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ABSTRACT

Integrated Anaerobic-Aerobic System for the 
Biodegradation of Highly Chlorinated Aromatic Compounds

by
Cheng-Ming Kung

A two-step process was developed for the complete mineralization of hazardous 

chlorinated aromatic compounds. The system consisted of an anaerobic reactor, in 

which reductive dehalogenation took place, coupled with an aerobic reactor in which 

the complete mineralization of the products of the anaerobic dehalogenation occurred.

A mixed anaerobic culture from a municipal sewage treatment plant was en

riched and then immobilized on silica-based porous beads to treat 2,4,6-trichlorophenol 

(TCP), which is the model target compound in this work. In the anaerobic reactor, 

TCP was degraded to 2,4-dichlorophenol which was, in turn, reduced to 4-chloro- 

phenol (4-CP). Stoichiometric amounts of 4-CP were recovered at the end of the 

anaerobic step. No other unknown compound was produced to any significant extent 

during the anaerobic process. As the anaerobic culture got acclimated to the TCP, the 

dehalogenation rate of TCP increased from 21.7 to 43.2 nM/day.

The effluent from the anaerobic reactor was subsequently treated in a suspended 

growth aerobic reactor to remove the 4-CP. The anaerobic effluent had to be buffered 

with a phosphate solution to adjust its pH to about 7 and maintain aerobic activity.

When the system was run in batch mode, 106.4 /xM of TCP could be dechlori

nated to 4-CP in three days by an acclimated anaerobic culture. 98 /xM of the 4-CP 

produced were then mineralized in the aerobic reactor in less than three days.

When the system was run in continuous mode, 120 /xM of TCP were entirely 

and continuously dechlorinated to 4-CP in the anaerobic reactor, and then completely 

mineralized in the aerobic reactor. The average residence times (which were not op

timized) in the anaerobic and aerobic reactors were respectively 105 and 98 hours, al

though there are indications that these were longer than necessary.
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In t r o d u c t io n

Halogenated hydrocarbons are used in many aspects of our daily life. They 

have applications as solvents (e.g., chloroform, trichloroethylene, and chlorobenzene), 

as insulating liquids (polychlorinated biphenyls), as wood preservatives (pentachloro- 

phenol, PCP), and as herbicides and fungicides.

Polychlorinated phenols, particularly PCP, are produced in the hundreds of 

thousands of tons each year. Wood preservatives constitute 80% of this production. A 

large amount of these phenols enter the environment (Dickson, 1980). Because of 

chemical and thermal stability, these compounds are persistent in nature. Half-lives of 

more than 15 years are not uncommon (Muller and Lingens, 1986).

The toxicity of the family of chlorophenols has been tested on mice and rats. 

Increased respiration, motor weakness, tremors, CNS depression, convulsions, dyspnea 

(difficulty in breathing), coma, and then death were observed. The order of acute oral 

toxicity of the compounds is PCP > tetrachlorophenols >  monochlorophenols >  tri- 

chlorophenols >  dichlorophenols (Borzelleca, et al., 1984). The results indicate that 

the more chlorines are on the compound, the more toxic it is. However, monochloro- 

phenol is more toxic than tri- and di-chlorophenol.

Another problem is that biodegradation systems for treating wastewater are in

hibited by the presence of halogenated compounds. PCP has been shown to be strongly 

inhibitory to methanogenesis in both pure cultures (Guthrie, et al., 1984) and anaerobic 

sludges and sediments. Thus the presence of PCP or other halogenated hydrocarbons
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in wastewater is a potentially serious problem if anaerobic digestion is to be successful 

(Mikesell and Boyd, 1986).

Table 1 shows the physical and chemical properties of phenol and chlorinated 

phenols.

Since nature itself produces a variety of halogenated compounds in large 

amounts, it would be surprising if mechanisms for their biodegradation did not exist. 

Although most microorganisms tend to be inhibited by these compounds, micro

organisms do indeed exist which play a major role in the degradation of halocarbons.

Besides biological processes, there are other physicochemical processes capable 

of dealing with these toxic compounds. An advantage of biological processes is that 

they are usually less energy consuming and often less expensive than physicochemical 

ones. The most attractive feature of the biodegradation processes over others is that the 

compounds can be mineralized (to water, carbon dioxide, methane, and halides), rather 

than just being transformed.

Traditional biological systems use primarily aerobic rather than anaerobic pro

cesses, because aerobic organisms are generally more stable and have higher growth 

rates than anaerobic organisms. However, anaerobes have an extremely important 

property in waste treatment applications, namely their ability to reductively dehalo- 

genate organic compounds. This property is largely unaffected by the number or posi

tion of the halogen atoms in the molecule (Bollag, 1974; Suflita et al., 1982). This is 

not the case for aerobes, which are much more sensitive to the number and position of 

halogens (Bollag, 1974; DiGeronimo et al. 1979; Okey and Borgan, 1965). On the 

other hand, dehalogenated compounds are more water soluble and more amenable to 

aerobic mineralization. Therefore, coupling the two processes would appear to have a 

number of inherent advantages over a conventional aerobic process.

The purpose of the present study was to precisely test that hypothesis in a prac

tical engineered system, consisting of an anaerobic reactor where dechlorination of the
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toxic halogenated compound took place, followed by an aerobic reactor (fed with the 

effluent of the anaerobic reactor) in which complete mineralization was obtained



L it e r a t u r e  R ev iew

2.1 . CLASSIFICATION OF ANAEROBIC MICROORGANISMS

According to their trophic requirements anaerobic microorganisms may conve

niently be divided into three broad categories (Barnes and Fitzgerald, 1987). The first 

comprises hydrolytic bacteria, commonly referred to as acidogens, because they ini

tially ferment their substrate into short-chain organic acids and other small molecules. 

The second group is that of the heteroacetogens which produce acetic acid and hydro

gen, and the third is that of the methanogens, which produce methane. This group may 

be further subdivided into hydrogen utilizers (lithotrophs) and acetic acid users 

(acetotrophs). Feedstocks containing oxidized sulphur and nitrogen may give rise to 

two additional groups of bacteria, the sulphate-reducers and the denitrifiers.

The methanogenic bacteria (Group III) are possibly responsible for the anaero

bic degradation of halogenated toxic compounds.

The methanogens are the most culturally fastidious group in the symbiosis of 

anaerobic digestion. They require a broad spectrum of nutrients in order to grow, in

cluding carbon, phosphorus, nitrogen, sulphur, calcium, magnesium, potassium, 

sodium, organic nutrients such as amino-acids and vitamins and trace metals. In addi

tion to iron, zinc and manganese, it was established that methanogens require trace 

amounts of cobalt, molybdenum and nickel (Schonheit, 1979). Biomass conformation 

plus adjustment of yield coefficient of carbon is 93C:5N:1P.

4



5

The majority of mesophilic methanogens will not grow at pH values below 5.5. 

Low pH values favour proton reduction to hydrogen, rather than hydrogen reduction to 

methane, and therefore methane production normally ceases. Empirical results have 

additionally shown that an upper pH limit of pH 8 is desirable.

2.2. ENRICHMENT SOU RCES

Enrichment for microorganisms that are able to degrade target toxic compounds 

efficiently is the first step, and sometimes the most time consuming step for a re

searcher to develop a microbial degradation system. In order to cut the time spent in 

this phase to get powerful microorganisms, it is crucial to start sampling from the right 

sources.

In Berry's review (1987), listed enrichment sources include: soil (5 references), 

river or marine mud, sludge (7 references), sewage, subsurface, marine or lake sedi

ment.

For chlorinated hydrocarbons, the most promising sources are soil or water 

samples chronically polluted with these compounds (Muller and Lingens, 1986).

The complete conversion of halobenzoic acids and halophenolic compounds to 

methane by lake sediment and sewage sludge microorganisms has been demonstrated 

(Sahmetal., 1986).

Hexachlorobenzene (Fathepure et al., 1988) and at least some polychlorinated 

biphenyls (PCB) (Tiedje et al., 1987) were dechlorinated by sewage sludge and river 

sediments, respectively.

Bacterial strains from sediments from the PCB-contaminated Hudson river (NY, 

USA) were able to degrade a majority of the congeners included in a commercial poly

chlorinated biphenyl oil (Bedard et al., 1986).
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Chlorinated phenols and guaiacols can be degraded by mixed bacterial cultures 

obtained from areas polluted by bleach plant effluents which contain these compounds 

(Neilson et al., 1983).

Mixed bacterial cultures originating from soil contaminated by polychlorinated 

phenols, which are used as wood preservatives in sawmills, degrade PCP (Valo et al., 

1985).

A long lag period is usually observed before the onset of anaerobic transforma

tion, which is most likely due to low initial numbers of microorganisms present in 

aquifer solids and ground water (Edwards et al., 1990). The concentration of the toxic 

compounds can also affect the lag period.

Horowitz et al. (1983) found that before the degradation of halobenzoate oc

curred, the lag time in an unacclimated sediment ranged from 0.4 to 40 weeks. They 

concluded that the lag periods varied according to the type and position of the aryl 

halide. The substrate concentration also had an effect on the length of the lag period 

for 4-amino-3,5-dichlorobenzoate.

Anaerobically digested municipal sewage sludge which had been acclimated to 

monochlorophenol degradation for more than 2 years was shown to degrade PCP 

(Mikesell and Boyd, 1986).

2.3. EVIDENCE OF ANAEROBIC DEHALOGENATION

Horowitz and co-workers (1983) ran a series of experiments on halobenzoate to 

demonstrate that the dehalogenation reactions are brought about by living anaerobic 

bacteria and not by abiotic photochemical reactions of chemical reductants.

1. The reactions occur only in the dark and in the absence of oxygen. Sterilized 

sludge samples do not carry out any reaction even in the presence of the strong reduc- 

tant titanium citrate.
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2. Upon increasing the temperature above 39°C, dehalogenation reactions in fresh

water sediments are lost, since sediment microbes are not adapted to these conditions. 

On the contrary, a chemical mechanism would be enhanced by such temperatures.

3. Usually, when haloaromatics are added to unadapted sediments, long lag periods 

with a low background of methanogenesis are followed by a phase of rapid degrada

tion. This indicates a specific biological adaptation, as does the acclimation of sedi

ments by prior exposure to the haloaromatic compounds.

2.4 . ANAEROBIC TECHNIQUES

There are several derivative variations of the technique described by Hungate 

for the cultivation of anaerobic microorganisms (Bryant, 1972; Holdeman and Moore, 

1972; Hungate, 1969; Macy et al., 1972). The fundamental unit of operation (Miller 

and Wolin, 1974) is a serum bottle closed with a butyl rubber stopper with a crimped 

metal seal. Media are prepared under nonsterile conditions, usually with an appropriate 

reducing agent. The media are gassed with 0 2-free gas and added to gassed serum

bottles. Stoppers are inserted as the gassing needles are withdrawn from the bottles. 

Metal seals are then crimped to seal the caps to the bottles, and the bottled media are 

autoclaved. All inoculations are carried out with a hypodermic syringe and needle.

2.5 . COMETABOLISM

In many instances it appears that several distinct organisms may be responsible 

for the substrate degradation with one organism modifying the substrate in such a man

ner that the second and subsequent organisms can now use the products as substrates 

and effect further modifications. In such cases no organism in pure culture would use 

the substrate as sole carbon and energy source. Therefore it is necessary to add an al

ternative carbon source to provide energy for growth (Slater and Somerville, 1979).
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This phenomenon is called cometabolism and is defined as the transformation of 

a non-growth substrate in the obligate presence of a growth substrate or another trans

formable compound (Dalton and Stirling, 1982). Cometabolism is important in the 

biodegradation of pesticides either aerobically or anaerobically.

Dietrich and Winter (1990) were able to match the stoichiometric relation of n- 

butyrate (co-substrate) oxidation to 2-chlorophenol or 2,6-dichlorophenol reductive de- 

halogenation, respectively.

In Slonim's work (1985) to degrade 4,6-dinitro-o-cresol (DNOC) in a continu

ous system, the performance of the anaerobic system was highly dependent on the in

fluent concentration of the co-substrate sucrose. An influent sucrose to DNOC ratio of 

2:1 or higher resulted in 95-100% removal (or conversion) of DNOC in the anaerobic 

process. However, when influent sucrose to DNOC ratio was less than 2:1, the anaer

obic microorganisms failed to co-metabolize DNOC.

When Golovleva (1981) utilized a Pseudomonas species to degrade DDT, that 

did not serve as a source of carbon or energy, alternative sources of carbon and energy, 

therefore, needed to be supplied. In their experiments, lactic acid as carbon source, 

and nitrate as electron acceptor were added to the medium.

The aerobic transformation of trichloroethylene (TCE) is a cometabolic process 

(Edwards et al., 1990). TCE is not utilized by the bacteria, but only fortuitously trans

formed by virtue of their powerful methane monooxygenase.

On the other hand, although Flavobacterium cells (Topp et al., 1988) need 

readily metabolizable carbon to reduce the lag period to degrade PCP, it is not 

cometabolism because PCP could be used as sole carbon source for the cells.
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2.6. MEDIUM

In the anaerobic degradation of aromatic toxic compounds, the availability of 

co-substrates and electron acceptors in the medium plays a crucial role in influencing 

microbial activity and diversity (Berry et al., 1987). Sometimes, an extra nutrient in 

the medium which is used as co-substrate or electron acceptor would enhance the 

degradation greatly. In many cases, semi-defined or undefined media are used in the 

biodegradation of toxic compounds, because of the difficulties in defining the medium.

In the paper by Long-de Vallbre et al. (1989), 35 references were listed using 

defined media in experiments. However, only other 4 and 14 references using semi

defined or undefined media, respectively, were reported.

In Doffing and Tiedje's work (1987), unknown supplements that were present in 

rumen fluid, were also required by the isolated strain DCB-1 in degrading 3-chloroben- 

zoate together with two other pure cultures.

Edwards et al. (1990) observed an increase of the anaerobic degradation rate of 

TCE by adding p-cresol into the medium.

No growth and no dehalogenation of 2-chlorophenol was obtained when yeast 

extract and peptone were omitted completely in the medium of Dietrich and Winter's 

work (1990).

Topp et al. (1988) suggest that available carbon in polluted environments could 

facilitate PCP removal by inoculated Flavobacterium cells by attenuating the toxicity of 

PCP and contributing to the production and maintenance of PCP-degrading biomass.

2.7. ADVANTAGES OF ANAEROBIC DEGRADATION

The choice between aerobic and anaerobic processes for wastewater treatment 

has tended to favor the former because the systems were considered to be more reli

able, more stable, and better understood. However, these classical disadvantages of
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anaerobic processes have been overcome recently because of the advance of the knowl

edge in the anaerobic cultures (Heijnen et al., 1989). The processes also offer several 

clear advantages (Forday and Greenfield, 1983; Long-de Vallbre et al., 1989; Ander

son et al., 1984) such as:

1. Anaerobic processes generate less sludge than aerobic processes. Aerobic pro

cesses are likely to yield between 0.5 and 1.5 kg of biomass (sludge) solids for each kg 

of BOD removed, while anaerobic processes are likely to yield only 0.1-0.2 kg for 

each kg of BOD removed.

