
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI 
films the text directly from the original or copy submitted. Thus, some 
thesis and dissertation copies are in typewriter face, while others may 
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and photographs, print bleedthrough, substandard margins, 
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete 
manuscript and there are missing pages, these will be noted. Also, if 
unauthorized copyright material had to be removed, a note will indicate 
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand corner and 
continuing from left to right in equal sections with small overlaps. Each 
original is also photographed in one exposure and is included in 
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI directly 
to order.

U nivers ity  Microfi lms International  
A Bell  & Howell  Information C o m p a n y  

3 0 0  North Z e e b  R o a d .  A n n  Arbor. Ml 4 8 1 0 6 - 1 3 4 6  U S A  
3 1 3  7 6 1 - 4 7 0 0  8 0 0  5 2 1 - 0 6 0 0



Order Number 9180938

Investigation of stagnation flow heat transfer for a heated 
horizontal round plate

Wei, Ching-Hua, Ph.D.
New Jersey Institute of Technology, 1991

Copyright © 1991 by Wei, Ching-Hua. A ll rights reserved.

UMI
300 N. Zeeb Rd.
Ann Arbor, MI 48106



INVESTIGATION OF STAGNATION FLOW HEAT TRANSFER FOR A HEATED
HORIZONTAL ROUND PLATE

BY
CHING-HUA WEI 

A Dissertation
Submitted to the Faculty of the Graduate Division of the 

New Jersey Institute of Technology 
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy 
Department of Mechanical Engineering.

May 1991.



Copyright © 1991 by Ching-Hua Wei 
ALL RIGHTS RESERVED



APPROVAL SHEET 

Title of Dissertation: Investigation of stagnation flow heat 

transfer for a heated horizontal round plate. 

Name of candidate: Ching-Hua Wei. 

Doctor of Philosophy in Mechanical 

Engineering, 1991. 

Dissertation and Abstract Approved by: 

Dr. Peter Hrycak, Thesis Advisor 
Professor of Mechanical Engineering, NJIT 

Dr. Denis Blackmore, Committee Member 
Professor of Mathematics and Associate 
Director of the Center for Applied Mathematics 
and Statistics, NJIT 

Dr. Rajesh N. Dave, Commitee Member 
Assistant Professor of Mechanical Engineering, 
NJIT 

Dr. Avraham Harnoy, Committee Member 
Associate Professor of Mechanical Engineering, 
NJIT 

Prof. Lawrence J. Schmerzler, Committee Member 
Associate Professor of Mechanical Engineering, 
NJIT 



ABSTRACT
Investigation of Stagnation Flow Heat Transfer for a Heated

Horizontal Round Plate
by

Ching-Hua, Wei

The heat transfer characteristics in stagnation flow are 
investigated through three cases in this study. The first is 
forced convection by an array of air jets; the second is free 
convection of a downward-facing heated round plate; the third is 
free convection of an upward-facing heated round plate.

The first case is investigated by systematic experiments 
which examine the heat transfer characteristics mainly by five 
air jets impinging normally to a flat plate, with varying nozzle 
diameters, and Reynolds numbers, at different distances between 
the nozzles and the plate. The empirical formulas of heat 
transfer around the stagnation point and over the entire plate 
are established. Compared to the single jet cooling, the 
Nusselt numbers do not increase significantly by increasing the 
numbers of jets.

The second case is a theoretical study. The analytical 
solutions for the velocity and the temperature profiles, using 
the Prandtl number in the moderate range, have been obtained 
through the similarity transformation of the governing equations 
applicable to laminar flow. The Nusselt number expression is 
found to be a function of the 1/4 power of the Rayleigh number, 
for the prescribed surface temperature condition; and a function 
of the 1/5 power of the modified Rayleigh number, for the 
prescribed surface flux condition.

The third case is formulated by a mathematical model 
similar to the second case; however, the analytical solutions 
for the velocity and the temperature profiles have not been 
obtained. Yet, the Nusselt number expression from the model 
shows the 1/4 power dependence on the Rayleigh number, which 
agrees with the results of the second approach and with 
experimental findings.
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h convective heat transfer coefficient, W/m2 °C
k undetermined constant in equation, Eq.(1.29);

abbreviation of kilo, in Fig.1-4 and Fig.1-5 series 
K thermal conductivity, W/m °C
L characteristic length, m
m dimensionless constant to be determined by experiment
M distance from the bottom position of the thermocouple

hole to the top surface of calorimeter 
N distance between the top and the bottom thermocouple

hole of calorimeter 
p pressure, N/m2
q heat flux, W/m2
r radial coordinate, m
R radius of the heated round plate
t thickness of nozzle plate shown in Fig.1-4 series
T temperature, °C or °F
u velocity component in radial coordinate, m/sec
U radial velocity component outside of boundary layer,

m/sec
Uoc velocity at exit of nozzle, m/sec
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V velocity, m/sec
w velocity component in vertical coordinate, m/sec
z vertical coordinate, m
Zn distance of nozzle to the heat transfer plate
a thermal diffusivity, m2/sec
P volume coefficient of expansion, 1/ °K
r| similarity variable, dimensionless coordinate
0(r|) dimensionless temperature function
p viscosity, kg/m sec
v kinematic viscosity, m2/sec
p density, Kg/m3
O dissipation function
W  stream function
Dimensionless Groups:
Ec Eckert number, V2/Cp AT
Gr Grashof number, g(3ATL3/v2
Gr* modified Grashof number, GrNu=gPqwL4/Kv2
Nu;(NU) Nusselt number, hL/K, q„L/KAT; (used in Fig.1-4 series)
Pr Prandtl number, v/a, pCp/K
Ra Rayleigh number, GrPr=g|3ATL3/va
Ra* modified Rayleigh number, PrGr*
ReD;(RED) Reynolds number based on nozzle diameter and air

properties at exit of nozzle, UocD/v; (used in Fig.1-4 
series)

Sh Sherwood number
Subscripts:
b specified at bottom position
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D;(d) characteristic length based on diameter of nozzle;
(used in Fig.1-4 series) 

f indicates fluid condition
i index indicates interval between the points
L characteristic length
o indicates the condition at stagnation point region,

otherwise indicated in special case 
pi based on heat transfer plate
r at specified radial position of the heated plate
R the characteristic length based on the radius of plate
s indicates the solid condition; surface of plate
t specified at top position
w indicates the condition at wall or surface
wc indicates the condition at the wall center of the

round plate 
oo indicates far field
Superscripts:

represents the unit of inch (used in Fig.1-4 series) 
_ overhead bar indicates the average value, or

dimensionless function in Eq.(11.68) and (11.69)
* indicates the modified dimensionless variable
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1
INTRODUCTION AND RESEARCH OBJECTIVES

The fluid which flows in a normal direction toward a plate 
is a type of stagnation flow. In this flow pattern, there is a 
spot where the velocity is zero and there is no unique direction 
for the streamlines. This point in the flow field is called the 
stagnation point. The fluid dynamic and heat transfer behavior 
around the vicinity of the stagnation point of the heated plate 
is important both theoretically and practically, because
velocity distribution changes abruptly so as to affect heat 
transfer characteristics.

The analytical solution of fluid dynamic behavior around 
the stagnation point in impinging flow (Fig. l.a) has been
originally obtained by Homann and Froessling (as introduced by 
Schlichting, pp. 98-101, [22]). It is considered as an example 
of exact solution of the Navier-Stokes equation. Based on this 
solution, the heat transfer characteristics of the forced 
convection was then evaluated by Sibulkin [24]. This solution 
is of special interest, even if it is obtained from the
governing equation of the boundary-layer type. The Sibulkin's 
theoretical expression is usually used as a guidance to the
analyses of experimental results around the stagnation point for 
the single jet cooling [10]. Concerning an array of jets, it is 
interesting to see how is the cooling performance of a single 
jet impinging on a heated plate around the stagnation point can 
differ from the characteristics of a central jet performing as 
a part of an array of jets. This will be examined in Part I.
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Since the analytical solution can be obtained in the case of the 
forced convection by impinging flow, it is worth trying to find 
the analytical solutions for the case of the free convection of 
a downward-facing heated plate (Fig. l.b) because two flow 
patterns are similar to each other (i.e. fluid flows towards a 
flat plate). This will be analyzed in Part II. The discussion 
in Part III is an extension of the discussion from Part II. The 
purpose here is to see if the analytical solutions can be found 
when fluid flows in the reverse direction.

Therefore, in this thesis, it is intended to show the many 
common features existing between the stagnation flow generated 
by single jet and multiple jets issuing from nozzles; and 
thermal plumes generated by temperature differences. It is 
believed that some uncertainties still exist concerning the 
nature of such flow, and the resulting heat transfer. This will 
be clarified by uniform treatment of the subject based on the 
formulation of the fundamental equations and the analysis of the 
experimental results. The experimental results discussed are 
both the ones carried out by the author, and those available 
from the literature. All the efforts lead to develop empirical 
formulas or theoretical explanations for the prediction of the 
heat transfer under the stagnation flow by an array of air jets; 
and by natural convection to a heated horizontal round plate 
facing either upward or downward.
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Fig.l.a The Impinging Stagnation Flow
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Fig.l.b Free Convection of a Downward-Facing Heated Plate
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PART I FORCED CONVECTION BY AN ARRAY OF AIR JETS IMPINGING TO 

A HEATED ROUND PLATE

1-1 INTRODUCTION
1.1 General

Many industries use an array of air jets for the cooling of 
large hot surfaces. Such uses include the annealing of metal or 
plastic sheets, the tempering of glass, the cooling of turbine 
blades, the drying of textiles or paper, and the cooling of 
microelectronic parts in computers [17] and so on. This method 
supplies a cooling rate several times higher than those of 
conventional methods, such as fan or blower cooling. In 
addition, it provides more flexibility for meeting different 
surface heat transfer needs through simple alteration of air 
flow rates or through a variation in the distance between jets 
and the hot surface.

Although the study of the topics connected with the heat 
transfer from the impinging jet has been done for decades, there 
still exists a need for both analytical and experimental work, 
because the theoretical results obtained so far have differed 
somewhat with experimental results, and empirical equations have 
not met all requirements for cooling designs [11].

1.2 Subject of the Present Work
This study has experimentally examined the heat transfer of 

a horizontal heated plate by a square arrays of turbulent, round 
air jets (cf., Fig.I-3.2), impinging normally on it (cf., Fig.I- 
1.1), at steady state. Jets are issued from an array of five 
nozzles with diameters ranged at 3.18 mm (0.125 in.), 6.35 mm 
(0.25 in.) and 9.53 mm (0.375 in.). The nozzle exit Reynolds 
numbers are ranged at 14,000, 26,000, 35,000, and 54,000 (based
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on the diameter of nozzle, D; and the velocity at the exit of 
nozzle, Uoc). The ratio of the nozzle-to-heat-transfer-plate 
distance (Zn) to the diameter of nozzle (D), Zn/D, is varied at 
3, 5, 7, 9, 12, and 15. The ratio of the nozzle-to-nozzle
spacing (Cn) to the nozzle diameter, Cn/D, is varied at 2, 3, 4, 
and 5. Some tests have been made for jets issued from an array 
of nine nozzles with diameter at 3.18 mm.

This investigation has been carried out as a continuation 
of earlier work done by Kaya [14] and a single jet done by Datta 
[2]. Finally, these results are summarized into optimal 
empirical equations as a reference for further applications.

1-3 Previous Studies
Heat transfer near the stagnation point by axisymmetric 

flow impinging on a hot object has been studied since about 
1950. As pointed out in Schlichting (cf., p.100, [22]), the
basic fluid flow pattern for a laminar stagnation flow either 
two-dimensional or axisymmetric type was studied before then, so 
as to allow later calculation of heat transfer. Hrycak [9] did 
an extensive literature review about heat transfer from 
impinging jets up to 1980. Among those research works, some of 
the most important ones are worth mentioning:

Freidman and Mueller [4] presented experimental results of 
heat transfer for an array of air jets impinging on a heated 
plate.

Sibulkin [24] was among the first to study the stagnation 
point heat transfer of a body of revolution, however, the flow 
is an infinite stream.

Kezios [16] reported results from both analytical and 
experimental approaches for a jet impinging on an infinite 
plane. His results offered a very limited range for the
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distance from nozzle to surface.

Ott [21] investigated heat transfer experimentally by a 
triangular array of round jets.

Gardon and Cobonpue [6] reported experimental results by 
single jet and multiple jets; the maximum heat transfer rate was 
found at 6<Zn/D<7 for a single jet. There were no correlation 
equations expressed for multiple jets at the stagnation point.

Hilgeroth [8] reported the heat transfer coefficients 
increased as the jet diameter increased while Cn/D, Zn/D, and 
exit velocity of nozzle remained constant.

Kercher and Tabakoff [15] tested the heat transfer relation 
by a square array of round air jets impinging on a flat heated 
plate and allowing spent air to flow out from one direction. 
The correlation formula of average Nusselt number was presented.

Datta [2] did a single jet cooling experiment with wide 
range of each of the corresponding parameters, such as diameter 
of nozzle, mass flow rate, and distance from jet to target. The 
stagnation region heat transfer rates were summarized into 
empirical equations. He found the maximum heat transfer 
occurred at Zn/D approximately at seven diameters downstream 
from the nozzle which was similar to Gardon and Cobonpue's 
finding.

Martin [19] edited heat transfer researches created by 
single and multiple jets, but the original experimental work was 
done by Krotzsch [18]. His report was adopted recently in a 
thermal design handbook [7]. However, his empirical equations 
can only be applied to evaluate average heat transfer.

Hrycak [10] reported single jet' cooling results and a 
comprehensive survey of previous studies. He confirmed that at 
the stagnation point, the Nusselt number depends upon the half 
power of Reynolds number, and the maximum Nusselt number occurs



when the heated plate is placed at about seven diameters 
downstream from the nozzle.

Behbahani and Goldstein [1] investigated heat transfer by 
an array of staggered air jets. An empirical equation of 
average Nusselt number was presented.

Experimental investigation of an array of five and nine air 
jets, has been carried out in Hrycak's laboratory since 1984. 
Sethi [23] reported systematic results about fluid dynamic 
behavior and patterns. Kaya [14] reported heat transfer results 
with limited tests, by an array of five jets with the diameter 
of nozzles at 6.25 mm.

From looking at previous works, single jet impinging heat 
transfer has been studied intensively. The experimental results 
as expressed in terms of the Nusselt number for the problem of 
heat transfer near the stagnation point are usually higher than 
the calculation based on the Sibulkin's solution [24]. Some 
common features for single jet cooling have been found by 
several investigators. These are the facts that the maximum 
heat transfer occurs at the tip of nominal potential core (cf., 
p.10, [9]), and the exponent of the Reynolds number shows very 
nearly the value of 0.5 in a heat transfer expression at the 
stagnation point [10]. The experimental method is commonly used 
for the study of multiple jets. Researchers have paid more 
attention to the study of average heat transfer under multiple 
jets than to the examination of heat transfer around the 
stagnation point. However, there is still an overall lack of 
agreement between the results of various researchers.
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1-2 THEORETICAL BACKGROUND
2.1 Introduction

Generally, the fluid flow pattern along the exit of the jet 
can be partitioned into three zones [9, 23, 25]. They are the 
free jet zone, deflection zone, and wall jet zone respectively. 
The flow pattern is shown in Fig.I-1.1.

In the free jet zone, the fluid just leaving from the 
nozzle, is beyond the viscous boundary layer caused by the flat 
plate. It has been determined at the length of about 4/5 Zn 
(cf., Fig.I-1.1) measured from the exit of nozzle [12, 23]. If 
the impingement plate is placed far enough from jets, the free 
jet zone may be characterized into two parts. They are the 
potential core, where the centerline velocity remains the same 
as the exit of nozzle, and the fully developed region, where the 
velocity distribution is similar to that of the free jet 
diffusing into an infinite medium. In the deflection zone, 
where the fluid strikes the flat plate, a boundary layer is 
formed at the stagnation point. Actually, this is the region we 
are most interested in as far as the heat transfer at the 
stagnation point is concerned.

After jet air hits the flat plate, the air spreads radially 
toward the outside of the plate forming a flow pattern that is 
similar to the wall jet as discussed by Schlichting (cf., p.750, 
[22]). The average heat transfer characteristics of the plate 
are associated with the flow behavior in this "wall jet" zone. 
Although multiple jets are used in this experiment, the flow 
pattern behavior described above is still helpful, because the 
flow pattern of the multiple impinging jets can be considered as 
the combination of each jet. The interference between jets is 
not examined theoretically in this study, but it is investigated 
experimentally by dimensional analysis in section 1-2.3.
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2.2 Differential Formulation at Stagnation Point Region

The most general analytical approach for heat transfer and 
fluid dynamics at the stagnation point in deflection zone on a 
flat plate is to find the velocity expression from the 
continuity and momentum (i.e. Navier-Stokes) equations; and the 
temperature expression from the energy equation. Schlichting 
[22] discussed this problem. The Navier-Stokes and the 
continuity equations in cylindrical coordinate for rotational 
symmetry and steady state can be written as

+ + + (i.i,
dr dz p dr dr2 r dr x 2 dz2

u | i:+ „ | i:= - A | e +,( <i.2 )
dr dz p dz dr2 r or dz2

|Htji+ a5:=o (i.3)
dr r dz

If the velocity components outside of the boundary layer 
are assumed to be

U = ar (1.4)
W =-2az (1-5)

where " a " is a constant, then the expression of pressure in 
frictionless flow is

P0-p- ~ P  (U2+W2) = -ipa2 (r2+4z2) (1.6)2 2

where P0 denotes the pressure around the stagnation point. The 
pressure differential term in the radial direction can be 
described by Euler equation as

- A | E =£,|^=a3r ( I .7)
p or or

However, Eq.(1.7) can also be used inside the boundary layer at
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the stagnation region and the expression of pressure can be 
assumed as (cf., p.101, [22])

p 0-p=-ipa2 (r2+F(z)) (1.8)

because the deflection zone is small and the boundary layer is 
very thin. The expressions of velocity distribution that are 
satisfied by Eg.(1.3) are as follows.

u=arf/( t)) (1.9)

w=-2\fa\ f{r\) (1.10)
In the above, a dimensionless coordinate is introduced as

T| = —  z (1.11)v

By applying the similarity transformation, the partial 
differential equations Eq.(I.l), and (1.2) can then be 
transformed into total differential equations as follows.

f"' (r)) + 2f(r\) (r|) -f' (r|) 2 + l=0 (1.12)

r7/ (n ) +2f(Ti)f/(Ti)=-^F/(z) (1.13)

where the prime " ' " denotes the differentiation with respect 
to r]. Eq.(1.12) is independent of function F(z), therefore f(i])
can be determined by solving Eq.(1.12) along with proper 
boundary conditions. They are

(i) T] =0 (i.e. z=0) ; f(0)-f' (0) =0

which indicates the velocity components to be zero on the plate 
surface, and
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(ii) 11=11,. ; f' (Tic) = 1

which indicates the radial coordinate velocity component u is 
approximately U outside of the boundary layer. Eq.(1.12) was 
first solved by Homann (cf., p.101, [22]). Froessling (cf.,
p.98, [22]) solved it numerically and determined when
f"{0)=1.312, it will satisfy the boundary condition at f'(r)„)=l. 
The solution is verified by this study which is carried out by 
the Runge-Kutta method along with Newton's shooting method at 
step size equal to 0.001. The numerical calculation scheme is 
discussed in section II-3.1.

Substituting f(ri) and f'(r]) into Eq.(1.9), and Eq.(I.lO), 
the velocity expression can be obtained. The temperature 
distribution governed by the energy equation can then be 
obtained from integrating the function f(r]). For steady state, 
incompressible flow with constant properties and negligible 
dissipation, the energy equation in cylindrical coordinate is

dr dz dr2 r dr dz2 

The dimensionless temperature function may be assumed as

T-T0 (T|) (1.15)
J- w -L m

where Tw is wall temperature, T̂  is ambient temperature, and T is 
temperature function with dependent variable rj only. For the 
prescribed constant wall temperature case, the boundary 
conditions are

(i) i] = 0 ; 0 (0) =1
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(ii) r\=T\m ; 6 (rĵ) =0

Combining Eq.(1.9), (I.10), and (1.15), the energy equation,
Eq.(1.14), can be transformed into

e//(Ti)+2Prf(Ti)0/(ii)=O (1.16)

Eq.(1.16) is a separable linear differential equation. 
Rearranging and integrating Eq.(1.16), it becomes

— d& (ti ) = f"-2Prf(s) ds (1.17)Jo A ( ti ̂ Jo

then

[1,-2Prf (s) ds (1.18)
e'(Ti) =C1eJo

[ C-2Prf(s) ds
0 (t])=C1f eJo dt +C2 (1.19)J 0

With the above thermal boundary conditions, 0(v)) can be 
expressed as

-2Prf tf(s) ds
f e Jo dt

6 (t) ) = 1 - — --------- « ------------  (1.20)
-2Prf f(s)ds

f e 0 cfriJo

then

d6(n)
dt] =e/(o)=- - - - - - ^ - - - - - -  (i.2i)

n=o -2Pr f(s)ds
f e Jo dr)Jo

where the Prandtl number varies within a moderate range (i.e. 
10.7<Pr< 5). The results of Eq.(1.21) are expressed by Sibulkin 
[24] as follows.
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0'(O) =-0.763 Pr°-4 (1 .2 2 )

However, in the present study, the author has calculated 
Eg.(1.21) numerically by Simpson's rule; and found that the more 
accurate results may be expressed as

The relative error is less than 1% between the two expressions 
for a Prandtl of 0.72; therefore, Eq.(1.22) is still applicable 
if air is used as heat transfer medium.

The heat flux on the wall is

therefore, h (convective heat transfer coefficient) is equal to

Substituting Eq.(1.4) and Eq.(1.22) into Eq.(1.24), the Nusselt 
number expression can be written as:

Eq.(1.25) is identical to the one derived by Sibulkin [24]. It 
is not convenient to make comparisons to experimental data, 
unless the Nusselt number based on D (diameter of nozzle) and 
the Reynolds number based on U0c (exit velocity of jet) and D in 
Eq.(1.25) can be converted. Making Eq,(1.4) dimensionless and 
setting a’=aD/U0c, then

0'(O) =-0.762 Pr0-37 (1.22.1)

(1.23)
=h{Tw-Tj

h=-Kfe'(0 )^ (1.24)

Nun = —  = 0 .76 3Pr0>4 ( — ) 0>5=0 .163Pr°-*Re 0<x Kf v °;u (I.25)

t L = ( ^ ) Z =a*4 (1.26)
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This dimensionless formulation, Eg.(1.26), was introduced by 
Hrycak (10]. Substituting Eq.(1.26) into Eq.(1.25), the Nusselt 
number expression becomes

Nu0iD=0 .763Pr0• (1.27)

where a* is a function of Zn/D and that can be determined by 
experiment. Sethi [23] reported experimental results of a*, for 
five jets, nozzle diameter of 6.35 mm, ReD=14,000, and Cn/D=2. 
The values of a* are 1.14, 0.98, 0.62, 0.46, and 0.302
corresponding to the values of Zn/D at 5, 7, 9, 12, and 15
respectively. Substituting the a* results into Eq.(1.27), the 
Nusselt number values are about 62% lower than the experimental 
results from this study. However, the 0.5 power of the Reynolds 
number in heat transfer expression matches the experimental 
results for the cases with the diameter of nozzles at 6.35 mm 
and 9.53 mm for the lower Zn/D values (i.e. 3sZn/Ds5) around the 
stagnation point.

Hrycak [10] explained that this may be due to turbulence 
effects around the stagnation point, and introduced an 
applicable technique, which is extended from laminar boundary- 
layer technique to turbulent flow. By his method, Eq.(1.27) can 
be modified as

N U s ^ l . l l Z P r V - ' R e Z X / a ^  (1 .28)

Eq.(1.28) shows better agreement with experimental results than 
Eq.(1.27) does. The Nusselt number values calculated from 
Eq.(1.28) are about 28% lower for the value of Zn/D at five; and 
about 4 0% lower for the value of Zn/D from nine to fifteen than 
the present experimental results. It appears that the 
experimental results for the smaller value of Zn/D can fit 
better with the Eq.(1.28) than those for the larger value of 
Zn/D does.
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2.3 Dimensional Analysis

The heat transfer analysis in the case of multiple 
turbulent impinging jets is usually difficult to perform 
accurately by analytical solutions from governing equations. 
The applicable analysis still relies greatly on experimental 
data. Therefore, the dimensional analysis is very useful in 
correlating experimental data [10, 2, 14]. The basic idea is to 
find the heat transfer formula expressed by the least number of 
parameters, which affect heat transfer phenomena. From the 
theoretical analysis (i.e. Eq.(1.27)) and the experience of 
experimental work, the general expression of the Nusselt number 
can be written as

NuD=kReDaUoPrb(-^) d(-^) e(-^) f d-29)

where k, a, b, c, d, etc., are all determined by experiment. 
The parameter of (Zn/D)c represents the effects of the various 
nozzle-to-heat-transfer-plate distance. The (D/D0)d term is used 
to correlate with experimental results, obtained from different 
diameters of the nozzles, for the Nusselt number of the 
stagnation point. The D0 represents the reference diameter of 
the nozzle. The effects of interference in a cluster of jets 
are expressed by (Cn/D)e. The (D/Dpl)f represents the aspect 
ratio of the diameter of the nozzle to the diameter of the heat 
transfer plate; this term is used to correlate with the results 
of the average Nusselt number.

