
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI 
films the text directly from the original or copy submitted. Thus, some 
thesis and dissertation copies are in typewriter face, while others may 
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and photographs, print bleedthrough, substandard margins, 
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete 
manuscript and there are missing pages, these will be noted. Also, if 
unauthorized copyright material had to be removed, a note will indicate 
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand corner and 
continuing from left to right in equal sections with small overlaps. Each 
original is also photographed in one exposure and is included in 
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI directly 
to order.

University Microfilms International 
A Bell & Howell Information C o m p a n y  

3 0 0  North Z e e b  R oad. Ann Arbor. Ml 4 8 1 0 6 -1 3 4 6  U SA  
3 1 3 /7 6 1 -4 7 0 0  8 0 0 /5 2 1 -0 6 0 0



Order N u m b er 9221893

A  generalized , param etric P R -Q M F  /w a v e le t transform  design  
approach for m ultiresolu tion  signal d ecom position

Caglar, Hakan, Ph.D.

New Jersey Institute of Technology, 1992

Copyright © 1992 by Caviar, Hakan. A ll rights reserved.

U M I
300 N. ZeebRd.
Ann Arbor, MI 48106



A G eneralized, Param etric P R -Q M F /W avelet
Transform

Design Approach for M ultiresolution  Signal 
D ecom position

ln-

11 aka 11 (,'aglar

Dissertation subm itted to the Faculty of the Graduate School 

of the New Jersey Institu te of Technology in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

1991



APPROVAL SHEET 

Title of Thesis: 	 A Generalized, Parametric PR-QMF/Waveiet Transform 
Design Approach for Multiresolution Signal Decomposition 

Name of Candidate: 	Hakan Caglar 
Doctor of Philosophy, 1991 

Thesis and Abstract Approved 					 Date 
Dr. Ali N. Akansu 
Assistant Professor 
Department of Electrical and Computer Engineering 

Signature of other members 

					

Date 

 
of the thesis committee. 	Dr. Rashid Ansari 

Bell Communications Research 
Morristown, New Jersey 

Date 

Dr. Yeheskel Bar-Ness 
Professor 
Department of Electrical and Computer Engineering 

Date 
Dr. Erdal Panayirci 
Professor 
Department of Electrical and Computer Engineering 

	

Date  

Dr. John Tavantzis 
Professor 
Mathematics Department 



VITA 

Name: Hakan Caglar 

Degree and date to be conferred: Ph.D. Dec G. 1991. 

Secondary education: Izmit Lisesi. 
Turkey. 1980 

Collegiate institutions attended: Date Degree Date of Degree 

New Jersey Institute of Technology 1/88-12/91 Ph.D Dec. 1991 

Polytechnic University 1/86-12/87 M.Sc Dec. 1987 

Istanbul Technical University 9/80-5/84 B.Sc. May 1984 

Major: Electrical Engineering. 



ABSTRACT

Title of Thesis: A Generalized, Param etric PR-QM F/W avelet Transform
Design Approach for Multiresolution Signal Decomposition

Hakan Qaglar Doctor of Philosophy, 1991

Thesis directed by: Dr. Ali N. Akansu

This dissertation aims to emphasize the interrelations and the linkages 

of the theories of discrete-time filter banks and wavelet transforms. It is 

shown th a t the Binomial-QMF banks are identical to the interscale coeffi­

cients or filters of the compactly supported orthonormal wavelet transform 

bases proposed by Daubechies.

A generalized, param etric, sm ooth 2-band PR-QM F design approach 

based on Bernstein polynomial approxim ation is developed. It is found that 

the most regular compact support orthonormal wavelet filters, coiflet filters 

are only the special cases of the proposed filter bank design technique.

A new objective performance measure called Non-aliasing Energy Ra- 

tio(NER) is developed. Its m erits are proven with the comparative per­

formance studies of the well known orthonormal signal decomposition tech­

niques.

This dissertation also addresses the optim al 2-band PR-QM F design prob­

lem. The variables of practical significance in image processing and coding 

are included in the optim ization problem. The upper performance bounds of 

2-band PR-QM F and their corresponding filter coefficients are derived.

It is objectively shown that there are superior filter bank solutions avail­

able over the standard block transform , DCT. It is expected tha t the theo-



retical contributions of this dissertation will find its applications particularly 

in Visual Signal Processing and Coding.
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C hapter 1 

Introduction

Recent advances in semiconductor devices have made visual communications a re­

ality. It is predicted th a t this technological advance will find most of its commercial 

applications within this decade along with the extensive provision of ISDN services 

to the customers.

The concept of multiresolution has been widely recognized as a useful tool 

in Machine Vision. More recently, this signal processing technique has also been 

studied for Image-Video Coding applications. It is commonly agreed th a t stan­

dards of the next generation Image-Video Codecs will provide this desired feature 

inherently. Two-band filter banks have been employed in the literature as the basic 

component of hierarchical filter banks, particularly for Visual Signal Processing. 

This dissertation studies the filter bank theory in depth, and proposes several novel 

filter bank design approaches. It also examines their practical merits.

We first describe a class of orthogonal binomial filters which provide a set of 

basis functions for a bank of perfect reconstruction finite impulse response quadra­

ture mirror filters(PR-QM F FIR). These Binomial QMFs are shown to be the same 

filters as those derived from a discrete orthonormal wavelet approach by Daubechies. 

These filters are the unique maximally-flat m agnitude square PR-QM Fs. We em­

phasize the strong linkage between the popular wavelet transform  theory and the
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well established filter banks theory.

A generalized, param etric PR-QM F design technique based on Bernstein 

polynomial approximation is developed in the next chapter. The param etric na­

ture of this solution provides useful insights to the PR-QM F problem. Several well- 

known orthonorm al wavelet filters, most regular filters, Coiflet filters, Daubechies 

wavelet filters, PR-QM Fs, are all shown to be the special cases of the proposed 

technique. Any orthonormal PR-QM F can be designed with this technique. The 

filter examples we considered are smooth and ripple-free. This approach can also be 

easily applied for rippled QMF design problems. This design technique yields a sim­

ple tool to relate the features of the filter bank to be designed and its corresponding 

wavelet transform  basis.

Furtherm ore we present an analysis of band energy distributions in perfect 

reconstruction(PR) m ultirate systems and evaluates the effects of aliasing. A per­

formance measure called Non-Aliasing Energy Ratio(NER) is defined. The merit of 

the new measure is emphasized with the performance comparisons of the popular 

block transforms and 2-band PR-QM F based filter banks. It is shown th a t the new 

measure complements the energy compaction measure used widely in the literature.

A multivariable optimization problem is formulated to design optimum 2- 

band PR-QM Fs in the last part of this dissertation. The energy compaction, alias­

ing energy, step response, zero-mean high-pass filter, uncorrelated subband signals, 

constrained nonlinearity of the phase-response, and the given input statistics are 

simultaneously considered in the proposed optim al filter design technique. A set of 

optim al PR-QM F solutions and their optim ization criteria along with their objec­

tive performance are given for comparison. This PR-QM F design approach leads to 

an input-driven adaptive subband filter bank structure. It is shown th a t these opti­

mal filters objectively outperform the well-known fixed PR-QM Fs and the standard

2



Discrete Cosine Transform, DCT, in the literature. It is expected th a t these new 

PR-QM Fs are also subjectively superior to the la tter in image and video coding 

applications and will be used in practice.
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C hapter 2 

Subband Signal D ecom position

2.1 In trod u ction

In many signal processing applications which involve storage and transmission of 

digital signal there is a need for source compression. Subband coding has emerged 

as one of the suitable techniques for satisfying these needs[l][2][3]. The principles 

of subband coding have been successfully applied first in one-dimensional signals 

like speech, and then 2-D signals like still images and video, at the medium and 

low bit ra tes[4] [5] [6].

The subband signal decomposition has become a very popular transform 

recently, because of its m athem atical flexibity. Its main advantage over the block 

transform s comes from the arbitrary  duration of its basis functions or band-pass 

filters compai'ed to the fixed duration in block transforms or block filter banks. 

This fact will be exploited later in Chapter 7 for the optim al design of PR-QMFs.

The most meaningful application of subband coding is in visual signal pro­

cessing, since it provides the multiresolution signal representation inherently. Sub­

band image coding decomposes the input image into relatively narrow subbands 

where each of these subband signals are decimated and encoded. The bit allocation 

among subband signals are accurately matched to the statistics of subbands[7]. At 

the receiver side, these subbands are decoded, interpolated, and added together to
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obtain the reconstructed image. The underlying principle for the coder is that the 

bit allocation can be optimized such that those subbands with more significance 

get more bits allocated. The advantages of subband coding can be viewed from 

several different points of view. The most common one focuses on the perceptual 

m erits of this technique. Since the human visual system (HVS) responds differently 

to the quantization noise in different spectral subbands, it is clearly advantageous 

to  be able to control the spectral shape of the noise. This is achievable by coding 

the signal in independent subbands. Another aspect of the subband technique is 

more fundam ental from data compression point of view. This m ethod transforms 

the signal into subband domain in which the energy of the signal is distributed 

unevenly among subbands. This energy pattern  is used efficiently for controlling 

the allocation of available bits[7]. If the adjacent subbands have small or negligible 

energy leakage, then the noise introduced with the quantization will be confined 

to th a t band. This allows to control the spectral shape of the quantization noise 

in the reconstructed signal. Waveform coding techniques such as PCM , DPCM, or 

vector quantization are used for coding of subbands.

In this chapter, we first present the downsampling and upsampling opera­

tions which are the basic building blocks of m ultirate digital signal processing. This 

is followed by polyphase signal representation and its application in m ultirate filter 

banks. Then, we derive the two-channel Perfect Reconstruction Q uadrature Mirror 

F ilter (PR-QM F) bank requirements. In the next section, we extend the subband 

idea for 2-D signals with separable and non-separable filter banks. The following 

section derives the equivalent parallel realization of cascaded tree structures, and 

discusses different subband trees. Then, the last section of this chapter explains 

the idea of Laplacian Pyram id for signal decomposition and derives the necessary 

and sufficient conditions on filters in order to achieve the critical sampling rate.
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This new pyramidal structure with critical sampling is called Modified Laplacian 

Pyram id and its relations with the biorthogonal 2-band filter banks are also shown 

in this section.

2.2  M u ltira te  D ig ita l S ignal P ro cess in g

In recent years, there has been tremendous progress in m ultirate  processing of digi­

tal signals which found its applications, in communications, speech and image pro­

cessing, spectral analysis, radar systems, antenna systems and others[8][9][10][11][12] 

Unlike the single-rate systems, the sample spacing varies in m ultirate systems from 

point to  point. That is why more efficient processing of signals can be achieved 

with this approach. Unfortunately, the change of sample ra te  x’esults with the in­

troduction of a  new type of error, i.e., aliasing. The aliasing error should somehow 

be cancelled since the perfect reconstruction of the signal is the main objective of 

filter bank structure[10][11 j [12] [13] [14].

The basic building blocks in a m ultirate digital signal processing are down- 

sampling and upsampling operations. In the next section, we introduce these basic 

m ultirate  building blocks, along with their tim e and frequency domain characteri­

zations, and their interrelations[10][ll]. Fig. 2.1 displays two-channel QMF bank 

and implies the functions of downsampling and upsampling operations.

2.2.1 D ow nsam pling and U psam pling

The process of down-sampling by an integer factor of M  is characterized by the 

input output relation in tim e domain

VD(n) = x ( M n )  (2.1)

The relation indicates th a t the output at tim e n  is equal to the input at time Mn.  

As a consequence of this, only the input samples with the indices equal to the

6



m ultiples of M  are retained. A downsampler takes sequence x ( n ) as input and 

outputs time-compressed sequence j/£>(n). The compression ratio M  is an integer. 

This operation is denoted by the downward arrow (indicative of down sampling). 

The sampling rate reduction of M  =  2 is dem onstrated as an example in Fig. 2.2.

x ( n ) x(n)

Fig. 2.1 Two-Channel QMF Bank.

Since the downsampling corresponds to a compression in tim e domain, one 

should expect a stretching efFect in frequency domain. The Fourier domain descrip­

tion of downsampler is given as

i M- 1
Yn{en = -rj ■£, A V ^ ’) (2-2)

1V1 k=0

It can also be expressed in 2  domain as

i M-l
Y‘>M  =  17  £  X ^ ' IMW k) (2.3)

1V1 k=0

where W  =  e- J ^ .  X ( e :’w) and Yo(e :’w) are the Fourier transforms of the input 

signal x(n)  and the downsampled ou tput signal yo{n),  respectively. The term  with

k = 0 is indeed the M-fold stretched version of X (eJW). M  — 1 terms for k > 0 are

uniformly frequency shifted versions of this stretched spectrum . These M  terms 

together make up a function with period of 2ir in u.  The sum of term s with k > 0 

are called the aliasing. The overlapping areas of the bottom  part of Fig. 2.2 indi­

cate the aliasing error due to subsampling. As long as the input signal x(n)  has a



bandw idth of [-^ , f j] 110 aliasing errors will occur[ll].

x ( n )
1 M

Z/d(«) =  x ( M n )

x(n)

0 1 2 3 4 5 6 7

M-Fold downsampler 

VD( n)

• » n 1
0 1 2 3 4 5 6 7

TT— 7T

27T

Region of overlap
—‘27T

Fig. 2.2. Downsampler operation for M  =  2.

Similarly, an T-fold upsampling is characterized by the input output time

relation
1 \ f x ( t )  if n is a multiple of L 

y , M  =  0 otherwise
(2.4)

T hat is, the output signal is obtained by inserting L — 1 zero valued samples between 

adjacent samples of x(n).  An upsampler is given in Fig. 2.3 for L = 2. The input 

output relation of an upsampler in Fourier domain is shown as

y>(eiu;) =  X{ e jwL) and 
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Yj(z) = X ( z L) in z-domain (2.5)

i.e 5//(eJU') is an T-fold compressed version of X ( e :'w). The m ultiple copies of the 

basic spectrum , called imaging effect and its ex tra  copies are created by the upsam­

pler. An upward arrow with L indicates T-fold upsampler. The effect of stretching 

in tim e is a  compression in frequency domain. Thus, L — 1 images of the original 

spectrum  are caused with this operation. The imaging effect is the dual of aliasing 

effect caused by the downsampler. The images in the output of the upsampler are 

usually removed by the properly chosen interpolation filter.

x ( n )

x(n)

L-Fold upsampler 

Vi(n)

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8 9  10

■ X ( e JW)

u
—2tr —7r 7r 27T

—2ir —  7T 7r

Fig. 2.3. Upsampler operation for L =  2.

Even though downsampler and upsampler are linear systems, they are time 

varying. Accordingly, they can not be represented by transfer function[lO][ll].
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The fundamental difference between aliasing and imaging is important. Alias­

ing can cause loss of information because of the possible overlapping of the spectra. 

Imaging, on the other hand, does not lead to any loss of information. This is 

consistent with the fact that no tim e domain samples are lost.

x ( T l )  i j d . I 1 77 I

A ( II ) ’JD.iin)

u 1 2 3 4 5 6 0 I 2 •.> *r ~j i) i >

A'iVw

•>

Vn , i e ^ \

- 2 -  - -  ~ 2~

Fig. 2.4. Downsampler followed by upsampier for M  = 2.

It is im portant to analyze the m ultirate structure where a downsampier

and an upsampler are cascaded. The downsampler causes aliasing, whereas :r.e

upsampier causes imaging, all in frequency domain. Fig. 2.4 shows a cascade

connection of down upsampler which is encountered in a typical filter bank. The

signal uo.n’i) is equal to x\n)  whenever n is a multiple of M.  and zero otherwise

x(n)  if n is a multiple of M 0
0 otherwise



The input-output relation of this cascaded down upsampler structure is 

found in 2  domain as
i M-l

YdA * )  =  TT E  X l t W * )  (2.7)
m  k=0

This means that M Y d j ( ^ w) is the sum of A’(eJ'w) and its M  — 1 uniformly fre­

quency shifted versions X ( e ^ w~2W'')) k =  1,2, — 1. From Fig. 2.4 we see

th a t x(n)  can be recovered from yD,i(n ) ^  there is no frequency overlapping. If the 

anti-aliasing filter which precedes the downsampler is not proper (i.e. the Nyquist 

condition for the rate change is not met), aliasing occurs at the output of down­

sampler. Therefore x ( n ) can not be recovered perfectly. Notice th a t the x(n)  can 

be recovered perfectly if the total band with of X(e^u>) be less than 2ir/M.  It is not 

necessary for X ( e JUJ) to be restricted to |u;| <  7t/ M .

A different type of cascade down/upsampler structure is shown in Fig. 2.5. 

It should be noticed th a t the two building blocks in Fig. 2.5.a and Fig. 2.5.b are 

not equivalent in general. For example, for M  = L,  the system of Fig. 2.5.a is an 

identity system, whereas the system of Fig. 2.5.b causes a loss of M  — 1 samples 

out of M  samples. It can be shown that these systems are identical if and only if 

L  and M  are relatively prime numbers[10][ll].

a )  x(n)

x(n) x 2{n)
|L

2/2 ( n )

Fig. 2.5. Two different structures to cascade downsampler and upsampler

a) Identity system.

b) Loss of M  — 1 samples of M  input samples.
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2.3 P o ly p h a se  D eco m p o sitio n

The polyphase decomposition, first introduced by Bellanger[12], is fundamental 

to many applications in m ultirate digital signal processing. A few examples of 

these efficient real tim e applications of decim ation-interpolation are in fractional 

sampling ra te  transformer’s, uniform DFT filter banks, and perfect reconstruction 

analysis/synthesis systems.

It is possible to represent the system function of a digital filter, H(z)  = 

h(n)z~n in M  component polyphase form as

M - 1

H(z )  = £  Gk(zM)z~k (2.8)
k=0

where {Gk( z )} are called the polyphase components and defined by

Gk(z) = h ( k ) +  h(k + M ) z ~ l +  h(k  +  2 M ) z ~ 2 +  • • ■ (2.9)

The impulse response of the k th polyphase filter is simply an M-fold downsampled 

version of h(n),

gk(n) — h (M n  +  k), k — 0 ,1 ,..., M  — 1 (2.10)

Note th a t for a given H(z) ,  the polyphase components, Gk(z),  depend on M.  In 

most of the applications M is fixed, therefore we will not use M  as the second 

subscript in notation (such as Gk<M{z)).

Since go(n) is the M-fold downsampled version of h(n),  from Eq.(2.2) we 

can write it in 2  domain

1 M — l

=  m  £  (2 .H )
m  k=o

or equivalently,
i M—1

G o (j " )  =  - g  £  HUW') (2.12)
11 k-0 

12



This is an im portant property of M  component polyphase form. Note that the 

representation of Eq.(2.8) holds whether H ( z ) is FIR  or HR. Additionally, it is 

im portant to note th a t the polyphase decomposition can be applied to any sequence 

x{n).

2 .4  T w o-C h an n el F ilter  B anks

The spectrum  of input signal X(e-’w), 0 <  u  < ir, is divided into two equal band­

width sub-spectra, or subbands in this filter bank structure given in Fig. 2.1. The 

filters Hi(z )  and H 2(z) of Fig. 2.1 function as anti-aliasing filters, while K\(z )  

and ^ 2 (2 ) function as interpolation filters. Since the whole spectrum  is divided 

into two equal bands, from Nyquist theorem the signals £i(ra) and x 2(«) are down 

sampled by two which yield subband signals y\(n)  and y2(n).  In turn , the synthe­

sis stage starts  with the upsampling of subband signals by two and interpolating 

these signals, Ui(n) and u2(n),  with the interpolation filters K\{z)  and K 2(z) re­

spectively. The interpolated subband signals v\(n)  and v2(n) are added to obtain 

the reconstructed signal x(n).  The down/upsamplers cause aliasing and imaging 

effects respectively as discussed earlier. Therefore the synthesis filters K\{z)  and 

K 2(z) should be chosen such tha t the imaging terms cancel the aliasing terms for 

the perfect reconstruction. In fact, this is possible.

The conditions for perfect reconstruction in the prototype two-channel FIR- 

QM F banks have been studied extensively in the literature[10] [11] [12] [13] [14] [15]. 

These conditions will be re-derived here in the frequency domain and also their tim e 

domain relations will be found. Tim e domain PR  conditions are more tractable than 

the frequency domain versions especially in M-band filter bank design problems.

Tracing the signals with the help of Fig. 2.1 through the top branch in 2

13



domain gives

Xi {z )  = H l ( z )X( z )

Vx(z) = Ki(z)Ui(z)  (2.13)

as the outputs of the decimation and interpolation filters respectively. The down­

sampler and upsampler impose

£/,(*) =  y ,( 2 2) (2.14)

Combining all these yields the interpolated subbands

Vx{z) =  ^ K 1(z)[H1( z )X( z )  +  H 1( - z ) X ( - z ) }  (2.15)

V2(z) = l- K 2{z)[H2(z )X{z)  +  H 2( - z ) X ( - z ) }  (2.16)

The z-transform of the reconstructed signal, is then the sum m ation of these as

X(z) =  ^ { H 1( z ) K 1( z )  +  H 2( z ) K 2( z ) ] X ( z )

+ ^ [ H 1( - z ) K 1(z) +  H 2( - z ) K 2( z ) ] X ( - z )

= T ( z ) X ( z )  + S ( z ) X ( - z )  (2.17)

Perfect reconstruction requires:

(i) S ( z )  =  0, for all z

(ii) T(z)  = cz~n°, c is a constant (2.18) 

The term  containing X (  — z) which is the alias component, vanishes if one chooses

K r ( z )  =  H 2 ( —z )

I<2(z ) =  - H x{ - z )  (2.19)

14



then

S(z )  =  0 for all 2  (2.20)

the first requirement is satisfied, 5 (z) =  0. Since aliasing is cancelled then the linear 

time-varying(LTV) system becomes a linear time-invariant(LTI) system with the 

transfer function

T [ z )  =  W ) =  \ [ Hl { z ) I U{ z ) + <2-21>
which represents the distortion caused by the QMF bank. If

T(z)  =  cz~n° c is a constant

then equivalently

x(n)  =  cx(n — n0)

Hence, the reconstructed signal is a delayed version of input signal x(n).  Therefore 

this system is called perfect reconstruction.

If T(z )  is not a pure delay, the reconstructed signal x(ii) may suffer from

• am plitude distortion(AMD) if \T(eiw)\ ^  c for all to where c is a constant.

•  phase distortion(PHD) if T(z )  does not have a  linear phase or equivalently 

arg[T(e^)]  ^  Kto where I\ is a constant.

To elim inate the am plitude distortion it is necessary to have T(z)  as an 

all-pass function. On the other hand, T(z)  has to be FIR  with linear phase to 

elim inate the phase distortion(PHD).

Summary: The reconstructed signal, x(n)  may suffer from three different 

kinds of distortions in general[10] [11]

•  aliasing distortion(ALD)

• am plitude distortion(AMD)

•  phase distortion(PIID)

15



with the proper choice of synthesis filters as in Eq.(2.19) aliasing is cancelled, then 

we have

T(z)  = \ [ H x{z)H2{ - z )  -  H r ( - z ) H 2(z)\ (2.22)

It is easy to have T ( z ) with the linear phase FIR  by simply choosing H x(z) and 

H 2(z ) functions to be linear phase FIR. In the earliest known QMF banks, analysis 

and synthesis filters were chosen as[18]

H 2(z ) = H i ( - z )  

Ki ( z )  = H x(z)

K 2( z )  =  —H 2( z )  =  —Hi ( —z) (2.23)

then we have

T ( z ) = \ [ H 2, { z ) - H H - z )\ (2.24)

It is clear th a t aliasing is cancelled. By choosing Hx(z ) to be linear phase FIR, 

PHD is also eliminated. But we are still left with the AMD.

It is a well known fact th a t linear phase two-channel FIR  QMF bank with 

the filters chosen as in Eq.(2.23) can have PR  property if and only if H \ { z )  is in 

the simple 2-tap form [ll]

H x{z) = M O )z -2no +  M l)2 -< 2no+2/to+1) (2.25)

with /ij(0) =  /ii( l) . Then, we have the magnitude squares

| / / 1(eja') |2 =  cos2(ko +  l/2)u>

and the high-pass function

\H2{eiw)\2 =  s in2(k0 + l/2)u;

We can conclude tha t with the choice of filters as in Eq.(2.23), there is not 

any linear phase transfer function except the 2-tap case such tha t the phase and
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am plitude distortions are simultaneously eliminated. After eliminating ALD and 

PHD, it is however possible to minimize AMD. To be more specific, one optimizes 

the coefficients of H\{z)  such th a t |T (eJU')| is made as close to a constant as possible 

while minimizing the stop band energy of Hi(z )  in order to have a good low pass 

characteristic. Such an optim ization has been suggested by Johnston[18]. and Jain 

and Crochiere[19] with the objective function

J  = a T  \H\{e^UJ)\2du; +  (1 -  a )  A l  -  \ T ( e ^ ) \ 2)doj (2.26)
J W  3 J O

minimized where ^  is the cutoff frequency of the filter.

It is worth noting that N ,  the length of the low pass filter H\{z).  should 

be chosen to be even. Odd values of N  will force T [ e ^ )  to be zero at uj —

Fig. 2.6 shows the magnitude distortion of the optimal filters driven by Johnston, 

with respect to criteria defined in Eq.(2.26). Since |T(eJU/)| is not constant for all 

uj. it demonstrates the existence of AMD. The coefficients of Johnston filters for 

.V =  6.8.12.16.32 are given in Table 2.3 with different a  weighting factors.

\ T ( e J W )l

I

1

0
9

9 0 0.1 1 2 2 .1 J

1 . 2

0 . 0

0 «

0 . 2

0 220 1

Fig. 2.6 a) Frequency response of Johnston OMF filters for N  =  S. b) 

Amplitude distortion of Johnston filter given in a).
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In this approach, the choice of filters eliminates ALD and PHD completely. 

The AMD is then minimized by the optimization. A complementary approach 

to this problem would be to choose the filters to elim inate ALD and AMD, and 

then minimize the PHD. Again, the choice of synthesis filters as in Eq.(2.19) will 

elim inate the AMD. One way of doing this is to choose H \ ( z ) as a low pass HR 

filter. Let us define a high pass HR function -#2 (2 ) such th a t[20][21 ][22][23][24]

|^ i ( e J'") |2 +  \H2{e^) \2 =  1 for all w (2.27)

Such a  filter pair {H\(z) ,  # 2 (2 )} is called the power complem entary pair.