2. Anaerobic processes generate methane which can be used as a fuel source.

3. Even without the use of methane as an energy source, the aeration energy re

quirements of aerobic processes exceed the mixing energy requirements of anaerobic 

processes.

4. Anaerobic microorganisms have the ability to lie dormant for several months and 

then be fully operational within 2-3 days (of greet value when seasonal waste waters are 

to be treated).

5. Anaerobic system has the capability of operation on a stop/start basis.

Also, from a microbiological point of view, it may turn out that anaerobic 

techniques are better suited to remove halogenated aromatic compounds from industrial 

effluents than aerobic biological treatment because:

a. Haloaromatic compounds tend to polymerize when degraded by ordinary aerobic 

bacteria (Knackmuss, 1982). These polymerization products are rather resistant to 

further bacteria attack. However, under anaerobic conditions, oxidation, and hence 

polymerization, are not possible.

b. Theoretically, polyhalogenated aromatics should be more easily degraded by 

anaerobes than by aerobic bacteria since an increasing degree of halogenation of the 

aromatic ring decreases the electron density of the aromatic nucleus. Thus, elec- 

trophilic attack of oxygen on aromatic structures is more difficult. To the contrary, a
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decreased electron density of the aromatic nuclues should enhance anaerobic enzymatic 

attack by a reductive (nucleophilic) mechanism (Klinman, 1972).

c. Since anaerobic enrichments have a high affinity for haloaromatics, anaerobic 

techniques seem to be well-suited to remove trace levels from industrial effluents.

The interest in anaerobic treatment has been accelerated by the more stringent 

requirements to pretreat industrial wastewaters prior to sewer discharge, the need to re

duce the energy costs of treatment, particularly for high strength wastewaters, and the 

unsuitability of alternative treatment methods for some types of wastewaters (Barnes 

and Fitzgerald, 1987).

2.8. METHODS FOR THE DETERMINATION OF ANAEROBIC 

BIODEGRADATION

Some of the intermediates and products of their anaerobic transformation (such 

as vinyl chloride produced from the dehalogenation of chloroform), can be more haz

ardous than the parent compounds (Edwards et al., 1990). Thus, it is essential to trace 

the fate of target compound in waste water. Monitoring the disappearance of the target 

compounds is not usually enough.

When specific toxic compounds are to be treated, the concentration of the trans

formed compounds in the effluent could be directly determined by GC or HPLC. The 

degradation products could be determined by GC-MS, if complete mineralization has 

not occurred.

Calculations from mass balances of the conversion of organic carbon to carbon 

dioxide and methane allow predictions of the theoretical yields of gas expected if the 

compound are to be completely mineralized. Therefore, measurements of gas produc

tion allow easy assessment of the degree of degradation achieved (Long-de Vallfcre et 

al., 1989; Shelton and Tiedje 1984a).
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Hakulinen and Salkinija-Salonen (1982) measured the amount of l4C 02 to ascer

tain the complete mineralization of 14C PCP.

2.9 . ISOLATION OF PURE CULTURES

Pure bacterial cultures able to metabolize PCP under aerobic conditions have 

been isolated by a number of research groups. Among these are several strains of a 

Flavobacterium sp. (Saber and Crawford, 1985), a Pseudomonas (Watanabe, 1973), 

and a Coryneform bacterium (Chu and Kirsch, 1972). A strain of Arthrobacter which 

utilized PCP has been added to soil in an attempt to decontaminate polluted areas 

(Edgehill and Finn, 1983).

However, no anaerobic bacteria with the ability to degrade PCP have been iso

lated or identified (Mikesell and Boyd, 1986).

A single anaerobic microorganism can rarely take up a complex organic 

molecule and mineralize it to carbon dioxide. Rather, a succession of specialized or

ganisms modify the molecule in turn, each deriving a small amount of carbon and/or 

energy from the reaction (Hamilton, 1979; Lovely and Klug, 1982; Sleat and Robin

son, 1984). As a result, it is very difficult to isolate pure cultures for anaerobic degra

dation.

Dietrich and Winter's (1990) attempts to isolate an anaerobic 2-chlorophenol 

dechlorinating organism failed. The mixed culture was reduced to three morphologi

cally distinctive microorganisms.

When Hakulinen et al., (1985) mixed the isolated cultures of Pseudomonas 

aeruginosa and Klebsiella oxytoca, the mixed cultures were able to utilize 2,4,6- 

trichlorophenol (TCP) as a sole carbon and energy source under anaerobic conditions. 

However, none of the isolates were able to degrade TCP under anaerobic conditions in 

pure culture.
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Shelton and Tiedje (1984b) isolated three pure cultures that could grow on 3- 

chlorobenzoate as the sole carbon and energy source when they were mixed. These 

three cultures performed different reaction steps in mineralizing 3-chlorobenzoate.

In practice, mixed microbial cultures offer the best possibilities for efficient and 

robust treatments. In this respect, the results of laboratory based studies with pure 

cultures growing in defined media under optimal conditions cannot be immediately 

applied to complex in situ and downstream treatments where considerations of fluctuat

ing physico-chemical conditions and interactions between microorganisms may be as 

important as considerations of biodegradative mechanisms (Muller and Lingens, 1986).

2.10. DEGRADATION PATHWAYS

Many chlorophenols have recently been shown to be anaerobically biodegrad

able. However, neither the biochemical pathway nor the organism or organisms re

sponsible for degradation have been unambiguously identified (Hakulinen et al., 1985).

Proposed degradation pathways in strict anaerobic conditions involve reductive 

dehalogenation (Suflita et al., 1982) and the addition of hydroxyl group to the aromatic 

ring (Taylor et al., 1970). With respect to the microorganisms which carry out the 

anaerobic dechlorination reaction, it has been shown that some gram negative bacteria 

may be particularly important (Hakulinen et al., 1985).

Anaerobic (Murthy et al., 1979; Guthrie et al., 1984) and aerobic degradation 

(Murthy et al., 1979; Watanabe, 1977; Moos et al., 1983; Valo et al., 1985) of PCP 

by mixed microbial cultures has been reported. Murthy et al. (1979) found that C 02

formation was severely reduced under anaerobic conditions but identified 2,3,5,6-tetra- 

chlorophenol, 2,3,4,5-tetrachlorophenol, 2,3,6-trichlorophenol, and pentachloroanisole 

as degradation products. Ide et al. identified 2,3,4,6-tetrachlorophenol, 2,4,5-
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trichlorophenol, 3,4- and 3,5-dichlorophenol, and 3-chlorophenol as degradation prod

ucts.

These results strongly indicated that sequential reductive dechlorination reac

tions can be carried out by microorganisms degrading PCP under anaerobic conditions.

Suflita et al. (1982) demonstrated that in the dehalogenation of halogenated ben

zoate, the primary degradative event was the loss of the aryl halide without the alter

ation of the aromatic ring. Dehalogenation required strict anaerobic conditions and de

pended on the halogen and position, but not on the number of halogen substituents. 

These results suggest that reductive dehalogenation of aromatics could be important in 

the removal of some chlorinated xenobiotics from the environment.

In contrast, aerobic metabolism of aromatic compounds can be characterized by 

(i) direct replacement of the halogen by a hydroxyl group (Johnston et al., 1972; 

Klages and Ligens, 1979); (ii) the occasional nonenzymatic loss during NIH shifts 

(Guroff et al., 1967); and (iii) removal of the halogen from the alkyl moiety after 

cleavage of the ring, which is the most frequently cited case (Goldman et al., 1967; 

Hartmann et al., 1979; Horvath and Alexander, 1970; Reineke and Knackmuss, 1980; 

Spokes and Walker, 1974).

In the aerobic degradation of PCP, evidence (Suzuki, 1977; Rott et al., 1979) 

show that the process proceeds by replacement of a chlorine substituent by a hydroxyl 

group, although the reaction mechanism remains unclear.

The study of the degradation pathways could be applied in the synthesis of new 

chemicals. Compounds that are liable to contaminate the environment could be de

signed so as to combine efficacy with biodegradability. More direct applications may 

come from the use of isolated microorganisms of purified enzymes for the decontami

nation of pollutant spillages. Another application of the enzymes is to use them as 

catalysts for commercial chemical syntheses (Muller and Lingens, 1986).
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2.11. BIODEGRADATION OF HALOGENATED AROMATICS

Microbial degradation, either aerobically or anaerobically, of halogenated com

pounds has been widely studied. As noted by Bollag (1974), mefa-substituted aromatic 

compounds tend to be more recalcitrant. The persistence of the compounds against 

aerobic degradation is positively correlated with the number of halogens (DiGeronimo 

et al. 1979; Okey and Borgan, 1965). However, this is not apparent for anaerobic 

metabolism (Suflita et al., 1982).

When Mikesell and Boyd (1986) dechlorinated PCP, Cl substituents ortho to the 

phenolic OH group are removed more rapidly than Cl in the meta and para positions. 

Their data showed that the less extensively chlorinated phenols (tetrachlorophenols and 

trichlorophenols) were less subject to dechlorination reactions than PCP and thus 

tended to accumulate.

Dietrich and Winter's mixed culture (1990) could dehalogenate 2-chlorophenol, 

2-bromophenol or completely dechlorinate 2,6-dichlorophenol, whereas from 2,4- 

dichlorophenol only the substituent in the orrfto-position could be eliminated.

Hakulinen et al. (1985) added various concentrations of 8 polychlorinated phe

nols (2,3-, 2,4-, 2,5-, 3,4- and 3,5-dichlorophenols, 2,4,6- and 3,4,5-trichlorophenols,

2,3,4,5-tetrachlorophenol, and PCP) in their anaerobic system. The extent of dechlori

nation was variable for the different isomers, but ranged from no reaction of 3,4- 

dichlorophenol to as high as 90-99% removal of ortho chlorines from tri and tetra 

chlorophenols. There was no evidence of ring cleavage.

Tiedje and Boyd (Boyd et al., 1983; Boyd and Shelton, 1984) demonstrated that 

microbial populations from lake sediments and sewage sludge meditated the anaerobic 

degradation to methane of some 19 chloro-, bromo-, and iodo-benzoate and phenolic 

compounds. From these results, it appears that meta halogens are more susceptible to 

attack by anaerobic bacteria when compared to the ortho or para isomers. Suflita et al. 

(1982) reached a similar conclusion.
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Several researchers (Suflita et al., 1982; Mikesell and Boyd, 1986; Boyd and 

Shelton, 1984; Boyd et al., 1983) found that bromo- and iodo- substituents are de

graded after a shorter lag time than their chloro- or fluoro- counterparts, which sug

gests that the Br and 1 species are more readily dehalogenated.

It was found by Suflita et al. (1982) that complete dehalogenation was required 

before a substrate could be mineralized to CH4 and C 02. Horowitz et al. (1983)

reached the same result in their experiments.

In the anaerobic degradation of PCBs both the number and position of the chlo

rine atoms determined the extent of biodegradability. For example, the more highly 

substituted PCBs were metabolized less extensively than the mono- and dichlorinated 

biphenyls. Furthermore, the isomers bearing chlorine substituents on only one ring 

were more easily metabolized than those with substituents on both rings, and isomers 

doubly substituted in the o-positions (e.g., 2,2'- or 2,6-substitution) were generally re

calcitrant to microbial degradation. (Muller and Lingens, 1986)

Flavobacterium (Frick et al., 1988) was used to treat numerous types of pollu

tants in water, aerobically, including river water, lake water, and groundwater. PCP 

concentrations were reduced to undetectable levels from initial levels ranging from 10 

ppb to lOOppm, usually within 48 hr after inoculation.

3,4,5-trichloroguaiacol, 3,4-dichlorophenol, 2,4,5-trichlorophenol, and PCP 

were tested in Larsson's experiment (1988). The resulting concentrations of the phe

nolic pollutants were 30 to 537 /ng/liter. During 120 days 6-15% of above compounds 

were consumed in the humic water under aerobic condition.

2.12. AEROBIC MICROORGANISMS IN ANAEROBIC SYSTEM S

The microbial flora of an anaerobic reactor fed with chlorophenols may include 

bacteria that are classified as aerobes, such as Pseudomonas aeruginosa (Hakulinen et
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al., 1985). Ferry and Wolfe (1976), Taylor et al. (1970), Toerien (1967) and McCarty 

(1962) have also isolated Pseudomonas species from anaerobic conditions. Taylor 

(1970) as well as Ferry and Wolfe (1976) isolated such bacteria from anaerobic cultures 

fed an aromatic carbon source.

In the Hakulinen's work (1985), pure and mixed cultures were tested for use of

2,4,6-trichlorophenol (TCP) as a sole carbon and energy source under anaerobic condi

tions. None of the isolates were able to degrade TCP under anaerobic conditions in 

pure culture. However, mixed cultures containing only Pseudomonas aeruginosa and 

Klebsiella oxytoca were able to degrade TCP. It seems that the presence of K. oxytoca 

enables the Pseudomonas strain to survive under anaerobic conditions.

2.13. IMMOBILIZATION

Immobilization of microorganisms is the first step toward the application of mi

crobial degradation in the use of packed-bed or fluidized bed reactors. Immobilization 

has the advantage of keeping a high concentration of biomass in the reactor, preventing 

the washout of microorganisms, and protecting microorganisms from being exposed to 

high concentration of toxic compounds.

Applications of immobilization might be: 1) to develop a reactor for a microbial 

process involving organisms which grow too slowly for continuous suspended culture 

operation, 2) to isolate organisms which grow so slowly on inhibitory substrates that 

continuous suspended culture techniques become difficult, and 3) to design a high-rate 

water-treatment process in which cell retention is provided by a biofilm reactor (Long- 

de Vallbre et al., 1989).

Chou et al. (1979) showed that fixed-film or attached growth systems were 

greatly superior to suspended growth systems in the aspects of acclimation and stability
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to compounds like monocyclic aromatics and organic acids commonly found in petro

chemical wastewater.

Frick et al. (1988) ran series of experiments in the degradation of PCP, compar

ing the activity in aliquots of reactor liquid with equal volume samples of immobilizing 

saddles indicating that 30 to 50% of the activity was in the immobilized biofilm.

Caunt and Chase (1988) did a detailed study on the immobilization of Alcali- 

genes denitrificans in Celite particles (R-630, R-631, R-633, and R-635), made of cal

cined diatomaceous earths. Their results showed that incorporation of 0.25 M sodium 

chloride in the medium, a high initial cell concentration, and presaturation of the beads 

with substrate gave the best results.

2.14. TYPES OF BIOREACTOR

2.14.1. Packed-Bed Reactors

A packed-bed bioreactor contains solid supporting media on which a biofilm is 

grown. The supporting media retain large amount of biomass and protect the micro

organisms against concentrated toxic compounds or washout. Although there are some 

restrictions (Mosey, 1977) on the use of this type of reactor, Anderson (1984) used 

anaerobic packed-bed reactors to treat industrial wastewater, because of the above 

mentioned advantages.

