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ABSTRACT

T itle  o f D isse r ta tio n  : On Local Stresses and Spring Constants
of a Sphere-Nozzle Connection

B an —Li Lyow : Doctor of Philosophy, 1991

D isse rta tio n  d ire c te d  by : Dr. Benedict C. Sun
Associate Professor, Department 
of Engineering Technology

This dissertation studies the local stresses and spring constants of a spherical 

shell with a nozzle attachment when it is under various loadings, namely radial force, 

overturning moment, horizontal shear force, and torsional moment. Because of the 

mathematical difficulty in modeling the nozzle-sphere configuration, particularly with 

nozzle opening, the finite element method ( A N S Y S  package) is utilized in this study. 

The model used in this study is a quadrilateral thin shell element model when the 

j s (spherical radius/thickness) value is larger than 1 0 . Otherwise the isoparametric 

solid element is used. The resulting stresses are basically biaxial state of stresses. 

It is observed that the local membrane and bending stresses are produced due to 

the radial force and the overturning moment as well as the shear force, and the 

local shear stresses are produced by both the torsional moment and the shear force. 

These individual stresses are presented as stress factors, which are functions of the 

dimensionless parameters, /3 ( radius of nozzle/radius of sphere) and 7 S. They are 

reported in graphical plots.

The spring constants considered due to various loadings (K y for radial force, 

K ^m for overturnment moment, K qt for torsional moment, K y  for shear force) are 

also presented in this dissertation. Again, these spring constants are presented in 

normalized forms which are also functions of /? and 7 3. Throughout the dissertation,



the j3 values considered are from 0.1 to 0.5 while the -js values are from 7 to 100. 

These values cover the range of the practical applications in pressure vessel design. 

In this work, the finite element method employed 22 elements along the juncture for 

the thin shell model, and 9 elements along the juncture with 4 elements across the 

thickness for the isoparametric model to ensure that the elements are small enough 

to provide convergence of the results. Stresses obtained from this study are in good 

agreement with the data extracted from Wichman’s paper (W.R.C. bulletin 107,1968) 

and experimental results from' other literature sources. The spring constants are in 

good agreement with data extracted from Batra & Sun’s work and other theoretical 

results.
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N om enclature

D =  E t3/[ 12(1 — fj.2)} = Flexural Rigidity of spherical shell, in-lb 

E  =  modulus of elasticity, psi

F  =  stress function for radial force or overturning moment 

K y =  spring constant by radial force in the y direction, lb/in  

K$m = rotational spring contant by overturning moment, in-lb/rad  

K qt — torsional spring constant by torsional moment, in-lb/rad  

K y  =  shear spring constant by horizontal shear force, lb/in  

K c,m =  circumferential membrane stress coefficient

psi jib  for external force, psi/in-lb  for external moment 

Kc,b — circumferential bending stress coefficient

psi/lb  for external force, psi/in-lb  for external moment 

Kmirn= meridional membrane stress coefficient

psi/lb  for external force, psi/in-lb  for external moment 

Kmtb =  meridional bending stress coefficient

psi/lb  for external force, psi jin-lb  for external moment 

K eo =  circumferential stress coefficient at the outside surface 

psi/lb  for external force, psi/in-lb  for external moment 

K d  =  circumferential stress coefficient at the inside surface

psi/lb  for external force, psi/in-lb  for external moment 

K mo = meridional stress coefficient at the outside surface



psi/lb  for external force, psi/in-lb  for external moment 

K mi = meridional stress coefficient at the inside surface

psi jib for external force, psi/in-lb  for external moment 

I =  [RH2/{12{1 -  /x2))]1/4, in

M b =  overturning moment for theoretical method, in-lb 

M x  =  overturning moment, in-lb 

M z  =  overturning moment, in-lb 

M t =  torsional moment, in-lb

M x = Radial moment acting per unit width upon a normal section of the 

spherical shell, in-lb/in  

M y =  Tangential moment acting per unit width upon a meridional section of the 

spherical shell, in-lb/in  

M xy =  Twisting moment in cylindrical shell or spherical shell, in-lb/in

N x = Radial membrane force, acting per unit width upon a normal section

of the spherical shell, lb/in  

N y =  Tangential membrane force, acting per unit width upon a meridional 

section of the spherical shell, lb/in  

P  = to tal radial force, lb

P i =  internal pressure, psi

Qx = Transverse shear force in cross section of the cylindrical shell (nozzle), 

lb/in

Qxv =  Equivalent transverse shear force for the cylindrical shell in section upon 

which Qx acts, lb/in 

Rm — mean radius of sphere, in

rm = mean radius of nozzle, in

s =  f  =  i.81784(^: ) ( ^ ) 1/2

ix



T  =  thickness of sphere, in

t =  thickness of nozzle, in

Tx =  Axial membrane force in the cylindrical shell, lb/in

Ty =  Tangential membrane force in the cylindrical shell, lb /in

u =  S f  =  1.8 1 7 8 4 (^ ) (^ )1/2

v =  radial deflection of nozzle under radial force, in

Vx =  horizontal shear force in x  direction, lb

Vz =  horizontal shear force in z direction, lb

w =  radial deflection of spherical shell under radial force, in

<!> =  stress function for torsional moment

4>m  = angular displacement by overturning moment, rad,

7 „ =  ^  (for nozzle)

7 , =  ^  (for sphere)

fj, =  Poisson’s ratio

P  — T

crC0 — circumferential stress at the outside surface, psi 

ad =  circumferential stress at the inside surface, psi 

<rmo =  meridional stress at the outside surface, psi 

cmi — meridional stress at the inside surface, psi 

oc = circumferential stress, psi

om =  meridional stress, psi

$T =  angular displacement by torsional moment, rad

x



C hapter 1 

Introduction

It is known that there exists highly localized stresses at the juncture of nozzles in 

pressure vessels under external loadings. In the last several decades, theoretical ap­

proaches to find the local stresses around the nozzle-sphere connection have resulted 

in several approximate methods. It is known that classical mathematical solutions 

have serious limitations due to the unusual geometries and boundary conditions 

present in practical cases. In the past, various numerical procedures, such as the 

shallow shell theorem, have been formulated to deal with special geometric shapes, 

but their applicability is highly limited. Although experimental approaches such as 

strain gauge testing and photoelastic methods have provided some practical indi­

cation of the stress distribution at the juncture of the nozzle-sphere model, these 

methods are both time consuming and costly. In addition, the results from exper­

imental method are affected by set-up technique and system calibration.The local 

stresses and displacements due to the external loadings can best be evaluated with 

the help of sophisticated computer programs such as A N  S Y S , [1 ], [2]. Such pro­

grams use the finite element approach to describe the real geometries and loading 

conditions.