For boundary-layer type stagnation flow, a=0.5 and b=0.4 
associated with Sibulkin's analysis [24] are applied. For 
turbulent flow in the wall jet zone, a=0.7 and b=0.33 are 
commonly used [9].
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1-3 EXPERIMENT SET-UP AND PROCEDURES

3.1 Air Supply System
The compressed air used for cooling the heated plate is 

supplied by a compressor equipped with a 15-horse-power A.C. 
motor. The air flows trough the piping system, which includes 
an oil trap, storage tank, regulator, orifice, plenum chamber, 
and finally from the nozzle plate to the test plate (cf., 
Fig.1-3.1 and Fig.I-3.2). The air pressure on the inlet side of 
the rotameter is kept at 25 psi. to ensure a proper setting for 
the rotameters, which are used to control the air flow rate. The 
real flow rates are measured by the pressure difference between 
both sides of an orifice plate, which is inserted on outlet side 
of the rotameter (cf., Fig.1-3.1). In the plenum chamber, two 
screens and a coarse wool-like material are stuffed in so as to 
eliminate internal turbulence and create a uniform air output 
from the nozzle plate.

3.2 Heating System and Test Plate Configuration
The test plate is heated by 100 °C (212 2F) steam from the 

bottom of the plate under atmospheric pressure. The steam is 
generated from boiling water, contained in a boiler, heated by 
a 1500 W electric heater element. Its output power is regulated 
by a transformer, commonly known as Variac. Inside the boiler, 
a metal screen is installed just above water level to prevent 
water from splashing and to help the steam uniformly heat the 
bottom of the test plate.

The test plate (cf., Fig. 1-3.3) consists of the heat 
transfer plate, calorimeters, calorimeter insulators, 
thermocouples (copper-constantan T type, diameter is 0.005 in.), 
and the brass support plate. On the heat transfer plate, 
fourteen temperature measurement locations are prepared. One is
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located at the center, the others are distributed around five 
different concentric rings on the heat transfer plate shown in 
Fig.1-3.4. At each location is embedded one calorimeter (cf., 
Fig.I-3.5), at which two thermocouples are installed. In order 
to reduce measurement error of the temperature, silver-based 
high conductivity grease is used to fill in the gaps between 
thermocouples and calorimeters. To obtain a one-dimensional 
heat flux measurement, the calorimeters are surrounded by 
insulators. The heating system and test plate assembly are put 
together into a wooden box with glass fiber stuffed in between 
to prevent heat loss. On the top of the box, an acrylic plate 
is used to cover the space between the edge of the heat transfer 
plate and the edge of the box to ensure a continuous plane that 
will minimize the possibility of forming vortexes. The assembly 
graph is shown in Fig.1-3.3.

3.3 Temperature Measurement System
The temperature measurement system diagram is shown in 

Fig.1-3.6. All the thermocouple wires and one common reference 
junction thermocouple are connected with a set of selection 
switches for selecting each location where the temperature is to 
be measured.

The temperatures are measured by a potentiometer (Leed and 
Northrop made, 7555 type K-5) in conjunction with a 
galvanometer. These pieces of equipment are recalibrated every 
two years to meet the requirement of the National Bureau of 
Standard. The error of the whole measurement system is 
estimated within 0.2 °C to 0.3 eC. The test of accuracy of 
temperature measurement is made by measuring the temperatures of 
boiling water and of an ice bath. A well-charged 1.5 Volt D.C. 
battery and a standard cell (1.01938 Volt) are required for the
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proper function of the potentiometer.

3.4 Operation Procedure
The step-by-step procedures are described as follows :

(1) Load a nozzle plate on the plenum chamber.
(2) Adjust the center line of the central nozzle aligned with 
the center line of the central calorimeter.
(3) Adjust the cross, formed by the nozzles on the nozzle plate 
(cf., Fig.1-3.2), aligned with the cross, formed by calorimeters 
numbered as 10, 11, 12, 13 and 14 on the heat transfer plate 
(cf., Fig.1-3.4) .
(4) Adjust the surface of the nozzle plate parallel to the 
surface of the heat transfer plate.
(5) Set up a specified nozzle-to-heat-transfer-plate distance.
(6) Fill the boiler up with water; set the heater in full power 
until the water is boiling, then turn down the heater at a 
proper setting to maintain water at the boiling state. The 
setting value depends on different tests of cooling rate carried 
out by the jets.
(7) Turn on the air compressor, and set the pressure at 25 psi. 
at the inlet side of the rotameter.
(8) Adjust the rotameter for the specified Reynolds number of 
the test.
(9) Take temperature readings of each thermocouple when the 
system reaches steady state. (It is determined by experiment 
that the steady state should be achieved two hours after 
procedure (8) is completed).
(10) Take readings of the pressure difference, including the 
pressure difference between each side of orifice (Pi-P2), plenum 
chamber and barometric pressure (P3-P0), and downstream of 
orifice and barometric pressure (P2-P0).
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1-4 DATA PROCESSING AND RESULTS
4.1 General Description

The data processing is done by a computer program listed 
in appendix A. It is written in procedures described as follows:
(1) Input data of the temperature readings (in units of milli 
volts).
(2) Convert the temperature readings into degrees Celsius and 
Fahrenheit, according to the copper-constantan T type 
thermocouple conversion table by Omega Engineering Co. [20].
(3) Calculate the average temperature of each ring.
(4) Calculate the heat transfer coefficient of each ring (i.e. 
local heat transfer coefficients).
(5) Calculate the local Nusselt number.
(6) Calculate the average Nusselt number by subroutine (SUBl).
(7) Calculate the actual Reynolds number in the pipe.
(8) Extrapolate or interpolate the Nusselt number to the
corresponding nominal Reynolds number.
(9) Stop.

4.2 Local Heat Transfer Coefficients
Calculating the heat transfer coefficient of each ring on 

the surface of the heated plate is one of the most important
steps of this calculation. At steady state, the heat flux
conducted from the calorimeter is equal to the heat flux
convected by air. The relation can be expressed as follows.

c r „ » d ( i . 30)

were KB is thermal conductivity of the material of the 
calorimeter, and Tjet is the temperature of air leaving the
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nozzle. The temperature gradient is obtained from the ratio of 
the temperature difference between the top (Tt) and the bottom 
(Tb) positions to the distance (N shown in Fig.1-3.5) between 
them.

By Tt, Tb, and Tjet measured from the thermocouples, the 
temperature on the surface of the heat transfer plate (Tw) can 
be found by extrapolating the temperature gradient between Tt and 
Tb.

Tw=Tb+(Tt-Tb) M  (1.31)

where M denotes the distance between the surface of the heated 
plate and the bottom position of the thermocouple (shown in Fig. 
1-3.5). From Eq.(1.30) and (1.31), the heat transfer 
coefficient can be expressed as

T -T
h = c ) d.32)

N  Tjgt

where KB is the thermal conductivity of the calorimeter material 
-Invar (the alloy of iron and nickel, containing 36% nickel with 
minor amounts of manganese, silicon and carbon, amounting to 
less than 1% in all). Its formula (cf., [3] ), a function of 
temperature, used in this calculation is

Ks~l .856+0.00547 8 (T-32) + (3 . 456 8x10-®) T2 (1.33)

where T is average temperature of Tb and Tt in degrees
Fahrenheit.

4.3 Stagnation Point Nusselt Number
After the local heat transfer coefficients have been 

obtained, the local Nusselt number can be calculated by the
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following equation

(1.34)

Where Kair, thermal conductivity of air, varies with temperature. 
The formula used in this calculation is

where T, in degrees Fahrenheit, is an average value from the 
temperature of the jet and the ambient temperature. Compared 
with the table of air properties in Kay's [13], Eq.(1.35) has a 
maximum deviation of 1.3% between 50 °F and 100 °F under one 
atmosphere of pressure.

From Eq.(1.34), the stagnation point Nusselt number (Nu0) 
can be obtained at r being equal to zero. The results of the 
five jets cooling with the nozzle diameter of 6.35 mm, and 9.53 
mm, for various Reynolds numbers and Zn/D, are plotted from 
Fig.1-4.1 to Fig.1-4.8. Each curve, represented by a cubic 
polynomial, in the figures is obtained by using a least squares 
curve-fitting technique (cf., p.534, [5]). The experimental
data points are more scattered corresponding to the larger 
Reynolds number in each figure. The maximum relative deviation 
of the data points to the regression curves are within ±10%.

The results can be summarized by the following formulas: 
For 3sZn/Ds5, the stagnation point Nusselt number formula is

(1.35)

(1.36)

where D0=6.35 mm,
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for D=6.35 mm, F(Cn/D) =0 . 943 (Cn/D) °-08, the formula values 
fit the curves within ±5% , except for the maximum 11% at 
Cn/D=4; for D=9.53 mm, F(Cn/D)=1.0643(Cn/D)-°-09, the 
formula values fit the curves within ±8%.

For Zn/Da7, the formulas are

iVu0/£,=0 . 9 84J?e£''§™5Pr°’* ( )  0,25 (1 .155-0 . 031-^) F(-^) (I . 37)c d  d

for D=6.35 mm, F(Cn/D)=0.946 (Cn/D)0-07, the formula values 
fit the curves within +10% and -2%; and

NuQiD= 2 . 842j?ê ;uo7c55Pr0'4 (^) -°-5<l5 (-̂ -)°-25f(-^) (1.38)

for D=9.53 mm, F(Cn/D)=0.953 (Cn/D)0-07, the formula values 
fit the curves within +10%.

For the diameter of nozzles at 3.18 mm, the size of the 
nozzle plate is reduced to a diameter of 58 mm (named "reduced 
nozzle plate") to avoid the "tunneling problem" (flow 
constricted to a narrow space between the bottom of the plenum 
chamber and the heat transfer plate) [11]. The results obtained 
from the reduced nozzle plate of five jets and nine jets for 
various Zn/D and Cn/D are plotted from Fig.1-4.9 to Fig.1-4.14. 
The maximum relative deviation of the data points to the 
regression curves are within ±10%. The results are summarized 
by formulas as follows:
For Zn/Ds7,

Nu0iD=i . 47 Re^^Pr0-* (1.39)

the formula values fit the curves of five jets within 4 6% 
and of nine jets within -13% to 5%.
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For Zn/Da7

(1.40)

the formula values fit the curves of five jets within ±10% 
and of nine jets within ±11%, except for the maximum -25% for 
Cn/D=4.

The exponent of the Prandtl number, 0.4, in the heat 
transfer correlation shown in the above formulas is used in 
accordance with the theoretical results by Sibulkin [24].

4.4 Average Nusselt Number
The average Nusselt number is found from the following 

equation as.

where Nu(r) denotes a radially dependent function. However, it 
has only six ring average values evaluated from the temperature 
measurement of the fourteen calorimeters. In order to get 
accurate results for the average Nusselt number, a continuous 
function of Nu(r) is expected. The method developed in this 
calculation applies the cubic spline method to generate cubic 
polynomials connecting each ring average Nusselt number in each 
interval. To achieve a smooth and continuous curve, the slope 
and the curvature must be the same for the two polynomials which 
join at a common point. The cubic polynomial for the ith 
interval, which lies between the point (xir yA) and (xi+1, yi+1) is 
represented as

Nu=— —  f *2iiNu (z) zdr 7iR2 Jo (1.41)
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yi=ai (x-Xj) 3+±)j (x-xd) 2 + ci (x-x̂ ) +dd (1.42)

where aif bA, cif di are the coefficients of the cubic polynomial. 
The method of finding those coefficients are explained in 
Gerald's book "Applied Numerical Analysis" [5].

In this calculation, three additional Nusselt number points 
are either interpolated or extrapolated from six measured ring 
average Nusselt number points. The first additional point, 
between the first ring (center) and the second ring, is obtained 
by taking two times the Nusselt number of the first ring and 
then adding the average Nusselt number of the second ring 
divided by three. The second additional point, between the 
fifth ring and the sixth ring, is evaluated by taking the 
average Nusselt number of the fifth ring and then adding two 
times the average Nusselt number of the sixth ring divided by 
three. The third additional point, at the edge of the plate, is 
extrapolated from the straight line formula joining the point of 
the average Nusselt number of the sixth ring and the "second 
additional point". Therefore, a total eight cubic polynomials, 
representing continuous function of Nu(r), are generated between 
eight intervals from nine points.

If r and dr are replaced by x and dx in Eq.(1.41), then it 
becomes

8
Nu= —  Y' f**'1 (x-x^ 3+jbi (x-xd) 2+c1 (x-X}) +cfi]xdx (1.43)

R2 ui J*i

The integral in Eq.(1.43) can be decomposed and rearranged as
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(1.44)

The method introduced above is converted into a computer 
subroutine (SUBl) attached to the main program listed in 
appendix A.

The results of five jets cooling by the nozzle diameter of 
6.35 mm, and 9.53 mm, for the various Reynolds numbers and Zn/D 
are plotted from Fig.1-4.15 to Fig.1-4.22. Each curve, 
represented by a cubic polynomial, in the figures is obtained by 
using a nonlinear least squares curve-fitting technique. The 
maximum relative deviation of the data points to the regression 
curves are within ±10%. The results can be summarized by 
formulas as follows:
For Zn/D<7 , the average Nusselt number is

where Dpl is diameter of the heat transfer plate (154 mm); 
for D=6.35 mm, F (Cn/D) =0 . 84 6 (Cn/D) °'08, the formula
values fit the curves within ±9%; and
for D=9.53 mm, F (Cn/D ) =1. 012 (Cn/D )-°-03, the formula
values fit the curves within ±5%.

(1.45)

For Zn/Da7, the formulas are

Nu n=5 .084i?e; C) 1.226jr( ) (1.46)
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for D=6.35 iran, F(Cn/D)=l .18 (Cn/D)-0-08, the formula
values fit the curves within +3% and -5%; and

Nu^=5 . OQ4Re$;u0cPr (-£-) 1,226 (1.19 - 0 . 0 2 7 ) jr( Ss.) (1.47)Dpi D D

for D=9 . 53 mm, F(Cn/D)=l .082 (Cn/D)’0-055 , the 
formula values fit the curves within +10% and -5%.

The results of five jets or nine jets cooling from the 
reduced nozzle plate, with the diameter of nozzles at 3.18 mm, 
are plotted in Fig.1-4.23 to Fig.1-4.28. The results are
summarized into the formulas which cover the whole range of Zn/D
(i.e. 3 sZn/Dsl5) as follows. For five jets,

1 7. i
NuZ=17 . 3Re£'uBPr 3 (0.858 + 0.047—^) (_JL)i-278 (1.48)' °c D Dpl

the formula values fit the curves of Cn/D=3 or 4 within
±20%, but it does not fit well for Cn/D=2.

For nine jets,

1 r-i
MT^=2 8 . l6i?ec/y0ecPr 3 (0.865 + 0.044-^) (_̂ _)i-278 (1.49)

D Dpl

the formula values fit the curves within ±18%. The exponent of 
the Prandtl number, 1/3, in the heat transfer correlation shown 
in the above formulas is used in accordance with the theoretical 
analysis for the heat transfer of turbulent boundary layer on a 
flat plate at zero incidence (cf., p.299, [22]).
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1-5 DISCUSSIONS
5.1 Stagnation Point Nusselt Number

From observing the figures (Fig.1-4.1 to Fig.1-4.8) of 
stagnation point Nusselt number (Nu0) vs. Zn/D, each curve has 
only one peak where the maximum Nusselt number occurs for the 
corresponding Zn/D. Datta [2] obtained a similar trend that the 
maximum Nusselt number occurred at Zn/D about seven, for the 
experiment of single jet cooling, with nozzle diameters greater 
than or equal to 6.35 mm. Sethi's investigation [23] of fluid 
dynamic behavior for five impinging air jets, with the diameters 
of the nozzles at 6.35 mm and 9.53 mm, has indicated that the 
theoretical dimensionless length of potential core is at Zn/D 
about six. Kaya [14] investigated five jets cooling, with 
nozzle diameter of 6.35 mm, and Cn/D ranged at two, three, four. 
His results reveal that the maximum stagnation point Nusselt 
number has a tendency to peak out at Zn/D within five to seven. 
This phenomenon is explained by Hrycak et al. [11] as the 
combination of turbulence and velocity in the tip of the 
potential core generated by the optimal mixing effect at the 
center jet.

In the present experiment, some features of five jets 
cooling, for the nozzle diameters of 6.35 mm and 9.53 mm, are 
observed as follows:
(1) The maximum stagnation point Nusselt numbers are found to 
occur at Zn/D within 4.5 to 6.5. This fact incorporated with 
Sethi's investigation proves that the maximum heat transfer 
occurs at the tip of nominal potential core.
(2) For the same nozzle plate, the location of the maximum 
Nusselt number corresponding to Zn/D will increase with
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increasing the Reynolds number. This trend also meets with that 
of Sethi's investigation which indicates the length of potential 
core increasing with the Reynolds number (cf., pp.72-73; pp.80- 
81, [23]).
(3) The exponent of the Reynolds number in heat transfer 
correlation is 0.5 within the potential core (i.e. 3sZn/Ds7), 
which is supported by Sibulkin's theoretical result [24]. 
Outside of the potential core (i.e. 7sZn/Ds;15), the exponent of 
the Reynolds number in heat transfer correlation is 0.5755. 
This fact indicates that the turbulent flow has started even at 
the stagnation point [11].
(4) A weak function of Cn/D in heat transfer correlation is 
found at the range of Zn/D from three to fifteen. This is shown 
in Fig.1-5.1 and Fig.1-5.2, which are plotted by scaling from 
the Reynolds number of 26,000, 35,000, 54,000 (abbreviated as 
26k, 35k, 54k in the figures) down to the Reynolds number of 
14,000. This fact can be interpreted as that the effects of 
fluid mixing do not rely strongly on changing the spacing of the 
nozzles.
(5) Compared with the results of the stagnation point Nusselt 
number from single jet cooling [2] (shown in Fig.1-5.3 and 
Fig.1-5.4), the results of five jets cooling (shown from Fig.I-
4.1 to Fig.1-4.8) do not increase proportionally with increasing 
the mass flow rates. For the diameter of 6.35 mm nozzles, the 
results of single jet cooling are about 10% lower than the 
results of five jets at Zn/D from three to nine; and then the 
results are close to each other at Zn/D from nine to fifteen. 
A similar trend is found for the diameter of 9.53 mm nozzles 
except Cn/D of two. This fact indicates that the flow pattern
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around the stagnation point of both the single jet cooling and 
the five jets cooling cases are similar to each other.

For the reduced nozzle plate, with five jets and nine jets, 
the diameter of nozzles at 3.18 mm, the repeatability of the 
experiment has not been well examined. However, from the 
results of the limited tests, some features are observed to be 
different from those with 6.35 mm or 9.53 mm nozzles. They are 
: (1) The maximum Nusselt number seems to occur at the smaller
Zn/D. (2) The exponent of the Reynolds number in heat transfer 
correlation is 0.5 within the full range of Zn/D. These 
findings can be interpreted as that the length of potential core 
is shorter and the mixing effect is weaker for the case with
3.18 mm nozzles.

5.2 Average Nusselt Number
From observing the figures (Fig.1-4.15 to Fig.1-4.28) of 

average Nusselt number vs. Zn/D, each figure has at least two 
curves associated with two different Reynolds numbers. 
Therefore, the relation of the Reynolds number's exponent to the 
average Nusselt number can be calculated. This relation for 
multiple jets cooling has been suggested by Gardon and Cobonpue
[6] as 0.623, by Martin [19] as 0.67, and by Behbahani and 
Goldstein [1] as 0.78. According to the theoretical result of 
heat transfer in turbulent boundary layer on a flat plate at 
zero incidence (cf., p.299, [22]), the exponent of Reynolds
number in heat transfer correlation is ‘0.8.

The dependence of Zn/D and Cn/D is shown from Fig.1-5.5 to 
Fig.1-5.6. In order to summarize their effects, the figures are 
shown by scaling the results from different Reynolds numbers to
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the nominal Reynolds number of 14,000 (abbreviated as 14k in the 
figures).

In the present experiment, for five jets, with the nozzle 
diameters of 6.35 mm and 9.53 mm, some features are observed as 
follows:
(1) The exponent of the Reynolds number in heat transfer 
correlation is 0.7 within the full range of Zn/D. This is 
within the range between the experimental results by the 
previous mentioned investigators [1,6,19] and the theoretical 
results in turbulent boundary layer [22].
(2) The Zn/D dependence of average Nusselt number for 6.35 mm 
nozzles is not noticeable. However, for the nozzles of 9.53 mm, 
the average Nusselt number curves have a peak at about Zn/D at 
seven and then start to decrease with Zn/D greater than seven. 
This reason may be explained in (4) as follows.
(3) The average Nusselt number increases with the increasing of 
the nozzle diameter. This is due to the increasing of mass flow 
rate of air.
(4) The dependence of Cn/D in heat transfer correlation is 
weak. However, for the nozzle diameter of 6.35 mm and Zn/D from 
three to seven, the average Nusselt number seems to increase 
with the increasing of Cn/D. This phenomenon may be caused by 
the stronger mixing effect created by the peripheral nozzles at 
the larger spacing of nozzles. For the values of Zn/D from 
seven to fifteen, the average Nusselt number seems to decrease 
with the increasing of Cn/D. The reason may be the "limited 
size of the heat transfer plate" which is unable to take the 
benefit of heat transfer by the entrainment effect of the 
peripheral nozzles at the larger Cn distance. For the nozzle
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diameter of 9.53 mm, the average Nusselt number decreases with 
the increasing of Cn/D values even at Zn/D from three to seven. 
This may be caused by the distance of Cn for the nozzle plate 
with diameter of 9.53 mm nozzles is larger than that for the 
nozzle plate with diameter of 6.35 mm nozzles at the same Cn/D 
values. The reason of "the limit size of heat transfer plate" 
seems to apply.
(5) Compared with the results of single jet cooling [2] (shown 
in Fig.1-5.7 and Fig.I-5.8), the results of five jets cooling 
(shown from Fig.1-4.15 to Fig.1-4.22) increase only about 20% to 
50%. Therefore, the method of superposition from the results of 
single jet cooling is not directly applicable.

For the reduced nozzle plate, with five jets and nine jets 
respectively, and the nozzle diameter of 3.18 mm, the exponent 
of the Reynolds number in heat transfer correlation is 0.58 
which is less than that of the five jets with the nozzle 
diameters of 6.35 mm or 9.53 mm. This indicates the turbulent 
effects are less strong for this small diameter nozzle than that 
for the other two large diameter nozzles.
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1-6 CONCLUSIONS
6.1 Stagnation Point Nusselt Number

The theoretical heat transfer analysis at the stagnation 
point in the stagnation flow shown in Eq.(1.27) can only be fit 
closely to the experimental results of five air jets. However, 
the modified theoretical equation, Eq.(1.28), combined with 
Sethi's experimental results shows an improvement; but it is 
still below the results of this investigation by about 28% to 
40%. The experimental results of single jet cooling do not 
increase proportionally (i.e. as the effects of superposition) 
with the results of five jets. The increments of five jets 
cooling are about 10%, comparing with single jet cooling, for 
the Zn/D from three to nine. Beyond the Zn/D of nine, the 
results are close to each other.

The exponent of the Reynolds number, 0.5, in heat transfer
correlation derived by the theoretical analysis fits well with 
the experimental results within the potential core of the jets. 
Beyond the distance of the potential core, the exponent of the 
Reynolds number becomes 0.5755 for the nozzle diameters of 6.35 
mm and 9.53 mm, but remains at 0.5 for the reduced nozzle plate 
with the nozzle diameter of 3.18 mm.