According to the direction of flow, the packed-bed reactors can be classified 

into two sub-groups:

1. Upflow Packed Bed Reactor 

A plug flow pattern usually results within the reactor. However, rising bubbles caused 

by gas production may tend to stir up the flow pattern. In general, this reactor is op

erated without recycle. The reactor may need periodic backwashing to remove accu

mulated solids (Barnes and Fitzgerald, 1987).
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Krumme and Boyd (1988) used the upflow configuration to successfully degrade 

a mixture of all three monochlorophenols and 3,4,5-trichlorophenol at efficiencies 

greater than 90%. The substrate loading rate was 20 ppm per day at a hydraulic reten

tion time of 2 or 4 days. However, there was little biodegradation of either 2,4,6- 

trichlorophenol or PCP at the same operating conditions.

2. Downflow Packed Bed Reactor 

By using media of high void volume and irrigating the wastewater over the media, 

clogging, as seen in upflow filters, may be overcome. These reactors can be operated 

with the liquid partially or completely filling the reactor. It was previously thought that 

biogas production was sufficient to improve reactor mixing (Kennedy and van den 

Berg, 1982; van den Berg, 1984). Further work now indicates that although biogas 

production improves mixing slightly by increasing the axial dispersion, the major im

provement comes from recycling (Long-de Vallbre et al., 1989).

2.14.2. Expanded & Fluidized Bed Reactors

The difference between expanded and fluidized beds is not clear cut. A popular 

definition is that expanded beds have an expansion of 10-20% of static height, while 

fluidized beds expand from 30% to 100% of static height (Callander and Barford, 

1983). Factors that contribute to the effectiveness of these reactors include the follow

ing (Barnes and Fitzgerald, 1987; Hickey and Owens, 1981; Henze and Harroemoes et 

al., 1983; Heijnen, 1984):

1. Small media may be used, resulting in high specific surface area, and therefore 

large biomass volume for a relatively small reactor.

2. There is good mixing and mass transfer in the bed, so problems of channeling, 

plugging, and gas hold-up commonly encountered in packed beds are avoided.

3. Shear forces create a thin, dense biofilm comprising mainly nondiffusion-limited, 

active biomass.
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4. Hydraulic retention times may be low, resulting in cost-effective installation and 

operation for an industrial application.

Their major disadvantage is the power required for the fluidization process.

In Hakulinen and Salkinoja-Salonen's work (1981), PCP was mineralized in an 

anaerobic fluidized bed reactor in their anaerobic-aerobic two-stage reactor setup.

2.15. ANAEROBIC-AEROBIC TREATMENT

The integration of these two processes has advantages in the following cases:

1. When aerobes are not able to effectively treat the compound, but are able to treat 

the metabolic products of anaerobic processes (Hakulinen and Salkinija-Salonen. 1982; 

Su, 1990).

2. When volatile compounds that can be stripped by aeration are present in the 

wastewater (Dienemann et al., 1990).

Hakulinen and Salkinoja-Salonen (1981) demonstrated that an anaerobic-aerobic 

fluidized bed process was able to reduce the concentration of organics and chlorinated 

phenolics in a pulp mill bleaching effluent. It was observed that the chlorophenols 

were degraded in the first anaerobic stage, followed by toxicity and biological oxygen 

demand (BOD) removal in the second-stage aerobic filter.

Su (1990) used an anaerobic-aerobic CSTR process for treating waste water 

containing high concentration of nitrite and nitro-aromatic compounds that are resistant 

to aerobic microbial degradation. Nitrite and nitro-aromatics were biotransformed to 

nitrogen and amino derivatives using ethanol and glucose as carbon sources, respec

tively, in the anaerobic reactor. The amino derivatives were then degraded in the aer

obic reactor.

Ying et al., (1990) developed a two-stage anaerobic-aerobic biological activated 

carbon (BAC) process for treating high concentration wastewaters from phenolic resin
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manufacturing. Most organic contaminants were removed in the first step anaerobic 

BAC bed: more than 90% of chemical oxygen demand (COD, from as high as 30,000 

mg/1), and more than 99% of the major constituents - phenol (from 12000 mg/1), 

formaldehyde (from 3000 mg/1) and methanol (from 2S00 mg/1). The second stage 

aerobic BAC treatment removed virtually all remaining phenol and more than 90% of 

the residual COD, which was due mostly to organic acids resulting from anaerobic 

degradation byproducts.

Dienemann et al. (1990) employed serial anaerobic/aerobic packed-bed bio

reactors to biodegrade organic contaminants in leachate from a high priority Superfund 

site in the U.S. Classical, secondary aerobic treatment was not selected because 

volatilization of priority pollutants in the leachate would pose a significant secondary 

air pollution threat. The intention of the reactor configuration was that the larger part 

of the volatile species present would be biodegraded anaerobically, minimizing subse

quent volatilization losses in the aerobic column.

Slonim et al., (1985) used an anaerobic recycle fluidized bed reactor as a pre- 

treatment stage for 4,6-dinitro-o-cresol (DNOC), followed by an activated sludge reac

tor as the aerobic treatment stage to mineralize the compound.

It is evident that the integrated anaerobic-aerobic system offers an alternative for 

the biodegradation of industrial wastewater with efficiency and flexibility. The en

riched microorganisms, the nutrients (co-substrate, or electron acceptor) and the reactor 

design of both reactors all play important roles in the performance of the system.
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3.1. HPLC ANALYSIS OF CHLOROPHENOLS

3.1.1. Procedure

Samples were stored in a freezer after they were taken. To monitor phenolic 

substrate transformation, samples were thawed and prepared for HPLC analysis by 

acidifying centrifuged supernatant, which was then mixed and filtered. The solution 

was sucked into a syringe, and then was forced to pass through a 13 mm x  0.20 /tm 

filter paper. Sample volumes of 25 /d were injected into a Waters Component System, 

consisting of a Waters 600E System Controller, a Waters Model U6K universal liquid 

chromatograph injector (which was later replaced by a Waters 715 Ultra Wisp Sample 

Processor) and a Waters 484 Tunable Absorbance Detector. The column used was an 

Alltech Econosphere C8 5/z, 4.6 mm i.d. x 150 mm (Cat.# 70090). An Alltech Direct 

Connect™ Refillable Guard Column (Cat.# 28950) filled with Guard Column Refill 

Pell. C8 (Stock# 28971) was employed to protect the column. The system was cali

brated using a solution of known concentrations of TCP, and its metabolites, 2,4-DCP, 

4-CP and phenol.

22
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3.1.2. Analysis Conditions

Mobile Phase A (1 % acetic acid in methanol) : Mobile Phase B (1 % acetic acid 

in Milli-Q Water), 50:50, were run isocratically. The flow rate was 1 ml/min. The 

UV detection was at 280 nm, 0.5 AUFS. The data were processed by PE Nelson 

chromatography software rev. 5.10 interfaced with 760 series Model 2600

3.1.3. Calibration Curves

Calibration curves for phenol, 2-CP, 3-CP, 4-CP, 2,4-DCP, 2,6-DCP, 3,5- 

DCP and, TCP were prepared for the determination of the concentrations in parts per 

million as shown in Figures 1 through 8. The correlation coefficients of the regression 

were all satisfactorily close to unity. At the beginning of each HPLC run, standards of 

20 ppm 4-CP, 2,4-DCP, and, TCP were injected to test the effectiveness of the cali

bration curves. A factor could be derived from the division of 20 ppm by the calcu

lated concentration of the standard. If the calculated concentrations of the standards 

were off by less than 5 ppm, the real sample concentrations would be the calculated 

sample concentrations times the aforementioned factor. If they were off by more than 

5 ppm, the calibration curves would be re-done.

After the project was done, it was found that the filter papers (Gelman Science, 

Prod.# 66600) used to filter the samples could absorb chlorophenols when the samples 

passed through. However, since the standard solutions for making the calibration 

curves were treated with the filter papers too, this absorbance effect could be cancelled 

when the concentrations of the samples were determined with the calibration curves.

3.2. CHLORIDE ION MEASUREMENT

Two methods could be used: direct measurement and known addition. The 

former was used here. Standard solutions whose concentrations ranged from 100 to 

500 ppm Cl" were prepared. 2 ml ISA per 100 ml standard or sample were added and
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a calibration curve on the millivolt readings (linear axis) from Orion Model SA720 

pH/ISE meter against concentration (log axis) was prepared.

3.3. PHOSPHATE BUFFER PREPARATION

Phosphate buffer was typically used to control the pH value of solutions in the 

range of 5.8 and 8.0 (Costilow, 1981). This was the range that most of the bacteria 

preferred. Another important reason for its extensive use in this project was that it did 

not constitute a carbon source for microorganisms. KH2P 04 (monobasic) and 

NajHPC^ (dibasic) were used to prepare buffer solutions. The concentration of the

stock phosphate buffer was 1 M at the beginning of the project, but it was later changed 

to 0.5 M because of the difficulty in preparing 1 M N a^PC^ solution.

0.5 M of each solution was prepared first. Either one of the solutions could be 

used to titrate the other one, until the desired pH value was reached. A stock solution 

of pH 6.8 was used throughout the project.

3.4. CHEMICAL OXYGEN DEMAND MEASUREMENT

Since this measurement was done by Mr. Jou, a fellow student working on a 

related project at NJIT, only summary of the method is described here. Sample, blanks 

and standards in sealed tubes are heated in an oven or block digestor in the presence of 

dichromate at 150°C. After two hours, the tubes are removed from the oven or di

gestor, cooled and measured spectrophotometrically at 600 nm.
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3.5 . MEDIA PREPARATION

3.5.1. Undefined Medium

The media used for the anaerobic reaction were taken from the anaerobic di

gesters of two local sewage treatment plants located in Livingston and Elizabeth, New 

Jersey, respectively. Originally, the medium was taken from the Livingston sewage 

treatment plant. However, the anaerobic digester at the plant was later converted to an 

aerobic reactor at the beginning of 1990. Hence, a similar medium from the Joint 

Meeting company in Elizabeth was used thereafter.

The liquor taken from either digester was first autoclaved to kill all the micro

organisms initially present, and then diluted 1:1 with deionized water. After settling 

overnight, the supernatant was removed, and centrifuged or filtered to remove any re

maining solids. This solution was then used as a medium for the anaerobic reaction. 

Sometimes this solution was also used as a medium for the aerobic reactor.

Before use, resazurin dye was added to the medium as an oxygen indicator, and 

the solution was autoclaved again. TCP was injected after the medium cooled, which 

was then ready for use in the anaerobic reactor.

If  there were any volatiles present in the original solution taken from the anaer

obic digesters, they would be lost during autoclaving. COD from the inherent carbon 

cnotent of the sterilized medium was measured roughly an order of magnitude greater 

than the added TCP.

3.5.2. Defined Medium

At the beginning, the enrichment was performed in a defined medium, which 

consisted of (in every liter of the medium) sodium acetate (1 g), resazurin (1 ml), trace 

minerals (10 ml), mineral salts (25 ml), and ammonium chloride (1.25 g) were added 

in boiling water. When the water was cooled in ice and gassed under nitrogen,
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Fe(NH4)2(S04)2-6H20  (0.018 g), and NaHC03 (7.5 g) were then added . Reducing 

agent (10 ml), and vitamin (5 ml) were added just before autoclaving. Sodium acetate 

was used as the carbon source.

The compositions of trace minerals solution (mg/liter) were Nitriloacetic acid 

(1500), MgS04-7H20  (3000), MnS04 H20  (500), NaCl (1000), FeS04-7H20  (100), 

Co(N0 3)2.6H20  (100), CaCl2, anhydrous (100), ZnS04-7H20  (100), CaS04-5H20  

(10), A1K2(S04)3, anhydrous (10), Boric acid (10), and Na2Mo04*2H20  (10).

The vitamins solution (mg/100 ml) contained: Biotin (4), p-Aminobenzoic acid 

(10), Folic acid (4), Pantothenic acid, calcium salt (10), Nicotinic acid (10), Vitamin 

B12 (0.2), Thiamine hydrochloride (10), Pryidoxine hydrochloride (20), Thioctic acid

(10), and Riboflavin (1).

3.6. INOCULUM PREPARATION

The inoculum for the anaerobic batch reaction was those samples taken from the 

anaerobic digesters without any treatment. After the anaerobic microorganisms were 

successfully immobilized in the packed-bed reactor, the solution from the reactor, taken 

under nitrogen gassing, was the inoculum and medium for any later anaerobic batch re

actions. This solution which contained 4-CP, the dechlorination product of TCP, was 

also used as inoculum and medium for the aerobic reaction when no external ATCC 

cultures were needed.

The ATCC cultures were grown in the undefined medium described in the pre

vious section for three days. 5 ml of each culture was then inoculated to the aerobic 

reaction medium.

3.7. MATERIALS

(1) Serum bottles, 125 ml, from Fisher, Cat.# 06-406K
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(2) Aluminum seal stoppers, from Bellco, Cat.# 2048-11800

(3) Aluminum seals, 20 mm, from Bellco, Cat.# 2048-11020

(4) Seal crimper, from Bellco, Cat.# 2048-10020

(5) Manville Celite catalyst carrier, R-63S silicon beads, a kind gift from Manville 

company. See Pak's work (1988) for the chemical and physical properties of 

the carrier.

(6) Resazurin, from Fisher, Cat.# EK113-7728. The stock solution was 0.1% by 

weight, and put in a serum bottle, crimped and autoclaved. The working con

centration in the medium was 0.1% of the stock solution.

(7) Nitrogen gas, zero grade, from Liquid Carbonic

(8) Manosil silicone rubber tubing 3/16" i.d. x  1/16" wall, for the anaerobic reac

tor, Cat.# P8497-42

(9) Acetic acid glacial AR select from Baxter

(10) Methanol, for HPLC, GC, pesticide residue analysis and spectrophotometry, 

from Baxter

(11) Filter paper, 47 mm x 0.45 ^m, for HPLC solvents, from Gelman Science, 

Prod.# 66608

(12) Filter paper, 13 mm X 0.20 nm, for HPLC samples, from Gelman Science, 

Prod.# 66600

(13) Plastic filter holder, 13 mm, for HPLC samples, from Gelman Science, Prod.# 

4317

The following chemicals were from Aldrich Chemical Company:

(14) 2-Chlorophenol Cat.# 18577-9

(15) 3-Chlorophenol Cat.# C6280-8

(17) 2,6-Dichlorophenol Cat.# D7020-1

The following chemicals were from Sigma Chemical Company:

(16) 4-Chlorophenol Cat.# C4914
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(18) 2,4-Dichlorophenol

(19) 2,4,6-Trichlorophenol

(20) Pentachlorophenol Cat.# P-1045

Cat.# T-1266

Cat.# D6023

The stock solutions of the chemicals from (14) to (20) were 2500 ppm in 0.1 N 

NaOH

(21) Bacto Thioglycollate Medium without Dextrose or Indicator, Cat.# 0432-02-6 

This solution was used to differentiate the aerobes, facultative organisms and 

anaerobes. In the thioglycollate tubes, the aerobes would show growth on the 

top layer, while the anaerobes showed turbidity on the bottom. However, for 

facultative organisms, the growth was throughout the tube (Difco Manual, 10th. 

edition, 1984).



E x pe r im e n t a l  
A ppa r a t u s  a n d  
P r o c ed u r es

This project had three phases: the first phase was to build up an anaerobic sys

tem able to dechlorinate highly chlorinated phenols; the second phase was to build up 

an aerobic system able to mineralize the dechlorination product from the anaerobic 

system; the third phase was to integrate these two systems to perform the above jobs in 

a batch mode and eventually in a continuous mode.

