in U the partition matrix. 

He defined an index, the partition coefficient as 

where U is the partition matrix. 

Fc(U) indicates the average relative amount of membership sharing done between pairs 

of fuzzy subsets in U the partition matrix by combining into a sngle number, the aver-

age contents of pairs of fuzzy algebraic products. The range of variation of Fc(U) is [1/ 

c,1]. This would seem to suggest the reliance of the measure upon c. The disadvan-

tages of the partition coefficient as stated by Bezdek[4] are its monotonic tendency and 

lack of direct connection to some property of the data themselves. 

4.2.2 Fuzzy Set Decomposition Measure 

Backer and Jain[1] address the problem of Validity through a performance measure 

based on Fuzzy set decomposition which we shall call the Fuzzy set decomposition mea-

sure (or 1-DM for short). The first step involves obtaining a c-collection of induced 

fuzzy sets. The partition is then characterized as follows. If the amount of induced fuzz-

iness is high it means that the collection of induced fuzzy sets is reasonably separable 

and that the inducing partition reflects the real data structure reasonably well. On the 

other hand, if the amount of induced fuzziness is low, it means that the inter-fuzzy set 

separability is low and that either the inducing partition does not reflect the real structure 

well, or that almost no structure is present in the data. Thus their performance measure 

should measure the fuzziness in the gaps between fuzzy sets (along the fuzzy bound- 
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aries) and therefore, should be based on the notion of intersection of fuzzy sets. They 

adopt the definition of the intersection of fuzzy sets as given by the following expres-

sion. 

Thus the performance measure is defined as follows: 

The value of the performance measure hes between 0 and 1 corresponding to no-fuzzi-

ness and maximum fuzziness. 

Like the PC measure, this measure also utilizes the fuzzy algebraic 

product, but it's formulation by eliminating any dependence upon c induces a transfor-

mation. This results in a stretched range between 0 and 1 that should be able to better 

distinguish any nuances between partitions. Even then, it might be inadequate for the 

detection of the FCS substructure and has been shown to fail. The intersection of two 

fuzzy sets can also be expressed as follows: 

This shows that the performance measure can be looked upon as a cluster 

membership distance measure. They use it to express the utility of the results of differ-

ent clustering algorithms applied to a single database and rank them. The comparative 

analysis puts an order on the utility of different clustering results as a consequence of 

the performance measure producing unique values. They contend however that the sub-

jective nature of the utility demands for a realistic goal-directed relationship to the appli- 
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cation domain. The use is made of the classification error rate of nearest-neighbor (NN) 

classifier to corroborate the values given by the performance nieasure. Their goal is 

stated as one of obtaining a set of design samples for a classifier and they show the per-

formance measure to be somehow related with the classification error probability exper-

imentally. The use of a goal directed comparison is shown to yield lesser number of 

errors in the testing phase. Choosing the "best" clustering is inferred to become mean-

ingful if a goal (classification) is defined. In essence the method employed uses fuzzy 

set theory to estimate the overlap of the fuzzy sets and gives an estimate of the fuzzy 

cluster separability. They suggest the measurement of gaps between fuzzy clusters as 

well served if classification were the ultimate goal. 

4.2.3 Classification Entropy(CE) 

The concept of association based on entropy has been discussed in statistical literature 

and has been applied to fuzzy sets. Thus a scheme that uses an entropy measure based 

on fuzzy sets should acquire a minimum for a hard partition. Shannon[30] required 

that the measure of two dependent schemes be additive under conditiomng of one 

scheme's measure by dependence on the other. Bezdek[4] defines the Classification 

Entropy(CE) of any fuzzy c-partition U as 

where logarithmic base a E (1,α) and uikloga(uik)=0 whenever uik  = 0. It is based on 

the fact that the closer the probability of success of an event the closer one is to evalu-

ating the solution. The purpose of the logarithm is to make the value additive. This 

would then give us an estimate at the step being considered. In order to estimate the 

question itself the product as shown in the above expression is taken. The classification 
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entropy which should have a minimum for a good classification. H is a scalar measure 

of the amount of fuzziness in a given U E Mfc. According to Bezdek[4], the limitations 

of the classification entropy can he attributed to its apparent monotonicity and to an 

extent, to the heuristic nature of the rationale underlying its formulation. 

4.2.4 Proportion Exponent(PE) 

Windham[33] proposed a measure that attempts to overcome the sensitivity to parame- 

ters that F and H tend to suffer from and can be defined as follows: 

where µj  is defined as µj  = maxi(uij) and I j is defined to be the greatest integer in 1/µj. 