Let the low-pass HR transfer function H\{z)  be in the form

N \ { z )  =  E n = O a l ( n ) z  N

Di(z)  Z L 0 bi (n) z -»= - v  (2-28)

where N\(z )  is the num erator polynomial and D\(z )  is the denom inator polynomial 

of order N . Then the high-pass HR function

^ 2 (z) _  En=oa 2 (n)z N 
Di{z)  E O U W z - "

tt ) 2̂ n=0u2\'1)* ,nnn\
H n z) =  - F T 7 T T  =  v -> jV  l  / . . x . - a t ' ( 2 ‘ 2 9 )

Since they are power complementary pair, N ^ z )  should satisfy

\N2{ejw)\2 =  |D i(eJU,)|2 -  |M (e JU,) |2 (2.30)

The zeros of H\{z)  and H 2 (z) are on the unit circle and N\(z ) ,  A ^ z )  are symmetric 

or antisym m etric polynomials (if H\ { z ) is a digital B utterw orth, Chebyshev or 

elliptic filter, this is always the case). To eliminate the m agnitude distortion, they 

m ust be of the form
u  t~\ _  Ap(z) +  Ai(z)

H - J  2

and

H 7( z ) =  M Z )  ~  / l l (a ,)
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A 0(z) and Ai ( z )  should be chosen as all pass functions. Additionally, H\(z )  satisfies 

the mirror condition as

H2(z) = H r ( - z )  

and we end up with the distortion function

=  A 0( z ) A 1(z)
1 ’ 2

which is all pass.

In other words, aliasing distortion is cancelled, am plitude distortion is com­

pletely eliminated but the phase distortion is created by the nonlinear phase of 

T (eJW) which can be compensated by the all-pass phase equalization. Interested 

readers are directed to the references [21] [22] [23] [24] for subband coding with HR 

filter banks.

2.4.1 Tw o-C hannel Perfect R econstruction  QM F Banks

Up to now, we have seen that the filter choice of Eq.(2.19) allows the aliasing 

to be cancelled and either phase distortion or m agnitude distortion is eliminated 

completely. The remaining distortion can either be minimized by using optimization 

techniques, or equalized by cascading with another filter.

Smith and Barnwell[l3], and Mintzer[l5] have shown first tim e in the liter­

ature tha t, aliasing, am plitude distortion, and phase distortion can be completely 

eliminated in a two-channel filter bank. They proved th a t if the linear phase re­

quirement on the analysis and synthesis filters are relaxed then 2-band PR  filter 

bank solution exists. Such a filter bank is said to have perfect reconstruction prop­

erty since x(n)  is a replica of x(n)  except with a delay. They called it the Conjugate 

Q uadrature Filter(C Q F) bank. Filter coefficients of Smith-Barnwell CQFs are tab­

ulated in Table 2.4 for N  = 8,16,32.
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Perfect reconstruction requires

(i) S(z)  = 0, for all z

(ii) T(z)  = cz~n°, c a constant

As discussed earlier, if one chooses

Ki ( z )  = - H 2( - z )

K 2 ( z )  = H x{ - z )  (2.31)

the first requirem ent is met, S(z )  =  0, and aliasing is eliminated. This leaves us 

with

T U )  =

Next, with N  odd integer(even length filter), one selects

H 2( z )  = z ~ n H 1{ - z - 1 ) (2.32)

This choice forces

H 2 ( - z ) =  —K i ( z )

so that

T(z)  = +  H x{ - z ) H x{ - z - 1)) (2.33)

Therefore, the perfect reconstruction requirement reduces to finding a prototype 

low-pass filter H[z)  =  H x{z) such th a t[17)

Q ( z ) = H ( z ) H ( z ~ 1) +  H ( —z ) H {—z~l ) =  constant

=  R(z)  +  R ( —z) (2.34)

This selection implies tha t all four filters are causal whenever H ( z ) is causal. The

PR  requirem ent, Eq.(2.34), can be readily recast in an alternate, tim e domain
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form. First, one notes th a t R(z)  is the autocorrelation sequence of h(n)  and is 

representable by a finite series of the form

R(z)  = p ( N ) z n + p ( N - 1 ) z n - 1+ -  • -+p(0)z°+- ■ ■ + p { N - 1 ) z ~ n - 1+ p { N ) z - n  (2.35) 

Then,

R ( - z )  = - p ( N ) z N + p ( N  -  1 )zN~ ' ------ +  />(0)z°-------+  p (N  -  I )* " * " 1 -  p( N) z ~N

(2.36)

Therefore, Q ( z ) consists only of even powers of z. To force Q(z)  =  constant, it 

suffices to make all even indexed coefficients in R(z)  equal to zero except p(0).

The coefficients in R(z)  are simply the samples of the autocorrelation se­

quence p(n)  given by

N

P(n ) =  ^ 2  h.(k)h(k + n) = p ( - n )  (2.37)
k=0

=f h(n)  © h.(n)

where © indicates a correlation operation. This follows from the ^-transform rela­

tionships

R{z) = H ( z ) H ( z ~ 1) <— > h(n)  * h ( - n ) =  p(n) (2.38)

Hence, we need to set p(n) =  0 for n  even, and n ^  0. Therefore,

N

p(2n) = ^ 2  h(k)h(k + 2n) =  0, n ^  0 (2.39)
k=0

If the normalization is imposed,

£  |/>M |2 =  1 (2.40)
k=0

one obtains the PR requirement

N

J2Hk)h{k + 2n) = Sn (2 . 41)
k—0
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The 2-band, equal bandwidth perfect reconstruction filter bank described 

above consists of, analysis and synthesis filters {H\{z) ,  H 2(z)} which do not have 

linear phase except the 2-tap solution. If we give up the power complementary 

or energy preserving requirem ent of the analysis filters, we can obtain perfect re­

construction FIR  QMF banks with linear phase. These filters have unequal band- 

widths. It is seen from Eq.(2.17) tha t the output of the two-channel critically 

sampled analysis/synthesis system can be w ritten as[25][26]

=  *(*)]
' Hi(z)  H i ( —z) ' ' X ( z )

H 2( z ) H 2 ( —z ) X ( - z )
(2.42)

' Ki ( z )  ' z Nl ‘ H 2( - z )
K 2 ( z ) det[H(z)} . - H r i - z )

Let us call the above 2 x 2  m atrix  as 'H(z). For the perfect reconstruction it is 

necessary and sufficient th a t the synthesis filters satisfy

(2.43)

Clearly, in order to have perfect reconstruction with FIR  synthesis filters after FIR 

analysis filters, the necessary and sufficient condition is

det[H{z)\  =  c z ~ 2N2~ 1

where c is a constant. In other words, det[H(z)\ m ust be a pure delay. Note tha t

det[H(z)} =  H 1( z ) H 2 ( - z ) - H 1( - z ) H 2( z )  

= P(z)  -  P ( - z )  = cz -™2- 1 (2.44)

where P ( z ) — H\ ( z ) H2{—z).  Obviously, Eq.(2.44) implies th a t since P ( z ) can have 

arb itrary  number of even indexed coefficients but there must be only one non-zero 

coefficient of an odd power of 2 . It is worth noting th a t for the power complementary 

filter (orthonormal case)

H, {z ) H2{ - z )  =
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then,

P ( z ) = - z ^ - ' R i z )  (2.46)

Therefore, instead of factorizing R(z)  for orthonormal (or paraunitary) filter banks 

where

R{z)  = H ( z ) H { z - 1)

One chooses any valid factorization of the form

P( z )  = P1(z)P2(z)

There are many possible solutions of perfect reconstruction FIR  QM F banks with

H 1(z) = P1(z)

and

H 2(z ) = P2( - z )

It is im portant to emphasize tha t we give up the orthonorm ality condition 

in this m ost general 2-band filter bank case. Then the synthesis filters are not 

the time-reversed versions of the analysis filters. In the literature these are called 

biorthogonal FIR QMF banks[26][27][28]. These filter banks satisfy PR  but their 

filters do not consider Nyquist conditions of the rate change operations. These filter 

banks, as expected, have more significant aliasing after the analysis. Therefore their 

performance expected to be inferior to the unitary filter banks. Table 2.1 summarize 

the different 2-band QMF design approaches.

For signal coding applications one would like to have the subband signals 

be independent or uncorrelated. A weaker condition which does not depend on 

the source is the orthogonal filters where at least uncorrelated input data will 

be decomposed into uncorrelated subbands[32]. In filter term s and for two-band 

system, this means th a t H\{z)  and H 2{z) should be orthogonal. Since our interest
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is lim ited to the orthogonal systems we shall not discuss the biorthogonal systems 

further in this thesis. Interested readers are suggested to the references which deal 

w ith the subject in great detail[26] [27] [28] [29].

2.4.2 T w o-D im ensional PR -Q M F F ilter Banks

The extension of QMF to multi-dimensional signals was first introduced by Vetterli 

in 1984[4]. The image processing and coding applications have proven their merits. 

Similar to 1-D case, a  fundam ental subband splitting scheme is considered for 2-D 

signals, where the input signal is divided into four subbands.

Considering a 2-D input signal x ( m , n )  and a 2-D output signal y ( m , n )  with 

downsampling and upsampling, it can be shown that 

Downsampling:

y (m, n )  =  x(2m,2n)

Upsampling:
y(2m,2n)  = x ( m , n )
y(2m,  2n +  1) = 0
y(2m  +  1 ,2n) =  0
y(2m  +  1 ,2n +  1) =  0

Then 2-D 2-band QM F bank input output relation which consists of downsampling, 

upsampling and decim ation-interpolation filtering operations for 2-D signal is given 

as

i i i  1 1

X  ( e ^ 1, eJU'2) =  - ' % 2 ' £ i X ( e iu'1+k*,ej“3+tv) £  £  Hmn{ej^ +kir, eiu*+,* )KTnn{eiu’' , e*"2)
 ̂ k= 0 1=0 m=0 n= 0

(2.47)

In a fashion similar to 1-D case, the output of 2-D analysis/synthesis system can 

be rew ritten as

X ( z 1, z 3) = ± l K 1(z1, z 3) K a(z1, z a)]

(2.48)

B 1( z 1, z 2 ) H 1( - z 1, - z 2) 
H 2{ z 1, z 2) H 2( - z u - z 2)

^ ( 2 1 , 2 2 )
X ( - z u - z 2)
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where z\ =  eJU>1 and z2 =  eJW2.

To cancel the aliased version of the input signal X (—z\,  — z2) at the output, 

we choose the synthesis filters as

I<i{zi ,z2) =  H 2( - Z ! , - Z 2)

K 2{z i , z2) = - H i { - z i , - z2) (2.49)

W ith

H2{zu z2) =  - H i ( - z i , - z2)

where H  represents the complex conjugate. The requirement for the orthonormal 

perfect reconstruction filter bank reduces to

^ ( 2 1 , 2 2 ) ^ 1 (2 1 , 2 2 ) +  / / i ( - 2 i , - 2 2) f / i ( - 2 i , - 2 2) =  2 (2.50)

The similarities of these results with the 2-band 1-D case is obvious. Therefore 

these result can be extended easily to 2-D M -band systems[4][6][25].

W hen 2-D filters are separable, the resulting system is a trivial extension 

of the one dimensional case. It is a tensor product of one dimensional system. 

All the properties follow from the properties of each dimensions. It was shown by 

Vetterli[4] by using separable 2-D filters

H mn( e ^ \ e ^ )  = H m(eJWl)Hn(eJUJ2)

I<mn(ej“' , e j“2) = K m{ e ^ ) I < n(e3UJ2) (2.51)

filter design problem is reduced to one dimensional case. When separable filters 

in each dimension are chosen according to Eq.(2.31) as discussed earlier, all three 

aliasing term s completely vanish and we have the expression 

A (eJWl,eJW2)
7,(eJU'1, eJU/2) =

A ( e « , e » )

=  [\H{ejw')\2 +  |H{ej{“'+7r))\2] x [\H{elw*)\2 +  |f7(eJ'(w2+7r)) |2
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(1.2) T

(2 ,1)  T

(2 , 1) 1

( 1 , 2 )  T

( 1, 2) 1

(2, 1)1

Fig. 2.7. Two dimensional subband decomposition by using one dimensional 

separable filters.



It is seen from this relation th a t we can employ conventional 1-D QMFs 

along one dimension at a time. This is decipted in Fig. 2.7 where 2-band split as 

described earlier has been applied in 2-D signal. Two subbands are denoted as ”L n 

and nH n (low pass and high pass respectively) and thus denotes the band

which is low-pass filtered and downsampled in one dimension, and high pass filtered 

and downsampled in the other.

In addition to the advc ^tages of easier design, the com putational complexity 

of separable FIR  filters is also much less than the non-separable ones. On the other 

hand, it is clear that separable filters are the special case of non-separable filters. 

Even if the computational complexity is increased in non-separable case, one gains 

additional freedom in the design. There exist linear phase orthonorm al 2-D non- 

separable FIR  filter solutions which provide perfect reconstruction (remember there 

is no separable solution with the linear phase except the 2-tap case) [25] [26].

2.4.3 Equivalent Parallel R ealization o f Cascaded Sub­
band Tree Structures

In subband image coding, it is usually not sufficient to divide an image into only 

four subbands, further band splitting is desired. As discussed later, it has been 

a common practice to use a hierarchical subband tree structure of two-band filter 

banks, i.e. successive splits of subbands. Instead of using cascaded tree structures, 

it will be shown that such designs can also be readily implemented in terms of 

parallel integer band filter bank structures. Because of its structural simplicity this 

direct approach may be preferred for low order designs[9].

To show this parallel structural relationship, let us first look at some of 

the useful identities in m ultirate signal processing (H ( z ) is rational), given in Fig. 

2.8. [25] [26]

I )  The order of upsampling by L  and downsampling by M  can be interchanged if
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and only if L  and M  are relative prime.

I I )  A filter after downsampling by M  can be represented identically with its up- 

sampled version followed by downsampling

I I I )  A filter in front of an upsampling by L  can be equivalently represented with 

its upsampled version preceded by upsampling.

H(z)

I I I ) H(z)

Fig. 2.8. Some useful identities in m ultirate signal processing.

Use of identity I I I  provides the equivalent single stage interpolator of a multi stage 

interpolator as shown in Fig. 2.9 where x(n)  is the input, and y(m)  is the output 

signal, and X ( z ) ,  Y ( z )  are their 2 - transforms respectively.

y{m)

y(m)x(n)

Hi(z)

H(z)

Fig. 2.9. a) M ultistage interpolator b) Equivalent single stage interpolator.
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Also let Hi(z) ,  H 2(z),..., Hi ( z ) be their interpolation filters and Li ,  L 2, T, be

the upsamplig ratios. Then, it can be shown from identity I I I  tha t

Y ( z )  =  H ( z ) X ( z l )

where

and

H( z )  = H l (zHn=2L- ) H2( zU,n=3L-). . .Hi(z)

L = U L n
n = 1

This form suggests the equivalent single stage interpolator model to replace an

y(m)
«-stage cascade interpolator. 

x ( n )
H 2 ( z ) \ m 2 Hi(z) \ M i

x  (n ) 1 y{
H( z ) \ M

Fig. 2.10. a) M ultistage cascade decim ator b) Equivalent single stage decimator.

A similar identity can also be derived for the case of cascaded decimators 

by applying property I I  as

1 M—1
Y( z )  =  —  X ( z 1/MW k)H{z l /MW k) (2.52)

M  k=0
where

H ( z ) = H l {z)H2{zM' ) . . .Hi{zWn=iM'')

and

M =  f [ M n
7 1 = 1
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Therefore m ultistage integer decimators can be replaced by a single stage integer 

decim ator, as dem onstrated in Fig. 2.10.

The conversion of a hierarchical tree structure to an equivalent parallel fil­

ter bank structure can now be achieved by simply applying the identities derived 

above for each branch of the structure. For example, two-stage, 4 band hierarchical 

subband tree structure will now be translated into the equivalent parallel 4 band 

structure. Let H l (z ) and Hh {z ) be the low and high pass-filters respectively. Also 

note th a t if these are QMF filter bank designs, they satisfy the mirror property

H„(z)  = H U - z - 1)

Then, these equivalent band pass filters H \ ( z ), H 2(z), H3(z), H4(z) for one stage 

parallel filter bank structure have the forms as in Fig. 2.11

H , { z )  =  H l ( z ) H l ( z 2)

H 2{z)  =  H l ( z ) H h ( z 2)

=  H l ( z ) H l ( - z ~ 2)

H 3 ( z ) =  H „ ( z ) H h ( z 2)

=  H l { - z ~ 1) H l ( - z - 2 )

H 4( z )  =  H h ( z ) H l ( z 2)

=  H l ( - z ~ 1) H l ( z 2) (2 .5 3 )

These filters are based on iterated low and high pass filters, derived from the regu­

lar binary subband tree. In practice, these product band-pass filters often has very 

long impulse responses. That is why this design technique is usually preferred fol­

low order filters[9].
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H„(z 1 2 x0(m)

■ H h ( z I 2

1 2 aii(ra)

x(n)

Hl {z)

\ *

1 2

®2(^)

ar3(m)

£0(m)

■1-1 (m)

■ H 3 ( z ) |4 x 2{m)

■ H 4 ( z ) x'3 (m)

Fig. 2.11 Two stage 4 band hierarchical structure translated into parallel 4 band

parallel structure.

2.5 Subband  Tree S tru ctu res

2.5.1 Regular Binary Subband Tree Structure

The m ultirate techniques are very useful tools for multi-resolution spectral anal­

ysis. In this group, the PR-QM F bank is the most efficient one. As shown in



LLL LL H  LH L  LHH H L L  H L H  H H L H H H T
8 4 4

Fig. 2.12. A regular tree structure for L=3 and its frequency band split 
assuming ideal 2-band PR-QM Fs employed.

the previous section, these filter banks divide the input spectrum into two equal 

subbands yielding low(L) and high(H) bands. This two-band split PR-QMF oper­

ation can again be applied to (L) and (H) half bands and the quarter width bands 

(LL)-(LH)-(HL)-(HH) are obtained. When this procedure is repeated L times. 2L 

equal width bands are obtained. This approach provides the maximum possible 

frequency resolution of t t /2l . This spectral analysis structure is called an L-levei 

regular binary subband tree. For L =  3 the regular binary tree structure and its 

frequency band split is given in Fig. 2.12. This figure assumes that the ideal filters 

are employed.

This time-frequency based structure is a very useful vehicle to decompose 

the signals or their spectra into subbands or subspectra. When PR-QMFs are 

employed, the synthesis tree replicates the analysis operations and the input signal
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is perfectly reconstructed.

In practice, finite length filters are replaced with the ideal filters. Therefore 

the interband aliasing or leakage exists. In a multilevel tree structure this frequency 

leakage can cause some degradation in the frequency bands of finer frequency res­

olutions. This is a disadvantage of the regular binary subband tree over a direct 

M-band(equal) frequency split since the M-band approach provides better way of 

monitoring the frequency split. On the other hand, the multilevel analysis/synthesis 

trees are much simpler to implement and provide a coarse-to-fine(multiresolution) 

signal decomposition as a byproduct.

2.5.2 Irregular Binary Subband Tree Structure

Almost all of the practical signal sources concentrate significant portions of their 

energies in subregions of their spectra. This indicates tha t some intervals of overall 

signal spectrum  are more significant or im portant than the others. Therefore all 

subbands of the  regular binary tree may not be equally needed. Since we also 

aim to minimize the computational complexities of the spectral analysis/synthesis 

operations, some of the finest frequency resolution subbands are combined to yield 

larger bandwidth frequency bands. This implies the irregular term ination of the 

tree branches. Hence, it is expected th a t the frequency bands of the irregular tree 

have unequal bandwidths. Fig. 2.13 displays an arbitrary irregular binary subband 

tree structure with the maximum tree level L  =  3 and its frequency band split. 

This figure assumes tha t the ideal filters are employed.

The number of bands in this irregular spectral decomposition structure is 

less than the regular tree case, M  < 2L. The regular tree provides the best possible 

frequency resolution for a fixed L. It has equal width frequency bands while the 

irregular tree provides unequal bandwidths. Both of these subband tree structures 

split the spectrum  as a  power of two frequency resolutions since they employ a
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Fig. 2.13. An irregular tree structure  and its frequency band split assumming 
ideal 2-band PR-QM Fs employed.
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LH

LLHLLL 8 2-1

Fig. 2.14 A dyadic (octave band) tree structure and its frequency band 
split assuming ideal 2-band PR-QM Fs employed.

two-band frequency split algorithm repeatedly.

2.5.3 Dyadic Subband Tree Structure

The dyadic tree is a special binary irregular tree structure. It splits only the low half 

of the spectrum  into the new two equal bands in any level of the tree. Therefore the 

detail or higher half frequency components of the signal at any level of the tree is 

not decomposed anymore. The dyadic tree in tim e and its corresponding frequency 

resolution for L = 3 is given in Fig. 2.14.

A simple examination of this analysis/synthesis structure shows that half­

resolution frequency splitting steps on low bands are performed. Therefore, it is also 

called the octave-band or constant-Q subband tree structures. First, low(L) and 

high(H) signal bands are obtained here. While band (L) provides a coarser version
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of the original signal and band (H) contains the detail information. It is also known 

from the theory of m ultirate signal processing that these bands have decimated 

signal durations in time. Therefore the to tal number of coefficients or subband 

samples is equal to the the number of input samples. If the low spectral component 

or band (L) is interpolated by two, the detail information or the interpolation 

error is compensated by the interpolated version of band (H). Hence the original 

signal is perfectly recovered in this one step dyadic tree structure. The procedure 

is repeated L  times onto only lower spectral half component of the higher level 

node in the tree. This multiresolution(coarse-to-fine) signal decomposition idea 

has been first proposed in 2-D by B urt and Adelson[33] for vision and image coding 

problems. This popular decomposition technique is called the Laplacian pyramid. 

The celebrated orthonormal wavelet transform also utilizes this dyadic subband 

tree as fast transform  algorithm. The wavelet transforms are studied in detail in 

C hapter 3. We will now present briefly the Laplacian pyramid signal decomposition 

technique and discuss its similarities with a dyadic tree structure PR  filter bank

2.6 L aplacian  P y ra m id  for S ignal D eco m p o si­
tio n

The coarse-to-fine hierarchical or progressive signal representation concepts has 

been of great intei'est in computer vision and image coding fields. An image frame 

and its coarser, decimated in time, versions are interrelated in a progressive manner. 

B urt and Adelson[33], proposed this concept for image coding applications.

The basic idea of this approach is actually to perform a dyadic tree-like 

spectral or subband analysis. The idea will be explained with a 1 -D example and 

the connections to a dyadic PR subband tree are set. This idea was first proposed 

by Veterli[26] as a special case of unequal bandwidth 2 -band filter banks, lately,
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Kim and \nsari also derived the the extension of Laplacian pyramid for special 

filter bank cases [36].

The signal in Fig. 2.15 x(n)  is low-pass filtered and downsampled by 2. 

Let us denote this signal as x\)(n).  Then upsample .^ ( n )  by 2, interpolate it and 

denote the interpolated signal as x lj(n).  The corresponding interpolation error of 

stage 1 is expressed as

x ^ n )  =  x(n)  — x ) (n ) (2.54)

where L  stands for Laplacian since this interpolation error has a Laplacian-shaped 

pdf for most of the image sources considered by Burt and Adelson. To obtain x(n)  

perfectly one should sum

x(n)  = x}(n)  +  x xL(n) (2.55)

Since x}(n)  is obtained from x xD{n)\ x ^ n )  and x ^ n )  are sufficient to represent 

x(n)  perfectly. The duration of x xD(n) is half the duration of x(n).  This provides a 

m ultiresolution or coarse-to-fine signal representation in tim e. The decimation and 

interpolation steps on the higher level low-pass signal are repeated until the desired 

level, L , of the dyadic-like(since we call dyadic tree with the PR  conditions) tree 

structure is reached. For L =  3, Fig. 2.15 indicates that the signals x E>(n )i *£(” )> 

x 2 L{n), and x xL(n) are required to recover x(n)  perfectly. It is seen here again that 

the num ber of coefficients or subband samples needed to represent x(n)  perfectly 

is larger than the number of samples in x(n).  Therefore this structure does not 

satisfy the orthonorm ality conditions of a general transform concept.

This weakness of the Laplacian pyramid scheme can be easily fixed if the

proper anti-aliasing and interpolation filters are employed. These filters also pro­

vide the conditions for the decimation and interpolation of high-frequency or detail 

signal. Therefore the number of coefficients needed for a complete representation 

is equal to the number of signal samples. This enhanced pyram idal signal repre-
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x)(n)

xj (n)

1(2 )

D(2)

D(2)

D(2)

1( 2 )

1(2 )

Fig. 2.15 Laplacian pyramid structure.



sentation scheme is practically much more valuable than the Laplacian pyramidal 

decomposition and indeed identical to the dyadic subband tree concept.

2.6.1 M odified Laplacian Pyram id for C ritical Sam pling

The oversampling nature of the Laplacian pyramid is undesirable particularly for 

signal coding applications. Obviously, this signal decomposition technique requires 

more num ber of coefficients or subband samples than the input signal. We should 

notice th a t the  Laplacian pyramid does not put any constraint on low-pass anti­

aliasing and interpolation filters although it changes the rate of the signal by 2. This 

is the questionable point of this approach. The Nyquist condition is not imposed 

in the structure.

We modify the Laplacian pyramid structure in this section to achieve the 

critical sampling. In other words, the filter conditions to decim ate also the Lapla­

cian or interpolation error signal by 2  and to reconstruct the input signal perfectly 

are derived in this section. Then, we will point out the similarities between the 

Modified Laplacian Pyram id and two-band PR-QM F banks.

Fig. 2.16 displays one level of a. Modified Laplacian Pyram id. It is traced 

from this figure tha t the error signal X l ( z )  is filtered by H 2 ( z )  and down upsampled 

by 2 , then interpolated by I( 2 [z). The resulting branch output signal V2 (z)  is added 

to the low-pass decim ated interpolated version of the input signal, Vx(z),  to obtain 

the reconstructed signal X( z ) .  We keep the analysis in the 2 -domain for simplicity.

We can write the low-pass decim ated interpolated version of the input signal 

from Fig. 2.16 similar to 2-band PR-QM F case analyzed earlier

Vi (z) = l- K x{z)[Hx{z)X{z)  +  H 1 ( - z ) X ( - z ) \  (2.56)
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X i  (*)

X{z )

H\{z)

Fig. 2.16. Modified Laplacian pyramid structure allowing perfect recon­
struction with critical number of samples.
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and the Laplacian interpolation error signal

XL{ z ) = X { z ) - V 1{z) (2.57)

is obtained. As stated earlier X l ( z )  has the full resolution of the input signal X ( z ) .  

Therefore the decomposition structure oversamples the input signal. Now, let us 

decimate and interpolate the error signal. We can write the resulting signal of these 

pi'ocedure from Fig. 2.16 as

V*(z) =  ^ K 2( z ) [ H 2 ( z ) X l ( z )  + H 2 ( - z ) X l ( - z ) }  (2.58)

If we put Eqs.(2.56) and (2.57) in this equation

V2(z) =  \[H2(z)K2(z) -  I h ^ K M H ^ K ^ z)

+ ! [ / « - * ) Kt (z) -  ±H,(-z)K,(z)H2(z)I<z(z) 

- l-H,(-z)IUl-z)Hz(-z)Ki(z)]X(-z)  (2.59)

We can now write the reconstructed signal as

X ( z )  = Vl (z) + V2 (z)

= T ( z ) X ( z )  + S ( z ) X ( - z )  (2.60)

where

T(z) = i [ f r i ( 2)/c1(«) +  ^ 2(2 )/r2(x!) ] - i [ / r 1(z )/c1(z)jy2(z)/r2(2)

+ H 1( z ) I < 1( - z ) H 2 ( - z ) K 2( z ) ]  (2.61)

and

s ( z )  =  ^[i/1( - 2)A1(.) + ^ 2( - 2)/x:2(2)]-^[iy1( - 2) A h ( ^ 2 ( ^ ^ 2(2)

+ H l ( - z ) K , ( - z ) H 2 ( - z ) K 2 (z)} (2.62)
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If we choose the synthesis or interpolation filters as

IU{z)  =  - z ~ l H 2 { - z )

K 2 {z) = z ~xH\ { —z) (2.63)

the aliasing term s are cancelled and 

S{z) =  0

T ( z )  =  ± z - 1 [ - H 1( z ) H 2( - z )  +  H 2( z ) H 1( - z ) }  (2.64)

Now the perfect reconstruction requirements reduce to

=  T(z )  =  (2.65)

where c  is a constant and the reconstructed signal is identical to the input signal 

with the shift of n0.

