

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Title of Thesis: 3-D Structure Recovery
Using Unified Optical Flow Field Approach.

Anees Ahmad, Master of Science in Electrical Engineering, 1991
Department of Electrical and Computer Engineering

Thesis directed by: Dr. Yun Q. Shi
Assistant Professor
Department of Electrical and Computer Engineering

Recovery of the 3-D structure that is characterized by an Nth order fac-

torable and/or non-factorable polynomial equation is studied in this thesis.

Analytical tools have been employed to analyze and solve the problem. The

solution is based on the direct method, which is derived from the unified op-

tical flow field, which, in turn, is an extension of optical flow to spatial image

sequences. Least squares formulation has been employed for optimum estima-

tion. The method used does not require the establishment of point to point

correspondence, nor the estimation of the optical flow, as an intermediate step.

The theoretical results are tested using some synthetic images of various

structures including cone, parabola and the combination of a cone and a planar

surface. Satisfactory results are obtained, thus demonstrating the validity of

the newly developed technique for the recovery of a variety of surfaces [14].

3-D Structure Recovery

Using Unified Optical Flow Field Approach

by

Anees Ahmad

Thesis submitted to the Faculty of the Graduate School of

the New Jersey Institute of Technology in partial fulfillment of

the requirements for the degree of

Master of Science in Electrical Engineering

1991

APPROVAL SHEET

Title cif Thesis: 3-D Structure Recovery
Using Unified Optical Flow Field Approach

Candidate:

Anees Alunad

Master of Science in Electrical Engineering, 1991

Thesis and, Abstract Approved by the Examining Committee:

Dr. Y.Q. Shi, Advisor Date
Assistant Professor
Department of Electrical and Computer Engineerig

'r. J. Carpinelli Date
Assistant Professor
Department of Electrical and Computer Engineerig

Dr. C.Q. Shu Date
Research Associate
Department of Electrical and Computer Engineerig

New Jersey Institute of Technology, Newark, New Jersey.

VITA

Anees Ahmad
75 Belgrove Drive, Apt. 4B

Kearny, NJ 07032

201-998-5152

Date of Birth:

Place of Birth:

Education: 1989-1991

New Jersey Institute of Technology, NJ: MSEE

1983-1989

N.E.D. University of Engineering & Technology, Karachi, Pakistan: BSEE

ACKNOWLEDEGMENT

The author is deeply indebted to several people for their valuable assistance

during the course of this thesis.

In particular, the author wants to thank his thesis supervisor Dr. Yun Q. Shi

for his technical guidance and morale support. The author is also thankful to

Dr. Chang-Qing Shu, who has always been willing to answer questions and

solve difficult problems. The author also wants to express thanks to the other

member of the graduate committee, Dr. John Carpinelli, for his assistance and

advice in completing this thesis.

Appreciation is also extended to parents and friends, who co-operated and in-

spired the author greatly during the course of this work.

iii

Contents

1

2

3

INTRODUCTION

BACKGROUND

2.1 Unified Optical Flow Field

DIRECT STEREO

1

4

4

10

3.1 Surface Structure - Nth Degree Polynomial Equation 10

3.2 Brightness Invariance Equation 11

3.3 A Least Squares Formulation 13

4 SIMULATION 16

4.1 Cone 16

4.1.1 Imaging geometry 18

4.1.2 Simulation data generation 20

4.1.3 Surface estimation 23

4.2 Plane 27

4.2.1 Simulation data generation 28

4.3 Composite Surface 30

4.3.1 Composite surface data generation 30

4.3.2 Reconstruction of the composite structure 32

4.4 Discussion and Results 34

iv

4.4.1 Parameter selection 36

5 CONCLUSION 40

6 BIBLIOGRAPHY 43

APPENDICES 47

Appendix A -Spatial Derivatives 48

Appendix B -Flowchart-surface Criterion 52

Appendix C -Source Code 54

Appendix D -Stereo Images 83

List of Figures

2.1 Imaging geometry 6

4.1 Stereo image setting 17

4.2 Cone - used in the simulation 19

vi

List of Tables

4.1 Cone (ø = 15.0°,ψ = 0.05°) 34

4.2 Cone (ø = 15.0°,ψ = 0.1°) 35

4.3 Cone (ø = 15.0°, ψ = 0.01°) 36

4.4 Cone (ø = 30.0°,ψ = 0.01°) 37

4.5 Plane (ψ =0.05°) 37

4.6 Composite Surface (ø = 15.0°) 38

4.7 Composite Surface (ø = 30.0°) 39

1

Chapter 1

INTRODUCTION

The concept of stereo vision has emerged as a powerful tool to capture the

information about 3-D surface structure. The concept of stereopsis is based

on essential differences between the images of stereo pair arising out of their

different points of view, that is, the same point is viewed from two different

locations and angle. It is one of the hot areas of research in the computer vision

community and it is expected to find solutions to several problems in the area

of machine intelligence and robotics.

The main problem in 3-D surface recovery is to develop algorithms and data

structures that extract information from 2-D images (that have gray level char-

acter) and manipulate the information to find out the depth. The depth or the

distance between the object observed and the viewer along the optical axis is of

significant importance in various applications of computer vision systems; for

example, guidance systems and recognition systems etc.

In the reconstruction of 3-D scene from a digital stereo pair of images, two

problems must be solved: (a) Geometrical calculation of 3-D position of the

scene point with respect to its stereo projection. (b) The second is rather more

1

complicated and concerns the problem of correspondence. The correspondence

problem needs feature extraction and template matching, which have been found

one of the challenging problems in the computer vision community.

The reconstruction of 3-D surface is important, also because the extraction of

the information about the surface structure is mainly responsible for the suc-

cess of further processing of the information. In this thesis the spatial domain

domain has been adopted. It has several advantages. For example, it elimi-

nates several constraints imposed by the time-domain analysis, yet the results

achieved match very well with any other technique for surface reconstruction.

There are basically two different approaches to recovering the structure of ob-

ject(s) and the relative motion between object(s) and camera(s): the optical

flow method and secondly the feature correspondence approach.

The feature correspondence approach has the disadvantage that it requires some

specific features in the image plane to be matched. The feature correspondence

problem poses a big challenge in the computer vision world and only the partial

solutions have been achieved [1]. On the other hand the optical flow method

involves large amount of computation [8]. Another drawback of this technique

is the fact that with one equation and two unknowns an extra constraint has to

be imposed. Usually the smoothness constraint is utilized. This, however, may

not be realistic in several cases leading to erroneous results.

The newly developed direct method [2][7][9] [10] which does not require the com-

putational complexity of intermediate steps (feature detection, correspondence,

2

and optical flow computation), therefore is desirable.

In the method used in this thesis, the concept of unified optical flow field (UOFF)

has been exploited. The UOFF is an extension of the fundamental optical flow

formulations by Horn and Schunck [8]. Two main aspects of the the UOFF are

discussed in the [13]. First of them, is that the brightness function of an image,

which is not only a function of time but also a function of the sensor's spatial

position. The concept of imaging space is presented as an accurate description

of the set of all possible brightness functions. Secondly, the brightness invari-

ance is recognized not only for the time variation but also for the (sensor's)

space variation so that the brightness invariance equations for both time and

space domains are established.

The method used in this thesis is based on a new method [14] which is a direct

method, based on the UOFF. The UOFF is discussed in more detail in the sec-

ond chapter. The third chapter discusses the direct method. The fourth chapter

includes the experimental work on various structures. Several interesting results

are also presented there. Finally, the conclusion of the whole work is drawn in

the fifth chapter.

3

Chapter 2

BACKGROUND

This chapter introduces the concepts which provide the framework for the work

done in this thesis. Also the mathematical results are presented to be used

in the experiments. As already mentioned in the previous chapter, the direct

method approach does not include the computation of the optical flow, rather it

uses the spatiotemporal derivatives of the image intensity function to estimate

the surface.

2.1 Unified Optical Flow Field

Optical flow may be defined as the apparent velocities of movement of bright-

ness patterns in an image, which in turn, is due to the relative motion of the

viewer and the object [8]. However, the motion under consideration is in the

time domain. As discussed in the previous chapter, UOFF is the extension of

the temporal optical flow to spatial domain. All the mathematical formulations,

which are parallel to temporal optical flow, are also defined [13].