In this dissertation, the finite element method simulates the real nozzle-sphere
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geometry at the juncture; Four different loading conditions are studied: radial load 

P, overturning moment My or M z,  horizontal shear force Vy or Vz, and torsional 

moment Mx- The radial load and overturning moment are applied on the top of 

the nozzle, and the horizontal shear force and torsional moment are applied at 

the juncture, as shown in the Figure 1 .1 . The radial load P is applied uniformly 

downward through the thickness of the nozzle onto the juncture. The overturning 

moment My and M z  are simulated by a cosine functional distribution of nodal 

force. The nodal force for My is antisymmetrical with respect to the x axis, while, 

the nodal force for M z  is antisymmetric with respect to the z axis. In the Vx and Vz 

model, nodal forces are uniformly distributed in the x and z directions respectively. 

In M r model, the nodal forces, which are tangent to the juncture of the model , are 

applied uniformly.

This dissertation studies the local stresses and the spring constants at the 

nozzle-sphere connection. The localized stresses are an im portant component in 

the A.S.M.E. Pressure Vessel and Boiler Code Class I pressure vessel and piping 

equations. The spring constants are very im portant in piping system analysis. 

Since the thin shell model is considered in this study, the resulting stresses due to 

various loadings are basically in a biaxial state of stress. That is, the radial loading, 

the overturning moment and shear force yield membrane and bending stresses in 

both the circumferential and meridional directions, and shear force and torsional 

moment yield the shear stresses. For each external load, the membrane and bending 

stress factors, in both the circumferential and meridional directions, are plotted 

separately in terms of 7 , and /?. The spring constants due to various loading (Ky 

for radial loading, K^M for overturnment moment, K$r for torsional moment, K y  

for shear force) are also presented in normalized forms in this study. The radial 

spring constant is defined as the radial load, in pounds, which would yield one
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inch of deflection in the y  direction. The shear spring constant is defined as the 

shear force, in pounds, which would yield one inch displacement in the x (or r) 

direction. The rotational spring constants are defined as the moment, in in-lb, 

which would yield one radian of angular rotation with respect to its axis. These 

individual stress factors and normalized spring constants are presented as a function 

of the dimensionless parameters, /? (nozzle radius/sphere radius) and 7 , (sphere 

radius/sphere thickness), and are presented in graphical plots. Since 7 , of 10 is 

often considered as a lower bound for the applicability of thin-shell theory [3 ], the 

quadrilateral thin shell element model will be used when 7 , is larger than 10. If 

the 7 „ is less than 10, the 3-D isoparametric solid element model will be applied. 

In this dissertation, (3 ranges from 0.1 to 0.5 and 7 , ranges from 7 to 100. These 

ranges cover the practical applications in pressure vessel design. Since the purpose 

of this dissertation is to study the spring constants and the local stresses in the shell 

region, it is assumed that the nozzle has the same thickness as the shell and that 

the nozzle becomes relatively rigid and hence the resulting nozzle strain is negligible

[4], [5].

The literature survey is given in the Chapter 2. Chapter 3 discusses the 

theoretical background of the model utilized in this study. Chapter 4 introduces 

geometrical parameters, boundary conditions, and loading patterns. Chapter 5 

discusses the details of the numerical analysis used in the model for radial loading, 

overturning moment, horizontal shear force, and torsional moment respectively. In 

this Chapter, the local stress factors and normalized spring constants axe derived. 

The conclusions are presented in the Chapter 6 . Appendix A gives the ANSYS 

program and Appendix B gives the mathem atical equation for the Kelvin functions 

and their derivatives. Appendix C tabulates and computes the stress factors and 

determines the resulting stresses.

3
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Chapter 2 

Literature Survey

Bijlaard was among the first to use Bessel functions to solve the governing differ­

ential equations of spherical pressure vessels under external loading [6 ], [7], [8 ], [9], 

[10], and [11]. He [7] [8 ] was the first to apply a radial load and external moments on 

top of the rigid cylindrical insert and determine the localized stresses and displace­

ments at the structure. His analysis used the shallow shell theory. The influence of 

the internal pressure was also considered.

He extended his study of stresses due to local loads on spherical vessels by con­

sidering the more realistic case of a spherical vessel with an inserted tube subjected 

to a radial load [9].

Bijlaard also investigated the case of an external moment acting on an inserted 

pipe [10]. The continuity conditions between the vessel and the pipe were established 

in order to determine the constants in the general solutions for the deflections and 

the stress functions in the spherical vessel.

Bijlaard later suggested a simple design method [11], from which one could 

compute the stresses in a spherical vessel from radial loads and external moments 

transferred by a pipe. The methods takes into account the pipe radius and thickness, 

as well as the effect of a reinforcing pad on the vessel.

Penny &: Leckie [12] [13] studied the effect of a bending moment and shear
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force on a  nozzle-sphere connection. They utilized the asymptotic solutions devel­

oped by Havers to derive the stresses. Their model had no opening, and the external 

force and moment were applied on the top of the sphere.

Later, B atra and Sun [14] [15] utilized the deflection solution from Bijlaaxd 

to obtain the radial spring constant and rotational spring constant in terms of 

the geometric param eters. However, these previous studies dealt with a regional 

loading on a closed sphere to simulate the nozzle-sphere geometry. Due to the 

m athematical difficulty, there was no analytical solution presented when the nozzle 

opening was taken into account. These studies did not solve the real problem of the 

nozzle-sphere connection. Furthermore, their solutions have convergence difficulties, 

especially when the shell is relatively thick and the nozzle radius is relatively large.

Parakash and Rao [16] studied the problem of a circular elastic inclusion 

in a thin pressurized spherical shell. Using Reisser’s differential equations, which 

governed the behavior of a thin shallow spherical shell, the solution regions were 

obtained in term s of Bessel and Hankel functions. Results were presented in nondi- 

mensional form which greatly facilitated the design of spherical shells containing a 

rigid or an elastic inclusion.

Waters [17] derived a stress analysis of the sphere-cylinder structure that 

treats the two components with a minimum of overlap at their juncture. He pre­

sented a  com putational procedure th a t employed three geometrical parameters to 

calculate the critical stresses over a wide range of sizes and proportions. All those 

results are based on an internal pressure of 1  psi and a mean sphere diameter of 1 

inch ; values for other pressures and sizes were in direct proportion.

An experimental investigation by Dally [18] obtained information concerning 

the effect of the external loadings in cylindrical nozzle connections on spherical 

shells. This experiment, which was performed to verify Bijlaard’s theory, was for

6



a (3 value of approximately 0.1 and for 7 , values of approximately 18.5, 40, 46 

respectively. These parameters were well within B ijlaard’s limit.

Subsequently, Riley [19] at the IIT  Research Institute, tested one steel model 

for PVRC(Pressure Vessel Research Council), with a j ,  value of 118 and a f3 value 

of 0.5.

W itt et al. [20] used strain gauges to test the principal stresses at the inner and 

outer surfaces of the juncture with no fillet. These models were subjected to internal 

pressure, axial th rust and moment loading on the nozzle. In this study the nozzle 

protruded through the vessel. Six different spherical shell-nozzle combinations, 

without pressure, were tested. Each nozzle was loaded by a radial load and an 

external moment.

