
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT 

Title of Thesis: Coexistence of Three Pure and Simple Competitors 

in Four Interconnected Bioreactors 

Ming Wu, Master of Science in Chemical Engineering, 1990 

Thesis directed by: Dr. Basil C. Baltzis 

It is known that a homogeneous environment having invariant inputs cannot allow 

for steady state coexistence of any number of pure and simple competitors. However, 

it has been proven that two pure and simple competitors can coexist at a steady state 

in two interconnected chemostats, if the conditions are such that they allow a differ-

ent species to grow faster in each one of the two vessels. It has been also shown that 

three pure and simple competitors cannot coexist in three interconnected chemostats, 

even if the conditions are such that a different population could grow faster (have the 

competitive advantage) in each chemostat. The present study investigates theoreti-

cally whether the spatial heterogeneities created by four interconnected chemostats 

may lead to coexistence of three pure and simple competitors. Computer simulations 

indicate that there is the domain of coexistence of three species (XYZ) between do-

mains of coexistence of two species. If the XYZ domain is between an XY and a 

YZ region, species Y grows faster than X and Z in two out of the four chemostats, 

for parameter values leading to XYZ coexistence. It is then concluded that spatial 

heterogeneities can lead to steady state coexistence of three pure and simple com-

petitors. It is also concluded that N pure and simple competitors cannot coexist in 

N interconnected reactors; hut one could speculate that if there are N competitors, 



in order for them to coexist in an environment, this environment must be comprised 

of two subenvironments each one of which, should be able to maintain N-1 species. 

In configurations of chemostats then, it seems that one needs 2N-1  vessels. This is a 

necessary but not sufficient condition. The results for the three species system, are 

presented in two-dimensional operating diagrams and the effect of parameters on the 

behavior of the system, is studied to a certain extent. 
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Chapter 1 

INTRODUCTION 

It is well known that microorganisms are agents that cause disease and spoil food. 

They also perform many functions that are beneficial to man. In nature, they are im-

portant geochemical agents which were involved in the formation of coal, oil, and some 

mineral deposits. In fact, the biosphere could not function without microorganisms, 

and the higher organisms, man included, could not exist as we know them. Today, 

microoganisms play a more and more important part in many industrial operations. 

It has been found that the activities of microorganisms have successful applications in 

quite a number of areas [9]. In biochemical engineering, they can be used to increase 

the value of raw materials. In sanitary or environmental engineering, they can be 

used to decompose sewage, solid, and industrial wastes. They can be also employed 

in ore and fuel processing in order to leach certain harmful or useful elements from 

their ore or remove pollutant-generating substances from fuel. Moreover, men might 

eventually employ microbial activities for bioconversion of solar energy. 

Microbial populations must have chemicals and available energy in order to grow 

and proliferate. The chemicals provide them with elements (e.g., carbon, oxygen, 

nitrogen, sulfur, phosphorus) from which biological molecules are formed. Available 

energy is needed to synthesize these molecules and to maintain life. These common 

needs cause competition, which takes place in all but the simplest ecosystems. 
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Microoganisms can be divided into osmotrophic and phagotrophic organisms. Os-

motrophic organisms (e.g., bacteria, yeasts, molds, and microalgae) obtain chemi-

cals by molecule-by-molecule or ion-by-ion transfer of the chemicals across their cell 

membranes, while phagotrophic organisms (e.g., many protozoan populations) obtain 

chemicals by ingesting and digesting particulate matter and then absorbing the prod-

ucts of digestion. Evidently, phagotrophic microorganisms are more likely to prey 

on osmotrophic microorganisms than to compete with them. However, populations 

of phagotrophic microorganisms are likely to compete with one another for resources 

of particulate matter, and populations of osmotrophic microorganisms are likely to 

compete for resources of chemicals. In designing a bioprocess then, one can apply 

the classical chemical reactor theories, but at the same time, microbial interactions 

have to be taken into account, if a mixed culture is involved. Mixed cultures which 

are composed of different types of microbial species can be used in certain industrial 

operations, notably, in wastewater treatment and the fermentation industry. Using 

mixed cultures in waste treatment seems necessary, since: (1) it is impossible that 

a single species can function over a wide range of environmental conditions; (2) it 

is non-economical to maintain a pure culture in an operation which involves large 

volumes. Some potential advantages for using mixed cultures in fermentations have 

been discussed by Fredrickson [7]. It should be also added that, what is characterized 

as a pure culture, may actually be a mixed one, due to mutations of the original 

strain. 

It is well known that microbial populations inhabiting a common environment 

interact between one another in a number of different ways. Microbial interactions 

have been classified into: direct and indirect, positive and negative. 

Additional important differences between organisms appear in the way they sat-

isfy their needs for specific elements. The element most often considered is carbon. 
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Heterotrophic microorganisms which use organic compounds phagotrophically or os-

motrophically in order to obtain carbon, will not interact (as far as carbon is con-

cerned) with autotrophic microorganisms, which use carbon dioxide as their carbon 

source. But interactions between heterotrophs and autotrophs will arise, if they use 

common sources such as nitrogen, phosphorus, and so on. Microbial competition is 

an interaction which arises in all but the simplest ecosystems since it is the result of 

the common needs of microbial species for chemicals and available energy. According 

to Baltzis [2], of all microbial interactions, competition is the one which has been 

studied the most. But competition will not necessariy arise if two microorganisms 

use a common nutrient source. For example, two heterotrophic microorganisms which 

use a certain organic compound as a carbon and/or energy source, will not compete 

for it if this compound is present in abundance. 

A rigorous definition of competion as well as a classification of its patterns has been 

given by Fredrickson and Stephanopoulos [8]. Two microbial populations compete for 

a resource ρ  if and only if: (1) both populations use, but do not necessarily require ρ, 

and (2) resource ρ  has a dynamical effect on at least one of the populations. Resource ρ 

 has a dynamical effect on a population if its availability (concentration), at any time, 

has a significant effect on the net growth rate of the population. 

In pure and simple competition which is the subject of the present thesis, there is 

only one nutrient competed for, and competition for this nutrient is the only interac-

tion between the populations. 

There are various patterns of microbial competition, and a classification of them, 

has been given by Baltzis [2]. 

The chemostat is a biological reactor. This is a well-stirred vessel which is continu-

ously supplied by nutrient medium S. The culture volume in the vessel is kept constant 

by overflow of culture. Evidently, a steady state in which growth and reproduction 
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of a population are exactly balanced by washout and other loss processes, is possible 

in the chemostat. Use of the chemostat is called continuous culture technique. 

The topic of this thesis deals with the dynamics of pure and simple competition 

of three populations. It is known from the literature, that two or three microbial 

populations competing purely and simply for a common substrate in a single vessel 

which is spatially homogeneous, cannot-under any conditions-coexist in a steady state. 

However, Kung [17] has shown that two pure and simple competitors can coexist in 

configurations of two interconnected chemostats. On the other hand, Chang [5] has 

proven that it is impossible for three pure and simple competitors to coexist in three 

interconnected chemostats. The main question raised here, is whether or not three 

pure and simple competitors may coexist in configurations of four interconnected 

chemostats. This situation is the subject of the present study. 
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Chapter 2 

LITERATURE REVIEW 

The dynamics of a chemostat in which two populations of microorganisms grow com-

peting for the same limiting nutrient has been examined by several researchers over 

the past years. The nonexistence of the coexistence steady state in a single vessel, has 

been amply demostrated by experiments. In fact, the notion that populations which 

simply compete for the same resource cannot coexist indefinitely in a habitat is some-

times stated as a basic ecological "law" called Cause's principle or the competitive 

exclusion principle [Hardin (12)]. 

A classic analysis of pure and simple competition in a chemostat with constant 

inputs was made by Powell [20]. He was interested in the ability of this apparatus to 

select one population over several initially present, and the basis of its selective power. 

The questions that his analysis answered were: Can the chemostat be operated with 

constant inputs so that two pure and simple competitors coexist? If the chemostat is 

operated in such a way that one competitor is excluded, what is it that determines 

which population is excluded? The aforementioned questions have been addressed 

experimentally or theoretically by many other researchers. 

Jannasch [15] studied competition between Escherichia coli and a marine Spirillum 

sp. in a chemostat fed with lactate-supplemented seawater. He found that the density 

of E. coli declined toward zero if the dilution rate was low, whereas the density of 
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Spirillum sp. declined if the dilution rate was high. 

Meers [19] performed experiments with a mixed culture of Bacillus subtilis var. 

niger and Torula utilis under magnesium-limiting conditions in a chemostat. His 

experiments show that Bacillus subtilis replaced the yeast at the higher dilution rate, 

but the reverse was true at the lower dilution rate. Coexistence was not found. 

Harder and Veldkamp [11] investigated competition for lactate by two species of 

marine psychrophilic bacteria in a situation where the chemostat dilution rate and 

temperature were varied. At —2°C population O, an obligate psychrophile, excluded 

population F, a facultative psychrophile, at all dilution rates, and at 16°C population 

F excluded population O at all dilution rates. At 4°C and 10°C, however, the outcome 

of competition was dependent on the dilution rate; population O was excluded at low 

dilution rates and population F at high rates. These results, predicted in part from 

data on pure cultures, are important because they show whether or not a certain level 

of an externally imposed parameter confers a competitive advantage on a population, 

and if this advantage depends on the levels of the other parameters imposed. 

Hansen and Hubbell [10] grew bacteria under tryptophan-limited conditions in a 

chemostat. Their conclusions are that coexsitence is impossible and that outcomes of 

competition can be predicted from pure culture data. Jost et al. [16] studied compe-

tition between Escherichia coli and Azotobacter vinelandii for glucose. They showed 

experimentally that the E. coli always won if only the two bacterial populations were 

present in a chemostat. 

After considering the competition between two species, Powell [20] concluded that 

there are no operating conditions which lead to steady state coexistence and that 

the winner is determined by the ratio of the maximum specific growth-rate and the 

saturation constants of two species. The aforementioned two parameters appear in 

the Monod model, which Powell used to describe the specific growth-rate of the two 
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populations. Using Monod's model, Hsu et al. [13] studied in a mathematically 

rigorous fashion the situation where n species compete for a single resource in a 

chemostat. They showed that under given conditions of operation no more than 

one population can survive in a steady state. Fredrickson and Stephanopoulos [8] 

in an excellent review paper concluded: (1) if the specific growth-rate curves of two 

populations do not cross each other at any positive value of the concentration of 

the substrate competed for, Powell's conclusion stands as stated above. (2) if the 

specific growth-rate curves cross each other, the winner is determined by the operating 

conditions (e.g., the concentration of a limiting nutrient and dilution rate). There is 

a unique value of dilution rate at which steady state coexistence of two populations 

is predicted, if the specific growth rate curves cross each other. In practice, however, 

a physical parameter such as a chemostat dilution rate, will always exhibit random 

variations with time, and the variations may even be biased. Stephanopoulos et al. 

[23] modeled the random fluctuations in the dilution rate as white noise and showed 

that one competitor will be excluded from the chemostat if the intensity of the noise 

in dilution rate and the bias of mean of dilution rate are not both zero. Moreover, 

they showed that there is a finite probability that either population may be excluded. 

If the intensity of the noise and the magnitude of the bias are both small, then the 

drift toward exclusion of a population will be slow, but it will always occur. In fact, 

the aforementioned results have been extended to any number of pure and simple 

competitors. 

From the discussion above and without proper caution, one could generalize and 

claim that pure and simple competitors cannot coexist. In 1961, however, Hutchinson 

[14] first challenged the "competitive exclusion principle" and pointed out that the 

"principle" cannot be a general ecological law. He examined planktonic algae which 

require essentially the same nutrients from a commonly held resource pool. Classical 
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ecological competition theory predicted that, under idealized conditions, the species 

best able to acquire and use the limiting resource should displace all other competi-

tors. If this prediction were correct, lakes and oceans should contain few species 

of algae. But marine and fresh water usually contain more than 30 species of phy-

toplankton in apparent competitive coexistence within any small amount of water. 

Hutchinson termed this discrepancy between nature and theoretical prediction the 

"paradox of the plankton". Many theories have been proposed to explain this. One 

class of explanations emphasizes that the spatial complexity and temporal variability 

of nature are a violation of the idealized conditions assumed in classic theory. A 

second class, stresses the possibility that differing mortality rates, from differential 

grazing and settling, may minimize interspecific competition. Another theory hypoth-

esizes that, even under idealized conditions, coexistence should be possible if species 

differ in their ability to acquire and utilize a resource. 

Aris and Humphrey [1] studied the case in which the resource competed for has 

negative (inhibitory or toxic) effect on the growth of the competitors, especially when 

its concentration is high; in this situation, coexistence occurs only for discrete values 

of the chemostat dilution rate, and thus again it cannot be practically realized. 

Stephanopoulos et al. [24] analyzed a periodically forced chemostat and examined 

the possibility of coexistence of two pure and simple competitors. They found that 

coexistence is in fact possible, in the form of sustained oscillations. Nonetheless, 

the exit of the unit will carry high substrate concentrations for part of the cycle, 

something totally undesirable especially in situations in which the substrate is a 

toxic or hazardous substance which is to undergo biodegradation in the process unit. 

Stephanopoulos and Fredrickson [22] showed that if two pure and simple competitors 

compete for the same resource in two interconnected chemostats, both of which are 

externally fed with sterile medium, steady state coexistence (in both vessels) may 
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occur provided that the specific growth rate curves of the two competitors have a 

crossing-point. 

Jost et al. [16] showed experimentally that the competition of Escherichia coli and 

Azotobacter vinelandii for glucose (in which the E. coli always won if only the two 

bacterial populations were present) ended in coexistence when the ciliate Tetrahy-

mena pyriforms, which preys upon both kinds of bacteria, was present. Baltzis and 

Fredrickson [4] proved that coexistence limit cycles (sustained oscillations) do not 

occur in non-predator-prey systems. But, after studying a food chain involving two 

pure and simple competitors, competing for a substrate produced in a chemostat by 

the growth of a host population, they found that the two competitors as well as the 

host can coexist in a limit cycle under some operating conditions. The difference 

between the food-chain and non-food-chain systems is not due to the presence of a 

third population, since such a presence does not change the competition pattern but 

rather, it is the character of the substrate competed for. 