In 3-D world space, a sensor as a solid article can be translated (which has three

degrees of freedom) and rotated (which has two free dimensions). It is noted

4

that here the rotation of a sensor about its optical axis is not counted since

the images thus generated will remain unchanged. So we can obtain a variety

of images when a sensor is translated to different coordinates and rotated to

different angles in 3-D world space. Equivalently, we can imagine that there

are infinitely many sensors in 3-D world space which occupy all of possible

spatial coordinates and assume all of possible orientations at each coordinate,

i.e., they are located on all of possible positions. At one specific moment all of

these images form a set of images, called a spatial sequence of images. When

time varies these sets of images form a much bigger set of images. Clearly, it

is impossible to describe such a set of images by using the g(x, y, t) discussed

in [13]. Instead, it should be described by a more general brightness function

g(x , y ,t, s), where s indicates the sensor's position in 3-D world space, i.e. the

coordinates of the sensor center and the orientation of the optical axis of the

sensor . As mentioned previously s is a 5-D vector [13]. That is

where x, y and z represent the coordinates of the optical center of the sensor

in 3-D world space; 0 and γ represent the orientation of the optical axis of the

sensor in 3-D world space.

In dealing with a "spatial" sequence of images, consider the various positions

of cameras in space at a specific moment. One way to describe the camera

movement in space is fixing the left camera and moving the right camera (see

Figure 2.1). The movement of the right camera can be viewed as: the translation

of the lens center OR followed by the rotation of the optical axis ORZR. The

two optical axes OZ and ORZ R are assumed, for simplicity, to be coplanar.

5

Z

Figure 2.1: Imaging geometry

6

The lens center OR can therefore only be translated on the OXZ plane. Hence

any translation of the OR on the OXZ plane can be decomposed as the trans-

lation along the direction parallel to the OX axis and the translation along the

direction parallel to the OZ axis. The rotation of the optical axis ORZR is about

the

ORZ R

 axis. The displacements of the optical center OR along the OX and

OZ directions are denoted by and z, respectively. The angle displacement of

ORZ R about ORZ R is marked by θ. However, the assumption made previously

that the OR lies on the OX implies z = 0. Therefore z will not be considered

under the assumption made. Define

where x is a characteristic length chosen according to imaging setting. So, Ss

is a measure of the variation of the right camera position with respect to the

left camera position, i.e, the variation of the position of the right lens center

OR with respect to that of the left lens center 0 and the orientation of the

right optical axis ORZR with respect to that of the left optical axis OZ. Let .s

denote the camera position in space and its superscript denote which camera is

considered. For instance, sL is used to denote the left camera position, sR the

right camera position, and we have

So, when x = 0 and θ = 0 (hence δs = 0), the two cameras are at the same

position in space, i.e., sL = 5R. If the camera's moving path is specified on the

plane, different values of x and 0 (hence different values of Ss) determine

the various values of s

R

, i.e, the various positions of the right camera in space.

At a specific moment 11, if the optical radiation of a world point P is isotropical

7

we then get:

where xp, yp is the coordinate for a world point P. This is the brightness space-

invariance equation. Applying the similar derivation to that used in [2] for

determining the temporal optical flow, the following equation for the spatial

optical flow is presented.

Let us take a close look at each quantity in the above equation. In equation(2.3)

the quantities with the superscript L are related to the left sensor. The g/s can

be estimated from image data as follows:

This is similar to the estimation of g and g in [8]. The us and vs are defined ax ay

as follows. Let

where (xR,yR) and (xL,yL) are projections of a same world point on the right

and left images, respectively. Therefore, 6x and Sy are, respectively, the hori-

zontal and vertical coordinate differences of the image points, corresponding to

the same world point in 3-D space, on the right and left image planes.

8

Hence, the afore-defined u3 and v3 are, respectively, the spatial variation rates

of Sx and Sy with respect to Ss. These two quantities generated from the spatial

sequence of images can be viewed as the counterpart of u L and vL (or uR and

vR) generated from the temporal sequence of images.

It is seen that Equation (2.3) derived from the spatial sequence of images [13] is

very similar, in format, to one derived from the temporal sequence of images by

Horn and Schunck [8]. It can be seen that this equation will serve as the start

point of our approach.

9

Chapter 3

DIRECT STEREO

As mentioned previously, the objective of the work done in this thesis is to

recover surface structure that can be characterized by an Nth degree polynomial

equation from a given pair of stereo images. This section presents the new

approach, which has been used for the structure recovery.

3.1 Surface Structure - Nth Degree Polyno-
mial Equation

In this thesis, we consider a surface that can be characterized by an Nth degree

polynomial equation. That is

where 0 < α(j) + /9(j) + γ(j) < N; K is the number of coefficients that are

not identically vanishing in the Nth degree polynomial; j = 0,1, • • • ,K — 1 is

an arbitrary but fixed index sequence by which all K coefficients are arranged

in Eq. (3.1). Obviously, there are K — 1 independent coefficients among the

total of K coefficients. Without loss of generality, we can choose a Cartesian

coordinate system in 3-D space so that Eq. (3.1) can be rewritten as

10

3.2 Brightness Invariance Equation

In Section 3.1, the concept of imaging space is introduced. At a specific moment,

the various sensor's positions in 3-D space are considered. We assume that the

left sensor is located at the origin of a Cartesian coordinate system in 3-D space

(see figure 2.1). As discussed in the previous chapter, for a specific moment all

of the images taken by various sensors in 3-D space form a spatial sequence of

images. Hence, though an object does not move in 3-D space, it looks as if it

would have experienced the certain movement from the various sensors' view.

These pseudo-movements can be treated in a manner similar the treatment of

the relative motion between the sensor and the rigid environment provided in

Eq. (2.3). That is, we define

where the superscript T represents transposition of the concerned vector, the

subscript s indicates the s-domain. The various position of sensors in 3-D space

with respect to the origin can be considered as sensors after experiencing various

movement with respect to the origin. This type of movement is characterized

by

where Ts is the translational component and Ws the rotational component, the

11

superscript T and the subscript s are the same as defined above. We then have

In Figure 2.1 the coordinates in image plane are denoted by x and y.

When the focal length of a lens equals 1, Eq. (3.11-3.12) can be derived under

consideration of perspective projection.

From the definitions of u8 and v3, i.e., Eq. (2.6-2.7), and the relations in Eq.

(3.8-3.12), one can derive the next two equations.

Let us rewrite the brightness invariance equation for a spatial sequence of im-

ages.

12

Or,

where, we have the following definition.

Substituting (3.13-3.14) into (3.15) one can obtain

It is noted that As, Bs, Cs, Us, Vs, Ws can be determined once the relative po-

sition of the two sensors in stereo imagery is known. gx,gy, and g3 can be

determined from the given image data [2]. In Eq. (3.19) x and y are coordi-

nates on image plane. Instead of explicitly solving l/z, we apply Q = p/q to the

performance function in a minimization formulated below.

3.3 A Least Squares Formulation

Using Eq. (3.10-3.11), one can derive the following equations from Eq. (3.2),

Or

13

where I is a region on the image plane associated with the concerned surface

in 3-D space. The task here is to find a set of coefficients λ(j) so that the

performance function J is minimized.

It is well known that the following linear equations are necessary conditions for

minimization of the J function.

14

In this set of linear equations, all of coefficients of the Nth degree polynomial,

i.e., λ(1), • • • , λ(K — 1) are unknown. The all of entries in the matrix, i.e., M1,3

and the all of entries in the vector, i.e., Di can be computed from the given

stereo image data and the known imaging setting. The unknown coefficients

λ(1), • • • , λ(K — 1) can thus be solved. In other words, one can recover the

surface structure: both the shape of the surface and the position of the surface

in 3-D space because the polynomial equation characterizing the surface has

been completely determined.

15

Chapter 4

SIMULATION

This chapter describes the experimental work done to solve the problem of 3 -D

surface recovery. The work is primarily based on the theoretical results presented

in the previous chapters. The tests were performed on various surfaces and

favorable results were achieved showing the generality of the proposed algorithm.

The surface structures used for the experimentation include a cone, a parabola,

a planar surface and the combination of the cone and planar surfaces (i.e., a

surface characterized by a 3rd degree factorable polynomial equation). However,

only the cone, the plane and the combination of the plane and the cone will be

discussed in this chapter.

4.1 Cone

The cone used for the simulation is characterized by the following mathematical

representation (see Fig. 4.1 and Fig. 4.2),

16

Fig. 4.1 Stereo image setting

17

where K is defined as:

and Ø is the angle as shown in the Fig. 4.2.