Thus, in the first phase anaerobic samples were enriched by exposing them to 

various kind of chlorophenols. It was found that TCP could be dechlorinated to 4-CP 

successfully. TCP was then chosen as model compound in this study. The effect of 

phosphate buffer on the anaerobic culture was studied because in the aerobic system, 

the reaction solution had to be buffered in order to work properly. If the buffering de

creased the activity of the anaerobic culture, the feed of the phosphate buffer had to 

bypass the anaerobic reactor in the anaerobic-aerobic system. The immobilization of 

the anaerobic culture was performed to prevent washout of the biomass.

In the second phase, an aerobic culture had to be enriched to mineralize 4-CP, 

the dechlorination product of TCP. Cultures from American Type Culture Collection 

(ATCC), a sample from the previous anaerobic system and a sample from the anaerobic

29
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digester of a municipal treatment plant were used as sources of inocula. The optimum 

phosphate buffer concentration was determined for the aerobic system, as well as the 

effect of residual TCP on the aerobic degradation of 4-CP.

The ability of the sample from the anaerobic system to mineralize 4-CP aerobi

cally led to an attempt to isolate facultative or aerobic organisms from the sample.

In the third phase, an anaerobic packed bed reactor was selected because of the 

advantages of cell immobilization. Channelling was a common problem in this type of 

reactor (Barnes and Fitzgerald, 1987), and efforts were made to eliminate it.

The following experiments on biodegradation of chlorophenols were conducted 

at 30°C in a constant temperature room which was a small, closed, walk-in laboratory 

whose temperature and humidity could be controlled from an outside panel.

4.1. ANAEROBIC REACTORS

4.1.1. Batch Reactor

Initially the anaerobic batch process was performed in serum bottles, sealed 

with a butyl rubber stopper and an aluminum crimp seal. The total volume of each 

bottle was 125 ml. The medium, chlorophenols, and resazurin were put into the bottle 

under nitrogen. The bottle was then sealed with a crimper. Samples were taken by in

serting a syringe needle through the rubber stopper.

4.1.2. Recirculation Reactor System

The recirculation reactor system is shown in Figure 9. The reactor was made of 

Lucite with 2" diameter and 8" height. There was an inlet located 0.5" above the bot

tom, and an outlet 0.5" below the top. A screen supporting the immobilization beads 

was located above the inlet point. Silicon rubber sealant, purchased from R & S Auto 

Store, was used to seal the reactor from ambient air. A 250 ml storage flask, with a
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working volume of approximately 100 ml, was used as a reservoir for the reactor. 

There was an opening on the top of the storage flask, connected to a flask full of water, 

for the release of gases produced by the microorganisms. Since this was a relatively 

small reactor, a small leak of air into either the reactor or the connecting tubing would 

have had an important impact on the anaerobiosis of the system.

The type of tubing had an important role in keeping the system anaerobic. Only 

rubber tubing could successfully prevent the permeation of oxygen into the medium. 

Other types of tubing like PVC or tygon were all subject to oxygen permeation. The 

fluid pump employed had to be compatible with the normally thick-walled rubber tub

ing.

4.2. AEROBIC BATCH REACTORS

The aerobic batch reaction was performed in a 250 ml fembach flask with a 

white plastic cap. Air was supplied by shaking the flask in an incubator shaker. The 

working volume was 100 ml.

4.3. ANAEROBIC-AEROBIC REACTORS

This system consisted of an anaerobic reactor followed by an aerobic one as 

shown in Figure 10. Fluids were pumped via LKB peristaltic pumps.

The anaerobic reactor was a Lucite cylinder, 5" in diameter and 18" in height. 

Both ends of the reactor were sealed by rubber stoppers with glue and a silicon rubber 

sealant. The flow direction in the reactor was originally upward and then changed to 

downward in different runs. There was an I/O port on the reactor located approximate

ly 2" above the bottom. Samples were taken from this port when the flow was down

ward. Because the I/O port of the lower end was not really at the bottom, about 500 

ml of dead reactor volume remained when the reactor was run in the continuous mode.
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There were three sampling ports 4" apart from each other along the reactor side. The 

highest one was 4" below the top. This port was used for sampling when the flow was 

upward in the reactor. The immobilization beads were stacked from the bottom of the 

reactor. There was no screen to support the beads. The other I/O port of the reactor 

was a glass tubing punching through the top rubber stopper. In order to release the 

gases produced by the anaerobes, there was an opening at the top rubber stopper. 

Tubing was connected to this opening, with the other end underneath water to provide a 

seal. Because of the dead volume, the working volume of the reactor was different 

between the batch mode and the continuous mode. With a void fraction of 0.4 (Pak, 

1988), the working volume of the reactor in the batch mode was 2.3 liters, and 2.1 

liters in the continuous mode. A T-connector was installed in the tubing leading from 

the reactor outlet to the aerobic reactor for the purpose of sampling.

The aerobic reactor was a glass cylinder, 4" in diameter and 16" in height. 

There was no packing, and the aerobic culture was simply suspended in the medium by 

air bubbling. The working volume was approximately 2.2 liters. Both ends of the 

cylinder were sealed with rubber stoppers. The flow direction in the reactor was up

ward. There were two inlets in the reactor, one for the liquid feed and the other for 

air. The aeration rate was 50 ml per minute. This aeration rate could keep the reaction 

medium at 60% of oxygen saturation. The solution inlet was a T-connector from two 

sources: the effluent from the anaerobic reactor, and a 0.5 M, pH 6.8 phosphate buffer 

solution. The flow rates of these two sources were in the ratio of 10:1, so that the final 

concentration of the phosphate buffer in the aerobic reactor was about 50 mM. A pH 

electrode was installed in the top of the reactor to monitor the pH of the solution. 

There was an opening in the top lid for sampling.
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4.4. LKB 2132  MICRO PERPEX PUMP

The flow rate of the continuous anaerobic-aerobic system was in the range of IS 

-  30 ml/hour because of the reactor volumes and the residence time required in the 

system. Typical residence times for each of the reactors were about 3 to 4 days, re

spectively. It was not easy to find pumps that were able to deliver the solution accu

rately and reliably at this low flow rate. In general, because the pump heads usually 

tend to "chew" the tubing, most of the peristaltic pumps commercially available are not 

reliable.

Micro Perpex was a two-channel peristaltic pump which produced a constant, 

low pulsation flow. Because of the reliability problem, the tubing for the pump should 

be inspected every 100 hours and changed after 500 hours, even if no physical damage 

could be seen. The pump can be used to pump liquids at flow rates of 0.5 to 500 

ml/hour per channel, for temperatures from 0 to 40°C.

4.5. MISTRAL 3000i CENTRIFUGE -  LARGE CAPACITY BENCH 

CENTRIFUGE

The centrifuge was used to separate the liquid from the biomass and other sedi

ments for HPLC analysis. The condition was set at 5500 rpm and 20°C for 15 min

utes. In the case of pretreatment of the anaerobic sludge, the setting was the same as 

above but for 4 minutes only.

Centrifuge Speed Range: 200 to 6000 rpm to an accuracy of 10 rpm of set speed. 

Centrifuge Temperature Control: Control range is between 0 to 40°C with an accuracy 

of ±2°C of the set temperature; however, the selectable range is from -19 to 40°C. 

Rotor: 6-place universal angle with maximum speed of 6000 rpm. Cat.# 257-570.
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4.6. NEW BRUNSWICK CONTROLLED ENVIRONMENT 

INCUBATOR SHAKERS

Two models of incubator shaker G-24 (16 sites) & G-25 (40 sites) were em

ployed during the aerobic batch experiments. The operating condition was 30°C and 

250 rpm.

Temperature Range: Approximately 5°C above ambient to 60°C 

Stroke: Rotary motion with 1 inch circle 

Speed Range: Rotary - 40 to 400 strokes/min.

Safety Thermostat: Secondary thermostat provides de-energizing of heater in case of 

Control Thermostat failure.

4.7. ORION MODEL SA720 pH/ISE METER

This meter has four modes of operation; i.e., rel mV/temp/pH/conc. Standard 

solutions of pH 7 & pH 10 were used for calibration purposes. The calibration could 

be done either automatically or manually. The calibration method adopted was 

"Manual Calibration with two Buffers." Please refer to the manual of the meter.

4.7.1. pH Electrode

An Orion Model 91-56 combination pH electrode with a BNC connector was 

used. The electrode is effective in the temperature range of 0 to 80°C. The filling so

lution was 4 M KC1 saturated with AgCl (Orion Cat.# 900011). Between measure

ments and for short-term storage (up to one week) the electrode was stored in 200 ml 

pH 7 buffer with 1 g of KC1 added. An Automatic Temperature Compensation probe 

(Cat.# 917001) was also employed together with the pH electrode. The temperature 

range of the ATC probe is 0 to 80°C with the accuracy of ±0.1°C or 1%, whichever is 

greater. The applicable pH range for the ATC probe is 0 to 14.
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4.7.2. Chloride Electrode

An Orion combination chloride electrode model 96-17B was used for the mea

surement of chloride concentrations in solution. Two kinds of filling solution, namely, 

Cat. No. 900017 and Cat. No. 900001, can be used with the electrode. The latter one 

was suitable for use in samples more concentrated than 10'2 M chloride. An ionic 

strength adjustor (ISA), i.e. 5 M NaN03, was required to provide a constant back

ground ionic strength. The electrode may be stored upright in a standardizing solution. 

There is no need to drain the electrode for short periods of storage.

4.8. ANAEROBIC DEGRADATION

Although the media were taken from two sewage treatment plants, only the con

sortium from the Livingston plant was used as an anaerobic inoculum. The solution 

taken from the Joint Meeting Company was mostly used as medium.

4.8.1. Procedure Used to Determine Anaerobic Degradation of 

Various Chlorophenols in Batch Reactor

A number of monochlorophenols and dichlorophenols were individually tested 

for degradation by the anaerobic mixed culture in the original medium from the sewage 

plant. The experiments were performed over a two month period in the serum bottles, 

with chlorophenols and resazurin added.

4.8.2. Procedure Used to Determine Anaerobic Degradation of 

TCP in Batch Reactor Without Addition of Phosphate Buffer

Unautoclaved medium containing anaerobic mixed culture was injected into 

serum bottles about 90 - 95 % full. TCP and native organic compounds in the medium 

served as carbon sources.
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4.8.3. Procedure Used to Determine Effect of Phosphate Buffer 

on the Anaerobic Degradation of TCP in Batch Reactor

An anaerobic mixed culture taken from the anaerobic reactor, where TCP 

dechlorination had been observed and 4-CP was already produced, was incorporated 

with different levels of 1 M phosphate buffer of pH 6.8 to make final phosphate con

centrations of 0, 50, 100, and 150 mM. TCP was then added to each reactor.

4.8.4. Procedure Used to Determine Immobilization of the 

Anaerobic Culture

In the anaerobic reactor, R-635 beads were immersed in the unautoclaved 

medium which contained anaerobic culture together with 101 fiM  of TCP. The reactor 

was in batch mode to allow the microorganisms' growth. Another 40 nM of TCP was 

spiked into the system after 317 hours when the original input TCP had been con

sumed. To verify that the immobilization process was successful, the original medium 

was drained, leaving only the immobilized beads in the reactor. The autoclaved 

medium with 152 nM of TCP was then added to the reactor.

4.8.5. Procedure Used to Determine Anaerobic Degradation of 

TCP in the Recirculation Reactor

Autoclaved medium including TCP was added to the recirculation reactor 

packed with Manville R-635 beads, on which the anaerobic mixed culture was immobi

lized. TCP was spiked into the system in the second run of the experiment. At this 

time, 4-CP had already accumulated in the reactor from the first run.
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4.9. AEROBIC DEGRADATION

4.9.1. Medium Preparation

All media used in these experiments were the effluents from the anaerobic reac

tor, unless otherwise specified. These media contained 4-CP from the previous anaer

obic process.

4.9.2. Air Stripping of 4-CP

This experiment was performed in the aerobic reactor to determine the rate of 

removal of 4-CP by air stripping. Two liters of autoclaved fresh medium, buffered 

with 100 ml of 1 M, pH 6.8 phosphate, was put into the reactor. A 4-CP concentra

tion of 169.4 fiM  was spiked into the reaction medium. The aeration rate was 50 ml 

per minute. The stripping test lasted for 4 days.

4.9.3. Procedure Used to Determine Aerobic Degradation of 4-CP 

Without Buffering the Medium

Twelve ATCC cultures (see Table 8) were grown individually in autoclaved su

pernatant from the sewage plant in shaker flasks for three days. The medium was the 

same as those for anaerobic microorganisms. Then, 140 fiM  of 4-CP was added to 

each flask to test for biodegradation. Two runs of this experiment were performed. 

However, in the second run only the four ATCC cultures that showed better degrada

tion of 4-CP were used.

4.9.4. Procedure Used to Determine Aerobic Degradation of 4-CP 

with the Addition of Phosphate Buffer in the Middle of the Reaction

Eleven ATCC cultures (see Table 9) were individually inoculated into shaker 

flasks to repeat the above experiments. ATCC culture #14235 was not used. Forty- 

two hours later, the pH values increased to 9, and no significant degradation was ob
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served. At this time, 3 ml of each pure culture were again inoculated and 230 mM 

phosphate buffer was added to adjust the values of pH in the range of 7.8 to 8.2.

4.9.5. Procedure for Studying the Effect of Different Concentra

tions of Phosphate Buffer in the Medium on the Aerobic Degrada

tion of 4-CP

ATCC cultures #93 (Serratia Marcescens), #17514 {Pseudomonas Putida), 

#17991 {Serratia Marcescens), #29195 {Pseudomonas Glathei), and #33668 {Pseudo

monas Pseudoflava) were grown in nutrient broth for one day and separately inoculated 

into the shaker flasks, where different levels of 1 M phosphate buffer of pH 6.8 were 

added to adjust the pH value of each culture. The final concentrations of phosphate in 

the media were 50, 100 and 150 mM, respectively. Uninoculated solutions served as 

controls. Four controls with different levels of phosphate from 0 to 150 mM were 

examined.

4.9.6. Procedure for Studying the Effect of the Presence of TCP 

on the Degradation of 4-CP

An effluent of 200 ml from the anaerobic reactor was buffered with 0.5 M, pH 

6.8 phosphate to reach a final concentration of 50 mM phosphate. The 4-CP produced 

from the anaerobic dechlorination of TCP was the only chlorophenol present in the ef

fluent. The effluent was separated into two parts. TCP was added into one part, while 

the other part served as a control. These two solutions were then added to two batch 

aerobic reactors.
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4.10. ISOLATION OF FACULTATIVE AND AEROBIC 

MICROORGANISMS IN THE ANAEROBIC CONSORTIA

About 100 ml of the effluent from the anaerobic reactor was transferred to a 

shaker flask. Only 4-CP was present in the solution, as a result of anaerobic dechlori

nation of TCP. After three days of aerobic degradation, the 4-CP was completely min

eralized. A sample from the shaker flask was streaked on a nutrient agar plate. Three 

different types of colonies were observed. They were further streaked to make sure 

that the grown colonies were pure.

