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ABSTRACT 

Title of Thesis: 3-D Structure Recovery 
Using Unified Optical Flow Field Approach. 

Anees Ahmad, Master of Science in Electrical Engineering, 1991 
Department of Electrical and Computer Engineering 

Thesis directed by: Dr. Yun Q. Shi 
Assistant Professor 
Department of Electrical and Computer Engineering 

Recovery of the 3-D structure that is characterized by an Nth  order fac-

torable and/or non-factorable polynomial equation is studied in this thesis. 

Analytical tools have been employed to analyze and solve the problem. The 

solution is based on the direct method, which is derived from the unified op-

tical flow field, which, in turn, is an extension of optical flow to spatial image 

sequences. Least squares formulation has been employed for optimum estima-

tion. The method used does not require the establishment of point to point 

correspondence, nor the estimation of the optical flow, as an intermediate step. 

The theoretical results are tested using some synthetic images of various 

structures including cone, parabola and the combination of a cone and a planar 

surface. Satisfactory results are obtained, thus demonstrating the validity of 

the newly developed technique for the recovery of a variety of surfaces [14]. 
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Chapter 1 

INTRODUCTION 

The concept of stereo vision has emerged as a powerful tool to capture the 

information about 3-D surface structure. The concept of stereopsis is based 

on essential differences between the images of stereo pair arising out of their 

different points of view, that is, the same point is viewed from two different 

locations and angle. It is one of the hot areas of research in the computer vision 

community and it is expected to find solutions to several problems in the area 

of machine intelligence and robotics. 

The main problem in 3-D surface recovery is to develop algorithms and data 

structures that extract information from 2-D images (that have gray level char-

acter) and manipulate the information to find out the depth. The depth or the 

distance between the object observed and the viewer along the optical axis is of 

significant importance in various applications of computer vision systems; for 

example, guidance systems and recognition systems etc. 

In the reconstruction of 3-D scene from a digital stereo pair of images, two 

problems must be solved: (a) Geometrical calculation of 3-D position of the 

scene point with respect to its stereo projection. (b) The second is rather more 
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complicated and concerns the problem of correspondence. The correspondence 

problem needs feature extraction and template matching, which have been found 

one of the challenging problems in the computer vision community. 

The reconstruction of 3-D surface is important, also because the extraction of 

the information about the surface structure is mainly responsible for the suc-

cess of further processing of the information. In this thesis the spatial domain 

domain has been adopted. It has several advantages. For example, it elimi-

nates several constraints imposed by the time-domain analysis, yet the results 

achieved match very well with any other technique for surface reconstruction. 

There are basically two different approaches to recovering the structure of ob-

ject(s) and the relative motion between object(s) and camera(s): the optical 

flow method and secondly the feature correspondence approach. 

The feature correspondence approach has the disadvantage that it requires some 

specific features in the image plane to be matched. The feature correspondence 

problem poses a big challenge in the computer vision world and only the partial 

solutions have been achieved [1]. On the other hand the optical flow method 

involves large amount of computation [8]. Another drawback of this technique 

is the fact that with one equation and two unknowns an extra constraint has to 

be imposed. Usually the smoothness constraint is utilized. This, however, may 

not be realistic in several cases leading to erroneous results. 

The newly developed direct method [2][7][9] [10] which does not require the com-

putational complexity of intermediate steps (feature detection, correspondence, 
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and optical flow computation), therefore is desirable. 

In the method used in this thesis, the concept of unified optical flow field (UOFF) 

has been exploited. The UOFF is an extension of the fundamental optical flow 

formulations by Horn and Schunck [8]. Two main aspects of the the UOFF are 

discussed in the [13]. First of them, is that the brightness function of an image, 

which is not only a function of time but also a function of the sensor's spatial 

position. The concept of imaging space is presented as an accurate description 

of the set of all possible brightness functions. Secondly, the brightness invari-

ance is recognized not only for the time variation but also for the (sensor's) 

space variation so that the brightness invariance equations for both time and 

space domains are established. 

The method used in this thesis is based on a new method [14] which is a direct 

method, based on the UOFF. The UOFF is discussed in more detail in the sec-

ond chapter. The third chapter discusses the direct method. The fourth chapter 

includes the experimental work on various structures. Several interesting results 

are also presented there. Finally, the conclusion of the whole work is drawn in 

the fifth chapter. 
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Chapter 2 

BACKGROUND 

This chapter introduces the concepts which provide the framework for the work 

done in this thesis. Also the mathematical results are presented to be used 

in the experiments. As already mentioned in the previous chapter, the direct 

method approach does not include the computation of the optical flow, rather it 

uses the spatiotemporal derivatives of the image intensity function to estimate 

the surface. 

2.1 Unified Optical Flow Field 

Optical flow may be defined as the apparent velocities of movement of bright-

ness patterns in an image, which in turn, is due to the relative motion of the 

viewer and the object [8]. However, the motion under consideration is in the 

time domain. As discussed in the previous chapter, UOFF is the extension of 

the temporal optical flow to spatial domain. All the mathematical formulations, 

which are parallel to temporal optical flow, are also defined [13]. 

In 3-D world space, a sensor as a solid article can be translated (which has three 

degrees of freedom) and rotated (which has two free dimensions). It is noted 
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that here the rotation of a sensor about its optical axis is not counted since 

the images thus generated will remain unchanged. So we can obtain a variety 

of images when a sensor is translated to different coordinates and rotated to 

different angles in 3-D world space. Equivalently, we can imagine that there 

are infinitely many sensors in 3-D world space which occupy all of possible 

spatial coordinates and assume all of possible orientations at each coordinate, 

i.e., they are located on all of possible positions. At one specific moment all of 

these images form a set of images, called a spatial sequence of images. When 

time varies these sets of images form a much bigger set of images. Clearly, it 

is impossible to describe such a set of images by using the g(x, y, t) discussed 

in [13]. Instead, it should be described by a more general brightness function 

g(x , y ,t, s), where s indicates the sensor's position in 3-D world space, i.e. the 

coordinates of the sensor center and the orientation of the optical axis of the 

sensor . As mentioned previously s is a 5-D vector [13]. That is 

where x, y and z represent the coordinates of the optical center of the sensor 

in 3-D world space; 0 and γ represent the orientation of the optical axis of the 

sensor in 3-D world space. 

In dealing with a "spatial" sequence of images, consider the various positions 

of cameras in space at a specific moment. One way to describe the camera 

movement in space is fixing the left camera and moving the right camera (see 

Figure 2.1). The movement of the right camera can be viewed as: the translation 

of the lens center OR  followed by the rotation of the optical axis ORZR. The 

two optical axes OZ and ORZ R  are assumed, for simplicity, to be coplanar. 
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Z 

Figure 2.1: Imaging geometry 
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The lens center OR can therefore only be translated on the OXZ plane. Hence 

any translation of the OR on the OXZ plane can be decomposed as the trans-

lation along the direction parallel to the OX axis and the translation along the 

direction parallel to the OZ axis. The rotation of the optical axis ORZR is about 

the 

ORZ R 

 axis. The displacements of the optical center OR along the OX and 

OZ directions are denoted by and z, respectively. The angle displacement of 

ORZ R  about ORZ R is marked by θ. However, the assumption made previously 

that the OR lies on the OX implies z = 0. Therefore z will not be considered 

under the assumption made. Define 

where x is a characteristic length chosen according to imaging setting. So, Ss 

is a measure of the variation of the right camera position with respect to the 

left camera position, i.e, the variation of the position of the right lens center 

OR  with respect to that of the left lens center 0 and the orientation of the 

right optical axis ORZR with respect to that of the left optical axis OZ. Let .s 

denote the camera position in space and its superscript denote which camera is 

considered. For instance, sL  is used to denote the left camera position, sR the 

right camera position, and we have 

So, when x = 0 and θ = 0 (hence δs = 0), the two cameras are at the same 

position in space, i.e., sL  = 5R. If the camera's moving path is specified on the 

plane, different values of x and 0 (hence different values of Ss ) determine 

the various values of s

R

, i.e, the various positions of the right camera in space. 