The typical value of Ø used in the simulation is 15°. Therefore, the equation of

the cone may be rewritten as:

Or

Since, the cone represented by the equation given above, is of infinite size, we

select an arbitrary height of the cone for simulation purposes. The typical values

of the height of the cone, used in the simulation are 2.0 and 5.0.

4.1.1 Imaging geometry

The center of the cone lies on OZ axis and its base is located at (0, 0, D) with

respect to the reference Cartesian coordinate system as shown in the Fig. 4.1.

The distance between the center of the lens and the center of the cone is denoted

by D. However, the distance has to be large enough to satisfy the far field

assumptions, which is generally the case in practice. The optical axis of the left

lens is aligned along the OZ axis. The Cartesian coordinate system of the right

camera is achieved by rotating the left camera by an angle b in the clockwise

18

Fig. 4.2. Cone used in the simulation

19

direction about O'Y' axis (Fig. 4.2), when we are looking towards the origin

from positive Y'-axis direction.

4.1.2 Simulation data generation

Rewriting the equation of the cone under consideration,

It may be noted that the gray level assignment is done in the spherical coordinate

system, which has been found more suitable for this purpose. We can write the

coordinate system conversion formula as folows:

We divide the image plane into 128 x 128 pixels. We see that for each point

on the image plane there is a corresponding point in the 3-D space. However,

only a subset of those points correspond to the points on the cone. Rest of the

points constitute the background, which is assigned an arbitrary but fixed gray

level.

We apply the concepts of perspective projection to find the relation between the

points on the image plane and the points in the 3-D space.

20

We know that a specific point on the image plane and the coordinates of its

corresponding point in 3-D space, satisfy Eqs. (3.10-3.11) which are rewritten

below.

where the value of f (the focal length of the camera) has been assumed to be

equal to 1, for simplicity in computation. It, however, maintains the generality

of the problem under consideration.

Substitution of X and Y from Eqs. (4.8 — 4.9) into the equation of the cone,

Eq. (4.1), yields one equation with one unknown. Hence, the value of Z can be

determined, which is given by,

where only the real solution is allowed due to the obvious physical meaning, i.e.,

Also, while solving the quadratic equation, we select the solution with the neg-

ative sign preceding the square root, because it gives the correct value of Z, i.e.,

smaller of the two values of Z is selected. Thus, we actually choose the surface

of the cone which is facing the camera. Using Eqs. (4.8 — 4.9), the values of X

and Y may be found out.

21

Similarly, the value of 0 may be determined by the following formula:

where 0 is the angle between the projection of the point on the cone onto the

X'O'Z' plane and the positive O'Z' axis (Fig. 4.2). The angle Ø is constant here.

The brightness function used is as follows:

where gL is the gray level assigned to the point (x" ,yL) with the superscript L

indicating the left image plane, and 0 is the same as defined above. The values

of the parameters (K1 and K2) used are:

Also, the point (xL ,yL) is the perspective projection of (X, Y, Z) in 3-D space

onto the left image plane, obtained by the perspective projection of the point

(X, Y, Z) in the 3-D space. The resulting image of the cone is included in Ap-

pendix D.

So far, we have discussed the generation of the image, which has arbitrarily

been chosen as left image by the choice of the coordinated system. To simu-

late another image (right), we use the following procedure. Since, the surface

structure of the cone is symmetrical with respect to Y'-axis, which is also the

22

axis of rotation of the optical axis of the right camera, the geometrical shape of

the cone as viewed from the right camera remains same. This is also verified by

the use of the rotation transformation matrix. However, care has to be taken

for the change in the brightness pattern. Instead of moving the camera to the

new position, we can rotate the object (cone) by the same angle, b, but in the

opposite direction. This can be achieved by adding an angle —ψ to the angle 0,

where θ and Ø are defined as shown in Fig. 4.2. This maintains the brightness

invariance constraint. The gray level function for the right camera in terms of

the coordinates of the already defined Cartesian coordinate system is,

A more generalized way of handling this issue is considered in the case of the

non-symmetrical surface structure, to be discussed in the next section.

Once the gray level assignment is done, the values of the spatial derivatives, i.e.,

gx and gy are calculated using the formula given in Appendix A. The value of

g3 is calculated, using Eq. (3.18).

4.1.3 Surface estimation

Since any Nth order surface structure may be represented by a general equation

as follows:

where 0 < α(j) + β (j)+ γ(j) < N; K is the number of coefficients that are not

identically vanishing in the Nth degree polynomial; j = 0, 1, • • • , K — 1 is an

23

arbitrary but fixed index sequence by which all K coefficients are arranged.

Obviously, there are K — 1 independent coefficients among the total of K coef-

ficients.

For the case of second order polynomial, the above equation can be, possibly,

expanded as follows:

It is noted that for the computational purposes, we have shifted the coordinate

system as see in Fig. 4.1. i.e., Z' = Z — Z is used. The main reason for doing

so is to avoid the computational error arising due to the numerical differences

between the values of Z and other variables. This issue is discussed in greater

detail, later in this section.

Eq. (4.16) may be written as follows by using Eqs. (4.8 — 4.9).

It is, generally, simpler to normalize with respect to the constant term, but in

our case, the constant term is missing from the equation of the cone, Eq. (4.1),

and hence some other term has to be chosen. Here we choose the term)'(0)X'2

for normalization, thus converting Eq. (4.17) to the following equation.

24

Replacing 1/z by Q according to Eq. (3.19), we get,

Hence, the performance function J, discussed in Section 3.3, in this experiment

becomes,

where

25

A set of necessary conditions for the minimization becomes

This is equivalent to

with i = 1,2,...,9.

In matrix format, these necessary conditions become

In implementing the above computation, one thing needs to be emphasized.

That is, the depth Z is very large compared with the other quantities involved,

causing numerical and computational problem. In order to deal with this prob-

lem, Z = Z + Z is used where Z can be viewed as sort of "steady" or average

component while 2 "fluctuation" component component in Z. The average

value of Z might be used as Z. In other words, we can percieve of another

coordinate system (0" — X"Y"Z"), originated at (0, 0, Z) and with the axes

0"X", 0"Y", 0"Z" parallel to the axes OX, OY, OZ, respectively. In the

simulation Z is taken as the calculated average value of Z, from the experi-

ment, which equals 99.720230 (Ø = 15.0º). By doing this, the values of X", Y"

and Z", thus obtained are numerically comparable. The estimated coefficients

λ(j), j = 1, • • • , 8, returned from the program are as follows.

λ(1): 0.078168

26

It is noted that these returned coefficinets are with respect to 0"-X"Y"Z"

system. The parameter ψ in the experiment is 0.05° and the Z = 99.720230.

Noticing that Z = Z -I- 2, one obtains the recovered surface equation approxi-

mately as follows.

The expected coefficients and the recovered coefficients of the cone are listed in

Table 4.1 (see Section 4.4).

Compared with the assumed cone described in the beginning of this section,

i.e., a cone of height 5 and the angle with the Y — axis equal to 15° and the

distance between its center and the origin of the Cartesian system being D (al-

ready defined as 100), the percentage of error is less than 0.1, thus, it is obvious

that satisfactory results have been achieved.

4.2 Plane

The plane used in the structure can be described as:

27

where A, B, C and D are the coefficients in the equation.

The imaging geometry, used for the simulation of the plane surface is the same

as described in the previous section (Fig. 4.1).

4.2.1 Simulation data generation

In Eq. (4.26):

where, the values of the coefficients are as follows:

Substituting the perspective projection Eqs. (4.8-4.9) into the equation of the

plane i.e., Eq. (4.26), we can solve for Z,

where, x and y represent the coordinates on the image plane.

After determining Z, we now determine the values of X and Y.

The brightness function used for the planar surface is as follows:

where the values of the parameters used, are as follows:

As described in the case of cone, the point (xL, yL) is obtained by the perspec-

tive projection of a point (X, Y, Z) in 3-D space onto the left image plane.

28

The data generated, so far, applies to the left image. To generate the image as

viewed by the right camera, we first, translate the camera and then rotate it

clockwise, when viewed from the positive Y'-axis towards the origin by an angle

0. The same effect may be generated by keeping the camera position as that

of the left camera and rotating the object (cone) by negative ψ, which is found

more convenient for simulation purposes. This is the same as discussed in the

previous section.