The key building block of the proportion exponent(PE) is the proportion of membership 

functions whose maximum exceeds a given value. The proportion exponent attempted 

to overcome the difficulty that the previous measures had of suffering from sensitivity 

to parameters by looking not at the values of measure of quality directly, but by looking 

at how they compared to a standard. The higher the maximum, the better the point is 

classified. The maximum value itself was not used as an indicator of quality but rather 

the probability that one could do better by selectng the memberships for the data at ran-

dom. 

It should be noted that the proportion exponent may not be defined for a 

particular membership matrix U. If one of the columns describes a hard cluster, the 

proportion exponent is undefined since the proportion of functions whose maximums 

exceed one is zero. One assumes that such an occurrence is rare in the case of fuzzy 

clustering algorithms. The proportion exponent also suffers from monotomcity as 
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shown by Windham[33]. 

4.2.5 Hypervolume and Partition Density 

The fuzzy volume and the fuzzy density of the cluster may also be used as indices of 

cluster validity. It can be argued that a good partition should yield a high value for the 

fuzzy partition density and a low value for the fuzzy hypervolume. Such measures 

have been used in the past, for example by Gath and Geva[21]. 

4.3 Cluster Validity for Shell Clustering 

In the previous section, some of the popular cluster validity measures were presented. 

It was shown that all these measures suffered from some kind of problem or the other. 

In this section, new measures which are specifically designed for the c-shells type clus-

ters are presented. The behavior of the schemes on which the older measures were 

based is unraveled. 

4.3.1 Need for new measures 

The criteria described above are inadequate because of the following: 

1. They rely heavily on the information in the partition matrix U. 

2. Though the measures described above use the basic heuristic (and in some sense a 

goal) that good clusters are "not fuzzy", they rely solely upon the memberships. It is 

debatable if the memberships alone can convey in total the nature of the underlying 

substructure detected. 

3. The functionals constructed above are monotonic in most cases over the number of 

clusters. 

51 



4. Most of the measures described above are designed for round or other blob like pro-

totypes and may not be used in the same sense for the c-shells clustering prototype that 

do not possess any interior. 

4.3.2 Fuzzy Hypervolume 

The volume of the clusters in the fuzzy partition is obtained using the formula 

where Fi  denotes the ith Fuzzy covariance matrix. For c-shells clustering, this matrix is 

defined as below m terms of the fuzzy shell scatter matrix introduced by Dave[11]. 

where S(shell)i  stands for the ith shell-scatter matrix. Thus the value of F HV  gives a 

measure of the volume. A partition can be expected to have a low value for this mea-

sure if the partition is really tight. In other words if the points tend to cluster very close 

to the prototype, the volume will be minimal. Thus an extremum for this index would 

ideally indicate a good partition. 

4.3.3 Average Partition Density 

The average partition density measures the average of the density per cluster taken over 

all clusters, given by the following equation. 
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where Sui  is the "sum of central members". is given by: 

where a stands for standard deviation, thus taking into account only those members 

that lie within the shell whose radii are the standard deviations of the clusters features. 

4.3.4 Partition Density 

The partition density is calculated from 

where 

where c stands for standard deviation. By considering only the central members of the 

cluster, only the points contributing to the core of the cluster will be taken into account. 

This emphasizes the fuzzy environment present and gives meaning to the term dense 

partition. Thus for a given data set a dense partition with a low fuzzy hypervolume will 

in effect be indicative of an optimum partition. In other words, if the points around all 

the prototypes cluster tightest for a given partition, we will in all likelihood have the 

densest partition density and the lowest fuzzy hypervolume. 

4.3.5 Shell thickness(ST) measure 

Dave[11] proposed a validity index for measuring the thickness of the shell. By mea- 
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suring the scatter of the points about the prototype, the new index measures the thick-

ness or in other words the closeness of the ponts m the partition to the data. The 

thickness is normalized to the scale of the data-set through dividing by the average 

cluster radius. The normalized measure has a very interesting connotation. By being 

able to give a measure of the thickness of the shell for a given partition, this index 

should be able to forewarn the user of the lack of existence of shell sub-structure in the 

data. Thus in addition to being able to validate a given partition, its absolute value 

should give us an indication of the kind of substructure we can expect in the data. The 

actual absolute value will be dependent on the average shell thickness the user might 

expect in the data. In the absence of such a value, one can take an empirical standard 

and allow a 5-10 percent variation about this value. Clustering algorithms will gener-

ate a clustering whether one really exists or not. This index should indeed be very use-

ful in being able to predict if the algorithm is trying to impose a structure on the data. 

The thickness for the shell is defined as follows. 