At a specific moment 11, if the optical radiation of a world point P is isotropical 
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we then get: 

where xp, yp is the coordinate for a world point P. This is the brightness space-

invariance equation. Applying the similar derivation to that used in [2] for 

determining the temporal optical flow, the following equation for the spatial 

optical flow is presented. 

Let us take a close look at each quantity in the above equation. In equation(2.3) 

the quantities with the superscript L are related to the left sensor. The g/s can 

be estimated from image data as follows: 

This is similar to the estimation of g and g in [8]. The us and vs are defined ax ay 

as follows. Let 

where (xR,yR ) and (xL,yL)  are projections of a same world point on the right 

and left images, respectively. Therefore, 6x and Sy are, respectively, the hori-

zontal and vertical coordinate differences of the image points, corresponding to 

the same world point in 3-D space, on the right and left image planes. 
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Hence, the afore-defined u3  and v3  are, respectively, the spatial variation rates 

of Sx and Sy with respect to Ss. These two quantities generated from the spatial 

sequence of images can be viewed as the counterpart of u L  and vL  (or uR  and 

vR) generated from the temporal sequence of images. 

It is seen that Equation (2.3) derived from the spatial sequence of images [13] is 

very similar, in format, to one derived from the temporal sequence of images by 

Horn and Schunck [8]. It can be seen that this equation will serve as the start 

point of our approach. 
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Chapter 3 

DIRECT STEREO 

As mentioned previously, the objective of the work done in this thesis is to 

recover surface structure that can be characterized by an Nth degree polynomial 

equation from a given pair of stereo images. This section presents the new 

approach, which has been used for the structure recovery. 

3.1 Surface Structure - Nth Degree Polyno- 
mial Equation 

In this thesis, we consider a surface that can be characterized by an Nth degree 

polynomial equation. That is 

where 0 < α(j) + /9(j) + γ(j) < N; K is the number of coefficients that are 

not identically vanishing in the Nth degree polynomial; j = 0,1, • • • ,K — 1 is 

an arbitrary but fixed index sequence by which all K coefficients are arranged 

in Eq. (3.1). Obviously, there are K — 1 independent coefficients among the 

total of K coefficients. Without loss of generality, we can choose a Cartesian 

coordinate system in 3-D space so that Eq. (3.1) can be rewritten as 
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3.2 Brightness Invariance Equation 

In Section 3.1, the concept of imaging space is introduced. At a specific moment, 

the various sensor's positions in 3-D space are considered. We assume that the 

left sensor is located at the origin of a Cartesian coordinate system in 3-D space 

(see figure 2.1). As discussed in the previous chapter, for a specific moment all 

of the images taken by various sensors in 3-D space form a spatial sequence of 

images. Hence, though an object does not move in 3-D space, it looks as if it 

would have experienced the certain movement from the various sensors' view. 

These pseudo-movements can be treated in a manner similar the treatment of 

the relative motion between the sensor and the rigid environment provided in 

Eq. (2.3). That is, we define 

where the superscript T represents transposition of the concerned vector, the 

subscript s indicates the s-domain. The various position of sensors in 3-D space 

with respect to the origin can be considered as sensors after experiencing various 

movement with respect to the origin. This type of movement is characterized 

by 

where Ts  is the translational component and Ws  the rotational component, the 
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superscript T and the subscript s are the same as defined above. We then have 

In Figure 2.1 the coordinates in image plane are denoted by x and y. 

When the focal length of a lens equals 1, Eq. (3.11-3.12) can be derived under 

consideration of perspective projection. 

From the definitions of u8  and v3, i.e., Eq. (2.6-2.7), and the relations in Eq. 

(3.8-3.12), one can derive the next two equations. 

Let us rewrite the brightness invariance equation for a spatial sequence of im-

ages. 
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Or, 

where, we have the following definition. 

Substituting (3.13-3.14) into (3.15) one can obtain 

It is noted that As, Bs, Cs, Us, Vs, Ws  can be determined once the relative po-

sition of the two sensors in stereo imagery is known. gx,gy, and g3  can be 

determined from the given image data [2]. In Eq. (3.19) x and y are coordi-

nates on image plane. Instead of explicitly solving l/z, we apply Q = p/q to  the 

performance function in a minimization formulated below. 

3.3 A Least Squares Formulation 

Using Eq. (3.10-3.11), one can derive the following equations from Eq. (3.2), 

Or 
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where I is a region on the image plane associated with the concerned surface 

in 3-D space. The task here is to find a set of coefficients λ(j) so that the 

performance function J is minimized. 

It is well known that the following linear equations are necessary conditions for 

minimization of the J function. 
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In this set of linear equations, all of coefficients of the Nth degree polynomial, 

i.e., λ(1), • • • , λ(K — 1) are unknown. The all of entries in the matrix, i.e., M1,3  

and the all of entries in the vector, i.e., Di  can be computed from the given 

stereo image data and the known imaging setting. The unknown coefficients 

λ(1), • • • , λ(K — 1) can thus be solved. In other words, one can recover the 

surface structure: both the shape of the surface and the position of the surface 

in 3-D space because the polynomial equation characterizing the surface has 

been completely determined. 
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Chapter 4 

SIMULATION 

This chapter describes the experimental work done to solve the problem of 3 -D 

surface recovery. The work is primarily based on the theoretical results presented 

in the previous chapters. The tests were performed on various surfaces and 

favorable results were achieved showing the generality of the proposed algorithm. 

The surface structures used for the experimentation include a cone, a parabola, 

a planar surface and the combination of the cone and planar surfaces (i.e., a 

surface characterized by a 3rd degree factorable polynomial equation). However, 

only the cone, the plane and the combination of the plane and the cone will be 

discussed in this chapter. 

4.1 Cone 

The cone used for the simulation is characterized by the following mathematical 

representation (see Fig. 4.1 and Fig. 4.2), 
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Fig. 4.1 Stereo image setting 
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where K is defined as: 

and Ø  is the angle as shown in the Fig. 4.2. 

The typical value of Ø used in the simulation is 15°. Therefore, the equation of 

the cone may be rewritten as: 

Or 

Since, the cone represented by the equation given above, is of infinite size, we 

select an arbitrary height of the cone for simulation purposes. The typical values 

of the height of the cone, used in the simulation are 2.0 and 5.0. 

4.1.1 Imaging geometry 

The center of the cone lies on OZ axis and its base is located at (0, 0, D) with 

respect to the reference Cartesian coordinate system as shown in the Fig. 4.1. 

The distance between the center of the lens and the center of the cone is denoted 

by D. However, the distance has to be large enough to satisfy the far field 

assumptions, which is generally the case in practice. The optical axis of the left 

lens is aligned along the OZ axis. The Cartesian coordinate system of the right 

camera is achieved by rotating the left camera by an angle b  in the clockwise 
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Fig. 4.2. Cone used in the simulation 
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direction about O'Y' axis (Fig. 4.2), when we are looking towards the origin 

from positive Y'-axis direction. 

4.1.2 Simulation data generation 

Rewriting the equation of the cone under consideration, 

It may be noted that the gray level assignment is done in the spherical coordinate 

system, which has been found more suitable for this purpose. We can write the 

coordinate system conversion formula as folows: 

We divide the image plane into 128 x 128 pixels. We see that for each point 

on the image plane there is a corresponding point in the 3-D space. However, 

only a subset of those points correspond to the points on the cone. Rest of the 

points constitute the background, which is assigned an arbitrary but fixed gray 

level. 

We apply the concepts of perspective projection to find the relation between the 

points on the image plane and the points in the 3-D space. 
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We know that a specific point on the image plane and the coordinates of its 

corresponding point in 3-D space, satisfy Eqs. (3.10-3.11) which are rewritten 

below. 

where the value of f (the focal length of the camera) has been assumed to be 

equal to 1, for simplicity in computation. It, however, maintains the generality 

of the problem under consideration. 