The coefficients of the surface of the plane as viewed by the right camera. By

the rotation and the translation transformation, we may write,

Substituting the values of X, Y and Z from the above equations into Eq. (4.26),

we have

where, the A, B, C and D are the coefficients of the plane described before, i.e.,

the plane corresponding to the 3-D Cartesian coordinate system associated with

the left camera image; AR, BR, CR and DR are the corresponding coefficients of

the plane as seen by the right camera. The same set of Eqs. (4.8-4.9, 4.28) may

29

be used for the right image. However, to satisfy the brightness invariance con-

straint, one condition has to be established, i.e., for any pixel on the right image

plane, there is a corresponding point in the 3-D space, whose brightness value

must be same as the point, when viewed by the left camera (Section 3.2). For

this we use the transformations given by Eqs. (4.30-4.32). Thus the brightness

invariance condition is satisfied.

The reconstruction of the plane is discussed in detail, in the section on composite

surface. A table is also included in the last section to analyze the performance

for the reconstruction of the plane.

4.3 Composite Surface

This section discusses the simulation and reconstruction of a curved surface that

is characterized by a 3rd degree polynomial equation, in which the polynomial

can be factored into a 2nd degree polynomial (cone) and a lst degree polynomial

(plane). The procedure to implement is 'essentially the same as discussed in

the previous section. Complexity is, however, increased due to obvious reasons.

Special care is taken in the decision of assignment of any image point to the

corresponding surface in the 3-D space. This section also focuses on the criterion

used to discriminate the surfaces.

4.3.1 Composite surface data generation

The composite surface simulated is obtained by superimposing the plane Eq.

(4.26) over the cone Eq. (4.1). It is characterized by,

30

Refer to the pair of images in Appendix 6.4 for the composite surface structure

under consideration.

One of the major issues in the simulation of the composite structure has been

the establishment of the valid criterion to discriminate the points corresponding

to the respective surfaces. The criterion used for this purpose is as follows. A

particular point on the image plane is the perspective projection of some points

on the cone surface if

where A, B, C and D are the coefficients of the planar surface under consider-

ation, Xcone , Ycone and Zcone are the coordinates of the corresponding point on

the cone surface in the 3D space.

If this test fails, we test if this image point is the projection of some points

on the planar surface. The criterion used for this purpose is expressed in the

following inequality.

where Xplane l Yplane and Zpiane are the coordinates of the corresponding point

on the planar surface and K is the same as defined by the Eqs. (4.2). If this

condition is satisfied, the point corresponds to the planar surface. If both the

criteria fail, it corresponds to the background, and the predefined gray level

for the background is assigned to this point on the image plane. This issue is

explained with the help of a flow chart in Appendix B.

Once the decision regarding the surface is made, the next step is to assign the

31

gray level to the image plane point. The gray level functions used here are the

same as mentioned previously by Eqs. (4.13) and (4.29), respectively. This

completes the formation of the left image. The right image formation involves

the rotation of the structure by —ψ to simulate the rotation of the camera

position, as discussed in the previous sections. Also, the same procedure is

followed to compute derivatives gx,gy and g8, as already described. However,

the set of gray functions used has to be in correspondence with the surface

identified.

4.3.2 Reconstruction of the composite structure

The method used to recover the surface parameters of the composite structure is

essentially the same as discussed in the previous sections. The set of equations

used for the recovery is however depicted in the following.

Let us rewrite the Eq. (3.1) to represent an Nth order surface structure as

follows:

where 0 < α(j) + β(j) + γ(j) < N; K is the number of coefficients that are

not identically vanishing in the Nth degree polynomial; j = 0, 1, • • • , K —1 is

an arbitrary but fixed index sequence by which all K coefficients are arranged

in. Obviously, there are K —1 independent coefficients among the total of K

coefficients.

For the case of a third degree polynomial, the above equation can be written as

follows:

32

The correspondence between the monomials and the coefficients may be seen in

Tables 4.6 and 4.7. The reason for rearranging the equation arises due to the

consideration that the normalization is conducted with respect to A(10), i.e. the

coefficient of X2 instead of the constant term for the same reason as discussed

previously.

The index sequence in which all of coefficients are arranged is not unique. Re-

placing 1/z by Q according to eq. (3.16) and normalizing with respect to the

coefficient of X2 term, one then has the same expression as we had in the pre-

vious cases.

Hence, the performance function J in this experiment becomes

A set of necessary conditions for the minimization becomes
...

This is equivalent to

with j = 0, 1, ... , 19.

In matrix format, these necessary conditions become

33

Having, found the relation between the unknown coefficients and the known

matrices, we get a linear relationship, which can be individually solved for the

value of)(i).

4.4 Discussion and Results

This section discusses some aspects of the work done based on the results ob-

tained from the simulation and experimentation.

Although, the cone and the composite structure have been discussed , the sim-

ulation was performed on other surfaces, too; e.g., Parabla.

The percentage of error shows the precision of the method to reconstruct the

surface structures. However, the accuracy is expected to decrease for real im-

ages.

Coeff. Terms Calc. val. Exp. Val.
λ(0) const. 0.000000 -0.000328
λ(1) X2 -0.071796 -0.071835
λ(2) Y2 1.00000 0.999335
λ(3) Z2 0.00000 -0.000282
λ(4) XY 0.000000 0.000603
λ(5) X Z 0.000000 -0.000325
λ(6) YZ 0.000000 0.000127
λ(7) X 0.000000 0.000128
λ(8) Y 0.000000 -0.00642
λ(9) Z 0.000000 0.000000

Table 4.1: Cone (0 = 15.0°,ψ = 0.05°)

The results are observed to improve with decrease in the angle 0. Similarly, the

results of the same degree of accuracy are obtained when the same procedure is

repeated for 0 = 30°, as shown Table 4.5.

Similarly, for the plane, we have the following table.

34

Coeff. Terms Calc. val. Exp. Val.
λ (0) coast. 0.000000 -0.0047
λ(1) X2 -0.071969 -0.071945
λ(2) Y2 1.00000 0.998412
λ(3) Z2 0.00000 0.000000
λ(4) XY 0.000000 -0.000000
λ(5) XZ 0.000000 -0.001932
λ(6) YZ 0.000000 -0.000000
λ(7) X 0.000000 -0.000642
λ(8) Y 0.000000 -0.00642
λ(9) Z 0.000000 0.00000

Table 4.2: Cone (Ø = 15.0°,ψ = 0.1°)

Similarly, we have the accuracy of the same order in the case of the composite

surface as can be seen later in this section.

35

Coeff. Terms Calc. val. Exp. Val.
λ(0) X2 1.00000 1.0000000
A(1) y2 -0.071797 0.0717969
A(2) Z2 1.0000 1.000000
A(3)

λ(5)
λ(6)

XY 0.00000 0.000000
A(4) XZ 0.00000 0.000005
λ(5) YZ 0.00000 0.000000
λ(6) X 0.00000 0.000000
λ(7) Y 0.00000 0.000000
λ(8) Z 0.00000 0.000000
λ(9) Const. 0.000000 0.0003

Table 4.3: Cone (Ø = 15.0°, ψ = 0.01°)

The combination of the cone and plane, which are included in the table. Another

set of values for the composite surface has been included for reference. The value

of ψ is 0.01°.

Based upon the results tabulated so far, certain conclusions are drawn, which

are discussed in the next section.

4.4.1 Parameter selection

A series of experiments were carried out with different sets of parameters to

extract the optimum solution.

The parameters used in the gray level function for the planar surface as well

as the cone are found to effect the results, with variation in their values. The

reason why the integer values of the constants K1, K2, K3, Kθ, Ky are chosen,

is the fact that the fractional values may cause discontinuity at the boundaries,

which will result in abrupt changes at certain points. Moreover, the choice of

the values which are too high will cause the gray level to change too rapidly,

36

Coeff. Terms Calc. val. Exp. Val.
λ(0) X2 1.00000 1.00000
λ(1) Y2 -0.333333 -0.333333
λ(2) Z2 1.000000 1.000000
λ(3) XY 0.00000 0.000000
λ(4) XZ 0.00000 0.000001
λ(5) YZ 0.00000 0.000007
λ(6) X 0.00000 0.000000
λ(7) Y 0.00000 0.000003
λ(8) Z 0.00000 0.000000
λ(9) Const. 0.000000 0.0003

Table 4.4: Cone (Ø = 30.0°,ψ = 0.01°)

Coeff. Terms Calc. val. Exp. Val.
λ(0) X2 -0.23160310 -0.231576
A(1) Y2 0.40016 0.399925
A(2) Z2 0.163001 0.153793
A(3) Const. 1.000000 1.00000

Table 4.5: Plane (ψ =0.05°)

while low values will make the change in the gray level too slow.