4.10.1. Oxygen Requirement Test for the Isolated Pure Cultures

Thioglycollate tubes were used to test the oxygen requirement of the cultures. 

The bacteria were taken by a flamed inoculating loop from the agar plate mentioned in 

the previous section, and were inoculated into the thioglycollate tube. The tubes were 

incubated at 30°C overnight. The categories of oxygen requirement could be deter

mined from the way the bacteria grew in the tubes.

4.10.2. Anaerobic Dechlorination of TCP by the Isolated Pure 

Cultures

Fresh autoclaved medium with about 90 /tM of TCP was prepared in four serum 

bottles. No phosphate buffer was added. The inocula were the bacteria grown in the 

thioglycollate tubes. The inoculum size was 5 ml. The fourth bottle was not inocu

lated.

4.10.3. Aerobic Degradation of 4-CP by the Isolated Pure Cultures

Fresh autoclaved medium with about 220 /*M of 4-CP was prepared in four 

shaker flasks. The medium was buffered with 0.5 M phosphate buffer pH 6.8 to reach 

a final phosphate concentration of 50 mM. The inocula were the bacteria grown in the
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thioglycollate tubes. The inoculum size was 5 ml. The fourth flask was not inocu

lated.

4.11. ANAEROBIC-AEROBIC DEGRADATION

The anaerobic-aerobic system consisted of two reactors in series. The first reac

tor was operated anaerobically and loaded with Manville R-635 beads. The effluent 

from this reactor plus 0.5 M pH 6.8 phosphate buffer were brought together into the 

bottom of the suspended growth aerobic reactor. Aeration was performed by bubbling 

house air from the bottom. The pH of the medium in the aerobic reactor was moni

tored.

4.11.1. Procedure Used to Determine Degradation of TCP in the 

Batch Mode

The first part of this experiment was performed in the anaerobic reactor. The 

fresh autoclaved medium with TCP and resazurin was put into the anaerobic reactor. 

The sampling was done every day to monitor the dechlorination process. When the 

TCP was completely converted to 4-CP, the medium was transferred to the aerobic re

actor. 0.5 M phosphate buffer pH 6.8 was added in the ratio of 1:4 to the medium. 

Thus, the final concentration of 4-CP in the anaerobic reactor was different from the 

initial concentration of 4-CP in the aerobic reactor. The aeration rate was 50 ml per 

minute. The working volume for the anaerobic reactor was 2.3 liters, and the final 

volume for the aerobic one was 1.9 liters. Originally, the anaerobic reactor was oper

ated under nitrogen to make sure no oxygen was present in the system, but the proce

dure was then found unnecessary.



41

4.11.2. Procedure Used to Determine Degradation of TCP in the 

Continuous Mode

The system was initially started in batch mode with TCP in the anaerobic reac

tor and 4-CP in the aerobic one at the same time. After the reactions were completed 

in both reactors, the continuous mode was started. The working volumes for the 

anaerobic and aerobic reactors were 2.1 and 2.15 liters, respectively. The input flow 

rate to the anaerobic reactor was 20 ml per hour. The input flow rate to the aerobic re

actor was 20 ml per hour anaerobic effluent, plus 2 ml per hour 0.5 M, pH 6.8 phos

phate. Hence, the residence times for the reactors were 105 and 97.7 hours, respec

tively.

Originally, the flow direction in the packed-bed anaerobic reactor was upward, 

but it was then changed to downward because of channelling. No nitrogen gassing was 

necessary in the anaerobic reactor, as determined by the color of the resazurin dye. 

The flow direction in the suspended growth aerobic reactor was always upward.



R e su l t s  a n d  
D isc u ssio n s

5.1. ANAEROBIC DECHLORINATION PR O C ESS

The anaerobic culture was obtained from the anaerobic digester of the Liv

ingston sewage treatment plant which treated solely domestic sewage. It was sup

posed to be composed of obligate anaerobes and facultative organisms, but aerobes 

were later found in the culture.

5.1.1. Anaerobic Medium

For the culture to work properly, it is important for the medium to have a low 

redox potential, not only a low oxygen level.

A reduction in the redox potential of the medium is usually achieved by apply

ing reducing agents. Sodium thioglycollate (0.05%), Cysteine-HC1 (0.025%), Dithio- 

threitol (0.05%), N a jS -^ O  (0.025%), and Cysteine-HCl +  N a ^ H jO  (0.025% +

0.025%) are some of the most widely used reducing agents (Costilow, 1981).

When the anaerobic experiments were first started, a mixture of Cysteine-HCl 

and NajS QHjO, typically used for the most stringent anaerobes, was employed as the

reducing agent. However, it was then found that the consortia adapted to the environ

ment so well that the reducing agent was not needed in the medium.

42
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The Chemical Oxygen Demand (COD) of the anaerobic medium before TCP 

was added was over 300 ppm, which suggested that there were a great deal of carbon 

sources in the medium. The COD's of the medium after anaerobic treatment and 

aerobic treatment were not measured.

5.1.2. Isolation of the Consortia

A significant amount of work was spent to enrich the anaerobic culture in the 

presence of chlorophenols. The anaerobic inoculum from the Livingston Sewage 

Treatment Plant was enriched to degrade chlorophenols.

At the beginning, the enrichment was performed in the defined medium, where 

sodium acetate was used as the main carbon source. No degradation of the chlorophe

nols was observed.

The medium from the sewage plant was then directly used as nutrient source for 

the enrichment after some pretreatment steps including sterilization (see section 3.5.1.).

Anaerobic samples from the Livingston plan were then exposed to 2,4-DCP,

2,6-DCP, 3,5-DCP, 2-CP, 3-CP, and 4-CP for a period of two months. At the end of 

this period, the cultures were analyzed to see if any degradation of the toxic compounds 

had occurred. Table 2 shows the results.

For the three types of monochlorophenol, the para-isomer was the most recalci

trant to anaerobic degradation. The ortho- and meta- isomers were degraded at approx

imately the same rates. Among the three dichlorophenols, the one with chlorines on 

the meta position was the most difficult to attack.

Several research groups (Hakulinen et al., 1985; Mikesell and Boyd, 1986; Di

etrich and Winter, 1990) have reached similar results in the anaerobic degradation of 

chlorophenols. The chlorine atom in the ortho position is removed more rapidly than 

from meta and para positions.
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For the removal of meta Cl, Suflita and Boyd (Suflita et al., 1982; Boyd et al., 

1983; Boyd and Shelton, 1984) reported that it was most susceptible to attack by anaer

obic consortia, when halogenated benzoates were treated.

For those chlorophenols which were attacked by the consortia, the more chlo

rines on the benzene ring, the faster the degradation rate proceeded. This is consistent 

with observations made by Mikesell and Boyd (1986).

5.1.3. Mass Balance for the Anaerobic Dechlorination of TCP by 

Suspended Microorganisms in the Batch System

At the beginning of these experiments, there was 4-CP and phenol in the reactor 

from previous runs. The TCP was first dechlorinated to 2,4-DCP, and then further 

into mostly 4-CP, with some phenol. Two runs of the experiment were performed in 

series and the degradation rates of TCP increased from 21.7 to 43.2 /xM/day. It took 

more than five days for the consortia to degrade 2,4-DCP in the first run; on the other 

hand, in less than three days, 2,4-DCP was degraded completely in the second run. 

The speeding up of the dechlorination process implied that the bacteria became 

acclimated to the chlorophenols. Table 3 and Figures 11 and 12 show the experimental 

results. In the Table 3, the column of Sum was calculated by summing up the concen

trations of TCP, 2,4-DCP, 4-CP and phenol. The column of % of Recovery was cal

culated by dividing the sums after the reactions were started by the sums at the begin

ning of the reactions. Thus, the % of recovery at the beginning of the reaction was set 

at 100. The initial concentrations of 4-CP and phenol were deducted from the mea

sured concentrations to be shown in the Figure 12.

The degradation products were first identified by comparison with the retention 

times of the known standards in the HPLC. The results were further confirmed by 

comparing the UV spectra of the dechlorination products with those of known stan
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dards. Anaerobic dechlorination instead of dearomatization was expected from other 

researchers' works (Suflita et al., 1982; Horowitz et al. 1983).

The characteristic of an enzymatic reaction is that it is site-specific. Hence, no 

other degradation compounds, for example, 2,6-DCP or 2-CP, were found among the 

reaction products. By accounting for 2,4-DCP, 4-CP, and phenol the mass balances 

closed quite well, suggesting that there were no additional compounds produced during 

the degradation process.

In this work, the intermediate and the final product of the anaerobic dechlorina

tion of TCP was determined although complete mineralization was not occurred. This 

enabled one the possibility to get the microorganisms already known to degrade the 

product for further treatment.

5.1.4. Effect of Phosphate Buffer on the Anaerobic Degradation 

of TCP by the Free Microorganisms in the Batch System

Anaerobic dechlorination in the presence of four concentrations of the phosphate 

buffer, namely, 0, 50, 100 and 150 mM, in the medium was also tested.

The starting pH of the reaction broth was between 7.4 and 9.0. Within 63 

hours, all TCP was totally converted to 4-CP without adding any amount of phosphate. 

If there was any phosphate present, the dechlorination was slowed down dramatically. 

In the 50 mM phosphate solution, there was still some dichlorophenol to be dechlori

nated after more than one week's reaction. The dechlorination of TCP did not take 

place in the 100 mM phosphate solution until one week later. No dechlorination took 

place at all when the phosphate concentration was 150 mM. Table 4 and Figures 13 to 

16 show the results.

It was obvious that the activity of the anaerobic consortia was inhibited by the 

phosphate buffer. In all cases, the mass balances were close to 100%. Phenol was no 

longer present as a degradation product.
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Later, it was shown that phosphate buffer solution was necessary for the subse

quent aerobic mineralization of 4-CP. These results suggested that in the anaerobic- 

aerobic system the feed of buffer solution should feed directly to the aerobic reactor so 

that the anaerobic dechlorination of TCP would not be inhibited.

5.1.5. Immobilization of the Anaerobic Microorganisms in the 

Porous Silica Beads and TCP Dechlorination during Immobilization

Manville Celite catalyst carrier, R-635 silica beads were used as a support for 

the immobilization of the microorganisms. The beads were immersed in the reaction 

medium containing the anaerobic consortia and 101.3 nM of TCP. After one week, a 

biofilm of bacteria could be seen on the surface of the R-635 beads. The first sample 

was taken after about two weeks. TCP had been completely dechlorinated to 4-CP at 

this time. Thus, 40.5 /*M of TCP was again spiked into the reactor to feed the micro

organisms. The spiked TCP was dechlorinated to 4-CP within one day, and the mass 

balance was closed. Table 5 and Figure 17 show the results.

In order to ensure that the biofilm on the beads was the culture degrading TCP, 

another experiment was performed. The reaction broth of the immobilization process 

was drained out from the system. Then, fresh autoclaved medium with 150 fiM  of 

TCP was introduced into the reactor. This insured that only the microorganisms in the 

biofilm would be responsible for the dechlorination of TCP in the system. The TCP 

disappeared after two days, and 2,4-DCP appeared after one day and disappeared after 

four days. 4-CP was produced and remained in the reactor. Figure 18 shows the re

sults.

From this experiment, we concluded that the immobilized bacteria were re

sponsible for the dehalogenation reaction, and were able to complete the process at a 

faster rate than previously observed (comparing these results with those in Table 3, and 

Figure 11 & 12). The mass balance was satisfactorily closed in these experiments.
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5.1.6. Mass Balance for the Anaerobic TCP Degradation Process 

in the Immobilized Recirculated Reactor System
In Run 6-1, the initial concentration of TCP was 111.4 pM . There were still 23 

pM  of TCP left in the system after six days. No 2,4-DCP was observed, although 4- 

CP was produced during the reaction period. In Run 6-2, 152 pM of TCP disappeared 

after two days. In the same experiment, 2,4-DCP was formed after one day and disap

peared after another day. The entire reaction was completed in two days, resulting in a 

reaction product containing 4-CP only. The mass balance could be closed in both runs. 

Table 6 and Figures 19 and 20 show the results.

5.2. AEROBIC DEGRADATION PR O C ESS

Anaerobic dechlorination of TCP did not proceed beyond 4-CP. However, this 

degradation product was relatively easy for the aerobic culture to attack. One way to 

achieve this goal was to purchase pure cultures from ATCC, which were known to de

grade phenol. Another possibility was to select for a 4-CP-degrading aerobic popula

tion from the mixed culture obtained from a wastewater treatment plant assuming that 

some indigenous microorganisms capable of degrading 4-CP under aerobic conditions 

could be obtained from the anaerobic culture.

The level of dissolved oxygen was not measured in the following experiments 

performed in shaker flasks.

5.2.1. Stripping of 4-CP

In the aerobic system, disappearance of 4-CP could be due to air stripping as 

well as biodegradation. Thus, it was necessary to study the effect of stripping of 4-CP 

in the aerobic reactor. Table 7 and Figure 21 show the results. In a period of 4 days, 

the concentration of 4-CP (164.9 /xM) remained essentially the same. Hence, microbial 

activity would account for any disappearance of 4-CP during that time period.
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5.2.2. Chloride Ion Measurement in the Aerobic Reactor

Because the medium was from a sewage treatment plant, it always contained a 

large amount of chloride ions. The working medium was found to have a chloride 

concentration of about 8.5 mM. However, from theoretical calculation, the chloride 

released from the mineralization of 4-CP usually ranged from 100 to 200 /*M. With 

such a high amount of background chloride, the measurement of the increased chloride 

in the aerobic system was not practical. Therefore, no chloride concentration mea

surement were made in this work.

A synthetic medium without background chloride should be formulated for this 

purpose. This may not easy to find, since the co-substrates and electron acceptors 

added in the medium should match the characteristic need of the anaerobic and aerobic 

cultures. Rumen fluid (Dolfing and Tiedje, 1987), or yeast extract and peptone 

(Dietrich and Winter, 1990) could be a first trial in future work.

5.2.3. Measurement of Reaction Rates

Rates of reaction can only be compared qualitatively since biomass was not 

measured. The original idea of using the ATCC cultures was to test if any of them 

were capable of degrading 4-CP. Thus, the biomass was not measured.

5.2.4. Aerobic Degradation of 4-CP by the ATCC Cultures

Twelve ATCC cultures able to degrade phenol were tested for the aerobic 

degradation of 4-CP present in the treated anaerobic medium. The initial concentration 

was 140 (iM and no phosphate buffer was added. After 78 hours, four of the ATCC 

cultures showed better ability to degrade 4-CP than the other eight. The experiment 

was repeated on these four cultures. This time the initial concentration of 4-CP was 

about 200 /xM. Only a slight degradation of 4-CP was observed for all four cultures 

after 46 hours. Table 8 shows the results.
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Similar experiments were repeated on eleven ATCC cultures since the above 

experiments did not give satisfactory results. All cultures started with 165.6 /zM of 4- 

CP. After forty-two hours of reaction, it was found that the pH's of all the cultures 

rose to about 9. Consequently, each culture was re-inoculated to prevent the extinction 

of the bacteria, and phosphate buffer was added to bring down the values of pH in the 

range of 7.8 to 8.2. At 87 hours, all the cultures showed appreciable degradation. 