Substitution of X and Y from Eqs. (4.8 — 4.9) into the equation of the cone, 

Eq. (4.1), yields one equation with one unknown. Hence, the value of Z can be 

determined, which is given by, 

where only the real solution is allowed due to the obvious physical meaning, i.e., 

Also, while solving the quadratic equation, we select the solution with the neg-

ative sign preceding the square root, because it gives the correct value of Z, i.e., 

smaller of the two values of Z is selected. Thus, we actually choose the surface 

of the cone which is facing the camera. Using Eqs. (4.8 — 4.9), the values of X 

and Y may be found out. 
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Similarly, the value of 0 may be determined by the following formula: 

where 0 is the angle between the projection of the point on the cone onto the 

X'O'Z' plane and the positive O'Z' axis (Fig. 4.2). The angle Ø is constant here. 

The brightness function used is as follows: 

where gL is the gray level assigned to the point (x" ,yL) with the superscript L 

indicating the left image plane, and 0 is the same as defined above. The values 

of the parameters (K1  and K2) used are: 

Also, the point (xL ,yL) is the perspective projection of (X, Y, Z) in 3-D space 

onto the left image plane, obtained by the perspective projection of the point 

(X, Y, Z) in the 3-D space. The resulting image of the cone is included in Ap-

pendix D. 

So far, we have discussed the generation of the image, which has arbitrarily 

been chosen as left image by the choice of the coordinated system. To simu-

late another image (right), we use the following procedure. Since, the surface 

structure of the cone is symmetrical with respect to Y'-axis, which is also the 
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axis of rotation of the optical axis of the right camera, the geometrical shape of 

the cone as viewed from the right camera remains same. This is also verified by 

the use of the rotation transformation matrix. However, care has to be taken 

for the change in the brightness pattern. Instead of moving the camera to the 

new position, we can rotate the object (cone) by the same angle, b, but in the 

opposite direction. This can be achieved by adding an angle —ψ to the angle 0, 

where θ  and Ø are defined as shown in Fig. 4.2. This maintains the brightness 

invariance constraint. The gray level function for the right camera in terms of 

the coordinates of the already defined Cartesian coordinate system is, 

A more generalized way of handling this issue is considered in the case of the 

non-symmetrical surface structure, to be discussed in the next section. 

Once the gray level assignment is done, the values of the spatial derivatives, i.e., 

gx  and gy  are calculated using the formula given in Appendix A. The value of 

g3  is calculated, using Eq. (3.18). 

4.1.3 Surface estimation 

Since any Nth order surface structure may be represented by a general equation 

as follows: 

where 0 < α(j) + β (j)+ γ(j) < N; K is the number of coefficients that are not 

identically vanishing in the Nth degree polynomial; j = 0, 1, • • • , K — 1 is an 
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arbitrary but fixed index sequence by which all K coefficients are arranged. 

Obviously, there are K — 1 independent coefficients among the total of K coef-

ficients. 

For the case of second order polynomial, the above equation can be, possibly, 

expanded as follows: 

It is noted that for the computational purposes, we have shifted the coordinate 

system as see in Fig. 4.1. i.e., Z' = Z — Z is used. The main reason for doing 

so is to avoid the computational error arising due to the numerical differences 

between the values of Z and other variables. This issue is discussed in greater 

detail, later in this section. 

Eq. (4.16) may be written as follows by using Eqs. (4.8 — 4.9). 

It is, generally, simpler to normalize with respect to the constant term, but in 

our case, the constant term is missing from the equation of the cone, Eq. (4.1), 

and hence some other term has to be chosen. Here we choose the term )'(0)X'2  

for normalization, thus converting Eq. (4.17) to the following equation. 
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Replacing 1/z by Q according to Eq. (3.19), we get, 

Hence, the performance function J, discussed in Section 3.3, in this experiment 

becomes, 

where 
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A set of necessary conditions for the minimization becomes 

This is equivalent to 

with i = 1,2,...,9. 

In matrix format, these necessary conditions become 

In implementing the above computation, one thing needs to be emphasized. 

That is, the depth Z is very large compared with the other quantities involved, 

causing numerical and computational problem. In order to deal with this prob-

lem, Z = Z + Z is used where Z can be viewed as sort of "steady" or average 

component while 2 "fluctuation" component component in Z. The average 

value of Z might be used as Z. In other words, we can percieve of another 

coordinate system (0" — X"Y"Z"), originated at (0, 0, Z) and with the axes 

0"X", 0"Y", 0"Z" parallel to the axes OX, OY, OZ, respectively. In the 

simulation Z is taken as the calculated average value of Z, from the experi-

ment, which equals 99.720230 (Ø = 15.0º). By doing this, the values of X", Y" 

and Z", thus obtained are numerically comparable. The estimated coefficients 

λ(j), j = 1, • • • , 8, returned from the program are as follows. 

λ(1): 0.078168 
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It is noted that these returned coefficinets are with respect to 0"-X"Y"Z" 

system. The parameter ψ in the experiment is 0.05° and the Z = 99.720230. 

Noticing that Z = Z -I- 2, one obtains the recovered surface equation approxi-

mately as follows. 

The expected coefficients and the recovered coefficients of the cone are listed in 

Table 4.1 (see Section 4.4). 

Compared with the assumed cone described in the beginning of this section, 

i.e., a cone of height 5 and the angle with the Y — axis equal to 15° and the 

distance between its center and the origin of the Cartesian system being D (al-

ready defined as 100), the percentage of error is less than 0.1, thus, it is obvious 

that satisfactory results have been achieved. 

4.2 Plane 

The plane used in the structure can be described as: 
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where A, B, C and D are the coefficients in the equation. 

The imaging geometry, used for the simulation of the plane surface is the same 

as described in the previous section (Fig. 4.1 ). 

4.2.1 Simulation data generation 

In Eq. (4.26): 

where, the values of the coefficients are as follows: 

Substituting the perspective projection Eqs. (4.8-4.9) into the equation of the 

plane i.e., Eq. (4.26), we can solve for Z, 

where, x and y represent the coordinates on the image plane. 

After determining Z, we now determine the values of X and Y. 

The brightness function used for the planar surface is as follows: 

where the values of the parameters used, are as follows: 

As described in the case of cone, the point (xL, yL) is obtained by the perspec-

tive projection of a point (X, Y, Z) in 3-D space onto the left image plane. 
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The data generated, so far, applies to the left image. To generate the image as 

viewed by the right camera, we first, translate the camera and then rotate it 

clockwise, when viewed from the positive Y'-axis towards the origin by an angle 

0. The same effect may be generated by keeping the camera position as that 

of the left camera and rotating the object (cone) by negative ψ, which is found 

more convenient for simulation purposes. This is the same as discussed in the 

previous section. 

The coefficients of the surface of the plane as viewed by the right camera. By 

the rotation and the translation transformation, we may write, 

Substituting the values of X, Y and Z from the above equations into Eq. (4.26), 

we have 

where, the A, B, C and D are the coefficients of the plane described before, i.e., 

the plane corresponding to the 3-D Cartesian coordinate system associated with 

the left camera image; AR, BR, CR  and DR  are the corresponding coefficients of 

the plane as seen by the right camera. The same set of Eqs. (4.8-4.9, 4.28) may 
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be used for the right image. However, to satisfy the brightness invariance con-

straint, one condition has to be established, i.e., for any pixel on the right image 

plane, there is a corresponding point in the 3-D space, whose brightness value 

must be same as the point, when viewed by the left camera (Section 3.2). For 

this we use the transformations given by Eqs. (4.30-4.32). Thus the brightness 

invariance condition is satisfied. 

The reconstruction of the plane is discussed in detail, in the section on composite 

surface. A table is also included in the last section to analyze the performance 

for the reconstruction of the plane. 

4.3 Composite Surface 

This section discusses the simulation and reconstruction of a curved surface that 

is characterized by a 3rd degree polynomial equation, in which the polynomial 

can be factored into a 2nd degree polynomial (cone) and a lst degree polynomial 

(plane). The procedure to implement is 'essentially the same as discussed in 

the previous section. Complexity is, however, increased due to obvious reasons. 