Calladine [21] proposed a plastic design approach to the solution of the prob­

lem of design of reinforcement for openings in thin spherical pressure vessels. The 

essence of the approach is to adjust the thickness and shape of the vessel in the 

vicinity of the opening so that the full limit pressure of the vessel may be carried 

with relatively little bending action. Bailey and Hicks [22] used the m athem ati­

cal method based on shallow theory to show how the principal stresses along the 

juncture were effected by increasing the cylinder insert thickness when all other 

dimensions were kept constants.

Tayler et al., [5] described the 3-D elastic model for the determ ination of the 

stresses around the cylindrical shell loaded by internal pressure. Several sizes and 

shapes of reinforcement were tested to study the effects of certain variables and to 

determine an optimum design. The results were tabulated in the forms of stress 

concentrated factors. Distribution of the principal stresses on the surfaces of the 

models were included.

Chao [23] utilized a double Fourier series for the stress analysis of spherical

7



vessels with pressure loads applied over a rectangular region. The calculations were 

for complete spheres with pressure loadings over a rectangular region rather than 

for a loaded attachm ent. This approach ignored the stiffness of the lug. Brooks 

[24] [25] used the Green’s function to develop the stresses and spring constant for 

a rectangular attachm ent to a thin spherical vessel, loaded by a radial force or an 

overturning moment.

8



C hapter 3 

T heory o f  Loading P attern

3.1 R ad ia l Load

3.1.1 D erivation  o f D eflection

Two given governing simultaneous equations for the shallow spherical shell loaded 

by a radial force P  are given by [26].

T E
V 4 F - ( — ) ^ / 2 w = 0 (3.1)

■ttm

^  +  =  f  (X2)

where T,  Rm axe shown in Figure 3.1

The solutions of the above two simultaneous differential equations are given

by:

w = Czkers + C^keis (3.3)

E T a
F  = [ ■■. ■   }(C3keis — Cokers +  C ^ l n s )  (3.4)

where

E T 2ir

9



T T l

original position

p osit ion  after loading'
m

Figure 3.1: Position of Shell before and after Application of Radial Force
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F is a stress function, from which the membrane forces are determined as

I d F  1 d2F  
1 ~  r dr + r2 dr2  ̂ ^

d7F  
dr2

And the radial moment M x and tangential moment M y are given as follows:

=  —  (3.6)

,d2w , 1 dw 1 d2w ..
M‘ =  ~ D [ a ^  +  * 7  +  (3'7)

1 d 2w  d 2w .

My = ~ D ^r~d^+ 72' W  + U~d^^ ^

Cz and Ca have to be determined from the two boundary conditions at r = rm, as 

indicated in Figure 3.2.

B .C .l: The angle of rotation of sphere and nozzle at the juncture are equal. 

That is

( « . ) « -  =  (*c)x=o (3.9)

B.C.2: the circumferential strain of nozzle and sphere at the juncture are

equal. T hat is

(ec*)r=rm =  (tcc)*=0 (3.10)
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m

m

m

Figure 3.2: Shear Forces and Moments at the Juncture of Spherical Shell and Radial 
Nozzle due to Radial Force
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From Eq.(3.3) and Figure 3.2, the slope 0S of the spherical shell with respect 

to its original position and due to its deflection is given by

(«.)—  =  ( ^ ) —

=  (— i ( — )

Czker's +  C^kei's ,
T

Czker'u +  C^kei'u

^ 3Kcr t  et
—  I  7 / r = r m

I

where at r = rm, s =  rm/ l  =  u

Also from Eq.(280) of [27] , the angle of rotation at x =  0 is given by:

(3.11)

( « .) „ .  =  - #  =  5 3 ^ ( 2  +  Vo) (3.12)d® 2/?£iV 

where
E t 3

N  = --------------
12(1 - ^ )

. 4  3(1 -  ^ 2)
^ 2

Mo= Bending moment (M*) in the cylindrical shell at x =  0

Vo311 Transverse shear (K ) in the cylindrical shell at x = 0

Due to the continuity of the boundary, the bending moment Mo and transverse

shear Vo of the nozzle at x = 0  must equal those of the spherical shell at r = rm

respectively, which is given from [9]

—E T 2 ra~ ,, . /, \ ker 'u . _ .. (1 — u)kei'u.M0 = -------. ■ = [ C 3(ketu +  ( 1  — u)  ) — C A k e r u -------------------- ) (3.13)
K m \/l2 ( l  — fa2) “  “■

F0 =  ^ - [ ( 1  +  r,)(Cakeiu -  C,ker'u)  +  ^ (3. 14)
RmU U

The strain e4 in the spherical shell at r  =  r m is given by [8 ]



Substituting Eqs. (3.3), (3.4), (3.5) and (3.6) into the Eq.(3.15), one obtains

/ \ rsy , 1  kei'u . ker'u.  C12 kei'u ker'u
(eca)r=rm =  [C3(keru--------- )+C4{ketu+------- -------=— p ( C 3--------- C4 --------+ — )} Rm

U U U 2 u u u 2
(3.16)

The radial deflection of the nozzle at x =  0 due to M 0 and V0 is given by (279) of 

[27]

/ \ Po M 0 +  Vp r q i 7 'i(^)y= 0  -  (3.17)

/ \ _  / _/3oMo + Vo
(ecc)x=o -  v / r m -  2/33 Nrm (3.18)

And the radial force P produces a stress <j x = —P/(2rmtTr) and causes a cirumfer- 

ential strain ecc =  P/x/(2rmtE7r)

From Eqs.(3.17) and (3.18) above one obtains the total circumferential strain 

at x =  0

, . _  PqM q + Vq P/ i
(« .)— -  20lNrm + 2TmtElr (3.19)

Substituting Eqs.(3.1 1 ), (3.12), (3.13), (3.14), (3.16), and (3.19) into boundary 

conditions (1 ) and (2 ), then C3 and C4 are found to be:

Cs = A.6(l /<»)( 1 v h » P i £ ) (1 + + ^48(1_ i)(1_ )
A2t f l2( l  - / x 2)u27T 2u2tt v ^  v 27n7TJ

X   M P R m   / g  2 0 )
(A2A3 -  A 1A i )ET2 ( }

CA =  —  [ A ^  +  6(1 / 2)(1 1>)P R " W ]  (3.2i)
2 *^12(1  -  p2)u2E T 2

where Ai,  A 2, As, A4 axe given as follows :

j =  ̂ ker'u —'ynp(l + r})kei'u] + p 2J2'yn[keiu +ker 'u - — —1 (3.22)
u p  v u
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A 2 =  ^   ̂ ft J.[2^kei 'u + 'ynp(l + r i)ker 'u]-p2J 2 j ^ [ k e r u - ( l - p ) ^ ^ - ]  (3.23)
u p  v u

A z = keru — (1 +  p ) - ^  U + p2[keiu +  (1 -  p ) -  ^48(1 — p 2)py/ j^kei 'u^ ' 77
u u  v u

(3.24)

A 4 = keiu +  ker 'u-- -  -  — p2[keru — kei 'u- — —] +  ^48(1 — p 2)pv/ j^ker 'u^^-^-  
u u v u