It is observed from Eq.(2.65) th a t the magnitude of T ( z ) m ust be constant 

for perfect reconstruction. This implies so called biorthogonal 2-band filter banks 

in the literature. As mentioned earlier, one should be careful about the filters of 

a m ulti-rate structure. These filters should function as anti-aliasing filters. This 

requirement indicates th a t the filters H \ ( z ) and H 2 (z) should be low-pass and high- 

pass respectively. This also implies th a t the orthonorm ality condition is satisfied. 

It is clear th a t this Modified Laplacian structure with

H 2 (z) = z~N H r i - z - 1) ( 2 .66 )

becomes identical to the orthonormal or unitary 2-band PR-QM F banks of Section 

2.4 where

T(z )  = ^ z - (N+" [ H x{z )H,{z - x) +  H , { - z ) H i ( - z - 1)) = c z ~ ^  (2.67)

with N  (even length filter) odd integer. This derivation shows th a t the Modified 

Laplacian Pyram id emerges as a biorthogonal 2-band filter bank, or more desirably
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as an orthonorm al 2-band PR-QM F based dyadic subband tree structure if one em­

ploys the proper filters. This Modified Laplacian Pyram id concept is also identical 

to biorthogonal or orthonorm al wavelet transform algorithms[26][36].
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Transition Code Letter Normalized Transition Band
A 0.14
B 0 . 1

C 0.0625
D 0.043
E 0.023

Table 2.2. Normalized transition bands and their code letters for Johnston QMFs.

8  TAP
0.48998080
0.06942827

-0.07065183
0.00938715
12 TAP(A) 12 TAP(B)
0.48438940
0.08846992

-0.08469594
-0.00271032
0.01885659

-0.00380969

0.4807962
0.0980852

-0.0913825
-0.0075816
0.0274553

-0.0064439
16 TAP(A) 16 TAP(B) 16 TAP(C)

0.4810284
0.0977981

-0.0903922
-0.0096663
0.0276414

-0.0025897
-0.0050545
0.0010501

0.4773469
0.1067987

-0.0953023
-0.0161186
0.0359685

-0.0019209
-0.0099722
0.0028981

0.4721122
0.1178666

-0.0992955
-0.0262756
0.0464768
0.0019911

-0.0204875
0.0065256
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24 TAP(B) 24 TAP(C) 24 TAP(D)
0.4731289
0.1160355

-0.0982978
-0.0256153
0.0442397
0.0038915

-0.0190199
0.0014464
0.0064858

-0.0013738
-0.0013929
0.0003833

0.4686479
0.1246452

-0.0998788
-0.0346414
0.0508816
0.0100462

-0.0275519
-0.0006504
0.0135401

-0.0022731
-0.0051829
0.0023292

0.4654288
0.1301121

-0.0998442
-0.0408922
0.0540298
0.0154739

-0.0329583
-0.0040137
0.0197638

-0.0015714
-0.0106140
0.0046984

32 TAP(C) 32 TAP(D) 32 TAP(E)
0.46640530
0.12855790

-0.09980243
-0.03934878
0.05294745
0.01456844

-0.03123862
-0.00418748
0.01798145

-0.00013038
-0.00945831
0.00141424
0.00423419

-0.00126830
-0.00140379
0.00069105

0.46367410
0.13297250

-0.09933859
-0.04452423
0.05481213
0.01947218

-0.03496440
-0.00796173
0.02270415
0.00206947

-0.01422899
0.00084268
0.00818194

-0.00196967
-0.00397155
0.00225513

0.45964550
0.13876420

-0.09768379
-0.05138257
0.05570721
0.02662431

-0.03830613
-0.01456900
0.02812259
0.00737988

-0.02103823
-0.00261204
0.01568082

-0.00096245
-0.01127565
0.00512322

Table 2.3. Johnston QMF coefficients(coefficients are listed from center to end).
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8  TAP 16 TAP 32 TAP
0.034897558217851

-0.010983019462528
-0.062864539349519
0.223907720892568
0.556856993531445
0.357976304997285

-0.023900270561131
-0.075940963791882

0.021935982030043
0.001578616497663

-0.060254491028752
-0.011890659620534
0.137537915636625
0.057454500563909

-0.321670296165893
-0.528720271545339
-0.295779674500919
0.000204311084517
0.029066997894467

-0.035334860887081
-0.006821045322743
0.026066784682641
0.001033363491944

-0.014359309574775

0.008494372478233
-0.000099617816873
-0.008795047132402
0.000708779549084
0.012204201560354

-0.001762639314795
-0.015584559035738
0.004082855675060
0.017652220240893

-0.003835219782884
-0.016747613884736
0.018239062108698
0.005781735813341

-0.046926740909076
0.057250054450731
0.354522945953839
0.504811839124518
0.264955363281817

-0.083290951611400
-0.139108747584926
0.033140360806591
0.090359384220331

-0.014687917291347
-0.061033358867071
0.006606122638753
0.040515550880356

-0.002631418173168
-0.025925804761497
0.000931953235019
0.015356389599161

-0.000119683269332
-0.010570322584723

Table 2.4. 8 , 16, 32 tap PR-CQF coefficients with 40 dB stopband attenuation.
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C hapter 3 

W avelet Transform

3.1 In tro d u ctio n

The wavelet transforms, particularly the orthonorm al wavelet transforms have been 

popular recently as a new tool for the multiresolution signal decomposition[37] [38] [39] 

It has also been realized th a t the orthonormal wavelet transforms are very closely 

linked to the well-known orthonormal Perfect Reconstruction Q uadrature Mirror 

Filter(PR-Q M F) based dyadic subband filter banks which was introduced in Chap­

ter 2 . The purpose of this chapter is to introduce the wavelet transforms and to 

emphasize their links with PR-QM F banks. We also present the unique features of 

the compactly supported Orthonormal Wavelet transforms and their connections 

and interpretations with the conventional FIR  PR-QM F banks. In this category, 

particularly the im pact of regularity of the wavelet function on PR-QM F will be 

examined in detail[40].

Most of the m aterial in this chapter is of tutorial value and provides the 

summary of the wavelet transform  theory. Since one of the contribution of this 

dissertation is to emphasize and highlight the connections of wavelet transform  and 

filter bank theories, this chapter serves as the vehicle to link the contributions of 

this dissertation to the wavelet transforms proposed earlier in the literature.

After defining the continuous wavelet transforms, the discrete wavelet trans­
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forms will be discussed. Their significance from signal processing point of view will 

be interpreted. The orthonormal wavelet bases, which are very im portant in signal 

analysis/synthesis, will be presented next. The orthonormal wavelet filters will be 

emphasized and their connections with the wavelet function will be shown. We will 

mention wavelet regularity and Daubechies wavelet bases and their time-frequency 

localization features. Next section will deal with the generalization of compactly 

supported orthonorm al wavelet bases and their connections to the Af-band PR- 

QMF filter banks. The theoretical proofs and rigorous derivations of the topics 

covered in this chapter are not in the focus of this dissertation and will be om itted 

often but the references will be provided.

3.2 W avelet Transform s

Analysis of signals using appropriate basis functions is one of the fundam ental 

problems in signal processing field. J.B .J. Fourier proposed the complex sinusoids 

as the basis functions for signal decomposition[34]. The Fourier transform  of a finite 

energy continuous tim e signal f ( t ) ,  (i.e. f ( t )  £ L 2) is defined as

/ ° o

e~ f { t )dt  (3.1)
■OO

The strength of the standard Fourier analysis is tha t it allows the decomposition 

of a signal into its individual frequency components and establishes the relative 

intensity of each frequency component. Because of the infinite durations of these 

basis functions, any time-local information (e.g. an abrupt change in the signal) is 

spread over the whole frequency spectrum. Therefore, this transform can not reflect 

any time-localized characteristic of f ( t )  into frequency domain. It only provides 

the frequency behavior of f ( t )  in the interval — 0 0  < t < 0 0 . Gabor addressed 

this problem by introducing a window function to localize f ( t )  and calculating the
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Fourier transform of the windowed signal as[35]

/ ° 0

w(t -  r)e~J tf ( t )d t  (3.2)
•OO

where w(t  — r )  is the appropriate, time-frequency localized, window function. This 

transform is called the windowed or Short-Time Fourier Transform (STFT) (also 

referred to the Gabor transform when the window function used in the STFT is 

Gaussian).

The m ajor advantage of Short-Time Fourier Transform is tha t if a signal has 

most of its energy in the given time interval [—T,  T] and in the frequency interval 

[— t hen its ST FT  will be localized in the region [—T, T] x [—fi, fl] of the 

time-frequency plane. Of course, the uncertainty principle prevents the possibility 

of having arbitrarily  high resolution in both tim e and frequency domains, since it 

lower bounds the tim e-bandwidth product of any basis function by A T  A Q  > ^  

where ( A T ) 2  and (A fi ) 2 are the variances of tim e function and its Fourier transform  

respectively [25] [26].

An im portant param eter of a window function is its size (or scale). The 

selection of an appropriate window size poses a fundamental problem in signal 

analysis. Thus, by varying the window function used, one can trade the resolution 

in tim e for the resolution in frequency. An intuitive way to achieve this is to have 

short tim e duration high frequency basis functions, and long tim e duration low 

frequency ones. Fortunately, the wavelet transform  provides for this desired feature 

and defined as,
. rco  f  —  I)

Wf (a,b) = a~5 /  ip( ) f ( t )dt  (3.3)
J —co Cl

where a 6  R + ,b 6  R.  Here ct, and b are the scale and shift variables respectively, and 

they are continuous variables. Depending on the scaling param eter a, the wavelet 

function tp(t) dilates or contracts in time and causing the corresponding contraction 

or dilation in frequency domain respectively. Therefore a flexible time-frequency
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resolution is achievable with the wavelet transforms. Another significant difference 

of these transforms, the ST FT is never a real function on the time-frequency plane 

regardless of the choice of but the wavelet transform is real if the basic wavelet 

if)(t) is chosen to be real.

3.3  C on tin u ou s W avelet T ransform

The continuous wavelet transform maps a function f ( t )  onto time-scale space as

w ' M  =  W » £ « L r ) f m  {3A)

This operation can be expressed in a simpler inner product notation as

W f (a, b) =<  >  (3.5)

V’a&(Q represents a  family of functions obtained from a single wavelet function ift(t) 

and the dilation and translation param eters a and b as

V ’Ot & ( 0  =  T-TffiM-  “ )  ( 3 ‘ 6 )|«| ' a

where a and b continuous.

The wavelet function ifi(t) is a band-pass function. It is desired th a t this 

function has a good tim e and frequency localization so th a t f ( t )  is decomposed into 

elem entary building blocks which are jointly well localized in tim e and frequency. 

The wavelet function has to satisfy the ''’’admissibility'1'’ condition tha t makes it an 

isometry (up to a constant) of L 2 (R)  onto L 2(R x  R).  This requirement lim its the 

wavelet functions which must satisfy[40][41]

c ‘ - £ 1i r ! d n < “  (3 J )

where ^ (f l)  is the Fourier transform of the wavelet function The admissibility 

condition is directly related to the decay of the wavelet function 0 (/) which is

51



required to have a  good localization. The admissibility condition for a continuous 

'P(fi) is equivalent to a zero-mean wavelet function in tim e

/ O O

if>(t)dt = 0 (3.8)
•O O

This condition forces th a t the wavelet function is a band pass function and decays 

at least as fast as |f |1-t in tim e (in practice we need to have much faster decay of 

■0 (2 ), in order to have good tim e localization).

The admissibility condition assures th a t the ’’resolution of the identity” 

holds[40]. This guarantees th a t any function f ( t )  G L 2 ( Rn) can be reconstructed 

from the wavelet space as

f ( t )  = 7 7 - /  ~^da f  Wj(a,b)il>a,bdb (3.9)
C"/j, J —00 d J —00

where the wavelet coefficients were defined earlier in Eq.(3.4) Its m athem atical 

proof will is given in[40][41]. Whenever 0 (f) is a real function, the integral lim its 

of Ch expression in Eq.(3.9) are changed from 0  to 0 0 .

Resolution of the identity ensures tha t the Continuous Wavelet Transform

(CW T) is complete if W /(a, b) are known for all a and b. A continuous signal f ( t )

is represented by a band pass function 0 (f) and its dilated and translated versions. 

The dilation in tim e leads to different resolutions in frequency. Fig. 3.1 displays a 

wavelet function 0 (f) and its dilations for different values of param eter ”a ” along 

with their Fourier transforms. This figure helps to visualize of the time-frequency 

plain and emphasizes the band pass nature of 0 (f) and its dilations. Fig. 3.1 also 

displays the time-frequency resolution cells of wavelet transform compared w ith the 

S T  F T .  This figure indicates the fixed time-frequency resolution of S T  F T  versus 

more flexible resolution of wavelet transforms.
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Fig. 3.1. The time-frequency plane resolution cells of the S T F T  vs wavelet 

transform.
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The STFT yields the decomposition of a signal into a set of equal bandwidth 

functions sweeping all the frequency spectrum. On the other hand the wavelet 

transform provides the decomposition of a signal by a set of constant Q (or equal 

bandwidth on a logarithmic scale) bandpass functions. The constant bandwidth 

condition on a logarithmic scale can be easily seen by the following relation,

^  = H 1/a® («n)c-'™ (3.10)

The roles played by the transform  param eters are different for S T  F T  and wavelet 

transforms. The tim e param eter r  in STFT refers to actual tim e instant, while the 

param eter b in the continuous wavelet transform refers to the tim e instant a - 1  b.

There is a time-frequency resolution trade-off in wavelet transform. To quan­

tify how the continuous wavelet transform spans the tim e frequency-plane, the

measures of time and frequency resolutions are defined. Let ot and <7 q be the stan­

dard deviations of the m other wavelet function in tim e and frequency domains 

respectively and the corresponding variances are defined as[37]

of =  J { t  -  t0)2\il>(t)\2dt  (3.11)

and

= J ( n - n 0)2\^(d)\2dn (3.12)

Let the wavelet function V’(0  be centered at (io, Ho) in time-frequency plane. Hence 

V’( ^ )  is centered a t (<o,fi0 /a )  with the variances



These results explain the role of scaling param eter a in wavelet transform. Fig. 3.2 

displays time-frequency resolutions of the wavelet and scaling functions for different 

values of a.

3.3.1 Parseval R elation  o f W avelet Transforms (Energy  
Preservation Property)

We will now show th a t the Parseval relation in wavelet transform

/ c o  r oo r ln r lh  f ° °
/  |W >(a,6 ) |2^  = Ch \ f ( t ) \2dt (3.15)

-oo  J —c o  CL J —c o

holds for any signal f ( t ) which is square-integrable. Its proof requires the admissi­

bility condition which was defined in Eq.(3.7). By using the dual relation of wavelet 

transform  in time-frequency domain

Wj(a,  b) =  f ( t )  * V>o6(~t)\t=b ^  F ( f I ) |a |1/2¥ p 2 ) e J'ni’

one can get

/•c o  too  „dadb 1 r 00  r 00  | \ I > ( a f t ) | 2 ,
/  /  |W f ( a , b ) \ 2—  =  7T  \F ( ^ ) \  | d a  d n

J —oo J —oo CL Z7T J —c o  J —c o  j t t |

c„

/ C O

I m \ 2dt (3.16)
•oo

It is worth nothing tha t the wavelet transform energy preserves also between 

the different scales such th a t

/ O O  T O O  1

\4’(t)\2dt = j  — \il)ab{t)\2dt (3.17)
-o o  J —oo \Cl\
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Fig. 3.2. The role of scaling param eter a in wavelet transform.
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3.4  D iscre te  W avelet Transform

Although the admissibility condition assures the complete representation of f ( t )  

w ith its wavelet transform coefficients W /(a , b). it requires the wavelet transform  

operation to  be performed for all values of a and b which are continuous parameters. 

This transform representation is not practical. One would prefer to perform the 

wavelet transform operation as few times as possible. Therefore these scaling or 

dilation, and translation or shift param eters, a and b respectively, are discretized. 

This discretization provides a  transform  grid or frame on the time-scale plane for 

the representation of signal f ( t ) .  It is intuitive th a t this grid or frame should be 

defined properly such th a t the complete representation of f ( t ) is still possible. This 

is called the Discrete Wavelet Transformation(DW T). This version of the wavelet 

transform  reduces the redundancies of the wavelet space Wj{a,  b) significantly. The 

m athem atical reasonings on the choice of frames or grids are perfectly treated in 

the literature.

Now we can define the basis functions of a Discrete Wavelet Transform as 

the subset of continuous wavelet func.tions[37][38][40][41]

Vw( 0  =  > <3' 18>

with the corresponding discrete transform lattices or grids

a = a™ b = nboa™

Hence, the discrete wavelet transform  basis functions can be expressed as

_  m
^m n(0 =  ° 0  2 '&{aomt ~  (3.19)

Here m  and n are integers. It is intuitively seen th a t this discrete wavelet family 

approaches to a continuous wavelet family when ao —► 1 and bo —> 0 .
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It can be shown th a t the functions of a discrete wavelet transform basis 

^mn(t)  can form a frame or the sets of m  and n param eters are proper for the 

completeness if the wavelet function 0 (i)  satisfies the admissibility condition. Then 

the frame bounds are constrained by the inequalities[40] 0  <  A  < B  < oo

<  B  (3.20)<  — ~ —  fbologa0  J \ a \

These inequalities hold for any choice of do and bo. These bounds diverge for non- 

admissible wavelet functions.

The discrete wavelet transform is defined on the grid points or in the frame 

of time-scale plane as

__ m /*00

W f ( m , n )  =<  > =  a0  2 / ^ ( a ^ t  -  nb0 ) f ( t )dt  (3.21)
J  — CO

and the wavelet transform representation of the signal

/w = E E ^ /K n)W ) (3-22)
m  n

There is a particular interest on binary or dyadic grid where ao=2 and &o=l, which 

leads to the conventional multiresolution concept and the orthonormal discrete 

wavelet transforms.

3.5 C om p a ctly  S u p p orted  O rthon orm al W avelet  
B ases and T h eir  L inkages w ith  U n ita ry  F IR  
P R -Q M F s

In general, the wavelet transform functions in a frame are not linearly independent 

therefore there is a redundancy within the frame. In many applications a minimum 

possible redundancy in the frame is desired. An orthonormal basis is a frame with 

A = 1 and B  = 1 in Eq.(3.20). Orthonormal bases are of special interest to us.

The first orthonormal wavelet bases were studied by Stromberg[42], M eyer[43], 

Battle[44], and Lemarie[45]. In the Meyer basis, the wavelet function ip(t) has a
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compact support and has infinitely many times differentiable Fourier transform. It 

follows tha t ij){t) itself is infinitely many times differentiable, and it decays faster 

than  any inverse polynomial. For the support length of N , there exists a constant 

C n  s o  th a t[43]

hK*)l ^  ° N
( 1  +  1*1)"

For practical purposes, however, the constants Cn  tu rn  out to be so large and give 

rather bad numerical localization properties. The Stromberg and B attle - Lemarie 

bases[42][44] have less differentiability (typically they are k times differentiable), 

but they have exponential decay in time,

—at
I V K O I  < c e

The decay constant a  tends to be zero as k (the degree of differentiability of ?/>(£)) 

tends to go to infinity.

Mallat and Meyer, by using multiresolution analysis, developed an elegant 

framework for constructing orthonormal wavelet basis which includes all existing 

nice wavelet bases. The first constructed wavelet bases are the special case of this 

general technique[37][38].

These bases tu rn  out to be related to a special type of quadrature m irror 

filters(QM F). As will be seen later, these wavelet bases lead to a multiresolution 

signal representation scheme and has very strong connections with the PR  subband 

dyadic tree structures which were presented in Chapter 2. Interestingly enough, the 

compactly supported orthonorm al wavelet transform algorithms are very closely 

related to the dyadic tree FIR  PR-QM F algorithms. The whole wavelet transform  

operations can be confined to the transform domain for the different dilations and 

translations. It is shown th a t any unitary FIR PR-QM F bank which has some 

degree of regularity leads to a compactly supported orthonorm al wavelet transform 

basis.
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The multiresolution signal analysis concept provides the best framework to 

understand the compactly supported orthonormal wavelet bases and their design. 

The idea of multiresolution analysis is to write an X2-function f ( t )  as the lim it of 

successive approximations, each of which is smoothed version of f ( t ) ,  with more 

and more concentrated smoothing functions. The successive approximations of a 

function thus correspond to different resolutions, therefore the name multiresolution 

analysis is used. This smoothing or approximation is accomplished with the use of 

a kernel low-pass approxim ation function called the scaling function cj>{t).

A multiscale analysis of signals consists of a  sequence {Vm\m G Z}  of closed 

subspaces of L 2 (R ) which satisfy the following conditions[40][41][49]

• Containm ent Property :

...V i C Pi C Vo C V-i C V -2-

• Completeness Property :

™ 2 z v'” =  <°) n , e z v-  =  £ ’ W

• Scaling Property :

/ ( .  ) G Vm <*=>• /(2 . ) G Kn.-X for any function /  G L 2 (R)

• The Basis/Fram e Property :

There exists a function cf>(t) G Vo such tha t Vm G Z , the set

=  2~ml2 — n)| Vrc G Z\ spans n G Z ]

Let Wm denote the orthogonal complement of subspaces Vm and Kn+X. Let 

us also denote by Pm and Qm, the projection operators from L 2 ( R ) onto Vm and 

Wm respectively. Clearly, the containment and completeness properties imply the
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existence of subspaces Wm and projection operators are well defined. The com plete­

ness property also ensures th a t limm _ >_ 00 Pmf  =  /  for any signal /  6  L 2 (R),  where 

the lim it are taken in L 2 norm. The containment property implies th a t Pmf ,  for 

successively decreasing m, leads to successively be tte r approximations of / .  T hat 

is, for given Pmf , Pm+ i f  is completely determined. The scaling property ensures 

tha t the approximations reside on different scales.

If the functions <j>mn(t), for a fixed m, form a basis for Vm, then by using 

Gram orthonorm alization process in the Hilbert space L 2 (R),  a function 4 imn(£) is 

constructed from </>mn(t) such tha t 4>mn{t) forms an orthonormal basis for L 2 (R). 

Therefore, the function set { ) }  is assumed to be an orthonormal set.

The Containm ent Property imposes a restriction on the scaling function <f>(t)

since

G Vo C VI1 =  span{<f>-in(t) ;n  e  Z }

Therefore, we have the fundam ental scaling equation, which is stated as the two 

scaling functions of the adjacent resolutions, for example m  =  0  and 1 , m ust have 

the functional linear inter-scale relationship

4>{t) =  o(n)</>(2t -  n)  (3.23)
n

The coefficient set {/jo(n)} in Eq.(3.23) is called the inter-scale basis coefficients. 

If we take the Fourier transform of both sides in this equation

=  E  M n ) e - ^ nr°$  A  (3.24)
n  ^

Additionally, let us define the Fourier transform of the discrete tim e sequence, 

inter-scale coefficients {/i0 (n)} as

H 0 {e?u ) = E  ho(n)e~ium (3.25)
n
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Therefore we can rewrite Eq.(3.24) with Q =  jr

$ (n )  =  t f 0 (ej ^ ) $ ( | )  (3.26)

•j ^
i/o(e 2T° ) is a periodic function with the period of 4tt.

Similarly for the next two adjacent resolutions we can write the relationship 

of their scaling functions as

(j>(2t) =  h 0 (n)(f)(4t -  n )
n

This implies the relationship in the frequency domain

Therefore we can rewrite 4>(f2) of Eq.(3.26) in the form

$ ( 0 ) =  H 0 (ej ^ ) H 0 (ej ^ ) $ ( j )

Notice now tha t Ho(eJ'^) has a period of 8 n. If we repeat this procedure infinite 

times, using th a t ^  * 0 ,

OO _W _

=  $(0) n  H 0 {e*kTo ) (3.27)
k=i

One can show that the completeness property of a multiresolution approxi­

mation implies th a t any scaling function satisfies non-zero mean constraint[40]

/ OO

4 >(t)dt ^  0

•C O

If one restricts the case where cj>(t) is a real function, then <j>(t) is determ ined

uniquely, up to a sign, by the requirement th a t <j>on(t) be orthonormal. Therefore,

/ OO

4(t)dt = ±1 (3.28)
-O O
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which is equivalent to

/ OO

(j>{t)dt\
-OO

=  \H0 (e j % ) \ „ = 0  = l  (3.29)

It is interesting th a t the Fourier transform  of the continuous scaling function 

is obtained by the infinite resolution product of the Fourier transform of the inter­

scale coefficients {/io(^)}- If the duration of the inter-scale coefficients {/*o(«)} 

is finite, the scaling function (f>{t) is called compactly supported. Furtherm ore, if 

ho(n) has the duration 0  <  n <  N  — 1 , (j>{t) is also supported within the interval 

0 <  t < N  -  1 [40] [49].

The orthogonal or complementary space Wm is given by the difference Vm- \ © 

Vm. Now consider th a t <j){t — n) G Vq and <j)(2t — n) G V]. Since Vo =  span{<j>(t — n)}  

and Vj =  span{(f>{2 t — ?r)}, it is reasonable to expect the existence of a function xl>(t), 

such th a t W 0  =  span{il>(t — n)}. This is indeed true and can be proven by the group 

representation arguments. This function i/>(t) is the wavelet function, associated 

with the multiscale analysis. Clearly, by the scaling property, Wm = span{ij>(2~mt — 

ra)}- Wm are also ( as Vm ) generated by the translates and dilations, V’mn(^), 

of a single wavelet or kernel function ^>(t ). The containment and completeness 

properties together with W m ±  Vrn, and Vm- i  = Vm © W m imply th a t the spaces 

Wm are all m utually orthogonal, and also their direct sum is equal to L 2 (R).  Since 

for each m, the set {ipmn(t) ; n G Z]  constitutes an orthonormal basis for W m, it 

follows that, the whole collection {f/’mn(f) ; m , n  G Z}  is an orthonormal wavelet 

basis for L 2 (R).  Now L 2 (R.) can be decomposed as

L 2 (R) =  ... © W j  © W j- l .. © W 0... © W . j+1 © W - j + 2...

which implies th a t L 2 (R)  =  span{2~m/ 2 il>(2~mt —n)}. The set {V’mn(0 =  2 ~m 2̂ i^(2 ~mt 

n)}  is the wavelet basis associated with the multiscale analysis.
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For the m ultiresolution analysis described above, there exists the correspond­

ing orthonorm al wavelet function, similar to the scaling function. These band-pass 

nature wavelet functions are also linearly related to the next better resolution low- 

pass scaling functions as

■0(f) = h\{n)(j)(2t — n) (3.30)
n

This is the fundam ental wavelet equation, and dual of the fundam ental scaling 

equation.