The parameters used with the gray level function for the plane as well as with

the cone, are found to give best results when they are selected to be equal to 8.

However, this is not a very sensitive parameter.

Another parameter is the angle ψ, which is the angle between the coordinates

of the left camera and the right camera. The values chosen for this parameter

range from 0.001° to 0.5°. However, at larger angles, the experimental values

seem to deviate from the calculated values.

37

Coeff. Terms Calc. val. Exp. Val.
λ(0) X3 -0.2316031 -.236937
λ(1) Y3 0.133372 0.133672
λ(2) Z3 0.163001 0.153766
λ(3) X2Y -0.400116 -0.400179
λ(4) X 2 Z 0.163001 0.149600
λ(5) XY2 0.077201 0.076848
λ(6) ZY2 -0.054339 -0.49362
λ(7) XZ 2 -0.231603 -0.230135
λ(8) YZ2 -0.400 -0.40022
λ(9) XYZ 0.00000 -0.008818
λ(10) X2 1.0000 1.00000
λ(11) Y2 -0.33333 -0.33345
λ(12) Z2 1.00000 0.997984
λ(13) XY 0.00000 0.000323
λ(14) XZ 0.00000 0.000433
λ(15) YZ 0.00000 0.000443
λ(16) X 0.00000 0.000117
λ(17) Y 0.00000 0.000563
λ(18) Z 0.00000 0.000971
λ(19) Const. 0.000000 0.0003

Table 4.6: Composite Surface (Ø = 15.0°)

38

Coeff. Terms Calc. val. Exp. Val.
λ(0) X3 -0.2316031 -.230490
λ(1) Y3 0.133372 0.133676
λ(2) Z3 0.163001 0.153698
λ(3) X2 Y -0.400116 -0.400193
λ(4) X 2 Z 0.163001 0.149470
λ(5) XY2 0.077201 0.076865
λ(6) ZY2 -0.054339 -0.049380
λ(7) XZ2 -0.231603 -0.230060
λ(8) YZ2 -0.400 -0.400196
λ(9) XYZ 0.00000 -0.00196

λ(10) X2 1.0000 1.000000
λ(11) Y2 -0.33333 -0.334514
λ(12) Z2 1.00000 0.997949
λ(13) XY 0.00000 0.000302
λ(14) XZ 0.00000 0.000571
λ(15) YZ 0.00000 0.004356
λ(16) X 0.00000 0. 000110
λ(17) Y 0.00000 0.000560
λ(18) Z 0.00000 0.000947
λ(19) Const. 0.000000 0.000072

Table 4.7: Composite Surface (Ø = 30.0°)

39

Chapter 5

CONCLUSION

The work done takes us another step towards proving the capabilities of the

direct method for recovering the 3-D surface structures represented by polyno-

mials of different order and characteristics . Two contributions of the thesis

work are are summarized as follows:

(a) Infinite-size surfaces:

The proposed direct method may be applied to the recover the structures of

any order and size as proved by the simulation results (Chapter 4), which is big

progress over the previous work.

(b) Factorable surfaces:

Another very interesting result is the capability of the technique to the solution

of the surface structures that are represented by factorable polynomials.

Besides, we also make the following observations.

• In UOFF, the brightness invariance has been extended to spatial domain.

40

• The method is extended to the solution of the problems involving high

order polynomials. The proofs are already provided for the first, second

and third order surfaces.

• The setting of the imaging system has great influence upon the final re-

sults. Generally, the setting should be such so as to be compatible with

the far-field assumption.

As mentioned previously, the research work is based on the unified optical flow

field (DOFF) and the direct method approach is used to extract the informa-

tion from the stereo images. Least square formulation has been used for the

minimization of the error.

Spatial domain analysis may be preferable in several cases over the time domain

analysis due to several reasons. One of them being its processing in parallel.

In addition to this, spatial domain methods may be used along with the time

domain technique to improve the efficiency of any algorithm. This is due to the

fact that more information is available.

The direct method approach can be used to recover the 3-D surface structure of

higher order polynomials (continuous as well as factorable) with certain margin

of error, which is ignorable, in general. It is observed that the percentage of

error is, however, proportional to the number of factorable surfaces.

It is expected that the new approach can play a vital role in solving the prob-

lems of motion analysis. Favorable results have been obtained in this regard

41

too. Although, the experiments were performed on the simulated images, the

success of the simulation results indicates that comparable degree of success

may be achieved in case of real images.

It is also hoped that the proposed approach may be applied in real-time appli-

cations because of its less computational complexity and simplicity as compared

to other prevalent methods. An analysis of the method for its application on

real images is under investigation.

42

Chapter 6

BIBLIOGRAPHY

[1] J. K. Aggarwal and N. Nandhakumar, "On the computation of motion

from sequences of images - a review," Proceedings of the IEEE, vol 76,

no. 8, pp. 917-935, August 1988.

[2] J. Aloimonos and J. Y. Herve, "Correspondenceless stereo and motion:

Planar surfaces," IEEE Trans. on Pattern Analysis and Machine Intelli-

gence, vol. 12, no. 5, pp. 504-510, May 1990.

[3] W. H. Narendra Aluja "Surfaces from Stereo: Integrating feature match-

ing , disparity estimation e contour detection," IEEE Transaction on Pat-

tern Analysis and Machine Intelligence. vol. 11 no. 2, pp. 121-136, Feb.

[4] J. Heel and S. Begandaripour, "Time-sequential structure and motion

estimation without optical flow," SPIE vol. 1260 Sensing and Reconstruc-

tion of Three-dimensional Objects and Scenes. vol. 1260, pp. 50-61,

1990.

43

[5] R. M. Bolle and B. C. Vemuri, "On Three-dimensional surface recon-

struction methods," IEEE Trans. on Pattern Analysis and Machine Intel-

ligence, vol. 13, no. 1, pp. 1-11, Jan. 1991.

[6] W. Burger and B. Bhanu "Estimating 3-D egomotion from perspective

image sequences," IEEE Transactions of Pattern Analysis and Machine

Intelligence, vol. 12, pp 1040-1058, 1990.

[7] B. Hayashi and S. Negandaripour, "Direct motion stereo," SPIE vol.

1260, Sensing and Reconstruction of Three-Dimensional Objects and

Scenes.

[8] B. K. P. Horn and B. G. Schunck "Determining optical flow," Artificial

Intelligence, pp. 185-203, 1981.

[9] B. K.P Horn and E. J. Weldon Jr., "Direct methods for recovering mo-

tion," International Journal of Computer Vision, vol. 2. pp. 51-76, 1988.

[10]S. R. Negandaripour and B.K.P. Horn, "Direct passive navigation," IEEE

Transactions on Pattern Analysis and Machine Intelligence. Vol. PAMI-9,

pp. 169-176, Jan. 1987.

[11] Y.C. Shah and R. Chapman. "A new technique to extract reange infor-

mation form stereo images," IEEE Transactions on Pattern Analysis and

44

Machine Intelligence. vol. 11, no. 7, pp.768-781, Nov. 1990.

[12] B. G Schunck. "Image flow segmentation & estimation by constraint line

clustering" IEEE Transactions on Pattern Analysis and Machine Intelli-

gence. vol. 11 no. 10, Oct. 1990.

[13] C. Q. Shu and Y. Q. Shi " On unified flow field," Pattern Recognition,

vol. 24, no. 6, pp. 579-586, 1991.

[14] C. Q. Shu, Y. Zhu, Y. Q. Shi & C. H. Lu. "Recovering surface structure

characterized by an Nth order polynomial equation," IEEE Seventh Work-

shop on Multidimensional Signal Processing, pp 23-25. Lake Placid, NY

(Accepted), Sep. 1991.

[15] M. Subbrao "Interpretation of image: A Spatio-temporal approach,"

IEEE Trans. on Pattern Analysis and Machine Intelligence. vol. 11

no. 3, pp. 226-278, March 1990.

[16] T. Suimechomy "Direct Analytical methods for solving Poisson Equation

in computer vision problem," IEEE Transaction of Pattren Analysis of

Machine Intelligence, vol. 12 no. 5, pp. 435-446

[17] A. Verri, F. Girosi and V. Torre, "Differential techniques for optical

45

flow," Journal Optical Soc. Am. vol. 7, no. 5, May 1990.