4.4 Numerical Results 

In order to test the performance of the validity criteria, synthetic data in 2 dimensions 

were used. By choosing the distances between cluster prototypes to be near each other, 
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and controlling the variance in the two dimensions, overlapping between clusters could 

be obtained, resulting in a fuzzy environment. The number of subgroups in the data, 

their density, and number of data points in each subgroup were subject to variation. We 

present three datasets pertaining to structures that represent typical variations in densi-

ties and numbers and one data set contaimng uniformly distributed points. The datasets 

on which the indices were used are shown towards the end of this chapter followed by 

the results in a table format. 

In order to depict the effectiveness of the validity criteria in a graphical 

manner, the following plots are constructed: 

1) Fuzzy Hypervolume as a function of subgroups in the data. 

2) Partition density as a function of the number of the subgroups and 

3) Shell thickness as a function of the number of subsets present in the data. 

For each example, the figures containing the data and the partitions for the correct num-

ber of subsets present are shown on one page, while the plots and the table containing 

the values obtained for the measures considered are shown on another page. Accord-

ingly we labe1 the page containing the figures by A and the page containing the plot by 

B. The tables are plotted along with the plots. 

In each of the examples considered, the validity measures were com-

puted as a function of the number of subsets in the data. On the limiting side there can 

be at least two clusters in any given data. Thus we begin with 2 clusters and increase 

the number by one until we have a change in the gradient of the index being measured. 

In practice it is possible to have more than one partition for a specified number of sub-

sets. The best partition achievable by the algorithm is considered in evaluating the per- 
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formance of the validity measures. In other words, for a specified number of subsets, 

the partition that had the lowest value for the objective functional was used. In the 

event of multiple optima within the range of the number of subsets over which the mea-

sures were employed, the first optima were considered in the case of all the measures 

except for the FDM. The FDM measure is an absolute measure and so the optimum 

with the highest value was chosen when multiple contiguous optima occurred. 

The first example, shown in Fig. 4.1A consists of the data in form of two 

ellipses having low eccentricity and one overlapping ellipse having high eccentricity as 

well as high point density. The figure shows three correct ellipses plotted over the par-

tition depicted by use of different markers. The plot of the three measures viz., FHV, 

PD and ST and the table of the numerical values of all the validity measures are shown 

in Fig. 4.1B. The shaded cell values in the table refer to the optima detected for the 

corresponding measures while the values in boldface refer to the optima for the correct 

number of subsets. All the validity measures except the PE concur on choosing the 

number of subsets as three. The number of subsets chosen by PE is four. This seems to 

substantiate the apparent weakness of the scheme on which the PE is based. The heu-

ristic on which the PE is based, viz.,. that of estimating the proportion of membership 

functions exceeding a given value seems to fail in detecting the number of sub-sets. 

For examples such as these, there is hardly any doubt about the existence of three sub-

sets, and the failure of PE clearly indicates its poor performance. 

The second example, shown in Fig. 4.2A shows five circular clusters. 

The validity measures for this example in a tabular form and the plot is shown in Fig 

4.2B. Only the measures ST and FDM correctly identify the presence of 5 clusters. If 
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one were to use the global optima for the PC and CE, it would result in the correct iden-

tification of five clusters by these measures. But with the first optimum, the PC and CE 

choose two as the number of subsets. The PE shows a little monotonicity at first, fol-

lowed by indeterminate values for 4, 5, and 6 number of subsets. This confirms our 

belief about the PE becoming undefined upon encountering a point that has a hard 

membership in a particular cluster. The FHV and PD just miss choosing five and 

instead choose six as the correct number of clusters. This seems to suggest that these 

measures might need to be normalized in the sense of nullifying the discrepancies aris-

ing out of the formation of clusters from only a few points and in the process causing 

these measures to have nearly equal adjacent extrema as is evident from the table. 

The third example, shown in Fig. 4.3A, consists of four ellipses. One can 

readily perceive the presence of two well separated pairs of contiguous ellipses all of 

which possess a fair degree of eccentricity. As can be seen from the table in fig 4.3B, 

all the validity indices based solely on the memberships, viz., the FDM, PC, CE and the 

PE pick two as the correct number of subsets present in the data. The corresponding fit 

is shown in Fig 4.3A (iii). All the new measures introduced, i.e. FHV, PD, and ST cor-

rectly identify three as the number of sub-sets. This particular example provides one 

with an insight into why even a relatively better measure such as the FDM can fail. The 

failure of the FDM, PC, CE, and PE measures can be traced back to the apparent pres-

ence of two very well separated partitions which have ensconced within them the four 

prototypes we are looking for. This seems to indicate that at least with the shell proto-

type, the construction of a measure based on partitions alone need not necessarily reflect 

the underlying structure in the data. 
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The fourth example shown in Fig 4.4A is similar to Fig 4.3A, but has 3 

ellipses, with variable densities and sizes. This example has been included to show that 

the results are identical for examples with well partitioned structures even if they vary 

to a good degree in size and density. The data and the fit are shown in Fig 4.4A while 

the plot and the table are shown in Fig 4.4B. 