Five of the cultures, ATCC cultures #93 (Serratia Marcescens), #17514 {Pseudomonas 

Putida), #17991 (Serratia Marcescens), #29195 {Pseudomonas Glathei), and #33668 

{Pseudomonas Pseudoflava) completely degraded 4-CP. Table 9 shows the results. 

This experiment demonstrated that the pH of the medium could rise to 9 and cause in

hibition of 4-CP degradation.

The indigenous cells in the anaerobically treated medium were removed from 

the culture by centrifugation. The rest of the solution was put in a shaker flask. With

out any further treatment, the pH value of the solution rose. This suggested that lysis 

of the strict anaerobes was not the cause of the rise in pH.

The stock solution of TCP was prepared in 0.1 N NaOH. Thus it was highly

basic. When stocked TCP was added to the anaerobic reactor, the pH of the reaction 

medium usually ranged from 8.5 to 9.0 depending on the amount of TCP added. The 

pH was observed first dropping in the anaerobic reactor and then increasing back to ap

proximately the initial pH in the aerobic reactor. Sodium hydroxide from the stock 

solution could be a possible cause of the pH rise.

The rise in pH could be reduced by adding phosphate buffer to the cultures. 

Three concentrations of phosphate buffer, i.e. 50, 100, and 150 mM, were tested on 

the aforementioned five ATCC cultures. Tables 10 to 14 and Figures 22 to 31 show 

the results. There were altogether fifteen runs of this set of experiments whose pH val

ues ranged from 7.0 to 7.2 at the beginning of the reaction. The pH values went up to

7.4 -  8.7 in six hours and then remained constant.
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ATCC cultures #93 and #17991 degraded 4-CP effectively in the 50 mM phos

phate buffer in eighteen hours. When 100 or 150 mM phosphate buffers were used, 

there were still appreciable amounts of the compound left at the end of reactions.

On the contrary, ATCC culture #17514 in 50 mM phosphate could not degrade 

4-CP as effectively as in the 100 or 150 mM phosphate buffers. An important obser

vation was that this culture produced an unidentified degradation product while 4-CP 

was degraded. This product appeared in the chromatograph of HPLC and had a reten

tion time of around three minutes. There was no further study on this compound.

ATCC culture #29195 degraded 4-CP completely in three concentrations of the 

phosphate buffer in eighteen hours. However, the degradation rate in the 100 mM 

phosphate buffer seemed to be the fastest among the three, since the concentration of 4- 

CP dropped to 4.7 /jM  in thirteen hours.

ATCC culture #33668 could not completely consume 4-CP in all three concen

trations of the phosphate buffer within the reaction period. Even worse was that a 

degradation product was formed during the reaction. The retention time of this product 

was similar to the product formed by ATCC #17514 in the HPLC chromatograph.

In conclusion, ATCC cultures #93, #17991, and #29195 were better 4-CP de

graders, since they could degrade 4-CP effectively without forming any degradation 

product.

It should be stressed that these experiments were conducted in a medium where 

4-CP was not the only carbon source. However, COD, was not measured at the be

ginning of the experiments. The outcome might be different if the experiments were 

performed in a defined medium where 4-CP was the only carbon source.
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5.2.5. Aerobic Degradation of 4-CP by the Indigenous Culture 

from the Immobilized Anaerobic Reactor

Experiments were made to test whether the anaerobic culture which degraded 

TCP could also degrade the dechlorinated product, 4-CP, under aerobic conditions. 

Table 15 and Figures 32 to 36 show the results. There was no inoculation of bacteria 

from outside in these experiments.

In Run 15-1 (see Figures 32 and 33), the effect of different concentrations of 

phosphate buffer was examined. Four concentrations of phosphate buffer were tested, 

namely, 0, 50, 100 and 150 mM. The 4-CP in the medium was from the dechlorina

tion of TCP in the anaerobic reactor. The starting concentrations of 4-CP in different 

phosphate concentrations were different because of the dilution of the phosphate buffer. 

The control run without any phosphate added showed no degradation of 4-CP at all, 

and the pH went up to 8.8. In the 50 and 100 mM phosphate solutions, the indigenous 

cultures degraded 4-CP in a period of eighteen hours. For an even higher concentra

tion of phosphate, i.e. 150 mM, the activity of the culture was inhibited, and the 

degradation was slowed down appreciably. In all cases, a rise in pH was observed.

The ATCC culture #29195 (see Table 13 and Figure 28) degraded 4-CP to 

21.0, 4.7 and 50.5 nM in 50, 100 and 150 mM phosphate buffered solutions 

(respectively), in thirteen hours, as compared to 77.8, 84.8 and 89.4 /xM by the in

digenous culture. The ATCC culture #17514 (see Table 11 and Figure 24) degraded 4- 

CP to 44.3 and 59.9 nM in 100 and 150 mM phosphate buffered solutions 

(respectively), also, in thirteen hours. ATCC culture #93 (see Table 10 and Figure 22) 

degraded 4-CP to 28 /xM in 50 mM phosphate buffered solution in thirteen hours. In 

all other cases (see Tables 10-15 and Figures 22, 24, 26, 28, 30 and 32) the indigenous 

culture was a better degrader of 4-CP. However, since the amount of biomass was not 

measured, the above comparisons may not reflect the real specific degradation rates.
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In Run 15-2 (see Figures 34 and 35), three concentrations of phosphate, 

namely, 0, 50, and 100 mM, were tested. Similar results were obtained. About 200 

HM of 4-CP were completely degraded in 66 hours with 50 or 100 mM phosphate 

buffer. However, a lag phase of one day was observed.

In Run 15-3 (see Figure 36), the phosphate concentration was only 50 mM. 

57.7 /xM of 4-CP were degraded in two days. No lag phase was observed in this run.

The indigenous aerobic culture from the immobilized anaerobic reactor could 

degrade 4-CP aerobically when buffered with the phosphate solution. The lag phase in 

Run 15-2 might be caused by the high starting 4-CP concentration (inhibition).

After the anaerobic treatment of TCP in the medium, the HPLC chromato

graphs still showed some peaks which derive from the original sterilized medium. 

These peaks were present at the beginning of the anaerobic process. After aerobic 

treatment, these peaks did not appear in the HPLC chromatographs.

The ability of the indigenous culture from the anaerobic reactor to aerobically 

degrade the product (4-CP) of TCP dechlorination is an advantage of the anaerobic- 

aerobic system. First, there is no need to inoculate an aerobic culture from outside. 

Secondly, since the aerobic culture is continuously fed from the anaerobic reactor, the 

possibility of washing out the culture from the aerobic reactor is minimized when the 

reactors are run in continuous mode. Therefore, there is no need to immobilize the 

culture in the aerobic reactor, and as a result the volume of the suspended growth aer

obic reactor can be smaller than a comparable packed-bed reactor, because of the 

elimination of the bead volume.

5.2.6. Aerobic Degradation of 4-CP by the Anaerobic Culture 

From a Different Municipal Treatment Plant

An anaerobic culture from a different municipal treatment plant (Joint Meeting 

Company, Elizabeth, NJ) was tested for the aerobic degradation of 4-CP. The medium
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was again the treated anaerobic medium. Three concentrations of phosphate buffer, 

namely, 50, 100 and, 150 mM, were tested. Their pH values and 4-CP concentrations 

were monitored. Table 16 and, Figures 37 and 38 show the results.

The pH values went up from 7.0 -  7.2 to 7.4 — 8.5 in six hours and remained 

quite steady afterwards. When the medium was not buffered, there was no degradation 

of 4-CP. If the medium was buffered by 50, or 100 mM phosphate, 4-CP could be 

completely degraded in eighteen hours. However, when the medium was buffered by 

150 mM phosphate, the final concentration of 4-CP was still half of the initial concen

tration after 18 hours.

The degradation rate of 4-CP by the culture from the Joint Meeting Company 

was comparable to that by the indigenous culture except in the 50 mM phosphate solu

tion (see Tables 15 and 16, and Figures 32 and 37). In the 50mM phosphate solution, 

there were still 28  /iM  of 4-CP left in the medium as compared to complete consump

tion of 4-CP in the indigenous culture.

5.2.7. The Effect of TCP on the Aerobic Degradation of 4-CP

The indigenous culture from the anaerobic reactor and ATCC culture #29195 

were tested for this effect in the shaker flasks. ATCC culture #29195 was chosen be

cause it was the best 4-CP degrader among other ATCC cultures tested (see section 

5.2.4.). In both cultures, the media were buffered with 50 mM phosphate to facilitate 

the degradation process. The 4-CP in the media was the dechlorination product from 

the anaerobic reactor. The medium in each culture was divided into two parts. One of 

them was spiked with TCP. Tables 17 and 18, and Figures 39 to 42 show the results.

Although TCP could be degraded aerobically by the indigenous culture, the rate 

was slower than anaerobic degradation (compared to Run 3-2, Figure 12; Run 4-1, 

Figure 13; Run 5-2, Figure 18; and Run 6-2, Figure 20).
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The initial concentrations of 4-CP were 61.4 and 66.9 pM  in the media without 

and with TCP, respectively, for the test on the indigenous culture from the anaerobic 

reactor. The initial TCP concentration was 94.7 pM. In both media 4-CP was almost 

completely degraded in one day. The presence of TCP did not influence the degrada

tion rate of 4-CP.

A noteworthy observation was that TCP could be degraded by the indigenous 

culture aerobically. However, the reaction pattern was different, in the sense that TCP 

was not dechlorinated to 4-CP in this case. Instead, TCP was mineralized, since no 

other peaks were found in the HPLC chromatographs. This result indicated that the 

presence of TCP in the aerobic reactor would not prevent 4-CP degradation.

For the test of ATCC culture #29195, the starting concentrations of 4-CP were

172.6 and 170.3 pM  in the media without and with TCP, respectively. The starting 

TCP concentration was 52.2 pM. In both runs, the concentration of 4-CP dropped to 

about 18 pM  within one day. However, only a little TCP was degraded in the reaction 

period of two days.

In a comparison of the performance of the two cultures, the indigenous one was 

more desirable for its ability to degrade TCP aerobically. Thus, even in the event that 

any residual TCP remained in the solution after the anaerobic treatment step, it would 

be subject to degradation in the aerobic reactor (albeit at a slower rate).

5.3. FACULTATIVE AND AEROBIC MICROORGANISMS 

ISOLATED FROM THE ANAEROBIC CONSORTIA

Three kinds of bacteria were isolated from nutrient agar plates. When these 

were inoculated into the thioglycollate tubes, bacterium #1 showed growth throughout 

the tube; bacteria #2 and #3 showed growth on the surface layers only. This indicated 

that bacterium #1 was a facultative organism, while bacteria #2 and #3 were aerobes.
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A drop of the solution from the anaerobic reactor was inoculated into this thio

glycollate tube, and there was growth throughout the tube.

It is surprising that aerobic microorganisms were surviving in the anaerobic 

system. However, this observation has been made by other researchers. McCarty 

(1962), Toerien (1967), Taylor et al. (1970), Ferry and Wolfe (1976), and Hakulinen 

et al. (1985) have isolated pseudomonas species from anaerobic conditions. Hakulinen 

et al. (1985) found that the survival of pseudomonas under anaerobic conditions might 

be due to the presence of another anaerobic microorganism, Klebsiella oxytoca.

Due to experimental limitations, this work was not performed under anaerobic 

conditions, which meant that there might be undetected obligate anaerobes in the anaer

obic reactor.

5.3.1. Anaerobic Degradation of TCP by the Isolated Pure 

Cultures

This experiment was performed in serum bottles without immobilization of the 

cells. Four bottles were used: bacteria #1 to #3 plus a control in which no bacteria 

were inoculated. The starting concentrations of TCP ranged from 87.1 pM  to 122.1 

/*M. Table 19 and Figure 43 show the results. After about six days, none of the TCP 

in the reactors was degraded.

Hence, the dechlorination of TCP to 4-CP was not likely to be done by any of 

these three bacteria alone. The obligate anaerobes existing in the anaerobic reactor 

were likely to be responsible.

5.3.2. Aerobic Degradation of 4-CP by the Isolated Pure Cultures

This experiment was conducted in shaker flasks. A control was included in the 

experiment. The initial concentrations of 4-CP ranged from 210.0 to 254.3 pM, as ef

fluent from the packed-bed anaerobic reactor. Table 20 and Figure 44 show the re
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suits. The 4-CP in the control reactor and the facultative anaerobe reactor was not de

graded at all after six days. Bacterium #2 consumed 225.5 pM of 4-CP in four days. 

And bacterium #3 degraded 210.0 #xM of 4-CP in between four and six days. It was 

likely that these two were responsible for the aerobic degradation of 4-CP in the anaer

obic-aerobic system. Since the amount of biomass inoculated was not controlled, it 

was hard to compare the reaction rates between these pure cultures and the previously 

used mixed culture.

5.4. ANAEROBIC-AEROBIC SYSTEM IN BATCH MODE

The initial concentration of TCP was 106.4 /*M. The TCP was not attacked for 

two days. It was then dechlorinated completely after another three days. After two 

days, 2,4-DCP was produced and was subsequently converted to 4-CP in another three 

days. 104.2 /xM of 4-CP appeared in the anaerobic medium in five days, and remained 

almost constant for another day. The pH value of the solution started at 8.6 and re

mained almost constant when the TCP was not dechlorinated. At the end of the second 

day, the pH began to drop from 8.5 to 8.3 in a period of four days.

At beginning of the seventh day, the anaerobic medium was transferred to the 

aerobic reactor to degrade the 4-CP generated anaerobically. In the aerobic reactor, the 

initial concentration of 4-CP was 75.1 /xM, which was different from the final concen

tration of 4-CP (98.0 nM) in the anaerobic reactor. This resulted from the addition of 

phosphate buffer to the reactor. 4-CP was completely degraded in less than three days. 

The corresponding pH value increased from 7.2 to 8.0 in six days and stayed at 8.0. 

Table 21 and Figures 45 and 46 show the results.

Before this experiment was performed, the anaerobic reactor was not in use for 

approximately a month. Thus, the immobilized microorganisms were not fed TCP 

during this period. The microorganisms were just immersed in the sterile medium
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containing some 4-CP from previous runs. The lag phase in the dechlorination of TCP 

was probably due to this reason. If this lag period was deducted, the dechlorination 

rate was comparable to previous experimental results (see Run 3-2).

The fast recovery of the anaerobic consortia to dechlorinate TCP suggested that 

the consortia was very stable. Hence, the consortia needed little maintenance to keep it 

active. This is consistent with the claim made by Anderson et al. (1984).

The pH varied in both the anaerobic and aerobic reactors in a manner similar to 

previous experiments (i.e., pH dropped in the anaerobic reaction and rose in the aero

bic one). Volatile fatty acids produced from the sterile sewage under anaerobic pro

cesses, and HC1 produced from the reductive dechlorination of TCP, were expected to 

lower the pH (see also Dietrich and Winter, 1990).