Baltzis and Fredrickson [3] studied theoretically the case where two microbial 

populations compete for a single resource in a chemostat but one of them exhibits 

attachment to the walls. They used the Topiwala-Hamer model and a model which 

assumes that the attachment of microbial cells to the solid surfaces is a reversible 

process. They found that the first model does not allow the population that exhibits 

wall attachment to wash out from the chemostat, in contrast to the second model 

(which nevertheless reduces to the first one in the limit). They showed that in most 

cases, and for both models, the two competitors can coexist in a stable steady state 

for a wide range of the operating parameters space. Because of the attachment of 

the cells to the walls, the environment is no longer homogeneous. Therefore, the 

coexistence of two pure and simple competitors in a steady state, can be attributed 

to the spatially heterogeneous environment, as in the study of Stephanopoulos and 
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Fredrickson [22], dicussed before (two coupled chemostats). 

It now becomes clear that pure and simple competitors in a spatially inhomoge-

neous environment may under certain conditions coexist in a steady state. 

Pure and simple competition between two populations in configurations of two 

interconnected chemostats has been extensively studied by Kung and Baltzis [18]. 

They considered three possible configurations: (1) external input into one of the 

vessels only, (2) external inputs into both vessels with medium having the same 

concentration of the rate-limiting substrate, and (3) external inputs into both vessels 

with medium having a different composition, at least as far as the substrate competed 

for is concerned. They showed that it is possible to get steady state coexistence of 

two competitors, regardless of the way the medium is fed to the system. According 

to their arguments, the main necessary (but not sufficient) condition for coexistence 

is that the conditions in the two vessels must be different and such that in one vessel 

they favor the growth of one competitor and in the other vessel they favor the growth 

of the other competitor. The existence of a recycle stream is important because it 

implies that any species surviving in one reactor has to do so in the other as well; 

hence, if coexistence occurs it occurs throughout the system. If the effluent of the first 

reactor goes into the second but there is no recycle, then steady state coexistence may 

occur but it will be for the second chemostat only. In fact, if both reactors (without 

recycle) are initially inoculated with both species, and the conditions are picked in 

such a way that they favor the growth of species A in the first vessel and species B in 

the subsequent vessel, what will happen is that species A will exclude species B from 

the first vessel but in the second vessel a steady state of coexistence will be reached, 

since species B will never be able to exclude species A despite the growth advantage 

due to the continuous inoculation of the second vessel with species A coming from the 

first vessel. Obviously, the configuration without recycle can lead to coexistence (in 
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the second vessel) of two species even in the case where the specific growth rate curves 

of the two populations do not cross each other, provided that in the first vessel one 

has a pure culture of the slower growing species. In fact, in the latter case, the recycle 

stream would exclude coexistence anywhere in the system. On the other hand, the 

authors argue that if the specific growth curves cross each other and one is interested 

in a mixed culture, the absence of recycle is a suboptimal choice in the sense that 

part of the volume of the system is underused. 

The possibility of coexistence of three microbial populations competing purely and 

simply in configurations of three interconnected chemostats has been investigated 

by Chang and Baltzis [6]. Via computer simulations, they showed that under any 

conditions no more than two populations can survive in a steady state with the 

exception of some discrete values of the design and operating parameters, at which 

three populations can coexist. It should be emphasized that for all practical purposes, 

coexistence is impossible since even when it is predicted to occur at some specific 

value(s) of the dilution rate, operation at a constant value of a physical parameter 

is impossible even with a perfect control device; the dilution rate will always exhibit 

random variations with time. By computer simulations, they also found that there 

are conditions under which the dynamical response (transients) of the system is so 

slow that although one population will be eventually washed out, a mixed culture 

of three competitors can be maintained (in an unsteady state) in the system for a 

considerable amount of time. 

From the above review, some questions about possible extensions and general-

izations have been raised. For example, is it possible for three pure and simple 

competitors to coexist in four interconnected chemostat? How many recycle streams 

are needed? How do the design and operating parameters affect the outcome of three 

competitors? The present study is directed at answering the foregoing questions. 
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Chapter 3 

MATHEMATICAL 
DESCRIPTION OF THE 
GENERAL SYSTEM 

3.1 Configuration of the General System 

As was dicussed in the literature review, it has become clear that pure and simple 

competitors competing for a single rate-limiting nutrient which is not biologically 

renewable within the system, cannot coexist in a steady state. In addition, it is 

well known that except for one of the competitors, the other competitors under any 

conditions will wash out. It has been also shown that spatial heterogeneities can 

lead to coexistence of pure and simple competitors. One can conclude that pure and 

simple competition of two populations in a spatially homogeneous environment leads 

to exclusion of one of the competitors if all inputs to the competitive system are 

time-invariant. But, steady state coexistence of two pure and simple competitors can 

occur if one uses configurations of two interconnected chemostats (i.e., a spatially 

heterogeneous environment), even in cases where the inputs are time invariant. The 

necessary (but not sufficient) condition for coexistence is for each one of the com-

petitors to have the growth advantage in one of the chemostats. Although an ideal 

chemostat is well mixed and hence spatially homogeneous, the system of two inter- 
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connected chemostats is spatially inhomogeneous since it can be viewed as a system of 

two homogeneous subenvironments where different conditions prevail. The question 

whether or not three pure and simple competitors can coexist in a steady state in 

configurations of three interconnected chemostats has been answered negatively. 

The problem which is investigated in the present thesis is an extension of the 

study of competition of three species mentioned above. The main question here is 

whether three pure and simple competitors can coexist in a steady state throughout 

a system of four interconnected chemostats. The choice of four vessels is based on the 

following idea: the four vessels can be viewed as a system of two subenvironments, 

each one of which, consists of two reactors. It is known that two reactors can sustain 

two populations. Suppose that one has three populations X, Y, Z. If a pair of species 

(say X any Y) can survive in a pair of vessels, and in the other two reactors another 

pair of species (say Y and Z) can survive, by coupling all four vessels one should get 

coexistence of all three species. 

The most general configuration of the system under investigation is shown in 

Figure 3.1. In the general case, each vessel has four inputs one of which consists of 

externally fed substrate (which is competed for), while the other three are fractions 

of effluents of the other three vessels. Each one of the four vessels is perfectly mixed. 

No cell attachment occurs on any solid surface, i.e., neither on the walls of the vessels 

nor on the walls of the interconnecting tubes. The tubes are assumed to be short 

enough or the flow fast enough, so that no growth occurs in them, and as a resut the 

composition of a stream in the exit of one vessel is the same as the composition of 

the same stream at the entrance of the vessel to which it is fed. The rate-limiting 

substrate exiting from a vessel is the same (from the structural point of view) as that 

in the fresh medium. The temperature in all vessels is the same and not changing. 
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Figure 3.1: General Configuration of Four Interconnected Chemostats 



3.2 Model Equations 

In the general case, three populatitions A, B, and C, with biomass concentrations a, b, 

and c, respectively, are considered. In order then to completely describe the system, 

one needs four mass balances for each vessel, three of which are for the biomass of 

the three populations and one is for the rate-limiting substrate, S. These equations 

are as follows: 

Chemostat 1 

Chemostat 2 

= q21a2 + q31a3 + q41a4 + V1µ1(s1)a1 — (q12 + q13 + q14)a1 

= q21b2 + q31b

3 + 

q

41

b

4 + V1µ2(s1)

b

1 

— (

q12  + q13  + q14)b1 

 

= 	q21c2 + q31c3 + q41c4 + V1µ3

(s

1

)

c1 — (q12 + q13 + q14)c1 

= q12a1 + q32a3 + q42a4 + V2µ1(s2)a2 — (q21 + q23 + q24)a2 

= q12b1 + q32b3 + q42b4 + V2µ2(s2)b2 	— (q21 + q23 	+ q24)b2  

= q12c1  + q32c3 + q42c4 +V2µ3

(

s2

)

c2 — (q21 + q23 + q24)c2  

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 
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Chemostat 3 

Chemostat 4 

= 	q13a1 + q23a2 + q43a4 + V3µ1(s3)a3 — (q31 + q32 + q34)a 3 

=   q13b1 + 

q

23b2  + 

q

43 b4  + V3µ2(s3)b3 — (q31 + q32 + q34)b 3 

=     q13c1 + q23c2 + q43c4 + 

V

3µ3(s3)c3 — (q31 + q32 + q34)c3  

=     q14a1 + q24a2 + q34a3 + V4

µ

1 (s4)a4 — (q41  + q42  + q

43 + q40)a4  

=     q14b1 + q24b2 + q34b3 + V4

µ

2 (

s

4)b4 — (q41 + q42 + q

43 + q40)b4  

=     q14c1 + q24c2 + q34c3 + V4µ3(s4)c4 — (q41 + q42 + q

43 + q40)c4  

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

Where, 
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i =1,2,3,4 

l, m  = 1,2,3,4 	l ≠ m  

ai, bi, ci: biomass concentration of species A, B, C respectively in 

chemostat i, i=1,...,4. 

s

i 

 and s f : concentration of the rate-limiting substrate in vessel i, and 

in the externally fed medium to vessel i, respectively. 

Vi

: working volume of vessel i. 

q0

i

: volumetric flowrate of the externally fed medium to vessel i. 

Y j: yield coefficient of species j on the rate-limiting substrate 

(assumed constant). 

qik: volumetric flowrate of the stream originating from chemostat i and 

fed to chemostat k. 

q40: volumetric flowrate of the system's exit. 

µj(si): specific growth rate of species j evaluated at the conditions 

prevailing in tank i; for this study, it is assumed to be given 

by Monod's model: 

With, 

µmj : maximum specific growth rate of species j. K j

: saturation constant of species j. 

By introducing the following dimensionless quantities: 
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the equations described above, can be written in dimensionless form as follows: 

Chemostat 1  

Chemostat 2  

= θ21x2 + θ31x3  + θ

41

x

4 

 + f(u1)x1  — (θ12  + θ13  + θ14 )x1 

= θ21y2 + θ31y3 + θ41y4 + g(u1)y1  

— (

θ12  + θ13  + θ14)y1  

= 	θ21z2  + θ31z3  + θ41z4 + h(u1)z1 — (θ12 + θ13 + θ14)z1  

= αu f  + θ21u2  + θ31u3  + θ41u4  — [ f(u1)x1 + g(u1)y

1 + h(u1 )z1] — (θ12 + θ13  + θ14)u1 

= βθ

1

2 y

1 

 + βθ32y3  + βθ42y4  + g(u2)y2  - β (θ21  + θ23  + θ24 )y2  

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

= βθ

1

2 x

1 

 + βθ32x3  + βθ42x4  + f (u2 )x2  - β(θ21  + θ23  + θ24)x 2  
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(3.23) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

= βθ12z1 + βθ32z3 + βθ42z4 + h(u2)z2  — β (θ21  + θ23  + θ24)z2  

= αβγη uf + βθ 12u1  + βθ32u3  + βθ42 — [f (u2 )x2  + g (u2 )y2  + 

h (u

2

)z

2

] — β (θ21  + θ23  + θ24)u

2 

 

Chemostat 3 

= β1θ13 x1 + β1θ23x2 + β1θ43x4  + f(u3 )x3 — β1(θ31+ θ32 + θ34)x3  

= β1θ13y1  + β1θ23y2  + β1θ43y4 + g (u3)y3 — β1(θ31 + θ32 + θ34)y3  

= β1θ13 z1 + β1θ23z2 + β1θ43z4 + h(u3)z3 — β1(θ31 + θ32 + θ34)z3  

= αβ1γ1η1 uf + β1θ13u1 + β1θ23 u2 + β1θ43 u4 — [f (u3)x3 + g(u3 )

y3  + h(

u

3)z3] 

— 

 β1(θ31  + θ32  + θ34)

u

3  

Chemostat 4 

= β2θ14 x1 + β2θ24x2  + β2θ34x3  + f (u4)x4  

— 

 β2(θ40 + θ41+ θ42+ 

θ43 )x4  

= β2θ14y1  + β2θ24y2  + β2θ34y3  + g(u4)y4  — β2(θ40  + θ41  + θ42  + 

θ43 )y4  

= β2θ14 z1 + β2θ24z2 + β2θ34z3 + h(u4)z4  — β2(θ40  + θ41  + θ42  + 

θ43 )z4  

= αβ2γ2η2

u

f  + β2θ14

u

1  + β2θ24

u

2  + β2θ34u3 — [ f (u4)x4 + 

g (u4)y4  + (u4)z4] — β2 (θ40 + θ41  + θ42  + θ43)u4  
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(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

Where, 

Since the working volume V j  of vessel j is assumed to remain constant at all times, 

and the density to be constant throughout the system, one can write the following 

relations among flow rates: 

θ12 	= {I1[R5(R2 + R3) + (R4 + 1)(R2 + R3 + 1)} + I2[R4 + R2(R4 + R5 + 1)] 

+ I3[R2R5 + R4( R2  + R3  + 1)]}I  

θ23 

	= {I1[R5(R0 + 1) + R4 + 1] + I2[(R0 + R1 + 1)(R5 + 1) +  R4( R

1 

 

+ 1)] + I3[R4  + R5( R0  + R1 + 1 )]}I  

θ34 = { I1[R0(R2 + R3 + 1) + 1] + I2[R0(R2 + 1) + 	R1 + 1] + 

I3[(R0 + R1)(R2 + R3 + 1) + R3 + 1]}I  

θ13 

 = R0θ12  

θ14 

 = R

1

θ12  

θ21 

 = R2θ23  

θ24 

 = R3θ23  

θ31 = R4θ34  

θ32 = R5θ34  

θ40 =(γ +γ1+γ2+1)α  

θ41  = R

8

(γ  + γ1 + γ2 + 1)α  

θ42   = R6( R8  + 1)(γ  + γ1 + γ2 + 1)α  

θ43   = R7( R8  + 1)(γ  + 

γ1 

+ γ2  + 1)α  
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With, 

I1  

I2  

I3  

= 

= 

= 

		R8(γ + γ1 + γ2 + 1) + 1 

		R6(R8 + 1)(γ + γ1 + γ2 + 1) + γ  

		R7(R8 + 1)(γ + γ1 + γ2 + 1) + γ1  

Where, 

3.3 Dimensional Reduction of The Model 

Although the system is described by 16 differential equations, by using arguments 

similar to those of Aris and Humphrey [1], one can show that the system is actually 

a 12-dimensional one, due to the existence of four stoichiometric equations. 