Special care is taken in the decision of assignment of any image point to the 

corresponding surface in the 3-D space. This section also focuses on the criterion 

used to discriminate the surfaces. 

4.3.1 Composite surface data generation 

The composite surface simulated is obtained by superimposing the plane Eq. 

(4.26) over the cone Eq. (4.1). It is characterized by, 
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Refer to the pair of images in Appendix 6.4 for the composite surface structure 

under consideration. 

One of the major issues in the simulation of the composite structure has been 

the establishment of the valid criterion to discriminate the points corresponding 

to the respective surfaces. The criterion used for this purpose is as follows. A 

particular point on the image plane is the perspective projection of some points 

on the cone surface if 

where A, B, C and D are the coefficients of the planar surface under consider-

ation, Xcone , Ycone  and Zcone  are the coordinates of the corresponding point on 

the cone surface in the 3D space. 

If this test fails, we test if this image point is the projection of some points 

on the planar surface. The criterion used for this purpose is expressed in the 

following inequality. 

where Xplane l  Yplane and Zpiane are the coordinates of the corresponding point 

on the planar surface and K is the same as defined by the Eqs. (4.2). If this 

condition is satisfied, the point corresponds to the planar surface. If both the 

criteria fail, it corresponds to the background, and the predefined gray level 

for the background is assigned to this point on the image plane. This issue is 

explained with the help of a flow chart in Appendix B. 

Once the decision regarding the surface is made, the next step is to assign the 
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gray level to the image plane point. The gray level functions used here are the 

same as mentioned previously by Eqs. (4.13) and (4.29), respectively. This 

completes the formation of the left image. The right image formation involves 

the rotation of the structure by —ψ to simulate the rotation of the camera 

position, as discussed in the previous sections. Also, the same procedure is 

followed to compute derivatives gx,gy  and g8, as already described. However, 

the set of gray functions used has to be in correspondence with the surface 

identified. 

4.3.2 Reconstruction of the composite structure 

The method used to recover the surface parameters of the composite structure is 

essentially the same as discussed in the previous sections. The set of equations 

used for the recovery is however depicted in the following. 

Let us rewrite the Eq. (3.1) to represent an Nth order surface structure as 

follows: 

where 0 < α(j) + β(j) + γ( j) < N; K is the number of coefficients that are 

not identically vanishing in the Nth degree polynomial; j = 0, 1, • • • , K —1 is 

an arbitrary but fixed index sequence by which all K coefficients are arranged 

in. Obviously, there are K —1 independent coefficients among the total of K 

coefficients. 

For the case of a third degree polynomial, the above equation can be written as 

follows: 
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The correspondence between the monomials and the coefficients may be seen in 

Tables 4.6 and 4.7. The reason for rearranging the equation arises due to the 

consideration that the normalization is conducted with respect to A(10), i.e. the 

coefficient of X2  instead of the constant term for the same reason as discussed 

previously. 

The index sequence in which all of coefficients are arranged is not unique. Re-

placing 1/z by Q according to eq. (3.16) and normalizing with respect to the 

coefficient of X2  term, one then has the same expression as we had in the pre-

vious cases. 

Hence, the performance function J in this experiment becomes 

A set of necessary conditions for the minimization becomes 
... 

This is equivalent to 

with j = 0, 1, ... , 19. 

In matrix format, these necessary conditions become 
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Having, found the relation between the unknown coefficients and the known 

matrices, we get a linear relationship, which can be individually solved for the 

value of )(i). 

4.4 Discussion and Results 

This section discusses some aspects of the work done based on the results ob-

tained from the simulation and experimentation. 

Although, the cone and the composite structure have been discussed , the sim-

ulation was performed on other surfaces, too; e.g., Parabla. 

The percentage of error shows the precision of the method to reconstruct the 

surface structures. However, the accuracy is expected to decrease for real im-

ages. 

Coeff. Terms Calc. val. Exp. Val. 
λ(0) const. 0.000000 -0.000328 
λ(1) X2  -0.071796 -0.071835 
λ(2) Y2  1.00000 0.999335 
λ(3) Z2  0.00000 -0.000282 
λ(4) XY 0.000000 0.000603 
λ(5) X Z 0.000000 -0.000325 
λ(6) YZ 0.000000 0.000127 
λ(7) X 0.000000 0.000128 
λ(8) Y 0.000000 -0.00642 
λ(9) Z 0.000000 0.000000 

Table 4.1: Cone (0 = 15.0°,ψ = 0.05°) 

The results are observed to improve with decrease in the angle 0. Similarly, the 

results of the same degree of accuracy are obtained when the same procedure is 

repeated for 0 = 30°, as shown Table 4.5. 

Similarly, for the plane, we have the following table. 
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Coeff. Terms Calc. val. Exp. Val. 
λ (0) coast. 0.000000 -0.0047 
λ(1) X2  -0.071969 -0.071945 
λ(2) Y2  1.00000 0.998412 
λ(3) Z2  0.00000 0.000000 
λ(4) XY 0.000000 -0.000000 
λ(5) XZ 0.000000 -0.001932 
λ(6) YZ 0.000000 -0.000000 
λ(7) X 0.000000 -0.000642 
λ(8) Y 0.000000 -0.00642 
λ(9) Z 0.000000 0.00000 

Table 4.2: Cone (Ø = 15.0°,ψ = 0.1°) 

Similarly, we have the accuracy of the same order in the case of the composite 

surface as can be seen later in this section. 

35 



Coeff. Terms Calc. val. Exp. Val. 
λ(0) X2  1.00000 1.0000000 
A(1)  y2  -0.071797 0.0717969 
A(2)  Z2  1.0000 1.000000 
A(3)  

λ(5) 
λ(6) 

XY 0.00000 0.000000 
A(4)  XZ 0.00000 0.000005 
λ(5) YZ 0.00000 0.000000 
λ(6) X 0.00000 0.000000 
λ(7) Y 0.00000 0.000000 
λ(8) Z 0.00000 0.000000 
λ(9) Const. 0.000000 0.0003 

Table 4.3: Cone (Ø = 15.0°, ψ  = 0.01°) 

The combination of the cone and plane, which are included in the table. Another 

set of values for the composite surface has been included for reference. The value 

of ψ is 0.01°. 

Based upon the results tabulated so far, certain conclusions are drawn, which 

are discussed in the next section. 

4.4.1 Parameter selection  

A series of experiments were carried out with different sets of parameters to 

extract the optimum solution. 

The parameters used in the gray level function for the planar surface as well 

as the cone are found to effect the results, with variation in their values. The 

reason why the integer values of the constants K1, K2, K3, Kθ, Ky  are chosen, 

is the fact that the fractional values may cause discontinuity at the boundaries, 

which will result in abrupt changes at certain points. Moreover, the choice of 

the values which are too high will cause the gray level to change too rapidly, 
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Coeff. Terms Calc. val. Exp. Val. 
λ(0) X2  1.00000 1.00000 
λ(1) Y2  -0.333333 -0.333333 
λ(2) Z2  1.000000 1.000000 
λ(3) XY 0.00000 0.000000 
λ(4) XZ 0.00000 0.000001 
λ(5) YZ 0.00000 0.000007 
λ(6) X 0.00000 0.000000 
λ(7) Y 0.00000 0.000003 
λ(8) Z 0.00000 0.000000 
λ(9) Const. 0.000000 0.0003 

Table 4.4: Cone (Ø = 30.0°,ψ = 0.01°) 

Coeff. Terms Calc. val. Exp. Val. 
λ(0) X2  -0.23160310 -0.231576 
A(1)  Y2  0.40016 0.399925 
A(2)  Z2  0.163001 0.153793 
A(3)  Const. 1.000000 1.00000 

Table 4.5: Plane (ψ =0.05°) 

while low values will make the change in the gray level too slow. 

The parameters used with the gray level function for the plane as well as with 

the cone, are found to give best results when they are selected to be equal to 8. 

However, this is not a very sensitive parameter. 