The experimental results show that the Zn/D dependence is 
very noticeable, but Cn/D dependence is not very noticeable. 
Higher values of Nusselt number are observed for Zn/D within the 
potential core than that for Zn/D beyond the potential core. 
The maximum Nusselt numbers occur at Zn/D within 4.5 to 6.5 for
the nozzle diameters of 6.35 mm or 9.53 mm. The stagnation
point Nusselt numbers are always larger than the average Nusselt 
number for the same experimental set-up. The empirical formulas
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in terms of Reynolds number, Prandtl number, Zn/D, Cn/D and 
dimensionless nozzle ratio D/D0 are obtained.

6.2 Average Nusselt Number
For the average Nusselt number, this investigation shows 

that the exponent of the Reynolds number in heat transfer 
correlation is 0.7, with the nozzle diameters of 6.35 mm and 
9.53 mm. This result is in good agreement with the analytical 
result, 0.8, for the heat transfer in a turbulent boundary layer 
on a flat plate. However, an exponent of the Reynolds number of 
0.58, for the reduced nozzle plate with the nozzle diameter of
3.18 mm, is obtained from this investigation.

The experimental results show that the Cn/D dependence is 
weak in the empirical equations which are expressed in terms of 
Reynolds number, Prandtl number, Zn/D, Cn/D and D/Dpl. The 
results of five jets cooling are increased about 20% to 50% when 
they are compared with the results of the single jet cooling.

6.3 Recommendations
(1) Larger diameter of the nozzles, say diameter of 12.7 

mm, may be worth testing to see if the trends of heat transfer 
are consistent with the fact found in this experiment.
(2) The exponent of the Prandtl number can be examined by 
changing to a different heat transfer fluid which has not been 
done in this experiment.
(3) Heat transfer tests under more jets are worth trying.
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PART II FREE CONVECTION OF A FINITE SIZE DOWNWARD-FACING 

HEATED HORIZONTAL ROUND PLATE

II-l INTRODUCTION
1.1 General Introduction and Research Objective

The free convection is caused by the density difference of 
the transport medium in the gravitational field. In this case, 
the density of the heated medium under the plate is smaller than 
that of the surrounding medium. Therefore, the heated fluid 
would flow from the central region toward the edge of the plate 
along the surface and induce unheated fluid flowing from the 
deep bottom to the central region, also known as the stagnation 
region. The flow pattern of this type is shown in Fig.II.1.1.

It seems that this problem has received less attention in 
the natural convection heat transfer field [44]. However, its 
applications still can be found in industries such as in nuclear 
power generation [52] and glass tempering processes [47]. In 
the theoretical point of view, it is always expected that an 
analytical solution for this physical phenomenon would be found. 
The difficult points appear to be the finite size of the plate 
making it difficult to determine the thickness of the boundary 
layer at the edge of the plate, and that the governing equations 
are strongly-coupled.

In this study, a mathematical model is suggested as valid 
for the laminar flow, of single plume type, at steady state, 
around the central region of the plate, and for the moderate 
range of the Prandtl numbers of fluids (i.e. 0.7*;Prss5). The



35
velocity and the temperature distributions are obtained by 
solving the Navier-Stokes and the energy equations with the 
thermal boundary conditions both prescribed at approximately 
constant surface temperature and constant surface flux beneath 
the center of the plate. Heat transfer formulas for the 
vicinity of the stagnation point and the approximate average 
heat transfer formulas are presented.

1.2 Previous Studies
The investigation of heat transfer for a downward-facing 

heated plate for laminar flow started experimentally by 
Saunders, Fishenden and Mansion [51] in 1935. They tested a 
rectangular plate heated in air. In the same year, Weise [58] 
did a similar test of a square plate heated on both sides. From 
their investigation, the heat transfer correlation was shown as

_i

Nu=cRa 4

A theoretical approach by an integral method based on the 
boundary layer approximation was introduced by Levy [48], and 
Wagner [56], In 1969, Singh et al. [54] published both 
theoretical and experimental results with the Prandtl number 
being equal to 0.7. In their theoretical works, two-dimensional 
flow and an integral method with boundary layer approximation 
were used to deal with infinite strip, circular plate, and 
square plate. The boundary layer thickness at the edge of the 
plate was assumed to be zero. The heat transfer correlation was 
suggested as
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Nu=cRa 5

Their experimental results confirmed the 1/5 power correlation, 
but the experimental results were higher than analytical ones.

Clifton et al. [33] introduced a method, adopted from 
hydraulics of an open channel, to estimate a critical boundary 
layer thickness at the edge of the plate in an integral analysis 
using a two-dimensional flow. But their experimental results 
show a 1/4 power of the Rayleigh number different from his 
analytical formula in heat transfer expression.

Chen [31] introduced a differential formulation of two- 
dimensional flow in Cartesian coordinates. His theoretical 
analysis supported the 1/4 power of the Rayleigh number in heat 
transfer correlation.

Birkebak et al. [28] reported experimental results for a 
square plate in water. Their results had good agreement with 
Singh's [54] analytical results.

Aihara et al. [26] concluded from their experimental work, 
for rectangular plates in air, that the similarity solution 
could not be obtained at the edge of the plate, but may be 
obtained in the stagnation region. Their heat transfer 
correlation result was similar to Fujii and Imura's [37] 
experimental result for a square plate in air. The 1/5 power of 
the Rayleigh number in heat transfer correlation was shown to 
apply.

Fujii and Honda et al. [38] did a theoretical analysis 
based on an integral method for a wide range of the Prandtl
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numbers of the fluids (i.e. 0.001sPr<«>) , for an infinite strip, 
square plate, and circular plate. The 1/5 power of the Rayleigh 
number in the heat transfer formula was suggested.

Restrepo and Glicksman [50] made a test of heat transfer 
rates with different extension at the edge of plate. Their 
reports showed the average Nusselt number was highest for the 
plate with vertical heated extension, higher for the plate with 
vertical cooled extension, and lowest for the plate with 
horizontal adiabatic extension. The 1/5 power of the Rayleigh 
number in heat transfer correlations were observed in all cases.

Faw and Dullforce [34, 35] used holographic interferometry 
measurement to investigate the heat transfer rate and 
temperature distribution for square plate and circular plate. 
They adopted Singh's [54] method to analyze their experimental 
data. The average Nusselt number expression for circular plate 
had very good agreement with Singh's result.

Hatfield et al. [43] summarized their experimental data 
into a new type of heat transfer correlation formula which 
included edge and aspect ratios for different test plates.

Goldstein et al. [39] formulated the problem in the 
differential form and solved it by a finite difference method. 
Two-dimensional flow under an infinite strip was studied.

Schulenberg [52, 53] studied this problem theoretically by 
a differential formulation based on simplified governing 
equations. Two thermal boundary conditions, constant surface 
temperature and surface flux, were analyzed for both very large 
Prandtl number and very small Prandtl number fluids. His
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analysis covered both infinite strips and circular disks. The 
average heat transfer correlations were suggested at 1/5 power 
of the Rayleigh number for the constant surface temperature case 
and at 1/6 power of the modified Rayleigh number for the 
constant flux case, even though his analysis was based on the 
stagnation region.

Gryzagoridis [40] suggested, from his experimental data, 
that the formula of heat transfer correlation should not be 
dependent only on the Rayleigh number, but also on the 
temperature difference between the surface and the ambient 
region.

Chang et al. [30] published a theoretical analysis for a 
rectangular plate in air. Their results supported the 1/4 power 
of the Rayleigh number in the heat transfer correlation.

Hrycak [44, 45] published an analytical results for
circular plates for fluids at moderate Prandtl numbers. A new 
free constant was introduced in heat transfer correlation to 
match experimental analysis; the 1/4 power of the Rayleigh 
number in heat transfer formula was found to apply.

The results of the past studies are listed in Table II-l.l. 
The characteristic length of the Nusselt number and the Rayleigh 
number are the side length of a square plate, the width of a 
rectangular plate, the width of an infinite strip, or the radius 
of a circular plate respectively. Those formulas, based on the 
half side length, in the original documents, are converted into 
full side length here. An asterisk, * , is used to denote the 
converted formulas.
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II-2 MATHEMATICAL MODEL OF DIFFERENTIAL FORMULATION

The appropriate governing equations for three-dimensional, 
axisymmetric, steady state, laminar flow are still the 
continuity, the Navier-Stokes, and the energy equations. 
However, in the case of natural convection, the density cannot 
be treated as constant, because density variation combined with 
gravitational force is the primary cause of fluid motion. If 
density is treated as a function of temperature in each 
direction of the momentum equation, the governing equations 
would be more complicated. Therefore, the Boussinesq 
approximation is used to treat density as constant in all terms 
except the buoyancy term in the governing equations [27, 41]. 
Following these simplifications, the governing equations for 
natural convection in cylindrical coordinates with the 
gravitational vector parallel to the z-axis are usually written 
as follows [41].

The momentum equation of the angular coordinate is 
neglected due to the axisymmetric flow. The contribution of 
heat transfer is mainly dependent on the fluid flowing parallel 
to the surface of the plate and the dominant term in the z- 
direction momentum equation is the pressure differential term 
which is related to buoyant and gravitational forces. Therefore,

7T + —  + ̂ T =0 dr r az (II.1)

—  4^+v ( p dr
d2u + _1 du + ffu

(II.5)



the z-direction momentum equation, Eq.(II.3), can be simplified 
as

0 = - A - f P - g r p  ( r - T Jp dz (II.6)

Integrate Eq.(II.6 ) and assume the pressure would not vary 
beyond Z0 which is the vertical distance away from the plate. The 
pressure near the surface of the central region of the plate (PB) 
can be approximately expressed as

where Z0 also represents the place where the temperature is equal 
to the ambient temperature (T„) . Z0 may be assumed to be 
proportional to the radius of the plate as

where m denotes a proportional constant, to be determined by 
experiment. In order to transform the partial differential 
equations into O.D.E.s, the unknown temperature distribution may 
be assumed in certain forms which will be discussed in the 
following sections.

2.1 One Assumed Function in Temperature Distribution
2.1.1 Prescribed Surface Temperature Case

The temperature distribution should be a dependent variable 
of two independent coordinates, r and z. Therefore, an 
assumption of separation of variable can be applied. From 
observation of the streamlines and isothermal lines beneath the 
downward-facing heated plate [26, 28], the temperature
distribution underneath the plate may be assumed to be of a 
parabolic shape, such as

Ps~Pm+pgV(T-TjZ0 (II.7)

Z0 = m R (II.8 )

T-Tm (II .9)

where Twc denotes the wall temperature at the center of the 
plate. The rj, the similarity variable or vertical dimensionless 
coordinate, can be assumed as
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*1 = v (11.10)

where " a " is a free constant, to be determined by scaling of 
the momentum equation. Let's choose the Stokes stream function, 
VP, in three-dimensional and axisymmetric flow to be

Y=v/av‘ r2f (t) ) (11.11)
Hence, the velocity components can be expressed as [58].

u=±]W=arf/( r|) r dz (II.12)

w=~ —  ̂ -  = -2^av f(r)) 
r or

(II.13)

where u, w denote the velocity components in radial and vertical 
down directions respectively; the prime " ' " denotes the
differentiation with respect to r]. The partial derivative terms 
in the momentum equations can be derived from Eq.(11.12), and 
Eq.(11.13). They are

Sw

&u _n . du_
a ?  ai M rf'" {T]) ;

r _ fl2W  „ 8 W  S 2 w  _

IF ' ar1 '"3z a ^ - 2aN

(11.14)
I f H  n)V

With relations in Eq.(11.12), (11.13), and (11.14), the
continuity equation, Eq.(II.l), is satisfied. From Eq.(II.7), 
(II.9), the pressure derivative with respect to r is

(11.15)

Substituting Eq.(II.8 ) and multiplying (R2v2) in both the 
numerator and the denominator of Eq.(11.15), it becomes

- A j E = r CTGr«v29 (,i)p dr R*
(II•16)
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Set a2=(m GrR v2)/R4, hence

_a
v

(mGrR) * 
R (II.17)

— -f^=a2r6 (r|)p dr (II.18)

where GrR is the Grashof number based on the characteristic 
length, R, the radius of the plate. With the relations in 
Eq.(11.14), (11.18), the momentum equation in radial coordinate 
(i.e. Eq.(II.2)) can be transformed into

f" [r\ ) +2f (t|) £" (n) (ti ) 2+0 (ri) =0 (II.19)
With the temperature distribution in Eq.(II.9), the partial 
derivative terms in energy equation, Eq.(II.4), are derived as

_a
v

(11.20)

A 2JL= (T -T ) (1- dz2 ^ -̂ -7 )6//(t1) —2R V

From Eq.(11.12), (11.13) and (11.20), the energy equation,
Eq.(II.4), and dissipation function, Eq.(II.5), are then 
transformed into

-aif' (t) ) 0 (t) ) -̂ --2s[a\ f (T)) 0y (r)) * 
R2 \

2 Q . ,, I2 a

T*(1-———r )2 R‘
=«[-_^ 0 (n) + (i-

R 2R
) e" ( t] ) —  ] + — — r" v j Cp(Twc-Tj

3
[12a2 f' (r|) 2+r2-̂— f"(r\) 2] ‘ v

(1 1 .21)

The coefficients of the r° and r2 terms in the right hand side of 
Eq. (11.21) should be equal to those in the left hand side. 
Therefore, two equations would be derived from the energy
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equation. However, around the stagnation point (i.e. r close to 
zero), the r2 terms can be neglected. Hence, collecting r° terms 
leads to

-2af (t|) 0' (t|) =a [--^-0 (t]) +0" (t|) ̂ ] + — — —  [I2azf' (rj) 2] (11.22)
R2 v Cp[Twc-TJ

Rearranging Eq.(11.22), it becomes

0//(ri) +2 Prf(r\) Q1 (ri) 2 6 (n) +12 PrEcf' (n) 2=0 (11.23)
y/mGrR

where Pr denotes the Prandtl number, a fluid property; Gr 
denotes the Grashof number, a parameter describing the ratio of 
buoyancy to viscous force; and Ec denotes the Eckert number.
The magnitude of the product Pr Ec is a parameter of the
importance in viscous dissipation; its value is small in most
natural convection cases for fluids with the moderate Prandtl 
numbers (i.e. 0.7<Pr<5) [27]. In this present geometry, for
instance, the radius can be made to vary within the range from 
15 mm to 80 mm and the temperature difference between the hot 
surface and the surrounding fluid is approximately 80 °C. The 
order of magnitude for the Grashof number is about 104 to 106. 
Hence, the last two terms of Eq. (11.23) can be neglected, 
becoming

6//(Tl)+2Prf(Ti)0'(Ti)=O (11.24)
Looking at Eq.(11.19) and (11.24), one can realize they are 
strongly coupled equations, which means both function f(r|) and 
0 (1]) are involved in the momentum and energy equations. 
Substituting Eq.(11.19) into Eq.(11.24), a fifth order, 
nonlinear, ordinary differential equation can be obtained as

f {5) (rj) +2 (1 + Pr) f (i]) f (4) (ii) +2^(11) f//7(ti) +ZPrf(x))2f/"(r\)=Q (11.25)
The boundary conditions are:

(i) at i) = 0 : w = 0 ,  u = 0, T = surface temperature,
(ii) at i] = i]*, : w = finite constant, u = 0, T = T*.

With relations in Eq.(11.12), (11.13), and (II.9), the boundary
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conditions for f (r)) and 0 (r|) are

(i) at r] = 0 : f(0 ) = 0, f'{0 ) = 0, 0 (0 ) = 1,
(ii) at T) = r). : f(*la,) = constant, f' ( )  = 0, 0 ( )  = 0. 

The boundary conditions for 0(T]) can be converted into f(r|) 
associated conditions by using Eq.(11.19). Hence, 0(O)=1 is 
equivalent to f'''(0 )=-l, and 0 (r)oo)=O is equivalent to
f "' ("n-) =° -

In order to solve Eq. (11.25), it may be decomposed into 
five coupled first-order O.D.E.s. Let's set U1=f(r|), U2=f'(r|), 
U3=f"(r|), U4=f'''(ri), U5=f(4) (r)), then Eq.(11.25) becomes

ui=u2 
ui=u3
ui = u< (11.26)

Ui = ~2 (1 +Pz) £71U5-2I72t74-4PrC712t74

The boundary conditions for Eq.(11.26) are
(i) U^O) = 0 , U^u) = constant
(ii) U2( 0 ) = 0 , U2 ( T| *) = o,
(iii) U3(0 ) = unknown, U3(r|oo) = o,
(iv) U4 ( 0 ) = -1 , U4(iioo) = o,
(v) U5(0) = unknown, U 5 (r|oo) =  0 .

2.1.2 Prescribed Constant Surface Flux Case
In this case, the thermal boundary condition, the heat flux 

of the plate, is prescribed to be constant. The temperature 
distribution is assumed as

t - t „ =  QwR  r e (n )  d - - ^ )  ( i i . 2 7 )
K{mGrR) T

where qw denotes heat flux at the wall, of the plate; Gr*R=(g(3qw 
R4)/(Kv2) denotes the modified Grashof number. The procedures of 
mathematical formulation are the same as the prescribed surface 
temperature case in section II-2.1.1. Use the same Stokes 
stream function as Eq.(11.11), and similarity variable as in
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Eq. (11.10), but the free constant " a ", under a new scaling 
condition, is modified to

a-— (mGrR) 5 ,and 
R2

  _i
a _ (mGrR) 5 
v R

(11.28)

The governing equations can then be transformed into the same 
forms as Eq.(11.19), and (11.24). Therefore, Eq.(11.25) and 
(11.26), valid around the stagnation point, are the same for 
this case. However, the thermal boundary condition would be 
changed as shown in the following:

g ( heat flux in the plate center )
= -K-dTd z

= -K-

_ „dT 
z-o sn
«T*K

K{mGrR)1/s
--&(0)qw

T1 = 0

e'(o)
0T1
dz

_a
v

(11.29)

Hence, the boundary conditions are
(i) at r| = 0 : f (0) = 0, f'(0) = 0, 0'(O) = -1,
(ii) at r) = :f ( )  = constant, f' (r\x) = 0, 0 '(r|x) = 0 .

Taking the derivative of Eq. (11.19) with respect to i], and 
substituting 0'(O)=-1 into it, then f(4) (0 ) =-0 ' (0 ) =1. Changing 
the boundary conditions from f(0 ) and its consecutive 
derivatives to IM0), U2(0), U3(0), U4(0), and U5(0), the
conditions corresponding to the governing Eq.(11.26) become

(i) U1(0) = 0 , Ux (■»!«) = constant,
(ii) U2 (0) = 0 , Ujtri.) = 0,
(iii) U3 (0) = unknown, U3(ii„) = 0,
(iv) U4(0) = unknown, IMr]*) = 0,
(v) U5( 0 ) = 1 , U5(ri.) = 0.

2.2 Two Assumed Functions in Temperature Distribution
2.2.1 Prescribed Surface Temperature Case
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In previous sections, the terms with r2 in energy equation 

are neglected by assuming r close to zero, which is interpreted 
as being concerned with the heat transfer in the vicinity of the 
stagnation point only. In this section, the solutions attempt 
to include the previous dropped terms. This is done by using a 
temperature distribution expressed as follows.

T~T~ ^ ( r ) ) — ^ - e 2 ( n )  ( 1 1 . 3 0 )
Tw -Tm 2 R2

Using the same transformation method, introduced in section 
II.2 .1.1, the momentum equations are transformed into

f'" (rj) +2f{r\ ) (r)) -£'(t)) 2+02 (t) ) =0 (11.31)
Two equations, one from the coefficients of r° terms, the other 
from the coefficients of the r2 terms, are obtained from the 
transformation of the energy equation. They are

0i(Ti)+2Prf(Ti)0i(Ti)=O (11.32)

0" (r)) -2Pr [02 (n) Jf'tTi) -02 (Tl) f (T|) ] =0 (11.33)
Eq.(11.31) and (11.33) can be combined as follows.

f (5) (r|) +2 (1+Pr) if (r|) f  U) ( r ) ) +2 ( l -Pr )  f  (t)) ? "  (r|) (11.34)

-4Prf (t) ) f' (t) ) f" (t) ) +2Prf' (t| ) 3+4Prf(r\) 2f'" (t) ) =0 
The boundary conditions are
(i) atr) = 0 : f (0) = 0, f'(0) = 0, 0i(O) = 1, 0 s02(O)s 1,
(ii) at ri=ri» : f (r\a) constant, f ' (̂1„) = 0, 0 x „) = 0, 02(ru) = 0. 

The values of 02 (0) vary from zero to one, representing a
constant wall temperature at 02(O)=O and the different shapes of 
parabolic wall temperature up to 02(O)=1. At 02(O)=1, the case 
is similar to that discussed in section’ II.2.1.1, but the terms 
of the energy equation are better incorporated than the previous 
case. Let's set U^ffri), U2=f'(',l)/ U3=f "(■»!)/ U4=f'''(r|)f
U5=f(,1) (i)) , then Eq. (11.34) becomes
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ui=u2 
ui=u3
f U‘ (11.35)ui = u5
u£ = -2 (1+Pr) UyUs-2 (1 -Pr) U2U4 

+4PrU1U2U3-2 Pr ui - 4 Pr ul

The corresponding boundary conditions for Eq.(11.35) are
(i) U3 (0) = 0 , IMrj,) = constant,
(ii) U2 (0) = 0 , U2(ri„) = 0,
(iii) U3(0) = unknown, U3(r)=0) = 0,
(iv) 0 sU4(0)s -1 , IMri.) = 0,
(v) U5(0) = unknown, UjCr]*) = 0.
After the solution of f(r|) satisfying the above boundary 

conditions is determined, Eq. (11.32) can be solved for 02 (i")) . 
Eq.(11.32) is identical with Eq.(1.16) in Part I. Therefore, 
the solution can be expressed as

0X (t|) =1-
/*tj -2Prf f(s)ds
I e Jo dt 
Jo

rJo

(11.36)
dr\

and then

ei(o)=--
fJo

• -2Pr[''f(s)ds
e Jo dri

(11.37)



48
II - 3 NUMERICAL SOLUTION 
3.1 Numerical Calculation Scheme

The most common method used for solving sets of coupled 
first-order O.D.E.s like Eq.(11.26), or (11.35) is the Runge- 
Kutta method. The method applied in this calculation, having 
truncation error of step size to the order of four, is commonly 
known as the fourth-order Runge-Kutta method. Its derivation, 
from series expansion, is shown in "Introduction to Numerical 
Analysis" [36]. The algorithm of this method is adopted from 
Burden's book "Numerical Analysis" [29].

In order to start the procedure of calculation, five 
initial conditions should be given. But in each of the boundary 
conditions, two initial conditions at r)=0, besides the three 
conditions given, must be guessed to satisfy the boundary 
conditions at r̂ . If not satisfied, a criterion is needed to 
adjust the initial guess to improve the agreement in successive 
iterations. This method of adjusting guessed initial values to 
satisfy the boundary conditions at another end is known as the 
shooting method [29]. The criterion used in this calculation to 
improve the initial guess in successive iteration is Newton's 
method [27]. Taking Eq.(11.26) and its boundary conditions as 
an example, the shooting method is briefly explained as follows:

An error (e) is defined as a selected function value at 
r|=i|oo, (i.e. Û ri*) or U2 (•»]„) ••• Usfrj,) ),• generated by arbitrary 
initial values. Therefore, it is obvious that the error (e) is 
a function of the guessed initial values, g. A series expansion 
of e(g) from the first guess gives



49

e(g)~e1+(-i^)1Ag (11.38)

where Ag denotes the difference between the first guess and the 
following guess. By this algorithm, the error e(g) is getting 
close to zero during successive iteration. Therefore,
Eq.(11.38) can be solved for Ag by Newton's method

Ag

* 9^ 9— r w f — ( I I -39)
I dgk

The improved guess can be expressed with the above increment as
g = gi + Ag (11.40)

The FORTRAN program used to solve Eq.(11.26) along with 
its boundary conditions, is listed in appendix B. In the 
program, the error e(g) is defined as

ERR = U2R - GIVE (11.41)
where U2R represents the value of f'(r|x), and "GIVE" represents 
the required boundary condition. The U2R in Eq.(11.41) may be 
replaced by U3R, U4R, etc.. The algorithm of Eq.(11.39) and 
(11.40) are written in the FORTRAN program as

DU3I=- ERR

DU5I=~-

(ERR-ERR1) * (U3I-U3I1) (II 42)
ERR

(ERR-ERR1)*(U5I-U5I1)

and U3I = U3I + DU3I
U5I = U5I + DU5I (11.43)

where U3I, U5I represent the guessed initial values of U3 (0) and 
U5(0) respectively; U3I1, U5I1 denote the preceding initial 
values; and ERRl is their corresponding error value. The
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iteration can be set to stop at the convergence criterion

| ERR| s ESP = 10-5 (11.44)
For the prescribed heat flux boundary condition case, U3(0) and 
U4(0) are the initial values to be determined by the shooting 
method. Therefore, DU5I, U5I, U5I1 in Eq.(11.42), (11.43)
should be changed into DIM I, U4I, U4I1, respectively, in the 
computer program. It should be mentioned that the FUNCTION 
SUBROUTINE "E" of FORTRAN listed in appendix B is subject to 
change for the corresponding differential equations to be 
solved.