(3.25)

3.1.2 D erivation o f M embrane and Bending Forces

Since the model is axisymmetrical, all derivatives of Eqs.(3.5), (3.6), (3.7), and (3.8) 

with respect to 6 are zero. One obtains bending stress and membrane stress in both 

circumferential and meridional directions as:

E T 2 r, . 1 - u ,  „ 1 — v  .. ..
M m = M x -  ^ p[2('r'- T ^ )i ^ { [ 3  — ker s] -  C4[kers  — kei a]}

(3.26)

M c = M y =  r io n ^ — 2 ^U 2 ^C^ ukeis ~  "— ~ ker'A -  c 4[vkers +  - — -kei 's)}

(3.27)

E T
N m = N x = —— (Czkei's -  C4ker's + C n s ' 1) (3.28)

. T AT E T , - . . .  ke i 's .  _  .. . ker 's .  C i2l / 0Nc = N y = — -[Cz{kers--------- ) +  C4(kets H-------- ) ------—] (3.29)
xC|7i S S S
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3.2 O vertu rn in g  M om en t

3.2.1 D erivation o f D eflection

The deformation of a spherical vessel is determined by the solutions of the Eqs.(51) 

and (52) of [8 ] which are given as:

wv =  (Czker's +  C^kei's) cos 9 (3.30)

E T 2 C
■\Czkei's — Coker's H-----—) cos 9 (3.31)[1 2 ( 1  -  /L/ 2 ) ] 1/ 2 v  ̂ 8

where

wv = Radial deflection of the spherical pressure vessel

9 =  Polar coordinate for the cylindrical and spherical shell, in radians, as 

shown in the Figure 3.3. The deflections of the cylindrical shell in the axial, tan­

gential and radial directions axe given by [1 0 ].

iii =  [e aiX{H5cos0iX + H6 s i n 0 i x )  —— jy3rm]cos0 (3.32)
irrmt E r m

M b  x 2
Vl = le~aiX( f f7 c o s ^ x  + Hs a n  fax)  -  0  —  -  H3x -  t f 4]sin0 (3.33)

7r2 r m t E

M b x2
wi = [e aia(Hicos0ix + Hzsinfiix) -   -----— (— +2/i) + +  £T4]cos0 (3.34)

lltTmtlL r‘j

All of the unknown constants can be obtained by applying the boundary 

continuity conditions between the sphere and nozzle. Those boundary conditions 

are given below :

16



It is assumed that the cross section of the nozzle remains circular and its

radius does not change. In addition, it is assumed that plane cross section remains

plane after loading. Hence, the boundary conditions are:

B.C.l:

(«>i)*=o =  0 (3.35)

B.C.2

(«x)«=o =  o (3.36)

Since the shell is subjected to the overturning moment, one has from [26]:

B.C.3:
[3(1 -

1! ir iS T 2/ ■ *

From Figure 3.3, the compatibility of rotation at the juncture of the shell and nozzle

requires:

B.C.4:

(3-38)
r.m

The rotation of the spherical shell at r = rm and that of the nozzle at x =  0 should 

be equal. This leads to:

B.C.5:

(eyv)r=rro =  (Cfl)x= 0  (3.39)

Also, since at the juncture, the bending moment M x in the walls of nozzle and shell 

should be equal, one arrives at the condition:

B.C.6 :

(Mxv)r=rn =  (Mx)x=o (3.40)

The shear force Qx in the nozzle at x  =  0 has to be in equilibrium with the horizontal

components of the force in the shell at r = rm.

N x cos </>o +  Qxv sin <j>0 — Qx (3-41)
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Figure 3.3: Overturning Moment Applied on the Nozzle-Sphere Model
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m

du'i
d x

Figure 3.4: Deflections of Nozzle-Sphere Model due to a Bending Moment
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From Figure 3.4 and Figure 3.5, one notes that Qxv and Qx are the equivalent 

transverse shear forces for the shell and nozzle, respectively, including the effects of 

the twisting moments. Since 4>0 is assumed to be small, this condition reduces to: 

B .C.7:

From B .C .l and Eq. (3.34), one obtains

H< = ~ a '  -  T T T e  (3 -43)■KTm t± j

from B.C.2 and Eq. (3.32), one obtains

iT3 =  —  (3.44)

Using the remaining conditions, the constants C3, C4, Hi  and H 2 can be found from

Eq.(54), (59), (61), and (6 8 ) of [10]. Those equations are numbered as Eq. (3.45),

(3.46), (3.47), and (3.48), which are given below.

D iC 3 +  D 2 C4 -  [ax -  (— ))Hi -  [fa +  {— )}H2 =  0 (3.45)
Tm r m

„  „  , „  „  (1 +  Lz)7„[12(1 -  /x2)]1' 2 „  £<7n[12(l -  /x2)]1' 2 „JJ3 C3  +  X/4 C4 --------------------- ---------------Jt.ii------------------  Hipui pul

1 rW>2 (1 +m)|12(1 - I ? ) } ' / ’ , I U M s  
=   * -------------]~ETH  (3'46)

DSC3  +  D0 C4  -  W .  +  f t J ,  =  J jf c  (3.47)

D 9 Cz +  D 1 0 C4 +  D 1 1 H 1 -  D u H i  =  (1 -  77)l- 2-(--  - p ]1 / 2 R~ f - (3.48)
7nts Jhl l
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Where the constants D\ to D u  are given below:

Di  =  ( —  )[keiu +  (—)ker'u] (3.49)
Tm V,

D 2 =  (— )[—kei'u — keru1 (3.50)
7*m *U‘

Ds =  —-——~  keru + ker'u +  ^  kei'u (3.51)
u u2

keiu -j- kei'u — ^  ker'u (3.52)
ZZ zz2

fls =  i i 2 j f r ^ [h r h e i u + ^ i ^ keT'u ~ kei'u] ( 3 - 5 3 )

=  r , ,  7nU2xn ;2[ - -  - k e r u  +  fcez'zz +  W zz] (3.54)[12(1 — p.*) Ji/2 zz zz2

2 ,1  -  ^ [xaa - V ) ] . / . M  - * -  ^  +  £3>+  h a ' u  + A £ ’)] (3-55)

1,8 =  3 n o f f "  , m n l2 a iA  +  4 £ ‘ "  — (“ i £ 3 -  A - M  (3-56) /?3zz[1 2 (l -  /i2)]1/2 r2m r„' m

1 — 77., 2 kei'u. u3p2 r( l  — u,)keiu , kei'u 2(1 — u)ker'u,
 '-(keru----------- ) -  H p ----- ^ -------- keru+ ------- + - i ------^ -------

zz zz 12(1 —  fz2)7„ zz2 zz zz3
(3.57)

1 —77., . 2ker'u. u 3p2 r(l  — u)keru  , . ker'u 2(1 — u)kei'u
3 =  H&ez7z+-------------------------2 \* 2 ~------------ +keiu+ ---------*----- *=£-------]