Another parameter is the angle ψ, which is the angle between the coordinates 

of the left camera and the right camera. The values chosen for this parameter 

range from 0.001° to 0.5°. However, at larger angles, the experimental values 

seem to deviate from the calculated values. 
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Coeff. Terms Calc. val. Exp. Val. 
λ(0) X3  -0.2316031 -.236937 
λ(1) Y3  0.133372 0.133672 
λ(2) Z3  0.163001 0.153766 
λ(3) X2Y -0.400116 -0.400179 
λ(4) X 2 Z 0.163001 0.149600 
λ(5) XY2  0.077201 0.076848 
λ(6) ZY2  -0.054339 -0.49362 
λ(7) XZ 2  -0.231603 -0.230135 
λ(8) YZ2  -0.400 -0.40022 
λ(9) XYZ 0.00000 -0.008818 
λ(10) X2  1.0000 1.00000 
λ(11) Y2  -0.33333 -0.33345 
λ(12) Z2  1.00000 0.997984 
λ(13) XY 0.00000 0.000323 
λ(14) XZ 0.00000 0.000433 
λ(15) YZ 0.00000 0.000443 
λ(16) X 0.00000 0.000117 
λ(17) Y 0.00000 0.000563 
λ(18) Z 0.00000 0.000971 
λ(19) Const. 0.000000 0.0003 

Table 4.6: Composite Surface (Ø = 15.0°) 
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Coeff. Terms Calc. val. Exp. Val. 
λ(0) X3  -0.2316031 -.230490 
λ(1) Y3  0.133372 0.133676 
λ(2) Z3  0.163001 0.153698 
λ(3) X2 Y -0.400116 -0.400193 
λ(4) X 2 Z 0.163001 0.149470 
λ(5) XY2  0.077201 0.076865 
λ(6) ZY2  -0.054339 -0.049380 
λ(7) XZ2  -0.231603 -0.230060 
λ(8) YZ2  -0.400 -0.400196 
λ(9) XYZ 0.00000 -0.00196 

λ(10) X2  1.0000 1.000000 
λ(11) Y2  -0.33333 -0.334514 
λ(12) Z2  1.00000 0.997949 
λ(13) XY 0.00000 0.000302 
λ(14) XZ 0.00000 0.000571 
λ(15) YZ 0.00000 0.004356 
λ(16) X 0.00000 0. 000110 
λ(17) Y 0.00000 0.000560 
λ(18) Z 0.00000 0.000947 
λ(19) Const. 0.000000  0.000072 

Table 4.7: Composite Surface (Ø = 30.0°) 
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Chapter 5 

CONCLUSION 

The work done takes us another step towards proving the capabilities of the 

direct method for recovering the 3-D surface structures represented by polyno-

mials of different order and characteristics . Two contributions of the thesis 

work are are summarized as follows: 

(a) Infinite-size surfaces: 

The proposed direct method may be applied to the recover the structures of 

any order and size as proved by the simulation results (Chapter 4), which is big 

progress over the previous work. 

(b) Factorable surfaces: 

Another very interesting result is the capability of the technique to the solution 

of the surface structures that are represented by factorable polynomials. 

Besides, we also make the following observations. 

• In UOFF, the brightness invariance has been extended to spatial domain. 
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• The method is extended to the solution of the problems involving high 

order polynomials. The proofs are already provided for the first, second 

and third order surfaces. 

• The setting of the imaging system has great influence upon the final re-

sults. Generally, the setting should be such so as to be compatible with 

the far-field assumption. 

As mentioned previously, the research work is based on the unified optical flow 

field (DOFF) and the direct method approach is used to extract the informa-

tion from the stereo images. Least square formulation has been used for the 

minimization of the error. 

Spatial domain analysis may be preferable in several cases over the time domain 

analysis due to several reasons. One of them being its processing in parallel. 

In addition to this, spatial domain methods may be used along with the time 

domain technique to improve the efficiency of any algorithm. This is due to the 

fact that more information is available. 

The direct method approach can be used to recover the 3-D surface structure of 

higher order polynomials (continuous as well as factorable) with certain margin 

of error, which is ignorable, in general. It is observed that the percentage of 

error is, however, proportional to the number of factorable surfaces. 

It is expected that the new approach can play a vital role in solving the prob-

lems of motion analysis. Favorable results have been obtained in this regard 
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too. Although, the experiments were performed on the simulated images, the 

success of the simulation results indicates that comparable degree of success 

may be achieved in case of real images. 

It is also hoped that the proposed approach may be applied in real-time appli-

cations because of its less computational complexity and simplicity as compared 

to other prevalent methods. An analysis of the method for its application on 

real images is under investigation. 
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Chapter 6 
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APPENDICES 



APPENDIX A 

(Derivatives) 



7.1 Appendix A -Spatial Derivatives 

This section of the Appendix includes the first-order spatial derivatives. 

gx, gy and g3. 

We have the gray function as follows: 

Calculate g/x  Note that in the following calculations several temporary variables x  

have been used which have been substituted in the final result to yield the 

desired results. 

Let us define 

Therefore, 
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So, 

Plane 

The spatial derivatives for the plane are as follows: 

Similaraly, 

51 



APPENDIX B 

(Flowchart) 



Test # 1: If ApXc  + BpYc  +Cp  Zc  +Dp  < 0 

Test # 2: If K2Xp + Yp2 + K2 Zp2 < 0.  

Ap, Bp, Cp  and Dp  are the coefficients of the PLANE. 

Xp, Y p, Zp  are the coordinates of the PLANE. 

Xc, Ye, and Zc  are the coordinates of the CONE. 

CRITERION FOR SURFACE DISTINCTION. 
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APPENDIX C 

(Source Code) 



/**************************************************** 

The implementation of the work, as described has been 
accomplished with the help of two sets of programs. 

1. Simulation programs. 
2. Reconstruction programs. 

As explained earlier, the simulation has been performed 
on various structures including cone and the composite 
structure (which is the combination of the cone and the 
planar surfaces). 

This appendix, however, contains the source code for the 
composite surface only. Different modules constituting 
the software for the structure are explained one by one 
and the necessary documentation has been included. 

CONE: 

The source code to implement the generation and 
reconstruction of the cone surface consists of several 
modules, which are discussed in the following. 

Generation: 
The generation ( or the simulation ) of 

the cone is accomplished with the help of two modules: 

1. cone.c 
2. plane.c 
3. globe.par 

As evident from the names used, the first module (cone.c) 
is the program to simulate the cone structure ( both for 
the left and the right camera ). Similarly the plane.c 
simulates the takes care of the pixels associated with 
the plane of the composite surface. The other file ( 
globe_par ) contains the global parameters used by the 
con.c program. Since, these parameters may be quite 
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different under different circumstances, the globe_par 
file makes changes easy to make. 

RECONSTRUCTION: 

The reconstruction of the cone surface is performed using 
the following modules: 

1. Reconst.c 
2. Param.c 
3. Gauss.c 

Again, here the naming convention used is self-
explanatory. That is, the first module ( reconst_cone.c 
) is the main program to recover the structure of the 
surface. The second file ( param_cone ) contains the 
parameters to be adjusted, while the third file (gauss.c 
) simply implements the Gauss's formula. This program is 
called from the reconst_cone.c program when the Gauss's 
formula has to be used for the matrix solution for the 
linear equations. 

Besides, further comments and documentation is provided 
in the respective modules. 