By adding equations (3.17) through (3.20), (3.21) through (3.24), (3.25) through 

(3.28), and (3.29) through (3.32), one gets 

= αu f + θ21(x2  + y2  + z2  + u2) + θ31(x3  + y3  + z3u3) 

+ θ41( x4  + y4  + z4  + u4) — (θ12 + θ13 + θ14)(x1 + y1  

+ z1  + u1) 

= αβγηuf  + βθ12(x2 + y1 + z1  + u1) + 

βθ32 ( x3  + y3  + z3  + u3) + βθ42(x4  + y4  + z4  + u4) 

— 
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(3.47) β(θ21  + θ23  + θ24)(x2  + y2  + z2  + u2) 

(αβ1γ1η1uf + β1θ13(x1 + y1 + z1 + u1) + 

β1θ23(x2  + y2  + z2  + u2) + β1θ43(x4  + y4  +  z4  + u4) — 

β1

(

θ31 + θ32 + θ34)(x3 + y3  + z3  + u3) 

 

 

αβ2γ2η2uf  + β2θ14(x1  + y1  + z1  + u1 ) + 

β2θ24( x2  + y2  + z2  + u2) + β2θ34(x3  + y3  + z3  + u3 ) — 

β2

(

θ40 +θ41+ θ42 + θ43)(x4 + y4 + z4 + u4) 

(3.48) 

(3.49) 

If one defines 

w1  = x1  + y1  + z1  + u1  - v1  (3.50) 

w2  = x2  + y2  + z2  + u2  - v2  (3.51) 

w3  = x3  + y3  + z3  + u3  - v3  (3.52) 

w4  = x4  + y4  + z4  + u4  - v4  (3.53) 

Where, 

v1  = ( k1γη  + k2γ1η1  + k3γ2η2  + k4)k (3.54) 

v1  = (k5γη  + k6γ1η1  + k7γ2η2  + k8)k (3.55) 

v3  = (k9γη  + k10γ1η1  + k11γ2η2  + k12 )k  (3.56) 

v4  = (k13γη  + k14γ1η1  + k15γ2η2  + k16)k  (3.57) 

With, 

k* = θ40[(θ12  + θ13)(θ23θ34  + θ24θ32) + (θ21  + θ24)(θ14θ32  + θ13θ34  + θ14θ31  + θ14θ34) + 

(θ31  + θ34)(θ12θ24  + θ14θ23)] 

k1  = (θ40  + θ41  + θ42  + θ43)[θ21(θ31  + θ32) + θ21θ34  + θ23θ31] + θ24[θ31(θ41  + θ43)+ 
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θ41(θ32  + 2θ34)] 

k2  = (θ40  + θ41  + θ42  + θ43)[θ31(θ21 + θ23) + θ21θ32] + (θ40 + θ41 + θ43)θ24θ31 + 

θ21θ34(θ41  + θ42) + θ41[θ24(θ32  + θ34) + θ23θ34] 

k3  = (θ31  + θ32  + θ34)[θ41(θ21  + θ24) + θ21θ42] + θ43[θ21(θ31  + θ32) + θ31(θ23  + θ24)] + 

θ23[θ31(θ41  + θ42) + θ34θ41] 

k4  = θ23[(θ31  + θ34)(θ40  + θ41) + θ31(θ42  + θ43)] + (θ31  + θ32  + θ34)[(θ21  + θ24)(θ40  + 

θ41  + θ21θ42] + θ43[θ31(θ21  + θ24) + θ21θ32] 

k5  = (θ31  + θ32  + θ34)[θ14(θ40  + θ42) + θ12(θ40  + θ41  + θ42)] + θ13[θ40(θ32  + θ34) + 

θ32(θ41  + θ42  + θ43)] + θ43[θ32(θ12  + θ14) + θ12θ31] 

k6  = (θ40  + θ41  + θ42  + θ43)[θ32(θ12  + θ13) + θ12θ31] + θ42[θ14(θ31  + θ34) + θ13θ34] + 

θ14θ32(θ40  + θ42  + θ43) + θ12θ34(θ41  + θ42) 

k7  = θ42[θ14(θ31  + θ32) + θ12θ32] + θ42(θ32  + θ34)(θ12  + θ13  + θ14) + θ12θ31(θ42  + θ43) 

+ θ13θ32(θ41  + θ42) + θ12θ41(θ31  + θ32  + θ34) 

k8  = (θ40  + θ41  + θ42  + θ43)[θ12(θ31  + θ32) + θ13θ32] + θ42[θ14(θ31  + θ34) + θ13θ34] + 

θ12θ34(θ40  + θ41  + θ43) + θ14θ32(θ42  + θ43) 

k9  = (θ40  + θ41  + θ42  + θ43)[θ23(θ12  + θ13) + θ13θ21] + θ24[θ43(θ12  + θ13) + θ13θ41] + 

θ14θ43(θ21  + θ23  + θ24) + θ23θ14(θ40  + θ42) 

k10  = θ23[θ12(θ40  + θ41  + θ42  + θ43) + θ14θ42] + θ13(θ21  + θ23)(θ40  + θ41  + θ42  + θ43) 

+ θ14(θ40  + θ43)(θ21  + θ23  + θ24) + θ13θ24(θ40  + θ41  + θ43) + θ12θ24(θ40  + θ43) 

k11  = (θ21  + θ23  + θ24)[θ43(θ13  + θ14) + θ13θ41] + θ42[θ23(θ12  + θ13  + θ14) + θ13θ21] + 

θ12[θ43(θ23  + θ24) + θ23θ14] 

k12  = (θ40  + θ41  + θ42  + θ42)[θ13θ21  + θ23) + θ12θ23] + θ14[θ23(θ42  + θ43) + θ21θ43] + 
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= -(θ12  + θ13  + θ14)w1  + θ21w2  + θ31w3  + θ41w4  (3.58) 

= βθ12w1  — β (θ21  + θ23  + θ24)w2  + βθ32w3  + βθ42w4  (3.59) 

= β1θ13w1  + β1θ23w2  — β1(θ31  + θ32  + θ34)w3  + β1θ43w4  (3.60) 

= β2θ14w1  + β2θ24w2  + β2θ34w3  — β2(θ40  + θ41  + θ42  + θ43

)

w4 

 (3.6l) 

θ24θ43(θ12  + θ13  + θ14) + θ13θ24(θ40  + θ41) 

k13  = (θ31  + θ32  + θ34

)[

θ24(θ 12  + θ 14 ) + θ 14θ21 ] + θ23[θ34(θ 12  + θ 13  + θ 14 ) + θ 14θ31 ] + 

θ13[θ24(θ32 + θ34) + θ21θ34] 

k14  = (θ21  + θ23  + θ24)[θ34(θ13  + θ 14 ) + θ 14θ31 ] + θ32[θ24(θ

12 

 + θ 13  + θ 14 ) + θ 14θ21 ] + θ

12

[θ34(θ23  + θ24) + θ24θ31] 

k15  = θ31[θ14(θ21  + θ23  + θ24) + θ

12

θ24 ] + (θ

12 

 + θ 13  + θ 14 )[θ34(θ23  + θ24) + θ24θ32] + 

θ21[θ34(θ

1

3  + θ14) + θ 14θ32] 

k16  = (θ31  + θ32  + θ34)[θ

1

4 (θ21  + θ24) + θ

12

θ24] + θ23[θ 14 (θ31  + θ34) + θ

12

θ34 ] + θ

1

3 [θ34(θ21  + θ23  + θ24) + θ24θ32] 

then, equations (3.46) through (3.49) can be written as follows: 

The Jacobian matrix for the system of eqns. (3.58) through (3.61) is the following: 

Where, 

J1,1 = — (θ12  + θ13  +  θ14) 
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J1,2  = θ21  

J1,3  = 
θ31 

 

J1,4  = 
θ41 

 

J2,1  = 
βθ12 

 

J2,2  = -β1(θ21  + θ23  + θ24) 

J2,3  = 
βθ32 

 

J2,4  = 
βθ42 

 

J3,1  = 
β1θ13 

 

J3,2  = 
β1θ23 

 

J3,3  = -β1 (θ31  + θ32  + θ34) 

J3,4  = 
β1θ43 

 

J4,1  = 
β2θ14 

 

J4,2  = 
β2θ24 

 

J4,3  = 
β2θ34 

 

J4,4  = -β2

(

θ40  + θ41  + θ42  + θ43) 

It is clear then, that all but the diagonal elements of the Jacobian matrix, J, 

are positive. By using Sevastyanov's lemma [21], the conditions under which the 

eigenvalues of the matrix are negative or complex with negative real parts, are the 

following: 

J1,1  < 0 
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Numerically, it can be shown that the eigenvalues of the Jacobian matrix are 

indeed real and negative, i.e., the conditions above are satisfied. Using the arguments 

of Aris and Humphrey, one can say, then, that w1  = w2  = w3  = w4  = 0 and use at 

all times the following four stoichiometric equations: 

x1  + y1  + z1  + u1  = v1  (3.62) 

x2  + y2  + z2  + u2  = v2  (3.63) 

x3  + y3  + z3  + u3  = v3  (3.64) 

x4  + y4  + z4  + u4  = v4  (3.65) 

Due to the existence of the four stoichiometric equations, for computer simulations 

one needs to integrate any twelve of the sixteen equations (3.17) through (3.32), 

substituting for the remaining four, the algebraic relations (3.62) through (3.65); this 

greatly reduces the amount of computer time needed for the simulations. 

3.4 Possible Steady States 

There are eight possible steady states for the system considered here. 

SS-0: xi  = yi  = zi  = 0, i=1, 2, 3, 4 

All three populations wash out from the system. 

SS-X: x

i 

 > 0, yi  = z

i 

 = 0, i=1, 2, 3, 4 

SS-Y: y

i 

 > 0, xi  = 

z

i 

 

= 0, i=1, 2, 3, 4 

SS-Z: z

i 

 > 0, x

i 

 = y

i 

 = 0, i=1, 2, 3, 4 

Any one population survives in the system and its competitors wash out. 
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SS-XY: xi  > 0, yi  > 0, zi = 0, i=1, 2, 3, 4 

SS-YZ: y

i 

 > 0, zi  > 0, x

i 

 = 0, i=1, 2, 3, 4 

SS-XZ: x

i 

 > 0, zi  > 0, yi  = 0, i=1, 2, 3, 4 

Any two populations survive in the system, while the third population is washed 

out. 

SS-XYZ: xi  > 0, yi  > 0, zi  > 0, i=1, 2, 3, 4 

All three populations coexist in a steady state. 

As mentioned before, because of the interconnection of chemostats, if one popu- 

lation establishes itself in the system, it should survive in all four vessels. 

3.5 Specific Growth- Rate Curves 

The so-called specific growth-rate of a microbial population, implies the growth-rate 

of a unit amount of biomass of the population. Kung and Baltzis [18] have shown that 

the mutual disposition of the specific growth-rate curves of the two populations has 

a critical effect on the possibility of coexistence. Chang and Baltzis [6] have shown 

that the disposition of the specific growth-rate curves of the three populations has 

again a determining role on outcome of competition. 

The specific growth-rates of the three populations can be expressed as follows: 

Without loss of generality, due to symmetry, one can assume: 

limu→∞  f(u) >  limu→∞  g(u) > limu→∞  h(u) 

or 	 1 > φ1  > φ2  

There are eight possible dispositions of the f(u), g(u) and h(u) curves which are 

shown in Figure 3.2. 
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The conditions under which each situation arises are as follows: 

case 1: φ2  < φ1  < 1; φ1  < ω1

; 

φ2ω1  < φ1ω2  

case 2: φ2  < φ1  < 1; ω1  < φ1; φ2  < 

ω2 

 

case 3: φ2  < φ1  < 1; φ1  < ω1; 

 

φ2  < ω2; φ1ω2  < φ2ω1  

case 4: φ 2  < φ l  < 1; ω1  < φ1; ω2  < φ2; φ2ω1  < φ1ω2  

case 5: φ2  < φ1  < 1; φ1  < ω1; φ2  < ω2  

case 6: φ 2  < φ l  < 1; ω1  < φ1; ω2  < φ2; φ1ω2  < φ2ω1  

case 7: 

φ2 

 < 

 

φ1  < 1; ω1  < φ1 ; ω2  < φ2; φ1ω2  < φ2ω1; φ1  — ω1  + φ2ω1  < 

φ2 — ω2 + φ1ω2  

case 8: φ2  < φ1  < 1; ω1  < φ1; ω2  < φ2; φ1ω2  < φ2ω1; φ1  — ω1  + φ2ω1  = 

φ2 — ω2 + φ1ω2  

It is emphasized that coexistence of three species is impossible unless there is pair- 

wise crossing of the three specific growth-rate curves. Moreover, only case 6 may lead 

to coexistence, since it is the only case where each species can have the competitive 

advantage (depending on the conditions prevailing in a particular environment) over 

its competitors. It should be added that the disposition of the f(u), g(u) and h(u) 

curves depends on the type of the competing species and the substrate competed for 

(i.e., φ1, φ2, ω1, and ω2). 
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(1) (2) 

(3) (4) 

Figure 3.2: The Dispositions of the Specific Grow-Rate Curves 
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= [ f (u1) — θ12

]

x1  + θ21x 2  (4.1) 

= [g(u1) — θ12]y1  + θ21y2  (4.2) 

= [h(u1) — θ12]z1  + θ21z 2  (4.3) 

Chapter 4 

ANALYSIS OF A SPECIAL 
CONFIGURATION 

A special configuration of the four interconnected chemostats is shown in Figure 

4.1. In this particular case, there are only two external feed streams into the system 

(namely, into vessel 1 and vessel 3) and there are no direct interconnections between 

vessels 1 and 3, or between vessels 1 and 4. This configuration constitutes a coupling 

of two, 2-vessel systems. Each two-vessel system viewed alone is identical to the 

system considered by Kung [17]. 