ZZ ZZ 12(1— p ) ~ f n  u 2 U ZZ3
(3.58)



r 3 (2 — fx) , (3 — /x)
D u  u 2p2l n [ 1 2 { l -  ix2))'/2^ * '  3^  K r 2m a i +  2 r { ' (  a i L 3

+  — ((a? -  ft2) ^  +  2a i/?aI 2) + (3‘59)

T3 j2\ (2 I1) a fx)
D n  !iVJ7 n[1 2 d  ^ l> r i  *  2 rJ, '•  a i £ « +  f t £ 0

-  — ((a* -  /??)£, -  2 a ,A £ ,)  -  <3'60)
m

Where a! and 0i are given by E q .( ll)  of [10]:

a i  =  Z [ 1 ~ h  +  <3(1 “ '‘2)7" + 1 " 4 ^ )1/2)I/2 ( 3 ’ 6 1 )

A = ̂ H1 _ & + <3(1 - ̂ + 1 -  4^ )1 /2 1 ‘ /2  ( 3 - 6 2 )

The constants Li  to X4 are given by:

Li = ^ r  (3.63)
K,5

L-> =  —r
K*
K*

Kz
K ,

(3.64)

(3.65)

K  5

and constants K\  to  K$ are given by:

L a =  (3-66)

K i  =  rmai[(l -  /*)(! -  3/i(l + /x + /x2)) -  12(1 -  ^ 4) l l

23



+ (2(1 -  /x))(2 + 3/x + 3/x2) +  24/x(l -  ^ b 2)^/?2] (3.67)

K 2 = - r mf3i[(l -  /x)(l -  3/x(l + n  +  /x2) -  12(1 -  /x4)?2

-  (2(1 -  /x)(2 +  2/i + 3/x2) + 24/x(l -  ^2bn)rmai] (3-68)

A' 3 =  (1 -  /x)(3 + /x)(l -  3/x2) +  12(1 -  2/x -  /x2)(l -  /x2 ) 7 2 (3.69)

A' 4 =  2[(4 +  9/x +  3^2)(1 -  fi) +  12(2 +  /x)(l -  /x2)7 2j (3.70)

AT5 =  [12(1 -  /x2 ) 7 2 +  (1 -  /x)(l +  3/x) ] 2 (3.71)

The solution for deflection of the spherical shell due to bending moment M  is given 

by Eq(3.30) in which C2 and C4 can be obtained by using Eq.(3.45) to Eq.(3.60)

3.2.2 D erivation o f M embrane and Bending Forces

Substituting Eqs.(3.30) into Eqs.(3.5), (3.6), (3.7), and(3.8), one can obtain bending 

stress and membrane stress in both meridional and circumferential directions, as 

follows:

M m  =  M * =  x  {C ‘ G ' +  C , G t ) 005 "  ( 3 ' 7 2 )

E T 2rj 7
M c — My =  -5 - 7 7 ^7 ; X ( - C 3 G 3  +  C4G4) cos 6 (3.73)

N m = N x = G6( ^ ) c o s d  (3.74)
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where

F T
N c = N y = G7(——) cos 6 (3.75)

Jim

2kei'u — ukeru M b R  
Cz =  —

Gh ETH

r, —Cz{2ker'u +  ukeiu)O 4 — " ■ 1 1 1 '■
2  kei!u — ukeru  

G\ — ( 1  — /x)—  +  2 ( 1  T v er's -  fcei's
S S2

, . fcers , .kei's  , .
( ? 2 =  - ( 1  -  /i) h 2 ( 1  -  /x)—   1- ker ss si

Gz =  ( 1  -  fi)—  +  2{1- ̂ h er's + fikei's 
s s 2

_ . kers .kei's , ,
G4 =  ( 1  — /i) 2 ( 1  — /i)— :--H fxker s

s s2

Gz =  7ru(l  +  fj,)[u2(ker2u +  kei2u) +  4 (ker'2u +  kei2u ) 

+4’u(fcer/iifcem — kerukei 'u)] — Tru4(keruker'u +  keiukei'u)

_ ,, 2kei's. _ ,,  . 2ker's 2C\2 ,
G6 =  C3( k e r s  ) +  CA(keis  H-------------1---- — )

c  c  e*

, fcers kei's , . , 2 C7i2 ^  .fceis 2ker's , ,
G'j =  C3(-------- +  2 ——  +  ker's)— ^  -  C4 -------+ ----- :------- fcei's

5 s2 s3 s s2

3.3  T orsional M om en t

It is assumed that a shaft in the form of a half spherical shell with fixed boundary 

at its equator is subjected to a torsional moment at the juncture of the half sphere 

and nozzle as shown in the Figure 3.6. The axis of the nozzle is taken as the y axis 

and r and 6 are used to define the position of an element in the plane of the cross 

section. The components of displacement in the radial, tangential and y  directions
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are denoted by u, v, and w respectively. The expressions for the strain components 

are given below:

v dv du dw
6 r ^  rdO r dr y dy
du dv v du dw dv dw

7r® =  7de +  'Ey ~ r 7ry =  dy + ~dr ly ° = d^ + VdO (3‘76)

The differential equations of equilibrium are:

doY 1 drrg drTy or — erg _
dr r d6 dy r

^  + i ^ r i r  + — = ° <3-77>dr r dO dy r

drrg 1 dog drgy 2 Trg
~Z 1 a “a '--------   Uor r or Oy r

In the application of these equations to the torsional problem the semi-inverse 

method is used with the assumptions that u and w are zero. That is, during twist, 

the particles move only in the tangential direction. Substituting u =  w =  0 into 

Eq.(3.76) and noting that from symmetry, the displacement v does not depend on 

the angle 0, one finds that

eT =  tg — €y — 'Yry =  0

dv v
™  = T r ~ r  (3'78)

dv

the third of Eq.(3.77) gives:

1 » = S i

d r rg drgy  2 Trg+ ^ y + Z ^ l = o (3.79)
Or dy r
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Figure 3.6: Shear Stresses and Angular Displacement clue to Torsional Moment
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Eq.(3.79) can be written in the form

J : ( r 2 r r<,) +  J ^ ( r 2 r<,y) =  0 (3.80)

It is seen th a t this equation is satisfied by using a stress function <j> °f T and y, such 

that
2  d ( j )

T Tr0 = dy
■> dd>r T8y = —  (3.81)

To satisfy the compatability conditions, it is necessary to recognize that rr8 and r8y 

are functions of the displacement v. From Eqs.(3.78) and (3.81) one finds

T6 ~  2 a (3.82)r 2, dy

= h f r  ( 3 ' 8 3 )

From these equaions it follows that

d  1 d<b. d . 1 dd>. 0/1.
d r ^ d r ^  + d y ^ d y ^  ~   ̂ ^

or

d2<t> _  , d 2<? _  n to oc)
dr2 r dr dy 2  ̂ ^

From the condition tha t the lateral surface of the nozzle is free from external forces, 

one concludes that at any point B  on the boundary of an axial section, the total

shearing stress m ust be in the tangential direction of the boundary and its projection

on the normal N  on the boundary must be zero. Hence

ds dr ,
T’°Ty ~  =  ° (3'8S>

Substituting from Eq.(3.81), one finds that

(3.8V)
dy ds dr ds
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M t =  f  2irr2Tgydr =  2-jr(4>r0 -  <f>r.) (3.88)
Jri