Finally an example of a data set containing uniformly distributed points 

is shown in fig4.5A. This dataset does not contain any shell substructure. The partition 

obtained for 11-partition is shown in Fig 4.5A as this was the partition for which most 

of the measures considered here seemed to have an optimum. Only the FDM and the ST 

measures can be examined for the absolute values. Even while this is so, the FDM mea-

sure picks 11 as the number of subsets present in the data. It must be noted that the FDM 

value by itself does qualify the exact nature of the substructure, while the ST can be used 

to tell us if a shell substructure exists by examining its absolute value. The optimum 

obtained for the ST is 0.33892 which clearly shows that the data has no shell substruc-

ture in the data. All the other measures seem to have varied results for this dataset. The 

optimum for the FHV is 918.52320 which is quite high. Even though the FHV is not a 

normalized measure and cannot be examined for pointers to the substructure present, the 

high value clearly is indicative of the lack of a shell substructure. 

4.5 Conclusions 

The examples reveal interesting features of the measures discussed here. The measures 

based on the partitions alone have been shown to fail invariably if not in one example, 

at least in the other. Although none of these measures succeeded in the last example, it 
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was observed that the FDM measure was correct in most of the cases. It is clear that 

the measures that are exclusively geared towards finding good partitions can loose out 

on the real issue which is the validity of the prototypes and are therefore inadequate as 

was demonstrated by the last example. The new measures, namely ST, FHV, and PD, 

seem to perform consistently for these and several other examples that were tried. 

Although this paper considers only fuzzy memberships, the new measures are also 

applicable for hard c-shells clustering. Amongst the three new measures, the one intro-

duced by Dave seems to be the best, as it always picks the correct partition. The other 

advantage of the measure ST is that it also gives a more or less absolute measure of the 

goodness of fit for the shell prototype. This measure is also invariant to the scale of the 

data, unlike FHV and PD. For the examples having only circles, this measure attains 

values less than 0.1 for a good partition, and for the elliptical examples, it attains values 

less than 0.25. Thus it seems to provide a good indication of not only the correct num-

ber of sub-sets, but also indicates how good the partition itself is. 

In summary, new measures, which are specifically designed for the shell 

clustering are introduced. The measure based on the shell thickness as proposed by 

Dave is shown to be the best. For the purpose of obtaimng more evidence about the 

partition, the use of the hypervolume and the partition density is highly recommended. 
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Fig 4.1A 



61 

Table 1: 

No 
of 

Clusters 
FDM PC CE PE FHV PD ST 

2 0.73200 0.86664 0.223529 507.150 417.013 0.26242 0.27681 

3 0.97400 0.98315 0.031809 2029.28 98.3371. U0201 0.10701 

4 0.91600 0 93708 0.122144 2621,80 111 872 1 06896 0.21609 

5 0.77000 0 81658 0.342473 2119 56 595.829 0 19025 0.39556 

6 0.82700 0 85688 0.277274 2938 33 437.028 0.25805 0 65078 
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Table 2: 

No. 
of 

Clusters 
FDM PC CE PE FHV PD ST 

2 0 660000 0.830912 0.273482 462 9507 1001 503 0.112751 0.299608 

3 0.679000 0.786420 0.379868 851 3699 919.0403 0.124395 0 267278 

4 0.871000 0 903570 0.183165 oo 253.9715 0 569013 0 182834 

5 0,985000 0,988774 0,024481 oo 31.80968 3.436796 0.021660 

6 0.983000 0 986435 0.029067 oo 31,66899 3.544494 0.023247 

7 0.925000 0.936027 0.132195  6775 835 308.4085 0.482212 0.015371 
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Fig 4.3B 

Table 3: 

No. 
of 

Clusters 
FDM PC CE PE FHV PD ST 

2 0 984575 0,992287 0,022491 oo 254 9259 0.442250 0.459806 

3 0.944406 0.962711 0.089928 1591 883 224.4481 0.556712 0.535520 

4 0.973178 0.979883 0.015069 3244.964 59.10288 1.713435 0.207288 

5 0 950791 0.960632 0.090098 3544.83 105.325 0.991243 0.531263 

6 0.937788 0 948156 0 105096 4244 395 117.3116 0 930702 0 453234 
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Fig 4.4B 