Note tha t if the scaling function (f>{t) is compactly supported in the interval 

[0,N  — 1 ], the corresponding wavelet function 0 (f) is also compactly supported 

within the interval [1 — y ,  y ].

Now we take the Fourier transform of both sides in Eq.(3.30)

#(U ) =  5 > ( f c ) ( e - ' '9 ‘ ) * ( § )  (3.31)
k 1

If we define the Fourier Transform of the new inter-scale coefficient sequence {h\(k)}  

as

H x{ e n  = Y , h x { k ) c - j“k
k

We can rewrite the wavelet function in Fourier domain with fl =  -f-

®(fi) =  (3.32)

If we replace the second term  in the right hand side of this equation w ith the infinite 

frequency product derived earlier in Eq.(3.27)

00  U.
'P(ft) =  ) n  Ho{e 2 kTo ) (3.33)

k = 2

The scaling function has to satisfy the conditions of an orthonorm al set 

within a scale, for a fixed ??? as

<  > =  &nl ( 3 -3 4 )
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Therefore the scaling function of a given resolution and its translates {<j)mn(t)} 

provide an orthonorm al basis. Since the scaling functions {</>(£ — n)} provide an

orthonorm al basis their Fourier transforms must satisfy the unitary condition

^2\<f>{Sl + 2Trk) \ 2  = 1 (3.35)
k

Its proof is given in Appendix A. If we employ the Fourier domain relationship of 

the adjacent resolution scaling functions of Eq.(3.26)

$ (2 « ) =  H 0 (ej %)$(Sl)  (3.36)

in the orthonorm ality condition of Eq.(3.35), we obtain the equation[39]

£  |t f 0 (ei(^ +fcir)) |2|<Kft +  k n ) ] 2  = 1 (3.37)
k

This equation can be rewritten as the sum 

\H0 (ej { % + 7 r ) ) \ 2  £  |0(fl +  (2k + 1 )tt) | 2 +  \H0 (ej% )\2\ £  <j>(9, + 2 kir ) \ 2  =  1 (3.38)
2 k+l 2 k

This last equation yields the magnitude square condition of the inter-scale coeffi­

cient sequence {/*o(«)}

\H0 (e j % ) \ 2  +  \H0 (e j { % + * ] ) \ 2  =  1 (3.39)

The orthonorm al wavelet bases are complementary to the scaling bases and 

satisfy the in tra  and inter-scale orthonorm alities as

^  V,mn( )̂> V,fc/ ( 0  '>= ^mk^nl

where m  and k are the scale, and n and I are the translation param eters. Notice that 

the orthonorm ality conditions of wavelets hold for different scales, in addition to 

the same scale which is the only case for scaling functions. Since {ij>(t — n)} forms

66



an orthonorm al basis for Wo, their Fourier transforms must satisfy the unitary 

condition in frequency

+  2ttA; ) | 2 =  1 (3.40)
k

As found earlier, the wavelet function in Fourier domain is expressed as

tf(2« ) =  (3.41)

Similarly, if we employ Eq.(3.40) into Eq.(3.41) the sequence {^i(«)}  should satisfy

| t f i(eJ' ^ ) |2 +  | H,(eji^ +Jr))\2 = 1 (3.42)

These scaling and wavelet functions also satisfy the orthonorm ality condition

between themselves as

<  < t > m n ( t ) , 4 > k l { t ) > =  0

Note th a t the orthonorm ality condition of wavelet and scaling functions are satisfied 

for the different scales, in addition to the same scale. This tim e domain condition

implies its counterpart in the frequency domain as

Y ,  $ (f i) tf ( f i -  2irk) = 0 (3.43)
k

Now, if we use Eqs.(3.43), (3.41), and (3.36) then we obtain the frequency 

domain condition

H 0 (ej % )H 1 (e~j %) + H 0 (ej{%+7r))H 1 {e~j{% +K)) = 0  (3.44)

This condition is autom atically satisfied by relating the two inter-scale se­

quences in frequency as

H\(e^w) =  - e - j“H 0 (e~j{“+1v)) (3.45)

or in tim e domain

M n )  = ( - l ) #M l - n )
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Three conditions required from the inter-scale coefficients, {/i0 (n)} and {/ii(n)} 

in Eq.(3.39), Eq.(3.42) and Eq.(3.44), to design compactly supported orthonormal 

wavelet basis are then equivalent to the requirement th a t the m atrix H(e3UJ) with 

normalized T0 =  1

H{ej“) =

be unitary  for all u>.

It is very interesting th a t these conditions of the inter-scale coefficient se­

quences {/?o(«)} and {/ji(ra)} for the orthonormal wavelet basis design are noth­

ing else but the perfect reconstruction conditions of 2-ba.nd unitary FIR  PR-QM F 

banks.

It has been shown that, the requirements for the design o f  a compactly sup­

ported orthonormal wavelet bases, are identical to the requirements of  2 -band unitary 

FIR PR-QM F bank design as discussed in Chapter 2 .

3.5.1 W avelet R epresentation  o f Signals in F in ite  N um ber  
o f R esolutions

A given function f ( t )  can be represented by the orthonorm al scaling function 4>(t) 

and its translates as
CO

/ ( 0  =  s(Q,n)<f>(t -  n) (3.47)
n = — o o

where the scaling coefficients are

/ O O

f(t)<f(t — n)dt  (3.48)
•O O

If one desires to approxim ate f ( t )  in a lower resolution with the coarser 

version of orthonormal scaling function and its translates as

CO .

= H  «(1,^)<^(~ — «) (3.49)
7 l =  — O O
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where the scaling coefficients

/ oo f

/A -  n ) d t  (3-50)
•oo  Z

This implies the approximation error

f U n  = m  -  f \ { t )

Since the approximation or scaling functions are smooth or low-pass in nature, it 

is intuitively expected th a t the approximation error has a band pass characteris­

tic. Therefore we may represent this function by employing an orthonorm al

function set with the band-pass nature.

We can now express the approximation error by employing the wavelet basis

as
O O  J

/ e M =  E  W f ( l , n ) i , ( - - n ) (3.51)
n = —oo "

where the wavelet coefficients are found as

/ oo t
f ( W ( -  -  n)dt (3.52)

-co  L

Therefore, f ( t )  can now be completely represented as the summation of its approx­

imation in the lower resolution and the approximation error

O O  J  O O  j

/(*) =  s ( l , n ) ( j ) { - - n )  + Y  W A l , n ) ^ { ~ ~ n ) (3-53)
7 i= —oo ^  n = —oo

Similarly, we can obtain an approximation of f \ ( t )  by the use of its lower tim e 

resolution scaling function set as

CO J.

/ ! ( * ) =  J 2  s( 2 ,n)<j>(--n)
n = —oo

and the new approximation error term  can be expressed by the wavelet function of 

tha t lower resolution as

oo  .

f l W =  E
71 =  — C O
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The signal / ( f )  is now written as
OO J. OO J  OO j

/ ( 0  = Z  5(2>n)̂ (T -  n ) + Z W>(2inW(7 “ n) + z  FK/(i, — n)
n = —oo n = —oo n = —oo

(3.54)

If this process is repeated, f ( t ) can be completely represented as
OO CO j

/(*) = Z  Z ^ / ( m , ^ / — -  n) (3-55)
m = l  n = —00

As seen from this function expansion formula, one needs infinite num ber of resolu­

tions to completely represent /( f ) .  This is not a practically desired case. Therefore 

we would like to lim it the coarsest desired resolution for the approximation of sig­

nal / ( f )  as L  and approxim ate the signal in th a t resolution with the corresponding 

scaling function set,
00 j

/ a(<)= Z 5CM M ^-n)
7 1 =  —  O O  w

Using terms m  > L  actually implies a band-limited low-pass approxim ation of 

/ ( f ) .  The wavelet functions for m  > L  corresponds to lower end of the frequency 

spectrum. Since the number of resolutions used in the representation is lim ited, 

the corresponding approximation error now becomes
L 00 j

/!(*) = Z  Z W f ( m , n W { —- -  n)
TO =  ]  11 = —  C O  “

Hence, the signal /(/,) can be represented in a finite resolution as
00 j  L 00 j

/(*) = Z  s (L i n ) H ^ Z  ~ n )  + Z  Z  W f ( m ’n ) ^ ( ^  ~  n ) (3-56)
71=—00 *■' m = l  n = —00

Last equation shows th a t / ( f )  can be represented as its low-pass approxim ation 

and sum of detail signals in different resolutions.

3.5.2 D yadic Subband Filter Banks as Fast W avelet Trans­
form A lgorithm s

M ultiresolution analysis of continuous signals presented in the previous sections can 

be performed within the discrete domain. This was first shown by S. Mallat[37].
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Let us examine explicitly how this algorithm works.

If we s ta rt with the premise tha t only samples / ( n )  =  s (0 ,n )  of the signal 

f ( t )  available, we can form an interpolated signal /(< ), f ( t ) G Vo with the original 

sequence {s(0 ,n ) ; n G Z }, by defining[37][40][46]

f ( t )  = n )
n

Since Vo =  Vj ® W\, f ( t ) can be decomposed uniquely into an element of Vj plus 

an element of W x. These two components can be expanded into ) and 

respectively; since {</>in(Q ; n E Z}  is an orthonorm al basis of Vj, and {V’in(f) ! n £ 

Z}  an orthonorm al basis of W\.  It is expressed as

m  = f A W  + f h w

/(* ) =  Z 5 ( 1 >n w | _ n ) +  Z W' 7 ( M M | - Tl) (3-57)
n  "  n  "

The sequences s ( l ,n )  and W j ( l , n )  can be computed directly from s (0 ,n )  as

s ( l , n )  = < >=< d>ln( t ) , f ( t )  >

=  Z s (°’ *0 <  </>in(t),<l>0 k(i) > (3.58)
k

where

I f  t
< </>in(t),<f>0 k(t) > = 2  J  * ^ 2  ~  n ) ^  — k)dt

= \ j< t> ( t- ) < l> ( t - ( n - 2 k ) ) d t  (3.59)

Then Eq.(3.58) can be rewritten as

s ( l ,  n) = Y ,  ho(k — 2n)s(0, k) (3.60)
k

with

M»») = ^  J  -  n)dt  (3.61)
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Note th a t {/io(w)} are nothing else but the inter-scale basis coefficients defined in 

Eq.(3.23). It can be similarly shown th a t the wavelet coefficients of the approxi­

m ation error or high frequency component of the discrete tim e signal s(0 ,n )

W j ( l , n )  = Y k i ( k - 2 n ) s { 0 , k )  (3.62)
k

with the coefficient values

hi(n) = ^  f  “  n )dt (3.63)

Since f  <f)(t)dt =  1 the sequence .s(l, n) can be considered as an ’’averaged” 

version of the s(0, n ) on a scale twice as large, and therefore sampled by 2. This 

is expressed in Eq.(3.60) which is a discrete tim e convolution followed by a down 

sampler with factor of 2 . The sequence W j ( l , n )  corresponds to the difference 

information between the original signal 5(0, ?i) and its low-pass version s(l,? i). 

W j ( l , n )  also downsampled by 2, as seen in Eq.(3.62). The original sequence s (0 , 7r) 

therefore can be reconstructed from s(l,? i) and W j { \ , n )  by using the inter-scale 

coefficients {ho(n)}  and {/*i(n)} as[41]

s(0 ,n )  =  <  4on( t) , f( t)  > = <  +  f l i t )  >

-  Z M M " )  <  <t>On(t),</>lk(t) >  + £ W '/ ( M )  < <j>On(t),lflk{t) >
k  k

= Z S( M ) M 2  k - n )  + Y w f ( ^ k ) h i ( 2 k - n )  (3.64)
k  k

The decomposition of 5 (0 , n) into 5 ( 1 , rc) and W /( l ,n )  is only the first step. In the

next stage we similarly decompose 5(1, n) into an even coarser sequence 5(2, n) and

a new difference sequence Wf{2,n).  To do this, we again use the multiresolution

analysis as a tool

! \ { t )  e  vj = v2 @ w 2 

f \ ( t )  = /A (0  +  / e ( 0

=  Z K 2’72) * ^ ^ )  +  W /(2, n)il)2 n{t)} (3.65)
n
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with

s ( 2 , n) =  < <hn(t) , f%(t)>=< <fan( t ) , i f \ ( t )  >

= £ 3 ( 1 ,  fc) <  ^ 2n(0 i^ l * ( 0  >  (3 ‘6 6 )
k

One easily shows tha t

^ — ho^Tl 2 A.)

independent from m.  It follows tha t

3(2, n) =  £  3 (l,fc )M 2 ifc -n ) (3.67)
k

Similarly,

W /(2 , n) =  ^  s ( l ,  k)hi(2k  — n) (3.68)
k

Hence, one obtains tha t

s ( l ,  n) =  £ > ( 2 ,  fc)M 2* -  n) + Wj{2,k)l i ,{2k  -  n)] (3.69)
k

Note th a t, for a given resolution level m, s (m ,n )  captures the information of the 

signal at resolution 2 m and the W /( m ,n )  captures the new information or detail in 

the signal going from the resolution 2 m to resolution 2m+1. Therefore, it is possible 

to construct these multiresolution representations such tha t the transform  coeffi­

cients are related through the discrete tim e decimation and interpolation relations 

as

s(m  +  l ,n )  =  Y  s[m, k)h 0 ( 2 k — n) 
k

lT / ( m - f l ,n )  =  Y  s(m , k)h i( 2 k — n) 
k

s(m, n) = £ [  s (m  + 1 , k)ho( 2 k — n) +  W f( m  +  1 , k)h \{ 2 k — n)]
k

(3.70)
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Then the whole wavelet decomposition +  reconstruction transform  operations can 

be represented as in Fig. 3.3. As seen for any resolution L , s (0 , n) is decomposed 

into s(L,  n ), W /( l ,n ) ,  IF /(2 ,n ) , W /( L ,n ) .

W(l,n)
5 ( 0  ,n )

3 ( 1 ,  n

H /(2’n ) W{2,n )
W (3,n) W ( 3 , n ] ~

W{l,n)

5 ( 2 ,  n

s(0, n)

s(2 , n)

s(3,?r) 3 (3 , n)

Fig. 3.3. Decom position+Reconstruction operation in wavelet transform .

The dyadic subband tree-structure, together with easy convolution and dec­

imation structu re  makes this algorithm  work very fast. In fact, for the imple­

m entation of M allat’s algorithm[37], one only needs two filters ho(n), hi(n)] their 

multi resolution analysis origins are not used explicitly. One may therefore try  to 

isolate the relevant properties of the filters, and design filters satisfying all these 

properties of unitary  2 -band PR-QM F. Therefore, any PR-QM F solution can be 

used to  construct orthonorm al wavelet basis as long as they satisfy zero mean high- 

pass filter condition.

3.5.3 W avelet R egularity and D aubechies W avelet B ases

Daubechies constructed orthonorm al wavelet bases which have good frequency lo­

calization as well as tim e localization. She developed compactly supported basis 

functions(tim e localization) such th a t they not only satisfy all the m ultiresolution 

analysis conditions bu t also have good frequency localization[40].

For typical engineering applications, the scaling function (f>(t) m ust be rea­

sonably smooth. This restriction can be reflected into the decay of Fourier trans­

form of the scaling function. A decay in the  Fourier domain can be achieved if the
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Fourier transform  of the sequence has a factor of the form (1 -f e~i*)N for some 

integer N .  This introduces an uj~n  factor in the Fourier transform  of this sequence. 

This idea was used by Daubechies to prove the following sufficiency condition on 

the inter-scale sequence {h 0 (n)} for the smoothness of the scaling function.

Let the Fourier transform of the sequence {h 0 (n)} be in the  form of

H 0 {ejw) =  (1 +  e - jw)NP(ej“) (3.71)

for some trigonom etric polynomial P(e^w). Furthermore, Let P (e JU') satisfy the 

following equation

I ]1  p (e j*k)I <  (3.72)

for some / > 1 , then h-o(n) leads to a scaling function tha t is m  times continu­

ously differentiable. Imposing these restrictions on h 0 (n) characterizes a multiscale 

analysis. Daubechies constructed a family of orthonormal scaling and wavelet func­

tions th a t are compactly supported and have a degree of regularity which increases 

approxim ately linear with the support of <j)(t).

As found in Eq.(3.39) the necessary condition on the inter-scale sequence

(M n )}

\H0 (e^ ) \ 2  + \H0 (e j ^ ) \ 2  = 1

On the other hand, by imposing the regularity condition, inter-scale coefficients 

should be in the form of

H 0 (eJUJ) =  (1 +  P{eiw) (3.73)

for some integer N  > 2. Then the trigonometric polynomial P(eJu;) has to satisfy

the following equation[40]

|P ( e ^ ) | 2 =  JT  ^ N  ^ + k ĵ si,n2k( | )  +  s in 2 N( ^ ) R ( ^ c o s u )  (3.74)
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where R(x)  is an odd polynomial such th a t

R(x)  =  — 72(1 — a:)

By choosing R(x)  =  0  we obtain the compactly supported orthonormal 

wavelet bases which are called Daubechies wavelets in the literature. The sup­

port width of both the scaling function </>(<) and the wavelet function is 2N.  

Daubechies wavelet and scaling functions and their Fourier transforms are given in 

Fig. 3.4 for N  = 6 .

The regularity criterion used by Daubechies is defined as

Q
\ [ ,  \ ^  j"\ i'o h r + i  f°r rea,l num bers fi (3.75)

( 1  +  |Si|)r

where c is a constant. Then 4>{t) will be m times continuously differentiable when­

ever r > m.  The maximum value of r  in Eq.(3.75) is therefore referred as the 

regularity of the scaling function. The linear inter-scale relationship of Daubechies 

scaling and wavelet functions are given in Fig. 3.5. Additionally, Fig. 3.6. shows 

tha t these bases satisfy the adjacent scale orthogonality of wavelet functions and 

orthogonality of scaling functions with integer dilations.

Note th a t, in the view of Eq.(3.32), $ (0 )  and ^ (f i)  are defined as the infinite 

products of the Fourier transforms of inter-scale coefficient sequences as,

k=zl
OO . w

$(D ) =  H 1 (ej ^ ) ' [ [ H 0 {e:,̂ ro) (3.76)
k= 2

by letting  w =  0 we find that Ho( )  m ust have at least one zero at u> = ir in order 

to satisfy the admissibility condition. We also have Fourier duality

ii1) = -  n)
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Therefore, all the regularity properties derived for (j>(t) will be carried over 

i^{t) so th a t we can restrict ourselves to design of cf>(t) only.

Daubechies derived a simple, useful estim ate for the regularity[40]. Let 

H 0 (z) be an 7V-tap FIR  filter. Assume Hq(z) has K  zeros at 2  =  — 1 then we have

Ho(z) = (l + z~ 1 )I<P(z)

and define

M k ’l = „Me  B 1 n  P ( ^ ) \ ' /L (3.77)
C k= 0

then the following estim ate for the regularity r of H q{z ) holds in

r > ~ ~  log2 M K<L (3.78)

The num ber of zeros of H q(z ) a t z = —1 , K ,  plays an im portant role for the 

estim ation of the regularity in Eq.(3.78). Also, we have seen th a t K  >  1 is necessary 

for the smoothness of <j>(t).

Note tha t, imposing K  zeros at 2  =  — 1 for Hq{z) is equivalent to impose 

a ’’flatness” requirem ent on the frequency response of the inter-scale coefficient 

sequence \H0 (z) \ a t uj = w. This implies tha t its first K  — l  derivatives should vanish 

at those points, along with Ho( — 1). The flatness requirement is also equivalent in 

tim e to

5 ^ ( - l ) V f c 0(n) =  0 for i=0,l, . . . ,K-l (3.79)
n

which in turn amounts to imposing K  — 1 vanishing moments on the inter-scale 

sequence h\{n)

^ 2 n 'hi{n)  =  0 for i= 0 ,l,...,K -l (3.80)
n

This is equivalent to  satisfy

£ ( 2 n ) ‘'M 2 n )  =  £ ( 2 n  +  l ) fM 2n +  1) for & <  f  -  1 (3.81)
t  i
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Fig. 3.5 Functional linear inter-scale relationship of Daubechies scaling and 
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By choosing R(x)  — 0 in Eq.(3.74) I (  reaches its maximum value N / 2  for 

an N  tap  filter. Imposing R(x)  =  0 , i.e. K  = N / 2, corresponds to the unique 

’’maximally flat” m agnitude square response in which the number of vanishing 

derivatives of \Ho(e^ w ) \ 2  at u  =  0  and u> = tt are equal. This inter-scale coefficient 

sequence {/i0 (ra)} is identical to the unit sample response of Binomial-QMF derived 

in Chapter 4.

The regularity of the wavelet function ip(t) constructed by Daubechies in­

creases linearly w ith its support width. Imposing higher order divisibility of Ha{e*w) 

by | ( 1  +  e-JW) is used as a tool to obtain regularity. Daubechies and Lagarias have 

proven th a t maximally flat solution does not lead to the highest regularity on 

wavelet function. Defining a regularity estim ate slightly different from Eq.(3.78) 

and using the two iV-dimensional finite m atrices and reducing the zeros of H q{z ) at 

z = — 1, they found higher regularity for the same support width. Unfortunately, 

this improved m ethod requires considerable effort to compute M k , l • Therefore, it 

is im practical even for the m oderate values of iV[46].

It is worth noting th a t if we restrict our attention to orthonorm al bases of 

compactly supported wavelets only, then it is impossible to obtain which is 

either sym m etric or antisym m etric, except for the trivial Haar case. In order to 

obtain ho(n) as close to linear phase as possible we have to choose the zeros of 

its magnitude square function \Ho(e^ ) \ 2  alternatively from inside and outside the 

unit circle as frequency increases. This will lead the non-minimum phase FIR  filter 

solutions. When N  is sufficiently large, the impulse responses of ho(n) and hi(n)  

will have acceptable sym m etry or antisymmetry. Obviously the larger support 

width will lead to  more symmetrical filter solutions. In Daubechies wavelet bases 

there are 2^ 4 -̂ 1  different filter solutions. It is clear th a t for N  =  4 and 6 , there is 

effectively only one pairs of (f>(t) and For TV >  8  we could choose the solution
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which is closest to the linear phase. Even if minimum-phase solution has the worst 

phase response among the those solutions, it is still quite symmetrical for m oderate 

values of N.  The resulting {/i0(«)} filter coefficients for minimum phase and the 

most symmetrical solutions are tabulated in Table 3.1 and Table 3.2 for different 

values of 7V[47] [53],

3.5.4 Coiflet B ases :

For a fixed support width, Daubechies wavelet function ip(t) has the maximum 

num ber of vanishing moments. The scaling function (f>{t) does not satisfy any 

moment condition, except /  cj>{t)dt =  1. For numerical analysis applications, it may 

be useful to give up some of the zero moments of wavelet function ip(t) in order to 

obtain some zero moments for the scaling function as[47]

J  <j){t.)(lt =  1

J  t u<f>(t)dt = 0  for v =  1 , 2 , . . . ,T  -  1

J  t v\l>{t)dt =  0  for v -  0 , 1, . . . ,  L -  1 (3.82)

Imposing such vanishing moments on scaling function <f>(t) also increases its sym­

metry.

The conditions in Eq.(3.82) are equivalent in frequency to

$ ( 0) =  1

- ^ $ ( 0 ) =  0  for v =  1 , 2 ,...L  -  1

- ^ - $ ( 0 ) =  0  for i/ =  0,1, ...L — 1

In term s of Ho(e^w), these conditions imply

Ho(ej“) l = 0  = 1 

- ^ H 0 { e n i = o  =  0  for v =  1 , 2 , . . . ,T  -  1
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du
H 0 {e3W) \ ^  =  0 for w =  0 , 1 , L -  1 (3.83)

drt"

In order to satisfy those conditions, Ho(e3W) has to be the in form of

H 0 (e3u') = 1 +  ( 1  -  e3 W)LS{e3W) (3.84)

From Eq.(3.83), H 0 (e3'J>) has the zero of order L  at uj = w. Consequently, H 0 (e3w)

m ust satisfy,

H 0 (e?u) = [ ^ ( 1  +  e~j“) \L P(e j“) (3.85)

where, P(e3w) as found earlier

k J V2 V ' " ' V2
\P(e3“)\2 =  J L ( L +  sin2k(? )  +  sin2L(i; )R{ \ c°su)

k= 0 \

where R(x)  is an odd polynomial as given in Eq.(3.74). Together Eq.(3.84) and 

Eq.(3.85) lead to L  independent linear constraints on the coefficients of S(e3U).

For L even, L  =  2 K . A  similar analysis could be carried out for L  odd. 

Daubechies imposes H 0 (eJUJ) be the form

tf0( O  =  1 +  (sin2( —)) -  E  ( K ~l*k) (c°s2( f  ) ) *  +  ( c o s 2 ( | ) ) ‘ / H

(3.86)

in order to satisfy Eq.(3.84) and Eq.(3.85) simultaneously. Remaining f(uj) must 

be chosen such tha t P R  conditions in Eq.(3.39) are satisfied. The inter-scale coef­

ficients of Coiflet solutions are given in Table 3.3.

We will show later in Chapter 5 th a t these filters are obtained as the special 

cases of the generalized unitary 2-band PR-QM F design technique proposed in this 

dissertation.

3.6 G en era liza tion  o f  O rthonorm al W avelet B a ses

The dilation factor 2 of in the definition of the orthonorm al wavelet basis tha t 

forces il>(t) to have a bandwidth of at least one octave. In some applications it is
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desirable to have be tter a frequency localization which can be achieved by choosing 

a dilation factor larger than  2 . For general N ,  the step of one resolution space 

Vm to the coarser resolution space Vm+i corresponds to  a jum p of log2 N  octaves 

in frequency, since there is a  dilation factor N  between two resolutions, and every 

factor 2 corresponds to one octave[41][50].

The theory of orthonorm al wavelet transforms can be generalized by choos­

ing dilation factor N  instead of 2 which is a special case. In general, a mul­

tiresolution scheme uses one scaling function and M  — 1 different wavelets 

^ ( t )  i = 1 ,2 ,..., TV- 1

The families of the wavelet functions 0™n(£) is ° f  the form

1 / 4 n(t) = N - m^ ( N - mt -  n)  (3.87)

Similar to  the case where the scaling factor is 2, there is also a sequence of embedded 

closed vector spaces {Vm} here. Defining the low-pass scaling function as

<l>mn(t) = N ~ ml 2 <f>(N~mt -  n ) (3.88)

Then Vm is spanned by {<j>mn(t)} for fixed m. Then N  — 1 wavelets 4>mn(t) generate 

— 1 different families of spaces W ]n, and for any ?7z, the N  — I spaces Wrln+l are 

orthogonal complement of Vm+] to constitute the space Vm as

Fm — Pm-f 1 ®
N -  1

© W U (3.89)
?, =  1

The fundam ental scaling equation, the linear relation of two scaling function of the 

adjacent resolutions, for the scaling factor N

0 (0  =  — n ) (3.90)
n

The frequency domain counterpart of this relation

$ ( f t )  =  HQ{ejw/N)^(n/N)  (3.91)
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Then N  — 1 different wavelet functions can all be w ritten as the linear com­

binations of the scaling function <p(Nt — n)  as

V,‘(0  = '%2hi(n)<j)(Nt — n) i =  1 , 2 , N  — 1 (3.92)
n

Therefore There exists trigonometric polynomials Hi{e^w) such th a t in Fourier do­

main

= Hi(ejw/N) $ ( n / N )  (3.93)

Since we are only interested in compact support bases, the scaling function <f>(t) 

and wavelet functions 0 *(i), also h 0 (n ) and /i;(n) must have finite durations.