The total reaction took 9 days. However, if the lag period of two days was de

ducted and the anaerobic solution was transferred right after the complete disappearance 

of the TCP, the complete mineralization took 6 days only, divided roughly evenly be

tween the anaerobic and aerobic reactors. This degradation rate was comparable to 

those of previous experiments (see Run 3-2 and Run 17-1) for 106.4 /aM of TCP.

5.5. ANAEROBIC-AEROBIC SYSTEM IN CONTINUOUS MODE

5.5.1. Upflow Anaerobic Reactor

Two runs were performed. Table 22 and Figures 47 to 50 show the results. In 

both runs, TCP in the anaerobic reactor was dechlorinated as expected, and 4-CP was 

successfully degraded during batch mode. However, when the continuous mode was 

started up, the concentrations of 4-CP and TCP gradually increased in the aerobic reac

tor (although only 4-CP was detected in the samples taken from the anaerobic reactor). 

The input feed concentration of TCP was about 100 jaM.
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A stripe of particularly dark color was observed above the feed inlet port in the 

anaerobic reactor. This stripe was due to the biomass growing on the input nutrients. 

Channelling has been a common drawback of upflow packed bed reactors (Barnes and 

Fitzgerald, 1987). In both runs the appearance of TCP in the aerobic reactor without 

being detected in the anaerobic reactor was a result of the channelling. The sampling 

port in the anaerobic reactor was not directly above the inlet. Therefore, the collected 

samples contained no TCP but 4-CP from previous experiments.

It was not understood why the aerobic system could not degrade TCP and 4-CP, 

since from the results of previous experiments, the aerobic culture was expected to be 

able to degrade these two compounds together.

In Run 17-2, the culture degraded 66.9 fiM  of 4-CP in about two days; 94.7 

fiM. of TCP was degraded to 12.2 /xM in six days. The residence time of the aerobic 

reactor was 97.7 hours. Short residence time might be a reason for the TCP accumu

lation in the reactor.

5.5.2. Downflow Anaerobic Reactor

Because of the channelling problem in the previous experiment, the flow direc

tion in the anaerobic reactor was changed from upward to downward. The flow direc

tion in the aerobic reactor remained upward.

The problem of channelling was then eliminated with this change. In the up

flow reactor, the influent feed hit the immobilizing beads as soon as it entered the reac

tor which might cause channelling. On the other hand, in the downflow reactor, the 

feed mixed with the medium before it contacted the beads since there was about one 

inch high of the medium above the beads in the reactor.

In batch mode, the anaerobic reactor started with 231.9 /xM of TCP, all of 

which disappeared within 3 days. In a period of 6 days, 2,4-DCP was produced and 

consumed and 4-CP accumulated from 51.3 to 289.3 /xM. In the aerobic reactor,
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205.3 fiM  of 4-CP disappeared in 2 days. Thus continuous mode was ready to start 

after 6 days' batch reaction.

Table 23 and Figures 51 & 52 show the results in both batch and continuous re

actions.

In continuous mode, the input concentrations of TCP ranged from 113.4 to

130.6 fiM  because of the need to change storage tanks. Samples from the anaerobic 

reactor were taken from the outlet port. No TCP or 2,4-DCP was detected in the 

samples. The concentration of 4-CP at the anaerobic reactor outlet was about 230 /*M  

for 7 days. It then dropped to 80.1 pM  and rose to a steady concentration about 105 

/iM . This concentration of 4-CP approximately matched the input concentration of 

TCP from 81 (105/130.6) to 93% (105/113.4). 4-CP concentration of 230 jtM was 

due to the dechlorination of original TCP in batch mode.

In the aerobic reactor, no 4-CP was detected in the effluent samples.

The system was operated for four weeks. Hence the integrated anaerobic-aero

bic system successfully mineralized input TCP in a two-step process in which TCP was 

dechlorinated to 4-CP in the anaerobic reactor, and 4-CP was mineralized in the aero

bic reactor.

During the process, it was observed that the feed solution in the storage tank 

was contaminated with external bacteria, since the original pink color of the resazurin 

dye disappeared, indicating oxygen consumption. Bacterial colonies were observed 

when a sample from the feed tank was streaked on nutrient agar. Frick et al. (1988) 

had the same problem in the aerobic degradation of PCP. Their system failed because 

of the contamination. Fortunately, in our system bacterial contamination of the feed 

tank did not appear to alter the results of the experiments.

Hakulinen and Salkinija-Salonen (1982) successfully used an anaerobic fluidized 

bed reactor and an aerobic trickling filter to treat PCP. In the outlet of the aerobic re-
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actor, only carbon dioxide was detected. However, they did not mention the fate of 

PCP in the anaerobic reactor, nor the degradation rate.



C o n c l u sio n s

6.1. A n aero b ic  S y s tem

• An enriched anaerobic consortium from the anaerobic digestor of the Livingston 

Sewage Treatment Plant was able to dechlorinate 2,4,6-trichlorophenol, 2,4-di- 

chlorophenol, and 2,6-dichlorophenol.

•  The effluent from the same anaerobic digester was directly used as the medium 

for the anaerobic consortia, after autoclaving and clarification. No reducing agent 

was added to the above medium.

• The anaerobic consortium was able to partially degrade 2-chlorophenol, and 3- 

chlorophenol in a period of two months.

• The anaerobic consortium was not able to attack 3,5-dichlorophenol and 4- 

chlorophenol in a period of two months.

• For those chlorophenols which were attacked by the anaerobic consortium, the 

more chlorines on the benzene ring, the faster the degradation rate proceeded.

• 2,4,6-trichlorophenol was first dechlorinated to 2,4-dichlorophenol and then to 4- 

chlorophenol by the consortium.

• The mass balance for the dechlorination of 2,4,6-trichlorophenol was satisfactori

ly closed. All 2,4,6-trichlorophenol was converted to 4-chlorophenol in the 

anaerobic process.

• After acclimation of the consortium, the dechlorination rate of 2,4,6-trichloro

phenol increased from 21.7 to 43.2 pM/day.
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• The consortium worked best without adding phosphate buffer. When a phosphate 

buffer was added, the more concentrated the phosphate buffer was, the slower the 

dechlorination rate of 2,4,6-trichlorophenol. The starting pH was 9.0 and ended 

up with 8.0.

•  The anaerobic microorganisms were successfully immobilized on the Manville R- 

635 silica beads.

• After immobilization, the consortium was able to dechlorinate 150 /*M of 2,4,6- 

trichlorophenol in four days.

• The consortium was able to dechlorinate 2,4,6-trichlorophenol in the immobilized 

recirculation reactor with stoichiometric recovery of 4-chlorophenol.

• The consortium was very stable, even after it had not been exposed to 2,4,6- 

trichlorophenol for one month. Its activity could be revived in a few days.

6.2. A erob ic  S y stem

• The indigenous culture from the immobilized anaerobic reactor was able to de

grade 4-chlorophenol in the buffered medium.

• There was no degradation of 4-chlorophenol when the medium was not buffered 

with phosphate, since the pH would rise from 8.2 to 9 in six hours.

• ATCC cultures #93 (Serratia Marcescens), #17514 (Pseudomonas Putida), 

#17991 (Serratia Marcescens), #29195 (Pseudomonas Glathei), and #33668 

{Pseudomonas Pseudoflava), and the anaerobic culture from another treatment 

plant (Joint Meeting company) were able to degrade 4-chlorophenol in the 

buffered medium.

• In all cases, the medium used was the anaerobically treated solution.

• 4-chlorophenol was the main compound treated in this system.
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• There was 10% of disappearance from 164.9 nM of 4-chlorophenol due to air 

stripping in a period of four days.

• The best phosphate concentration range for the indigenous culture to degrade 4- 

chlorophenol was SO to 100 mM.

• No degradation product was formed when 4-chlorophenol was degraded by the 

indigenous culture.

•  When the indigenous culture was used, immobilization of the aerobic culture was 

not necessary, since it was coming from the anaerobic reactor.

•  The indigenous culture was able to mineralize 4-chlorophenol and 2,4,6-trichloro

phenol together.

• ATCC culture #29195 was able to mineralize 4-chlorophenol in the presence of

2.4.6-trichlorophenol, which had remained unattacked.

• The indigenous culture contained at least one type of facultative and two types of 

aerobes. The facultative did not degrade 2,4,6-trichlorophenol anaerobically or 

4-chlorophenol aerobically. The aerobes were able to degrade 4-chlorophenol 

aerobically but not 2,4,6-trichlorophenol anaerobically.

6.3 . A naerobic-A erobic S y stem

• An integrated anaerobic-aerobic continuous system successfully mineralized

2.4.6-trichlorophenol at an inlet concentration of 120 /xM in a process in which

2.4.6-trichlorophenol was dechlorinated to 4-chlorophenol in the anaerobic reac

tor, and 4-chlorophenol was mineralized in the aerobic reactor. The residence 

times of each reactor were 105 and 98 hours, respectively.

• The integrated anaerobic-aerobic batch system dechlorinated 106.4 /xM of 2,4,6- 

trichlorophenol in the anaerobic batch reactor in five days (including a lag period
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of two days). The resulting 4-chlorophenol was mineralized in the aerobic batch 

reactor in less than three days.

• In continuous mode, there was a problem of channelling which failed to complete 

the degradation of 2,4,6-trichlorophenol when the reaction solution flowed up

ward in the anaerobic reactor.

• No channelling was observed when the reaction solution flowed downward in the 

anaerobic reactor.

• The anaerobic system regained its activity in two days after lying dormant for a 

month.
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Table 2. Anaerobic Degradation of Tested Chlorophenols in the Batch System 

The reaction time was two months.

Compounds
Initial

Concentration,
mM

Final
Concentration,

mM
3,5-DCP 71.8 71.2
2,6-DCP 55.2 0.0
2,4-DCP 54.0 0.0

4-CP 77.0 73.1
3-CP 112.0 56.0
2-CP 119.0 46.7
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Table 3. Mass Balance for the Anaerobic Dechlorination of TCP by the Freely 

Suspended Microorganisms in the Batch System

Run 3-1

Time,
day

TCP,
mM

DCP,
AtM

4-CP,
mM

Phenol,
AtM

Sum, 
At M

%
Recvy

0 108.7 0.0 196.0 8.4 313.1 100
2 59.3 21.9 226.0 8.7 315.9 101
5 0.0 21.0 285.5 11.9 318.4 102
7 0.0 0.0 309.5 21.1 330.6 106
9 0.0 0.0 315.5 26.6 342.1 109
11 0.0 0.0 319.4 26.8 346.2 111

Run 3-2

Time, TCP, DCP, 4-CP, Phenol, Sum, %,
hours /iM AtM AtM AtM AtM Recvy

0 94.9 0.0 263.1 19.1 377.1 100
12 67.3 10.3 263.1 17.4 358.1 95
24 53.4 16.3 288.9 17.5 376.1 100
36 30.3 22.5 305.9 19.8 378.5 100
49 6.7 26.9 330.4 20.9 384.9 102
59 0.0 14.4 344.3 22.0 380.7 101
72 0.0 0.0 361.8 27.3 389.1 103
83 0.0 0.0 358.6 30.0 388.6 103
96 0.0 0.0 346.2 32.3 378.5 100
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Table 4. Effect of Phosphate Buffer on the Anaerobic Dechlorination of TCP by the 

Freely Suspended Microorganisms in the Batch System 

Run 4-1 No phosphate buffer

Time, TCP, DCP, 4-CP, Sum, %,
hours iM mM nM nM Recvy

0 101.7 0.0 128.3 230.0 100
30 0.0 46.0 182.3 228.3 99
63 0.0 0.0 214.6 214.6 93

Run 4-2 50mM phosphate buffer

Time, TCP, DCP, 4-CP, Sum, %,
hours mM mM Recvy

0 94.7 0.0 118.2 231.6 100
30 106.4 0.0 115.9 222.3 96
63 98.3 17.2 116.6 232.1 100
75 69.4 20.9 116.6 206.9 89

172 0.0 16.6 205.3 221.9 96
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Run 4-3 lOOmM phosphate buffer

Time, TCP, DCP, 4-CP, Sum, * ,
hours jiM mM mM /xM Recvy

0 75.5 0.0 112.8 188.3 100
30 65.9 0.0 101.1 167.0 89
63 66.4 0.0 105.8 172.2 91
75 64.3 0.0 106.5 170.8 91

172 65.3 16.6 116.6 198.5 105

Run 4-4 150mM phosphate buffer

Time, TCP, DCP, 4-CP, Sum, %,
hours mm nM nM juM Recvy

0 51.2 0.0 100.3 151.5 100
30 39.0 0.0 91.0 130.0 86
63 54.2 0.0 93.3 147.5 97
75 84.1 0.0 94.1 178.2 118

172 57.2 0.0 80.1 137.3 91
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Table 5. Anaerobic Dechlorination of TCP during the Immobilization of the 

Anaerobic Microorganisms in the Manvil R-635 Beads 

Run 5-1 Dechlorination of TCP During the Immobilization Phase

Time, TCP, DCP, 4-CP, Sum, %
hours nM uM uM mM Recvy

0 101.3 0.0 0.0 101.3 100
51 0.0 23.9 80.1 104.0 103

316 0.0 0.0 120.5 120.5 119
*317 40.5 0.0 118.2 158.7 100
336 0.0 0.0 136.1 136.1 86
362 0.0 0.0 141.5 141.5 89
407 0.0 0.0 152.4 152.4 86
431 0.0 0.0 146.2 146.2 92

*New spike

Run 5-2 Anaerobic Dechlorination of TCP in the Autoclaved Fresh Medium After 

Immobilization

Time, TCP, DCP, 4-CP, Sum, %
hours AtM UM mM mM Recvy

0 152.0 0.0 0.0 152.0 100
24 49.6 20.2 77.8 147.6 97
48 0.5 51.5 93.3 145.3 96
72 0.0 12.3 145.4 157.7 104
96 0.0 0.0 154.0 154.0 101
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Table 6. Mass Balance of the Anaerobic Dechlorination of TCP in the Immobilized 

Recirculation Reactor System

Run 6-1

Time,
hours

TCP,
juM

4-CP,
mM

Sum,
mM

%,
Recvy

0 111.4 0.0 111.4 100
24 44.1 58.3 102.4 92
68 35.5 71.5 107.0 96
99 21.8 66.9 88.7 80

124 36.0 77.0 113.0 101
147 23.3 84.8 108.1 97

Run 6-2

Time, TCP, DCP, 4-CP, Sum, %,
hours mM jttM mM M M Recvy

0 152.0 0.0 112.8 264.8 100
24 70.4 30.1 131.4 231.9 88
50 0.0 0.0 236.4 236.4 89
95 0.0 0.0 277.6 277.6 105