In numerical computation, a proper step size Arj and an 
appropriate ri*, value must be determined, usually by a trial-and- 
error approach along with the shooting method. Try to use a 
small value of r]* (say, r|00=5 or smaller) and a comparatively 
large step size (say, Ar|=0.1 or larger) at the beginning. After 
a trend for the solution is observed, then successively increase 

or reduce step size, if it is necessary, until the boundary 
conditions along with their respective smooth conditions at rj=v|* 
are satisfied within the range of specified tolerance. The 
tolerance, e, is set equal to the order of magnitude at 10"3 in 
this calculation. The formula for this criterion is expressed 
as

\jf' (t|) 2 + f^ (ti ) 2 + fl// (r|) 2 + f (4) (r|) 2 -e (11.45)
After ri* is determined, a check of the effect of the step size, 
Ar| on the specified initial values, determined by the shooting 
scheme, should be made. The procedure is followed by reducing 
the previous step size by one half until the absolute error 
between previous and consequent solutions is less than 10'4. 
Followed by these procedures, the numerical results in this
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dissertation are calculated at the step size Ar|=0.01.

In the case of two assumed functions in the temperature 
distribution, an additional equation for 61(11), Eq. (11.36), 
should be integrated numerically. The numerical integration 
algorithm used in this computation is based on the trapezoidal 
and Simpson's rules (29], which are written into a FORTRAN 
program listed in appendix C. The step size for integration is 
adjustable by user to match with that of function f(rj).

The Convergent Technology's mini computer system is used 
for numerical computation. The obtained results are checked by 
a VAX 8800 system along with the Runge-Kutta method in IMSL 
mathematical software. The maximum deviation of the results 
obtained from the two computer systems is within 10-6.

The more recent methods for determining guessed initial 
values are worth referring to. They are the modified Newton- 
Raphson method [32] and the Nachtsheim-Swigert method [49].

3.2 Heat Transfer Formulas and Numerical Results
3.2.1 One Assumed Function and Prescribed Surface Temperature 

Case
The heat transfer formula is commonly expressed in relation 

with the Nusselt number and the Rayleigh number. In this case, 
the temperature distribution is assumed in Eq.(II.9). By the 
Fourier law of conduction, the heat flux can be derived as

Qw dz
_ r dT

z=0_  * 1 n=o
in
dz

= -K(Twc-Tj (1- ^  -iwGrx) ‘
(11.46)

2R‘ R

If r is small, around the stagnation region, then
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_i
qWG=-KlTWB-Tm)&'l0) {rnGrRR) * (11.47)

The Nusselt number around the stagnation region is

NUr=~Tj^ J K  = ~6'{0) (/nGr*>^ (11.48)

The average heat flux over the entire plate, based on the 
expression in Eq.(11.46), is given by

— _ 1 CR
1iR

—  l rR 
Qw= — rj I 2*rqwdr

71i? J0

Q/. . 2K(TWC-Tj (mGrR) 4 rJ . rz . ,= -6'(0)-----^ — =----- ^--- | r(l--^-)dr 11.49
R 3 Jo 2R

_i

= __3 e/(o) K ( T ^ ~ T J  { m G r ^  '4 R

Therefore, the average Nusselt number formula is

(rJ ^ )iC=~ T e/(0) (11.50)

The numerical solutions of Eq.(11.26) with its boundary 
conditions, obtained by the numerical method introduced in 
section II-3.1, are shown from Fig.II-3.1, to Fig.II-3.3, and 
from Table II-3.1, to Table II-3.3, for Pr=0.72, 1, and 5
respectively.

Differentiating Eq. (11.19) with respect to 7], it becomes

f (4) (n) +2/ (r|) f,n (r)) +0/ (T)) =0 (11.51)

From the above Eq. (11.51), the following relation at 11=0 is 
obtained : f(4) ( 0 ) =-0 ' ( 0 ) . The values of f(4)(0) are 0.46202,
0.51854 and 0.86691 for Pr=0.72, 1, and 5, respectively. These
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results can be summarized and substituted into Eq.(11.48), then 
the Nusselt number formula at the stagnation region becomes

_i

Nur=0 .519Pr0-01 (mRaR) * (11.52)

and the average Nusselt number formula becomes
_i

MT^=0 .389Pr0-07 {mRaR) 4 (11.53)

where " m " should be determined by experiment.

3.2.2 One Assumed Function and Prescribed Constant Surface Flux 
Case
In this case, the temperature distribution is assumed in 

Eq.(11.27). According to Newton's law of cooling, the heat flux 
can be expressed as

qw = h(Tw - Tk) (11.54)
where qw=constant, Tw and h are not constant but functions of r. 
From Eq.(11.27), the wall temperature at the stagnation point 
can be expressed as

 - -— 6(0) di.55)
K{mGrR) T

Hence, the Nusselt number formula around the stagnation point 
yields

Nu.= = 1 —  (wGrR) ̂  (11.56)
R K(T„„-TJ 0(0) R

The average temperature distribution over the entire plate, 
based on expression in Eq.(11.27), is given by
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Tw-Tm= [*2t:r(Tw-Tm) dr
nR2jo

K{mGXg) 5R
(11.57)

1
K(mGrR) 5

The average Nusselt number formula is

The numerical results of Eq.(11.26) and its corresponding 
boundary conditions in section II-2.1.2, obtained by the 
numerical method introduced in section II-3.1, are shown from 
Fig.II-3.4 to Fig.II-3.6, and from Table II-3.4 to Table II-3.6 
for Pr=0.72, 1, and 5, respectively. From Eq.(11.19), the
following relation at rpO is obtained : 0(0)=-f'''(0). The
values of -f'"(0) are 1.870963, 1.704898, 1.120025 for Pr=0.72, 
1, and 5, respectively. The seven significant digits are for 
the purpose of obtaining the convergent solutions in the 
numerical calculation. These results can be summarized and 
substituted into Eq.(11.56), then the Nusselt number formula, 
for the vicinity of the stagnation point, can be expressed as

iVu^O.sgPr0'12 (mRa*)
i.
5 (11.59)

The average Nusselt number formula becomes
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Nur=0.787Pr°-12 (mRas) 5 (11.60)

where " m " is to be determined by experiment.

3.2.3 Two Assumed Functions and Prescribed Surface Temperature 
Case
In this case, the temperature distribution is as in 

Eq.(11.30). According to Fourier's law of conduction, the heat 
flux can be expressed as

Qw dz z- 0

= -K(Twc-Tj [0i (0 ) -02 ( 0 ) — r ] \
2R  \

_a
v (11.61)

= -K(Tvc-Tj [0i (0) -02 (0) —c 2R R

If r is small, around the stagnation point, then the heat flux 
is expressed as

qu =-K( Tuc-TJ 6i (0) imGrRR) (11.62)

The Nusselt number formula around the stagnation point, gives

Nu„=-R (TWC-TJK = -0i(O) (mGrR) c (11.63)

The average heat flux over the entire plate, based on 
Eq.(II.61), gives
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i
r*r[6i(0) -e'2 (0) -^rlcfr (11.64)jn 0^2

1

The average Nusselt number formula is

(II .65)

The thermal boundary condition of 02 (0) varies from zero to one 
when representing different parabolic wall temperatures in this 
case. The numerical solutions of Eq.(11.35) and its thermal 
boundary condition specified at 02(O)=1 are shown from Fig.II-3.7 
to Fig.II-3.9, for Pr=0.72, 1, and 5 respectively. Then the
solutions of 0! (i"]) (i.e., Eq. (11.36)), based on the functions of 
f(rj) (cf., Table II-3.7), can be obtained by Simpson's rule with 
step size of 0.1. The curves of 0 2 (i]) are shown in Fig.II-3.10. 
The 0X' (0) values, expressed by Eq.(11.37), can be obtained by 
the same method of integration. The values of -©^(O) are 
0.42715, 0.47826, 0.8016 for Pr=0.72, 1, and 5, respectively.
Substitute them into Eq.(11.63), and the Nusselt number formula 
for the vicinity of the stagnation point becomes

From Eq. (11.31), 02'( 0 ) =-f(4) ( 0 ) ; therefore the values of 02' ( 0 ) 
are -0.653482, -0.725941, and -1.176284 for Pr=0.72, 1, and 5

i
Mjs=0 .47 8 Pr°-07 (mRaR) 4 (II .66)

respectively (cf., from Fig.II-3.7 to Fig.II-3.9). By
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substituting the 0/(0) and 02 (O) values into Eq.(11.65), the 
average Nusselt number formula becomes

_i

Nu^=0 .296 Pr0-01 (mRaR) 4 (11.67)

If the thermal boundary condition of the wall tends toward 
the constant wall temperature condition (i.e., isothermal
surface condition), then the value of 02(0 ) should tend toward 
zero. The solutions of Eq. (11.35) for the values of 02 (0) 
varying from 0.5 to 0.1, at the Prandtl number of one, are shown 
from Fig.II-3.11 to Fig.II-3.15. The solutions of 0i(T)), the 
boundary conditions of f"(0) and f<4)(0 ), and the values of 0/(0 ) 
and 02 (0), for the different values of 02(O) are shown in Fig.II- 
3.16, Fig.II-3.17, and Fig.II-3.18, respectively. The formula 
of the stagnation point Nusselt number is associated with 
-0/(0 ); its value decreasing with the wall temperature
approximates the isothermal surface condition. The coefficient 
of the average Nusselt number in Eq.(11.65) is shown as a curve 
in Fig.II-3.18 for the different wall temperature conditions.
It shows that the value of curve fits with the coefficient of
Eq.(11.67) within ±12%.

In this calculation, the solution for the isothermal 
surface condition cannot be obtained, because when 02 ( 0 ) =0 the 
solution becomes a trivial solution.
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II-4 DISCUSSIONS
4.1 Streamlines

The mathematical model used for this analysis is based on 
laminar, axisymmetric, single-plume type stagnation flow (Fig.
II-l.l). The order of magnitude for the Rayleigh number is 
between 104 and 106. The Prandtl number of the fluid is within 
the moderate range. According to the above conditions, a 
downward-facing heated round plate, with Raleigh number of about 
106, is prepared by using the exterior bottom surface of a tea 
pot, with a radius of 60 mm, heated by boiling water, hanging in 
a room with dimensions 3.6x3x2.3 m at a room temperature of 
about 22°C. In order to observe streamlines beneath the heated 
surface, a bundle of incense sticks, with a total diameter of 
about 20 mm, was used for generating smoke about 180 mm below 
the heated surface. The photo in Fig.II-4.1.a shows the 
streamlines beneath the surface without heating; the fluid seems 
to accumulate beneath the surface and not to flow smoothly 
toward the edge of the plate. From Fig.II-4.1.b to Fig.II-4.d 
show streamlines under the surface, heated by boiling water; the 
fluid flows from the central area toward the edge of the plate 
smoothly. Although Fig.II-4.1.b does not represent the exact 
flow pattern of natural convection beneath a heated surface, 
because the plume-like flow is also partly generated by another 
hot source (burning incense sticks), it shows that the smoke has 
the tendency to flow from the center toward the edge of the 
plate under a heated surface.

The computational streamlines based on the stream function 
equation, Eq. (11.11), can be plotted as long as f(r|) is 
determined. With a modification of Eq.(11.11), the modified 
stream function, *P~, is W R ;  and the modified radial coordinate,
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r, is r/R. Therefore, Eq.(11.11) is modified as

ty=v (mGrR) *!zf(r\) (11.68)

for the prescribed surface temperature condition; and

_i

\jF=v (mGr^) 5rzf(r]) (11.69)

for the prescribed constant surface flux condition. Fig.II- 
4.2. a shows the streamlines of the one assumed temperature 
function case, with the Prandtl number of the fluid at 0.72, for 
the prescribed surface temperature condition. Fig.II-4.2.b 
shows the streamlines of the same Prandtl number fluid for the 
prescribed constant surface flux condition. From observing the 
two patterns of streamlines, it is seen that the fluid of 
Prandtl number at 0.72 has a tendency to create a vortex-like 
pattern for the prescribed constant surface flux condition. 
This phenomenon is easily explained from the solutions of f(v|) 
and f'(r]), which represent vertical velocity and radial velocity 
functions, as in Fig.II-3.1 and Fig.II-3.4.

For three-dimensional, axisymmetric, impinging stagnation 
flow, discussed in section 1-2.2 ( also cf., p.98, [22]); with 
the relations of Eq.(1.4) and Eq.(1.26), the modified stream 
function can be written as

^ ^ R e l ; l oĉ v r 2f(x\) (11.70)

Fig.II-4.2.c shows that the streamlines of this impinging 
stagnation flow are similar to the three-dimensional, 
axisymmetric, free convective flow for a downward-facing, 
heated, horizontal plate.
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4.2 The Characteristics of Velocity and Temperature 

Distributions
The comparisons of the vertical velocity, the radial 

velocity, and the temperature functions, f(r]), t'(r\), and 0(rj)s, 
for both the prescribed surface temperature and the constant 
surface flux conditions with different Prandtl numbers, are 
shown in Fig.II-4.3 to Fig.II-4.14. Some features observed from 
Fig.II-3.10 to Fig.II-4.14 are summarized as follows:
(1) The maximum value of the functions of the velocity 
components, f (rj) and f'(rj), and the slope of temperature-related 
functions or the thickness of thermal boundary layer are 
inversely proportional to the value of the Prandtl number. 
These phenomena were also found in the free convection of hot 
vertical plate (cf., p.316, [13], [22]).
(2) The values of f(rja,) are non-zero constants for the prescribed 
surface temperature condition (cf., Fig.II-4.3, Fig.II-4.9,
Fig.II-4.12), but they are approximately zero for the prescribed 
constant surface flux condition, with the Prandtl numbers at 
0.72 and 1 (cf., Fig.II-4.6).
(3) The maximum values of f(r|) and f'(i]) for the prescribed 
constant surface flux condition are larger than that for the 
prescribed surface temperature condition.
(4) For the prescribed surface temperature condition, the 
maximum values of f(rj) and f'Pl) in "the case of one assumed 
temperature function (cf., Fig.II-4.3, Fig.II-4.4) are larger 
than those in the case of two assumed temperature functions, at 
02(O)=1 (cf., Fig.II-4.9, Fig.II-4.10). Therefore, the thermal 
boundary layer thicknesses in the case of one assumed 
temperature function (cf., Fig.II-4.5) are smaller than those in 
the case of two assumed temperature functions, at 02(O)=1 (cf.,
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Fig.II-3.10, Fig.II-4.11).
(5) The direction of radial velocity reverses at r]~3.8 for the 
prescribed constant surface flux condition, with the Prandtl 
numbers at 0.72 and 1 (cf., Fig.II-4.7).
(6 ) For the prescribed surface temperature and two assumed 
temperature functions cases, the thickness of the thermal 
boundary layer in the central area of the plate increases as the 
surface temperature gets closer to isothermal condition (Fig.II- 
3.16) .

4.3 The Stagnation Point and the Average Nusselt Numbers
The results of previous research listed in Table II-l.l 

show that the free convection investigations of downward-facing 
heated circular plates [54, 38, 35, 52, 53, 46] are very rare. 
Most of these results are expressed in terms of average Nusselt 
number formulas, except Faw's [35] and Schulenberg's [52, 53]
investigations of heat transfer around the stagnation point. 
The results of this dissertation are compared with those of the 
others as follows.

For the prescribed surface temperature condition:
(1) The Nusselt number is a function of the 1/4 power of the 
Rayleigh number and 0.07 power of the Prandtl Number. This 
result based on 1/4 power of the Rayleigh number, is different 
from Singh's [54] results, where 1/5 power of the Rayleigh 
number is obtained.
(2) The results for the stagnation point Nusselt number 
(cf.,Eg.(11.52 ), (11.66)) are larger than those of the average 
Nusselt number (cf., Eq.(11.53), (11.67)). This is contradicted 
by Faw's results [35].
(3) The values of the stagnation point and average Nusselt
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number for the one assumed temperature function case (Eq(II.52), 
(11.53)) are larger than those for the two assumed temperature 
functions case (Eq.(11.66), (11.67)) by 8% and 24% respectively.

For the prescribed constant surface flux condition:
(4) The Nusselt number formulas show the 1/5 power of the 
modified Rayleigh number and the 0.12 power of the Prandtl 
number. This is the same formula as Fujii's (38], but different 
from Schulenberg's [52, 53], where the 1/6 power of the modified 
Rayleigh number occurs.
(5) The values of stagnation point Nusselt number are smaller 
than those of average Nusselt number. This shows the same trend 
as Faw's results [35].

The "m" in the Nusselt number expressions has not been 
determined by experiment yet in this investigation. However, 
from the computational results of the temperature related 
functions, the thermal boundary layer thickness is approximately 
at rj-6, for Prandtl numbers at 0.72 and 1 ; and at r|~3, for
Prandtl number at 5 (cf., Fig.II-4.5, II-4.8). Substituting
Eq.(11.17) and Eq.(11.28) into Eq.(11.10), taking the Rayleigh 
number and the modified Rayleigh number at an order of magnitude 
between 104 and 106, the "m" can be estimated within the range to 
obtain 0.2<m<0.96. Comparing Eq.(11.53) with Faw's experimental 
results [35] at RaR=106, m is 0.53. However, comparing 
Eq.(11.60) with Fujii's results [38], the constant surface flux 
case, m is 0.13.
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II-5 CONCLUSIONS

The free convection of a downward-facing heated round plate 
has been analyzed by using the continuity, the Navier-Stokes, 
and the energy equations. The mathematical model is established 
by assuming the laminar stagnation flow of axisymmetric single
plume type, and steady state. Through a similarity 
transformation, the governing partial differential equations are 
transformed into a fifth-order O.D.E. The similarity solutions 
are obtained numerically from the Runge-Kutta integration scheme 
along with the shooting method for both the prescribed surface 
temperature and the constant surface flux conditions. The 
present calculations are numerical approximations of the exact 
solutions of the Navier-Stokes equation and the energy equation.

The heat transfer formulas are derived from the temperature 
profile solutions. The formulas for the Nusselt number show the 
1/4 power dependence on the Rayleigh number, for the prescribed 
surface temperature condition (this is realized in experimental 
results by Saunders, Fishenden, Mansion [51], Weise [57], 
Clifton, and Chapman [33]); and the 1/5 power dependence on the 
modified Rayleigh number, for the prescribed constant surface 
flux condition. The 1/5 power dependence (for the constant 
surface temperature condition) and the 1/6 power dependence (for 
the constant surface flux condition) of the Nusselt number on 
the Rayleigh number, derived by Singh et al. [54] and 
Schulenberg [52, 53], are the results of approximate solutions.
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PART III FREE CONVECTION OF A FINITE SIZE UPWARD-FACING HEATED 

HORIZONTAL ROUND PLATE

III-l INTRODUCTION
1.1 General Introduction and Research Objectives

In this case, the heated circular plate is facing upward, 
and the density of the heated medium above the plate is smaller 
than that of the surrounding medium. Therefore, the unheated 
fluid flows from the edge of the plate toward the central region 
along the surface, creating a boundary-layer type flow; then the 
boundary layer should break down at some distance inward from 
the edge and an unstable rising plume forms in the central 
region [64], also known as the stagnation region. A flow 
pattern of this type is shown in Fig.III-1.1. The differences 
between this case and the case in Part II are the directions of 
velocity components, the sign of pressure gradient with respect 
to radial coordinate, and the stability of the flow. A full 
understanding of this phenomenon can be very helpful to 
meteorological research and industrial applications, such as 
cooling evaluation of more condensed integrated circuit chips.

The purpose of this study is to try to establish a 
mathematical model for describing the velocity distributions, 
the temperature profiles, and the heat transfer rate above the 
central part of the plate by using the Navier-Stokes and the 
full energy equations. The simplified boundary-layer type 
equations are not used because the boundary layer breaks down at 
the stagnation region.
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1.2 Previous Studies

Due to the nature of this study, the literature review is 
limited to the investigations concentrated on the laminar flow 
regime at steady state. The early heat transfer studies of 
upward-facing heated horizontal plates started experimentally, 
such as Weise's [57] investigation of heated square plates in 
air. McAdam [68] summarized the early experimental results in 
his book, in which the heat transfer coefficients were shown to 
be proportional to the 1/4 power of the temperature difference 
between the heated surface and the surrounding air. Analytical 
methods based on a differential formulation were then presented 
by using boundary-layer type momentum and energy equations for 
a single leading edge plate, which is also known as the semi
infinite plate [73, 61, 72].

Husar and Sparrow [64] observed the flow pattern of the 
circular plate. They pointed out that the flow in the central 
region was dominated by a plume.

Torrance and Rockett [75] skillfully formulated the problem 
of a heated circular plate in a cylindrical enclosure so that 
the boundary conditions can be well defined. Their analytical 
solutions, obtained using the finite-difference method, showed 
streamlines and isothermal lines, from transient to steady 
state, above the plate at different Grashof numbers . However, 
the heat transfer correlation indicated the average Nusselt 
number as a function of the 1/2 power of the Grashof number, 
which is somewhat larger than the results offered by the others.

Blanc and Gebhart [60] reported an analytical solution for 
a heated disk by using a similarity analysis. However, this did
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not yield physically meaningful solutions.

Goldstein et al. [62], and Lloyd and Moran [67]
investigated the problem by using mass transfer experiments. 
Goldstein et al. recommended the use of a characteristic length 
evaluated as the ratio of the heated area to the encompassing 
perimeter for correlating experimental data of different 
geometric surfaces. Their results commonly showed the 1/4 power 
of the Rayleigh number in the expression of the average Sherwood 
and Nusslet numbers.

Al-Arabi and El-Riedy [59] tested plates, with diameter 
ranging from 10 cm to 50 cm, heated by steam on the bottom. 
They reported a 1/4 power of the Rayleigh number in heat
transfer correlation and chose the diameter as the 
characteristic length. They also found the average heat
transfer rates were close between square and circular plates, if 
the side length was equal to the diameter.

Zakerullah and Ackroyd [77] formulated the problem by using 
boundary-layer type equations in the differential forms. The 
solutions were not valid in the central region. Their
analytical results showed the 1/5 power of the Rayleigh number 
in heat transfer correlation. However, the power was increased 
to 1/4 when the analysis included fluid property variation.

Yousef et al. [76] investigated three heated square plates, 
10x10 cm, 20x20 cm, 40x40 cm ,respectively, in air using a Mach- 
Zehnder interferometer. The 1/4 power of the Rayleigh number in 
average heat transfer correlation was shown to apply. The 
distributions of local heat transfer coefficients at different 
temperature-difference conditions showed that the coefficients
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at the edges were larger than those at the center.

Merkin [69, 70] extended the method reported by Zakerullah 
and Ackroyd [77] to simulate the characteristics of heat
transfer and fluid flow around the stagnation area. However,
the boundary-layer type equations were still used in the 
formulation; this was pointed out as inadequate by Zakerullah 
and Ackroyd.

Hrycak and Sandman [63] formulated the heat transfer
expression at the stagnation point by the integral method. The 
reports indicated that the Nusselt number is a function of the 
1/4 power of the Rayleigh number.

Liburdy et al. [65, 66] formulated the problem including 
the central plume-type flow by using boundary-layer type
equations. However, the solutions were obtained from the edge 
up to midway to the center. Their investigation indicated that 
the heat transfer in the central area contributed much less than 
that of the peripheral area in overall heat transfer of the 
plate. The 1/5 power of the Rayleigh number in heat transfer 
correlation was obtained.

Sahraoui et al. [74] reported results based on both 
analytical and experimental methods. The 1/5 power of the 
Rayleigh number in heat transfer correlation was shown to apply.

A view of previous research suggests that the stagnation 
flow in the central region has not been well formulated. The 
1/5 power of the Rayleigh number in heat transfer correlation 
usually appeared in analytical results, but the 1/4 power 
dependency was often reported in experimental results.
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II1-2 MATHEMATICAL MODEL OF DIFFERENTIAL FORMULATION

The continuity, the Navier-Stokes, and the full energy 
equations are used to formulate this problem. The assumptions 
for the flow are that it be laminar, axisymmetric, of steady

approximation, the governing equations in cylindrical 
coordinates with the gravitational vector at 180 degrees with 
respect to the z-axis are written as follows.