Table 4: 

No. 
of 

Clusters 
FDM PC CE PE FHV PD ST 

2 0,9 5 72 0992686 0,020845 α 98.42145 1.661784 0.214708 

3 0.945929 0.963952 0.063477 oo 4145735 
3.415997 0.128176 

4 0.953180 0 964885 0.068954 oo 60 32405 2.491247 0 259557 

5 0.929728 0 943781 0.120971 4150.444 92.14151 1 602122 0.569531 

6 0 908895 0.924078 0.158056 5072.723 83 75744 1.771680 0.545642 
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Fig 4.5A 



Table 5: 

No. 
of 

Clusters 

FDM PC CE PE FHV PD ST 

2 0.570055 0.785028 0 341393 449.3146 1300.013 0.111092 0.338299 

3 0 566006 0 710671 0.507405 oo 1257 190 0 114156 0.358952 

4 0576124 0.682092 0.590570 1358.393 1208.572 0.119851 0.359552 

5 0.635888 0.708710 0 567891 1872.692 1163.267 0.124858 0.860800 

6 0 652072 0 710060 0.583928 2452 831 1078.027 0.132037 0.909667 

7 0 650872 0 700746 0.617616 2942.793 1087.384 0 132067 1 242963 

8 0.633018 0.678888 0 666360 3362 465 1106.534 0.127780 1.159356 

9 0.653018 0,691625 Q.691625 3927.296 1035.124 0.13809d T  LOOM 

10 0.666385 0.699744 0.653810 4542 154 998.5767 0.144376 1.698176 

11 0.696592 0 724172 0.623478 °° 918.5233 0.160073 1.873478 

12 0 609486 0.642026 0.774128 

oo 

1155.020 0 114643 1.688895 
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CHAPTER 5 

Conclusion 

The algorithm based on the adaptive norm theorem has been shown to be remarkably suc-

cessful in detecting shapes characterized by hyperellipsoidal or spherical shells. This is 

especially significant because previous fuzzy clustering algorithms such as the FCES were 

inaccurate and would only work under a given set of constraints. The algorithm's success 

can be attributed to the soundness of the theorem on which it is based and the reliability of 

the numerical method used, viz., the Newton's method. The global convergence achieved 

by the algorithm for diverse structures demonstrates that the imtialization scheme intro-

duced here has worked. The initialization scheme outlined here can be used as a front end 

for other algorithms with similar goals. 

The new measures for validating the shell substructure detected by the 

algorithm have proved to be effective. The measures based entirely on extracting the par-

titions have been shown to fail m detecting the shell substructure. The non-dependence 

of the validity of the shell prototype upon the partition is shown to explain the inability of 

the existing measures in validating the shell sub-structure. All the three new measures are 

shown not only as needed but also as being superior to the existing measures. The exam-

ples shown clearly demonstrate the superiority of the new measures. In summary a pow- 
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erful new algorithm with a robust initialization scheme and an evaluation measure have 

been presented here. 



APPENDIX A 

Operations Upon Random Vectors 

Inner Products, Vector Spaces, and Bases 

Let x and y be vectors with real-valued components x, and y1, i=1, 2, . . . , n. The inner product 

(sometimes called the scalar product or dot product in physics) of x and y is defined by 

If xTy =0, then x and y are said to be orthogonal. The magmtude of a vector is defined by 

If a vector u = x/|x| is defined, this vector has unit magnitude and direction the same as x. The inner 

product can be wntten as 

and represents the orthogonal projection of y on u multiplied by the magnitude of x 

The n-dimensional space in which the vectors x reside will be called the vector space and denoted 

by X If there exists a set of vectors ul, u2, . . . , un  in X such that an arbitrary vector x can be rep-

resented by a linear combination. 



where the al  are real numbers, and any vector x in X has such a representation, then the lul l are 

said to form a basis for X. The {a

l

} are called the components of x with respect to the basis {ul}. 

To form a basis, it is necessary and sufficient that the {ul} be linearly independent; that is, no mem-

ber of the set can be written as a linear combination of the other vectors. Furthermore, if the {ul} 

satisfy 

then the basis vectors are said to be orthonormal and can be interpreted as defining the axes of a 

cartesian coordinate system. 

Distance Functions 

The usual way to define distance is as the magnitude of the vector difference between the points. 

That is, if x and y are vectors representing points in the same n-dimensional vector space, we define 

the distance dE(x, y) between the two points as 

This is called the Euclidean distance. 