4.1 Model Equations 

In this case, the general equations (3.17) through (3.22) reduce to the following: 
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= 

 αuf  + θ21u2 

 - 

θ12u1  

- 

[f(u1)x1 

+ 

g(u1)y1 + h(u1)z1]  (4.4) 

= 

 βθ12x1  + [f(u2)  -  β (θ21  + θ23  + θ20)]x2  + βθ42x4  (4.5) 

=  βθ12y1  + [g(u2)  

- 

 β

(

θ21  +  θ23  +  θ20)]y2  +  βθ42y4  (4.6) = 

 βθ12z1  + [h(u2) 

 

- 

 

β (θ21  + θ23  + θ20)]z2  + βθ42z4  (4.7) 

= 

 βθ12u1  + βθ 42u4  

- 

 [f(u2)x2  + g(u2)y2  + h(u2)z2] 

 

- 

 

 

β(θ21 + θ23 + θ20)u2  (4.8) 

= 

 β1θ23x2  + [f(u3)  

- 

 β1θ34]x3  +  β1θ43x4  (4.9) 

= 

 β1θ23y2  + [f(u3) - β1θ34]y3  +  β1θ43y4  (4.10) 

= 

 β1θ23z2  + [h(u3) — β1θ34]z3  + β1θ43z4  (4.11) 

= 

 αβ1γ1η1uf  + β1θ23u2  + β1θ43u4  — [f(u3)x3  + g(u3)y3  + h(u3)z3] - 

β1θ34u3  (4.12) 

= 

 β2θ34x3  + [f(u4) - β2(θ42  + θ43  + θ40)]x4  (4.13) 

= 

 β2θ34y3  + [g(u4) — β2(θ42  + θ43  + θ40)]y4  (4.14) 
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Figure 4.1: Special Configuration of Four Interconnected Chemostats 



With, 

= β2θ34z3 + [h(u4) — β2 (θ42  + θ43  + θ40)]z4  

= β2θ34u3  - [f(u4)x4 + g(u4)y4 + h(u4)z4] — β2(θ42 + θ43 + θ40)u4  

θ12  = 

θ23  = 

θ34  = 

θ40  = 

θ20 = R1θ23  

θ21 = R2θ23  

θ42 = R3θ40  

θ43 = R4θ40  

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

Again, one can write the stoichiometric relations as in the previous section. Namely, 

x1  + y1  + z1  + u1  = v1  (4.25) 

x2  + y2  + z2  + u2  = v2  (4.26) 

x3  + y3  + z3  + u3  = v3  (4.27) 

x4  + y4  + z4  + u4  = v4  (4.28) 
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v1  = (4.29) 

v2  = (4.30) 

v3  = (4.31) 

v4  = (4.32)  

J1 = 

Where, 

Dynamically speaking, the system now can be described by the four stoichiometric 

relations along with any twelve of the differential equations (4.1) through (4.16). In 

the present study, equations (4.4), (4.8), (4.12), and (4.16) were substituted for by 

the stoichiometric relations (4.25), (4.26), (4.27), and (4.28), respectively. 

The local stability of any steady state depends on the eigenvalues of a 12 x 12 

Jacobian matrix. The Jacobian (stability) matrix for this system is the following: 

Where, 

A1  = 

f (u1)  -  θ12  - x1F(u1) 	A2  = -x1F (u1) 

A3  = -x1F(u1)                     A4  = θ21  
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B1  = -y1G(u 1) 	 B2  = 

 g(u1) 

- 

θ

12  - y1G(u1) 

B3  = 

-

y1 G(u1) 	 B4  = θ21 

C1  = 

-

z1 H (u1) 	 C2  = 

-

z1 H (u1) 

C3  = h(u1) - θ12  - z1H (u1) 	C4 = θ21 

D1  = βθ12 	 D2  = f (u2

) - 

β(θ21  + θ23  + θ20) - x2F(u2 ) 

D3  = -x2F(u2) 	 D4  = -x2F(u2) 

D5  = βθ42 	 E1  = βθ12 

E2  = -y2 G(u2) 	 E3  = g(u2) - β (θ21  + θ23  + θ20) - y2G(u2 ) 

E4  = -y2G(u2) 	 E5  = βθ42 

F1  = βθ12 	 F2 = -z2H(u2 ) 

F3  = -z2H (u2) 	 F4  = h(u2 ) - β (θ21  + θ23  + θ20) - z2H (u2 ) 

F5  = βθ42 	

	

G1  = β1θ43 

G2  = f (u3 ) - β1θ34  - x3F(u3) 	G3  = -x3F(u3) 

G4  = -x3F(u3) 	 G5  = β1θ43 

H1  = β1θ23 	 H2 = -y3G(u3 ) 

H3  = g(u3) - β1θ34  - y3

G

(u3) 	H4  = -y3G(u3) 

H5  = β1θ23 	 I1  = β1θ23 

I2  = -z3H (u3) 	 I3  = z3H (u 3) 

I4  = h(u3) - β1θ34  - z3H (u3 ) 	I5  = β1θ43 

J1  = β2θ34 	 J2 = f(u4) - β2(θ42 + θ43 + θ40) - x4F(u4 ) 

J3  = -x4 F(u4) 	 J4 = -x4F(u4 ) 

K1  = β2θ34 	 K2  = -y4G(u4 ) 

K3  = g(u4 ) - β2(θ42  + θ43  + θ40) - y4G(u4) 	K 4  = 

-

y4 G(u4) 

L1  = β2θ34 	 L2  = -z4H(u4 ) 

L3  = -z4 H (u4 ) 	 L4  = h(u4 ) - β2(θ42  + θ43  + θ40) - z4H (u4 ) 
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H(ui ) =  

i  = 1,2,3,4 

i = 1,2,3,4 

i = 1,2,3,4 

F(ui ) =  

G(u

i

) =  

f (ui ) =  

g(ui) =  

h(ui) =  

With, 

When at the steady state, the derivatives are zero. Then, equations (4.1) through 

(4.3), (4.5) through (4.7), (4.9) through (4.11) and, (4.13) through (4.15) as well as 

the stoichiometric relations (4.25) through (4.28) must be simultaneously satisfied. 

From this point on, it is assumed that both vessels 1 and 3 are fed with medium of 

identical composition, and this leads to the following system of algebraic equations. 

Bioreactor 1 

{[R1( R3  + 1) + 1] f (u1) 	— 	[R1( R3  + 1) + R2R3(γ1  + 1) + R2  + 1]α}x1  + 

R2[R3(γ1  + 1) + 1]αx2 	= 	0 (4.33) 

{[R1( R3  + 1) + 1]g(u1) 	— 	[R1( R3  + 1) + R2R3(γ1  + 1) + R2  + 1]α}y1  + 

R2[R3(γ1  + 1) + l]αy2 	= 	0 (4.34) 

{[R1( R3+ 1) + 1]h(u1) 	— 	[R1(R3  + 1) + R2R3(γ1 + 1) + R2  + 1]α}z1  + 

R2[ R3(γ1  + 1) + 1]αz2 	= 	0  (4.35) 

Bioreactor 2 

β 	[ R1( R3  + 1) + R2R3(γ1  + 1) + R2  + 1]αx1  + {[R1( R3  + 1) + 1] f (u2) — 

β 	( R2  + R1  + 1)[R3(γ1  + 1) + 1]α}x2  + β R3[γ1( R1  + 1) + 1]αx4  = 0 (4.36) 

β [R1(R3 + 1) + R2R3(γ1 + 1) + R2 + 1]αy1 + {[R1(R3 + 1) + 1]g(u2) — 
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β 	(R2  + R1  + 1)[R3(γ1  + 1) + 1]α}y2  + β R3[γ1( R1  + 1) + 1]αy4  = 0 (4.37) 

β 	[R1( R3  + 1) + R2R3(γ1  + 1) + R2  + 1]αz1  + {R1(R3  + 1) + 1]h(u2)  — 

β 	( R2  + R1  + 1)[R3(γ1  + 1) + 1]α}z2  + β R3[γ1( R1  + 1) + 1]α z4  = 0 (4.38) 

Bioreactor 3 

β1 	[R3(γ1  + 1) + 1]αx2  + {[R1( R3  + 1) + 1] f (u3)  — 

β1 	(R4 + R3 + 1)[γ1(R1 + 1) + 1]α}x3 + β1R4[γ1(R1 + 1) + 1]αx4 = 0 (4.39) 

β1 	[R3(γ1 + 1) + 1]αy2 + {[R1(R3 + 1) + 1]g(u3) — 

β1 	(R4 + R3 + 1)[γ1(R1 + 1) + 1]α}y3 + β1R4[γ1(R1 + 1) + 1]αy4 = 0 (4.40) 

β1 	[R3(γ1 + 1) + 1]αz2 + {[R1(R3 + 1) + 1]h(u3) — 

β1 	(R4 + R3 + 1)[γ1(R1 + 1) + 1]α}z3 + β1R4 [γ1(R1 + 1) + 1]αz4 = 0 (4.41) 

Bioreactor 4 

β2 	(R4 + R3 + 1)[γ1(R1 + 1) + 1]αx3 + {[R1(R3 + 1) + 1] f(u4) — 

β2 	(R4 + R3 + 1)[γ1(R1 + 1) + 1]α}x4 = 0 (4.42) 

β2 	(R4 + R3 + 1)[γ1(R1 + 1) + 1]αy3 + {[R1(R3 + 1) + 1]g(u4) — 

β2 	(R4  + R3  + 1)[γ1( R1  + 1) + 1]α}y4  = 0 (4.43) 

β2 	(R4 + R3 + 1)[γ1(R1 + 1) + 1]αz3 + {[R1(R3 + 1) + 1]h(u4) — 

β2 	(R4 + R3 + 1)[γ1(R1 + 1) + 1]α}z4 = 0 (4.44) 

Stoichiometric Relations 

x1  + y1  + z1  + u1  = uf 	 (4.45) 

x2  + y2  + z2  + u2  = u

f 

	 (4.46) 

x3  + y3  + z3  + u3  = u

f 

	 (4.47) 

x4  + y4  + z4  + u4  = u

f 

	 (4.48) 
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4.2 Analysis of SS-0 

This is the total wash-out steady state (i.e., xi  = yi  = zi  = 0, ui  = uf ), which 

is always meaningful. The non-zero elements of 12 x 12 Jacobian matrix are the 

following: 

A1  = f (u f)  — θ12 	 A4 = θ21  

B2  = g(u f ) — θ12 	 B4  = θ21  

C3 

 = 

h(u f ) — θ12 	 C4  = θ21  

D1  = βθ12 	 D2  = f (u f ) — β (θ21  + θ23 + θ20) 

D5  = βθ42 	 E1  = βθ12  

E3  = g(u f)  — β(θ21  + θ23  + θ20) 	E5  = βθ42 

F1 = βθ12 	F4 = h(u f) — 'β(θ21 + θ23 + θ20) 

F5  = βθ42 	 G1  = β1θ43  

G2  = f (u f ) — β1θ34 	 G5  = β1θ43  

H1  = β1θ23 	 H3  = g(u f)  — β1θ34  

H5  = β1θ43 	 I1  = β1θ23  I

4  = h(u f)  — β1θ34 	

I

5  = β1θ43  

J1  = β2θ34  	 J2 = f(u f) — β2(θ42 + θ43 + θ40) 

K1  = β2θ34 	 K3  = g(u f)  — β2(θ42  + θ43  + θ40) 

L1  = β2θ34 	 L4  = h(u f ) 

 — 

β2(θ42  + θ43  + θ40) 

It is easily seen that all elements of the Jacobian matrix which are off the main 

diagonal, are positive. Then by using Sevastyanov's lemma [21], one obtains the 

conditions for stability as follows: 

A1  < 0 	 (4.49) 

B2  < 0 	 (4.50) 

C3  < 0 	 (4.51) 
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A4 D1  — A1 D2  <0 (4.52) 

B4 E1  — B2E3  < 0 (4.53) 

C4F1  — C3F4  < 0 (4.54) 

G2  < 0 (4.55) 

H3  < 0 (4.56) 

I4  < 0 (4.57) 

G5 J1  — G2 J2  < 0 (4.58) 

H5 K1  — H3K3  < 0 (4.59) 

I5L1  — I4 L4  < 0 (4.60) 

4.3 Analysis of SS-X, SS-Y and, SS-Z 

SS-X is the steady state in which only population A can survive. In this case, y

i 

 = 

zi  = 0, i = 1,...,4. The values of xi  and ui,  i = 1,...,4 can be found by solving 

following equations: 

[ 	R1(R3  + 1)  + 1][ f (u1) — α]x1  + R2[R3(γ1  + 1) + 1]α (x2  — x1) = 0 (4.61) 

[ 	R1(R3  + 1) + 1] f (u2)x2  + β[R1( R3  + 1) + R2R3(γ1  + 1) + 

R2  + 1]α( x1  — x2 ) + βR3[γ1( R1  + 1) + 1]α( x4  — x2 ) = 0 (4.62) 

[ 	R1(R3  + 1) + 1] f (u3)x3  + β1R4[γ1(R1 + 1) + 1]α(x4 — x3) + 

β1[R3(γ1 + 1) + 1]α(x2 — x3) — β1γ1[R1(R3 + 1) + 1]αx3 = 0 (4.63) 

[    R1(R3  + 1) + 1] f (u4)x4  — β2(R4  + R3  + 1)[γ1(R1 + 1) + 1]α(x4 — x3) 

= 0 (4.64) 

x1  + u1  = uf  (4.65) 

x2 + u2  = uf  (4.66) 
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x3 + u3 = u f 	(4.67) 

x4  + u4  = u f 	 (4.68) 

From equation (4.64) it is evident that if SS-X is meaningful it must be that 

x4  > x3. From equation (4.61), one can find that x1  > x2  if f(ui ) — α  > 0. Then 

from equation (4.62), one can conclude that x2  > x4. Hence, if f (ui ) > α  at a 

meaningful SS-X it is x1  > x2  > x4  > x3  and—from equations (4.65) through (4.68)

— 

-u

3  > u4  > u2  > u1. If f (ui ) — α  < 0, one cannot directly sort x by increasing or 

decreasing order from the above equations. If one assumed that x1  = x2  = x3  = x4, 

it is easy to see that the steady state equations cannot be satisfied. Hence, when 

at SS-X, the entire system is spatially heterogeneous. Because of the complexity of 

equations (4.61) through (4.64), one cannot find analytically the conditions under 

which SS-X is meaningful and stable. The domain in the α  — u f  plane where SS-X 

is meaningful and stable can only be found numerically. Results of numerical studies 

are presented in a later section of this thesis. 