Orthonorm ality of different subspaces in the multiresolution analysis ensures 

tha t [41] [52]

$ 0 ii(0 > ^  — &n—l

<  ^ m n ( < ) , ^ [ . / ( 0  >  =  0  * =  1 , 2 , . . . # -  1

< > = Si-jSm-kSn-l (3-94)

By forcing the orthonorm ality condition in Eq.(3.94) with the admissibility condi­

tion on the wavelet functions, one could get necessary conditions on the wavelet 

filters such th a t

• E n M n) = 1

• E n M * 0  = 0 1 = 1,2, . . .# —1

•  E n  hi(n)hj(n  +  k N )  =  S,^ 1 Sk

Note th a t, These above conditions implies all filters have unit energy and orthogo­

nal with each other with decimation factor N .  Using the z-domain expression for 

decim ation by N ,

i  j r  H j ( s W n) H j { z W n) = 6,-j  (3.95)
■/V n = 0

85



with W  =  e i2ir/N' Therefore, These conditions can be transformed into the fre­

quency domain such tha t the N  x N  m atrix

H 0 (ei“) Hx{e>») ... t f jv - i(e ^ )
H 0( e ^ +^ )  H x{ e ^ + ^ )  ... H 0( e ^ + W )

# o ( e J ' ( " + ( J V - 1 ) ^ ) )  . . .

(3.96)

be unitary. Thus we obtain the filters ho(n), hx(n) , ..., hiv-i(n).  If the wavelet basis 

is orthonorm al then the bank of filters ho(n) through /i^_ i(n) should form a N-  

channel maximally decimated PR  filter bank. Note th a t PR  filter bank design and 

wavelet basis construction are converged here, the same as 2 -band case.

One way of getting fV-band PR  filter bank solution is to use two band 

PR  filter bank in tree structure. Similar method is also available for orthonorm al 

wavelet bases. Given an orthonormal wavelet basis with dilation factor 2, the 

following equivelency generates an orthonorm al wavelet basis with dilation factor 

2N. Let us generate the wavelet basis with dilation factor 4[46]. We need to find 

i =  0 , 1 ,2 ,3  so th a t the corresponding 4 x 4  m atrix is unitary. By defining

H {Q4 )(ej“) = H 0 (ej“)HQ(ej2“)

= HQ{ ^ w)Hx{e32uJ)

H {3 i](ejw) = Hi(eJU)H 0 (ej2uj) (3.97)

where H\(e^w) = — e~J U J (e~J ÛJ+K̂) and H 0( )  is the frequency response of low 

the pass filter associated with the given orthonorm al wavelet basis N  — 2. One 

can easily verify tha t, with the choice of Eq.(3.130), 4 x 4  m atrix is indeed unitary 

for all oj so th a t It provides an orthonorm al wavelet basis with the dilation factor 

4. Note tha t this choice is equivalent to parallel realization of the cascaded tree 

structure which is covered in Chapter 2 .
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For the case, even better frequency localization is desired, this splitting 

approach can be repeated. One can replace the wavelet function ip(t) by 2J new 

wavelet functions each corresponding to a 2 - J -octave bandwidth, and have to be 

translated by integer multiples of 2 J .

S p a n {^ { t  — n)} =  Span{ij>\2,\ t  — 2 Jn) ; / =  1 , 2 ,..., 2 J n  G Z )

The functions are the special cases of the ’’wave packets” concept proposed

by R. Coiffman and Y. Meyer. The concept of the best adapted wave packet bases 

is to  introduce an algorithm  for selecting the most efficient representation of a signal 

from a library of orthonorm al basis functions. They also prove th a t its complexity 

is 0 ( N ) for a sequence of length N . In one framework it includes m any different 

choices of orthonorm al bases of which the wavelet basis is one extrem e example. 

Another extrem e with the same framework is a basis closer in spirit to the windowed 

Fourier transforms, infinitely many interm ediate choices are possible.
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n h(n) h(n ) h(n) h(n) h(n)
0 0.05441584422 0.11154074335 0.230377813309 0.332670552950 0.482962913145
1 0.31287159091 0.49462389039 0.714846570553 0.806891509311 0.836516303738
2 0.67563073629 0.75113390802 0.630880767930 0.459877502118 0.224143868042
3 0.58535468365 0.31525035170 -0.027983769417 -0.135011020010 -0.129409522551
4 -0.01582910525 -0.22626469396 -0.187034811719 -0.085441273882
5 -0.28401554296 -0.12976686756 0.030841381836 0.035226291882
6 0.00047248457 0.09750160558 0.032883011667
7 0.12874742662 0.02752286553 -0.010597401785
8 -0.01736930100 -0.03158203931
9 -0.04408825393 0.00553842201

1 0 0.01398102791 0.00477725751
1 1 0.00874609404 -0.00107730108
1 2 -0.04870352993
13 -0.00391740373
14 0.00067544940
15 -0.00011747678

Table 3.1 Daubechies minimum phase wavelet filters.
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n h(n) h(n) h(n)
0 0.002672793393 0.021784700327 -0.107148901418
1 -0.000428394300 0.004936612372 -0.041910965125
2 -0.021145686528 -0.166863215412 0.703739068656
3 0.005386388754 -0.068323121587 1.136658243408
4 0.069490465911 0.694457972958 0.421234534204
5 -0.038493521263 1.113892783926 -0.140317624179
6 -0.073462508761 0.477904371333 -0.017824701442
7 0.515398670374 -0.102724969862 0.045570345896
8 1.099106630537 -0.029783751299
9 0.680745347190 0.063250562660
10 -0.086653615406 0.002499922093
11 -0.202648655286 -0.011031867509
12 0.010758611751
13 0.044823623042
14 -0.000766690896
15 -0.004783458512

Table 3.2 Daubechies non-minimum phase wavelet filters which are the best phase

response among the solutions.
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n h(n ) h(n) h(n) h(n )
0 0.000630961046 -0.002682418671 0.011587596739 -0.051429728471
1 -0.001152224852 0.005503126709 -0.029320137980 0.238929728471
2 -0.005194524026 0.016583560479 -0.047639590310 0.602859456942
3 0.011362459244 -0.046507764479 0.273021046535 0.272140543058
4 0.018867235378 -0.043220763560 0.574682393857 -0.051429972847
5 -0.057464234429 0.286503335274 0.294867193696 -0.011070271529
6 -0.039652648517 0.561285256870 -0.054085607092
7 0.293667390895 0.302983571773 -0.042026480461
8 0.553126452562 -0.050770140755 0.016744410163
9 0.307157326198 -0.058196250762 0.003967883613
10 -0.047112738865 0.024434094321 -0.001289203356
11 -0.068038127051 0.011229240962 -0.000509505539
12 0.027813640153 -0.006369601011
13 0.017735837438 -0.001820458916
14 -0.010756318517 0.000790205101
15 -0.004001012886 0.000329665174
16 0.002652665946 -0.000050192775
17 0.000895594529
18 -0.000416500571
19 -0.000183829769
20 0.000044080354
21 0.000022082857
22 -0.000002304942
23 -0.000001262175

Table 3.3 The coefficients of coiflet filters.

90



C hapter 4 

Binom ial-Q M F W avelet 
Transform

4.1 In tro d u ctio n

Subband signal decomposition has been introduced earlier in Chapter 2. In this 

chapter, we describe a class of orthogonal Binomial filters which provide basis func­

tions for a perfect reconstruction bank of finite impulse response QMFs. The or­

thonormal wavelet filters derived by Daubechies from a discrete compactly sup­

ported wavelet transform approach which was given in section 3.5.3 are shown to 

be identical to the solutions inherent in the Binomial-based QMFs.

The compaction performance of the Binomial QMF based subband decom­

position is com puted and shown to be better than the DCT for Markov source 

models, as well as real world images. The proposed Binomial QMF structure is 

efficient, simple to implement on VLSI, and suitable for multiresolution signal de­

composition and coding applications.

4.2 T h e  B in om ia l- H erm ite  Fam ily

The Binomial-Hermite sequences are a family of finite duration discrete polyno­

mials weighted by a Gaussian-like Binomial envelope[54][55]. These sequences are
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orthogonal on [0, TV] with respect to a weighting function. The Binomial sequence 
(  N  \I ^ I is the generating function of this family; the other members are obtained 

by successive differencing of this kernel.

Filters based on this family have two characteristics which render them  use­

ful in signal processing applications. First, they are very efficient since they can be 

implemented w ith no m ultiply operations. Secondly, the spatial and frequency do­

main responses have Gaussian-like shapes which make them particularly attractive 

in image processing applications. References [55] and [58] describe applications to 

filtering seismic data, and in pyramid image coding.

In this section, we summarize key features of the Binomial-Hermite family, 

and develop new properties which are relevant to QMF structures.

The generating function of this family is

N\
x 0(k) =  

Successive differencing

N
k
0

(.N - k ) \ k \ 0 <  k < N  

otherwise

N - r
k

(4.1)

(4.2)

leads to

-  ( * )  "-<*>

where k ^  is a polynomial in k of degree

7V(")

k = 0 ,1 , . . . ,  jV

k(k  — 1 ) . . .  (k — v +  1) v >  1
v =  1

(4.3)

(4.4)

This family of binomially-weighted polynomials has a num ber of elegant 

properties which are unveiled in the transform  domain. Taking z transforms, we
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obtain

X 0(z)  =  (1 +  2 - Y

* rW = z { v ' ( JV- r ) }  = ( i - , - ' r z { ( JV- r ) }

=  ( l - 2- 1)r ( l  +  ^ - 1)iV- r (4.5)

x r(k)

- l

1 -  z - 1

1 +  2 "

- l - l -1

- 1

-1

Fig. 4.1 Bank of Binomial-Heimite filters realized using N 2 delay elements

A network realization of this family of filters is shown in Fig. 4.1. This structure 

represents an interconnection of add and difference operators, in a purely non­

recursive FIR  form. Yet another configuration arises from the representation

X r { z ) = (rrf )̂ X t - i ( z )  =  ( iT T ^ y  (4-6)

This form, Eq.(4.6) suggests the bank of filters shown in Fig. 4.2. The ad­

vantage of this structure is evident-the entire family is obtained by simply tapping 

off the appropriate point in Fig. 4.2. Since each (1 — z_1) / ( l  +  2 _1) block can 

be synthesized with one delay element, the pole-zero cancellation structure of Fig. 

4.2 can be synthesized with 2N  delay elements as compared with N 2 delays in Fig. 

4.1. The pole-zero cancellation implicit in Eq.(4.6) can be achieved exactly since all 

coefficients are ±  1. However, care m ust be taken to clear all registers before data
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is inputted  to the front end of the filter. At any rate either realization is achieved 

w ithout m ultiply operations.

6 ( k )

X o ( k )  x i  ( k )  x : w ( k )

Fig. 4.2. Bank of Binomial-Hermite filters using pole-zero cancellation, and only

27V delay elements.

Further properties o f the B inom ial-H erm ite sequences:

• Orthogonality: It was shown in th a t { Hr(k)},  {:£,.(&)} are orthogonal set on [0,7V]
{ N  \  (  TV \ _1with respect to weighting function I ^ 1 and  I ^ 1 respectively[l7][54],

Y . H T(h)H, (k)  (  Nk  )  =  j t x r(k)z , (k)  ( 1  j  = (  "  )  (2 )" * -. (4.7)

Furtherm ore, the Hermite polynomials are symmetric w ith respect to  index and 

argum ent,

H r(k) = H k(r)

The orthogonality property in Eq.(4.7) provided the underpinning for the modified 

Herm ite Transform(M HT), an orthogonal transform used in signal coding.

• Row-column orthogonality: The Binomial m atrix X  is the (TV +  1) x (TV +  1) 

m atrix whose rth row is x r(k), k = 0 ,1 ,...., TV. The salient property of this m atrix 

is th a t the rows are orthogonal to the columns,

j r x r(k )xk(s) = (2)N6r„a (4.8)
k=0
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or

X 2 = (2 )NI  (4.9)

• Mirror image filters: The Binomial-Hermite filters are linear phase quadrature 

m irror filters. From Eq.(4.5), we see th a t

X r( - z )  = X N_r(z)

which implies

Also,

( — l ) kx r(k) =  XN-r(k) r  =  0 ,1 ,..., N  (4.10)

Z - N X r { z ~ l ) = { - \ y x r{z)

implies

Xr( N ~  k )  = ( - l ) rXr(k) (4.11)

Eqs.(4.10) and (4.11) dem onstrate the sym m etry and asym m etry of the rows and 

columns of the Binomial m atrix A'. Eq.(4.10), for example, asserts th a t the filters 

represented by the bottom  half of the Binomial m atrix  are m irror images of the 

filters in the top half. These last two equations can also be used to prove the 

orthogonality of rows and columns asserted by Eq.(4.8). Finally, from Eq.(4.10), 

we can infer tha t the com plem entary filters X r(z) and X n - t (z) have m agnitude 

responses which are m irror images about u  — 7 t /2

A' r (ej(f -^ ) | =  |Xyv_r (eJ(2+u;)| (4.12)

Hence, the com plem entary rows and columns of X possess the m irror-filter prop- 

erty.The first half of the set (r =  0 ,1 , . . . ,  ( N  — l) /2 )  have significant energy in the 

half band (0,  7t/ 2 ) ,  while the second half, (r =  ( N  +  1 ) / 2 , . . . ,  N )  span the upper
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half band. The time and am plitude responses of the Binomial family for N  =  7 are 

displayed in Fig. 4.3.

I * r ( e n i

Fig. 4.3 The time and am plitude response functions of the Binomial family for

N  = 7.
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The Binomial family provides a set of basis sequences whose frequency re­

sponses are a family of linear phase, ripple free, low-pass, band-pass and high-pass 

filters which span the frequency axis, 0 <  u> < n.

These considerations suggest tha t a low pass QMF can be obtained as linear 

combination of the lower half set of Binomial sequences. As we shall see, the 

coefficients of the expansion can be determined to  satisfy perfect reconstruction 

requirements.

•  Convolutional properties: Let x(N\ k )  •*-> X j ^ ( z )  denote the Binomial-Hermite 

sequence on [0, AT] and its transform. We can show that[17]

X l N)(z)X<M)(z) =  (4.13)

or

*<">(*) * *«">(*) =  4 £ +W)(*) (4.i4)

for n =  0 ,1 ,...., ( N  — l) /2  and s = 0 ,1 ,...., (M  — l) /2 .

There are various special cases of Eq.(4.14) which dem onstrate recurrence 

relations among different sized Binomial families. The simplest perm its us to  gener­

ate higher order Binomial m atrices from lower-order ones. Consider M  — l , s  — 0. 

Then

Xj:N+1)(z) = (1 +  Z - ' ) X (rN)

xiN+l\ k )  =  zJW(fc) * {6k + (4.15)

This recurrence relation along with the mirror image property of Eq.(4.10) enable

us to build up iteratively the Binomial-Hermite matrices. Let X^N  ̂denote the

( N  +  1) x ( N  +  1) m atrix. Then
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The first two rows of X ^  are obtained by convolving each row with (6k +  6k- 1 ), 

or more simply put, by shifting each row one position to the right and adding it to 

tha t original row. For example,

1 1 
1 1

1 - 1  
1 - 1

1 2  1 1 0 - 1  
The third row is just the m irror of the first row. Hence,

A'(2) =
1 2 1
1 0 - 1
1 - 2  1

Continuing in this fashion, we obtain the higher order Binomial matrices.

• Correlation properties: For a given N,  we define the cross-correlation 

sequences x r(n ), and x s(n) by

N

P r s ( n )  =  x ,.(??.) * x s( - n )  = ^  x r(k)xs(n +  k ) <— > R rs(z)
k=o

and

R r s ( z )  =  X r i z - ^ X . i z )

Now for any real crosscorrelation,

P r s ( - n )  =  p Sr ( n )  V s , ? ’

Furtherm ore, the quadrature m irror property of Eq.(4.10) implies tha t

P r s ( n )  =  - p s r ( n )  (s -  r)  is odd 
P r s ( n )  =  p s r ( n ) (s -  r)  is even

We also have

P N  — r,N — r ( f ^) — ( 1) Pr,r(Tl )

P N - r , N - r ( 2 n )  =  Pr, r(  2??)

of the

(4.16)

(4.17)

(4.18)

(4.19)
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These properties are subsequently used in arriving a t the perfect reconstruction

QMF equations in the next section.

We can build up higher order correlation m atrices from lower order ones 

in a m anner similar to th a t employed in constructing from X^ N\  Using

superscript notation, we can easily show that

S<?+ '>4) =  4  +  2 +  2-')*<?>(.*)

or

d S +"(k) =  («*+i + 2 4  + 4 - . )  * AN, \ k )  (4.20)

4 .3  T h e  B in om ia l-Q M F

We have obtained in Chapter 2 th a t the PR  requirement of 2-band orthogonal QMF

filter bank is
N

p{2n) = ^  h(k)h(k  +  2n) =  6n (4-21)
k=o

where the autocorrelation sequence p(n) given by

N
p(n) = £  h(k)h(k  +  n) = p{—n)  (4.22)

k=0

It is now a straight forward m atter to impose PR condition of Eq.(4.21) on the 

Binomial family. First, we take as the low-pass filter[17]

N - 1 
2

h(n)  =  ^  $rx r(n)
r = 0

or
N - 1

H{z)  = 0r ( l +  z~1);v- r ( l -  z~l y  =  (1 +  z~l )^N^ y 2F{z)  (4.23)
r —0
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where F( z)  is FIR  filter of order ( N  — l) /2 . For convenience, we take 6 0  =  1- 

Substituting Eq.(3.23) into Eq.(3.22) gives

/ N - l  \  N - 1

p ( n )  = Y  9rx r(n)
r —0

2

0  Y  Oax a(n)
5 = 0

N - l  N - l  
2 2

= Y  Y  0T0s[xr(n) © Xa(n)]
r = 0  5 = 0
N - l  N - l  

2 2

= E  E  orespTs{n)
r —0  5 = 0

N - l  N - l  N - l
2 2  2

=  ET ^vPrr(n) + Y  Y  9rOaPra(n) (4.24)
r=° r  _  o «=0

r ^  s

Eq.(4.19) implies th a t the second sum m ation in Eq.(4.24) has only term s where the

indices differ by an even integer. Therefore the autocorrelation for the Binomial

low-pass filter is

N - l  N - 3 N - l  21

P(n ) = Y  0 rPrr{n) + 2 Y  Y  ^ '+2 lPv,u+2 l(n) (4.25)
71= 0  / = 1  t/ = 0

Finally, the PR  requirement is

p(n) =  0 n = 2 , 4 , . . . , N -  1 (4.26)

This condition gives a set of ^y^ nonlinear algebraic equations, in the ^y^ un­

knowns 6 1 , 6 2 . . .  i 6 n=i . These equations were solved using software package Mac- 
2

syma.

The implementation of these filters is trivially simple and efficient using 

either the purely FIR  structure, or the pole-zero cancellation configuration. The 

la tter is shown in Fig. 4.4 for N  =  5. W herein both low-pass and high-pass filters 

are simultaneously realized. Fig. 4.5 shows the QMF bank using the direct form. 

Coefficient 6 0  can be taken equal to unity, leaving only 6 1  and 6 2  as tap weights.
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These are the only multiplications needed when using the Binomial network as the 

QMF rather than the six h(n)  weights in a transversal structure.

Low-pass High-pass

1+:

H i ( z )  H 2( z )

Fig. 4.4. Low-pass and high-pass QMF filters from Binomial Network.

The values of 9r, for N  =  3 ,5 ,7 , (corresponding to 4,6,8 tap  filters respec­

tively) are given in Table 4.1 (where 90 = 1). As seen, there are more than one filter 

solutions for a given N . For example, with N  =3, one obtains 9\ =  \ /3 5 and also 

8 1 =  — \/3 . The positive 9\ corresponds to a minimum phase solution, while the 

negative 9\ provides a non-minimum phase filter. The m agnitude responses of both 

filters are identical. Although in our derivation, no linear phase constraint on h(n ) 

was imposed; it is noteworthy, th a t the phase responses are almost linear, the non­

minimum phase filters even more so. The m agnitude and phase responses of these 

minimum phase Binomial QMFs are given in Fig. 4.6 for the cases N  = 3 ,5 ,7 .

Table 4.2 provides the normalized 4,6,8 tap filter coefficients, h(n)  for both 

minimum and non-minimum phase cases. It is seen tha t these filters are Daubechies 

filters given in Table 3.1.

We may recognize tha t these filters are the unique maximally flat m agnitude 

square PR-QM F solutions. In fact, it can be shown that the PR  requirements of
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of EqJ[4.21) are satisfied if we choose the 0r coefficients to satisfy maximally flat 

requirements at u  =  0. and u  =  7r. Explicitly, with R( u)  =  |H ie 3")]2, we can set 

0r to satisfy

R{ 0) =  1 R{ir) = 0

dkR(u)
du:k uj =  0

U) =  7T

=  0, A* = 1 ,2  .V

Herrmann[59] provides the unique maximally flat function on the interval [0,1].

( I d - * - 1)3

( I - * " 1)3

(1 +  Z -1)2

|{1

( I - * - 1)2

(1 + z -1)2

(1

9q — 1 

- > —  

tf.

O-i

- >

Hx(z)

Low-oass

- 0 ,  

- > - e High-pass

Fig. 4.5. Low-pass and high-pass QMFs using Direct Form Binomial structure

(Fig. 4.1.).

This function can be easily mapped onto 2  plane to obtain the maximally flat 

m agnitude square function /?(-)[61]. Now. one can obtain the corresponding H{z)
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from R ( z ) via factorization. This approach extends H errm ann's solution to  the 

PR-QM F case. The explicit form of R(z)  is given in Eq.(4.29)

1.00

0.50 -

0 .C 0  ’— r  
0.00 ! .00 2.00 3 .0 C

2 .0 0  ~ Phase

0.00 4

2.00

u>
-4 .0 0  4 _r 

0.00 1 .0 0 2.00 3.00

Fig. 4.6. Amplitude and phase responses of minimum phase Binomial QMFs for

.V =  3 ,5 ,7



4 .4  O rthon orm al W avelet T ransform s and B in o ­
m ia l Q M F

In this section, we emphasize and the linkages of Binomial QMF and the orthonor­

mal wavelet filters derived by Daubechies[40].

The regularity concept is unique to wavelet filters. Conventional PR-QM F 

design does not invoke this requirement explicitly but some degree of regularity 

is imposed by forcing the high-pass filter to be zero mean. The Binomial QMF 

has this feature inherent. The regularity tool suggested in [40] assumes a low-pass 

scaling filter of length N  +  1,

H(z)  = ( \  + z~x)kF{z)  1
&

Here, F ( z ) is a polynomial of degree < I < N ,  such th a t k +  I = N.

If k — ^±1  the maximum number of zeros of H{z)  are located at u> — tt. 

Therefore F ( z ) is of degree But the Binomial QMF, H ( z ) in Eq.(4.23), now 

can be written
N - l

H(z )  = (1 +  z - 1) ^  Y  0r(l  +  2- 1) ^ - r ( l -  z - ' y  (4.27)
r= 0

hence,
N - l

F( z )  = Y  Or(l +  -  z - ' Y  (4.28)
r= 0

Combining this regular nature of H ( z ) along with the PR  requirement leads to the 

unique maximally flat m agnitude square function[59],

z)  =  H ( z W z - ' )  = z N{1^ ~ l ' )N+' E ( - l )' (  *  )  (1 4- 1 -  z - ' X C29)

therefore
N - l

V(z)  = F{z ) F( z~ ' )  = z Mi l ' £ l - l ) l ( Nl +  (4.30)
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V(z)  is identical to the polynomial used in[40]. This magnitude square function is a 

linear combination of the lower half, even-indexed Binomial sequences with length 

27V +  1. Here, the convolution decomposition feature of the Binomial sequences 

Eq.(4.15) are utilized to obtain H ( z ) easily via factorization.

4.5 P erform an ce o f  B in o m ia l Q M F -W avelet Trans­
form

The performance of the Binomial QMF signal decomposition scheme is compared 

with the industry standard, the Discrete Cosine Transform (DCT) in this section.

The energy compaction power of any unitary transform is a commonly used 

performance criterion. The gain of transform coding over PCM is defined as[7]

M- 1

M

( 4 - 3 1 )

n * 2
L fc=o

where are transform  coefficient variances. This measure assumes th a t all coeffi­

cients as well as the original signal have the same type probability density function. 

Similarly the gain of subband coding over PCM is defined as

i M- 1

G s b c  =  T M - t  ° ,V " (4'32)
I W
/=o

Here of is the variance of the signal in the Ith subband. This formula holds for a 

regular tree structure implying equal bandwidths.

We assume a Markov 1 source model with autocorrelation

R(k)  = pw , k = 0 ,± 1 , . . .  (4.33)
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and Gtc and Gs bc  are calculated for different cases. These results are displayed 

in Table 4.3. Eqs.(4.31) and (4.32) are easily extended to the 2-D case for separable 

transforms and separable QMFs.

The energy compaction performance of the two techniques were also tested 

for several standard images. These results are given in Table 4.4.