More generally, a distance function d(x,y) is any scalar-valued function that satisfies the following 

conditions 



The last condition is known as the triangular inequality and is particularly strong constraint. Func-

tions meeting only the first two conditions can be useful in many analyses, although they are not 

true distance functions. 

General Linear Transformations 

A linear transformation is a mapping from a vector space X to another vector space Y is represented 

by a matrix. If x is a vector in X and y is the corresponding (mapped) vector in Y, then one can write 

y=Ax 

where A is the matrix that defines the linear transformation. The transformation is said to be one 

to one if given vector y in Y can be derived from one and only one vector x in X. The transforma-

tion is said to be onto if every vector y in Y can be derived by applying the transformation to some 

vector x in X. In other words, the set of all transformed vectors from the X space is the entire Y 

space. If the linear transformation is both one-to-one and onto, then an inverse transformation A-1 

exists and one can waste 

Note that if A is to be invertible, it is necessary (but not sufficient) that the dimension of y is the 

same as the dimension of x, A is a square matrix. If this were not the case, the linear transformation 

would not be one-to-one. 

Positive Definite Matrix 

To determine if the matrix 



is positive definite, we form the quadratic product xTAx 

If this expression is greater than zero for all values of x1  and x2  except x1=x2=0, the matrix is pos-

itive definite. 

Orthonormal Transformations 

If S is a square matrix that satisfies the relation 

then S is said to be an orthonormal transformation. This leads to S-1=ST 

An orthonormal transformation preserves the magnitude of vectors because if y is given by 

then 

One can also say that the magnitude of the vector is invariant under an orthonormal transformation. 

It will be shown that an orthonormal transformation can be thought of as a rotation of the basis or 

the coordinate frame in which the vector is represented. In other words, if x is a column matrix of 

the vector components with respect to the original coordinate frame, then y is a column matrix of 

the vector components with respect to the rotated coordinate frame. 

Let riT  represent the ith row of S. Thus y can be represented as 



so that 

In addition, since ST  = S-1, one can write 

or 

One can observe from the above that the {rt} form a set of orthonormal basis vectors and that {rt } 

are the components of x with respect to that basis. 

Diagonalization by LU Decomposition 

Let A be a nonsingular square matrix such that all of the submatrices formed by taking only the 

first k rows and columns of A are also nonsingular. Then A can be expressed as a product 

where L is lower triangular (i.e., all elements above the main diagonal are zero) and U is upper tri-

angular (all elements below the diagonal are zero). If we require that the diagonal elements of L 

are all ones, that is, that L is unit lower triangular, then this factonng is unique and can be effected 

by Gaussian elimination of the elements in the lower triangular portion of A. 

We can further note that if D a diagonal matrix consisting of the diagonal elements of U then the 

equation can be written as 



where U is unit upper triangular (ones on the diagonal). If a matrix A is symmetric, then clearly 



APPENDIX B 

The Norm 

We present formal definitions for the metric and the norm followed by an illustration of a normed 

linear space and some theorems for the quadratic representaion of the norm. 

A metric space is a non-empty set where the distance between any two points is specified. The 

notion of distance has to retain those properties of distance which are evidently vital for the devel-

opment of a sensible analysis. 

Definition: 

Metric: 

Given a non-empty set X, a distance function d on X, called a metric for X, is a func-

tion which assigns to each pair of points a real number, (or formally, d:X x X ----> 91), satisfying the 

following properties: 

A non-empty set X with a metric d si denoted by (X, d) and is called a metric space. Different met-

ncs could be defined on the same set giving nse to different metric spaces. 

Definition: 

Norm: 

Given a linear space X over 9i, a norm II • II for Xis a function on X which assigns 



to each element a real number, (or formally, ||•|| : X

—>

R), satisfying the following properties: 

A linear space X with a norm H • II is denoted by (X, II • II) and is called a normed linear space. 

Again different norms could be defined on the same linear space giving nse to different normed 

linear spaces. 

Given a normed linear space (X, II • II ), it is clear that the function d: X x X —> R defined by 

is a metric for X, and we call this the metric generated by the norm II • II, So then every normed 

linear space is a metric space under the metric. 

To develop a feel for a metric or normed linear space we need to explore the geometry associated 

with certain fundamental sets in the space related to the metric or norm functions. 

Definition: 

is called the open ball center x0 and radius r. 

The Euclidean motivation for drawing attention to such sets is clear enough. How- 

ever in some metric spaces the shape of such sets hardly accords with our Euclidean intuition. 