Analogous results and conclusions can be found for SS-Y (only population B can 

survive) and SS-Z (only population C can survive) since SS-X, SS-Y and, SS-Z are 

symmetric. 

The complexity of the system is such that not even prelimenary analytical results 

can be obtained for the remaining steady states, i.e., SS-XY, SS-YZ, SS-XZ and 

SS-XYZ. These steady states have been studied only numerically. 
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4.4 Numerical Analysis, Computer Simulations 
and Operating Diagrams 

The equations describing the system considered in this chapter, contain 15 parame-

ters, namely, α, β, β1, β2, γ1, η1, u f ,  φ1,  φ 2 , ω1, ω2 , R1, R2, R3, and R4. Baltzis and 

Kung [18] have divided these parameters into three categories: (1) system parameters, 

(2) design parameters and, (3) operating parameters. The system parameters depend 

on the type of rate-limiting substrate and the identity of the competing populations. 

For the problem studied here, the system parameters are φ l , φ 2, ωl ,  and ω2, and 

they have been kept constant in all simulation studies. The design parameters (β , 

β1, β2) indicate the relative volumes of the vessels. For a system of three organisms, 

a given substrate, and a specified set of reactors (from the point of view of volume), 

one can vary during operation, the following parameters: α, γ, η1, u f , R1, R2, R3, 

and R4. These parameters (called operating parameters) have to do with flow rates 

of the various streams, and the composition of the externally fed media. These pa-

rameters were varied in a series of numerical studies, in order to study their effect on 

the system, and the outcome of competition. 

Since the main objective of this study, was to explore the possibility of getting 

steady state coexistence of all three competitors (i.e., SS-XYZ), the system parameters 

were selected in a way which leads to the disposition of the specific growth rates 

shown in Figure 3.2—Case 6. Unless there is pairwise crossing of the specific growth 

rate curves, as shown in the aforementioned figure, steady state coexistence of all 

three species is impossible. In this work, the system parameter values used, are 

(φ1  = 0.5, φ2  = 0.4, ω1  = 0.25, ω2  = 0.125. For this values, the crossing point of the 

f(u) and g(u) curves, is at uc1  = 0.5, at which, f (uc1) = g(uc1) = ac1  = 0.333; the 

crossing point of f(u) and h(u) curves, is at uc2  = 0.458, at which, f (uc2) = h(uc2) = 
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α = 0.314; the crossing point of g(u) and h(u) curves, is at uc3  = 0.375, at which, 

g(uc3) = h(uc3) = ac3  = 0.3. 

Except for the system parameters, there are 11 design and operating parameters 

in the system, as discussed previously. These parameters were varied in different 

simulation studies. From the numerical studies, answers to the following questions 

were sought: under what conditions is each possible steady state meaningful and 

stable? How many domains are there in the operating parameters space in which more 

than one steady state is meaningful and stable? Does a possible state (meaningful 

and stable) occur in a finite domain of the operating parameters space or does it 

occur just for some distinct values of the operating parameters? 

Two main programs (given in the appendix) have been used in this study. One is a 

Newton-Raphson routine which is used to solve a system of equations at steady state. 

The other is the Michelsen method which is used to integrate the coupled ordinary 

differential equations which describe the system at all times. The subroutine EIG3 

(IMSL Library) was used to find the eigenvalues of the Jacobian matrix and thus to 

determine the stability character of each steady state. 

The procedure and methodology used in the numerical studies were the following: 

set the values of all parameters except α  and u f ; fix u f  (usually, let u f  = 5 or u f  = 10); 

look for the boundary of the domain of SS-XYZ along the a direction by using the 

Michelsen method and Newton-Raphson method in turn; after finding the boundary 

of SS-XYZ, span the α-u f  plane for every other possible steady state. It was found 

that the Newton-Raphson method is very sensitive to the initial guess, for this reason, 

integrations were performed in many cases instead of the usual continuation. Results 

from integrations were used as initial guesses for the Newton-Raphson method. The 

steady state values from the Newton-Raphson method were used in order to calculate 

the eigenvalues of the Jacobian matrix. 
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A summary of the parameters used in the search for SS-XYZ but they have not 

yielded such a steady state, are given in Table 4.1. The parameters used for the 

Diagrams shown in Figures 4.2, 4.3 and, 4.4 are given in Tables 4.2, 4.3 and 4.4, 

respectively. Typical values for the state variables when the system is in an XYZ-

coexistence domain shown in Figures 4.2, 4.3 and, 4.4, are presented in Tables 4.5, 

4.6 and 4.7, respectively. The results of the numerical studies are presented in the 

form of operating diagrams [Jost et al.,  (16)]. 

Looking at the diagrams shown in Figures 4.2 through 4.4 one can draw some 

conclusions. There is a domain on the α-u f  plane in which SS-XYZ is meaningful 

and stable. As was originally anticipated and discussed early in this thesis, this 

domain is always between boundaries of an XY, a YZ and, an XZ region. As the 

numerical results indicate, if the XYZ domain is between an XY and a YZ region, 

species Y grows faster than X and Z in two out of the four chemostats, for parameter 

values leading to XYZ coexistence. Apart from the SS-XYZ domain, there are 7 more 

domains (i.e., SS-0, SS-X, SS-Y, SS-Z, SS-XY, SS-YZ and, SS-XZ) . 

From the numerical studies, it was found that the existence or not of SS-XYZ 

domain depends mainly on the values of γ1, β, β 1, and β2, and not so much on the 

values of R1, R2, R3, and R4  (which are recycle ratios, and thus, indicate the degree of 

interconnection of subenvironments). Comparing the diagrams shown in Figures 4.2 

and 4.3, one can see that the SS-XYZ domain shifts to higher u f  values for decreasing 

γl values. 

The operating diagrams and computer simulations show that there is no domain 

in the operating parameters space where more than one steady state is meaningful 

and stable. In other words, the steady states are mutually exclusive. The results 

of the local stability analysis based on the character of eigenvalues of the Jacobian 

matrix, indicate that there are cases where damped oscillations will be observed 
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during transients. 

The main conclusion is that the special configuration of four interconnected chemostats 

considered here can lead to coexistence of three pure and simple competitors at steady 

state. 
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Table 4.1: Parameters used for Searching SS-XYZ domain1  

γ1  = 1.0 η1  = 1.0 ω1 = 0.25 ω2 = 0.125 φ1  = 0.5 

φ2  = 0.4 β  = 1.8 β1  = 1.6 β2 = 1.2 

No.1  R1  = 0.1 R2  = 0.1 R3  = 0.1 R4  = 0.1 

No.2  R1  = 0.1 R2  = 1.0 R3  = 0.1 R4  = 1.0 

No.3  R1  = 0.01 R2  = 0.01 R3  = 0.01 R4  = 0.01 

No.4  R1  = 0.01 R2  = 1.0 R3  = 0.01 R4  = 1.0 

No.5  R1  = 0.001 R2  = 0.001 R3  = 0.001 R4  = 0.001 

No.6  R1 = 10.0 R2  = 0.1 R3  = 10.0 R4  = 0.1 

No.7  R1  = 0.0001 R2  = 0.0001 R3  = 0.0001 R4  = 0.0001 

No.8  R1  = 10.0 R2  = 10.0 R3  = 10.0 R4  = 10.0 

No.9  R1  = 100.0 R2  = 100.0 R3  = 100.0 R4  = 100.0 

No.10 R1  = 1000.0 R2  = 1000.0 R3  = 1000.0 R4  = 1000.0 

γ1  = 1.0 

φ2  = 0.4 

η1  = 1.0 

R1  = 1.0 

ω1  = 0.25 

R2  = 1.0 

ω2  = 0.125 

R3  = 1.0 

φ1 = 0.5 

R4  = 1.0 

No.11 β 

= 

 0.2 β1  = 0.6 β2  = 0.8 

No.12 β  = 0.2 β1  = 1.0 β2  = 0.2 

1  No SS-XYZ domains were found by using these parameters 
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γ1  = 1.27 η1  = 1.0 ω1  = 0.25 ω2 = 0.125 φ1  = 0.5 

φ2 = 0.4 R1  = 1.0 R2  = 1.0 R3  = 1.0 R4  = 1.0 

No.13 β = 0.2 β1  = 0.6 β2  = 0.8 

No.14 β = 0.2 β1  = 1.0 β2  = 0.2 

η1 = 1.0 ω1 = 0.25 ω2 = 0.125 φ1  = 0.5 φ2  = 0.4 

β = 1.0 β1 = 1.0 β2 = 1.0 R1  = 1.0 R2  = 1.0 

R3  = 1.0 R4  = 1.0 

No.15 γ1  = 0.8 

No.16 γ1  = 0.5 

N0.17 γ1  = 0.2 

No.18 γ1  = 1.5 

No.19 γ1  = 2.0 

No.20 γ1  = 3.0 

η1 = 1.0 ω1  = 0.25 ω2 = 0.125 φ1  = 0.5 φ2  = 0.4 

β  = 1.8 β1  = 1.6 β2 = 1.2 R1  = 1.0 R2  = 1.0 

R3  = 1.0 R4  = 1.0 

No.21 	 γ1  = 0.8 

No.22 	 γ1  = 0.5 
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No.23 γ1  = 0.2 

No.24 γ1  = 1.5 

No.25 γ1  = 2.0 

No.26 γ1  = 3.0 
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Table 4.2: Parameters used for The Diagram of Figure 4.2 

R1  = 1.0 	R2  = 1.0 	R3  = 1.0 	R4  = 1.0 	γ1  = 1.0 

η1 = 1.0 	ω1 = 0.25 	ω2 = 0.125 	φ1 = 0.5 	φ2 = 0.4 

β  = 1.8 	β1  = 1.6 	β2  = 1.2 

Table 4.3: Parameters used for The Diagram of Figure 4.3 

R1  = 1.0 	R2  = 1.0 	R3  = 1.0 	R4  = 1.0 	γ1  = 1.27 

η1 = 1.0 	ω1 = 0.25 	ω2 = 0.125 	φ1 = 0.5 	φ2 = 0.4 

β  = 1.8 	β1  = 1.6 	β2  = 1.2 

Table 4.4: Parameters used for The Diagram of Figure 4.4 

R1  = 1.0 	R2  = 1.0 	R3  = 1.0 	R4  = 1.0 	γ1  = 1.0 

η1 = 1.0 	ω1 = 0.25 	ω2 = 0.125 	φ1 = 0.5 	φ2 = 0.4 

β  = 1.0 	β1  = 1.0 	β2  = 1.0 
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Table 4.5: Coexistence Concentration Values for Cases of Figure 4.2 

α  = 0.3177 u f  = 9.5 

x1  = 0.153476 y1  = 1.563334 z1  = 6.888419 u1  = 0.394771 

x2  = 0.170221 y2 = 1.620254 z2  = 7.189718 u2  = 0.019807 

x3  = 0.186985 y3  = 6.233023 z3  = 6.233023 u3  = 6.233023 

x 4  = 0.197931 y4 = 7.104451 z4  = 7.104451 u4  = 0.067521 

α  = 0.3144 u f  = 10.0 

x1  = 0.423697 y1  = 2.856779 z1  = 6.330318 u1  = 0.389206 

x 2  = 0.469834 y2 = 2.947235 z2  = 6.564629 u2  = 0.018302 

x3  = 0.519122 y3  = 2.692756 z3  = 5.689020 u3  = 1.099102 

x4  = 0.547187 y4 = 2.950524 z4  = 6.440660 u4  = 0.061629 

α  = 0.3119 u f  = 13.0 

x1  = 0.258189 y1 = 12.315309 z1  = 0.040920 u1  = 0.385582 

x2  = 0.286018 y2 = 12.653697 z2  = 0.042209 u2  = 0.018076 

x3  = 0.316980 y3  = 11.549471 z3  = 0.036483 u3  = 1.097066 

x4  = 0.332631 y4 = 12.570600 z4  = 0.040988 u4  = 0.055780 
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Table 4.6: Coexistence Concentration Values for Cases of Figure 4.3 

α  = 0.3195 u f  = 8.0 

x1  = 0.966749 y1  = 0.004227 z1  = 6.558638 u1  = 0.470387 

x2  = 1.017935 y2  = 0.004376 z2  = 6.974766 u2  = 0.002923 

x3  = 1.036175 y3  = 0.004044 z3  = 6.223678 u3  = 0.736102 

x4  = 1.071564 y4  = 0.004323 z4  = 6.916110 u4  = 0.008002 

α  = 0.3126 u f  = 10.0 

x1  = 4.147524 y1  = 0.142330 z1  = 5.219607 u1  = 0.490539 

x2  = 4.297440 y2  = 0.146673 z2  = 5.552681 u2  = 0.003205 

x3  = 4.246765 y3  = 0.133587 z3  = 4.905232 u3  = 0.714416 

x4  = 4.393149 y4  = 0.142884 z4  = 5.455819 u4  = 0.008148 

α  = 0.3060 u f  = 13.0 

x1  = 7.119048 y1  = 4.695833 z1  = 0.782733 u1  = 0.402386 

x2  = 7.526088 y2  = 4.662106 z2  = 0.784628 u2  = 0.027179 

x3  = 7.350470 y3  = 3.760823 z3  = 0.602176 u3  = 1.286531 

x4  = 7.940634 y4  = 4.250685 z4  = 0.701739 u4  = 0.106942 
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Table 4.7: Coexistence Concentration Values for Cases of Figure 4.4 