[18] R. C. Gonzalez "Digital image processing," second edition, Addison Wes-

ley, Reading, MA, 1987.

46

APPENDICES

APPENDIX A

(Derivatives)

7.1 Appendix A -Spatial Derivatives

This section of the Appendix includes the first-order spatial derivatives.

gx, gy and g3.

We have the gray function as follows:

Calculate g/x Note that in the following calculations several temporary variables x

have been used which have been substituted in the final result to yield the

desired results.

Let us define

Therefore,

49

50

So,

Plane

The spatial derivatives for the plane are as follows:

Similaraly,

51

APPENDIX B

(Flowchart)

Test # 1: If ApXc + BpYc +Cp Zc +Dp < 0

Test # 2: If K2Xp + Yp2 + K2 Zp2 < 0.

Ap, Bp, Cp and Dp are the coefficients of the PLANE.

Xp, Y p, Zp are the coordinates of the PLANE.

Xc, Ye, and Zc are the coordinates of the CONE.

CRITERION FOR SURFACE DISTINCTION.

53

APPENDIX C

(Source Code)

/**

The implementation of the work, as described has been
accomplished with the help of two sets of programs.

1. Simulation programs.
2. Reconstruction programs.

As explained earlier, the simulation has been performed
on various structures including cone and the composite
structure (which is the combination of the cone and the
planar surfaces).

This appendix, however, contains the source code for the
composite surface only. Different modules constituting
the software for the structure are explained one by one
and the necessary documentation has been included.

CONE:

The source code to implement the generation and
reconstruction of the cone surface consists of several
modules, which are discussed in the following.

Generation:
The generation (or the simulation) of

the cone is accomplished with the help of two modules:

1. cone.c
2. plane.c
3. globe.par

As evident from the names used, the first module (cone.c)
is the program to simulate the cone structure (both for
the left and the right camera). Similarly the plane.c
simulates the takes care of the pixels associated with
the plane of the composite surface. The other file (
globe_par) contains the global parameters used by the
con.c program. Since, these parameters may be quite

55

different under different circumstances, the globe_par
file makes changes easy to make.

RECONSTRUCTION:

The reconstruction of the cone surface is performed using
the following modules:

1. Reconst.c
2. Param.c
3. Gauss.c

Again, here the naming convention used is self-
explanatory. That is, the first module (reconst_cone.c
) is the main program to recover the structure of the
surface. The second file (param_cone) contains the
parameters to be adjusted, while the third file (gauss.c
) simply implements the Gauss's formula. This program is
called from the reconst_cone.c program when the Gauss's
formula has to be used for the matrix solution for the
linear equations.

Besides, further comments and documentation is provided
in the respective modules.

Module # 1: Cone.c (Simulation of the cone surface)

#include <stdio.h>
#include <math.h>
#include "globe.par"
#include "thesis pln.c"

FILE *fp;

main()
{

56

/* Variables to be used in the program */

int i,j;
int flag;
double x,y;
double rho, theta, sin_rho, cos_theta;
double temp_, temp_j, grey;
double x obj, y_obj, z_obj;
double z den,tmp,tmp2,tmp2,tmpth,z_dash;

/*
Variables to be used for the partial derivatives. A
little consideration reveals the partial derivative, each
variable refers to.
*/

double gto_r,g_to_theta,gto_x,g_to_y,delta_g,gto_yo;
double r to xo,r to yo,r to z dash;
double z dash to x,xo to x,yo to x;
double th to x obj,th_to_y_obj,th to z dash;
double xo to y,yo_to_y,z_dash_to_y;
double s;
double gr_pl_l,gr_pl_r;

double x_pin,y_pin,z_pln;
int flag_1;
double theta p;

flag=0;
flag 1=0;

fp=fopen("CONEOUT", "w");

/*
Scanning across x-axis and y-axis starts here. '1'
corresponds to the x-axis and 'j' corresponds to the y-
axis.
*/

57

for (j=0; j<N; j++)
{
for(i=0;i<N;i++)

{
temp_i=(double)(i);
temp_j=(double)(j);

/*
Calculations of the points on the image plane. The real
numbers used are to select the window to be taken for
observation.
*/

x= -.04 + (.08 * (temp_i/N));
y= .05 - (.08 * (temp_j/N));

flag= echo_flag(x,y, &x_obj, &y_obj, &z_obj);
/*
If any pixel belongs to the image of the surface of the
cone, the value of the flag returned is non-zero.
*/

if (flag != 0)

/*
Function to compute the rho and the angle theta (with the
y-axiz) givent the various coordinates of the point.
*/

{

flag_1=echo_flag_forplane(x,y,x_obj,y_obj,z_obj,&xpin
,&y_pln,&zpln);

if(flag_1 ==1)
{
echo_theta_rho(x_obj, y_obj, z obj,

&theta, &rho);
sin rho = sin(y_obj*K_RHO);

58

cos theta = cos (K THETA * (theta));

grey = fabs(mag * sin rho * cos theta);

/* CALCULATIONS FOR DERIVATIVES W.R.T. X-AXIS */

✓ to_xo=x_obj/rho;
✓ to_yo=y_obj/rho;
✓ to_z_dash=(z_obj - D)/rho;

tmp=sqrt(y*y-K*K*x*x);
tmp2=(y*y-x*x*K*K-K*K);
z_dash_to_x= x*K*K*K*D*((-2.0*K+2.0*tmp-(tmp2/

tmp))/(tmp2*tmp2));
xo to x=x*z dash_ to x + z obj;

yo_to_x=y*z_dash_to_x;

g to theta=(-
mag*sin THETA*sin(theta*K_THETA));

tmp_t-171=sqrt(rho*rho*sin(PHI)*sin(PHI)-
x_obj*x_obj)*rho*rho;

th_to_x_obj=(-(rho*rho-x_obj*x_obj)/tmp_th);
th_to_y_obj=((x_obj*y_obj)/tmp_th);
th_to_z_dash=((x_obj*(z_obj-D))/tmp_th);

g_to_yo=mag*(cos(y_obj*KRHO)*KRHO*cos_theta +
sin rho*

(-sin(theta*K_THETA)*K_THETA*th to y obj));

g_to x=(g_to yo*yo_to_x +
g_to_theta*(h_to_x obj*

xo + th_to_y_obj*yo_to_x +
th to z dash*z dash to x));

/*------ CALCULATIONS FOR DERIVATIVES W.R.T Y-AXIS */

z dash to y=D*K*y*((tmpl/tmp + 2.0*K - 2.0*tmp)/
(tmp2*tmp1));

59

xo to y= x*z dash to y;
yotoy= y*z dash to y + z_obj;

g_to_y=(g_to_yo*yo_to_y +
g_to theta*(th_to_x_obj*

xo to _y + th_to_y_obj*yo_ to_y +
th_to z dash*z dash to y));

/*

CALCULATION FOR DERIVATIVE W.R.T. THE PARAMETER S.

*/

s=sqrt(x_obj*x_obj + y_obj*y_obj + (z_obj-
D)*(z obj-D));

delta g=fabs(mag*sin_rho*cos(K_THETA*(theta-
BETA)))-grey;

/*
Different paramers are printed in the output file to be
read by the file to reconstruct the structure.
*/

fprintf(fp, "%d %.16e %.16e %.16e %.16e %.16e
%.16e %.16e\n",

flag_1,x,y,grey,g_to_x,g_to_y,delta_g,$);

}

else

if(f2ag_1==2)
{

60

z dash = zpin - Z0;

plane(x,y,fp);

}
else

{
fprintf(fp, "%d %.16e %.16e %.16e %.16e %.16e %.16e

%.16e\n",
flag1,x,y,0.0, 0.0, 0.0, 0.0, 0.0);

}
}

else

{
fprintf(fp, "%d %.16e %.16e %.16e %.16e %.16e %.16e
%.16e\n",

flag1,x,y,0.0, 0.0, 0.0, 0.0, 0.0);

}
}

}
}

/**

The function, echo flag() passes the values of the
coordinates of x and y (image plane), and it returns the
value of the flag, which determines if a certain point on
the image plane corresponds to the valid point on the
object space (flag=1) or not (flag=0).

**/

int echo flag(x,y, x cordinate, y cordinate,

61

z cordinate)

double x,y;
double *x cordinate;
double *y_cordinate;
double *z cordinate;
{
double rho, theta;
double x object, y_object, z_object;
double temp, z_temp;
double tempi, temp2_sq, temp2, temp2_sq;
double z_numerator_pos, z_numerator_neg, z_numerator,
z denominator;

/*

CALCULATIONS FOR FINDING THE Z COORDINTE, FOLLOWED BY
X, Y, THETA AND RHO.