The temperature distribution above the plate is assumed to be of 
a parabolic shape, such as

where >1 denotes the same expression as in Eq. (11.10). Let's 
choose the same Stokes stream function, W, as in Eq.(11.11); 
however, the directions of velocity components are opposite 
those in Eq. (11.12) and Eq.(11.13). Therefore, they should be 
expressed as

state and of single plume Adopting the Boussinesq

(III.2)

d2w ( 1 dw t &w 
dr2 r dr dz2

(III.3)

(III.4)

(III.5)
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u="--|^ = -arf/(Tl) (III.6 )r oz

—  ̂ = 2 j a v f  (r|) (III.7)r dr

The partial derivative terms in the Navier-Stokes equation can 
be derived from Eq.(III.6 ) and (III.7). They are

I f — n
—  If"in) —  rf"'W
v _  Sz v (III.8)

dw n d2w n dw „ ̂ o/, s d2w 0 _
a? 0; 17? 0; 35 2af (’1)'ai? 2aN -/"(II)V

With relations in Eq.(III.6 ), (III.7) and (III.8 ), the 
continuity equation, Eq.(III.l), is satisfied. By substituting 
Eq.(III.8) into Eq.(III.3), integrating Eq.(III.3) from z=0 to 
z=z0, the pressure near the central region surface of the plate 
can be approximately expressed as

Ps~p„-psrp (r-rjz0 (III.9)

By substituting Eq.(III.5) into Eq.(III.9), and differentiating 
with respect to r, the pressure derivative term in Eq.(III.2) 
becomes

--^-|f = -2gP(Twc-rje(i1) -jLz0 (hi.io)

By substituting Eq.(II.8 ) and multiplying (R2v2) in both the 
numerator and denominator of Eq. (III. 10.), it becomes

- —  |g = -2r-----fV 6 (ti) (III.11)p dr r *

Set a2=(m GrR v2)/R4, hence
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_a
v

(m GrR) 
R

(III. 12:

- — -f̂  = -2a2r0 (r)) p dr (III.13)

With the relations in Eq.(III.8), and (III.13), the Navier- 
Stokes equation in radial coordinates (i.e. Eq.(III.2)) can be 
transformed into

f"'(r\) -2f(T\) f''(i\) +r/(ri)z+20(ii) =0 (III. 14)

With the temperature distribution in Eq.(III.5), the partial 
derivative terms of temperature in the energy equation are 
expressed as

_a
v

(III.15)

With the relation in Eq.(III.6 ), (III.7), (III.15),the energy 
equation, Eq.(III.4), is then transformed into

2srf* (tj ) 0 (t) ) ——r + 2ajf(r|)0̂ (T]) (1--̂ -) 
R R2

=a[--^-0(Ti) + ( l - ^ ) 0 //(Ti) -*]
R‘ R‘

„ -t [12a2f'(r])2+r 2̂ -f"(T])2lCP(TWC-TJ v

(III.16)

Around the stagnation point (i.e. r close to zero), the r2 terms 
can be neglected. Therefore, Eq.(III.16) becomes
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2af(ti)0/(Ti)=a [--i-6 (Ti)+e"(Ti)-J+ » [I2a2f/(n)2] (III. 17)
i? V t'p l 1 wc  ■‘■ml

By rearranging Eq.(III.17), it becomes

0"(n) -2Prf (n)6/(n) - — -— 6 (n) +12 Pr Ec f' (r\) 2=0 (III.18)
mGf~

The last two terms can be neglected for the same reasons 
indicated in section II-2 .1.1; therefore, it becomes

e"(Ti) -2Prfr(rj)0'(ii)=O (III.19)

By substituting Eq.(III.14) into Eq.(III.19), the fifth order, 
nonlinear, ordinary differential equation can be obtained as 
follows.

f (s) (rj) -2 (1+Pr)f (ti) f (i) (n) ~2f' (ri) £'" (il) +4Pr.f (t] ) 2f,,/ (t|) =0 (III. 20)

The boundary conditions are
(i) at r|=0 : w=0; u=0; T=Surface Temperature;
(ii) at : u=Finite Constant; T^*,.

With the relations in Eq.(III.6), (III.7), and (III.5), the 
boundary conditions for f(rj) and 0 (rj) are

(i) at r|=0 : f(0 )=0; f'(0 )=0; 0 (O)=1;
(ii) at 0=1̂  : f ' (r)*) =Finite Constant; f"(rix)=0; 0 (r] =c) =0 .

The boundary conditions for 0 (rj) can be converted into f(r|) 
associated conditions by using Eq.(III.14). Hence, 0(0)=1 is 
equivalent to f'''(0)=-2, and 0(r|x)=O is equivalent to 
f "  ' (ru)=0.

Set U^ftr]), U2=f'(r|), U3=f"(1l), U4=f ' ' ' (11) , U5=f<4>(r|), then 
Eq.(III.20) becomes
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ui=u2 
U$=U3
ui=Ua (III.21)
ui=u5 
Ui=2(l+Pr) C71C75+2C72C74-4PrC712C74

The boundary conditions for Eq.(III.21) are
(i) U1(0)=0 ; U1(r]0C)=Finite Value;
(ii) U2(0)=0 ; U2 (r]*,) =Finite Constant;
(iii) U3 ( 0 ) =Unknown ; U3(ri0O)=0;
(iv) U<(0)=-2 ; U4(ii0o)=0;
(v) U5 ( 0 ) =Unknown ; U5 (t'|oc,) =0 .

The U3(0) should be a positive value which forces an inward flow 
in the radial direction near the surface of the plate (i.e., it 
ensures that f'(r|) is positive within rj=0 and r|=certain positive 
value). Following the derivation of Nusselt number in section
II-3.2.1, the Nusselt number around the stagnation point region 
becomes

_i
N u ^ - Q ' I O )  (m G z R ) 4 ( I I I .  22)
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III-3 DISCUSSIONS

The solution of f'(r|) is allowed to have two possible 
properties. (1) The f'(r|) is positive to f' ( )  which is a 
finite constant. If this condition can be achieved, the flow 
pattern can be interpreted as a thermal jet which has the radial 
velocity component constant above the boundary layer attached on 
the surface of the plate. (2) The f'(r|) is an oscillating 
function and its amplitude is decreasing to zero as T] approaches 
rioo. This can be interpreted as the consecutive vortices 
occurring above the plate. However, none of these conditions 
are satisfied so as to produce a physically applicable solution 
when the numerical method introduced in section II-3.1 is used. 
Two assumed functions in temperature profile, similar to 
Eq.(11.30), have been put into the energy equation, thereby 
gaining an extra equation in the mathematical model. 
Unfortunately, a meaningful solution still cannot be obtained. 
The exact reasons still remain veiled. Probably, the 
formulation is not valid for this unstable flow pattern or the 
numerical method is not effective. However, the Nusselt number 
expression derived from the mathematical formulation shows the 
1/4 power dependence on the Rayleigh number; this is in line 
with the experimental results by Goldstein et al. [62], Lloyd 
and Moran [67], Al-Arabi and El-Riedy .[59], and Yousef et al.
[76] .
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APPENDIX A
C ------------------------------------------------------------C THIS PROGRAM IS DESIGNED FOR PROCESSING THE EXPERIMENTAL DATA C OF THE FORCED CONVECTION BY AN ARRAY OF AIR JETS IMPINGINGC NORMAL TO A HORIZONTAL ROUND PLATE

REAL TGIVEN(50),TAC(50),TAF (100)REAL TAVE[20 J,TWALL(6),TAVER(6).TCONF(6 ) , H ( 6 ),RAD(20),T(200) REAL XNU(6),HP(6J,XNUP(6 ),CXNUj6 ),CXNUP(6}INTEGER IREDUE,IDATE1,IDATE2,IDATE3,ITIMEl,ITIME2,ITIME3 INTEGER N,NCN,NZN,K,I,J,L,NRE*4 CHARACTER*20 FNAME1,FNAME2 C TGIVEN:ARRAY FOR INPUTING TEMP. MEASUREMENT FROM THERMOCOUPLES C TAC :ARRAY FOR CONVERTED TEMP. IN DEGREES CELSIUSC TAF :ARRAY FOR CONVERTED TEMP. IN DEGREES FAHRENHEITC TAVE :ARRAY FOR RING AVERAGED TEMP. BOTH TOP AND BOTTOMC TWALL :ARRAY FOR RING AVERAGED WALL TEMP.C TAVER :ARRAY FOR RING AVERAGED TEMP. IN DEGREES RANKINEC TCONF :ARRAY FOR THERMAL CONDUCTIVITY OF INVAR OF EACH RINGC H :ARRAY FOR HEAT TRANSFER COEFFICIENT OF EACH RINGC RAD :ARRAY FOR THE DIMENSIONLESS RING RADIUSC T :ARRAY FOR CONVERTING TEMP. READINGS (mV.) TO CC XNU :ARRAY FOR NUSSELT NUMBER OF EACH RINGC ARRAY NAMES START WITH "C" DENOTE THE CORRECTED VALUES WITHC RESPECT TO NOMINAL REYNOLDS NUMBERS; ENDED WITH "P" DENOTE THEC VALUES ARE CALCULATED BASED ON THE AIR TEMP. OF PLENUM CHAMBERC N :NUMBER OF NOZZLESC NCN :Cn/D VALUES ; NZN :Zn/D VALUESC NRE :NOMINAL REYNOLDS NUMBER OF THE SPECIFIED TESTC CONA :THERMAL CONDUCTIVITY OF AIR
&&&& 1.7 38 &2.164 &2.599 &3.042 &3.493 &3.952 &4.418 &4.891 &5.372 &5.859 &6.353 WRITE'(*,448)448 FORMAT(//)WRITE(*,'(A\)')' Input the name of the DATA file....'

1.78,1.822,1.865,1.907,1.95,1.992,2.035,2.078,2.121, 2.207,2.25,2.294,2.337,2.38.2.424,2.467.2.511,2.555.2.643,2. 687,2.731,2.775,2.819,2.864,2.908,2.953,2.997, 3.087, 3.131,3. 176,3.221.3.266,3.312,3.357,3.402.3.447, 3.538,3.584,3.63,5.676,3.721,3.767,3.813,3.859,3.906, 3.998,4.044,4.091,4.137,4.184,4.231,4.277,4.324,4.371, 4.465 '4 .512,4.559,4.607,4.654,4.701,4.749,4.796,4.844, 4.939,4.987,5.035,5.083,5.131,5.179,5.227,5.275,5.324, 5.42,5.469,5.517,5.566,5.615,5.663,5.712,5.761,5.810. 5.908,5.957,6.007,6.056,6.105,6.155,6.204,6.254,6.303, 6.502,6.552,6.602,6.652/

3(* '(A\)')'READ( *,'(A )' J FNAME1 
\(*r >(/A\)')'
* ' I A I M  FNAI

WRITE (*,'^/A\ Input the name of the OUT file...'
OPEN(2,F] ) 1OPEN ( 3 , F]C

READ(*,'(A)') FNAME2 OPEN(2,FILE=FNAME1,STATUS='OLD'j' 'IH'lFILE=F1OPEN ( 3 FILE=FNAME2 ) STATUS=' NEW'
C INPUTING THE DATA
9090 CONTINUE4 FORMAT5 FORMAT6 FORMAT 9000 FORMAT

F6.4)A2,IX,12,IX,12,IX,12) 12,IX,II,II,IX,A2 II)READ(2,9000) IREDUEIF(IREDUE.EQ.2) GOTO 3300READ(2,5) NAME,IDATE1,IDATE2,IDATE3



READ(2,6) ITIME1.ITIME2,ITIME3.ITIME49001 FORMAT(F6.4,IX,I1,IX,II,IX,12,IX,16)READ(2,9001) D,N,NCN,NZN,NRE9002 FORMAT(F5.2,IX,F5.2)READ(2,*) PBAR,PPLEN9003 FORMAT(F5.2,IX,F5.2)READ(2,*) PlP2,P2READ(2,4) (TGIVEN(K ),K=1,33)WRITE(3,17) NAME17 FORMAT(' DATA RECORDED BY : ',A2)WRITE(3,18) IDATE1,IDATE2,IDATE 318 FORMAT(' DATE OF READING : ' , 12 '/',12,'/'12 )WRITE(3,19) ITIMEl,ITIME2,ITIME3,ITIME419 FORMAT(' TIME OF READING : ' , 12 , ' : ' , 11,11, IX, A2IF (REDUE.EQ.l) GOTO 1122GOTO 1123 1122 WRITE(3,29)29 FORMAT( / /, THIS IS A REDO')GOTO 1123 CONTINUE1123
111

WRITE(3,111) D,N,NCN,NZN,NRE,PBAR,PPLEN,P1P2,P2 FORMAT(//,' DIAMETER OF NOZZLES = ',F7.4,/,%%%%%%%%CCC

NUMBER 6f NOZZLES = ',17,/,CN/D = M7,/,ZN/D = ',17,/,REYNOLDS NUMBER = ',17,/,BAROMETRIC PRESSURE = ',F7.2,/,P3-P0 = ',¥1.2,/,P1-P2 = ',¥1.2,/,P2-P0 = ’,¥1.2,/)
SEARCHING THE TEMPERATURE RANGE

CCC

CCC

DO 40 1=1,33 K=IDO 20 J=1,150 DIFF=TGIVEN(I)-T(J)IF(DIFF.LE.0)GO TO 30 20 CONTINUE 30 DIFFl=T(J)-T(J-l)DIFF2=TGIVEN(I)-T(J-l) EK=DIFF2/DIFFl TAC(K)=J-1+EK TAF(K)=1.8*TAC(K)+32.4 0 CONTINUE
PRINTING OUT THE TEMPERATURES
DO 70 L=1,33WRITE(3,66) L,TGIVEN(L),TAC(L),TAF(L ) FORMAT(' TEMP.',14,' :',F6.4,' MILIVO • -■ ^8.2, ' F'60#' C',F8.2, 70 CONTINUE

LTS ,F6

CALCULATING THE AVERAGE TERMPERATURES
TAVE [1 = [TAFTAVE 2 = TAFTAVE 3 = TAFTAVE 4 TAFTAVE 5 = TAFTAVE 6 ='’AF (TAVE 7 = TAFTAVE 8 = TAFTAVE 9 TAF

1)+TAF(2)+TAF 14 +TAF 5 +TAF 17)+TAF(8)+TAF10)+TAF(ll)\/2 12)+TAF(13))/2
/ 3

Ii1821
\ +TAF l+TAF l+TAF

1619
22

+TAF(17 +TAF 20 II/ 3+TAF(23))/3
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TAVE(10)=(TAF(24)+TAF(25))/2 TAVE(11 =[TAF(26 +TAF 27 )/2 TAVE?12 =TAF(28)

99 FORMAT(//, AVERAGE TEMPERATURE OF THE RINGS',/)DO 120 K=1.6WRITE(3,1001 K,TAVE(K),TAVE(K+6 )100 FORMAT('RING#',13, 'BOTTOM TEMP.=',F6.2,'F ',3X,'TOP &TEMP.— ,F6 .2,'F')120 CONTINUETAVE(13 ) = (TAF(29)+TAF(30))/2 TAVE(14)=(TAF(31)+TAF(32))/2 WRITE(3,160) TAVE(13),TAVE(14)160 FORMAT('AMBIENT TEMP.=',F6.2,'F ',5X,'JET TEMP.=',F6 .2,'F ') TPLENF=TAVE(14)TPLENR=TPLENF+4 59.7 PBARPS=PBAR*0.491 PLENPS =PPLEN *0.03617TREFR=TPLENR*((PBARPS+PLENPS)/PBARPS)**(-0.2857) TREF=TREFR-4 5 9.7C ---------------------------------------------------------C LOCAL HEAT TRANSFER COEFFICIENTC PARAMETERS ENDING WITH "P" ARE BASED ON THE PLENUM TEMP.C ---------------------------------------------------------DO 200 1=1,6TWALL{I)=TAVE(1+6)+(TAVE(1+6)-TAVE(I))*0.08642TAVER(I =1(TAVE{Ii+TAVE(I+6J j/21+459.7TCONF(I =7.856+0.005478*(TAVER(I)-491.7)+0.0000034568*& ((TAVER(I)-491.7)**2)H (I)=— (TCONF(I)/0.0531)*(TAVE(1+6)-TAVE(I) )/(TWALL(I)-TREF) HP(I)=-(TCONF(I)/0.0531)*(TAVE(1+6)-TAVE(!))/(TWALL(I)& -TAVE(14 ) )TAVAF=(TREF+TWALL(I))/2 TAVAFP= (TAVE (14) +TWAliL (I) )/2 CONA=(1.33+0.41*(TAVAF/266)1*0.01 CONAP=(1.33+0.41*(TAVAFP/266))*0.01C --------------------C LOCAL NUSSELT NUMBER
XNU(I) = (H(I)*D*0.513333331 / CONA XNUP(I)=(HP(I)*D*0.08333333)/CONAP 200 CONTINUEC -----------------------------------------C OUTPUT BASED ON THE REFERENCE TEMPERATUREC -----------------------------------------WRITE(3,333)333 FORMAT(//,' HEAT TRANSFER CHARACTERISTICS BASED ON TREF',%/,' RING NO.',4X,'H(ENG.UNITS)',%3X,'NUSSELT NUMBER',/)DO 400 K=1,6WRITE(3.444) K.H(K1,XNU(K)444 FORMAT(I6/F15.2,F15.2)400 CONTINUEC ---------------------------------------C OUTPUT BASED ON THE PLENUM TEMPERATUREC ---------------------------------------WRITE(3,555)555 FORMAT(//,' HEAT TRANSFER CHARACTERISTICS BASED ON TPLEN',%/.' RING NO.',4X,'H(ENG.UNITS)'%4X,'NUSSELT NUMBER',/)DO 600 K=1,6WRITE(3,666) K.HP(K).XNUP(K)666 FORMAT(I6,F15.2,F15.2)600 CONTINUE

f
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C ----------------------------------------------------C CALCULATE THE AVERAGE HEAT TRANSFER COEFFICIENT ANDC AVERAGE NUSSELT NUMBERC ----------------------------------------------------RAD 1 =0RAD i 2 =0.563/DRAD(3 =0.689/DRADi 4 =1.13/DRAD 5 =1.84/DRAD 6 =2.63/DRAD 7'=3.00/DCALL SUB1(RAD,XNU,AVNU)CALL SUBljRAD.XNUP,AVNUP)WRITE(3,777) AVNU 777 FORMAT( / / , ' AVERAGE NUSSELT NUMBER BASED ON TREF = ',F7.2) WRITE(3,888) AVNUP 888 FORMAT(//,' AVERAGE NUSSELT NUMBER BASED ON TPLEN= ',F7.2)C ______________________________------------------
C CALCULATION OF REYNOLDS NUMBER BY USING THE DATAC FROM THE ORIFICE PLATEC ------------------------------------------------P1=P1P2+P2 P1PS=P1*0.03617 P1PSA=P1PS+PBARPS P2PSA=(P2*0.03617)+PBARPS
C DENSITY OF AIR IN THE PIPEC R01=(PlPSA*144)/(53.35*TPLENR)
C EXPANSION FACTOR

Y=l-0.322215*(1-P2PSA/P1PSA)
C VISCOSITY OF AIR AT THE NOZZLE EXITC -----------------------------------VISNOZ=0.00001165*((TREFR/491.7)**1.5)*(689.7/(TREFR+198))C ____________-----— — — — — —
C VISCOSITY OF AIR IN THE PIPEC VISPIP=0.00001165*((TAVE(14)+459.7)/491.7)**1.5* %(689.7/(TAVE(14)+657.7))C -----------------------------------
C PIPE RYNOLDS NUMBERC REPIP=N*NRE*(D/2.067)*(VISNOZ/VISPIP)C -----------------------------C VELOCITY APPROACH FACTORC F=l.06445046C ------------------------C COEFFICIENT OF DISCHARGEC C=0.605305+0.0007603432*(1000000/REPIP)**0.6 8
C MASS FLOWW RATE

FLOW=359.2*1.4641*C*F*Y*(PlP2*R01)**0.5/3600
C REYNOLDS NUMBER

REYNOL=FLOW*48/(N*3.141592 65*D*VISNOZ)WRITE(3,999) REYNOL 999 FORMAT('REYNOLDS NUMBER CALCULATED FROM THE ORIFICE PLATE:' &,//,' RE= ',F10.2)
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CCc
2220

2221

2230

2231 2300
2232

2233 2301
2234
2235 
3300

CCCC

CCCCCCCCCCC

CORRECTION FOR REYNOLDS NUMBER
IF(REYNOL.NE.NRE) GO TO 2220 GOTO 3300 CONTINUE DO 2221 L=1,6CXNU ( LJ =XNU(L)*(NRE/REYNOL) * * 0 . 5 CXNUP(L )=XNUP(L)*(NRE/REYNOL)* * 0.5 CONTINUECAVNU =AVNU*(NRE/REYNOL) * * 0 . 6 5 CAVNUP=AVNUP*(NRE/REYNOL)**0.65 WRITE(3,2230)FORMAT(///,%' CORRECTED LOCAL NUSSELT NUMBER BASED ON TREF.',/,%' RING NO.',3X,'NUSSELT NUMBER',/)DO 2300 L=1,6WRITE(3,2231) L,CXNU(L)FORMAT(I6,F15.2)CONTINUE WRITEf3,2232)FORMAT(//,' CORRECTED LOCAL NUSSELT NUMBER BASED ON TPLEN.' &./,' RING NO.',3X,'NUSSELT NUMBER',/)6o 2301 L=1,6WRITE(3.2233) L,CXNUP(L)FORMAT(16,F15.2)CONTINUEWRITEf3,22341 CAVNUFORMAT('CORRECTED AVERAGE NUSSELT NO.WRITE(3,2235) CAVNUPFORMAT('CORRECTED AVERAGE NUSSELT NO.GOTO 909 0 CONTINUE STOP END
SUBROUTINE USED FOR CALCULATING AVERAGE NUSSELT NUMBER BY CUBIC SPLINE METHOD; REFER TO GERALD'S PAGE 215 [5]
SUBROUTINE SUBl(XXX,YYY,AVGVOL)REAL X(101,Y(10),S(10),A(8,4)REAL AA,BB,CC,DD,DRAD(20)REAL XXXf20),YYYC20)INTEGER N,I,K,J,NM1,NM2 N : NUMBER OF PAIRS OF X-Y POINTSX : ARRAY FOR DIMENSIONLESS RING RADIUSY : ARRAY FOR NUSSELT NUMBER CORRESPONDENT TO X ARRAYS : ARRAY OF SECOND DERIVATIVE AT THE POINTSA : AUGMENTED MATRIX OF COEFFICIENTS FOR FINDING STVOL:TOTAL VOLUMN UNDER THE CURVE CONNECTED BY 8 CUBIC POLY. DRAD:ARRAY OF THE VALUE OF EACH X INTERVAL AA,BB,CC,DD:THE COEFFICIENTS OF CUBIC POLY. FOR EACH INTERVAL Al,BI,Cl,DI:THE SUBTOTAL RELATED TO ai,bi,ci,di IN Eq.(I-44) SI : THE SUBTOTAL OF EACH INTERVALAVGVOL: THE AVERAGE NUSSELT NO. VALUE OF THE PLATE N=9

BASED ON TREF=',F6.2 
BASED ONTPLEN=',F6.2

X 8 X ( 9

=XXX(1)
-ixx i */2=XXX(3 =XXX(4 =XXX(5

=xxx(7
)—XXX(5))/2+XXX(5)
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120c
130c150

5500

YYYYYYYYY Nft2
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=YYY(6 )= (2 *YYY(6 )+YYY(5))/3 =YYY(5 =YYY(4 =YYY(3 =YYY 2=^YYYj2)+2*YYY(l))/38 =YYY(1)9 = ( (Y ( 8 ) -Y (7 ))/(X(8 )-X(7))*(X(9)-X(8 )))+Y(8 )2=N-2NMl=N-l DX1=X(2)-X(1)DY1=(Y (2)-Y(1))/DXl*6 .DO 10 1=1.NM2 DX2=X(I+2)-X(I+l)DY2=(Y (1+2)-Y(1+1))/DX2*6.A(I,1)=DX1 A(I,2)=2.*(DX1+DX2)A 1,3 =DX2 Ail,4)=DY2-DYl DX1=DX2 DYl=DY2 CONTINUESTART TO SOLVE TRIDIAGONAL SYSTEM DO 110 1=2,NM2 j ^A(I,2)=A(I,2)-A(I,1)/A(I-1,2)*A(I-1,3 A(I,4j=A 1,4 -A 1,1 /A(I-1,2 *A(I-1,4 CONTINUESTART TO DO BACK SUBSTITUTION A (NM2,4)=A(NM2,4)/A(NM2,2)DO 120 1=2,NM2 J=NMl—IA{J,4)=(A (J,4)-A(J,3)*A(J+l,4))/A(J,2)CONTINUEPUT THE VALUES INTO S VECTOR DO 130 1=1,NM2 S (1+1)=A(1,4)CONTINUETHE LINEAR ENDS ARE THE TYPE OF END CONDITION USED S(1)=0 S(NJ=0 TVOL=0DO 5500 K=1,NMl DRAD(K)=X(K+1J-X(K )AA=(S(K+l)-S(K))/(6 .* DRAD(K) )gg—g (I\) / 2