******************************************************* 

Module # 1: Cone.c (Simulation of the cone surface) 

#include <stdio.h> 
#include <math.h> 
#include "globe.par" 
#include "thesis pln.c" 

FILE *fp; 

main() 
{ 
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/* Variables to be used in the program */ 

int i,j; 
int flag; 
double x,y; 
double rho, theta, sin_rho, cos_theta; 
double temp_, temp_j, grey; 
double x obj, y_obj, z_obj; 
double z den,tmp,tmp2,tmp2,tmpth,z_dash; 

/* 
Variables to be used for the partial derivatives. A 
little consideration reveals the partial derivative, each 
variable refers to. 
*/ 

double gto_r,g_to_theta,gto_x,g_to_y,delta_g,gto_yo; 
double r to xo,r to yo,r to z dash; 
double z dash to x,xo to x,yo to x; 
double th to x obj,th_to_y_obj,th to z dash; 
double xo to y,yo_to_y,z_dash_to_y; 
double s; 
double gr_pl_l,gr_pl_r; 

double x_pin,y_pin,z_pln; 
int flag_1; 
double theta p; 

flag=0; 
flag 1=0; 

fp=fopen("CONEOUT", "w"); 

/* 
Scanning across x-axis and y-axis starts here. '1' 
corresponds to the x-axis and 'j' corresponds to the y- 
axis. 
*/ 
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for (j=0; j<N; j++) 
{ 
for(i=0;i<N;i++) 

{ 
temp_i=(double)(i); 
temp_j=(double)(j); 

/* 
Calculations of the points on the image plane. The real 
numbers used are to select the window to be taken for 
observation. 
*/ 

x= -.04 + (.08 * (temp_i/N)); 
y= .05 - (.08 * (temp_j/N)); 

flag= echo_flag(x,y, &x_obj, &y_obj, &z_obj); 
/* 
If any pixel belongs to the image of the surface of the 
cone, the value of the flag returned is non-zero. 
*/ 

if (flag != 0) 

/* 
Function to compute the rho and the angle theta (with the 
y-axiz) givent the various coordinates of the point. 
*/ 

{ 

flag_1=echo_flag_forplane(x,y,x_obj,y_obj,z_obj,&xpin 
,&y_pln,&zpln); 

if(flag_1 ==1) 
{ 
echo_theta_rho(x_obj, y_obj, z obj, 

&theta, &rho); 
sin rho = sin(y_obj*K_RHO); 
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cos theta = cos (K THETA * (theta)); 

grey = fabs(mag * sin rho * cos theta); 

/* CALCULATIONS FOR DERIVATIVES W.R.T. X-AXIS */ 

✓ to_xo=x_obj/rho; 
✓ to_yo=y_obj/rho; 
✓ to_z_dash=(z_obj - D)/rho; 

tmp=sqrt(y*y-K*K*x*x); 
tmp2=(y*y-x*x*K*K-K*K); 
z_dash_to_x= x*K*K*K*D*((-2.0*K+2.0*tmp-(tmp2/ 

tmp))/(tmp2*tmp2)); 
xo to x=x*z dash_ to x + z obj; 

yo_to_x=y*z_dash_to_x; 

g to theta=(- 
mag*sin THETA*sin(theta*K_THETA)); 

tmp_t-171=sqrt(rho*rho*sin(PHI)*sin(PHI)- 
x_obj*x_obj)*rho*rho; 

th_to_x_obj=(-(rho*rho-x_obj*x_obj)/tmp_th); 
th_to_y_obj=((x_obj*y_obj)/tmp_th); 
th_to_z_dash=((x_obj*(z_obj-D))/tmp_th); 

g_to_yo=mag*(cos(y_obj*KRHO)*KRHO*cos_theta + 
sin rho* 

(-sin(theta*K_THETA)*K_THETA*th to y obj)); 

g_to x=(g_to yo*yo_to_x + 
g_to_theta*(h_to_x obj* 

xo + th_to_y_obj*yo_to_x + 
th to z dash*z dash to x)); 

/*------ CALCULATIONS FOR DERIVATIVES W.R.T Y-AXIS */ 

z dash to y=D*K*y*((tmpl/tmp + 2.0*K - 2.0*tmp)/ 
(tmp2*tmp1)); 
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xo to y= x*z dash to y; 
yotoy= y*z dash to y + z_obj; 

g_to_y=(g_to_yo*yo_to_y + 
g_to theta*(th_to_x_obj* 

xo to _y + th_to_y_obj*yo_ to_y + 
th_to z dash*z dash to y)); 

/*  

CALCULATION FOR DERIVATIVE W.R.T. THE PARAMETER S. 

*/ 

s=sqrt(x_obj*x_obj + y_obj*y_obj + (z_obj-
D)*(z obj-D)); 

delta g=fabs(mag*sin_rho*cos(K_THETA*(theta-
BETA)))-grey; 

/* 
Different paramers are printed in the output file to be 
read by the file to reconstruct the structure. 
*/ 

fprintf(fp, "%d %.16e %.16e %.16e %.16e %.16e 
%.16e %.16e\n", 

flag_1,x,y,grey,g_to_x,g_to_y,delta_g,$); 

} 

else 

if(f2ag_1==2) 
{ 
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z dash = zpin - Z0; 

plane(x,y,fp); 

} 
else 

{ 
fprintf(fp, "%d %.16e %.16e %.16e %.16e %.16e %.16e 

%.16e\n", 
flag1,x,y,0.0, 0.0, 0.0, 0.0, 0.0); 

} 
} 

else 

{ 
fprintf(fp, "%d %.16e %.16e %.16e %.16e %.16e %.16e 
%.16e\n", 

flag1,x,y,0.0, 0.0, 0.0, 0.0, 0.0); 

} 
} 

} 
} 

/****************************************************** 

The function, echo flag() passes the values of the 
coordinates of x and y (image plane), and it returns the 
value of the flag, which determines if a certain point on 
the image plane corresponds to the valid point on the 
object space (flag=1) or not (flag=0). 

**************************************************/ 

int echo flag(x,y, x cordinate, y cordinate, 
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z cordinate) 

double x,y; 
double *x cordinate; 
double *y_cordinate; 
double *z cordinate; 
{ 
double rho, theta; 
double x object, y_object, z_object; 
double temp, z_temp; 
double tempi, temp2_sq, temp2, temp2_sq; 
double z_numerator_pos, z_numerator_neg, z_numerator, 
z denominator; 

/*  

CALCULATIONS FOR FINDING THE Z COORDINTE, FOLLOWED BY 
X, Y, THETA AND RHO. 

*/ 

tempi = y * K * D; 
temp2_sq = pow(temp2, 2.0); 

temp2 = pow(K,2.0); 
temp2_sq = pow(temp2 * x * D, 2.0); 
temp= templ_sq - temp2_sq; 

if (temp < 0.0) 
{ 
return(0); 

/* 
'0' is returned, whenever the pixel belongs to the 
background. 
*/ 

} 
else 

{ 

z_temp = sqrt(temp); 
z_numerator_pos = D * temp2 + z_temp; 
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z numerator neg = D * temp2 - z temp; 

if(z_numerator_neg > 0.0 && z_numerator_neg <= 
z numerator_pos) 
{ 
z numerator = z numerator neg; 
} 
else 
{ 
z numerator = z numerator_pos; 
} 

z denominator = temp2 - pow(y,2.0) + pow((K*x),2.0); 

if(z_denominator == 0.0) 
{ 
return(0); 
} 
else 
{ 

z_object = z numerator/z denominator; 
x object = x * z_object; 
y_object = y * z_object; 

*x cordinate=x object; 
*y_cordinate=y_object; 
*z cordinate=z object; 

/* 
A certain arbitrary height 'MAX-Y' of the cone structure 
is chosen to be used for the simulation. 
*/ 

if(y_object < 0.0 II y_object > MAX  
{ 

return(0); 
} 
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else 
{ 

return(1); 
} 
} 

} 

} 

/*  

FUNCTION TO RETURN THE VALUE OF THETA AND ROH (for given 
x imageand y image.) 

*/ 

int echo theta rho(x_cord, y_cord, 
z cord,theta buf,rho buf) 
double x cord, y_cord, z_cord; 
double *theta buf, *rho buf; 

{ 
double rho, theta; 
double sin_phi, cos_phi, temp; 
double temp_theta, temp_rho, echo_theta; 
double tempzcord; 

/* CALCULATIONS FOR ROH */ 

temp_z_cord = fabs(z_cord - 100.0); /* gives z_cord of 
the object space */ 

temp = pow(x_cord, 2.0) + pow(y_cord, 2.0) + 
pow(tempzcord, 2.0); 
temp rho = sqrt(temp); 
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*rho buf = temp rho 

/* CALCULATIONS FOR THETA */ 

sin_phi = sin(PHI); 
temp_theta = (x_cord/(temp_rho*sin_phi)); 
if(temp_theta < -1.0 II temp_theta > 1.0) 

{ 

take care of theta(&temptheta); 
} 

theta = M PI - asin(temp theta); 
*theta buf = theta; 

} 

/*  

Function to take care of the domain eror because of the 
aurguments of arcsin() function, slightly above 1.0 or 
below -1.0. 