One defines Bt =  v / r  as the angle of rotation of an elemental ring of radius r on 

the cross section of the nozzle. Eq.(3.83) can be written in the form:

3 ddT d<t>
G ' ‘ I T  “  - f y  <3 ' 89>

r v 3^  _  ^
dy dr

from which
d26r 3 ddr d26r

+  ' 3 -90>

In the spherical shaft model, the equation can be indicated as follows:

v2 + y 2 = C (3.91)

where C  is constant at the boundary of the axial section and equals R 2. Any 

function of this constant will satisfy Eq.(3.83). In order to also satisfy Eq.(3.90), 

one utilizes

<f> = c\(r2 + y2) + a(r2 + y2)z] (3.92)

where c and a are arbitrary constants. Substituting Eq.(3.92) into Eq.(3.85), we 

obtain

* = 9 ( ^ F  ( 3 ' 9 3 )

Mt  =  27r[d>(r0) -  4>(r4)] (3.94)

or

then

M t =  2 trc(Rl +  aR\  -  R:f -  a R f ) (3.95)

° =  2tr(R2 +  aR 40 -  R? -  aRf )  (3'96)
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From Eq.(3.81), one obtains

rre = ~ [ 2 y  + 6ay(r2 +  y2)] (3.97)Ti

Substituting <f> into Eq.(3.89) and integrating with respect to r gives the twisting 

angle 6 t -

n _  - c  - y  3r2y 12y3\nr_______ 3y5

T G r2 9 (r2 + y 2) 9 (r2 + y2) 9r2(r2 + yz)
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C hapter 4 

F in ite  E lem ent M ethod

4.1 F in ite  E lem en t M o d el

In this dissertation, the ANSYS finite element software [1 ] [2] is used for the para­

metric studies. The finite element mesh is developed by using the quadrilateral shell 

element model (STIF 63) for thin shells, and isoparametric solid element(STIF 45) 

for thicker shells. The node and element generator, PREP7 is used in generating 

the mesh.

4.1.1 Q uadrilateral Shell E lem ent-for Thin Shell

This element has both bending and membrane capabilities. Both in-plane and 

normal loads are perm itted. The element has six degrees of freedom at each node: 

three in translations and three in rotations. The quadrilateral shell has options 

for variable thicknesses, elastic foundation supports, concentrated pressure loadings 

and large rotations.

The geometry, nodal point locations, and the coordinate system for this ele­

ment are shown in Figure 4.1. The element is defined by four nodal points (I, J, K, 

L). It can accommadate four different thicknesses, one elastic foundation stiffness, 

one material direction angle, and the orthotropic material properties. The material 

x-direction corresponds to the element x-direction, which may be rotated an angle 

6 (in degrees) from the IJ side of the element. Since the model for this study has
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uniform thickness, only TK(1) is used.

An assemblage of flat shell elements can produce a good approximation to a 

curved shell surface provided that each flat element does not extend over more than 

a 15deg arc. Shear deflection is not included in this thin-shell element. The four 

nodal points defining the element should lie in an exact flat plane; however, a small 

out-of-plane tolerance is perm itted so that the element may have a slightly warped 

shape.

r

Figure 4.1: Quadrilateral Shell Element
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4.1.2 Isoparam etric Solid E lem ent-for Thicker Shell

This element is defined by eight nodal points having three degrees of freedom at 

each node: translations in the nodal x, y, and z directions. The geometry, nodal 

point locations, face num bers, and the coordinate system for this element are shown 

in Figure 4.2. The element must be defined by eight nodal points. Zero volume 

elements are not allowed.

Y

Z

Figure 4.2: Isoparametric Solid Element
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4.2  A ssu m p tion s

For the analysis of this model, the following assumptions are used:

• The material is assumed to be homogeneous, isotropic, and within the elastic 

range.

• The internal pressure is not taken into account.

• The thickness of the nozzle is the same as the thickness of the sphere.

• The model is a hemisphere with a nozzle on the top, and with a fixed boundary 

at the equator, as shown in Figure 4.3.

• Modulus of elasticity of 3 x 106 psi and a Possion’s ratio of 0.3 are assumed.

4.3  G eom etrica l P aram eters

Since the thickness of the nozzle is assumed to be identical with the spherical shell, 

only two geometric parameters, y a and /?, are needed to analyze the model, 'y, 

is defined as the ratio of the spherical radius to the thickness of the shell. 0  is 

defined as the ratio of the nozzle radius to the sphere radius. For each given 0  

value (0.1, 0.2, 0.3, 0.4, 0.5), the ya values of 7, 10, 15, 20, 25, 30, 40, 50, 75, 100 

are used to analyze the nozzle-sphere model under various loadings. Hence, fifty 

runs are executed for each loading case. In this study, a 0  value of 0.5 is the upper 

bound for the practical applications. If 0  is greater than 0.5, the fixed boundary at 

the equator may significantly affect the outcome of the analysis. Although a shell 

thickness of 0.4 inch is used for this study, this value has been used to normalize 

the results. Hence the results on stress factors and the normalized spring constants 

can be applied to shells with different thicknesses.
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N ozzle
m

Spherical Shell

Rm

Fixed Boundary

Figure 4.3: Shell Model
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4 .4  C o m p u ta tio n a l M o d el

Due to the symmetry of the loading and the geometry of the nozzle-sphere configu­

ration, 1/4 of the complete geometry is used as the computational model as shown 

in Figure 4.4. In the A N  S Y S  finite element package, the subroutine PREP7 is 

used to generate the geometry. In order to obtain a smooth stress profile, five to 

six elements were modelled throughout the intersection area. In order to optimize 

the computing time, a wave-front reduction method was implemented through the 

element reordering.

For quadrilateral shell element model, 15 key points are used to divide the 

model into eight areas, A1 to A8 , as shown in Figure 4.4. Areas A1 to A4 are 

generated with the spherical coordinate system, and areas A5 to A8  are generated 

with the cylindrical coordinate system. The element type STIF63 is utilized to 

generate this quadrilateral shell model which is rectangular or square in shape with 

4 nodes at the corners. Smaller sized elements are generated in areas A3 to A6 , 

where greater stress gradients exist.