DD-1 ^ Y(K))/DRAD(K )"(2'*DRAD(K)*S(K)+DRAD(K)*S(K+1))/6
AI=aA*|(XfK+l)**5)/5.+(X(K)*XlK+l)**2)*(X(K+l)*X(K)& -(3*X(K+i)**2)/4.-(X(K)**2J/2)+(XrK)**5)/20.)BI=BB* C(X (K+l)**4)/4.-(2*X(K)*X(K+i)**3)/3.& +((X(K+1)*X{K))**2)/2.-(X(Kj**4)/12.‘ 
CI=CC*(fX(K+i)**3)/3.-(Xm*X(K+' • ■ 1 “DI=(DD/2.)*(X(K+1 **2-X(K)**2)SI=AI+BI+CI+Dl TVOL=TVOL+SI CONTINUEAVGVOL=2* TVOL/X(9)* * 2 RETURN END

i)**2)/2.+(X(K)**3)/6.)
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APPENDIX BC -------------------------------------------------------C THIS PROGRAM IS DESIGNED TO SOLVE A FIFTH-ORDER O.D.E.C BY USING FOURTH-ORDER RUNGE-KUTTA METHOD.C THE EQ(11.26) WITH ITS PRESCRIBED SURFACE TEMP. BOUNDARYC CONDITION ARE SOLVED IN THIS PROGRAMC -------------------------------------------------------

REAL*8 L, ET,EMAX,HH, Pr REAL*8 Ul,U2,U3,U4,U5,U6 REAL*8 Ull,U2I,U3I,U4I,U5I REAL*8 UlR,U2R,U3R,U4R,U5R,U6R REAL*8 U3ll,DU3l,U5Il,DU5I REAL*8 ERRl,ERR,EPS,GIVE C L : TWO TIMES THE LENGTH OF STEP SIZEC ET: INDEPENDENT VARIABLEC EMAX : MAX. VALUE OF INDEPENDENT VARIABLE IN CALCULATIONC MAXIT: MAX. NUMBER OF ITERATIONSC HH : STEP SIZEC Pr : PRANDTL NUMBER VALUEC Ul, U2 , U3, U4 , U5 , U6 : INPUT VALUES IN RUNGE-KUTTA SUBROUTINEC Ull, U2I,U3I,U4I,U5I :INITIAL VALUES (LEFT END B. C.)C U1R,U2R . . .U6R :OUTPUT VALUES FROM RUNGE-KUTTA SUBROUTINEC ERR : DEVIATION BETWEEN THE REQUIRED AND THE SHOT VALUESC IP,IPP: SET-UP INTERVAL FOR PRINTOUT; PRINT CONTROL INDEXCHARACTER*40 DATA CHARACTER*40 FNAME 
EXTERNAL A,B,C,D,E 1 FORMAT('"USINGD RUNGE-KUTTA METHOD TO SOLVE FIFTH ORDER
&O.D.E. ')3 FORMAT(2X,'T ',3X,'F ',8X,'Fl',5X,'F2',6X,'F3',6X,&'F4',6X,'F5',6X,'THETA')4 FORMAT(F4.1,7(1X,F9.6 ))5 FORMAT(2X,'Pr = ',F5.3)WRITE(*,'(A\)') 'Enter INTput filename : 'READ( * , ' (a ) ' ) DATAWRITE(*,'(A\)') 'Enter OUTput filename : 'READ(*,'(a)') FNAME
WRITE(*,'(A\)') 'MAX NUMBER OF ITERATION : '
READ(*,*) MAXITOPEN 2,FILE=DATA,STATUS='OLD')OPEN(3,FILE=FNAME,STATUS='NEW')WRITE(3,1)READ(2,*) HH,EMAX,Ull,U2I,U3I,U4I,U5I,Pr,IP READ(2,*| DU3I,DU5I,GIVE,EPS WRITE(3,5) Pr L=HH/2.IT=0 IPP=0 10 1=0IT=IT+1IF(IT.GE.MAXIT) GOTO 70
WRITE(*,4)ET,UlR,U2R,U3R,U4R,U5R,U6R,THETAU1=U1IU2=U2IU3=U3IU4=U4IU5=U5IU6=E(UlI,U2I,U3I,U4I,U5I,Pr)
THETA=U2**2-2.*U1*U3-U4 ET=0.IF(IPP.EQ.O) GOTO 20
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WRITE(3,3)WRITE(3,4 j ET,Ul,U2,U3,U4,U5,U6,THETA 20 1=1+1CALL RK(Ul,U2,U3,U4,U5,UlR,U2R,U3R,U4R,U5R,Pr,L )
U6R=E(UlR,U2R,U3R,U4R,U5R,Pr)THETA=U2R* *2-2.*U1R*U3R-U4R 
ET=ET+HHIF(IPP.EQ.O) GOTO 30IF((I/IP)*IP.NE.I) GO TO 30
WRITE(3,4) ET,UlR,U2R,U3R,U4R,U5R,U6R,THETA 30 U1=U1R 
U2=U2R U3=U3R 
U4=U4R U5=U5RIF(ET.LT.EMAX) GO TO 20 ERR=U2R-GIVE
IF(ABS(ERR).LE.EPS) GOTO 4 0IF(IT.GT.l) GOTO 100
ERR1=ERRU3I1=U3IU3I=U3I+DU3I
U5I1=U5IU5I=U5I+DU5I
GOTO 10100 DU3I=-ERR/(ERR-ERRl)*(U3I-U3I1)DU5I=-ERR/(ERR-ERR1)*(U5I-U5I1)ERR1=ERR U3ll=U3l U3I=U3I+DU3I 
U5I1=U5I U5I=U5I+DU5I 
GOTO 10 40 IF(IPP) 50,50,60 50 IPP=1
GOTO 10 60 IT=IT-1WRITE(3,6 )IT 6 FORMAT(/,6X,'NO. OF ITERATION = ',14)
CLOSE(2)CLOSE(3)70 STOP 
END

C ------------------------------------------------------
C SUBROUTINE OF FOURTH-ORDER RUNGE-KUTTA METHODC ------------------------------------------------------

SUBROUTINE RK(Ul,U2,U3,U4,U5,UlR,U2R,U3R,U4R,U5R,Pr,L)EXTERNAL A,B,C,D,EREAL*8 M11,M12,M13,M14REAL*8 M21,M22,M2 3,M24REAL*8 M31,M32,M33,M34REAL*8 M41,M4 2,M4 3,M4 4REAL*8 M51,M52,M53,M54REAL*8 U1,U2,U3,U4,U5
REAL*8 UlR,U2R,U3R,U4R,U5R,L,PrM11=L*A(U2)M21=L*B(U3)M31=L*C(U4)M41=L*D(U5)M51=L*E(U1,U2,U3,U4,U5,Pr)
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M12=L*A(U2+M21)M22=L*B(U3+M31)M32=L*C U4+M41 M4 2=L*D U5+M51)M52=L*E(Ul+Ml1,U2+M21,U3+M31,U4+M41,U5+M51,Pr) M13=L*A(U2+M22)M23=L*B(U3+M32)M33=L*C(U4+M42)M43=L*D(U5+M52)M53=L*E(U1+M12,U2+M22,U3+M32,U4+M42,U5+M52,Pr) M14=L*A(U2+2.*M23)M24=L*B(U3+2.*M33)M34=L*C(U4+2.*M43 M44=L*D(U5+2.*M53)M54=L*E(Ul+2.*M13,U2+2.*M23,U3+2.*M33,U4+2.*M43 
&,U5+2.*M53,Pr)UlR=Ul+(Mll+2.*(M12+M13)+Ml4)/3.
U2R=U2+ M21+2.*(M22+M23 +M24 /3.U3R=U3+(M31+2.*(M32+M33 +M34)/3.U4R=U4+(M41+2.*(M42+M43 +M44)/3.U5R=U5+(M51+2.*(M52+M53)+M54)/3.RETURN
END
REAL FUNCTION A(U2)REAL*8 U2 A=U2 RETURN 
END
REAL FUNCTION B(U3)REAL*8 U3 B=U3 
RETURN END
REAL FUNCTION C(U4)
REAL*8 U4 C=U4 
RETURN END
REAL FUNCTION D(U5)REAL*8 U5 
D=U5 RETURN 
END
REAL FUNCTION E(Ul,U2,U3,U4,U5,Pr)REAL*8 Ul,U2,U3,U4,U5,PrE=-2.*(1.+Pr)*Ul*U5-2.*U2*U4-4.*Pr*Ul*Ul*U4RETURNEND
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APPENDIX C
C ------------------------------------------------------------------
C THIS PROGRAM IS DESIGNED FOR SOLVING EQ.(11.36) BY USING
C TRAPEZOID AND SIMPSON'S RULE
C -------------------------------------------------------

IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 X(2000),Y(2000) ,INCR,IND(2000),THETA(2000)
REAL*8 ST(2000),TOTAL,SI,PR 
CHARACTER*40 DATA 
CHARACTER*40 FNAME 

C X :ARRAY FOR INDEPENDENT VARIABLE
C Y :ARRAY FOR DEPENDENT VARIABLE
C INCR: INCREMENTAL VALUE
C IND: ARRAY FOR THE INTEGRAL OF f(eta) IN EQ.(11.36)
C ST: ARRAY FOR THE EXPONENTIAL FUNC. OF f(eta) INTEGRAL
C NP; NPD: NUMBER OF POINTS; NUMBER OF DIVISION
C PR: PRANDTL NUMBER
C H: STEP SIZE
C TOTAL:INTEGRAL OF EXPONENTIAL FUNC. IN THE NUMERATOR
C OF EQ.(11.36)
C THETA : ARRAY FOR THETAl IN EQ.(II.36)

WRITE(*,'(A\)') 'ENTER INPut Filename : '
READ (*,'(A)') DATA
WRITE(*,'(A\)') 'ENTER OUTput Filename : '
READ (*,'(A)') FNAME
OPEN(2,FILE=DATA,STATUS='OLD')
OPEN(3,FILE=FNAME,STATUS='NEW')
READ( 2 , * ) PR,NP,H
READ(2,*) (X(K ),Y(K ),K=1,NP)

4 FORMAT(F6.2,1X,F10.6,1X,F10.6)
IND(1)=0.
ST(1)=1.
WRITE(3,5)

5 FORMAT('ETA',3X,'INTEGRAL OF F(ETA)',IX,'EXPONENTIAL 
&FUNC. OF F(ETA) INTEGRAL')
WRITE(3,6) X(l),IND(1),ST(1)

C -------------------------------------------------------
C BY USING TRAPEZOID RULE TO INTEGRATE INTERMIATE AVLUES OF
C F(ETA) INTEGRAL IN THE NUMERATOR OF EQ.(11.36)
C -------------------------------------------------------

NPD=NP-1
DO 10 1=1,NPD
INCR=(Y (I)+Y(1+1))*H/2.
IND(1+1)=IND(I)+INCR
ST(1+1)=EXP(-2*PR*IND(1+1))
WRITE(3,6) X(I+1),IND(I+1),ST(I+1)

6 FORMAT(F6.2,1X,F12.7,2X,F11.9)
10 CONTINUE
C -------------------------------------------------------
C BY USING SIMPSOM'S RULE TO CALCULATE THE DENOMINATOR OF
C EQ.(11.36) BASED ON THE EXPONENTIAL FUNC. OF FINTEGRAL
C EVALUATED BY TRAPEZOID RULE



84
C ---------------------------------------------

SI=H*(ST(1)+ST(NP))/3.
01=0 .
EI=0.
N=NP-1
NI=N/2
DO 50 1=1,NI
J=2*I
M=2*I+1
OI=ST(J)*4*H/3.+OI 
IF(J.EQ.N) GOTO 30 
EI=ST(M)*2*H/3.+EI 

50 CONTINUE 
30 SI=SI+OI+EI

WRITE (3,8) X(1),X(NP)
8 FORMAT(/,2X,'THE INTEGRAL LIMITS ARE

&FROM',F6.2,'TO',F6.2)
WRITE (3,9) SI

9 FORMAT(2X,'USING SIMPSON'S RULE, THE INTEGRAL
&VALUE=',FI1.7)
TOTAL=0.
THETA(1)=1.0 
WRITE(3,7)

7 FORMAT ('ETA',1X,'INTEGRATION OF EXPONENTIAL
&FUNC',2X,'THETAl')
WRITE(3,4) X(1),TOTAL,THETA(1)
DO 20 1=1,N
INCR=(ST(I)+ST(1+1))*H/2.
TOTAL=TOTAL+INCR 
THETA(I+1)=1.0-(TOTAL/SI)
WRITE(3,4) X(1+1),TOTAL,THETA(1+1)

20 CONTINUE
CLOSE(2)
CLOSE(3)
STOP
END
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Table Il-l.l Previous Studies of Downward-Facing

Heated Horizontal plate (two pages)
Researchers Analytical Results Experimental Results
O.A. Saunders 
et al.
(1935)

Rectangular plate in 
air; Pr=0.7;
Nu=CRa1/4.

R. Weise 
(1935)

Square plate in air; 
Nu=0. 56Ra1/4.

J.V. Clifton 
et al. (1969)

Use integral method; 
boundary layer 
eguation; Two- 
dimensional flow; TW=C; 
0.72<Pr<5;
NuL=0.58RaL1/s.

1.25 *104<GrL<l. 25 xlO6 
Nul=0 .2 9 7RaL1/4.

S.N. Singh et 
al. (1969)

Use integral method; 
boundary layer equation 
Two-dimensional flow. 
Circular plate:
* Nur=0 .638RaR1/s.
Square plate:
* Nul=0 . 945RaL1/5. 
Infinite strip:
* Nul=0 .66Ra,/ .

Circular plate:
* Nur=0.818RaR1/sPr'-016 
Square plate:
* NuL=1.08RaL1/5.

C.J. Chen 
(1970)

Differential 
formulation; Two- 
dimensional boundary 
layer eguation. 
Nut=CGrL .

R.C. Birkebak 
et al. (1970)

Square plate in 
water:
* Nut=0 .898Ra,.1/5.

K.E. Hassan 
et al. (1970)

Rectangular plate in 
air:
Nul=0 .06GrL1/3.

T. Aihara et 
al. (1972)

Square plate in air: 
*Nul=0. 66RaL1/5; Ra-107

T. Fujii et 
al. (1972)

Rectangular plate: 
NUt=0 .58Ra,1/5;
10 <Rar<10 .

T. Fujii et 
al. (1973)

Use Integral method; Two- 
dimensional boundary 
layer equation; qw=C. 
Circular plate:
Nur=0 .528RaR1/5; Pr=l. 
Nu„=0,506Ra„1/5; Pr=0.7.

F. Restrepo 
et al. (1974)

Square plate in air; 
1. 7 xl06<RaL<7*l06; Nul=0. 167Ra, 0-276 .



93

Researchers Analytical Results Experimental Results
R .E. Faw et 
al. (1981)

Square plate in air; 
TW=C;
* NuT=0.87RaT.1/s.

D.W. Hatfield 
et al. (1981) Rectangular and 

square plates; 
Pr=0.72; 6 : 4800. 
NuT=1.01RaL6-19.

R .E. Faw et 
al. (1982)

Circular plate; TW=C. 
1. 07 xl06<RaR<l. 6xl06 
Nu0 R=0.487Ra„1/5. 
Nu„=0.65RaR1/!\

R. J.
Goldstein et 
al. (1983)

Finite difference 
methods; Two- 
dimensional infinite 
strip; Pr=0.72;
* NuT=0.975RaT°-19.

Square plate in air;
* ShL=0.86lRaL1/s.
1/5 power is imposed; 
the power from 
experiment is 0.914.

T.
Schulenberg
(1984)

Differential 
formulation; for very 
small Prandtl number. 
Circular plate:
Nur=0 . 705Pr°‘2RaR1/s; T=C. 
Nur=0 .776Pr0,167RaR /6;q„=C

J.
Gryzagoridis
(1984)

Rectangular plate: 
Nux(Tw-Too)=0.4Rax°-34. 
x:distance measured 
from the center.

T.
Schulenberg 
(1985)

Differential 
formulation; for very 
large Prandtl number. 
Circular plate:
Nur=0 .619RaR1/s; TW=C 
NuR=0.693RaR‘1//; qu=C.

K.S. Chang et 
al. (1988)

Finite difference 
method. Square plate 
in air; Pr=0.7:
Nu7.=0 .27Ra,1/4.

R. Karvinen 
et al. (1990)

Rectangular plate in 
air:
Nu,=0. 5RaT.1/3; TW=C.

P. Hrycak et 
al. (1990)

Differential 
formulation; for 
axisymmetric flow. 
Circular plate:
Nur=0 . 519Pr°-07 (mRaR)1/4; 
0.3<m<0.9.
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TABLE n-3.1 : FREE CONVECTION OF DOWNWARD-FACING HEATED PLATE,
ONE ASSUMED FUNCTION IN TEMPERATURE DISTRIBUTION AND
PRESCRIBED SURFACE TEMPERATURE CASE.

Pr = 0.720
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4.7 .792510 .013135 -.020360
4.8 .793725 .011207 -.018226
4.9 .794758 .009483 -.016290
5.0 .795628 .007943 -.014536
5.1 .796352 .006570 -.012948
5.2 .796947 .005349 -.011513
5.3 .797426 .004263 -.010217
5.4 .797803 .003301 -.009047
5.5 .798090 .002450 -.007991
5.6 .798297 .001699 -.007040
5.7 .798433 .001039 -.006183
5.8 .798507 .000460 -.005412
5.9 .798527 -.000046 -.004718
6.0 .798500 -.000486 -.004095
6.1 .798432 -.000867 -.003534
6.2 .798329 -.001195 -.003030
6.3 .798195 -.001475 -.002577
6.4 .798035 -.001712 -.002171
6.5 .797854 -.001910 -.001806
6.6 .797654 -.002074 -.001479
6.7 .797440 -.002207 -.001186
6.8 .797214 -.002313 -.000923
6.9 .796978 -.002393 -.000687
7.0 .796736 -.002451 -.000475
7.1 .796489 -.002489 -.000286
7.2 .796239 -.002508 -.000116
7.3 .795988 -.002512 .000036
7.4 .795737 -.002502 .000173
7.5 .795488 -.002478 .000295
7.6 .795241 -.002443 .000404
7.7 .794999 -.002398 .000502
7.8 .794762 -.002343 .000589
7.9 .794531 -.002280 .000668
8.0 .794306 -.002210 .000738
8.1 .794089 -.002133 .000800
8.2 .793880 -.002050 .000857
8.3 .793679 -.001962 .000907
8.4 .793488 -.001869 .000952
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9.4 .792149 -.000766 .001207
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9.6 .792020 -.000522 .001232
9.7 .791974 -.000398 .001243
9.8 .791941 -.000274 .001252
9.9 .791920 -.000148 .001260
10.0 .791911 -.000021 .001268
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.001916

.001724
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.000377
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.000194

.000174

.000156

.000139

.000125

.000111

.000100
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.001750
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-.001717
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TABLE II-3.2 : FREE CONVECTION OF DOWNWARD-FACING HEATED PLATE, ONE
ASSUMED FUNCTION IN TEMPERATURE DISTRIBUTION AND PRESCRIBED SURFACE
TEMPERATURE CASE.

Pr = 1.0

.0 .o&looo .OObdOO .72̂ 457 ••l.ooooi) . 5 ® .oo® 1.000(̂ 00
.1 .003453 .067432 .626056 -.947925 .524966 .120636 .948149.2 .013171 .125386 .533912 -.894681 .541175 .196472 .896339
.3 .028232 .174395 .447184 -.839506 .562914 .231920 .844670
.4 .047770 .215011 .366087 -.782042 .586359 .231392 .793296
.5 .070973 .247808 .290852 -.722290 .608158 .199880 .742413
.6 .097091 .273384 .221696 -.660560 .625494 .143162 .692250
.7 .125430 .292356 .158788 -.597414 .636167 .067733 .643052
.8 .155363 .305353 .102235 -.533600 .638648 -.019495 .595074
.9 .186323 .313015 .052061 -.469986 .632105 -.111612 .548564
1.0 .217809 .315976 .008201 -.407486 .616378 -.202173 .503755
1.1 .249382 .314861 -.029503 -.347002 .591909 -.285610 .460855
1.2 .280665 .310273 -.061295 -.289365 .559641 -.357547 .420040
1.3 .311340 .302788 -.087495 -.235291 .520885 -.414974 .381453
1.4 .341145 .292947 -.108491 -.185353 .477185 -.456274 .345193
1.5 .369868 .281249 -.124717 -.139964 .430180 -.481120 .311323
1.6 .397348 .268147 -.136644 -.099373 .381485 -.490278 .279866
1.7 .423464 .254048 -.144755 -.063673 .332595 -.485344 .250810
1.8 .448136 .239307 -.149540 -.032817 .284814 -.468474 .224113
1.9 .471314 .224235 -.151475 -.006637 .239217 -.442111 .199702
2.0 .492980 .209092 -.151015 .015127 .196625 -.408760 .177487
2.1 .513138 .194097 -.148585 .032808 .157618 -.370808 .157355
2.2 .531811 .179427 -.144577 .046782 .122545 -.330395 .139187
2.3 .549039 .165223 -.139339 .057453 .091560 -.289340 .122851
2.4 .564874 .151590 -.133182 .065230 .064649 -.249106 .108212
2.5 .579379 .138608 -.126376 .070514 .041673 -.210807 .095137
2.6 .592619 .126329 -.119150 .073688 .022397 -.175226 .083492
2.7 .604669 .114786 -.111697 .075107 .006521 -.142858 .073148
2.8 .615602 .103992 -.104176 .075094 -.006291 -.113961 .063982
2.9 .625492 .093948 -.096716 .073939 -.016389 -.088600 .055877
3.0 .634416 .084643 -.089418 .071895 -.024126 -.066694 .048725
3.1 .642445 .076057 -.082359 .069182 -.029837 -.048063 .042426
3.2 .649650 .068161 -.075598 .065985 -.033839 -.032455 .036885
3.3 .656099 .060926 -.069173 .062461 -.036420 -.019581 .032020
3.4 .661856 .054315 -.063112 .058740 -.037836 -.009136 .027753
3.5 .666982 .048291 -.057428 .054925 -.038317 -.000813 .024014
3.6 .671533 .042816 -.052127 .051101 -.038060 .005682 .020743
3.7 .675562 .037853 -.047206 .047332 -.037233 .010623 .017883
3.8 .679119 .033363 -.042657 .043668 -.035979 .014262 .015384
3.9 .682249 .029309 -.038468 .040146 -.034416 .016822 .013202
4.0 .684994 .025658 -.034623 .036792 t .032644 .018501 .011299
4.1 .687393 .022374 -.031103 .033622 -.030740 .019470 .009639
4.2 .689480 .019427 -.027892 .030646 -.028768 .019875 .008193
4.3 .691288 .016786 -.024968 .027869 -.026779 .019842 .006932
4.4 .692847 .014424 -.022311 .025290 -.024811 .019472 .005835
4.5 .694182 .012315 -.019903 .022905 -.022893 .018854 .004879
4.6 .695317 .010436 -.017724 .020709 -.021047 .018056 .004048