* 

take care of theta(argarcsin) 

double *argarcsin; 

{ 
double temp; 

temp = *arg_arcsin; 
if (temp < -1.0) 

temp = -1.0; 
else 

temp = 1.0; 
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*arg_arcsin = temp; 
} 

/* END */ 
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/***************************************************** 

Plane.c starts here: 

This is a part of the source code to simulate the plane 
of the composite structure. Basically, it generates the 
data required to reconstruct the planar surface. 

****************************************************/ 

#define CONE 2 
#define PLANE 1 

#include <stdio.h> 
#include <math.h> 
#include "globe.par" 

double A L, B L, C L, D L; 

Function to check the criterion discriminate between 
the surfaces of the cone and plane. 

*/ 

int 
echo flag_for_plane(x,y,x_coner y_cone,z_cone,xplane,y_ 
plane,z_plane) 

double x, y; 
double x cone; 
double y_cone; 
double z cone; 
double *x plane; 
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double *y_plane; 
double *z_plane; 
{ 

int i,j; 
double x coordinate,y_coordinate,z_coordinatelz_dash; 
double radius, temp_d; 
double plane; 

/* Coefficients of the planar surface */ 

A L = (cos((double)(61.8*M PI/180.0))); 
B L = (cos((double)(35.3*M PI/180.0))); 
C L = (-sqrt(1.0-A L*A L - B L*B L)); 
D L = (-(B L*Y0 + C L*Z0)); 

/* Calculate the coordinates of the plane */ 

z coordinate = (double)(-D L/(A L*x+B L*y+C L)); 
y_coordinate=z_coordinate*y; 
x coordinate=z coordinate*x; 

z dash=z coordinate - 100.0; 

*x_plane=x_coordinate; 
*y_plane=y_coordinate; 
*z_plane=z_coordinate; 

/*--Criterion for discriminating between the surfaces-*/ 

if(A L*x cone + B L*y cone + C L*z cone + D L < 0) 
return(CONE); 
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else if(K*K*xplane + y_plane*y_plane + 
K*K*z_plane*z*plane < 0) 

return(PLANE); 

else 
return(0); 

} 
} 

/*  

Function to calculate the quantities required for the 
surface recovery of the planar surface. 

*/ 

plane(x,y,fp) 
double x; 
double y; 
FILE *fp; 

{ 
int i, j, flag, count; 
double gray 1,gray_r,gs,gx,gy,sz; 
double sx1j,syl_.1,szl_1,A_L,B_L,C_L; 
double 
sxl r,syl r, szl r,A R, B R, C R, sx1 r 1,sy1 r 1,szl r 1; 
double dfi,dd1,drl,d1,D_L,D_R,rz,ry,rc; 

ddl=(double)(d); 
dr1=(double)(r); 

A_L = (cos((double)(61.8*M PI/180.0))); 
B L = (cos((double)(35.3*MPI/180.0))); 
C_L = (-sqrt(1.0-A L*A L - B_L*B_L)); 
D L = (-(B L*Y0 + C L*Z0)); 

/* 
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Coefficients corresponding to the representation of the 
plane for the right camera. 

*/ 

A R=A L*cos(phi)+C L*sin(phi); 
B R=B L; 
C R=-A L*sin (phi) +C L*cos(phi); 

D R=D L+A L*a; 

flag=2; 

/*  

Computation for the coordinates of the object space for 
the left camera and the right camera. 

*/ 

szl 1=(-D L) / (A L*x+B L*y+C L); 
sx1 1=szl 1*x; 
syll=szll*y; 

szl r=(-D R) / (A R*x+B R*y+C R); 
sx1 r=szl r*x; 
sylr=szlr*y; 

/* Transformation for brightness invariance */ 

sx1 r 1=cos(phi)*sx1 r-sin(phi)*szl r+a; 
syl_r_l=syl_r; 
szl r 1=sin(phi)*sx1 r+cos (phi) *szl r; 

gray_l=mag*sin(kl*sx1_1)*sin(k1*syl_1)*sin(kl*szl_1); 
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gray_r=mag*sin(k1*sx1_r_1)*sin(k1*sy1_r_.1)*sin(kl*szl_r 
1); 

sz=szl 1; 

/*----Calculate the partial derivitives, gx, gy, gs----*/ 

gx=mag*((kl*sz*sz*(BL*y+C_L)/ 
(C L*ddl))*cos(kl*sx1 1)*sin(kl*syl_1)*sin(kl*sz1 1)- 
(kl*A_L*y*sz*sz/ 
(C L*ddl))*sin(kl*sx1 1)*cos(kl*sy1_1)*sin(kl*sz)- 
(k1*A L*sz*sz/ 
(C L*dd1))*sin(k1*sx1 1) *sin (kl*sy1 1)*cos(kl*sz)); 

gy=mag*(-(kl*x*B L*sz*sz/ 
(C L*ddl))*cos(k1*sx1 1)*sin(kl*sy1_1)*sin(k1*szl 1) + (k 
1*sz*sz* (A L*x+C L) / 
(C L*ddl))*sin(kl*sx1 1)*cos(k1*syl1)*sin(k1*sz)- 
(k1*B L*sz*sz/ 
(C L*ddl))*sin(k1*sx1 1)*sin(k1*sy1 1)*cos(kl*sz)); 

gs=grayr-gray1; 

fprintf(fp,"%d %.16e %.16e %.16e %.16e %.16e %.16e 
%.16e\n", flag, x, y, gray 1, gx, gy, gs, sz); 

*/ 
return(1); 

} 

/*************************END*************************/ 

71 



/****************************************************** 

Globe.par starts here: 

This file is the data file for the global parameters used 
for the program to generate, as well as to recover the 
image of a conical surface. 

******************************************************/ 

#define D 100.0 
/* distance between the center 

point and origin of the 
coordinate system */ 

#define mag 1000.0 
/* Magnification for grey level */ 

#define PHI 30.0*M PI/180.0 
/* Corresponding phi=5 degree. */ 

#define BETA 0.001*M PI/180.0 
/* Corresponding to .1 degree. */ 

#define K THETA 8.0 
/* theta factor */ 

#define K RHO 8.0 
/* rho factor */ 

#define N 128 

#define K 3.732050808 
/* slope of the edge y=sqrt(x**2 + z**2) */ 

#define MAX Y 5.0 

#define Y0 MAX Y*(1.0/2.0) 
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#define Z0 100.0 

#define phi 0.1*M PI/180.0 
/* angle of image shift */ 

#define a phi*100.0 

#define al 61.8*M PI/180.0 

#define bl 35.3*M PI/180.0 
/* vector of three planes */ 

#define d 100.0 
/* depth of object */ 

#define r 2.0 
/* width of object */ 

#define kl 8 
/* freq of three plane gray */ 

#define k2 8 

#define k3 8 

#define k 1 

/****************************END**********************/ 
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/***************************************************** 

Reconst.c starts here: 

As explained before, it is used for the reconstruction of 
the cone surface . It also, calls the other modules like 
'gauss.c' and 'param.c' to accomplish the reconstruction. 