α  = 0.4010 u f  = 6.0 

x1  = 1.267590 y1 = 1.862885 z1  = 2.229594 u1  = 0.639931 

x2  = 1.301673 y2 = 2.055494 z2  = 2.598591 u2  = 0.044242 

x3  = 1.180402 y3  = 1.905042 z3  = 2.394410 u3  = 0.520147 

x4  = 1.232309 y4  = 2.055343 z4  = 2.658971 u4  = 0.053377 

α  = 0.4058 

uf 

 = 8.0 

x1  = 0.752746 y1  = 5.092725 z1  = 1.570612 u1  = 0.583917 

x2  = 0.764150 y2 = 5.446828 z2  = 1.761265 u2  = 0.027758 

x3  = 0.706135 y3  = 5.141385 z3  = 1.657143 u3  = 0.495337 

x4  = 0.729084 y4 = 5.437111 z4  = 1.798579 u4  = 0.035226 

α  = 0.4080 u f  = 10.0 

x1  = 0.028425 y1  = 1.555932 z1  = 8.198089 u1  = 0.217554 

x2  = 0.031691 y2  = 1.618762 z2  = 8.345777 u2  = 0.003770 

x3  = 0.029639 y3  = 1.566341 z3  = 8.197147 u3  = 0.206872 

x4  = 0.031842 y4  = 1.615667 z4  = 8.347118 u4  = 0.005373 
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Figure 4.2: Operating Diagram I 
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Figure 4.3: Operating Diagram II 
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Figure 4.4: Operating Diagram III 



Chapter 5 

CONCLUSIONS 

It was known that two pure and simple competitors can coexist in two interconnected 

reactors [Kung and Baltzis (18)], while three pure and simple competitors cannot 

coexist in three interconnected vessels [Chang and Baltzis (6)]. These facts lead to the 

basic question addressed in this thesis, namely, if three pure and simple competitors 

can coexist in four interconnected bioreactors. The answer is that coexistence of 

three populations competing purely and simply, is possible in such a bioreactors 

configuration. 

Computer simulations have indicated that the domain of coexistence of three 

species (XYZ), if it exists, lies between domains of coexistence of two species. 

Based on the results of this study, and what was already known about microbial 

competition one can conclude that N pure and simple competitors cannot coexist in N 

interconnected bioreactors, but coexistence seems to be possible in M vessels, where 

M >  N. One can also argue that if there are N competitors, in order for them to 

coexist in an environment, this environment must be comprised of two subenviron-

ments each one of which, should able to maintain N-1 species. In configurations of 

chemostats then, it seems that one needs 2N-1  vessels. This seems to be a necessary 

but not sufficient condition. 

The disposition of the specific growth rate curves shown in Figure 3.2 (case 6) 
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which allows one species to have the competitive advantage over the other two in at 

least one of the vessels is the only one which can allow coexistence of three species. 

Computer simulations indicate that all eight types of steady states are mutually 

exclusive, in the sense that there is no domain in the operating parameters space 

where more than one steady state is meaningful and stable. Furthermore, none of the 

eight types of steady states exhibits multiplicity. 

The results of this thesis further reenforce the argument that spatial hetero-

geneities can lead to a very diversified ecosystem, even under conditions of intense 

competition. 
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APPENDIX 

PROGRAM SOURCE FILE 

The following source files are written in Fortran 77 and have been implemented 

on a VAX/VMS system. 
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C********************************************************************** 
C 
C 
C 	MONOD predicts the concentrations of biomass & substrate in four 
C 
C 	interconnected chemostats by MONOD MODEL 
C 
C 
C********************************************************************** 

C 
C 
C 	 APPLIED NUMERICAL METHODS 
C 
C 	 MICHELSEN'S METHOD 
C 

IMPLICIT REAL*16 (A-H2O-Z) 
PARAMETER (N-16) 
DIMENSION Y(N),YOLD(N),YOLD1(N),YA(N),F(N),FOLD(N) 
DIMENSION YK1(N),YK2(N),YK3(N),DF(N,N),DFOLD(N,N) 
DIMENSION W(N) 

COMMON/AB/ALFA,UF,R1,R2,R3,R4,FI1,FI2,W1,W2, 
BETA,BETA1,BETA2,GA,GA1,GA2,ETA,ETA1,ETA2 

COMMON/AB1/CTA12,CTA20,CTA21,CTA23,CTA34,CTA40,CTA42,CTA43 
EXTERNAL FUN,DFUN,OUT 
DATA NTAB/1/ 
OPEN (5,FILE='MONOD.DAT',STATUS='OLD') 
OPEN (6,FILE='MONOD.OUT',STATUS='NEW') 

C 
DO 10 J=1,N 

W(J)=1.0 
I0 	CONTINUE 

C 
READ (5,*)ALFA,UF,acc 
READ (5,*)R1,R2,R3,R4 
READ (5,*)BETA,BETA1,BETA2,GA,GA1,GA2 
READ (5,*)ETA,ETA1,ETA2,FI1,FI2,W1,W2 
READ (5,*)HO,EPS,NPRINT,XEND 
READ (5,*)(Y(J),J=1,N) 

C 
CTA=ALFA/(R1*(R3+.0)+1.0) 
CTA12=CTA*(R1.*(R3+1.0)1R2*R3*(GA1+1.0)+(R2+1.0)) 
CTA23-CTA*(R3*(GA1+1.0)+1.0) 
CTA40-CTA*(GA1*(R1+1.0)+1.0) 
CTA34=(R4+R3+1.0)*CTA40 
CTA21=R2*CTA23 

CTA20=R1*CTA23 
CTA42=R3*CTA40 
CTA42=R3*CTA40 

XST=0.0 
C 

WRITE(6, 11) 
I1 	FORMAT(/17X,'****MICHELSEN METHOD FOR INTEGRATING****'/30X, 

'----MONOD----'/) 
WRITE(6,22) 

22 	FORMAT(/21X,'****PARAMETER FOR INTEGRATING****') 



write (6,25) acc 

	

25 	format(/6x,'ACCURACY=',G9.2) WRITE(6,33)H0,EPS,NPRINT,XEND,ALFA 

	

33 	FORMAT(/3X,'H0=',F6.3,4X,'EPS=',G9.2,2X,'NPRINT=',I4,2X,'XEND=' 
* 		E14.6,3X,'ALFA=',F8.5) 

WRITE(6,44)UF,R1,R2,R3,R4 

	

44 	FORMAT(/6X,'UF=',F6.3,4X,'R1=',F8.4,7X,'R2=',F8.5,3X,'R3=',F9.4 
7X,'R4=',F9.4) 

WRITE(6,66)GA,GA1,GA2,FI1,FI2 

	

66 	FORMAT(/6X,'GA=',F5.2,5X,'GA1=',F5.2,6X,'GA2=',F5.2,2X,'FI1=', 
* 		F5.2,6X,'FI2=',F5.2) 

WRITE(6,77)W1,W2,ETA,ETA1,ETA2 

	

77 	FORMAT(/6X,'W1=',F6.3,4X,'W2=',F6.3,6X,'ETA=',F5.2,2X,'ETA1=', 
* 		F5.2,5X,'ETA2=',F5.2) 

WRITE(6,88)BETA,BETA1,BETA2 

	

88 	FORMAT(/6X,'BETA=',F5.2,3X,'BETA1=',F5.2,4X,'BETA2=',F5.2) 
WRITE(6,99)(Y(J),J=1,N) 

	

99 	FORMAT(/1X,'INITIAL CONCENTRATIONS:'/5X,'Y=',8F9.6,/7X,8F9.6) 

TIME=(XEND-XST)/FLOAT(NTAB) 

	MICHELSEN'S INTEGRATION BEGINS 	 

X1=0.0 
DO 50 J=1,NTAB 
X2=J*TIME 
CALL STIFF3(N,N,NPRINT,FUN,DFUN,OUT,X1, 

*X2,H0,EPS,W,Y,YOLD,YOLD1,IP,YA,YK1,YK2,YK3, 
*DF,DFOLD,F,FOLD) 

	

50 	X1=X2 
STOP 
END 

	SUBROUTINE OUT FOR PRINTING DATA 	 

SUBROUTINE OUT(T,Y,H) 
PARAMETER(N=16) 
IMPLICIT REAL*16 (A-H,O-Z) 
REAL*16 Y(N),x(n) 

do 145 i=1,n 
if (abs(y(i)-x(i)).1e.acc) then 
stop 
end if 

	

145 	continue 
WRITE(6,1)T,H 

	

1 	FORMAT(/6X,'TIME=',E14.6,5X,'H=',E14.6) 
WRITE(6,2)(Y(I),I=1,4) 

	

2 	FORMAT(/1X,'X1=',f9.6,2x,'Y1=',f9.6,2X,'Z1=',f9.6, 
* 		2X,'U1=',f9.6) 
WRITE(6,3)(Y(I),I=5,8) 

	

3 	FORMAT(/1X,'X2=',f9.6,2X,'Y2=',f9.6,2X,'Z2=',f9.6, 
* 		2X,'U2=',f9.6) 
WRITE(6,4)(Y(I),I=9,12) 

	

4 	FORMAT(/1X,'X3=',f9.6,2X,'Y3=',f9.6,2X,'Z3=',f9.6, 
* 		2X,'U3=',f9.6) 
WRITE(6,5)(Y(I),I=13,16) 

	

5 	FORMAT(/1X,'X4=',f9.6,2X,'Y4=',f9.6,2X,'Z4=',f9.6, 
* 		2X,'U4=',f9.6) 
do 123 i=1,16 



x(i)=y(i) 
123 	continue 

RETURN 
END 

C 
C 	SUBROUTINE FUN FOR EVALUTING THE VECTOR F 	 
C 

SUBROUTINE FUN(X,Y,F) 
IMPLICIT REAL*16(A-H,O-Z) 
PARAMETER (N=16) 
DIMENSION Y(N),F(N) 
COMMON/AB/ALFA,UF,R1,R2,R3,R4,FI1,FI2,W1,W2, 

* 		BETA,BETA1,BETA2,GA,GA1,GA2,ETA,ETA1,ETA2 
COMMON/AB1/CTA12,CTA20,CTA21,CTA23,CTA34,CTA40,CTA42,CTA43 

C 	CALCULATE RATE OF CHANGE OF COMPONENTS 	 

C 
B1=Y(4)/(Y(4)+1.0) 
B2=Y(8)/(Y(8)+1.0) 
B3=Y(12)/(Y(12)+1.0) 
B4=Y(16)/(Y(16)+1.0) 
C1=FI1*Y(4)/(W1+Y(4)) 
C2=FI1*Y(8)/(W1+Y(8)) 
C3=FI1*Y(12)/(W1+Y(12)) 
C4=FI1*Y(16)/(W1+Y(16)) 
D1=FI2*Y(4)/(W2+Y(4)) 
D2=FI2*Y(8)/(W2+Y(8)) 
D3=FI2*Y(12)/(W2+Y(12)) 
D4=FI2*Y(16)/(W2+Y(16)) 
E1=B1*Y(1)+C1*Y(2)+D1*Y(3) 
E2=B2*Y(5)+C2*Y(6)+D2*Y(7) 
E3=B3*Y(9)+C3*Y(10)+D3*Y(11) 
E4=B4*Y(13)+C4*Y(14)+D4*Y(15) 
F(1)=CTA21*Y(5)+(B1-CTA12)*Y(1) 
F(2)=CTA21*Y(6)+(C1-CTA12)*Y(2) 
F(3)=CTA21*Y(7)+(D1-CTA12)*Y(3) 
F(4)=ALFA*UF+CTA21*Y(8)-E1-CTA12*Y(4) 
F(5)=BETA*CTA12*Y(1)+BETA*CTA42*Y(13)+(B2-BETA*(CTA21+CTA23+CTA20 

* 	)*Y(5) 
F(6)=BETA*CTA12*Y(2)+BETA*CTA42*Y(14)+(C2-BETA*(CTA21+CTA23+CTA20 

* 	)*Y(6) 
F(7)=BETA*CTA12*Y(3)+BETA*CTA42*Y(15)+(D2-BETA*(CTA21+CTA23+CTA20 

* 	)*Y(7) 
F(8)=BETA*CTA12*Y(4)+BETA*CTA42*Y(16)-E2-BETA*(CTA21+CTA23+CTA20) 

* 	*Y(8) 
F(9)=BETA1*CTA23*Y(5)+BETA1*CTA43*Y(13)+(B3-BETA1*CTA34)*Y(9) 
F(10)=BETA1*CTA23*Y(6)+BETA1*CTA43*Y(14)+(C3-BETA1*CTA34)*Y(10) 
F(11)=BETA1*CTA23*Y(7)+BETA1*CTA43*Y(15)+(D3-BETA1*CTA34)*Y(11) 
F(12)=ETA1*BETA1*GA1*ALFA*UF+BETA1*CTA23*Y(8)+BETA1*CTA43*Y(16) 

* 	-E3-BETA1*CTA34*Y(12) 
F(13)=BETA2*CTA34*Y(9)+(B4-BETA2*(CTA42+CTA43+CTA40))*Y(13) 
F(14)=BETA2*CTA34*Y(10)+(C4-BETA2*(CTA42+CTA43+CTA40))*Y(14) 
F(15)=BETA2*CTA34*Y(11)+(D4-BETA2*(CTA42+CTA43+CTA40))*Y(15) 
F(16)=BETA2*CTA34*Y(12)-E4-BETA2*(CTA42+CTA43+CTA40)*Y(16) 
RETURN 
END 