4.7 .696276 .008764 -.015755 .018693 -.019286 .017137 .003324
4.8 .697076 .007278 -.013980 .016848 -.017622 .016142 .002695
4.9 .697737 .005962 -.012380 .015165 -.016059 .015107 .002147
5.0 .698274 .004797 -.010942 .013633 -.014601 .014061 .001671
5.1 .698701 .003769 -.009649 .012241 -.013246 .013025 .001256
5.2 .699032 .002863 -.008489 .010980 -.011995 .012014 .000896
5.3 .699277 .002067 -.007449 .009839 -.010842 .011041 .000583
5.4 .699448 .001369 -.006517 .008809 -.009785 .010114 .000311
5.5 .699554 .000760 -.005684 .007879 -.008818 .009238 .000074
5.6 .699603 .000230 -.004939 .007042 -.007935 .008416 -.000132
5.7 .699602 -.000230 -.004273 .006289 -.007133 .007650 -.000311
5.8 .699559 -.000627 -.003678 .005613 -.006404 .006938 -.000467
5.9 .699479 -.000968 -.003148 .005006 -.005743 .006281 -.000602
6.0 .699367 -.001259 -.002675 .004463 -.005146 .005676 -.000720
6.1 .699229 -.001505 -.002253 .003975 -.004606 .005121 -.000822
6.2 .699067 -.001711 -.001878 .003539 -.004120 .004614 -.000911
6.3 .698888 -.001882 -.001544 .003150 -.003682 .004151 -.000988
6.4 .698692 -.002021 -.001247 .002802 -.003288 .003731 -.001055
6.5 .698484 -.002132 -.000982 .002491 -.002935 .003349 -.001114
6.6 .698267 -.002218 -.000747 .002213 -.002617 .003003 -.001165
6.7 .698041 -.002282 -.000539 .001966 -.002333 .002691 -.001209
6.8 .697811 -.002327 -.000353 .001746 -.002078 .002408 -.001248
6.9 .697577 -.002354 -.000189 .001550 -.001850 .002154 -.001281
7.0 .697340 -.002365 -.000043 .001375 -.001647 .001925 -.001310
7.1 .697104 -.002363 .000087 .001220 -.001465 .001719 -.001335
7.2 .696868 -.002348 .000202 .001081 -.001302 .001534 -.001357
7.3 .696635 -.002323 .000304 .000959 -.001157 .001368 -.001377
7.4 .696404 -.002288 .000394 .000849 -.001028 .001219 -.001393
7.5 .696177 -.002244 .000474 .000753 -.000913 .001086 -.001408
7.6 .695955 -.002193 .000545 .000667 -.000810 .000967 -.001420
7.7 .695739 -.002136 .000608 .000590 -.000719 .000861 -.001431
7.8 .695529 -.002072 .000663 .000522 -.000638 .000765 -.001441
7.9 .695325 -.002003 .000712 .000462 -.000565 .000681 -.001449
8.0 .695128 -.001930 .000756 .000409 -.000501 .000605 -.001456
8.1 .694939 -.001852 .000794 .000362 -.000444 .000537 -.001463
8.2 .694758 -.001771 .000829 .000320 -.000394 .000477 -.001468
8.3 .694585 -.001687 .000859 .000283 -.000349 .000424 -.001473
8.4 .694420 -.001599 .000885 .000250 -.000309 .000376 -.001477
8.5 .694265 -.001510 .000909 .000221 -.000273 .000333 -.001481
8.6 .694119 -.001418 .000930 .000195 -.000242 .000296 -.001484
8.7 .693982 -.001324 .000948 .000173 -.000214 .000262 -.001486
8.8 .693854 -.001228 .000964 .000152 -.000189 .000232 -.001489
8.9 .693736 -.001131 .000978 .000135 -.000167 .000206 -.001491
9.0 .693628 -.001033 .000991 .000119 -.000148 .000182 -.001493
9.1 .693529 -.000933 .001002 .000105 -.000131 .000161 -.001494
9.2 .693441 -.000832 .001012 .000093 -.000116 .000143 -.001496
9.3 .693363 -.000730 .001021 .000082 -.000102 .000126 -.001497
9.4 .693295 -.000628 .001029 .000072 -.000090 .000112 -.001498
9.5 .693237 -.000525 .001035 .000064 -.000080 .000099 -.001499
9.6 .693190 -.000421 .001041 .000056 -.000070 .000088 -.001500
9.7 .693153 -.000317 .001047 .000049 -.000062 .000077 -.001500
9.8 .693127 -.000212 .001051 .000044 -.000055 .000068 -.001501
9.9 .693111 -.000106 .001055 .000038 -.000048 .000061 -.001501
10.0 .693106 -.000001 .001059 .000034 -.000043 .000053 -.001502
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TABLE n-3.3 : FREE CONVECTION OF DOWNWARD-FACING HEATED PLATE,
ONE ASSUMED FUNCTION IN TEMPERATURE DISTRIBUTION AND
PRESCRIBED SURFACE TEMPERATURE CASE.

Pr = 5.0
ti f(r|) f’Ol) f"0l) 

.0 .000000 .000000 .537160 - 
.1 .002523 .048861 .441499
.2 .009468 .088590 .354547 
.3 .019966 .120062 .276360 
.4 .033234 .144155 .206948 
.5 .048580 .161742 .146226 
.6 .065394 .173682 .093978 
.7 .083156 .180808 .049847 
.8 .101422 .183906 .013337 
.9 .119827 .183709 -.016164
1.0 .138076 .180884 -.039357
1.1 .155936 .176023 -.056995
1.2 .173230 .169644 -.069847
1.3 .189829 .162188 -.078666
1.4 .205644 .154022 -.084162
1.5 .220620 .145445 -.086981
1.6 .234727 .136695 -.087697
1.7 .247959 .127959 -.086804
1.8 .260324 .119374 -.084716
1.9 .271843 .111044 -.081775
2.0 .282544 .103039 -.078255
2.1 .292463 .095405 -.074372
2.2 .301638 .088171 -.070292
2.3 .310111 .081349 -.066142
2.4 .317922 .074942 -.062013
2.5 .325113 .068943 -.057971
2.6 .331724 .063343 -.054064
2.7 .337794 .058125 -.050320
2.8 .343361 .053273 -.046759
2.9 .348460 .048767 -.043390
3.0 .353125 .044588 -.040216
3.1 .357388 .040717 -.037237
3.2 .361278 .037135 -.034448
3.3 .364824 .033822 -.031842
3.4 .368051 .030760 -.029413
3.5 .370984 .027933 -.027150
3.6 .373645 .025325 -.025046
3.7 .376056 .022919 -.023091
3.8 .378235 .020702 -.021275
3.9 .380202 .018660 -.019591
4.0 .381972 .016780 -.018029
4.1 .383563 .015050 -.016582
4.2 .384987 .013460 -.015241
4.3 .386259 .011999 -.013999
4.4 .387391 .010657 -.012850
4.5 .388394 .009426 -.011786
4.6 .389279 .008297 -.010801

L.0000® . 8 6 ®  .000® 1S8&OO
-.913168 .870779 .062991 .913328
-.825771 .876915 .048162 .826905
-.737942 .878386 -.027368 .741322 
-.650423 .870034 -.145088 .657448 
-.564373 .848613 -.285500 .576327 
-.481182 .812816 -.429542 .499056 
-.402274 .763148 -.560418 .426676 
-.328949 .701607 -.665233 .360065 
-.262248 .631242 -.736014 .299871 
-.202875 .555639 -.769896 .246463 
-.151173 .478441 -.768536 .199932 
-.107130 .402941 -.736974 .160108 
-.070438 .331819 -.682253 .126609 
-.040555 .267004 -.612101 .098893
-.016787 .209667 -.533856 .076321 
.001644 .160293 -.453764 .058211 
.015535 .118815 -.376614 .043886 
.025655 .084762 -.305683 .032702 
.032711 .057406 -.242876 .024079
.037331 .035889 -.188978 .017507
.040054 .019315 -.143947 .012550 
.041330 .006823 -.107194 .008850 
.041528 -.002370 -.077811 .006112
.040943 -.008950 -.054757 .004104 
.039806 -.013497 -.036980 .002642 
.038295 -.016489 -.023495 .001586 
.036547 -.018310 -.013432 .000828 
.034662 -.019264 -.006048 .000287 
.032715 -.019588 -.000730 -.000097 
.030759 -.019462 .003018 -.000368 
.028833 -.019024 .005585 -.000559 
.026961 -.018375 .007277 -.000692 
.025162 -.017590 .008325 -.000785 
.023446 -.016725 .008905 -.000849 
.021819 -.015820 .009151 -.000894 
.020282 -.014903 .009160 -.000925 
.018838 -.013993 .009004 -.000946 
.017483 -.013106 .008737 -.000960 
.016216 -.012248 .008397 -.000970 
.015032 -.011428 .008012 -.000977 
.013929 -.010647 .007602 -.000982 
.012901 -.009908 .007181 -.000985 
.011946 -.009211 .006760 -.000987
.011058 -.008555 .006346 -.000988 
.010233 -.007941 .005944 -.000989
.009468 -.007366 .005556 -.000990



99
4.7 .390057 .007263 -.009890
4.8 .390735 .006317 -.009048
4.9 .391323 .005451 -.008268
5.0 .391828 .004661 -.007548
5.1 .392257 .003940 -.006881
5.2 .392618 .003283 -.006265
5.3 .392916 .002685 -.005696
5.4 .393157 .002143 -.005169
5.5 .393346 .001650 -.004683
5.6 .393488 .001205 -.004233
5.7 .393588 .000803 -.003817
5.8 .393650 .000440 -.003433
5.9 .393678 .000115 -.003077
6.0 .393674 -.000176 -.002749
6.1 .393644 -.000435 -.002445
6.2 .393588 -.000666 -.002165
6.3 .393511 -.000869 -.001906
6.4 .393415 -.001048 -.001666
6.5 .393303 -.001203 -.001444
6.6 .393175 -.001337 -.001240
6.7 .393036 -.001451 -.001050
6.8 .392886 -.001548 -.000875
6.9 .392727 -.001627 -.000714
7.0 .392561 -.001691 -.000564
7.1 .392389 -.001740 -.000426
7.2 .392213 -.001776 -.000298
7.3 .392034 -.001800 -.000180
7.4 .391854 -.001813 -.000071
7.5 .391672 -.001815 .000030
7.6 .391491 -.001807 .000124
7.7 .391311 -.001790 .000210
7.8 .391133 -.001765 .000290
7.9 .390958 -.001732 .000364
8.0 .390787 -.001692 .000432
8.1 .390620 -.001646 .000495
8.2 .390458 -.001593 .000554
8.3 .390302 -.001535 .000608
8.4 .390151 -.001472 .000658
8.5 .390007 -.001404 .000704
8.6 .389871 -.001331 .000747
8.7 .389741 -.001255 .000786
8.8 .389620 -.001174 .000823
8.9 .389507 -.001090 .000857
9.0 .389402 -.001003 .000888
9.1 .389306 -.000913 .000917
9.2 .389219 -.000820 .000944
9.3 .389142 -.000724 .000969
9.4 .389075 -.000626 .000991
9.5 .389017 -.000526 .001013
9.6 .388970 -.000424 .001032
9.7 .388932 -.000319 .001050
9.8 .388906 -.000213 .001067
9.9 .388890 -.000106 .001083
10.0 .388885 .000003 .001097

.008759

.008101

.007492

.006928

.006405

.005922

.005475

.005061

.004678

.004324

.003997

.003694

.003415

.003156

.002917

.002696

.002492

.002304

.002129

.001968

.001819

.001682

.001555

.001437

.001329

.001229

.001136

.001050

.000971

.000898

.000830

.000768

.000710

.000657

.000607

.000562

.000520

.000481

.000444

.000411

.000380

.000352

.000325

.000301

.000278

.000258

.000238.000220

.000204

.000189

.000175

.000162

.000149

.000138

-.006829
-.006328
-.005862
-.005428
-.005024
-.004650
-.004302
-.003979
-.003680
-.003403
-.003146
-.002908
-.002688
-.002485
-.002297
-.002122
-.001961
-.001812
-.001675
-.001548
-.001430
-.001322
-.001221
-.001129
-.001043
-.000964
-.000891
-.000823
-.000761
-.000703
-.000650
-.000601
-.000555
-.000513
-.000474
-.000439
-.000406
-.000375
-.000347
-.000321
-.000296
-.000274
-.000253
-.000234
-.000217
-.000201
-.000185
-.000172
-.000159
-.000147
-.000136
-.000126
-.000116
-.000108

.005186

.004833

.004499

.004184

.003888

.003610

.003350

.003106

.002879

.002667

.002470

.002286

.002116

.001957

.001811

.001674

.001548

.001431

.001323

.001222

.001129

.001044

.000964

.000891

.000823

.000760

.000702

.000649

.000599

.000554

.000512

.000473

.000437

.000403

.000373

.000344

.000318

.000294

.000272

.000251

.000232

.000214

.000198

.000183

.000169

.000157

.000145

.000134

.000124

.000114

.000106

.000098

.000090

.000084

-.000991
-.000991
-.000991
-.000991
-.000991
-.000991
-.000991
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
-.000992
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TABLE II-3.4 : FREE CONVECTION OF DOWNWARD-FACING HEATED PLATE, ONE ASSUMEDFUNCTION IN TEMPERATURE DISTRIBUTION AND PRESCRIBED CONSTANT SURFACE FLUXCASE.

?0 .088)00 .OO080O 1.219610 -1.87&&3 l.OOOtSo .OOObljo l i % 6 3  
.2 .021965 .207847 .865680-1.665901 1.071018 .613895 1.671073
.4 .078700 .349137 .554816-1.438038 1.210489 .702085 1.472607.6 .157788 .432998 .292284 -1.183436 1.325040 .390486 1.278685.8 .248745 .469572 .082454 -.913935 1.352299 -.135961 1.093413
1.0 .343179 .469571 -.073653 -.649886 1.270338 -.668916 .920935
1.2 .434837 .443486 -.179262 -.412065 1.095189-1.048343 .764644
1.4 .519469 .400779 -.241245 -.215427 .865905 -1.207252 .626689
1.6 .594567 .349296 -.268625 -.066403 .625750-1.165859 .507842
1.8 .659004 .295001 -.270897 .036426 .408352 -.992774 .407645
2.0 .712660 .242031 -.256695 .099727 .232327 -.763706 .324725
2.2 .756078 .192949 -.233044 .132470 .102699 -.536322 .257158
2.4 .790189 .149093 -.205142 .143642 .015468 -.343184 .202790
2.6 .816097 .110937 -.176508 .140932 -.037659 -.195870 .159471
2.8 .834939 .078393 -.149298 .130238 -.065842 -.092790 .125216
3.0 .847801 .051045 -.124665 .115712 -.077208 -.026169 .098276
3.2 .855666 .028322 -.103087 .100048 -.078117 .013306 .077169
3.4 .859397 .009603 -.084613 .084855 -.073129 .034073 .060670
3.6 .859733 -.005718 -.069055 .070984 -.065287 .042792 .047787
3.8 .857299 -.018193 -.056106 .058802 -.056491 .044274 .037729
4.0 .852613 -.028311 -.045417 .048377 -.047841 .041773 .029871
4.2 .846104 -.036488 -.036644 .039617 -.039908 .037365 .023724
4.4 .838124 -.043075 -.029471 .032349 -.032937 .032304 .018907
4.6 .828960 -.048364 -.023618 .026374 -.026982 .027296 .015122
4.8 .818848 -.052595 -.018848 .021492 -.021990 .022701 .012142
5.0 .807980 -.055962 -.014961 .017520 -.017863 .018670 .009788
5.2 .796510 -.058627 -.011790 .014297 -.014483 .015235 .007922
5.4 .784567 -.060717 -.009201 .011685 -.011731 .012366 .006439
5.6 .772255 -.062339 -.007083 .009570 -.009503 .010001 .005256
5.8 .759658 -.063576 -.005347 .007856 -.007702 .008070 .004309
6.0 .746845 -.064498 -.003919 .006466 -.006250 .006505 .003548
6.2 .733876 -.065160 -.002743 .005337 -.005080 .005242 .002935
6.4 .720796 -.065608 -.001771 .004419 -.004137 .004226 .0024386.6 .707644 -.065879 -.000964 .003670 -.003376 .003410 .0020356.8 .694454 -.066003 -.000293 .003058 -.002762 .002755 .001706
7.0 .681251 -.066004 .000267 .002557 -.002266 .002229 .001436
7.2 .668059 -.065903 .000735 .002146 -.001864 .001808 .001215
7.4 .654896 -.065715 .001130 .001807 -.001537 .001469 .001032
7.6 .641778 -.065455 .001462 .001527 -.001272 .001196 .000881
7.8 .628718 -.065134 .001744 .001295 -.001055 .000977 .000755
8.0 .615728 -.064760 .001983 .001102 -.000878 .000799 .000650
8.2 .602817 -.064343 .002187 .000941 -.000733 .000656 .000562
8.4 .589993 -.063888 .002361 .000807 -.000614 .000540 .0004898.6 .577264 -.063400 .002511 .000694 -.000516 .000446 .0004268.8 .564635 -.062885 .002640 .000600 -.000435 .000369 .000374
9.0 .552112 -.062345 .002752 .000520 -.000367 .000306 .000329
9.2 .539698 -.061785 .002849 .000452 -.000311 .000255 .000290
9.4 .527399 -.061207 .002933 .000395 -.000265 .000213 .000258
9.6 .515217 -.060612 .003007 .000346 -.000226 .000178 .000230
9.8 .503155 -.060004 .003072 .000304 -.000193 .000149 .000205

10.0 .491216 -.059384 .003129 .000268 -.000166 .000126 .000184
10.2 .479402 -.058753 .003179 .000237 -.000143 .000106 .000166
10.4 .467715 -.058113 .003224 .000211 -.000123 .000090 .000150
10.6 .456157 -.057464 .003264 .000188 -.000107 .000076 .000136
10.8 .444730 -.056807 .003300 .000168 -.000092 .000065 .000124
11.0 .433435 -.056144 .003331 .000151 -.000080 .000055 .000114
11.2 .422273 -.055475 .003360 .000136 -.000070 .000047 .000104
11.4 .411245 -.054800 .003386 .000122 -.000061 .000041 .0000%
11.6 .400353 -.054121 .003409 .000111 -.000054 .000035 .000088
11.8 .389597 -.053437 .003430 .000101 -.000047 .000030 .000082
12.0 .378978 -.052749 .003449 .000092 -.000042 .000026 .000076



12.2 .368498 -.052057 .003467 .000084 -.000037 .000023 .000071
12.4 .358156 -.051362 .003483 .000077 -.000033 .000020 .000066
12.6 .347953 -.050664 .003498 .000071 -.000029 .000017 .000062
12.8 .337890 -.049963 .003512 .000066 -.000026 .000015 .000058
13.0 .327968 -.049260 .003524 .000061 -.000023 .000013 .000054
13.2 .318187 -.048553 .003536 .000056 -.000021 .000012 .000051
13.4 .308547 -.047845 .003547 .000052 -.000018 .000010 .000048
13.6 .299049 -.047135 .003557 .000049 -.000016 .000009 .000045
13.8 .289693 -.046422 .003566 .000046 -.000015 .000008 .000043
14.0 .280480 -.045708 .003575 .000043 -.000013 .000007 .000041
14.2 .271410 -.044992 .003584 .000041 -.000012 .000006 .000039
14.4 .262483 -.044275 .003592 .000038 -.000011 .000006 .000037
14.6 .253700 -.043556 .003599 .000036 -.000010 .000005 .000035
14.8 .245061 -.042835 .003606 .000034 -.000009 .000004 .000033
15.0 .236566 -.042113 .003613 .000033 -.000008 .000004 .000032
15.2 .228215 -.041390 .003619 .000031 -.000007 .000004 .000030
15.4 .220010 -.040666 .003625 .000030 -.000007 .000003 .000029
15.6 .211949 -.039940 .003631 .000029 -.000006 .000003 .000028
15.8 .204034 -.039213 .003637 .000027 -.000005 .000003 .000026
16.0 .196264 -.038486 .003642 .000026 -.000005 .000002 .000025
16.2 .188640 -.037757 .003647 .000025 -.000004 .000002 .000024
16.4 .181161 -.037027 .003652 .000025 -.000004 .000002 .000023
16.6 .173829 -.036296 .003657 .000024 -.000004 .000002 .000022
16.8 .166643 -.035564 .003662 .000023 -.000003 .000002 .000021
17.0 .159604 -.034831 .003666 .000023 -.000003 .000002 .000020
17.2 .152711 -.034097 .003671 .000022 -.000003 .000001 .000020
17.4 .145965 -.033363 .003675 .000021 -.000002 .000001 .000019
17.6 .139366 -.032627 .003679 .000021 -.000002 .000001 .000018
17.8 .132914 -.031891 .003683 .000021 -.000002 .000001 .000017
18.0 .126609 -.031154 .003688 .000020 -.000002 .000001 .000017
18.2 .120452 -.030416 .003692 .000020 -.000001 .000001 .000016
18.4 .114443 -.029677 .003696 .000020 -.000001 .000001 .000015
18.6 .108581 -.028938 .003699 .000019 -.000001 .000001 .000015
18.8 .102868 -.028198 .003703 .000019 -.000001 .000001 .000014
19.0 .097302 -.027457 .003707 .000019 -.000001 .000001 .000013
19.2 .091885 -.026715 .003711 .000019 -.000001 .000001 .000013
19.4 .086617 -.025972 .003715 .000019 .000000 .000001 .000012
19.6 .081496 -.025229 .003718 .000019 .000000 .000001 .000012
19.8 .076525 -.024485 .003722 .000019 .000000 .000001 .000011
20.0 .071703 -.023740 .003726 .000019 .000000 .000001 .000011
20.2 .067029 -.022994 .003730 .000019 .000000 .000001 .000010
20.4 .062505 -.022248 .003733 .000019 .000000 .000001 .000010
20.6 .058130 -.021501 .003737 .000019 .000000 .000001 .000009
20.8 .053904 -.020753 .003741 .000019 .000000 .000001 .000009
21.0 .049829 -.020005 .003745 .000019 .000001 .000001 .000008
21.2 .045903 -.019255 .003748 .000019 .000001 .000001 .000008
21.4 .042127 -.018505 .003752 .000019 .000001 .000001 .000007
21.6 .038501 -.017755 .003756 .000019 .000001 .000000 .000007
21.8 .035025 -.017003 .003760 .000019 .000001 .000000 .000006
22.0 .031699 -.016251 .003764 .000020 .000001 .000000 .000006
22.2 .028525 -.015497 .003768 .000020 .000001 .000000 .000005
22.4 .025501 -.014743 .003772 .000020 .000001 .000000 .000005
22.6 .022627 -.013989 .003776 .000020 .000001 .000000 .000004
22.8 .019905 -.013233 .003780 .000021 .000001 .000000 .000004
23.0 .017334 -.012477 .003784 .000021 .000001 .000000 .000004
23.2 .014915 -.011719 .003788 .000021 .000002 .000000 .000003
23.4 .012646 -.010961 .003793 .000021 .000002 .000000 .000003
23.6 .010530 -.010202 .003797 .000022 .000002 .000000 .000002
23.8 .008566 -.009443 .003801 .000022 .000002 .000000 .000002
24.0 .006753 -.008682 .003806 .000023 .000002 .000000 .000001
24.2 .005093 -.007920 .003810 .000023 .000002 .000000 .000001
24.4 .003585 -.007158 .003815 .000023 .000002 .000000 .000001
24.6 .002230 -.006394 .003820 .000024 .000002 .000000 .000000
24.8 .001027 -.005630 .003824 .000024 .000002 .000000 .000000
25.0 -.000022 -.004865 .003829 .000025 .000002 .000000 -.000001
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TABLE 11-3.5 : FREE CONVECTION OF DOWNWARD-FACING HEATED PLATE, ONE ASSUMEDFUNCTION IN TEMPERATURE DISTRIBUTION AND PRESCRIBED CONSTANT SURFACE FLUXCASE.
Pr = 1.0

.0 .O^XM) .ododoo 1 .0 ^ 2 1  -1.70^98 1.0000^ .0000<]o 1.7^898
.2 .019324 .182548 .755749-1.500917 1.055363 .468645 1.505033
.4 .069019 .305120 .477344-1.279697 1.157335 .485793 1.306904
.6 .137962 .376567 .245123 -1.040114 1.228360 .184666 1.114282
.8 .216874 .406434 .061770 -.793641 1.221289 -.265023 .932037