**************************************************/ 

#include "gauss.c" 
#include "param" 

1* 
As explained before, the gauss.c implements the gauss's 
formula for the matrix solution, where as `param` 
contains the data for this purpose. 
*1 

main() 
{ 

extern quation(); 
FILE *fp; 
int i, j; ,  
int count; 
double coff[ORDER]; 
double m[ORDER][ORDER], d[ORDER], lamda[ORDER]; 
double m c[ORDER][ORDER], d c[ORDER]; 
double U, V, W, A, B, C; 
double p, q, r; 
double tempi, temp2; 
int flag; 
double x,y,gray,g_to_x,g_to_y,delta_g; 
double x0, y0, z0, R; 
double Z, Z0; 
double minima, K; 

U=100.0*SMALL; 
V=0.0; 
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W=0.0; 
A=0.0; 
B=-SMALL; 
C=0.0; 
minima=0.0; 
K=10000.0; 

for( i=0; i<ORDER; i++ ) { 
for ( j=0; j<ORDER; j++ ) { 

m[i] [j] = 0.0; 
} 

} 

for( i=0; i<ORDER; i++ ) d[i]=0.0; 

/* 
The reconstruction program starts here: 

First, the output file, written by the simulation program 
is read and then the values of the variables manipulated 
to recostruct the composite structure surface. 
*/ 

if( (fp=fopen( CONE_OUT, "r" )) == (FILE *)NULL ) { 
perror( CONE_OUT ); 

} 
else { 

for( i=0; i<100; i++ ) 
fscanf(fp,"%d%1e%le%le%1061e%le%le", 

&flag, 
&x,&y,&gray,&gto_x,&gto_y,&delta_gr&Z); 

count=1; 
while ( fscanf(fp,"%d%le%le%le%le%le%le%1e", 

&flag, 
&x,&y,&gray,&gto_x,&gto_y,&delta_g,&Z) 1= EOF && 

count< SIZE*SIZE-200 ) 

/* 
Only the pixels corresponding to the cone (flag = 1) 
surface are scanned, the background is ignored (flag = 
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0). 
*/ 

count=count+1; 
if( flag == 1 || flag == 2) { 

p=(-A*y+B*x)*(x*gto_x+y*g_to_y)-g_to_x*(- 
B+C*y) 

-gto_y*(-C*x+A)-delta_g; 
q=x*W*gto_x+y*W*g_to_y-U*g_to_x-V*g_to_y; 
minima=(q-100.0*p); 

/*  
Coefficients corresponding to the various terms of the 
polynomial equation are computed here. Note that coff[0] 
is the constant term (and not the coefficient of the the 
term involving X*X*X ). The rest of the terms are in 
order. 
*/ 

coff[0]=p*p*p; 
coff[1]=q*y*q*y*q*y; 
coff[2]=minima*minima*minima; 
coff[3]=q*x*q*y*x*q; 
coff[4]=q*x*x*q*minima; coff[5]=q*q*q*y*y*x; 

coff[6]=q*q*y*y*minima; 
coff[7]=q*x*minima*minima; 
coff[8]=y*q*minima*minima; 
coff[9]=q*x*q*y*minima; 
coff[10]=q*q*p*x*x; 
coff[11]=p*y*y*q*q; 
coff[12]=p*minima*minima; 
coff[13]=q*x*y*q*p; 
coff[14]=q*x*p*minima; 
coff [15] =q*y*p*minima; 
coff[16]=q*x*p*p; 
coff[17]=q*y*p*p; 
coff[18]=p*p*minima; 
for( i=0; i<ORDER; i++ ) { 

d[i]=d[i]-coff[i]*q*q*q*x*x*x; 
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for( j=0; j<ORDER; j++ ) { 
m[i][j]=m[i][j]+coff[i]*coff[j]; 

} 
} 

} 
} 

} 

for( i=0; i<ORDER; i++ ) { 
d c[i]=d[i]; 
for( j=0; j<ORDER; j++ ) { 

m c[i][j]=m[i][j]; 
} 

} 

/*  

Various results are printed here: 

*/ 

for( i=0; i<ORDER; i++ ) { 
for( j=0; j<ORDER; j++ ) { 

printf( " %f* ", m[i] [j] ); 
} 

printf( "\n" ); 
} 

for ( i=0; i<ORDER; i++ ) printf( "d=%d %f\n", i, d[i] 
); 

/* 
The function gauss() is called for the matrix solution as 
explained before. 
*/ 

gauss( ORDER, m, d, lamda ); 

for( i=0; i<ORDER; i++ ) 
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printf("coff[%d]: %f\n ",i, lamda[i] ); 
} 

/******************End of reconst.c ***************/ 
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/****************************************************** 

Gauss.c starts here: 

This module is a part of the reconstruction program. 
It implements the Gauss's formula to recover the 
parameters of the the surface structure. It actually 
implements Gauss's formula to solve the matrices. 

It simply codes the mathematics involved in the formula, 
which can be referred in the thesis or any good 
mathematics book. 

******************************************************/ 

#include "es.inc" 

gauss( n, a, b, result ) 
int n; 
double a[ORDER][ORDER], b[ORDER], result[ORDER]; 
{ 

double s[ORDER], m[ORDER][ORDER], sum; 
int nrow[ORDER]; 
int i, j, p, ncopy, jj; 

/* 
The computation starts here: 
*/ 

for( i=0; i<n; i++ ) { 
s[i]=fabs( a[i] [0] ); 
for( j=1; j<n; j++ ) { 

if( fabs( a[i] [j] ) > s[i] ) s[i]=fabs( a[i] [j] 
); 

} 
if( s[i] == 0 ) { 

printf( " no unique solution exists \n " ); 
exit( -1 ); 
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} 
} 

for ( i=0; i<n; i++ ) nrow[i]=i; 

for( i=0; i<n-1; i++ ) { 

/* step 3 */ 
p=i; 
for( j=i+1; j<n; j++ ) { 

if( fabs( a[nrow[j]] [i] ) / s[ nrow[j] ] > 
fabs( a[nrow[p]] [i] ) / s[ nrow[p] ] ) 

10=j; 
} 

/* step 4 */ 
if( a[nrow[p]][i]==0 ) { 

printf( " no unique solution exists \n " ); 
exit( -2 ); 

} 

/* step 5 */ 
if( nrow[i] != nrow[p] ) { 

ncopy=nrow[i]; 
nrow[i]=nrow[p]; 

, 

nrow [p] =ncopy; 
} 

/* step 6 */ 
for ( j=i+1; j<n; j++ ) { 

m[nrow[j]][i]=a[nrow[j]][i]/a[nrow[i]][i]; 
for( jj=0; jj<n; jj++ ) { 

a [nrow [ j ] ] [jj]- 
=m[nrow[j]] [i] *a [nrow [i ] ] [jj]; 

} 
b[nrow[j]]-=m[nrow[j]][i]*b[nrow[i]]; 

} 
} 

if( a[nrow[n-1]][n-1] == 0 ) { 
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printf( " no unique solution exists \n " ); 
exit ( -3 ); 

} 

result[n-1]=b[nrow[n-l]]/a[nrow[n-l]][n-1]; 

for( i=n-2; i>=0; i-- ) { 
sum=0.0; 
for( j=i+1; j<n; j++ ) { 

sum=sum+a[nrow[i]][j]*result[j]; 
} 
result[i]=( b[nrow[i]]-sum )/a[nrow[i]][i]; 

} 
} 

improvement( n, a, b, result ) 
int n; 
double a[ORDER][ORDER], b[ORDER], result[ORDER]; 
{ 

double delta[ORDER]; 
double sum; 
int i,  j; 

for ( i=0; i<n; i++ ) { 
sum=0.0; 
for ( j=0; j<n; j++ ) { 

sum=sum+a[i][j]*result[j]; 
} 
b[i]=sum-b[i]; 

} 
gauss( n, a, b, delta ); 
for ( i=0; i<n; i++ ) 1 

result[i]-=delta[i]; 
} 

} 

/********************END OF GAuss.c*****************/ 
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/****************************************************** 

This is a parameter file for the reconst.c to reconstruct 

the surface. 

******************************************************/ 

#include <math.h> 
#include <stdio.h> 

#define CONE OUT "CONE OUT" 
#define SMALL 0.1*M PI/180.0 
#define SIZE 128 
#define ORDER 19 

/ 
**************************END*************************/ 
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APPENDIX D 

(Stereo Images) 
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