*/

tempi = y * K * D;
temp2_sq = pow(temp2, 2.0);

temp2 = pow(K,2.0);
temp2_sq = pow(temp2 * x * D, 2.0);
temp= templ_sq - temp2_sq;

if (temp < 0.0)
{
return(0);

/*
'0' is returned, whenever the pixel belongs to the
background.
*/

}
else

{

z_temp = sqrt(temp);
z_numerator_pos = D * temp2 + z_temp;

62

z numerator neg = D * temp2 - z temp;

if(z_numerator_neg > 0.0 && z_numerator_neg <=
z numerator_pos)
{
z numerator = z numerator neg;
}
else
{
z numerator = z numerator_pos;
}

z denominator = temp2 - pow(y,2.0) + pow((K*x),2.0);

if(z_denominator == 0.0)
{
return(0);
}
else
{

z_object = z numerator/z denominator;
x object = x * z_object;
y_object = y * z_object;

*x cordinate=x object;
*y_cordinate=y_object;
*z cordinate=z object;

/*
A certain arbitrary height 'MAX-Y' of the cone structure
is chosen to be used for the simulation.
*/

if(y_object < 0.0 II y_object > MAX
{

return(0);
}

63

else
{

return(1);
}
}

}

}

/*

FUNCTION TO RETURN THE VALUE OF THETA AND ROH (for given
x imageand y image.)

*/

int echo theta rho(x_cord, y_cord,
z cord,theta buf,rho buf)
double x cord, y_cord, z_cord;
double *theta buf, *rho buf;

{
double rho, theta;
double sin_phi, cos_phi, temp;
double temp_theta, temp_rho, echo_theta;
double tempzcord;

/* CALCULATIONS FOR ROH */

temp_z_cord = fabs(z_cord - 100.0); /* gives z_cord of
the object space */

temp = pow(x_cord, 2.0) + pow(y_cord, 2.0) +
pow(tempzcord, 2.0);
temp rho = sqrt(temp);

64

*rho buf = temp rho

/* CALCULATIONS FOR THETA */

sin_phi = sin(PHI);
temp_theta = (x_cord/(temp_rho*sin_phi));
if(temp_theta < -1.0 II temp_theta > 1.0)

{

take care of theta(&temptheta);
}

theta = M PI - asin(temp theta);
*theta buf = theta;

}

/*

Function to take care of the domain eror because of the
aurguments of arcsin() function, slightly above 1.0 or
below -1.0.

*

take care of theta(argarcsin)

double *argarcsin;

{
double temp;

temp = *arg_arcsin;
if (temp < -1.0)

temp = -1.0;
else

temp = 1.0;

65

*arg_arcsin = temp;
}

/* END */

66

/***

Plane.c starts here:

This is a part of the source code to simulate the plane
of the composite structure. Basically, it generates the
data required to reconstruct the planar surface.

**/

#define CONE 2
#define PLANE 1

#include <stdio.h>
#include <math.h>
#include "globe.par"

double A L, B L, C L, D L;

Function to check the criterion discriminate between
the surfaces of the cone and plane.

*/

int
echo flag_for_plane(x,y,x_coner y_cone,z_cone,xplane,y_
plane,z_plane)

double x, y;
double x cone;
double y_cone;
double z cone;
double *x plane;

67

double *y_plane;
double *z_plane;
{

int i,j;
double x coordinate,y_coordinate,z_coordinatelz_dash;
double radius, temp_d;
double plane;

/* Coefficients of the planar surface */

A L = (cos((double)(61.8*M PI/180.0)));
B L = (cos((double)(35.3*M PI/180.0)));
C L = (-sqrt(1.0-A L*A L - B L*B L));
D L = (-(B L*Y0 + C L*Z0));

/* Calculate the coordinates of the plane */

z coordinate = (double)(-D L/(A L*x+B L*y+C L));
y_coordinate=z_coordinate*y;
x coordinate=z coordinate*x;

z dash=z coordinate - 100.0;

*x_plane=x_coordinate;
*y_plane=y_coordinate;
*z_plane=z_coordinate;

/*--Criterion for discriminating between the surfaces-*/

if(A L*x cone + B L*y cone + C L*z cone + D L < 0)
return(CONE);

68

else if(K*K*xplane + y_plane*y_plane +
K*K*z_plane*z*plane < 0)

return(PLANE);

else
return(0);

}
}

/*

Function to calculate the quantities required for the
surface recovery of the planar surface.

*/

plane(x,y,fp)
double x;
double y;
FILE *fp;

{
int i, j, flag, count;
double gray 1,gray_r,gs,gx,gy,sz;
double sx1j,syl_.1,szl_1,A_L,B_L,C_L;
double
sxl r,syl r, szl r,A R, B R, C R, sx1 r 1,sy1 r 1,szl r 1;
double dfi,dd1,drl,d1,D_L,D_R,rz,ry,rc;

ddl=(double)(d);
dr1=(double)(r);

A_L = (cos((double)(61.8*M PI/180.0)));
B L = (cos((double)(35.3*MPI/180.0)));
C_L = (-sqrt(1.0-A L*A L - B_L*B_L));
D L = (-(B L*Y0 + C L*Z0));

/*

69

Coefficients corresponding to the representation of the
plane for the right camera.

*/

A R=A L*cos(phi)+C L*sin(phi);
B R=B L;
C R=-A L*sin (phi) +C L*cos(phi);

D R=D L+A L*a;

flag=2;

/*

Computation for the coordinates of the object space for
the left camera and the right camera.

*/

szl 1=(-D L) / (A L*x+B L*y+C L);
sx1 1=szl 1*x;
syll=szll*y;

szl r=(-D R) / (A R*x+B R*y+C R);
sx1 r=szl r*x;
sylr=szlr*y;

/* Transformation for brightness invariance */

sx1 r 1=cos(phi)*sx1 r-sin(phi)*szl r+a;
syl_r_l=syl_r;
szl r 1=sin(phi)*sx1 r+cos (phi) *szl r;

gray_l=mag*sin(kl*sx1_1)*sin(k1*syl_1)*sin(kl*szl_1);

70

gray_r=mag*sin(k1*sx1_r_1)*sin(k1*sy1_r_.1)*sin(kl*szl_r
1);

sz=szl 1;

/*----Calculate the partial derivitives, gx, gy, gs----*/

gx=mag*((kl*sz*sz*(BL*y+C_L)/
(C L*ddl))*cos(kl*sx1 1)*sin(kl*syl_1)*sin(kl*sz1 1)-
(kl*A_L*y*sz*sz/
(C L*ddl))*sin(kl*sx1 1)*cos(kl*sy1_1)*sin(kl*sz)-
(k1*A L*sz*sz/
(C L*dd1))*sin(k1*sx1 1) *sin (kl*sy1 1)*cos(kl*sz));

gy=mag*(-(kl*x*B L*sz*sz/
(C L*ddl))*cos(k1*sx1 1)*sin(kl*sy1_1)*sin(k1*szl 1) + (k
1*sz*sz* (A L*x+C L) /
(C L*ddl))*sin(kl*sx1 1)*cos(k1*syl1)*sin(k1*sz)-
(k1*B L*sz*sz/
(C L*ddl))*sin(k1*sx1 1)*sin(k1*sy1 1)*cos(kl*sz));

gs=grayr-gray1;

fprintf(fp,"%d %.16e %.16e %.16e %.16e %.16e %.16e
%.16e\n", flag, x, y, gray 1, gx, gy, gs, sz);

*/
return(1);

}

/*************************END*************************/

71

/**

Globe.par starts here:

This file is the data file for the global parameters used
for the program to generate, as well as to recover the
image of a conical surface.