C 
C 
C 	----SUBROUTINE DFUN FOR EVALUTING THE JACOBINE MATRIX---- 



C 
SUBROUTINE DFUN(X,Y,DF) 
IMPLICIT REAL*16(A-H,O-Z) 
PARAMETER (N=16) 
DIMENSION Y(N),DF(N,N),F(4),G(4),H(4),FD(4),GD(4),HD(4) 
COMMON/AB/ALFA,UF,R1,R2,R3,R4,FI1,FI2,W1,W2, 

BETA,BETA1,BETA2,GA,GA1,GA2,ETA,ETA1,ETA2 
COMMON/AB1/CTA12,CTA20,CTA21,CTA23,CTA34,CTA40,CTA42,CTA43 

C 
DO 100 I=1,4 
F(I)=Y(4*I)/(Y(4*I)+1.0) 
G(I)=FI1*Y(4*I)/(W1+Y(4*I)) 
H(I)=FI2*Y(4*I)/(W2+Y(4*I)) 

100 	CONTINUE 
DO 150 I=1,4 
FD(I)=1.0/((1.0+Y(4*I))*(1.0+Y(4*I))) 
GD(I)=FI1*W1/((W1+Y(4*I))*(W1+Y(4*I))) 
HD(I)=FI2*W2/((W2+Y(4*I))*(W2+Y(4*I))) 

150 	CONTINUE 
DO 200 I=1,16 
DO 200 J=1,16 
DF(I,J)=0.0 

200 	CONTINUE 
DF(1,1)=F(1)-CTA12 
DF(1,4)=Y(1)*FD(1) 
DF(1,5)=CTA21 
DF(2,2)=G(1)-CTA12 
DF(2,4)=Y(2)*GD(1) 
DF(2,6)=CTA21 
DF(3,3)=H(1)-CTA12 
DF(3,4)=Y(3)*HD(1) 
DF(3,7)=CTA21 
DF(4,1)=-F(1) 
DF(4,2)=-G(1) 
DF(4,3)=-H(1) 
DF(4,4)=-CTA12-(Y(1)*FD(1)+Y(2)*GD(1)+Y(3)*HD(1)) 
DF(4,8)=CTA21 
DF(5,1)=BETA*CTA12 
DF(5,5)=F(2)-BETA*(CTA21+CTA23+CTA20) 
DF(5,8)=Y(5)*FD(2) 
DF(5,13)=BETA*CTA42 
DF(6,2)=BETA*CTA12 
DF(6,6)=G(2)-BETA*(CTA21+CTA23+CTA20) 
DF(6,8)=Y(6)*GD(2) 
DF(6,14)=BETA*CTA42 
DF(7,3)=BETA*CTA12 
DF(7,7)=H(2)-BETA*(CTA21+CTA23+CTA20) 
DF(7,8)=Y(7)*HD(2) 
DF(7,15)=BETA*CTA42 
DF(8,4)=BETA*CTA12 
DF(8,5)=-F(2) 
DF(8,6)=-G(2) 
DF(8,7)=-H(2) 
DF(8,8)=-BETA*(CTA21+CTA23+cta20)-(Y(5)*FD(2)+Y(6)*GD(2)+Y(7)* 

HD(2)) 
DF(8,16)=BETA*CTA42 
DF(9,5)=BETA1*CTA23 
DF(9,9)=F(3)-BETA1*CTA34 
DF(9,12)=Y(9)*FD(3) 



DF(9,13)=BETA1*CTA43 
DF(10,6)=BETA1*CTA23 
DF(10,10)=G(3)-BETA1*CTA34 
DF(10,12)=Y(10)*GD(3) 
DF(10,14)=BETA1*CTA43 
DF(11,7)=BETA1*CTA23 
DF(11,11)=H(3)-BETA1*CTA34 
DF(11,12)=Y(11)*HD(3) 
DF(11,15)=BETA1*CTA43 
DF(12,8)=BETA1*CTA23 
DF(12,9)=-F(3) 
DF(12,10)=-G(3) 
DF(12,11)=-H(3) 
DF(12,12)=-BETA1*CTA34-(Y(9)*FD(3)+Y(10)* 

* 		GD(3)+Y(11)*HD(3)) 
DF(12,16)=BETA1*CTA43 
DF(13,9)=BETA2*CTA34 
DF(13,13)=F(4)-BETA2*(CTA40+CTA42+CTA43) 
DF(13,16)=Y(13)*FD(4) 
DF(14,10)=BETA2*CTA34 
DF(14,14)=G(4)-BETA2*(CTA40+CTA42+CTA43) 
DF(14,16)=Y(14)*GD(4) 
DF(15,11)=BETA2*CTA34 
DF(15,15)=H(4)-BETA2*(CTA40+CTA42+CTA43) 
DF(15,16)=Y(15)*HD(4) 
DF(16,12)=BETA2*CTA34 
DF(16,13)=-F(4) 
DF(16,14)=-G(4) 
DF(16,15)=-H(4) 
DF(16,16)=-BETA2*(CTA40+CTA42+CTA43)-(Y(13)*FD(4)+Y(14)*GD(4)+ 

* 		Y(15)*HD(4)) 
RETURN 
END 

C   SUBROUTINE STIFF3 : MICHELSEN'S METHOD 	 
C 

SUBROUTINE STIFF3(N,ND,NPRINT,FUN,DFUN,OUT,X0, 
*X1,H0,EPS,W,Y,YOLD,YOLD1,IP,YA,YK1,YK2,YK3, 
*DF,DFOLD,F,FOLD) 

IMPLICIT real*16 (A-H,O-Z) 
DIMENSION IP(ND),Y(ND),YOLD(ND),YOLD1(ND),YA(ND),YK1(ND),YK2(ND) 
DIMENSION YK3(ND),W(ND),F(ND),FOLD(ND),DF(ND,ND),DFOLD(ND,ND) 
EXTERNAL FUN,DFUN,OUT 
ICON=0 
NOUT=0 
X=X0 
H=H0 
IF(X0+2.D0*H.LT.X1) GO TO 1 

2 	H=(X1-X)/2.D0 
ICON=1 

1 	IF(ICON.EQ.0.AND.X+4.D0*H.GT.X1) H=(X1-X)/4.D0 
CALL FUN(X,Y,F) 



CALL DFUN(X,Y,DF) 
IHA=-1 
DO 30 I=1,N 

YOLD(I)=Y() 
FOLD(I)=F(I) 
DO 30 J=1,N 

30 	DFOLD(I,J)=DF(I,J) 
37 	CALL SIRK3(X,N,ND,FUN,IP,F,Y,YK1,YK2,YK3,DF,2.D0*H) 

DO 35 I=1,N 
YA(I)=Y(I) 
Y(I)=YOLD(I) 
F(I)=FOLD(I) 
DO 35 J=1,N 

35 	DF(I,J)=DFOLD(I,J) 
38 	IHA=IHA+1 

CALL SIRK3(X,N,ND,FUN,IP,F,Y,YK1,YK2,YK3,DF,H) 
CALL FUN(X,Y,F) 
CALL DFUN(X,Y,DF) 
DO 40 I=1,N 

40 	YOLD1(I)=Y(I) 
CALL SIRK3(X,N,ND,FUN,IP,F,Y,YK1,YK2,YK3,DF,H) 
E=0.D0 
DO 41 I=1,N 
ES=W(I)*QABS(YA(I)-Y(I))/(1.D0+QABS(Y(I))) 
IF(ES.GT.E) E=ES 

41 	CONTINUE 
Q=E/EPS 
QA=(4.DO*Q)**.25D0 
IF(Q.LE.1.D0) GO TO 48 
DO 45 I=1,N 
YA(I)=YOLD1(I) 
F(I)=FOLD(I) 
Y(I)=YOLD(I) 
DO 45 J=1,N 

45 	DF(I,J)=DFOLD(I,J) 
H=H/2.D0 
ICON=0 
GO TO 38 

48 	DO 49 I=1,N 
49 	Y(I)=Y(I)+(Y(I)-YA(I))/7.D0 

X=X+2.DO*H 
QA=1.D0/(QA+1.D-10) 
IF(QA.GT.3.D0) QA=3.D0 
H=QA*H 
NOUT=NOUT+1 
HH=2.D0*H/QA 
IF((NOUT/NPRINT)*NPRINT.EQ.NOUT.OR.ICON.EQ.1) CALL OUT(X,Y,HH) 
IF(ICON.EQ.1) GO TO 187 
H0=H 
IF(X+2.DO*H.LT.X1) GO TO 1 
GO TO 2 

187 	RETURN 
END 

C 
C 
C 
C   ----- SUBROUTINE BACK : BACK SUBSTITUTION ALGORITHM ----- 	 
C 

SUBROUTINE BACK(ND,N,IPIV,A,V) 
IMPLICIT real*16 (A-H,O-Z) 



DIMENSION IPIV(ND),A(ND,ND),V(ND) 
N1=N-1 
DO 10 I=1,N1 
I1=I+1 
K=IPIV(I) 
IF(K.EQ.I) GO TO 11 
X=V(I) 
V(I)=V(K) 
V(K)=X 

11 	DO 10 J=I1,N 
10 	V(J)=V(J)+A(J,I)*V(I) 

V(N)=V(N)/A(N,N) 
DO 15 II=2,N 
I=N+1-II 
I1=I+1 
DO 16 J=I1,N 

16 	V(I)=V(I)-A(I,J)*V(J) 
15 	V(I)=V(I)/A(I,I) 

RETURN 
END 

C 
C 
C 
C   ----- SUBROUTINE LU : FOR DECOMPOSING A MATRIX A=LU ----- 	 
C 

SUBROUTINE LU(ND,N,IPIV,A) 
IMPLICIT real*16 (A-H,O-Z) 

DIMENSION IPIV(ND),A(ND,ND) 
IPIV(N)=N 
N1=N-1 
DO 10 I=1,N1 
X=A(I,I) 
IF(X.LT.O.D0) X=-X 
IPIV(I)=I 
I1=I+1 
DO 11 J=I1,N 
Y=A(J,I) 
IF(Y.LT.O.D0) Y=-Y 
IF(Y.LE.X) GO TO 11 
X=Y 
IPIV(I)=J 

11 	CONTINUE 
IF(IPIV(I).EQ.I) GO TO 14 
K=IPIV(I) 
DO 12 J=I,N 
X=A(I,J) 
A(I,J)=A(K,J) 

12 	A(K,J)=X 
14 	DO 10 J=I1,N 

X=-A(J,I)/A(I,I) 
A(J, I)=X 
DO 10 K=I1,N 

10 	A(J,K)=A(J,K)+X*A(I,K) 
RETURN 
END 

C 
C 
C 
C   ----- SUBRROUTINE SIRK3 : 
C 	 SINGLE-STEP SEMI-IMPLICIT INTEGRATION 	 



C 
SUBROUTINE SIRK3(X,N,ND,FUN,IPIV,F,Y,YK1,YK2,YK3,DF,H) 
IMPLICIT real*16 (A-H,O-Z) 

DIMENSION F(ND),Y(ND),YK1(ND),YK2(ND),YK3(ND) 
DIMENSION IPIV(ND),DF(ND,ND),R(4) 
DATA A,R/.4358665215084589D0,1.037609496131859D0, 

*.8349304838526377D0,-.6302020887244523D0,-.2423378912600452D0/ 
DO 5 I=1,N 
DO 6 J=1,N 
DF(I,J)=-H*A*DF(I,J) 
IF(QABS(DF(I,J)).LT.1.D-12) DF(I,J)=0.D0 

6 	CONTINUE 
5 	DF(I,I)=DF(I,I)+1.D0 

CALL LU(ND,N,IPIV,DF) 
CALL BACK(ND,N,IPIV,DF,F) 
DO 8 I=1,N 
YK1(I)=H*F(I) 

8 	YK2(I)=Y(I)+.75D0*YK1(I) 
CALL FUN(X,YK2,F) 
CALL BACK(ND,N,IPIV,DF,F) 
DO 9 I=1,N 
YK2(I)=H*F(I) 
Y(I)=Y(I)+R(1)*YK1(I)+R(2)*YK2(I) 

9 	YK2(I)=R(3)*YK1(I)+R(4)*YK2(I) 
CALL BACK(ND,N,IPIV,DF,YK2) 
DO 10 I=1,N 

10 	Y(I)=Y(I)+YK2(I) 
RETURN 
END 



C********************************************************************** 
C 
C 
C 	MONOD MODEL predicts the concentrations of biomass & substrate 
C 
C 	in four interconnected chemostats by Newton-Raphsen Method 
C 
C 	NOTE: 
C 	 LINK NR,CCI 
C 
C 	 SUBROUTINE CALLED : EIG3, NEWTON, CALCN 
C 
C*********************************************************************** 
C 
C 

PROGRAM NR 
IMPLICIT REAL*8(A-H,O-Z) 
PARAMETER (N=12) 
DIMENSION A(12,13),XOLD(12),XINC(12) 
DIMENSION EIG(N,1),V(5),u(4) 
COMMON/AB1/R1,R2,R3,R4,FI1,FI2,W1,W2, 

* 		BETA,BETA1,BETA2,GA,GA1,GA2,ETA,ETA1,ETA2 
COMMON/AB2/ITMAX,EPS1,EPS2 

C 
OPEN (5,FILE='MONOD.DAT',STATUS='OLD') 
OPEN (6,FILE='MONOD.OUT',STATUS='NEW') 

C 
ITMAX=20 
EPS1=1.0e-08 
EPS2=1.0e-08 
READ (5,*)ALFA,UF 
READ (5,*)R1,R2,R3,R4 
READ (5,*)BETA,BETA1,BETA2,GA,GA1,GA2 
READ (5,*)ETA,ETA1,ETA2,FI1,FI2,W1,W2 
READ (5,*)(XOLD(I),I=1,N) 

C 
WRITE(6,11) 