Since the top boundary of the nozzle, which is circular in shape, is described 

by line segments between node points, the number of nodes used is very im portant in 

simulating the true geometry. To study the convergence of the results, 4 trial models 

with 10, 15, 22 and 26 elements, respectively, on the top boundary of the nozzle 

were used . The deviation of resulting stresses for each model is shown in Table 

4.1 and Figure 4.5. It shows Model 3, with 22 elements, to be the most optimum 

one as it presents very good convergence. Therefore, this model is adopted for all 

the com putations in this dissertation. The completely meshed model is shown in 

Figure 4.6.
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A4A3

A 2
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Figure 4.4: Areas and Keypoints of Quadrilateral Shell Element Model
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T =  i =  0.4in 
7, =  20 0  =  0.2 p s  i

Q mo
p s i

Maximum

Deviation

Model 1 
10 e l e m e n t s

992.8 1710 0.23%

Model 2
1.5 p lp m p n  t  s

997.8 1714 0.13%

Model 3 
22 e l e m e n t s

1005 1740 0.099%

Model 4 
26 e l e m e n t s

1005 1710 0%

(Total Radial Force =  1000/6 upward)

Table 4.1: Data Convergence of Quadrilateral Shell Element Model
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Figure 4.6: Element Plot of Quadrilateral Shell Element Model
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For the isoparametric solid element model, there are 10 nodes on the circum­

ference of each quarter with five nodes across the thickness. First, 20 key points 

are used to divide the whole model into 4 volumes as shown in Figure 4.7. Volumes 

VI and V2 are generated with a spherical coordinate system, and volumes V3 and 

V4 are generated with a cylindrical coordinate system. The element type STIF45 

is utilized to generate this isoparametric solid model with 8  nodes at the corners. 

Smaller sized elements are generated in volumes V2 and V3, where greater stress 

gradients exist. When 7 , is smaller than 10, the thickness becomes a significant fac­

tor for the finite element mesh. Five trial models have been employed as shown in 

the Table 4.2. Model 1 to Model 4 has 9 elements along the circumference and has 1, 

2, 3, or 4 elements across the thickness respectively. Model 5 has 18 elements along 

the circumference and 4 elements across the thickness. The deviation of resulting 

stresses for each model as shown in the Table 4.2 and Figure 4.8. It shows the model 

4 with 9 elements along the circumference and 4 elements across the thickness to 

be the most optimum model as it presents very good convergence. Therefore this 

model is adopted for computations with the isoparametric solid element model. The 

completely meshed model is shown in Figure 4.9.
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19 20

V 4
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V 2

V I

Figure 4.7: Volumes and Keypoints of Isoparametric Solid Element Model
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T  = t = 0A in 
7, =  7 /? =  0.2

°co
Psi

Gmo
Psi

Maximum

Deviation

Model 1 1444 3109 0.65%

Model 2 1472 3170 0.32%

Model 3 1497 3223 0.25%

Model 4 1510 3252 0.15%

Model 5 1512 3257 0.07%

(Total Radial Force =  1000/6 upward)

Table 4.2: Data Convergence of Isoparametric Solid Element Model

43



o

o o
on

eo rH
CO

44

Fi
gu

re
 

4.
8:

 D
ata

 
Co

nv
er

ge
nc

e 
Cu

rv
e 

of 
Is

op
ar

am
et

ric
 

So
lid

 
El

em
en

t 
(fo

r 
M

er
id

io
na

l 
St

re
ss

 
of 

the
 

O
ut

er
 

Su
rfa

ce
) 

7
, 

= 
7, 

/? 
= 

0.
2.

 T
 = 

0.4
 

in
ch

, 
P 

= 
10

00
 

lb



SMHBf

Wm
BfflHhriSW — i — ^
i a—HBM

Figure 4.9: Element Plot of Isoparametric Solid Element Model
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4.5 B ou n d ary  C ond itions o f  th e  M od el

Since the nozzle-sphere juncture is symmetrical with the xy  and yz  planes, a quar­

ter portion of the hemisphere is needed as the computational model by setting 

constraints along the symmetrical planes.

1. Radial Force P: The radial load P  is simulated by a uniformly distributed 

nodal force applied on the top of the nozzle as shown in Figure 4.10. All of 

the nodal displacements are specified as:

• On the xy  plane, the displacement in the 2  direction,' and rotation about

the x and y axes are constrained.

• On the yz  plane, the displacement in the x  direction, and rotation about

the z and y axes are constrained.

Z

Figure 4.10: Radial Force Pattern(quadrilateral shell element model)
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2 . Overturning Moment M x or Mz-  The typical overturning moment, M z , for 

example, is simulated by linearly distributed forces as shown in Figure 4.11. 

For M z,  all of the nodal displacements are specified as:

• On the xy  plane, the displacement in the z direction, and the rotation 

about x and y axes are constrained.

e On the yz  plane, the displacement in the y and z directions, and the 

rotation about x axes are constrained.

m

fm  COS 9i
m

z
Figure 4.11: Overturning Moment Pattern  for M z  (quadrilateral shell element 
model)
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3. Torsional Moment M t - The torsional moment is simulated by uniformly dis­

tributed nodal forces tangent to the nozzle-sphere juncture of the model as 

shown in Figure 4.12. All of the nodal displacements are specified as:

•  On the xy  plane, the displacement in the x and y direction, and the 

rotation about z axis are constrained.

•  On the yz  plane, the displacement in the y and s direction, and the 

rotation about x axis are constrained.

B
X

111

C

= f  COS d,

z

Figure 4.12: Torsional Moment Pattern(quadrilateral shell element model)
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1C 
I

4. Horizontal shear force Vx  or Vz'. The typical shear force, Vz, is simulated by 

the uniformly distributed nodal forces in the negative z  direction as shown in 

Figure 4.13. All of the nodal displacements are specified as:

• On the xy  plane, the displacement in the x and y  direction, and the 

rotation about the z axis are constrained.

• On the yz  plane, the displacement in the x direction, and the rotation 

about y  and z axes are constrained.

Figure 4.13: Horizontal Shear Force Patera for ^(quadrilateral shell element model

49



4.6  L oading P a ttern

In this dissertation, the given model is subjected to various loading: radial force, 

overturning moment, torsional moment and horizontal shear force. All of the exter­

nal loads are applied in the form of nodal force. Radial nodal force and overturning 

moment are applied on the top of the nozzzle. However, torsional moment and hor­

izontal shear force are applied at the outside surface of the nozzle-sphere juncture. 

It is assumed that the resulting stresses and strains are within the elastic range of 

the material, and the resulting stresses and displacements may be normalized by 

the input force or moment value.

4.6.1 Radial Force

In the quadrilateral shell model, the distributed radial load is applied downward 

(negative y direction) on to the top of the nozzle. In the isoparametric solid element 

model, the distributed load is applied equally on the top of the nozzle across the 

thickness and along the circumference. Since the xy  and yz  planes axe symmetric 

planes, the nodal loads applied directly on these boundary planes are half of the 

loads applied elsewhere.