In a normed linear space the linear structure bungs some orderliness. 



Definition: 

is called the open unit ball. 

Theorem: 

That is, every sphere of the space is a translate of a strictly positive multiple of the umt sphere. 

With Coordinate space examples of nonmed linear spaces we can assume a Euclidean background 

and gain some insight into the role of the unit sphere in the measurement of distance. 

Consider ( Rn, ||•||) with unit sphere S(0; 1). For any x Ξ ( λ1, λ2, ... ,  λn ) we will determine 

|| x || in terms of the Euclidean norm ||•||2 on R

n

: 

The measurement of distance in (912, II • II) described by measurement of 
distance in (R2, || •|| 2). 



Consider a ray drawn from 0 through point P with co-ordinates x Ξ (λ1 , λ2, ... , λn). Suppose this 

ray OP cuts S(0; 1) at the point P' with co-ordinates x' Ξ (λ1

, λ

2

, ... , λn

). Now in the linear 

space 91n there exists an a > 0 such that x = ax'. We have from norm property (iii) that 

that is, II x II = I OP I / I OP' I , the ratio of two Euclidean line segments. 

In Euclidean space the complete symmetry of the umt sphere tells us that measurement of distance 

is invariant under rotation. This is not so with other normal linear spaces where the measurement 

of distance is dependent on the direction in which the distance is measured. 

Orthogonalization Theorem: 

Let xi, x2  ... be a finite or infinite sequence of elements in a Euclidean space V, and 

let L (x1, x2, . . . xn) denote the subspace spanned by the first n of these elements. Then there is a 

corresponding sequence of elements y1, y2, . . . yn  in V which has the following properties for each 

integer k. 

(a) The element yk  is orthogonal to every element in the subspace L (y1, y2,... yk-1 ). 

(b) The subspace spanned by 

y1

,...,yk  is the same as that spanned by x1,...,xk. 

L(

y1

,...,yk)=L(x1,...,xk) 

(c) The sequence 

y1

,...yk  is unique, except for scalar factors. That is if 

y1

,y2,

y3

,... is another 

sequence of elements in V satisfying properties (a) and (b) for all k, there is a scalar ck  such that 

Yk=ckYk- 



Reduction of a real quadratic form to a diagonal form: 

A real symmetric matrix A is Hermitian. Therefore it is similar to the diagonal matrix 

of its eigenvalues. Moreover, we have A = Ct  AC where Cis an orthogonal matrix. Now we show 

that C can be used to convert the quadratic form XAXt  to a diagonal form. 

Theorem: Let XAXt be the quadratic form associated with a real symmetric matrix A, then let C be 

an orthogonal matrix that converts A to a diagonal matrix A = Ct  AC . Then we have 

Since C is orthogonal we have C-1 = Ct. 

Therefore the equation Y=XC implies X=YCt, and we obtain 

Note: The above theorem is described by saying that the linear transformation Y=XC reduces the 

quadratic form XAXt  to a diagonal form YAYt. 



Eigenvalues of a symmetric transformation obtained as values of its 

quadratic form. 

Let T: V->V be a symmetric transformation on a real Euclidean space V. and let Q(x) = (T(x)). 

Then the eigenvalues of T (if any exist) are to be found among the values that Q takes on the umt 

sphere in V. Let V = V2(R) with the usual basis (i,j) and the usual dot product as inner product. Let 

T be the symmetric transformation with matrix A, then the quadratic form of T is given by 

The smallest and largest eigen values (if they exist) are always the mimmum and maximum values 

winch Q takes on the unit sphere. 



APPENDIX C 

Ordered Initialization: 

A quick partitioning algorithm is outlined below and is applied to obtain an initial partition. 

We have used pseudo-code with the key words of the language we use being underlined. 

The key words used are either relational operators or control statements like if, while etc 

with a corresponding end marker such as end_while, end_if to mark the scope of the con-

trol. The key words referred to here are slight variations of the control and looping con-

structs that can be readily found in any common programming language, such as 

FORTRAN or PASCAL. 

All Variable names contain a mix of lower and uppercase or entirely lowercase letters with 

an optional underscore, but they don't contain all uppercase letters. There are several array 

variables and their  purpose is descnbed below: 

Point: Holds the coordinate information of the point. 

Rec_Classified: Will tell us if a point has been classified. 

The functions used in the pseudo code are described below: 

1. INCREMENT(<variable_name>): 

Increments the value of the <variable_name> by one. 

2. DISTANCE(<varl>, <var2>): 

Computes the Euchdean distance between <varl> and <var2>. 