1.0 .298418 .404520 -.073037 -.557682 1.123998 -.691844 .764910
1.2 .377191 .380207 -.163128 -.348908 .954256 -.975871 .616526
1.4 .449565 .341809 -.215177 -.178541 .746110 -1.075307 .488847
1.6 .513432 .296126 -.237390 -.050649 .534854-1.015042 .382107
1.8 .567875 .248282 -.238130 .036977 .346822 -.853866 .295123
2.0 .612839 .201804 -.224871 .090579 .195921 -.652908 .225765
2.2 .648835 .158861 -.203640 .118043 .085241 -.457511 .171452
2.4 .676696 .120580 -.178878 .127101 .010835 -.292786 .129531
2.6 .697404 .087343 -.153586 .124315 -.034512 -.167295 .097537
2.8 .711964 .059056 -.129603 .114712 -.058591 -.079275 .073322
3.0 .721332 .035347 -.107917 .101834 -.068282 -.022128 .055103
3.2 .726374 .015709 -.088932 .087995 -.068979 .011942 .041447
3.4 .727850 -.000409 -.072689 .074580 -.064569 .030007 .031233
3.6 .726410 -.013539 -.059021 .062331 -.057666 .037681 .023599
3.8 .722601 -.024171 -.047657 .051569 -.049914 .039056 .017889
4.0 .716879 -.032735 -.038290 .042357 -.042275 .036924 .013612
4.2 .709620 -.039600 -.030616 .034617 -.035256 .033088 .010402
4.4 .701132 -.045075 -.024355 .028199 -.029079 .028647 .007985
4.6 .691665 -.049419 -.019260 .022926 -.023795 .024228 .006159
4.8 .681425 -.052843 -.015120 .018624 -.019364 .020158 .004774
5.0 .670578 -.055519 -.011756 .015129 -.015699 .016577 .003720
5.2 .659258 -.057587 -.009024 .012300 -.012698 .013519 .002914
5.4 .647576 -.059162 -.006801 .010013 -.010258 .010961 .002295
5.6 .635620 -.060335 -.004989 .008165 -.008284 .008851 .001818
5.8 .623464 -.061180 -.003511 .006674 -.006692 .007129 .001447
6.0 .611166 -.061757 -.002301 .005468 -.005411 .005733 .001158
6.2 .598776 -.062115 -.001308 .004493 -.004381 .004607 .000932
6.4 .586332 -.062292 -.000491 .003702 -.003553 .003703 .000754
6.6 .573869 -.062321 .000183 .003061 -.002888 .002978 .000614
6.8 .561412 -.062227 .000741 .002539 -.002352 .002398 .000502
7.0 .548985 -.062031 .001204 .002113 -.001921 .001933 .000413
7.2 .536606 -.061750 .001591 .001765 -.001573 .001561 .000341
7.4 .524290 -.061398 .001914 .001479 -.001291 .001263 .000283
7.6 .512050 -.060988 .002186 .001245 -.001063 .001025 .000236
7.8 .499898 -.060527 .002415 .001051 -.000878 .000833 .000198
8.0 .487842 -.060024 .002609 .000891 -.000728 .000679 .000167
8.2 .475891 -.059485 .002773 .000758 -.000605 .000555 .000141
8.4 .464050 -.058916 .002913 .000648 -.000504 .000455 .000120
8.6 .452326 -.058321 .003033 .000555 -.000422 .000373 .000102
8.8 .440723 -.057704 .003137 .000478 -.000354 .000308 .000087
9.0 .429246 -.057068 .003225 .000413 -.000298 .000254 .000075
9.2 .417897 -.056425 .003302 .000358 -.000252 .000211 .000064
9.4 .406681 -.055747 .003369 .000312 -.000213 .000175 .000056
9.6 .395599 -.055068 .003428 .000272 -.000181 .000146 .000048
9.8 .384654 -.054377 .003479 .000239 -.000154 .000122 .000042

10.0 .373849 -.053677 .003523 .000210 -.000132 .000102 .000036
10.2 .363184 -.052968 .003563 .000186 -.000113 .000086 .000032
10.4 .352662 -.052252 .003598 .000165 -.000097 .000073 .000027
10.6 .342284 -.051529 .003629 .000147 -.000084 .000061 .000024
10.8 .332051 -.050800 .003657 .000131 -.000073 .000052 .000021
11.0 .321964 -.050066 .003682 .000118 -.000063 .000044 .000018
11.2 .312025 -.049328 .003704 .000106 -.000055 .000038 .000016
11.4 .302234 -.048585 .003724 .000096 -.000048 .000032 .000014
11.6 .292591 -.047838 .003742 .000087 -.000042 .000028 .000012
11.8 .283099 -.047088 .003759 .000079 -.000037 .000024 .000010
12.0 .273756 -.046335 .003774 .000072 -.000032 .000021 .000009
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12.2 .264565 -.045578
12.4 .255525 -.044820
12.6 .246637 -.044058
12.8 .237902 -.043295
13.0 .229320 -.042529
13.2 .220891 -.041762
13.4 .212615 -.040993
13.6 .204494 -.040222
13.8 .196527 -.039449
14.0 .188714 -.038675
14.2 .181056 -.037900
14.4 .173554 -.037124
14.6 .166207 -.036346
14.8 .159016 -.035567
15.0 .151980 -.034787
15.2 .145101 -.034006
15.4 .138378 -.033224
15.6 .131812 -.032441
15.8 .125402 -.031657
16.0 .119149 -.030872
16.2 .113054 -.030086
16.4 .107115 -.029299
16.6 .101334 -.028512
16.8 .095710 -.027724
17.0 .090244 -.026935
17.2 .084936 -.026145
17.4 .079786 -.025355
17.6 .074795 -.024563
17.8 .069961 -.023772
18.0 .065286 -.022979
18.2 .060769 -.022186
18.4 .056412 -.021392
18.6 .052213 -.020597
18.8 .048173 -.019802
19.0 .044292 -.019006
19.2 .040570 -.018210
19.4 .037008 -.017412
19.6 .033606 -.016615
19.8 .030362 -.015816
20.0 .027279 -.015017
20.2 .024356 -.014217
20.4 .021592 -.013417
20.6 .018989 -.012616
20.8 .016546 -.011814
21.0 .014264 -.011012
21.2 .012142 -.010209
21.4 .010180 -.009405
21.6 .008380 -.008601
21.8 .006740 -.007796
22.0 .005262 -.006990
22.2 .003944 -.006184
22.4 .002788 -.005377
22.6 .001794 -.004569
22.8 .000961 -.003761
23.0 .000289 -.002951
23.2 -.000220 -.002142
23.4 -.000567 -.001331
23.6 -.000752 -.000520
23.8 -.000775 .000292
24.0 -.000636 .001104
24.2 -.000333 .001918
24.4 .000132 .002732
24.6 .000760 .003547
24.8 .001550 .004362
25.0 .002505 .005179

.003788 .000066 -.000029

.003800 .000060 -.000025

.003812 .000056 -.000022

.003823 .000051 -.000020

.003833 .000048 -.000018

.003842 .000044 -.000016

.003850 .000041 -.000014

.003858 .000039 -.000013

.003866 .000036 -.000011

.003873 .000034 -.000010

.003880 .000032 -.000009

.003886 .000031 -.000008

.003892 .000029 -.000007

.003897 .000028 -.000007

.003903 .000026 -.000006

.003908 .000025 -.000005

.003913 .000024 -.000005

.003918 .000023 -.000004

.003922 .000022 -.000004

.003927 .000022 -.000004

.003931 .000021 -.000003

.003935 .000020 -.000003

.003939 .000020 -.000003

.003943 .000019 -.000002

.003947 .000019 -.000002

.003950 .000018 -.000002

.003954 .000018 -.000002

.003958 .000018 -.000002

.003961 .000017 -.000001

.003965 .000017 -.000001

.003968 .000017 -.000001

.003971 .000017 -.000001

.003975 .000017 -.000001

.003978 .000016 -.000001

.003981 .000016 -.000001

.003984 .000016 .000000

.003988 .000016 .000000

.003991 .000016 .000000

.003994 .000016 .000000

.003997 .000016 .000000

.004001 .000016 .000000

.004004 .000016 .000000

.004007 .000016 .000000

.004010 .000016 .000000

.004013 .000016 .000000

.004017 .000016 .000000

.004020 .000016 .000000

.004023 .000017 .000001

.004027 .000017 .000001

.004030 .000017 .000001

.004033 .000017 .000001

.004037 .000017 .000001

.004040 .000017 .000001

.004044 .000017 .000001

.004047 .000018 .000001

.004051 .000018 .000001

.004054 .000018 .000001

.004058 .000018 .000001

.004061 .000018 .000001

.004065 .000018 .000001

.004069 .000019 .000001

.004072 .000019 .000001

.004076 .000019 .000001

.004080 .000019 .000001

.004084 .000019 .000001

.000018 .000007 

.000015 .000006 

.000013 .000005 

.000012 .000004 

.000010 .000003 

.000009 .000002 

.000008 .000002 

.000007 .000001 

.000006 .000000 

.000005 .000000 

.000005 -.000001 

.000004 -.000001 

.000004 -.000002 

.000003 -.000002 

.000003 -.000003 

.000003 -.000003 

.000002 -.000003 

.000002 -.000004 

.000002 -.000004 

.000002 -.000004 

.000002 -.000005 

.000002 -.000005 

.000001 -.000005 

.000001 -.000005 

.000001 -.000006 

.000001 -.000006 

.000001 -.000006 

.000001 -.000006 

.000001 -.000007 

.000001 -.000007 

.000001 -.000007 

.000001 -.000007 

.000001 -.000007 

.000001 -.000008 

.000001 -.000008 

.000001 -.000008 

.000001 -.000008 

.000000 -.000008 

.000000 -.000008 

.000000 -.000009 

.000000 -.000009 

.000000 -.000009 

.000000 -.000009 

.000000 -.000009 

.000000 -.000009 

.000000 -.000010 

.000000 -.000010 

.000000 -.000010 

.000000 -.000010 

.000000 -.000010 

.000000 -.000010 

.000000 -.000011 

.000000 -.000011 

.000000 -.000011 

.000000 -.000011 

.000000 -.000011 

.000000 -.000011 

.000000 -.000012 

.000000 -.000012 

.000000 -.000012 

.000000 -.000012 

.000000 -.000012 

.000000 -.000012 

.000000 -.000013 

.000000 -.000013
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TABLE II-3.6 : FREE CONVECTION OF DOWNWARD-FACING HEATED PLATE, ONE ASSUMEDFUNCTION IN TEMPERATURE DISTRIBUTION AND PRESCRIBED CONSTANT SURFACE FLUXCASE.
Pr = 5.0

$  .0 (^ 00  .OO&SoO .58^0^5 -1.120^5 1.00000^ .00(^ 3  l i 20025
.2 .010295 .096152 .382138 -.919009 1.011853 .053672 .920386
.4 .036010 .155550 .218584 -.716846 1.001503 -.191173 .725299
.6 .070603 .186248 .094876 -.522674 .928492 -.539845 .543965
.8 .109113 .195968 .008086 -.349836 .790670 -.814857 .386474

1.0 .148052 .191586 -.047208 -.209005 .614152 -.919408 .259689
1.2 .185185 .178722 -.077945 -.104381 .434242 -.856079 .165191
1.4 .219258 .161569 -.091229 -.033656 .278598 -.689784 .099766
1.6 .249719 .142978 -.093243 .009570 .160187 -.494694 .057442
1.8 .276472 .124704 -.088724 .032930 .079203 -.321323 .031681
2.0 .299687 .107704 -.080934 .043291 .028772 -.190557 .016818
2.2 .319668 .092410 -.071921 .045886 .000103 -.102657 .008635
2.4 336773 .078938 -.062858 .044262 -.014549 -.048592 .004306
2.6 .351361 .067229 -.054349 .040617 -.020876 -.017731 .002095
2.8 363773 .057143 -.046660 .036216 -.022599 -.001334 .000997
3.0 .374315 .048505 -.039867 .031733 -.021964 .006659 .000466
3.2 .383259 .041138 -.033950 .027501 -.020240 .010034 .000214
3.4 390843 .034871 -.028840 .023663 -.018110 .010993 .000097
3.6 .397271 .029553 -.024455 .020261 -.015922 .010754 .000044
3.8 .402718 .025047 -.020708 .017287 -.013844 .009966 .000019
4.0 .407336 .021233 -.017514 .014711 -.011949 .008967 .000009
4.2 .411251 .018009 -.014800 .012493 -.010260 .007925 .000004
4.4 .414573 .015286 -.012496 .010593 -.008776 .006925 .000002
4.6 .417393 .012987 -.010544 .008970 -.007485 .006003 .000001
4.8 .419791 .011048 -.008892 .007587 -.006369 .005174 .000000
5.0 .421833 .009413 -.007495 .006412 -.005409 .004440 .000000
5.2 .423574 .008036 -.006315 .005414 -.004587 .003798 .000000
5.4 .425062 .006875 -.005319 .004569 -.003884 .003239 .000000
5.6 .426336 .005898 -.004479 .003854 -.003286 .002756 .000000
5.8 .427431 .005075 -.003770 .003249 -.002777 .002341 .000000
6.0 .428375 .004382 -.003173 .002738 -.002346 .001986 .000000
6.2 .429191 .003799 -.002670 .002306 -.001980 .001682 .000000
6.4 .429901 .003309 -.002246 .001942 -.001670 .001423 .000000
6.6 .430520 .002896 -.001889 .001635 -.001408 .001203 .000000
6.8 .431064 .002549 -.001589 .001376 -.001187 .001016 .000000
7.0 .431543 .002258 -.001336 .001158 -.001000 .000858 .000000
7.2 .431970 .002012 -.001123 .000974 -.000842 .000723 .000000
7.4 .432351 .001806 -.000944 .000820 -.000709 .000610 .000000
7.6 .432694 .001633 -.000794 .000690 -.000597 .000514 .000000
7.8 .433006 .001487 -.000667 .000580 -.000502 .000433 .000000
8.0 .433291 .001364 -.000561 .000488 -.000423 .000365 .000000
8.2 .433553 .001261 -.000471 .000410 -.000356 .000307 .000000
8.4 .433796 .001175 -.000396 .000345 -.000299 .000259 .000000
8.6 .434024 .001102 -.000333 .000290 -.000252 .000218 .000000
8.8 .434238 .001041 -.000279 .000244 -.000212 .000183 .000000
9.0 .434441 .000990 -.000235 .000205 -.000178 .000154 .000000
9.2 .434634 .000947 -.000197 .000172 -.000150 .000130 .000000
9.4 .434820 .000911 -.000165 .000145 -.000126 .000109 .000000
9.6 .434999 .000880 -.000139 .000122 -.000106 .000092 .000000
9.8 .435173 .000855 -.000117 .000102 -.000089 .000077 .000000

10.0 .435341 .000834 -.000098 .000086 -.000075 .000065 .000000
10.2 .435506 .000816 -.000082 .000072 -.000063 .000055 .000000
10.4 .435668 .000801 -.000069 .000061 -.000053 .000046 .000000
10.6 .435827 .000788 -.000058 .000051 -.000044 .000039 .000000
10.8 .435983 .000777 -.000048 .000043 -.000037 .000032 .000000
11.0 .436138 .000769 -.000041 .000036 -.000031 .000027 .000000
11.2 .436291 .000761 -.000034 .000030 -.000026 .000023 .000000
11.4 .436442 .000755 -.000028 .000025 -.000022 .000019 .000000
11.6 .436593 .000750 -.000024 .000021 -.000019 .000016 .000000
11.8 .436742 .000745 -.000020 .000018 -.000016 .000014 .000000
12.0 .436891 .000742 -.000017 .000015 -.000013 .000011 .000000



12.2 .437039
12.4 .437186
12.6 .437333
12.8 .437480
13.0 .437626
13.2 .437772
13.4 .437918
13.6 .438064
13.8 .438209
14.0 .438355
14.2 .438500
14.4 .438645
14.6 .438790
14.8 .438935
15.0 .439080
15.2 .439225
15.4 .439370
15.6 .439515
15.8 .439660
16.0 .439805
16.2 .439950
16.4 .440095
16.6 .440240
16.8 .440385
17.0 .440530
17.2 .440675
17.4 .440820
17.6 .440965
17.8 .441111
18.0 .441256
18.2 .441401
18.4 .441546
18.6 .441691
18.8 .441836
19.0 .441981
19.2 .442127
19.4 .442272
19.6 .442417
19.8 .442562
20.0 .442708
20.2 .442853
20.4 .442998
20.6 .443143
20.8 .443289
21.0 .443434
21.2 .443580
21.4 .443725
21.6 .443871
21.8 .444016
22.0 .444161
22.2 .444307
22.4 .444453
22.6 .444598
22.8 .444744
23.0 .444889
23.2 .445035
23.4 .445180
23.6 .445326
23.8 .445472
24.0 .445618
24.2 .445763
24.4 .445909
24.6 .446055
24.8 .446201
25.0 .446346

.000739 -.000014 

.000736 -.000012 

.000734 -.000010 

.000732 -.000008 

.000731 -.000007 

.000730 -.000005 

.000729 -.000004 

.000728 -.000004 

.000727 -.000003 

.000727 -.000002 

.000726 -.000002 

.000726 -.000002 

.000726 -.000001 

.000725 -.000001 

.000725 -.000001 

.000725 .000000 

.000725 .000000 

.000725 .000000 

.000725 .000000 

.000725 .000000 

.000725 .000000 

.000725 .000000 

.000725 .000000 

.000725 .000000 

.000725 .000000 

.000725 .000000 

.000725 .000000 

.000725 .000000 

.000725 .000000 

.000725 .000000 

.000726 .000000 

.000726 .000000 

.000726 .000000 

.000726 .000000 

.000726 .000000 

.000726 .000001 

.000726 .000001 

.000726 .000001 

.000726 .000001 

.000726 .000001 

.000727 .000001 

.000727 .000001 

.000727 .000001 

.000727 .000001 

.000727 .000001 

.000727 .000001 

.000727 .000001 

.000727 .000001 

.000727 .000001 

.000728 .000001 

.000728 .000001 

.000728 .000001 

.000728 .000001 

.000728 .000001 

.000728 .000001 

.000728 .000001 

.000728 .000001 

.000728 .000001 

.000728 .000001 

.000729 .000001 

.000729 .000001 

.000729 .000001 

.000729 .000001 

.000729 .000001 

.000729 .000001

.000013 -.000011 

.000011 -.000009 

.000009 -.000008 

.000007 -.000007 

.000006 -.000005 

.000005 -.000005 

.000004 -.000004 

.000004 -.000003 

.000003 -.000003 

.000003 -.000002 

.000002 -.000002 

.000002 -.000002 

.000002 -.000001 

.000001 -.000001 

.000001 -.000001 

.000001 -.000001 

.000001 -.000001 

.000001 -.000001 

.000001 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000

.000010 .000000 

.000008 .000000 

.000007 .000000 

.000006 .000000 

.000005 .000000 

.000004 .000000 

.000003 .000000 

.000003 .000000 

.000002 .000000 

.000002 .000000 

.000002 .000000 

.000001 .000000 

.000001 .000000 

.000001 .000000 

.000001 .000000 

.000001 .000000 

.000001 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 

.000000 .000000 
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TABLE H-3.7 SOLUTIONS OF ffri) FOR THE PRANDTL NUMBERS OF 0.72, 1.0, 
AND 5.0 IN FREE CONVECTION OF DOWNWARD-FACING HEATED PLATE, 
TWO ASSUMED FUNCTIONS IN TEMPERATURE DISTRIBUTION AND 
PRESCRIBED SURFACE TEMPERATURE CASE.

*1 Pr=0.72 Pr=1.0 Pr=5.0
.0 .00000 .00000 .00000
.1 .00327 .00307 .00220
.2 .01246 .01167 .00819
.3 .02666 .02489 .01715
.4 .04503 .04192 .02836
.5 .06681 .06201 .04121
.6 .09129 .08448 .05519
.7 .11783 .10873 .06986
.8 .14586 .13423 .08489
.9 .17487 .16048 .09998

1.0 .20441 .18709 .11492
1.1 .23408 .21369 .12954
1.2 .26356 .24000 .14371
1.3 .29257 .26575 .15733
1.4 .32086 .29075 .17033
1.5 .34825 .31483 .18269
1.6 .37459 .33788 .19438
1.7 .39977 .35980 .20538
1.8 .42370 .38052 .21571
1.9 .44634 .40002 .22537
2.0 .46766 .41827 .23439
2.1 .48765 .43528 .24277
2.2 .50631 .45106 .25056
2.3 .52367 .46564 .25778
2.4 .53976 .47906 .26445
2.5 .55462 .49136 .27060
2.6 .56831 .50259 .27626
2.7 .58088 .51280 .28147
2.8 .59238 .52205 .28624
2.9 .60287 .53039 .29060
3.0 .61242 .53789 .29458
3.1 .62107 .54458 .29821
3.2 .62889 .55054 .30150
3.3 .63594 .55581 .30447
3.4 .64227 .56045 .30716
3.5 .64794 .56449 .30957
3.6 .65298 .56800 .31173
3.7 .65746 .57100 .31366
3.8 .66141 .57355 .31536
3.9 .66489 .57569 .31686
4.0 .66792 .57744 .31817
4.1 .67055 .57884 • .31930
4.2 .67281 .57993 .32027
4.3 .67474 .58074 .32109
4.4 .67636 .58128 .32177
4.5 .67770 .58160 .32233
4.6 .67879 .58170 .32276
4.7 .67966 .58162 .32309
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4.8 .68031 .58136 .32331
4.9 .68078 .58096 .32344
5.0 .68109 .58043 .32349
5.1 .68124 .57977 .32346
5.2 .68127 .57902 .32336
5.3 .68117 .57817 .32320
5.4 .68097 .57725 .32297
5.5 .68067 .57626 .32270
5.6 .68029 .57521 .32238
5.7 .67984 .57411 .32202
5.8 .67933 .57298 .32162
5.9 .67877 .57181 .32119
6.0 .67816 .57062 .32072
6.1 .67751 .56941 .32024
6.2 .67683 .56818 .31973
6.3 .67612 .56695 .31920
6.4 .67540 .56572 .31866
6.5 .67465 .56449 .31811
6.6 .67390 .56327 .31755
6.7 .67315 .56205 .31698
6.8 .67239 .56085 .31641
6.9 .67163 .55967 .31583
7.0 .67087 .55850 .31526
7.1 .67013 .55736 .31469
7.2 .66939 .55624 .31412
7.3 .66867 .55515 .31356
7.4 .66796 .55408 .31300
7.5 .66727 .55305 .31245
7.6 .66660 .55205 .31192
7.7 .66595 .55107 .31140
7.8 .66532 .55014 .31088
7.9 .66471 .54923 .31039
8.0 .66413 .54837 .30991
8.1 .66358 .54754 .30944
8.2 .66305 .54675 .30900
8.3 .66255 .54600 .30857
8.4 .66208 .54528 .30816
8.5 .66164 .54461 .30777
8.6 .66122 .54398 .30740
8.7 .66084 .54339 .30705
8.8 .66050 .54284 .30673
8.9 .66018 .54233 .30643
9.0 .65990 .54186 .30615
9.1 .65965 .54144 .30589
9.2 .65943 .54106 .30566
9.3 .65925 .54073 .30545
9.4 .65910 .54043 .30527
9.5 .65899 .54018 . .30512
9.6 .65891 .53998 .30499
9.7 .65887 .53982 .30489
9.8 .65886 .53970 .30481
9.9 .65888 .53963 .30476
10.0 .65895 .53960 .30474
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I Free Jet Zone
II Deflection Zone
III Wall Jet Zone

Fig.i-l.l Flow Pattern Under Impinging Jets and Experimental Outline
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Number Indicates the Position of Calorimeter 
Center is Ring #1 (all dimensions in mm)

14-14 Dia. 6-32UNC-2B, 12.7 DEEP
50.8 R B.C., Equal Angular Space

26.53 R, (Ring #4

CN

17.46 R, 
(Ring #3)

66.68 R,
(Ring #6) 

26.18 R, (Ring #5) 
47°

.3 R, (Ring #2)

0.5 C

25
.4

r s

IB/'' JL 1 
1

----------------  154

Fig.1-3.4 Heat Transfer Plate Configuration
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Fig.1-3.5 Calorimeter Configuration



Out
put
s 

fro
m 
oth
er 

cir
cui

ts
114

co

J3 ”-3
CO d) 
CD U

•H

•H

a, a) a. Sh 
O  -H O B

-P

-P U CO 
•H O  CD CO -P JS O O O 
Q. CD -P t—l *H 
VOID S•— c/a to

o

a
o

•h  o 
fn *H

Fi
g.

1-
3.
6 

Te
mp
er
at
ur
e 

Me
as
ur
em
en
t 

Sy
st

em



115

X
L jJ
C D
>

I—
I I I eg
(n o" 
VJ ii{r \ -ti

i/)C\J

D
eg

o §
C L  9.

gss

<

<

CO

¥

./

0-1 / +

o <

\
04

04

X
0ct:
+

./

<£>
y

eg —0 0ft: ft:
7 + f

7 T 3

o AW-V
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Fig.II-4.1.a Smoke beneath a Round Surface (R=60 mm) without Heating at T.^22 °C ' woxnout

Fig.II—4.1.b Smoke beneath a Round Surface (R=60 nnn) at Tv=100 C and T„=22 °C
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