119 0.0 0.0 297.0 297.0 112
143 0.0 0.0 275.3 275.3 104



Table 7. Stripping Test of 4-CP in the Autoclaved Fresh Medium

Time,
hours

4-CP,
mM

0 164.9
12 171.1
22 167.2
36 169.5
47 152.4
61 155.5
73 143.9
84 157.9
96 148.5



Table 8. Aerobic Degradation of 4-CP by ATCC Cultures Without Buffering 

Run 8-1 Initial concentration of 4-CP = 140.0/xM 

Reaction time =  78 hours

ATCC Culture 
#

Final Concentration, 
mM

93
Serratia Marcescens 8.6

9446
Pseudomonas Chlororaphis 115.1

10145
Pseudomonas Aeruginosa 93.3

13270
Pseudomonas Maltophilia 150.1

14235
Pseudomonas Resinovorans 117.4

17514 
Pseudomonas Putida 91.0

17991 
Serratia Marcescens 136.1

19706
Pseudomonas Indigofera 118.2

23328 
Pseudomonas Pictorum 130.0

29195 
Pseudomonas Glathei 84.0

31800 
Pseudomonas Putida 138.4

33668
Pseudomonas Pseudoflam 152.4



Run 8-2

ATCC Culture 
#

@0 hr, @46 hr, 
mM

93
Serratia Marcescens 210.0 178.8

10145
Pseudomonas Aeruginosa 202.0 182.7

17514 
Pseudomonas Putida 211.5 171.0

29195 
Pseudomonas Glathei 201.4 168.7
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Table 9. Aerobic Degradation of 4-CP by ATCC Cultures with the Addition of 

Phosphate Buffer in the Middle of the Reaction 

All cultures start with 165.6/xM of 4-CP

ATCC Culture 
#

@42 hr, @87 hr, 
mM

93
Serratia Marcescens 144.6 0.0

9446
Pseudomonas Chlororaphis 164.8 18.7

10145
Pseudomonas Aeruginosa 127.5 75.4

13270
Pseudomonas Maltophilia 143.9 23.3

17514 
Pseudomonas Putida 136.1 0.0

17991 
Serratia Marcescens 106.5 0.0

19706
Pseudomonas Indigofera 121.3 17.9

23328 
Pseudomonas Pictorum 151.6 21.0

29195 
Pseudomonas Glathei 147.0 0.0

31800 
Pseudomonas Putida 157.9 18.7

33668
Pseudomonas Pseudoflava 152.4 0.0
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Table 10. Aerobic Degradation of 4-CP in the Anaerobic Treated Medium by ATCC

culture #93 Serratia Marcescens

4-CP Concentration in fiM during the Reaction

Time, 50mM lOOmM 150mM
hours Phosphate Phosphate Phosphate

0 113.5 133.7 115.1
6 101.9 140.7 126.0

13 28.0 119.8 123.6
18 0.0 54.4 94.9

pH Variation during the Reaction

Time, 50mM lOOmM 150mM
hours Phosphate Phosphate Phosphate

0 7.22 7.09 7.04
6 8.31 7.83 7.43

13 8.56 7.85 7.45
18 8.59 7.86 7.45
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Table 11. Aerobic Degradation of 4-CP in the Anaerobic Treated Medium by ATCC

Culture #17514 Pseudomonas Putida

4-CP Concentration in /tM during the Reaction

Time, 50mM lOOmM 150mM
hours Phosphate Phosphate Phosphate

0 154.0 140.0 135.3
6 145.4 131.4 123.6

13 102.6 44.3 59.9
18 21.0 3.9 3.9

pH Variation during the Reaction

Time, 50mM lOOmM 150mM
hours Phosphate Phosphate Phosphate

0 7.16 7.05 7.03
6 8.49 7.83 7.43

13 8.57 7.78 7.44
18 8.36 7.72 7.44

A degradation product was framed while 4-CP was degraded.
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Table 12. Aerobic Degradation of 4-CP in the Anaerobic Treated Medium by ATCC

Culture #17991 Serratia Marcescens

4-CP Concentration in /xM during the Reaction

Time, 50mM lOOmM 150mM
hours Phosphate Phosphate Phosphate

0 131.4 143.1 133.7
6 123.6 126.0 136.1

13 80.9 120.5
18 0.0 59.1 82.4

pH Variation during the Reaction

Time, 50mM lOOmM 150mM
hours Phosphate Phosphate Phosphate

0 7.20 7.08 7.01
6 8.50 7.87 7.41

13 8.45 7.83 7.45
18 8.48 7.86 7.45
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Table 13 Aerobic Degradation of 4-CP in the Anaerobic Treated Medium by ATCC

Culture #29195 Pseudomonas Glaihei

4-CP Concentration in /uM during the Reaction

Time,
hours

50mM
Phosphate

lOOmM
Phosphate

150mM
Phosphate

0 107.3 110.4 107.3
6 100.3 98.8 91.0

13 21.0 4.7 50.5
18 3.1 3.9 3.1

pH Variation during the Reaction

Time, 50mM lOOmM 150mM
hours Phosphate Phosphate Phosphate

0 7.19 7.07 7.03
6 8.51 7.65 7.36

13 8.35 7.65 7.36
18 8.41 7.64 7.43



88

Table 14. Aerobic Degradation of 4-CP in the Anaerobic Treated Medium by ATCC

Culture #33668 Pseudomonas Pseudo/lava

4-CP Concentration in /iM  during the Reaction

Time, 50mM lOOmM 150mM
hours Phosphate Phosphate Phosphate

0 150.1 140.0 136.1
6 141.5 137.6 130.6

13 115.9 113.5 119.8
18 64.5 42.8 80.1

pH Variation during the Reaction

Time, 50mM lOOmM 150mM
hours Phosphate Phosphate Phosphate

0 7.18 7.07 7.04
6 8.54 7.71 7.39

13 8.72 7.74 7.43
18 8.37 7.76 7.43

A degradation product was fromed while 4-CP was degraded.
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Table 15. Aerobic Degradation of 4-CP by the Indigenous Culture from the Anaerobic 

Reactor

Run 15-1

4-CP Concentration in during the Reaction

Time,
hours

OmM
Phosphate

50mM
Phosphate

lOOmM
Phosphate

150mM
Phosphate

0 138.4 120.5 113.5 108.1
6 168.7 114.3 108.9 105.0

13 140.0 77.8 84.8 89.4
18 159.4 0.0 0.0 63.8

pH Variation during the Reaction

Time, OmM 50mM lOOmM 150mM
hours Phosphate Phosphate Phosphate Phosphate

0 8.19 7.15 7.06 7.02
6 8.67 8.27 7.65 7.35

13 8.71 8.46 7.65 7.35
18 8.76 8.48 7.61 7.36
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Run 15-2

4-CP Concentration in /iM during the Reaction

Time, OmM 50mM lOOmM
hours Phosphate Phosphate Phosphate

0 226.3 202.2 198.3
5 220.8 203.7 188.2

16 206.8 196.7 188.2
26 202.2 202.0 187.4
66 211.5 0.0 0.0

pH Variation during the Reaction

Time, OmM 50mM lOOmM
hours Phosphate Phosphate Phosphate

0 7.84 7.19 7.08
5 8.63 8.35 7.54

16 8.98 8.64 7.70
26 9.06 8.76 7.68
66 9.05 8.76 7.69

Run 15-3 4-CP Concentration In the 50mM Phosphate Buffered Culture

@0 hr, @24 hr, @50 hr,
£tM nM mM
57.5 35.8 0.0
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Table 16. Aerobic Degradation of 4-CP in the Anaerobic Treated Medium by the

Anaerobic Culture from the Joint Meeting Company

4-CP Concentration in fiM during the Reaction

Time, 50mM lOOmM 150mM
hours Phosphate Phosphate Phosphate

0 112.0 104.2 97.2
6 107.3 100.3 89.4

13 78.5 76.2 78.5
18 28.0 3.1 56.0

pH Variation during the Reaction

Time,
hours

50mM
Phosphate

lOOmM
Phosphate

150mM
Phosphate

0 7.16 7.06 7.02
6 8.52 7.73 7.38

13 8.62 7.73 7.38
18 8.62 7.70 7.37
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Table 17. The Effect of TCP on the Aerobic Degradation of 4-CP by the Indigenous 

Culture from the Anaerobic Reactor 

Run 17-1 No TCP added

Hours 0 25 59 73 96 120
4CP,mM 61.4 3.1 0.0 0.0 0.0 0.0

Run 17-2 With TCP added

Hours 0 25 59 73 96 120
4-CP,/*M 66.9 2.3 0.0 0.0 0.0 0.0
TCP,/tM 94.7 60.8 54.2 68.9 50.2 12.2
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Table 18. The Effect of TCP on the Aerobic Degradation of 4-CP by ATCC Culture 

#29195 Pseudomonas Glathei 

Run 18-1 No TCP added

Hours 0 23 47
4-CP, uM 172.6 18.7 19.4

Run 18-2 With TCP added

Hours 0 23 47
4-CP, mM 170.3 10.9 17.8
TCP, mM 52.2 54.7 48.6
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Table 19. Anaerobic Degradation of TCP by the Pure Cultures Isolated from the 

Anaerobic Reactor 

Run 19-1 The control, autoclaved medium without inoculation of bacteria

Hours 0 23 48 71 93 142
TCP,mM 122.1 120.5 117.3 119.6 116.2 115.5

Run 19-2 Bacteria #1, facultative

Hours 0 23 48 71 93 142
TCP,mM 87.1 85.1 95.7 86.3 93.3 71.4

Run 19-3 Bacteria #2, aerobe

Hours 0 23 48 71 93 142
TCP.mM 91.7 95.4 102.9 90.3 85.5 97.3

Run 19-4 Bacteria #3, aerobe

Hours 0 23 48 71 93 142
TCP,mM 92.4 112.4 95.7 107.3 93.6 90.7
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Table 20. Aerobic Degradation of 4-CP by the Pure Cultures Isolated from the 

Anaerobic Reactor

Run 20-1 The control, autoclaved medium without innoculation of bacteria

Hours 0 23 48 71 93 142
4CP,mM 254.3 249.6 227.7 230.8 245.5 250.8

Run 20-2 Bacteria #1, facultative

Hours 0 23 48 71 93 142
4CP,mM 225.5 207.6 213.8 196.7 179.6 206.8

Run 20-3 Bacteria #2, aerobe

Hours 0 23 48 71 93 142
4CP,/*M 225.5 210.0 154.0 56.0 0.0 0.0

Run 20-4 Bacteria #3, aerobe

Hours 0 23 48 71 93 142
4CP,a*M 210.0 219.3 153.2 80.9 14.0 0.0



Table 21. Anaerobic-Aerobic Degradation of TCP in Batch Mode 

First stage -  Anaerobic reactor

Time,
hours

TCP,
*tM

DCP,
mM

4-CP,
( jl M

Sum,
n M

pH

0 106.4 0.0 0.0 106.4 8.56
23 102.3 0.0 0.0 102.3 8.58
46 103.9 0.0 0.0 103.9 8.50
73 84.8 27.0 0.0 111.8 8.44

119 0.0 0.0 104.2 104.2 8.25
143 0.0 0.0 98.0 98.0 8.27

Second stage -  Aerobic reactor

Time,
hours

4-CP, 
n M

PH

0 75.1 7.15
25 52.9 7.42
49 42.0 7.84
69 0.0 7.93

117 0.0 7.97
145 0.0 8.02
172 0.0 8.02
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Table 22. Anaerobic-Aerobic Degradation of TCP in the Continuous Upflow Reactors 

Run 22-1

First stage -  Anaerobic reactor

Time,
hours

TCP,
mM

DCP,
mM

4-CP,
/xM

Sum,
mM

0 30.4 0.0 31.9 62.3
22 21.3 0.0 44.3 65.6

*63 14.7 4.9 52.1 71.7
112 48.1 11.7 49.0 108.8
135 0.0 30.7 80.1 110.8
160 0.0 6.1 91.8 97.9
184 0.0 0.0 103.7 103.7
212 0.0 0.0 84.0 84.0
233 0.0 0.0 104.2 104.2
262 0.0 0.0 105.0 105.0
281 0.0 0.0 118.2 118.2
305 0.0 0.0 105.0 105.0

Second stage — Aerobic reactor

Time,
hours

TCP,
mM

4-CP,
mM

Sum,
uM

0 0.0 59.1 59.1
22 0.0 0.0 0.0

*63 0.0 0.0 0.0
112 5.6 0.0 5.6
135 27.9 4.7 32.6
160 57.8 14.0 71.8
184 62.8 18.7 81.5
212 44.1 25.7 69.8
233 30.4 35.8 66.2
262 22.8 38.9 61.7
281 22.8 44.3 67.1
305 16.7 48.2 64.9

*From 0 to 63 hours, the reactors were in batch mode
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Run 22-2

First stage — Anaerobic reactor

Time,
hours

TCP,
mM

DCP,
nM

4-CP,
nM

Sum,
mM

0 239.1 0.0 0.0 239.1
22 238.1 6.7 10.1 254.9

*70 0.0 25.2 94.9 120.1
89 0.0 0.0 114.3 114.3

113 0.0 6.7 107.3 114.0
165 0.0 6.7 58.3 65.0
185 0.0 0.0 62.2 62.2
210 0.0 0.0 61.4 61.4
233 0.0 0.0 87.9 87.9

Second stage -  Aerobic reactor

Time,
hours

TCP,
MM

4-CP,
mM

Sum,
AtM

0 0.0 63.8 63.8
22 0.0 21.8 21.8

*70 0.0 0.0 0.0
89 1.0 6.2 7.2

113 12.2 9.3 21.5
165 37.0 16.3 53.3
185 52.7 18.7 71.4
210 52.7 28.8 81.5
233 61.3 38.9 100.2

•From 0 to 70 hours, the reactors were in batch mode
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Table 23. Anaerobic-Aerobic Degradation of TCP in the Continuous Anaerobic 

Downflow Reactor, and Aeroic Upflow Reactor 

First stage — Anaerobic reactor

Time,
hours

TCP,
mM

DCP,
/iM

4-CP,
ixM

Sum,
mM

0 231.9 0.0 51.3 283.2
26 251.9 9.2 132.2 293.3
49 111.4 50.9 134.5 296.8
73 0.0 68.7 180.4 249.1
96 0.0 12.3 275.3 287.6

*146 0.0 0.0 289.3 289.3
170 0.0 0.0 199.1 199.1
199 0.0 0.0 230.2 230.2
224 0.0 0.0 229.4 229.4
267 0.0 0.0 234.1 234.1
290 0.0 0.0 244.9 244.9
314 0.0 4.3 223.2 227.5
337 0.0 3.1 150.0 153.1
367 0.0 1.2 80.1 81.3
414 0.0 0.0 87.9 87.9
437 0.0 0.0 83.2 83.2
458 0.0 0.0 95.6 95.6
486 0.0 0.0 104.2 104.2
508 0.0 0.0 110.4 110.4
527 0.0 0.0 108.9 108.9
556 0.0 0.0 109.6 109.6
581 0.0 0.0 103.4 103.4
610 0.0 0.0 101.9 101.9
633 0.0 0.0 108.9 108.9
654 0.0 0.0 90.2 90.2

*From 0 to 146 hours, the reactor was in batch mode



Second stage — Aerobic reactor

Time,
hours

4-CP,
mM

0 205.3
26 202.2
49 144.6
73 0.0
96 0.0

*146 0.0
170 0.0
199 0.0
224 0.0
267 0.0
290 0.0
314 0.0
337 0.0
367 0.0
414 0.0
437 0.0
458 0.0
486 0.0
508 0.0
527 0.0
556 0.0
581 0.0
610 0.0
633 0.0
654 0.0

*From 0 to 146 hours, the reactor was in batch mode
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