**/

#define D 100.0
/* distance between the center

point and origin of the
coordinate system */

#define mag 1000.0
/* Magnification for grey level */

#define PHI 30.0*M PI/180.0
/* Corresponding phi=5 degree. */

#define BETA 0.001*M PI/180.0
/* Corresponding to .1 degree. */

#define K THETA 8.0
/* theta factor */

#define K RHO 8.0
/* rho factor */

#define N 128

#define K 3.732050808
/* slope of the edge y=sqrt(x**2 + z**2) */

#define MAX Y 5.0

#define Y0 MAX Y*(1.0/2.0)

72

#define Z0 100.0

#define phi 0.1*M PI/180.0
/* angle of image shift */

#define a phi*100.0

#define al 61.8*M PI/180.0

#define bl 35.3*M PI/180.0
/* vector of three planes */

#define d 100.0
/* depth of object */

#define r 2.0
/* width of object */

#define kl 8
/* freq of three plane gray */

#define k2 8

#define k3 8

#define k 1

/****************************END**********************/

73

/***

Reconst.c starts here:

As explained before, it is used for the reconstruction of
the cone surface . It also, calls the other modules like
'gauss.c' and 'param.c' to accomplish the reconstruction.

**/

#include "gauss.c"
#include "param"

1*
As explained before, the gauss.c implements the gauss's
formula for the matrix solution, where as `param`
contains the data for this purpose.
*1

main()
{

extern quation();
FILE *fp;
int i, j; ,
int count;
double coff[ORDER];
double m[ORDER][ORDER], d[ORDER], lamda[ORDER];
double m c[ORDER][ORDER], d c[ORDER];
double U, V, W, A, B, C;
double p, q, r;
double tempi, temp2;
int flag;
double x,y,gray,g_to_x,g_to_y,delta_g;
double x0, y0, z0, R;
double Z, Z0;
double minima, K;

U=100.0*SMALL;
V=0.0;

74

W=0.0;
A=0.0;
B=-SMALL;
C=0.0;
minima=0.0;
K=10000.0;

for(i=0; i<ORDER; i++) {
for (j=0; j<ORDER; j++) {

m[i] [j] = 0.0;
}

}

for(i=0; i<ORDER; i++) d[i]=0.0;

/*
The reconstruction program starts here:

First, the output file, written by the simulation program
is read and then the values of the variables manipulated
to recostruct the composite structure surface.
*/

if((fp=fopen(CONE_OUT, "r")) == (FILE *)NULL) {
perror(CONE_OUT);

}
else {

for(i=0; i<100; i++)
fscanf(fp,"%d%1e%le%le%1061e%le%le",

&flag,
&x,&y,&gray,>o_x,>o_y,&delta_gr&Z);

count=1;
while (fscanf(fp,"%d%le%le%le%le%le%le%1e",

&flag,
&x,&y,&gray,>o_x,>o_y,&delta_g,&Z) 1= EOF &&

count< SIZE*SIZE-200)

/*
Only the pixels corresponding to the cone (flag = 1)
surface are scanned, the background is ignored (flag =

75

0).
*/

count=count+1;
if(flag == 1 || flag == 2) {

p=(-A*y+B*x)*(x*gto_x+y*g_to_y)-g_to_x*(-
B+C*y)

-gto_y*(-C*x+A)-delta_g;
q=x*W*gto_x+y*W*g_to_y-U*g_to_x-V*g_to_y;
minima=(q-100.0*p);

/*
Coefficients corresponding to the various terms of the
polynomial equation are computed here. Note that coff[0]
is the constant term (and not the coefficient of the the
term involving X*X*X). The rest of the terms are in
order.
*/

coff[0]=p*p*p;
coff[1]=q*y*q*y*q*y;
coff[2]=minima*minima*minima;
coff[3]=q*x*q*y*x*q;
coff[4]=q*x*x*q*minima; coff[5]=q*q*q*y*y*x;

coff[6]=q*q*y*y*minima;
coff[7]=q*x*minima*minima;
coff[8]=y*q*minima*minima;
coff[9]=q*x*q*y*minima;
coff[10]=q*q*p*x*x;
coff[11]=p*y*y*q*q;
coff[12]=p*minima*minima;
coff[13]=q*x*y*q*p;
coff[14]=q*x*p*minima;
coff [15] =q*y*p*minima;
coff[16]=q*x*p*p;
coff[17]=q*y*p*p;
coff[18]=p*p*minima;
for(i=0; i<ORDER; i++) {

d[i]=d[i]-coff[i]*q*q*q*x*x*x;

76

for(j=0; j<ORDER; j++) {
m[i][j]=m[i][j]+coff[i]*coff[j];

}
}

}
}

}

for(i=0; i<ORDER; i++) {
d c[i]=d[i];
for(j=0; j<ORDER; j++) {

m c[i][j]=m[i][j];
}

}

/*

Various results are printed here:

*/

for(i=0; i<ORDER; i++) {
for(j=0; j<ORDER; j++) {

printf(" %f* ", m[i] [j]);
}

printf("\n");
}

for (i=0; i<ORDER; i++) printf("d=%d %f\n", i, d[i]
);

/*
The function gauss() is called for the matrix solution as
explained before.
*/

gauss(ORDER, m, d, lamda);

for(i=0; i<ORDER; i++)

77

printf("coff[%d]: %f\n ",i, lamda[i]);
}

/******************End of reconst.c ***************/

78

/**

Gauss.c starts here:

This module is a part of the reconstruction program.
It implements the Gauss's formula to recover the
parameters of the the surface structure. It actually
implements Gauss's formula to solve the matrices.

It simply codes the mathematics involved in the formula,
which can be referred in the thesis or any good
mathematics book.

**/

#include "es.inc"

gauss(n, a, b, result)
int n;
double a[ORDER][ORDER], b[ORDER], result[ORDER];
{

double s[ORDER], m[ORDER][ORDER], sum;
int nrow[ORDER];
int i, j, p, ncopy, jj;

/*
The computation starts here:
*/

for(i=0; i<n; i++) {
s[i]=fabs(a[i] [0]);
for(j=1; j<n; j++) {

if(fabs(a[i] [j]) > s[i]) s[i]=fabs(a[i] [j]
);

}
if(s[i] == 0) {

printf(" no unique solution exists \n ");
exit(-1);

79

}
}

for (i=0; i<n; i++) nrow[i]=i;

for(i=0; i<n-1; i++) {

/* step 3 */
p=i;
for(j=i+1; j<n; j++) {

if(fabs(a[nrow[j]] [i]) / s[nrow[j]] >
fabs(a[nrow[p]] [i]) / s[nrow[p]])

10=j;
}

/* step 4 */
if(a[nrow[p]][i]==0) {

printf(" no unique solution exists \n ");
exit(-2);

}

/* step 5 */
if(nrow[i] != nrow[p]) {

ncopy=nrow[i];
nrow[i]=nrow[p];

,

nrow [p] =ncopy;
}

/* step 6 */
for (j=i+1; j<n; j++) {

m[nrow[j]][i]=a[nrow[j]][i]/a[nrow[i]][i];
for(jj=0; jj<n; jj++) {

a [nrow [j]] [jj]-
=m[nrow[j]] [i] *a [nrow [i]] [jj];

}
b[nrow[j]]-=m[nrow[j]][i]*b[nrow[i]];

}
}

if(a[nrow[n-1]][n-1] == 0) {

80

printf(" no unique solution exists \n ");
exit (-3);

}

result[n-1]=b[nrow[n-l]]/a[nrow[n-l]][n-1];

for(i=n-2; i>=0; i--) {
sum=0.0;
for(j=i+1; j<n; j++) {

sum=sum+a[nrow[i]][j]*result[j];
}
result[i]=(b[nrow[i]]-sum)/a[nrow[i]][i];

}
}

improvement(n, a, b, result)
int n;
double a[ORDER][ORDER], b[ORDER], result[ORDER];
{

double delta[ORDER];
double sum;
int i, j;

for (i=0; i<n; i++) {
sum=0.0;
for (j=0; j<n; j++) {

sum=sum+a[i][j]*result[j];
}
b[i]=sum-b[i];

}
gauss(n, a, b, delta);
for (i=0; i<n; i++) 1

result[i]-=delta[i];
}

}

/********************END OF GAuss.c*****************/

81

/**

This is a parameter file for the reconst.c to reconstruct

the surface.

**/

#include <math.h>
#include <stdio.h>

#define CONE OUT "CONE OUT"
#define SMALL 0.1*M PI/180.0
#define SIZE 128
#define ORDER 19

/
**************************END*************************/

82

APPENDIX D

(Stereo Images)

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstarct
	Title Page
	Approval Page
	Vita
	Acknowledegment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Background
	Chapter 3: Direct Stereo
	Chapter 4: Simulation
	Chapter 5: Conclusion
	Chapter 6: Bibliography
	Appendix A: Derivatives
	Appendix B: Flow Chart
	Appendix C: Source Code
	Appendix D: Stereo Images

	List of Figures
	List of Tables