11 	FORMAT(/16X,'**** Newton-Raphson Method for Iteration ****'//30X, 
* 			'---- MONOD ----'/) 
WRITE(6,22) 

22 	FORMAT(/21X,'**** PARAMETER FOR ITERATION ****') 
WRITE(6,33)ALFA 

33 	FORMAT(/3X,'ALFA=',F8.5) 
WRITE(6,44)UF,R1,R2,R3,R4 

44 	FORMAT(/3X,'UF=',F6.3,4X,'R1=',F6.3,8X,'R2=',F6.3,5X,'R3=',F6.3, 
* 			6X,'R4=',F6.3) 
WRITE(6,66)GA,GA1,GA2,FI1,FI2 

66 	FORMAT(/3X,'GA=',F5.2,5X,'GA1=',F5.2,8X,'GA2=',F5.2,5X,'FI1=', 
* 			F5.2,6X,'FI2=',F5.2) 
WRITE(6,77)W1,W2,ETA,ETA1,ETA2 

77 	FORMAT(/3X,'W1=',F6.3,4X,'W2=',F6.3,8X,'ETA=',F5.2,5X,'ETA1=', 
* 			F5.2,5X,'ETA2=',F5.2) 

WRITE(6,88)BETA,BETA1,BETA2,EPS1,EPS2 
88 	FORMAT(/3X,'BETA=',F5.2,3X,'BETA1=',F5.2,6X,'BETA2=',F5.2, 

* 			3X,'EPS1=',E10.4,3X,'EPS2=',E10.4) 

	

WRITE(6,99)(XOLD(J),J=1,N) 
99 	FORMAT(/3X,'INITIAL CONCENTRATIONS:'// 

* 			5X,'Y=',6F13.6,//7X,6F13.6//) 
C 
C ----CALL NEWTON-RAPHSON METHOD 	 



C 

	

100 	do 200 i=1,n 

	

200 	xinc(i)=0.0 
CALL NTN (A,N,XOLD,XINC,ALFA,UF,ITER,u) 
stdy1=-1 
do 220 i=0,3 
if (xold(3*i+3).lt.eps2) stdy1=1 

	

220 	continue 
if (stdyl.eq.-1) then 
alfa=alfa+1.0e-04 
goto 100 
end if 

C 

	

850 	FORMAT(/20x,'The number of iteration =',I2/) 
WRITE(6,900)ALFA,UF 

	

900 	FORMAT(5X,'ALFA=',F10.4,5X,'UF=',F7.2/) 
WRITE(6,950)(XOLD(I),I=1,3),U(1) 

	

950 	FORMAT(5X,'X1=',F13.6,5X,'Y1=',F13.6,5X,'Z1=',F13.6,5X, 
	* 			'U1=',F13.6/) 

WRITE(6,952)(XOLD(I),I=4,6),U(2) 

	

952 	FORMAT(5X,'X2=',F13.6,5X,'Y2=',F13.6,5X,'Z2=',F13.6,5X, 
* 			'U2=',F13.6/) 
WRITE(6,954)(XOLD(I),I=7,9),U(3) 

	

954 	FORMAT(5X,'X3=',F13.6,5X,'Y3=',F13.6,5X,'Z3=',F13.6,5X, 
* 			'U3=',F13.6/) 
WRITE(6,956)(XOLD(I),I=10,12),U(4) 

	

956 	FORMAT(5X,'X4=',F13.6,5X,'Y4=',F13.6,5X,'Z4=',F13.6,5X, 
* 			'U4=',F13.6/) 
WRITE(6,850) ITER 

C 
CALL CALCN(A,N,XOLD,ALFA,UF,u) 

C 
C ----CHECK STABILITY OF SOLUTION---- 
C 

CALL EIG3(A,N,EIG) 
WRITE(6,111) 

	

111 	FORMAT (/25X,'Eigenvalues',//5X,'No. of Eigenvalues',10x, 
* 			'Real Part',10x,'Imaginary Part'/) 
DO 75 J=1,N 
write(6,222) J,eig(j,1),eig(j,2) 

	

222 	format(/10x,I2,19X,f12.8,11x,f10.8) 

	

75 	CONTINUE 
STDY=-1.0 
DO 30 J=1,N 

	

30 	IF (EIG(J,1).GT.0.0) STDY=1.0 
IF (STDY.EQ.1) THEN 
WRITE(6,32) 

	

32 	FORMAT(//25X,' 	UNSTABLE POINT 	'/) 
ELSE 
WRITE(6,36) 

	

36 	FORMAT(//25X,' 	STABLE POINT 	'/) 
END IF 
STOP 
END 

C 
C ---SUBROUTINE NEWTON: 
C 	SOLVE SIMULTANEOUS NON-LINEAR EQUATIONS BY NEWTON-RAPHSON ITERATION 
C 

SUBROUTINE NTN(A,N,XOLD,XINC,ALFA,UF,ITER,u) 
IMPLICIT REAL*8 (A-H,O-Z) 



DIMENSION A(12,13),xold(12),xinc(12),u(4) 
logical converge 
COMMON/AB1/R1,R2,R3,R4,FI1,FI2,W1,W2, 

* 			BETA,BETA1,BETA2,GA,GA1,GA2,ETA,ETA1,ETA2 
COMMON/AB2/ITMAX,EPS1,EPS2 

C 	newton-raphson iteration 
do 30 ii=1,itmax 

C 	call on calcn to set up the matrix 
call calcn(a,n,xold,alfa,uf,u) 

C 	call simul to compute jacobian and correction in xinc 
indic=1 
deter=simul1(n,a,xinc,eps1,indic,n+l) 

C 	if deter isn't 0,the value of deter is set to 100 or -100 in th: 
C 	function call. if the determination is required you may call sir 

if (deter.ne.0) then 
C 	check for convergence and update xold value 

CONVERGE=.TRUE. 
do 5 i=1,n 

if(abs(xinc(i)).gt.eps2) converge=.false. 
xold(i)=xold(i)+xinc(i) 

5 CONTINUE 
C 	WRITE(6,900)ALFA,UF 
C 900 FORMAT(5X,'ALFA=',F10.4,5X,'UF=',F7.2/) 
C 	WRITE(6,950)(XOLD(J),J=1,N) 
C 950 FORMAT(5X,'X1=',F13.6,5X,'Y1=',F13.6,5X,'Z1=',F13.6 
C 	* 	//5X,'X2=',F13.6,5X,'Y2=',F13.6,5X,'Z2=',F13.6 
C 	* 	//5X,'X3=',F13.6,5X,'Y3=',F13.6,5X,'Z3=',F13.6 
C 	* 	//5X,'X4=',F13.6,5X,'Y4=',F13.6,5X,'Z4=',F13.6/) 

if(CONVERGE.EQV..TRUE.)then 
iter=ii 
return 

endif 
else 

write(6,201) 
stop 

endif 
30 	continue 

write(6,204) alfa,uf 
stop 

C 
C ----formats for input and output statements 
201 	format(38h0matrix is ill-conditioned or singular) 
204 	format(5x,'alfa=',f8.4,3x,'uf=',f8.4//) 

end 

C 
C ----SUBROUTINE CALCN FOR EVALUATION THE AUGUMENT JACOBIAN MATRIX---- 
C 

SUBROUTINE CALCN(A,N,X,ALFA,UF,u) 
IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION A(12,13),X(12),U(4),F(4),G(4),H(4),DF(4),DG(4),DH(4),V(5) 
COMMON/AB1/R1,R2,R3,R4,FI1,FI2,W1,W2, 

BETA,BETA1,BETA2,GA,GA1,GA2,ETA,ETA1,ETA2 
C 

DO 10 1=1,12 
DO 10 J=1,13 
A(I,J)=0.0 

10 	CONTINUE 



C 
CTA=ALFA/(R1*(R3+1.0)+1.0) 
CTA12=CTA*(R1*(R3+1.0)+R2*R3*(GA1+1.0)+(R2+1.0)) 
CTA23=CTA*(R3*(GA1+1.0)+1.0) 
CTA40=CTA*(GA1*(R1+1.0)+1.0) 
CTA34=(R4+R3+1.0)*CTA40 
CTA21=R2*CTA23 
CTA20=R1*CTA23 
CTA42=R3*CTA40 
CTA43=R4*CTA40 

C 
V(5)=(UF*ALFA)/((CTA23+CTA20)*CTA40+CTA20*CTA42) 
V(1)=V(5)*(CTA21*CTA42*(GA1*ETA1+1.0)+CTA21*CTA40+(CTA23+CTA20)* 

*    CTA4O+CTA20*CTA42)/CTA12 
V(2)=V(5)*(CTA42*(GA1*ETA1+1.0)+CTA40) 
V(3)=V(5)*(CTA43+CTA42+CTA40)*((CTA23+CTA20)*GA1*ETA1+CTA23)/CTA34 
V(4)=V(5)*((CTA23+CTA20)*GA1*ETA1+CTA23) 

C 
U(1)=V(1)-X(1)-X(2)-X(3) 
U(2)=V(2)-X(4)-X(5)-X(6) 
U(3)=V(3)-X(7) -X(8) -X(9) 
U(4)=V(4)-X(10)-X(11)-X(12) 

C 
C 

DO 20 I=1,4 
F(I)=U(I)/(U(I)+1.0) 
G(I)=FI1*U(I)/(W1+U(I)) 
H(I)=FI2*U(I)/(W2+U(I)) 

20 	CONTINUE 
C 

DO 30 I=1,4 
DF(I)=1.0/((U(I)+1.0)*(U(I)+1.0)) 
DG(I)=FI1*W1/((W1+U(I))*(W1+U(I))) 
DH(I)=FI2*W2/((W2+U(I))*(W2+U(I))) 

30 	CONTINUE 
C 

A(1,1)=F(1)-CTA12-X(1)*DF(1) 
A(1,2)=-DF(1)*X(1) 
A(1,3)=A(1,2) 
A(1,4)=CTA21 
A(2,1)=-DG(1)*X(2) 
A(2,2)=G(1)-CTA12-X(2)*DG(1) 
A(2, 3)=A(2,1) 
A(2,5)=A(1,4) 
A(3, 1)=-DH(1) *X(3) 
A(3,2)=A(3,1) 
A(3,3)=H(1)-CTA12-DH(1)*X(3) 
A(3,6)=A(1,4) 
A(4,1)=BETA*CTA12 
A(4,4)=F(2)-BETA*(CTA21+CTA23+CTA20)-DF(2)*X(4) 
A(4,5)=-DF(2)*X(4) 
A(4,6)=A(4,5) 
A(4,10)=BETA*CTA42 
A(5,2)=A(4,1) 
A(5,4)=-DG(2)*X(5) 
A(5,5)=G(2)-BETA*(CTA21+CTA23+CTA20)-DG(2)*X(5) 
A(5,6)=A(5,4) 
A(5,11)=A(4,10) 
A(6,3)=A(4,1) 
A(6,4)=-DH(2)*X(6) 



A(6,5)=A(6,4) 
A(6,6)=H(2)-BETA*(CTA21+CTA23+CTA20)-DH(2)*X(6) 
A(6,12)=A(4,10) 
A(7,4)=BETA1*CTA23 
A(7,7)=F(3)-BETA1*CTA34-DF(3)*X(7) 
A(7,8)=-DF(3)*X(7) 
A(7,9)=A(7,8) 
A(7,10)=BETA1*CTA43 
A(8,5)=A(7,4) 
A(8,7)=-DG(3)*X(8) 
A(8,8)=G(3)-BETA1*CTA34-DG(3)*X(8) 
A(8,9)=A(8,7) 
A(8,11)=A(7,10) 
A(9,6)=A(7,4) 
A(9,7)=-DH(3)*X(9) 
A(9,8)=A(9,7) 
A(9,9)=H(3)-BETA1*CTA34-DH(3)*X(9) 
A(9,12)=A(7,10) 
A(10,7)=BETA2*CTA34 
A(10,10)=F(4)-BETA2*(CTA40+CTA42+CTA43)-DF(4)*X(10) 
A(10,11)=-DF(4)*X(10) 
A(10, 12)=A(10, 11) 
A(11,8)=A(10,7) 
A(11,10)=-DG(4)*X(11) 
A(11,11)=G(4)-BETA2*(CTA40+CTA42+CTA43)-DG(4)*X(11) 
A(11,12)=A(11,10) 
A(12,9)=A(10,7) 
A(12,10)=-DH(4)*X(12) 
A(12,11)=A(12,10) 
A(12,12)=H(4)-BETA2*(CTA40+CTA42+CTA43)-X(12)*DH(4) 
A(1,13)=(CTA12-F(1))*X(1)-CTA21*X(4) 
A(2,13)=(CTA12-G(1))*X(2)-CTA21*X(5) 
A(3,13)=(CTA12-H(1))*X(3)-CTA21*X(6) 
A(4,13)=(BETA*(CTA21+CTA23+CTA20)-F(2))*X(4)-BETA*(CTA12*X(1)+ 

CTA42*X(10)) 
A(5,13)=(BETA*(CTA21+CTA23+CTA20)-G(2))*X(5)-BETA*(CTA12*X(2)+ 

CTA42*X(11)) 
A(6,13)=(BETA*(CTA21+CTA23+CTA20)-H(2))*X(6)-BETA*(CTA12*X(3)+ 

CTA42*X(12)) 
A(7,13)=(BETA1*CTA34-F(3))*X(7)-BETA1*(CTA23*X(4)+CTA43*X(10)) 
A(8,13)=(BETA1*CTA34-G(3))*X(8)-BETA1*(CTA23*X(5)+CTA43*X(11)) 
A(9,13)=(BETA1*CTA34-H(3))*X(9)-BETA1*(CTA23*X(6)+CTA43*X(12)) 
A(10,13)=(BETA2*(CTA40+CTA42+CTA43)-F(4))*X(10)-BETA2*CTA34*X(7) 
A(11,13)=(BETA2*(CTA40+CTA42+CTA43)-G(4))*X(11)-BETA2*CTA34*X(8) 
A(12,13)=(BETA2*(CTA40+CTA42+CTA43)-H(4))*X(12)-BETA2*CTA34*X(9) 
RETURN 
END 
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