The results dem onstrate tha t the 6-tap Binomial QMF outperforms the 

comparable sized DCT in both theoretical performance as well as for standard test 

images. We conclude therefore th a t the 6-tap Binomial QMF provides a better 

alternative to the DCT for image coding.
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N=3
Qr | set 1 set 2
*.1 i 1
0, V3 -V 3

N=o I
Or set 1 set 2 |
00 1 1 1
01 \/2v/l0 +  5 - \ /2 \ /1 0 + o
01 y/10 VlO I

N=7
0r I sec 1 | set 2 set 3 set 4
0o 1 1 1 1 1 1
Qx | 4.9892 | -4.9892 1.0290 -1.0290
02 8.9461 I 8.9461 -2.9705 1 -2.9705
03 5.9160 1 -5.9160 -5.9160 5.9160

Table 4.1 Or values for N  =  3,5, 7
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n i h(n)
! iMini Phase Non-Minimum Phase

! 4 tap 4 tap I

0 0.48296291314453 -0.1294095225512 1
[

1 0.83651630373780 0.2241438680420
1
i

2 j 0.22414386804201 0.8365163037378

3 1 -0.12940952255126 0.4829629131445 1

| 6 tap 6 tap i

0 0.33267055439701 0.0352262935542 ii
1 0.80689151040469 -0.0854412721235
2 0.45987749838630 -0.1350110232992

3 -0.13501102329922 0.4598774983863
4 -0.08544127212359 0.8068915104046
5 0.03522629355424 0.3326705543970

8 tap 8 tap 8 tap 8 tap |

0 0.23037781098452 -0.0105973984294 -0.0757657137833 0.0322230981272
1 0.71484656725691 0.0328830189591 -0.0296355292117 -0.0126039690937
2 0.63088077185926 0.0308413834495 0.4976186593836 -0.0992195317257
3 -0.02798376387108 -0.1870348133969 0.8037387521124 0.2978578127957
4 -0.18703481339693 -0.0279837638710 0.2978578127957 0.8037387521124
5 0.0308413S344957 0.6308807718592 -0.0992195317257 0.4976186593836
6 0.03288301895913 0.7148465672569 -0.0126039690937 -0.0296355292117
7 -0.01059739842942 0.2303778109845 0.0322230981272 -0.0757657137833

Table 4.2 Binomial QMF-Wavelet filters, h(n).  for .V =  3 .5 .7
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G»bc

4-tao 6-taD 8-taD 16-taD

4 x 4  Trans. 0.95 5.71 6.43 6.77 6.91 7.08

or 0.85 2.59 2.82 2.95 3.01 3.07

0.75 1.84 1.95 2.02 2.05 2.09

4-band QMF 0.65 1.49 1.56 1.60 1.62 1.64

(2 levels) 0.5 1.23 1.26 1.28 1.29 1.30

8 x 8  Trans. 0.95 7.63 8.01 8.53 8.74 8.99

or 0.85 3.03 3.11 3.27 3.34 3.42

0.75 2.03 2.06 2.14 2.17 2.22

8-band QMF 0.65 1.59 1.60 1.65 1.67 1.69

(3 level) 0.5 1.27 1.28 1.30 1.31 1.32

Table 4.3 Energy compaction comparison: DCT vs Binomial QMF for several

AR(1) sources.
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Gsbc

Gth 4 -ta D  6-tao 3-taD

4 x  4 2-D Trans. LENA 16.002 16.70 18.99 20.37

or BUILDING 14.107 15.37 16.94 18.17

16-Band Reguiar CAMERAMAN 14.232 15.45 16.91 17.98

Tree BRAIN 3.295 3.25 3.32 3.42

8 x  8 2-D Trans. LENA 21.988 19.38 22.12 24.03

or BUILDING 20.083 18.82 21.09 22.71

64-Band Reguiar CAMERAMAN 19.099 18.43 20.34 21.45

Tree BRAIN 3.788 3.73 3.82 3.93

Table 4.4 Energy compaction comparison: DCT vs Binomial QMF for several test

images.
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C hapter 5

A  Param etric P R -Q M F  D esign  
Technique Based on B ernstein  
Polynom ial A pproxim ation

5.1 In tro d u ctio n

We introduce in this chapter a generalized, param etric PR-QM F design technique 

based on Bernstein polynomial approximation. This approach first tries to approx­

im ate to the given set of sample points of a desired magnitude square function by 

using Bernstein polynomials. This approximation is m apped onto 2  domain as R(z) .  

The corresponding filter function H ( z ) is obtained from R(z)  via factorization.

5.2 M a x im a lly  F la t M agn itu d e Square R esp o n se

Let us assume th a t h(n)  is a length 2N  low-pass filter with the system function

2 N - 1

H(z)  =  £  A (n )* -” (5.1)
n = 0

and its magnitude square function

| t f ( 0 | 2 =  H ( z ) H ( z ~ 1) (5.2)
2 N - 1

= p{ 0) +  2 y :  p(n)cos(nu}T)

1 1 1



with T  =  1.

The sequence p(n)  satisfies the following conditions in frequency domain,

u>=0 =  1 (5.3)

dojv-  |H ( e n \ l =0 =  0 i/ =  1 , 2 , 2 ( 2 N  -  1 -  k) + 1 (5.4)

dujL'
2

UI=7T
=  0 /i =  0 , l , . . . ,2 i f c - l  (5.5)

where k is an integer to be chosen arbitrarily within the limits 1 <  k < 2 N  — 1. The 

param eter k defines the degrees, v, of flatness of the magnitude square function at 

u> =  0 and p, at u> = ±7r.

If one defines the transform  [59]

cos uj = 1 — 2x

\H(e3W)\2 can be transform ed into a simple polynomial of degree 2 N  — 1 as

27V—1

P2N-I,k(x ) = m
i /= 0

(5.6)

with an approximation interval 0 <  x  <  1 and the properties:

a.) P2yv_u .(.T) has zeros of order k at x — 1

b.) P2 N-\,k{x) — 1 has zeros of order 2N — k at x =  0

This is a special case of Hermite interpolation problem and can be solved by 

using the Newton interpolation formula[60]. But there exists an explicit solution of 

this problem which is given by the expression

P 2 N-\,k{x)  =  (1 — x ) k-
dk

(1 — k)\ d x k

- 1  27V—2

iTT E  x “ (5.7)
i/=0

1 1 2



The relation between the autocorrelation sequence of h (n ) and the polyno­

mial coefficients au is given by[59]

r 2N—1 t1 I 2 I
/>(») = -  E

z o
j - 2 f c

27V—1

E 2 -
i-2k 2k (5.8)

and

?(') = E
k=0

)—(2fc+7) ( 2k + I
k

27V—1

a; / =  1,2, . . . , 2N -  1 

(5.9)

where [,r] means the integer part of x.

It is clear th a t this relation provides a simple filter design tool based on the 

desired degrees of flatness of magnitude square function a t u  =  0 and a; =  ±7r.

It has been stated tha t if one desires to design a  half-band Q uadrature M irror 

Filter (QMF) bank, the perfect reconstruction of the signal after the synthesis stage 

requires tha t

H { z ) H ( z - 1) + H ( - z ) H { - z ~ 1) = 2

It is seen by inspection th a t a half-band maximally flat PR-QM F requires 

th a t its m agnitude square function has maximum num ber of zeros at u> — 0 and 

u> = ± n  equally, implying the symmetry around u  — ir/2. This is expressed as 

d^\H(e3W)\2
du<1

d»\H{e3“)\2
dujtl

= 0 (5.10)
u /= 0

=  0 p = l,2 ,..,2 iV  -  1
W=±7T



Therefore, P 2N - i , k ( x )  becom es

/ 32 J V - U - ( * )  =  ( 1 - * ) J V E  [ N + u 1 ) * "  ( 5 - n )

Hence the m agnitude square function can be expressed in[61]

H  ( z ) H ( z - ' )  = (  2 N -  1 )  (1 + 2 - > ) ^ — ') ( - l ) ' ( l  - z - > ) «

(5.12)

This indicates th a t the right hand side of the equation can also be expressed 

as the linear combination of even indexed, even symmetric, N  binomial sequences 

of length (47V — 1)[17]. This is shown in tim e as

p(n) = h(n)  * h(—n) = ^  1 )  x * ( n ) n = 0,1, ...,47V -  2 (5.13)

where

xA k)  =  ( 4V 2 )  | ; (- 2 r  ( I )  =  <5-14>

5.3 A  G en era lized  P R -Q M F  D esig n  T echn ique  
U sin g  B er n ste in  P o ly n o m ia l A p p rox im ation

Two-band orthonorm al PR-QM F requires the m agnitude square condition,

2
=  2

be satisfied. W here |/7(eJu;)| is the magnitude square function of the low-pass 

filter to be designed with the length 27V. Eq.(5.2) can be easily modified for an 

orthonormal PR-QM F case as

2 N
\H(eJU,)\ =  1 +  2 ^ 3 /9 (2 fc - l)c o s (2 fc - l)w  (5-15)

k=1
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Let f ( x )  be defined on the interval [0,1], the N th (N  >  1) order Bernstein 

polynomial to approxim ate to f ( x )  is given as[60][62]

BK( f ; x ) = j r  f ( ± )   ̂ Nk (5.16)

Eq.(5.16) indicates tha t the interval [0,1] is divided into N  equal subinter­

vals. Only the samples of f ( x )  at those ( N  +  1) points are used to obtain the 

approximation B ^ { f \ x ) .  If f ( x )  is differentiable, the approximation is also valid 

for its differentials. T hat implies

B n U' i x ) -> / (* )

Bn U \ x ) -* f{x)

where prime means the derivative. This feature also holds for higher derivatives. 

Therefore the Bernstein polynomials provide simultaneous approximations of a 

function and its derivatives[60].

It is interesting tha t a monotonic and convex function is approxim ated by 

a monotonic and convex approximant if Bernstein polynomials are used. This tells 

us th a t the approximation follows the behavior of the approximated function up 

to a remarkable degree. The price paid for this beautiful feature is tha t these 

polynomials converge slowly to the function to be approximated.

Let’s consider now a low pass function f ( x )  , 0 <  x < 1, with the sample

values

f ,  L _ ^ _ /  1 0 < * < 7 V - 1  >
J ( 2 N - V  \ 0  N  < i < 2 N  — 1 1 ’

which satisfies the PR-QM F magnitude square conditions in the interval [0,1]. The

PR  requirement can be m apped to x  domain as,

f ( x )  + f ( l - x )  = 1

f ( x )  > 0 (5.18)
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which is obtained by using Ecj.(5.15) and the mapping c o s u j  =  1 — 2x. Substituting 

Eq.(5.17) into Eq.(5.16)[62],

2 A T -1 - 1

= ( 1 - * ) N Z : ( N + ; ~ 1 ) z‘ (5-19)

It is seen th a t Eq.(5.19) corresponds to a maximally flat symmetric function around 

1/2 within the interval 0 <  x <  1 . This also corresponds to the m agnitude square 

function of Binomial QMF-Wavelet Transform in x, Eq.(5.11).

If one maps x onto Q, 0  <  Q <  oo as given in[62]

0 2

X ~  1 +  W  

the corresponding rational function in fi,

E i lo 1 (  2 N ~  1 )  o 21'
B » -  (/;«)--------- (i\ -n2)aiv - /  -  (5-20)

Now let us define q = jVl and employ the conformal mapping of

-  1 + 9
^  1 -  <7

then the corresponding m agnitude square function in 2  domain

I / - 1) ' ( 2 N ~ 1 ) a + * - ) 2(W— +  - * - t '

= H( z )H{ z~1) (5.21)

is obtained. R ( z ) is factorized to obtain H(z).

Rem ark 1: R(z)  corresponds to a low pass function with R ( e ^ )  =  R(e^°)/2. It

is expressed as a combination of odd harmonics of the cosine functions. These

116



coefficients of the representation also correspond to the Fourier coefficients of the 

ideal low pass function.

Now, we extend the technique to obtain a broad family of sm ooth PR-QM Fs 

defined by a set of appi'oximation param eters. If one defines a set of non-increasing, 

positive function samples which will be the guide points of the approximation as

{ 1 i = 0

1 - a t  l < i < N - l

Qi N  < i < 2(N  — 1 )
0 i =  27V — 1

where a,- =  a 2N -i- t and 0  <  cv, < 0.5 with 1 < i < N  — 1 then 

the approxim ation to / ( x)  with those constraints of Eq.(5.18) using the Bernstein 

polynomials is expressed as

=  E  (  2 N i~  1 )  - ‘ ( 1  -  -  E  “ . (  2 N ~  1 )  * ‘d  -

(»•*»)

after applying similar mappings, the corresponding m agnitude square function in 2  

domain, R ( z ), is obtained as[63]

=  ^ ' l ( 1  ( 2V 1 )  ( ‘ +  ^ 1)2(w' 1' i)d

-  E (-l)^  ( 2 N ~  1 )  ( 1  +  -  z - ' ) »  (5.24)

+  (  2 N 1 )  ( 1  ‘>( 1 -  z - ' f

E x am p le : If one desires design a 6 -tap smooth PR-QM F with the constraints
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defined as
1 0  <  i <  1

' ( u h ) - 1 a  1 I  (5.25)a  i = 3
. 0  4 <  i <  5

where 0 <  a  <  0.5 This set of constraints actually corresponds to a filter function

h,(n) with two vanishing moments for a  > 0 , and three vanishing moments for

a  =  0[17][40]. The corresponding m agnitude square function is similarly found as

R ( z )  =  { D - D '  (  i  )  + ^ , )2(2- ' ,d  ~

-a ^  ) (1 -  z'1)" -  » ( 3 ) (1 + z-‘)-2(l -  z-')6} (5.26)

From here via any factorization technique one may obtain the corresponding PR- 

QMF solution, H(z).  This design technique is exemplified in Fig. 5.1.

Rem ark 2 : The vanishing moments of PR-QM F high pass filter ( —l ) n/i(n) with 

length 2 N  is defined in time as

'̂ 2( — l ) nn ih(n) = 0 i = 0 ,1 ,..., ./V
n

this is equivalent to the flatness requirement of the QMF filter response in frequency

d‘'H (e i^ +1r)) n , ATL* = °  » = 0,1,...,JV
w= 0

It is seen th a t the maximally flat filters, Daubechies filters or Binomial-QMF, i =  N,  

have the maximum number of vanishing moments on their high pass version. It 

is clear th a t all the possible moments are used only by the high-pass filter and 

low-pass filter does not have any vanishing moments.

Any a,- 7  ̂ 0  of the proposed approach decreases the num ber of vanishing 

moments of the high-pass filter by one. The magnitude functions of several known 

smooth or regular 6  — tap QMFs and their a  values are given in Fig. 5.2.[63]
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/ (* )

l - o .

2 31 40 o

6

3 . 2

3
0 . 2 3 . 4 0 . 6 0 . 10

Fig. 5.1. a) f { x )  chosen such that Eq.(5.18) is satisfied and its sample values 

/ ( 2 t i - i ) are determined, b) Corresponding Bernstein polynomial approximation 

c) Corresponding magnitude square function |/f(e J W) | 2 in u
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R e m a rk  3 : It is found th a t a  =  0.2708672 corresponds to  6 -tap Coiflet 

filter solution[46], as a  =  0.0348642 gives the 6 -tap PR-QM F of the  most regular 

orthonorm al wavelet solution[48]. It is clear tha t a  = 0 gives the Binomial QMF- 

Wavelet Transform with three vanishing m om ents[17] [40]. This param etric solution 

of the PR-QM F problem also leads to a useful tool for the design of orthonorm al 

wavelet bases. The param eters of a known length PR-QM F solution are related to 

the regularity of the corresponding orthonorm al wavelet functions.

5.4 E n ergy  C om p action  and P erform an ce R e ­
su lts

Energy compaction gains G, of several decomposition techniques; DCT, KLT, 

Binomial-QMF, ideal subband filter banks, for different N  and correlation r =  0.95 

cases are given in Table 5.1. It is seen th a t the ideal subband structure reaches to 

the global performance upper bound, at infinite num ber of bands, faster than the 

optim um  block transform  KLT. It is also observed th a t the performance of 6 -tap 

Binomial-QMF is better than the KLT for all the cases considered here.

Fig. 5.3. provides the 2-band energy compaction performance of 4 — tap 

and 6  — tap filters as a function of a  for the input sources AR(0.75), AR(0.85), 

and AR(0.95). It is seen tha t a  = 0 , the Binomial QMF, com pacts better than 

all the other smooth QMF solutions. This is expected for this source model since 

a = 0  corresponds to the maximally flat m agnitude square function around u  = 0 . 

Fig. 5.4. displays the variations of the filter coefficients of all the possible smooth 

PR-QM Fs as a  function of a  for 2 N  =  4. Haar basis corresponds to a  =  1/3 in this 

figure. The phase responses of the filters in this a  range is linear-like. Similarly, 

Fig. 5.5. gives the coefficients of all possible 6 -tap smooth PR-QM Fs as a function 

of param eter a.  Here the high-pass filters have two vanishing m om ents except for

1 2 0



a = 0 .

5.4.1 D iscussions and C onclusions

A param etric PR-QM F design technique based on Bernstein polynomial approxi­

mation is developed in this chapter. Any orthonorm al PR-QM F can be designed 

with this technique. The filter examples we considered are smooth, ripple-free. 

This approach can also be easily applied for rippled QMF design problems. All 

PR-QM F filter solutions of a given length can be obtained as a function of the 

design param eters in this approach.

Since the wavelet functions are evaluated with their regularity, this approach 

provides a tool to design orthonormal wavelet bases with the desired degree of 

regularity. For this purpose, the param eters of the design technique are linked to 

the regularity of the corresponding wavelet function. This provides the pattern  

of the relations between the frequency behavior of PR-QM Fs and the degree of 

regularity or differentiability of the corresponding orthonormal wavelet functions. 

This is a topic of future research.

From signal coding point of view the energy compaction is an im portant 

performance measure. It is observed tha t the QMF filters of the most regular 

wavelet solution[48] does not provide the best energy compaction for the signal 

sources considered here. It is also shown th a t the max-flat solutions, Binomial 

QMF-Wavelet filtersfl 7] [40], for the sources considered here have the best energy 

compaction over the smooth QMF solutions.

The energy compaction results also unify the evaluation of all popular signal 

decomposition techniques[64]. They scale their compaction performance com para­

tively. They can provide a vehicle for the trade-offs, performance versus com puta­

tional complexity. It is clear tha t the filter banks considered here outperform  the 

block transform s as expected.

1 2 1



We can conclude this chapter th a t any practically useful PR-QM F solution 

should consider the degrees of energy compaction, smoothness or regularity, phase 

response, and the computational complexity issues simultaneously. This intuition is 

extended in optimal PR-QM F design approach which will be presented in Chapter 

7.

2N DCT KLT 6 -tap  B-QMF Ideal
2 3.20 3.20 3.76 3.94
4 5.71 5.73 6.77 7.23
8 7.63 7.66 8.52 9.16
16 8.82 8 . 8 6 9.25 9.95

oo 10.25 10.25 10.25 10.25

Fig. 5.1 Energy compaction gains G. of several decomposition techniques; DCT. 

KLT. Binomial-QMF. ideal subband filter banks, for different N  and correlation

p =  0.95 cases
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I* M l
1.20

0 . 8 0  -

0 . 4 0  -

0.00
1.000.00 3 . 0 02.00

Fig. 5.2. M agnitude functions of three different 6 -tap PR-QMFs; max-flat 

(a = 0). coiflet, and for (a  =  0.480).
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Gtc
4 . 0 0

=  0 . 9 5

3 . 0 0  ~

p  =  0 . 8 5

2.00  -

p  =  0 . 7 5

0.00
0.200.00

Fig. 5.3. 2 Band energy compaction of 4 and 6 -tap PR-QM Fs as a function of a

for AR(0.75). AR(0.85), AR(0.95).



1.00

0 . 5 0  -

- 0.00  -

- 0 . 5 0
0.200.00 • 0 . 4 0

Fig. 5.4. All the possible smooth 4-tap PR-QM F coefficients as a function of a.
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1.0 0

0 . 5 0  -

- 0.00

- 0 . 5 0
0.00 0.20 1 0 . 4 0

Fig. 5.5 All the possible smooth 6 -tap PR-QM F coefficients as a function of a.



C hapter 6

A n O bjective Perform ance  
M easure in M ultiresolution  
Signal D ecom position

6.1 In tro d u ctio n

Since finite length functions are employed in practical signal decompositions, the 

imperfect frequency behavior is inevitable. This fact is clearly observed as aliasing 

or inter band energy leakage in signal coding applications[65] [6 6 ]. Although this 

concept is inherent in any decomposition technique its effects are more clearly 

followed in m ulti-rate signal processing or filter bank environment.

This chapter a ttem pts to analysis the aliasing energy in a filter bank struc­

ture and defines a new performance measure called Non-Aliasing Energy Ratio 

(NER)[65] for the evaluation of orthonormal signal decomposition techniques. The 

significance of the new measure is emphasized with the comparative performance 

results of the popular orthonormal decomposition techniques. It is shown tha t the 

new performance measure, Non-Aliasing Energy Ratio, complements the widely 

used energy compaction measure and is consistent with the experimental perfor­

mance results.
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6.2 A lia sin g  E ffects o f D ec im a tio n -In terp o la tio n  
O perators

We are going to examine the effects of decim ation/interpolation operators in a 

m ultirate branch which is depicted in Fig. 6 . 1  for the given input spectral density 

function Sx(e^u). Hi(e^w) is a band pass anti-aliasing filter with the bandw idth 7r/M  

and G i(e ^ )  is the interpolation filter for the i th branch or subband. The spectrum  

of the interpolated signal, or branch output K'(eJW) will be connected to the input 

spectral density. Its energy components, namely aliasing and non-aliasing, will be 

derived here. This analysis can be easily extended for M-band perfect reconstruc­

tion filter banks.

x(n)

Fig. 6 . 1  A decim ation/interpolation branch.

The ou tput spectrum  of Hi{e^w) can be related to the input signal as

S yi( e n  = \Hi( e n \ 2Sx( e n  (6 .1 )

The spectral density function of the M-fold down-sampled version of this output

signal is expressed as
i  M - 1

S*V“") = J 7 £  SKW ("+w”>) (6.2)
71=0

substituting Eq.(6 .1 ) into Eq.(6 .2 ) yields
i M- 1

S z,{eiwM) = —  \Hi(ej{w+%n))\2Sx(ej{w+%n)) (6.3)
M  71= 0

Following Fig. 6 .1  for the interpolation operation indicates the branch out­

put spectral density function[67]



Now substituting Eq.(6.3) into the last equation

1 M-l
S „ ( e n  =  —  ■£ |tf,(e><"+S ”>)|2.SI (eJ<“+)f”l) (6.5)

71=0

which can also be rew ritten as

S Vi(ej“) = S / V “ ) +  S f ( e j“) (6 .6 )

where

S/V") = ^ | G j(e> ) |2|t fj(e'“ )|2S,(e'") (6.7)

and
i  M - 1

S f ( e j“) =  — |Gt(e^ ) | 2 Y ,  |tfi(e i(“+ " n,) |Sx(e*u+%n') (6 .8 )
71=1

It is seen tha t S'/V(eja') consists of non-aliasing component of the output spectral 

density while Sd(eJ'w) corresponds to the aliasing term  which is caused by down 

and upsampling by the rate M. Sf{e^w) consists of (M -l) aliasing terms which are 

somewhat misplaced in frequency.

If one goes one step further to calculate the branch output energy or variance 

for a zero mean input

° 2‘ =  b  L

=  <4  + *?„ (6-9)

where

^  = b j y ^
<  =  )<*•> (810)

Hence we separate the branch output energy into its non-aliasing and aliasing com­

ponents. The la tte r is caused by down and upsampling as mentioned earlier.
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Fig. 6.2 displays the spectra of different points in the decim ation/interpolation 

branch of Fig. 6.1 for the given input and filters. This figure assumes an A R (1 ) 

input source w ith p =  0.5 and employs 4-tap Binomial QMF[17].

The advantage of this analysis in a lossless M-band filter bank structure is 

its ability to decompose the signal energy into a kind of time-frequency plane. In 

this analysis we can express the decomposed signal energy of branches or subbands 

in the form of an energy m atrix which is defined as

[E{i, k)] =  afi<mod{k+i)M_i ) i, k = 0 , 1 ,..., M  -  1 (6 .1 1 )

Each row of the m atrix  E  corresponds to one of the bands or channels in the 

filter bank. The columns of this m atrix correspond to the distributions of subband 

energies in frequency. The energy matrices of 8  band DCT, 8  band hierarchical 

filter banks with 6 -tap  Binomial QMF(BQMF)[17], and the Most Regular Wavelet 

Filter(MRWF)[48] for an AR (  1 ) source with p =  0.95 are calculated as[65]

6.6824 0 . 1 2 1 1 0.0280 0.0157 0.0132 0.0157 0.0280 0 . 1 2 1 1

0.1511 0.1881 0.1511 0.0265 0.0113 0.0091 0.0113 0.0265
0.0345 0.0136 0.0569 0.0136 0.0345 0.0078 0.0046 0.0078
0.0158 0.0032 0.0050 0.0279 0.0051 0.0032 0.0158 0.0061
0.0176 0.0032 0.0016 0.0032 0.0176 0.0032 0.0016 0.0032
0.0065 0 . 0 0 1 2 0.0065 0 . 0 0 2 2 0.0026 0.0132 0.0026 0 . 0 0 2 2

0.0053 0.0004 0 . 0 0 0 1 0.0004 0.0053 0.0033 0.0118 0.0033
0.0053 0 . 0 0 0 2 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 2 0.0053 0.0155

E b q m f  =

' 7.1720 0.0567 0.0014 0.0005 0 . 0 0 0 1 0.0005 0.0014 0.0567 '
0.0567 0.1987 0.0567 0.0258 0.0005 0.0014 0.0005 0.0258
0.0258 0.0025 0.0640 0.0025 0.0258 0.0042 0.0061 0.0042
0.0042 0.0014 0.0025 0.0295 0.0025 0.0014 0.0042 0.0196
0.0196 0.0019 0 . 0 0 0 1 0.0013 0.0223 0.0013 0 . 0 0 0 1 0.0019
0.0019 0.0061 0.0019 0.0046 0.0013 0.0167 0.0013 0.0045
0.0045 0 . 0 0 0 1 0.0014 0 . 0 0 0 1 0.0045 0 . 0 0 2 0 0.0162 0 . 0 0 2 0

0 . 0 0 2 0 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 2 0 0 . 0 2 2 0

130



E m r w f  =

' 7.1611 0.0589 0.0018 0.0006 0 . 0 0 0 1 0.0006 0.0018 0.0589
0.0589 0.1956 0.0589 0.0262 0.0006 0.0017 0.0006 0.0262
0.0262 0.0028 0.0628 0.0028 0.0262 0.0043 0.0064 0.0043
0.0043 0.0018 0.0028 0.0291 0.0028 0.0018 0.0043 0.0196
0.0196 0 . 0 0 2 0 0 . 0 0 0 1 0.0014 0 . 0 2 2 1 0.0014 0 . 0 0 0 1 0 . 0 0 2 0

0 . 0 0 2 0 0.0064 0 . 0 0 2 0 0.0047 0.0014 0.0164 0.0014 0.0047
0.0047 0 . 0 0 0 1 0.0017 0 . 0 0 0 1 0.0047 0 . 0 0 2 0 0.0160 0 . 0 0 2 0

0 . 0 0 2 0 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 0 1 0 . 0 0 2 0 0.0218
(6 . 12 )

If we sum the components of the energy m atrix in a unitary M-band filter 

bank, the variance of the input is obtained as

M - 1 M—1
1

(6.13)
1=0 k- 0

Additionally, the band variances are equal to the sum of rows in m atrix  E

as
M - 1

<7? =  £  £ (> .k )
fc=o

(6.14)

6.3 H ierarch ica l D ec im a tio n  In terp o la tion

Let us now consider the hierarchical decim ation/interpolation m ultirate branch 

given in Fig. 6.3a,. The input signal x(n)  is first decimated by the ra te  M\  and 

then again by the ra te  M 2 . The overall decimation rate is M  = Mi M 2 . The interpo­

lation part of the branch consists of the corresponding upsamplers and interpolation 

filters. Since the hierarchical branch is a typical module of the multiresolution sig­

nal decomposition theory it is worth to derive all the steps of the operations and 

to interpret the branch output accordingly.
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Fig. 6 .2 . The signal spectra of different points in the decim ation/interpolation

branch of Fig. 6 .1 .
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Fig. 6 .3.a. Hierarchical decim ation/interpolation branch.