3. LABEL(<varl>, <var2>) 

Labels <var2> as belonging to <varl> 



EQUAL_IN__ALL ( <var> ) 

Distributes the membership of the point given by <var> evenly in all the clusters. 

This must be done whenever a point does not meet any threshold requirements. 

Let Nc denote the number of clusters. 

Let Num denote the total number of points. 

Note: Calculate the average inter-point distance and multiply it by a suitable probability 

value such as 0.7 in order to employ it as a preliminary threshold for partitioning purposes. 

For practical purposes, if large data sets are involved, only a subset (a random sampling of 

the data) need be considered in evaluating the threshold. 

Two hash symbols at the beginning of the line indicate that the rest of the line will contain 

comments. 

Quick Partitioning Algorithm 

1111  It is assumed that the average interpoint distance is computed. 

# Threshold holds the value of the threshold. 

BEGIN MAIN PROGRAM  

Threshold IS ASSIGNED 0.7 * average interpoint distance. 

# Initialize the Rec Classified array 

WHILE Points Counter IS LESS THAN Num BEGIN 

This_Point IS ASSIGNED points counter 

Rec_Classified[This_Point] IS ASSIGNED FALSE 

INCREMENT(points_counter) 

END WHILE 



tit Imtiahze the cluster counter 

# Use the first point as the first prototype by assigning it to Next_Seed 

cluster counter IS ASSIGNED 1. 

Next_Seed IS ASSIGNED Point[1] 

WHILE cluster counter IS LESS THAN Nc BEGIN  

This Cluster IS ASSIGNED cluster counter 

points counter IS ASSIGNED 1. 

This Seed IS ASSIGNED Next_Seed 

Next_Seed_Flag IS ASSIGNED FALSE 

WHILE points_counter IS LESS THAN Num BEGIN 

This__Point IS ASSIGNED points_counter 

IF REC_CLASSIFIED[This_Point] IS EQUAL  TO FALSE 

IF DISTANCE(This_Point, This_Cluster) IS LESS THAN Threshold 

LAB EL(This_Cluster, This Point) 

Rec_Classified[This_Point] IS ASSIGNED TRUE 

ELSE 

IF Next_Seed_Flag IS EQUAL TO FALSE 

Next_Seed IS ASSIGNED POINT[This Point] 

Next_Seed_Flag IS ASSIGNED TRUE 

END IF 

END IF 



END IF 

INCREMENT(points_counter) 

END WHILE  

INCREMENT(cluster_counter) 

END WHILE 

point counter IS_ASSIGNED 1 

WHILE points counter IS LESS THAN Num 

IF REC CLASSIFIED [This_Point] IS EQUAL TO FALSE 

EQUAL _IN ALL(This_Point) 

INCREMENT(points_counter) 

END IF  

END WHILE  

END MAIN PROGRAM 



Appendix D 

The Proof for the AFCS Norm Theorem 

The Adaptive Noun Theorem: 

be fixed. For m > 1 and for each i, det(Ai) 

= pi  fixed, the A* is a local minimum of the functional only if 

where 

The above theorem provides the necessary conditions for minimization with respect to 

Ai's. The proof for the above theorem can be obtained through the Lagrange multiplier 

technique and is given as follows: 

The Lagrangian is formed as, 

To obtain (1) and (2), the gradients of F with respect to Xi 's and Ai's are set to zero. At the 

zeros ( X*, A*), it is necessary that 



and for the gradients woith respect to each Aj, 

Conditions VAJ(xTA jx) = xxT; and VAJ[det(Aj)] = det(AJ) • Ail, are used to obtain(5). 

Since det(Ai) = pi  for each i = 1 to c, and utilizing the definitions of Dik  and dik  from equa-

tions 

and 

equation (5) can be simplified by using SSfi  as, 



In the above, I is an identity matrix. Taking the determinant pf the last equation in (8), we 

can find λj and then eliminate it from the middle equation in (8) to obtain Aj explicitly in 

the form shown in equation (1). This completes the proof. 

Q. E. D. 



APPENDIX E 

The Jacobian 

The notation followed to represent the term by term expansion of the jacobian is as follows: 

The norm is represented as follows: 

x1k represents the x coordinate of the kth object xk  

x2k represents the y coordinate of the kth object xk  

v1 represents the x coordinate of the ith center v1  

v2i represents the y coordinate of the ith center vi  

ri represents the radius of the ith prototype 

uik represents the membership of the kth point in the ith cluster 

m represents the fuzzifier 

Dik represents the distance measured in the normed space 

The Jacobian is represented by the symbol Jij where i and j correspond to the ith row and jth column 

respectively in the Jacobian. 
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