Gh ( e n
V i ( n )

We can easily modify Fig. 6.3a. by combining the two decimation steps 

into one decim ation step with the rate M  = M 1 M 2  as shown in Fig. 6.3b. Now 

the structure becomes like the previous case considered. Similarly we follow those 

steps to relate the output and input spectral densities of the m ultirate branch.

I M r m )

~ v ~
H i { e n

~ y —
Gi(e^ )

Fig. 6.3.b. Equivalent of hierarchical decim ation/interpolation branch in Fig.

6.3.a.

The spectral density after the decimation by M can be similarly expressed as

M- 11 ivi — 1
S ti{e?") =  —  £  |tf,-(eJ'(w+^ n))|2Sx( e ^ +2̂ ) (6.15)

n=0

where

\H<{cn\ = \Hh ( e n \ \ H , A e iu,M')\ (6-16)

and the spectral density function of the branch output after the interpolation is
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written as

i  M - l
S Vi( e n  =  — \ G i ( e n \ 2 £  m e j ^ +2̂ ) \ 2Sx( e ^ +^ )  (6.17)

M  n = 0

where

\Gi(en\ = | G t l ( e ^ ) | | G i 2 ( e ^ ) l  ( 6 - 1 8 )

Therefore we can similarly express the output energy of the branch with the two 

components. The first one corresponds to the non-aliasing term  where the rem ain­

ing part consists of (M -l) aliasing energy term s misplaced in frequency as defined 

earlier.

6.4  H ierarch ica l P erfect R eco n stru ctio n  F ilter  
B an k s

Since the multi-i’esolution has become a desirable feature from the signal decompo­

sition techniques 2 -band PR-QM Fs have been widely employed as the basic filter 

module. Most of the filter banks considered in the field are based on this simple

2-band structure. Additionally, their strong links with the Orthonormal Wavelet 

transforms made them  very popular in signal processing field lately. We will now 

analysis the band energies of a hierarchical PR  filter bank for the four band case 

and lay down the foundation of a new performance criterion for orthonorm al signal 

decomposition techniques which will be explained in the following section.

The analysis filter bank of the case considered is given in Fig. 6.4a. After 

combining the decim ation operations and also considering the synthesis stage the 

whole filter bank structure can be visualized as in Fig. 6.4b.
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Fig 6.4.a. The two-level hierarchical analysis filter bank structure.
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Fig. 6 .4 .b. Equivalent structure of the two-level, four band hierarchical filter bank.
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The combined anti-aliasing and interpolation filters of Fig. 6.4.b can be 

expressed as

I# 2 (e '“ )| =  \HL( e n \ \ H H( e ^ ) \

| f t (e> ) |  = \H„(en \ \ H L(e^ ) \

| f f , ( e ' " ) |  =  | / / „ ( e - > " ) | | / / „ ( f J “ 2 ) [  ( 6 . 1 9 )

and

| G . ( O I  =  \HL(e’“*)\\HL( e n \

\ G , ( e n \  =  \HL( e ^ ) \ \ H „ ( e n \

|<33(e2")l = \ H n ( e “ / ‘ ) \ \ H L ( c , ~ ) \

|G 4 (e '“ )| =  \IJH(e"“2)\\IIH((’“)\ (6.20)

This set of filters is created properly so that the aliasing term s caused by the 

down and upsampling operations are cancelled and all the conditions of perfect 

reconstruction are satisfied.

These product anti-aliasing and interpolation filters should also have good 

band-pass characteristics additional to PR  requirements. Fig. 6.5 displays the 

frequency selectivity of 8 -tap 2-band Binomial-QMF[17] and its product filters in a 

hierarchical subband tree for the levels 2 and 3 implying 2, 4 and 8  band filter banks. 

It is clear th a t the nice frequency behavior of 2 -band Binomial-QMF diminishes 

when we move in the tree. The effects of aliasing become severe for the increased 

levels of the subband tree. This is a very significant point to be considered when 

one employs a 2-band PR-QM F in a hierarchical subband tree. Although it is easier 

to implement 2-band PR-QM F the frequency behavior of the product filters should 

also be carefully monitored in applications for a good performance.
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Fig. 6.5. The frequency characteristics of 2 -band 8 -tap BQMF and its product 

filters in the hierarchical subband filter bank structure.

We can consider each decim ation/interpolation branch of this PR filter bank 

as the one discussed earlier in Section 6 .2 . Therefore the band energies of this 4-
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band PR  filter bank for the given input are also grouped into the parts which consist 

of non-aliasing and aliasing energy components as

with

-
=  ^ S . V " ) ^  (6 .2 1 )

<r? =  c r l  +  <  (6.22)

where S/v(eJ'u') and Sf{e?w) are defined in Eqs.(6.7) and (6 .8 ) respectively. The 

energy matrices of BQMF and MRWF given in Eq.(6.12) were calculated for the 8  

band case using these analysis steps.

6.5 N o n -A lia sin g  E nergy R atio  (N E R ): A N e w
S ta tis tica l P erform an ce M easu re for O rthonor­
m al S ignal D eco m p o sitio n

Gain of transform coding over PCM, Gt c , has been a widely used performance 

measure particularly for the block transform s[7]. This measure is defined for a size 

N unitary transform as

where of is the input variance, and {of} are band or coefficient variances and they 

satisfy the variance preserving condition

^ X > ?  ( • . « )
1V i=1

This measure does not consider the distribution of the band energies in fre­

quency. Therefore the aliasing portion of the band energy is not treated differently 

than  the non-aliasing band energy. This fact becomes very im portant particularly 

when all the analysis subband signals are not used for the reconstruction. The
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aliasing components of band energies at the outputs of decim ation-interpolation 

branch represent a kind of misplaced energy contents. W henever the aliasing can­

cellation in the reconstructed signal is not perfectly performed due to the available 

bits for coding the effects of aliasing energy become quite significant especially in 

image and video applica,tions[6 6 ].

Because of the reasons explained we will decompose the band energies of 

the popular orthonorm al signal decomposition techniques into their aliasing and 

non-aliasing energy components for a given input source.

We now define the energy components of the branch or subband i in a general 

ID M-band orthonormal decomposition scheme as
M-l

a \  =  aik * =  0 , 1 , . . . , M - 1 (6.25)
fc=o

where

4  =  |Gt( e ^ ) |2 | i f l ( e ^ +^ fc))|2 5r ( e ^ +^ fc))da; i , k  = 0 , 1  -  1

(6.26)

As seen from Eq.(6.26) the term  corresponding to k =  0 is the non-aliasing 

band energy as given in Eq.(6.7)

4 = 4 (6-27)
on the other hand the total aliasing energy component of band i is expressed as

M - l

4 = E 4 (6-28)
*=i

We now define the non-aliasing energy ratio of an M-band orthonormal de­

composition technique as

N E R  =  i02 ( 6 -2 9 )

y ¥ - i 2 _  2^1=0 aj0
y - 'M —1 _22^t= 0 °t

where the num erator term  is the sum of the non-aliasing band energies. It is clear 

th a t the ideal filter bank yields N E R  = 1 for any M  as the upper bound of this 

measure for an arbitrary input signal.
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6.6  S im u la tion s and  D iscu ssion s

In the simulation studies we considered 4-6-8 tap Binomial-QM F(BQMF)[l7] in 

a hierarchical subband filter bank structure as well as 8 -tap Smith-Barnwell[13], 

and 6 -tap most regular orthonorm al wavelet filters[48], 4-6-8 tap  Optim al QMF[6 8 ] 

along with the ideal filter banks. Additionally 2 x  2, 4 x 4, and 8 x 8  Discrete 

Cosine(DCT), Discrete Sine(DST), W alsh-Hadamard(WHT)[7], and Modified Her- 

mite(MHT)[56] transforms are considered for comparison purposes. The simula­

tions are carried out for the G rc  and N E R  performance calculations for those 

signal decomposition tools.

These simulations employed Af2(l) and Generalized Correlation source 

models. Table 6 .1 . displays G rc  and N E R  performance of the orthonormal signal 

decomposition techniques considered with M  = 2 ,4 ,8  for A ft(l), p =  0.95 source 

which has the correlation function defined as

R x(m) = p |m| m  =  0, ± 1 , ± 2 , .....  (6.30)

Table 6.2. provides similar performance results for the generalized correlation 

source model which has the correlation function as

R x(m) = m  =  0 ,± 1 ,± 2 , ......  (6.31)

where a  = — In p, p = 0.95, 7  =  1.137 param eter values are used.

As discussed earlier, this approach provides the analytical tools to consider 

the non-aliasing and aliasing components of band energies. From practical point 

of view this is an im portant feature. It is well known in the field th a t the aliasing 

energies become annoying particularly at low bit rate image coding applications. 

The theoretical analysis provided here explains objectively some of the reasons 

behind this fact. Although the ratio of the aliasing energies over the whole signal
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energy may look negligible, the misplaced aliasing energy components of bands 

may be well localized in frequency and cause the undesired subjective performance 

degradations.

It is also noteworthy th a t the larger M  indicates better coding performance 

in G t c  measure. But it is a well known fact that the larger size transforms do not 

provide better subjective image coding performance[6 6 ]. This has been explained 

as the cause of undesired inter-coefficient or inter-band energy leakages in the litera­

ture. In other words it is the result of the aliasing problems in signal decomposition 

step. M  = 8  or 16 are practically agreed transform sizes in image coding. The new 

measure indicates th a t the larger M  values yield worse performance for the finite 

duration transform bases and the source models considered. This trend is consis­

tent with the experimental results reported in the literature. The new objective 

performance measure, N E R , indicates the importance of the aliasing energy in or­

thonorm al signal decomposition which was not considered by the commonly used 

energy compaction measure, G t c , in the literature.
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Table 6 .1 . Performance of several orthonorm al signal decomposition techniques

for A R (1 ), p = 0.95 source.

M=2 
Gtc ( N E R )

M=4 
Gtc  ( N E R )

M = 8  

G t c  (NER)
DCT 3.2026 (0.9756) 5.7151 (0.9372) 7.6316 (0.8767)
DST 3.2026 (0.9756) 3.9106 (0.8532) 4.8774 (0.7298)
MHT 3.2026 (0.9756) 3.7577 (0.8311) 4.4121 (0.5953)
W HT 3.2026 (0.9756) 5.2173 (0.9356) 6.2319 (0.8687)
Binomial-QM F(4tap) 3.6426 (0.9880) 6.4322 (0.9663) 8.0149 (0.9260)
Binomial-QM F(6 tap) 3.7588 (0.9911) 6.7665 (0.9744) 8.5293 (0.9427)
Binomial-QM F(8 tap) 3.8109 (0.9927) 6.9076 (0.9784) 8.7431 (0.9513)
Smith-Barnwell(8 tap) 3.8391 (0.9937) 6.9786 (0.9813) 8.8489 (0.9577)
Most Regular(6 tap) 3.7447 (0.9908) 6.7255 (0.9734) 8.4652 (0.9406)
Optim al QMF (8 tap) * 3.8566 (0.9943) 7.0111 (0.9831) 8.8863 (0.9615)
O ptim al QMF (8 tap) ** 3.8530 (0.9944) 6.9899 (0.9834) 8.8454 (0.9623)
O ptim al QMF (6 tap) * 3.7962 (0.9923) 6.8624 (0.9776) 8.6721 (0.9497)
O ptim al QMF (6 tap) ** 3.7936 (0.9924) 6.8471 (0.9777) 8.6438 (0.9503)
O ptim al QMF (4tap) * 3.6527 (0.9883) 6.4659 (0.9671) 8.0693 (0.9278)
O ptim al QMF (4tap) ** 3.6525 (0.9883) 6.4662 (0.9672) 8.0700 (0.9280)
Ideal Filter Bank 3.9458 (1.0000) 7.2379 (1.0000) 9.1587 (1.0000)

* O ptim al QMF based on energy compaction (given in Chapter 7).

** Optim al QMF based on minimized aliasing energy (given in C hapter 7).
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Table 6.2. Performance of several orthonorm al signal decomposition techniques 

for Generalized Correlation source model given in Eq.(6.31).

M= 2  

Gtc { N E R )
M =4 

Gtc  { N E R )
M = 8  

Gtc {N E R )
DCT 3.2027 (0.9733) 5.7332 (0.9273) 7.6714 (0.8503)
DST 3.2027 (0.9733) 3.8836 (0.8458) 4.8638 (0.7138)
MHT 3.2027 (0.9733) 3.7401 (0.8241) 4.4011 (0.5843)
W HT 3.2027 (0.9733) 5.0582 (0.9253) 5.8865 (0.8405)
Binomial-QM F(4tap) 3.7724 (0.9879) 6.5636 (0.9633) 8.0087 (0.9123)
Binom ial-QM F(6 tap) 3.9241 (0.9913) 7.0011 (0.9728) 8 . 6 6 8 8  (0.9332)
Binomia.l-QMF(8 tap) 3.9915 (0.9929) 7.1851 (0.9773) 8.9449 (0.9439)
Smith-Barnwell(8 tap) 4.0297 (0.9939) 7.2831 (0.9805) 9.0903 (0.9517)
Most Regular(6 tap) 3.9055 (0.9909) 6.9465 (0.9716) 8.5847 (0.9306)
O ptim al QMF (8 tap) * 4.0489 (0.9945) 7.3171 (0.9822) 9.1279 (0.9558)
O ptim al QMF (8 tap) ** 4.0455 (0.9945) 7.2954 (0.9825) 9.0869 (0.9567)
Optim al QMF (6 tap) * 3.9699 (0.9924) 7.1231 (0.9762) 8.8521 (0.9418)
Optim al QMF (6 tap) ** 3.9680 (0.9925) 7.1113 (0.9764) 8.8318 (0.9425)
Optim al QMF (4tap) * 3.7895 (0.9883) 6.6200 (0.9646) 8.0960 (0.9152)
O ptim al QMF (4tap) ** 3.7894 (0.9883) 6.6205 (0.9647) 8.0970 (0.9154)
Ideal Filter Bank 4.1643 (1.0000) 7.5980 (1.0000) 9.4757 (1.0000)
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C hapter 7

O ptim al P R -Q M F  D esign  for 
Subband Im age Coding

7.1 In trod u ction

2-band Perfect Reconstruction Q uadrature Mirror Filters(PR-Q M F) have been dis­

cussed in the previous chapters. Their modular nature leads to the hierarchical 

subband trees which have been widely used in the field. Additionally, it is shown 

th a t the 2-band PR-QM Fs are the crucial components of the orthonorm al wavelet 

basis design procedure.

This chapter deals with the optimal 2-band PR-QM F design problem. The 

approach taken here considers a set of design variables which are of great practical 

interest in image coding. Some of these variables have been considered earlier in the 

filter design field but this study uses them  all simultaneously to obtain the optim al 

solutions.

Section 7.2. introduces the variables of optim ization problem and their prac­

tical significance in image coding. It also discusses their m athem atical definitions 

and lays the ground for the objective function of the optim ization. Sections 7.3. 

and 7.4 look into two different sets of optimal PR-QM F design. Section 7.5 presents 

the optim al PR-QM F solutions for different scenarios considered and their com par­

ative performance. The following section discusses the possible extensions of this
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research and concludes the chapter.

7.2 V ariables o f  O p tim iza tion  and T h eir  S ignif­
ican ce in  Im age P ro cess in g

The proposed optim al PR-QM F design technique considers several param eters of 

practical significance in the filter design. These param eters, namely the energy 

compaction, aliasing energy, unit step response, zero mean high-pass filter, uncor­

related subband signals, constrained non-linear phase response, and input statistics 

are combined to define the objective function of the optim ization problem. Some 

of these features have been well known in the filter design field and used by several 

researchers in the literature[6 6 ] [67] [6 8 ] [69]. This study intuitively benefited from 

the earlier work in the field but also has significant novelty in the solution of PR- 

QMF problems particularly for image coding applications. We include the following 

variables in the design of optim al PR-QMFs:

• Orthonormalty Requirement: This set of requirements is included in the 

design to obtain the unitary perfect reconstruction condition which is of interest 

here. The orthonorm al PR  condition is im portant particularly in signal coding 

applications.

The high-pass filter is assumed to be the mirror of the low-pass filter {/fc(n)} 

of length 2N  which is also expressed in the vector form h. Hence the unitary 

condition of the filter can easily be written in vector product form as

hTh -  1 (7.1)

The perfect reconstruction condition of orthonormal 2 -band PR-QM F is easily de­

rived as

Y , K n ) h [ n  + 2k) = S{k) (7.2)

147



Eqs.(7.1) and (7.2) can be combined in the m atrix form

hTCih = 0 i = 1,2,..., N -  1 

where C; are the proper filter coefficient shuffling matrices as

(7.3)

C i =

—
1 

o 0 1 0 .

1o 01

0 0 . . 1

o
0 0 0 1 . . 0 0 0 0 . . 0 1
l 0 0 0 . . 0 0 0 0 . . 0 0

• • • II1-H1 0 0 0 . . 0

• 
o

0 0 1 0 . . 1
0 0 0 1 . . 0 1 0 0 . . 0 0

1--- O 0 0 0 . • 0 0 1 0 . . 0 0

(7.4)

Eq.(7.3) is satisfied as a part of the optim al filter solutions introduced later.

• Energy Compaction: This is a desired feature for any orthonorm al signal 

decomposition technique. Energy compaction measure is derived with the help of 

the rate-distortion theory. The significance and the derivation of this measure can 

be found in reference[7]. This performance measure has been widely used in the 

literature for the comparison of different signal decomposition techniques[4].

The ou tput energy of the low pass filter h{n) for the given covariance m atrix 

R xx of a  zero-mean input can be expressed as

<j 2l =  hT R xxh (7.5)

We are now looking for the optim al PR-QM F solution which maximizes Eq.(7.5). It 

is clear th a t this will be the sufficient condition to maximize the energy compaction 

measure, gain of transform coding over PC M (G rc,)) which is given for the two-band 

case as

° t c  = , 2 1 W 2  =  (7.6)
1 VL<?H

where the input signal variance is related to the band variances, cr£ and crjj, in the 

unitary case as

+ ° h )
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• Aliasing Energy: All of the orthonorm al signal decomposition techniques 

satisfy the conditions of alias cancellation. In practice, since all the decomposition 

bands or coefficients are not used for the synthesis , or the different levels of quanti­

zation noise in subbands cause the non-cancelled aliasing energy components in the 

reconstructed signal. Its significance has been noticed particularly in image coding 

applications. It is known th a t the aliasing causes annoying patterns in encoded 

images a t low bit-rates.

The aliasing energy component for the low-pass filter output in 2-band PR- 

QMF bank can be w ritten for the given input spectral density function 5a:a;(eJu;)[65]

tr\ =  -L  r \H(e- jw)\2Sxx(ej ^ ) \ H ( e j ^ ) \ 2dw (7.7)
2i7C J — 7r

The tim e-dom ain counterpart of this relation is easily found as

<4 =  £ M " >  * ( - 1 ) > ( » ) R , ( « 0  (7.8)
k

where p(n) is the autocorrelation sequence of the filter coefficients h(n) and defined 

as

p(n) =  h(n)  * h (—n )

R xx{k) is the autocorrelation sequence of the input. The optimal solution searched

should minimize the aliasing energy component of the low-pass filter ou tput as

given in Eq.(7.8) in 2-band PR-QM F case.

Differently from the earlier design procedures in the literature, the aliasing 

energy is related to the spectral density function of the input rather than  considering 

the deviations of the designed filter’s frequency characteristics from the ideal filter.

•  Step Response: The representation of edges in images is a crucial problem 

in image processing and coding. The edge structures are localized in tim e therefore 

they should be represented by the time-localized basis functions. Otherwise the 

ringing artifacts occur in encoded images. An edge can be considered as a step.
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Therefore the step responses of the filters in the filter banks should be considered 

during the design procedure[6 6 ].

It is a well known phenomenon called the uncertainty principle which states 

tha t a signal can not be localized perfectly in one domain without the worst con­

centration in the other[35]. The human visual system is able to  resolve the time- 

frequency plane therefore a joint time-frequency localization should be considered 

in a practically m eritful filter bank design[69]. The trade-off between the tim e and 

frequency resolutions is also reflected in the aliasing and step response characteris­

tics of the designed filters.

The unit step response of the filter h(n)  can be written as

a(n) — h(n) * u(n)

where u(n)  is the unit step sequence. The difference energy between the unit step 

response a(n) of the filter and the unit step sequence u (n ) is expressed as

2JV-1 k
E , =  E E  M ") -  l ] 2 (7-9)

fc= 0  n = 0

Es is minimized for the optim al filter solution. The optimization variable E s does 

not consider the sym m etry of the unit step response around the step point. This 

point is addressed later since it is directly related to the linear phase condition of 

the desired filter.

• Zero Mean High-Pass Filter: Most of the practical signal sources have 

their significant energy located around the DC frequency. Therefore useful signal 

decomposition techniques should be able to represent the DC frequency component 

only within one basis function. Following this argument one should constrain the 

high-pass QMF function to have zero mean as

£ ( - i ) ”A(") =  o (7.10)
n
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This requirem ent implies th a t there should be at least one zero of the low pass filter 

h.(n) at u) = 7 r .

• Uncorrelated Subband Signals: It is a well-known fact in signal coding 

field th a t any good signal representation technique should be able to provide un­

correlated transform  coefficients or subband signals. The Karhunen-Loeve Trans- 

form(KLT)[7] is a typical example of this characteristic in the block transforms. 

Similarly the filter bank solutions under the constraints of this desired feature are 

sought in this study.

It is noteworthy to mention th a t the uncorrelatedness and the maximum 

energy compaction requirements merge in the KLT solutions of block transforms. 

But this is not true in filter banks.

The cross-correlation of the two subband signals for the given input is defined

as

E{yL{m)yH(m)}  = R l h (0) =  J I E  h(n ~  l)\Rxx{n) for all m  (7.11)
n l

There are more than one filter solutions which satisfy the condition R l h (0 ) =  

0 . Obviously the one which maximizes the objective function is the meaningful 

solution.

• Constrained Non-linearity in Phase Response: Since there can not be 

any linear-phase orthonorm al PR-QM F solution, the linearity condition on the 

phase responses of the filter functions is relaxed. Linear phase and PR  are two 

conflicting conditions in orthonormal 2 -band QMF design. But it is also known 

that the severe phase nonlinearities create undesired degradations in image and 

video applications. Therefore a measure which indicates the level of nonlinearity 

of the filter phase response is included as a param eter in the optim al filter design. 

Nonlinearity measure of the phase response is related to the non-sym m etry of the
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unit sample response and defined as

E p =  ' E M ”) -  M 2N  -  1 -  n ) ] 2 (7.12)
n

Ep is minimized in optimal filter solutions.

•  Given Input Statistics: The characteristics of the input spectral density 

function are very im portant for the optimal filter design variables discussed earlier. 

Therefore the whole optim ization procedure is related to the given input statistics. 

This will also lead to the input adaptive filter bank solutions which may be useful 

in some of the applications of the non-stationary sources. This study assumes an 

autoregressive, order 1, A/2(l) source model with the correlation coefficient p = 0.95 

which is a crude approximation to the real world still frame images.

These variables of the optimization are included in the objective function 

and the set of constraints are considered. There are many filter bank solutions 

available based on different objective functions and param eter sets. We present the 

examples of objective functions to be optimized in the following two sections.

7.3 O p tim al P R -Q M F s

7.3.1 O ptim al PR -Q M F D esign  B ased on Energy C om ­
paction

This optim ization problem consists of the P R  and energy compaction conditions as 

defined in Eqs.(7.3) and (7.5), for an A i?(l) source with p =  0.95.

We now set the objective function J  which is to be maximized as

J  = hTR xxh + A0[l -  hTh] +  Aj[ATCi£] +  ... +  H h TC{h] (7.13)

Hence,



d J  n 
dh ~

therefore

R xxh -f- AjC\h  -{-••• T XiCih — AoA (7• 14)

If the term s in the left side of the equation are combined as

Rh — A 0 A  (7.15)

where

R  = R xx +  X\C\ +  ... -f AiC{

The vector h which satisfies Eq.(7.15) is the optim al PR-QM F low-pass filter.

7.3.2 O ptim al PR -Q M F D esign B ased on E xtended Set 
of Variables

The aliasing energy, unit step response, constrained non-linear phase characteris­

tics, zero-mean high-pass filter, uncorrelated subband considerations additional to 

Eq.(7.13) are included in the objective function. The optim ization problem is now 

easily set as

2 /V - l  k

J  = k TRxxh - a Y Jlp{n ) *{ - i y lp(n)\Rxx{ k ) - l 3 Y . { ' Z h( n ) - l \ 2
k k= 0  n = 0

—7 ^ [ / i ( ? 2 ) — h(2N  — 1 — n ) ] 2 (7-16)
n

with the set of unitary, PR, zero-mean high-pass filter, and uncorrelated subband 

signals constraints as

^ 2  h(n)h(n  +  2 &) =  8(k)
n
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E ( - l  r i , ( n )  = 0
n

R l h ( 0) = 0  (7.17)

This is a very general optim ization problem. There are a set of param eters 

in the objective function which should be fine tuned for the application considered. 

Therefore the proposed optim al filter design approach should be supported with the 

experim ental studies. The significance of the optimization variables in the objective 

function should be quantified for the human visual system. The following section 

presents examples of the optim al filters and their problem definitions.

7.4 O p tim al P R -Q M F  Solu tion s and  T heir  P er­
form ance

Since there is a, set of param eters in the optimization problems defined earlier the 

possible filter solutions are many. Therefore we studied the interrelations of the 

optim ization variables. In this framework we first a ttem p t to relate the energy 

compaction and aliasing energy of the 2-band PR-QM F as defined in Eqs.(7.6) 

and (7.8) respectively. Fig. 7.1a displays this relation for 8 -tap filer solutions and 

>1/2(1) source with p =  0.95. As seen from the figure, this relation is linear-like 

and the energy compaction increases as the aliasing energy decreases. This trend is 

easily justified. The optim al PR-QM F solutions obtained are also consistent with 

this figure. Fig. 7.1b displays the relation of energy compaction and interband 

correlations again for the same source model. Although in block transforms these 

two variables merge in the unique optimal solutions, K L T , this is not true for the 

filter banks. In other words, there are more than one possible solutions. One should 

pick the solution which maximizes the objective function. Therefore the relations 

of uncorrelated interband and the energy compaction in filter banks are not as clear 

as in the block transforms. This point deserves further studies.
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Fig. 7.1c shows the relations of 2-band energy compaction and the degree 

of nonlinearities in the phase responses of 8 -tap filters.

Fig. 7.Id  provides the relations of 2 -band energy compaction and the im­

perfectness of filter unit-step responses. This plot indicates th a t whenever the 

unit-step response gets closer to the unit step function the energy compaction de­

creases. This relation clearly questions the practical m erit of the energy compaction 

measure. Although the energy compaction may be optim al the subjective coding 

performance of the corresponding filter may not be necessarily optim al since its 

tracking of edges is not the best for image sources.

Table 7.1. provides the coefficients of 4, 6 , 8 , 12, and 16 tap  optimal PR- 

QMFs based on energy compaction constraint. Similarly, Table 7.2. gives the 

optim al PR-QM F coefficients based on minimized aliasing energy . Table 7.3. and 

Table 7.4. has the zero-mean high pass constraint additional to the Table 7.1 and 

Table 7.2 respectively. Table 7.5. has the optimal PR-QM Fs similar to Table 7.3. 

but additionally providing uncorrelated subbands or R l h {0 ) =  0  for A R (1 ) source 

with p = 0.95. Table 7.6. also adds this constraint to the conditions of Table 7.4.

Tables 7.7.a, b, c gives the optim al filters based on extended objective func­

tion of Eq.(7.16) with the weight variations of only the phase responses. Similarly, 

Tables 7.8 .a, b, c provides the optim al filter coefficients with the weight variations 

only in the unit step response of Eq.(7.16). At last, Table 7.9. supply a set of 

PR-QM F filter coefficients based on energy compaction with different correlation 

functions. These solutions are obtained by using the software packages M athemat- 

ica and 1MSL.

All of these Tables assume A R (1 ) source of p =  0.95 and also include the 

performance of the filters presented for comparison.
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7.5 D iscu ssio n s

We have developed a  framework in this chapter to design statistically optimized 

2-band PR-QM Fs suitable for subband image coding. This procedure considers the 

effects of the uncertainty principle of the time-frequency signal analysis. This is 

implicitly succeeded by considering the effects of the aliasing energy and the unit 

step response of the designed PR-QM Fs for the given statistics.

The proposed PR-QM F solutions consider several practical param eters of 

image coding in the optimization problem. Therefore there are quite a few differ­

ent filter solutions available with this approach. Therefore the param eters of the 

optim ization should be tuned to the human visual system with the experimental 

studies for subjectively optimal PR-QM F solutions.

This approach somehow leads to the solutions of the input driven adaptive 

filter banks to overcome the difficulties of varying source characteristics in the non- 

stationary cases. It is seen tha t the statistically optimized PR-QM Fs introduced 

in this chapter objectively perform better than the well-known PR-QM Fs in the 

literature[17][18]. These filters should be incorporated in image, video processing 

and coding applications to prove their practical merits.

It should also be emphasized th a t some of the characteristics considered in 

the proposed optimized PR-QM F design procedure may not be significant in the 2- 

band case. But if a hierarchical subband tree structure based on 2 -band PR-QM Fs 

are created it is clearly observed tha t all of these characteristics become im portant. 

Therefore they all should be considered simultaneously in the design.

This approach can be extended to the M —band PR filter bank problem 

but as expected the procedure in th a t case is computationally quite complex for 

the larger values of M . This approach can also serve for the purpose of designing 

optim al compactly supported orthonorm al wavelet transform bases which were dis­
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cussed in Chapter 3.

n h(n) h(n) h(n) h(n) h(n)
0 0.204212351 0.248070879 0.322844620 0.385659360 0.488485060
1 0.602581536 0.666509813 0.749222992 0.796281183 0.832218822
2 0.663204398 0.626640313 0.531149563 0.428145985 0.226198886
3 0.194273985 0.085288028 -0.061267577 -0.140851256 -0.132771300
4 -0.235011082 -0.251746902 -0.205510132 -0.106698546
5 -0.151528819 -0.070668742 0.042673129 0.051676837
6 0.120055833 0.134606123 0.061655714
7 0.100225222 0.031174564 -0.026567812
8 -0.075695486 -0.076826546
9 -0.060939689 0.003537022

1 0 0.053731391 0.028073733
1 1 0.029632417 -0.010448872
1 2 -0.038213006
13 -0.002862284
14 0.015950575
15 -0.005405583

G t c 3.9222 3.9043 3.8565 3.7962 3.6526
0.0056 0.0075 0.0113 0.0153 0.0234

R l h { 0 ) 0.0063 -0.1575 -0.0069 -0.0160 -0.0215
mean 0 . 0 0 2 2 0.0034 0.0060 0 . 0 0 0 0 0.0152

Ev 1.0616 1 . 0 1 1 1 0.8542 1.2507 0.7532
E s 3.3553 2.5679 1.7441 1.3059 0.8351

Table 7.1. A set of optim al PR-QM F filter coefficients and their performance. 

The optim ality is based on energy compaction.

157



n h(n) h(n) h(n) h(n) h(n)
0 0.243659618 0.281523633 0.345040138 0.398655783 0.489209500
1 0.644059913 0.690896465 0.753694623 0.792728776 0.831649080
2 0.626170931 0.588844405 0.506545103 0.420459421 0.226466667
3 0.131446737 0.049708030 -0.065567763 -0.141949940 -0.133216819
4 -0.242318622 -0.247385008 -0.209739280 -0.112008481
5 -0.120846194 -0.057696965 0.046502363 0.056328003
6 0.130077143 0.138854841 0.069553743
7 0.087002300 0.030435241 -0.031841857
8 -0.084297240 -0.088626178
9 -0.058280509 0.005881762

1 0 0.062266297 0.036734185
1 1 0.032963835 -0.014968294
1 2 -0.050162203
13 -0.002346194
14 0.023824751
15 -0.009013338

G t c 3.9191 3.9007 3.8530 3.7935 3.6425
° 2a 0.0054 0.0073 0 . 0 1 1 2 0.0152 0.0234

R l h { 0 ) 0.0044 -0.1717 -0.0067 -0.0138 -0.0188
mean 0.0042 0.0057 0.0086 0 . 0 0 0 0 0.0172

E p 1.0506 0.9906 0.8425 1.2520 0.7536
E s 3.2771 2.5138 1.7175 1.2930 0.8349

Table 7.2. A set of optim al PR-QM F filter coefficients and their performance. 

The optim ality is based on minimized aliasing energy.
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n h(n ) h(n ) h(n) h(n) h(n)
0 0.201087342 0.244206457 0.317976535 0.385659639 0.482962940
1 0.600007520 0.664513457 0.748898833 0.796281177 0.836516297
2 0.665259025 0.629717438 0.534939876 0.428145720 0.224143841
3 0.198773686 0.089423027 -0.058836349 -0.140851286 -0.129409515
4 -0.233790239 -0.251577216 -0.205817322 -0.106698578
5 -0.153612998 -0.072467574 0.042523091 0.051676890
6 0.118834741 0.134086583 0.060007692
7 0.101350938 0.031916868 -0.025478793
8 -0.074934374 -0.076499461
9 -0.061434875 0.003706982

1 0 0.053218300 0.027172980
1 1 0.029837627 -0.009985979
1 2 -0.037981695
13 -0.002649357
14 0.015413680
15 -0.005165762

Gtc 3.9220 3.9038 3.8548 3.7961 3.6426
0.0056 0.0075 0.0115 0.0153 0.0239

R l h { 0 ) 0.0040 -0.1601 -0.0140 -0.0160 -0.0422
mean 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

E P 1.0622 1.0320 0.8566 1.2506 0.7500
E s 3.3613 2.5730 1.7493 1.3059 0.8365

Table 7.3. A set of optim al PR-QM F filter coefficients and their performance. 

The optim ality is based on energy compaction with zero mean high-pass filter.
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n h(n) h(n) h(n) h(n ) h(n)
0 0.239674169 0.276769143 0.339291195 0.398655794 0.482962940
1 0.641863878 0.689345705 0.753812779 0.792728512 0.836516297
2 0.628941341 0.592445147 0.510688095 0.420459801 0.224143841
3 0.136154317 0.054082233 -0.062731472 -0.141949922 -0.129409515
4 -0.241530316 -0.247471430 -0.210405609 -0.112008814
5 -0.123175317 -0.059746881 0.046422128 0.056328191
6 0.128959373 0.138373438 0.067533100
7 0.088433853 0.031525301 -0.030396654
8 -0.083586814 -0.088498729
9 -0.058991180 0.006149179

1 0 0.061697343 0.035489212
1 1 0.033431236 -0.014248756
1 2 -0.050042508
13 -0.002023897
14 0.022994193
15 -0.008586110

Gtc 3.9189 3.9002 3.8513 3.7935 3.6426
< 0.0054 0.0073 0.0113 0.0152 0.02397

R l h { o) 0 . 0 0 0 1 -0.1849 -0.0170 -0.0138 -0.0422
mean 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

E p 1.0521 0.9933 0.8450 1.2520 0.7500
E a 3.2836 2.5202 1.7232 1.2930 0.8365

Table 7.4. A set of optim al PR-QM F filter coefficients and their performance. The 

optim ality is based on minimized aliasing energy with zero mean high-pass filter.
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n h(n) h(n ) h(n) h(n) h(n )
0 0.224159871 -0.106117265 0.240118698 0.312656005 0.000000000
1 0.629151335 -0.041624773 0.688564034 0.754045521 0.707106781
2 0.642510825 0.444275957 0.638286732 0.543768338 0.707106781
3 0.158071546 0.761031030 0.017567002 -0.108851490 0.000000000
4 -0.240893371 0.427762258 -0.235301591 -0.149317562
5 -0.133127916 -0.066013158 0.023295098 0.061912751
6 0.128098122 -0.107784207 0.064002943
7 0.090074845 0.085537312 - 0.022319352
8 -0.081998711 0.051558425
9 -0.055306473 -0.038422405

1 0 0.058081519 -0.002588387
1 1 0.026452620 0.006598776
1 2 -0.040400680
13 -0.001956582
14 0.017549205
15 -0.006252594

Gtc 3.9207 3.8935 3.8408 3.7661 3.2025
0.0055 0.0083 0.0126 0.0167 0.0487

R l h { 0 ) 0.0000 0.0000 0.0000 0.0000 0.0000
m e a n 0.0000 0.0000 0.0000 0.0000 0.0000

E p 1.0531 0.8694 0.9011 1.3048 0.0000
E s 3.3117 4.4123 1.8685 1.3968 1.4289

Table 7.5. A set of optimal PR-QM F filter coefficients and their performance. 

The optim ality is based on energy compaction with zero mean high-pass and

uncorrelated subband signals.
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n h(n) h(n ) h(n) h(n) h(n)
0 0.240173769 -0.121396419 0.249509936 0.348319026 0 . 0 0 0 0 0 0 0 0 0

1 0.642454295 -0.035246082 0.688584306 0.758774508 0.707106781
2 0.628348271 0.467924401 0.632097530 0.510327483 0.707106781
3 0.135389521 0.751312762 0.015778256 -0.121232755 0 . 0 0 0 0 0 0 0 0 0

4 -0.241606760 0.412397276 -0.240993887 -0.151539728
5 -0.122763195 -0.062892458 0.026838168 0.069565029
6 0.129125126 -0.109012591 0.066493202
7 0.088184458 0.093200632 - 0.024093948
8 -0.083719165 0.059816603
9 -0.058849491 -0.048300585

1 0 0.061801498 -0.002622488
1 1 0.033339516 0.009032511
1 2 -0.050088120
13 -0.002023074
14 0.023072163
15 -0.008625249

G t c 3.9188 3.8897 3.8399 3.7611 3.2025
< 0.0054 0.0083 0.0126 0.0165 0.0487

R l h { o) 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

mean 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

E P 1.0518 0.8667 0.8941 1.3052 0 . 0 0 0 0

E a 3.2826 4.4280 1.8564 1.3539 1.4289

Table 7.6. A set of optim al PR-QM F filter coefficients and their performance. 

The optim ality is based on minimized aliasing energy with zero mean high-pass

and uncorrelated subband signals.
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a  =  0.5, 0  = 0.01, 7  =  0.01
n h(n ) h(n ) h(n ) h(n ) h(n)
0 0.349996497 0.360838504 0.377995233 0.442766931 0.466675669
1 0.731063819 0.744306049 0.768367237 0.805049213 0.840588657
2 0.505852096 0.490757098 0.462086554 0.352529377 0.240431112
3 -0.010803415 -0.036047928 -0.86013220 -0.146445561 -0.133481875
4 -0.229358399 -0.222383198 -0.194919256 -0.088189527
5 -0.029975411 -0.005408341 0.055225994 0.048503129
6 0.134362313 0.128127832 0.061944250
7 0.026991307 0.000007678 - 0.030473229
8 -0.089102151 -0.079675397
9 -0.017502278 0.018522733

1 0 0.062860841 0.029441941
1 1 0.006564367 -0.014273411
1 2 -0.045242724
13 0.009260600
14 0.017738308
15 -0.008492207

Gtc 3.8950 3.8809 3.8432 3.7829 3.6407
0.0065 0.0080 0.0115 0.0158 0.0240

R l H (  0 ) -0.0084 -0.2052 -0.0196 -0.01970 -0.0437
mean 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

E p 0.9859 0.9439 0.8432 1 . 2 0 2 2 0.7303
E a 3.1015 2.395 1.6745 1.2436 0.8503

Tables 7.7.a, b, c. O ptim al PR-QM F filter solutions and their performance. The 

optim ality is based on Eq.(7.16) and only the weight of the phase response

variable is changed.
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a  =  0.5, /? =  0.01, 7  =  0.1
n h(n) h (n ) h(n) h(n) h(n)
0 0.570782868 0.569472913 0.568917465 0.592766220 0.587090288
1 0.773403148 0.775299669 0.779977112 0.780949238 0.795662560
2 0.207871420 0.208282686 0.205671595 0.156911420 0.120016493
3 -0.101404580 -0.103659132 -0.112813827 -0.106155142 -0.088555779
4 -0.101233393 -0.101645713 -0.092613815 -0.042570859
5 0.040562313 0.044417637 0.058274508 0.032312685
6 0.064121473 0.064537457 0.025131536
7 -0.022088292 -0.029119506 - 0.018331012
8 -0.048700901 -0.045720022
9 0.017118797 0.029114167
10 0.039132815 0.012179460
11 -0.015973034 -0.008946054
12 -0.032702905
13 0.021271073
14 0.007835404
15 -0.005782643

G t c 3.6246 3.6274 3.6272 3.5769 3.5554
0.0216 0.0217 0.0224 0.0262 0.0283

R l h { 0) -0.0083 -0.2195 -0.0171 -0.0149 -0.0274
mean 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

E p 0.9682 0.9580 0.9367 1.0614 0.9129
E s 2.8281 2.1435 1.4567 1.0846 0.7413
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a  =  0.5, fi = 0.01, 7  =  0.5
n h(n) h(n ) h(n ) h(n) h(n)
0 0.436459489 0.468918374 0.893161751 0.883792413 0.851141192
1 0.770165754 0.754465714 0.196575502 0.226143909 0.304498519
2 -0.210563240 -0.223237677 -0.055961409 -0.080641139 -0.144034410
3 0.076322596 -0.091820497 0.061848233 0.105611642 0.402608262
4 -0.015358635 -0.010004074 -0.047017781 -0.096044493
5 -0.001475061 0.003575508 0.071219382 0.375351230
6 0.007791289 0.042639010 -0.083075780
7 -0.006978594 0.007741037 - 0.377463664
8 0.013431262 0.116547022
9 -0.002821529 0.043571171

1 0 0.032517339 0.312244125
1 1 0.011528011 -0.194067146
1 2 0.105043470
13 0.051791696
14 0.337785806
15 -0.191426092

Gtc 1.3138 1.5253 1.5600 1.7714 2.1612
a \ 0.3707 0.2724 0.2590 0.1979 0.1280

R l h { 0 ) -0.2241 -0.3795 0.1232 0.0877 0.0478
mean 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

E p 0.6532 0.7087 0.3721 0.3970 0.4023
E a 1.0674 1.0822 0.2193 0.2177 0.2180
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a  =  0.5, =  0 .0 1 , 7  =  0 . 0 0

n h(n ) h(n) h(n) h(n ) h(n)
0 -0.072118727 -0.140400385 0.338751710 0.414924083 0.450726782
1 0.032229491 -0.150338392 0.753050835 0.802108334 0.844019834
2 0.472159777 0.297817459 0.512178433 0.389177069 0.256379999
3 0.728661982 0.716925775 -0.062729040 -0.145175948 -0.136913053
4 0.412106727 0.562813589 -0.210590019 -0.096994371
5 -0.089723281 0.074485419 0.046819239 0.050174395
6 -0.180228443 -0.101597229 0.066766657
7 0.058425583 0.069475983 - 0.030034253
8 0.122112963 0.120498364
9 -0.041446572 -0.033350030

1 0 -0.076759955 -0.032025017
1 1 0.044183696 0.029908027
1 2 0.028424519
13 -0.028379044
14 0.001409920
15 0.003154926

G t c 3.9135 3.8988 3.8516 3.7928 3.6357
0.0060 0.0073 0.0113 0.0154 0.0243

R l h { 0 ) -0.0049 0.0412 -0.0165 -0.0183 -0.0450
mean 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

E P 0.9063 0.7827 0.8454 1.2269 0.6906
E s 4.7944 5.1120 1.7241 1.2735 0.8638

Tables 7.8 .a, b, c. O ptim al PR-QM F filter solutions and their performance. The 

optim ality is based on Eq.(7.16) and only the weight of the step response variable

is changed.
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a  =  0.5, j3

oooII1—ioII

n h (n ) h(n) h(n) h(n ) h(n )
0 0.051858566 -0.055559533 0.377668686 0.531436244 0 . 0 0 0 0 0 0 0 0 0

1 0.380482562 0.289422202 0.749142516 0.825711921 0.707106760
2 0.712802256 0.758607778 0.474281619 0.155148903 0.707106760
3 0.420775226 0.396381623 -0.055253895 -0.105397216 0 . 0 0 0 0 0 0 0 0 0

4 -0.081862324 -0.027600992 -0.234063349 0.020521635
5 -0.052470327 0.175485587 0.058196964 -0.013207924
6 0.067027296 0.059980247 0.089219826
7 -0.0159621296 -0.326344975 - 0.044978804
8 -0.071890824 0.033259598
9 0.240675222 0.183983737

1 0 0.024453215 -0.061580317
1 1 0.0220059481 -0.011821393
1 2 0.059265979
13 0.085890240
14 -0.054547383
15 0.007434635

Gtc 3.5895 3.3675 3.8112 3.5753 3.2025
* A 0.0174 0.0255 0.0124 0.0275 0.0487

R l h { 0 ) 0 . 0 1 2 0 -0.0422 -0.0199 -0.0414 0 . 0 0 0 0

mean 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

Ev 0.7792 0.6897 0.8192 1.0128 0 . 0 0 0 0

E s 3.7582 3.3832 1.6791 1.1293 1.4289
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a  =  0.5, 0 = 0.5, 7  =  0.00
n h(n) h(n) h (n) h(n) h(n)
0 -0.036394166 0.009777307 0 . 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0

1 -0.010653820 0.009950661 0.707106760 0.707106760 0.707106760
2 0.120319736 0.009163096 0 . 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0.707106760
3 0.018782806 -0.100904704 0 . 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0

4 -0.284341438 0.114277633 0 . 0 0 0 0 0 0 0 0 0 0.707106760
5 0.071695457 0.689177732 0 . 0 0 0 0 0 0 0 0 0 0 . 0 0 0 0 0 0 0 0 0

6 0.546197426 0.687908298 0.707106760
7 0.315291373 0.111809215 0 . 0 0 0 0 0 0 0 0 0

8 0.326491983 -0.124581108
9 0.530216883 0.007451436

1 0 0.065344861 0.010561555
1 1 -0.314416472 -0.010377558
1 2 -0.028986451
13 0.090980470
14 -0.001525171
15 0.005210085

Gtc 3.4726 3.8163 1.5786 1.9429 3.2025
* 2a 0.174 0.0140 0.2006 0.1324 0.0487

R l h ( 0 ) 0.0103 -0.0057 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

mean 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

E P 0.0062 0.0009 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0

E s 8.4601 6.1696 1.7720 1.6005 1.4289
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n h(n) p =  0.95 h(n) p — 0.85 h(n) p =  0.75 h(n) p =  0.5
0 0.204212351 0.212661977 0.221143926 0.241189375
1 0.602581536 0.609547980 0.616246293 0.630923075
2 0.663204398 0.657327191 0.651243556 0.636196501
3 0.194273985 0.182280121 0.170522287 0.143871630
4 -0.235011082 -0.238168040 -0.240972596 -0.246239979
5 -0.151528819 -0.145729509 -0.139937253 -0.126439416
6 0.120055833 0.123102211 0.125939612 0.131810655
7 0.100225222 0.097266163 0.094287141 0.087264071
8 -0.075695486 -0.077797447 -0.079792850 -0.084076242
9 -0.060939689 -0.059502013 -0.058060644 -0.054691151

1 0 0.053731391 0.054992787 0.056219689 0.058988403
1 1 0.029632417 0.029236347 0.028856692 0.028029712
1 2 -0.038213006 -0.038988911 -0.039794727 -0.041822297
13 -0.002862284 -0.003393977 -0.003933441 -0.005213122
14 0.015950575 0.017449360 0.019022659 0.023014860
15 -0.005405583 -0.006087815 -0.006826404 -0.008798124

Gtc 3.9222 2.2494 1.7355 1.2351
° a 0.0056 0.0075 0.0113 0.0153

R l h { 0 ) 0.0063 -0.1575 -0.0069 -0.0160
mean 0 . 0 0 2 2 0.0034 0.0060 0 . 0 0 0 0

Ev 1.0616 1 . 0 1 1 1 0.8542 1.2507
E 3 3.3553 2.5679 1.7441 1.3059

Table 7.9. A set of optim al PR-QM F filter coefficients and their performance. 

The optim ality is based on energy compaction with different correlation functions.
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Fig. 7.1. The relations of a) GTc vs a \  for N  =  16,12,8,6,4 b) GTc  vs R LH{0) 

for N  =  16,8,6 c) Grc  vs E p for .Y =  16.12,8 d) GTc  vs E s for N  =  16.12.8.6.4 

of 8-tap 2 band PR-QMFs for AR(1), p =  0.95 source.
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C hapter 8 

C onclusions and D iscussions for 
Future R esearch

The main contributions of this dissertation can be highlighted as the following :

e Binomial-QMF: The motivation of this study was simple, m ultiplier free 

structure of Binomial Network which was proposed by Haddad in 1971. We 

used the Binomial basis of smooth functions to design Perfect Reconstruction 

Q uadrature Mirror Filter bank(PR-QM F). Interestingly enough, it is found 

th a t these filter are identical to the orthonorm al wavelet transform  inter scale 

coefficients or filters proposed by Daubechies. We have also shown first in 

the literature the connections of the celebrated works by Herrm ann, 1971 and 

Daubechies 1988. It is shown that Binomial-QMF has the unique maximally 

flat function as its magnitude square.

• 2-band PR-Q M F Bank Design Based on Bernstein Polynomial Approxima­

tion: Our studies of Bernstein polynomials provided the insights about this 

smooth function family. We used this notion to generate smooth m agnitude 

square functions of 2-band PR filter banks. This part of our studies intro­

duced the old polynomial approximation concept into the PR  filter bank de­

sign theory. This work yielded the connections of approximation param eters
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and behavior of the designed filters. This is a generalized, param etric, filter 

bank design approach. As the specific examples of this technique, we have 

derived the popular wavelet filter proposed in the literature. This technique 

provides new insights for the design of filter bank and wavelet bases.

e Non-Aliasing Energy Ration (NER): The theoretical performance studies on 

orthonorm al transforms predict th a t the performance increases, with the num ­

ber of subbands or transform  size. B ut, it is also well known th a t this predic­

tion does not m atch with the applications performance. Therefore the practi­

cal m erits of energy compaction measure should be examined more carefully. 

This observed mismatch has more than one reasons. We looked a t the ef­

fects of aliasing energy in a multiresolution analysis/synthesis structure. Our 

results with this new performance measure, NER, follows the trend of exper­

im ental results. This new measure complements the commonly used energy 

compaction measure.

• Optimal 2-band, PR-QM F Design : The block transforms have the duration 

of transform  basis functions equal to the number of subbands or transform 

size. Therefore their freedom for tuning the basis is very limited. Indeed, The 

optim al block transforms KLT is a unique solutions of best possible energy 

compaction and uncorrelated coefficients for the given source statistics. The 

theory proves th a t general filter bank solution have many degrees of freedom 

available for the design purposes. Our motivation for this part of study is 

based on this simple concept. Therefore, we can considered the requirements 

of a meaningful basis or filter behaviors, in time as well as in frequency in 

the design procedure. We did not lim it ourselves on the optim ization of joint 

time-frequency localization. It is too abstract. We broke down that concept 

into its components which are considered simultaneously in the design of
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filter banks. The interrelations of these components are displayed. The best 

possible 2-band PR-QM Fs are derived for the given source and the measure. 

This work is the filter bank counterpart of KLT in block transforms. It 

is expected th a t this design approach will be heavily used for Image-Video 

processing applications in the near future.

• Our theoretical studies always supported with objective performance results 

to provide the merits of the present work. It is depicted tha t there are su­

perior filter bank solutions over the existing block transforms based signal 

decomposition techniques like Discrete Cosine Transform (DCT).

Based on our studies and experience in the field of signal decomposition we 

will now address few possible extension of this dissertation for future research. We 

can sum m arize these as following:

•  VLSI implementation of Binomial-QMF banks.

• Extension of Bernstein polynomial approximation based PR-QM F design to 

M  equal and unequal bandwidth case.

•  Connect the proposed param etric filter bank design technique with the design 

of orthonorm al wavelet bases.

•  Subjectively spectral splitting of image-video spectra to define the subband 

structure to be designed.

•  More studies on the criteria employed in optimal PR-QM F bank design.

•  More studies on the objective performance measure of signal decomposition 

techniques.

•  Extensions of optimal 2-band PR-QM F approach to M -band case.
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It should be concluded th a t the filter bank design problem should be related 

with the requirements of the applications side to yield practically superior solution 

to the industry standard block transforms.
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A ppendix  A

Lemma 1.1 A set of functions </)(., —n ) form an orthonorm al family if and only if 

their Fourier transform  satisfy[39],

£ |$ ( f 2  +  27rA:)|2 =  l (A .l)
k

Proof: Since {<f)(t — n)-,n G Z}  is orthonormal family then they should

satisfy

ll/ll2 =  S > ( » ) | 2 (A .2)
n

then we can expand the f ( t )  in orthogonal family as

/(*) =  H  a(n)<f>(t - n )  = a{n)8(t -  n) (A.3)
n  n

this relation in Fourier domain becomes

F{Q) = $ (fi) Y ,  a(n)e~jQn (A.4)
71

by defining 2ir periodic function

M(n)  =  Y Q(n)e~jQn
n

this relation becomes

F(Q) = $ ( ll)M (n )  (A .5)

Therefore from Parseval relation



1 fO O

=  1T  ; : ; ~ ; ; 2| M ( n ) | 2c/n
Z7T J — o o  

1 ° °  / * 2 7 r ( n — 1 )

=  A £  /  |* ( f i) |2|M (tJ)|!«
2”'„n'co^»n

1 ° °  /-27T

=  _ L -  y  j  | M ( f t ) | 2 | $ ( f t +  2 7 r n ) | 2 < m

27r n^oo ^
1 /*2tt 00

=  —  I \M(n)\2 J2 M ^  + 2Trn)\2dn
2 tr ./o

From Eq.(A.2) we ha,ve

/ OO_______________ __
l/(0|2̂  = Zlla(n)l

■ 0 °  n

=

Therefore, m ust satisfy

£ | $ ( f t  +  27m)|2 =  1

(A.6)
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