For the quadrilateral shell element model as shown in Figure 4.10, the nodal 

force is:

*  “  I F  f4'1*

For the isoparameter solid element model as shown in Figure 4.14, the nodal 

force is:

( 4 - 2 )
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z

Figure 4.14: Radial Force Pattern (isoparametr solid element model)
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4.6.2 O verturning M om ent

For quadrilateral shell element model:

In the quadrilateral shell element model, there are 22 elements in the circum­

ferential direction as shown in Figure 4.11. The nodal forces in the shell model are 

distributed by cosine functional relationships, with the nodal force applied on the 

z axis being zero.
M  22 ■]

cos 0,-rm cos 6i) +  —f mrm (4.3)
4  i = i  1

For isoparametric solid element model:

The nodal forces are again assumed to be a cosine function distribution in the

circumferential direction and a linear distribution across the thickness, i.e., those

nodal forces are proportional to the distance from the symmetric axis as shown in

Figure 4.15. Due to the symmetry condition on the xy  plane, those nodes located

on that plane are half of the nodal forces applied elsewhere. There are no nodal

forces applied on the z axis. The equations describing overturning moment are:

M v  1
—  = XX/ cos cos + o /r

4 i=i z

where 0t- =90i/22, and

f r  cos2 9i =  cos2 9[fi(rm -  \d)  +  +  f mrm +  f mo(rm +  i f )  +  f 0(rm +  i t )]

where

/ , = Tm 2  ̂ fJm
I'm

/tm =
T - HTm f 

JmI'm

fmo ~
rm + \ t  x 

Jm

II< rm +  \ t  ;
Jm
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lilt

=  0

m

z

Figure 4.15: Overturning Moment P attern  for Mz  (isoparametric solid element 
model
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4.6.3 Torsional M om ent

The tangential forces are applied at each node on the outside surface of the nozzle- 

sphere intersection. In the quadrilateral shell element model as shown in Figure 

4.12 and isoparametric solid element model as shown in Figure 4.16, the nodal force 

applied at the symmetric plane is half of the normal value applied elsewhere.

For the quadrilateral shell element model the torsional moment is given by:

T  21 1
— =  £ ( /■ » * »  s i n 6i +  f zTrn c o s +  o ^ xTm +
4 »=i 1

where

a
1 22

f x  — S  sin 6i  

f z =  f  cos 9i

i -  1 ,2 ,3 ,.........22

6i is the angular position of the node at the intersection of the model. 

For isoparametric solid element model the torsional moment is given by:

7  =  sin  h  +  /* p* cos ° i )  +  +  f * r ° )  (4>6)
4  i=i 1

where
90z

9 i ~ T

j x  — f  sin Oi 

f z = j  cos Oi

i =  1 ,2 ,3 ,..... 9

Oi is the angular position of the node at the intersection of the model.
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i =  1 ,2 ,3 ,..... 9

0i is the angular position of the node at the intersection of the model.

c

Z

Figure 4.16: Torsional Moment Patternfisoparam etric solid element model)
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4.6.4 H orizontal Shear Force

The equal nodal forces are applied at each node on the outside surface of the sphere- 

nozzle intersection. In the quadrilateral shell element model as shown in Figure 4.13 

and the isoparametric solid element model as shown in Figure 4.17, the nodal force 

applied at the symmetric plane is half of the normal value applied on the nodes 

elsewhere.

For quadrilateral shell element model:

v ,  =  ^  ( 4 .7 )

For isoparametric solid element model:

where Vi is nodal shear force and V  is to tal shear force
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Z

Figure 4.17: Horizontal Shear Force Pttern(isoparametric solid element model)
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C hapter 5 

N um erical A nalysis

5.1 R ad ia l Force

5.1.1 Local Stress

The numerical results show a biaxial state of stress in the circumferential and merid­

ional directions as shown in Figure 4.3. In this study the uniformly distributed nodal 

loads are acting downward onto the shell. This distribution causes an uniform com­

pressive membrane stress across the thickness of the juncture. In addition, a local 

bending stress occurs th a t it is tensile on the inside surface of the sphere and com­

pressive on the outside surface. The stress coefficient, K ,  psi  per unit radial load, 

is defined to describe these normal stresses. The circumferential stress is thus given 

by:

(rc = K c • P  (5.1)

where K c has both membrane and bending components, i.e.

K c =  K c<m ±  K Cib (5.2)

where the ”+ ” sign is used for the outside surface of the sphere, and the sign 

is used for the inside surface of the sphere as shown in Appendix C. The second 

subscript m stands for membrane and b stands for bending, respectively. The merid­

ional stress is given by:
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<rm =  K m • P  (5.3)

where again,

Km =  Km.m ±  K m,b (5.4)

From Eqs. (28), (31), (32), (38), and (39) of Bijlaard’s paper [8 ], and from Section

2  of WRC bulletin 107 [28], one also may define:

K Ctb - T 2 = H 1 (5.5)

K mib - T 2 = H 2 (5.6)

where Hi  and H 2 are dimensionless parameters. Again, from Eqs. (28), (31), (32), 

(40), (41) of Bijlaard’s paper [8 ], and from Section 2 of WRC bulletin 107 [28], one 

may define:

K c,m - T 2 = H z (5.7)

Km,m - T 2 = H4 (5.8)

where H3 and Hi  are also dimensionless parameters. Therefore from Eqs. (5.5), 

(5.6), (5.7), and (5.8), K CibT2, K m<bT2, K c,mT 2, and K m,mT 2 are defined as stress 

factors due to radial load. For each 7 , value (7, 10, 15, 20, 25, 30, 40, 50, 75,100), 

the values of, K CibT2, K m,bT2, K c>mT 2, K m,mT2, are plotted as functions of /3 as 

shown in Figures 6 .1-6.4.

5.1.2 Com parison o f Norm al Stresses due to  Radial Load

Bijlaard’s work on spherical shells was based on the shallow shell theory [26], where 

the upper limit of j3 is about 0.3, and the shell is thin (for example, 7 , is larger than
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27.5).

In order to compare and verify the stress results from this study with Wich- 

m an’s work [28], which was based on the Bijlaard’s method [9], 3 special models 

with various 0  and 7  values are used, as shown in Table 5.1. In these three models 

the stresses in both the meridional and circumferential directions are in excellent 

agreement with W ichman’s.

A fourth model (with 7 * =  120 and 0  =  0.5) is compared with the experimen­

tal results given by W. F. Riley [19], as shown in Table 5.2. Again stress results 

from the finite element method are in excellent agreement with Riley’s although his 

model had a fillet at the juncture. However, W itt [20] reported that the fillet at the 

juncture does not contribute significantly to the stress results.

5.1.3 R adial Spring Constant

Again, the geometrical parameters 7 * and 0  are used to evaluate the radial spring 

constant, K y. In theory, the y-deflection, Sy, is uniformly distributed across the 

thickness at the juncture. In reality, there are small deviations in 6y between the 

outside and inside surfaces of the juncture. The average value for 6y has been used 

to define the spring constant.

From Equations, (31), (32), and (34) in [8 ], one obtains

6yE T *
1 7  -  H ‘ (5'9)

where Hz is an arbitrary constant. Then the radial spring constant is defined as

K ,  =  t  (5.10)

Combining Eq. (5.9) and Eq. (5.10), yields,
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E T  H 5j ,  ( ' )

where

7. = ^  <5-12)

From Eq.(5.11), one observes th a t K y/ E T  is a normalized radial spring constant. 

For various 7 , values, K y/ E T  is plotted as a  function of /? in Figure 6.15.

5.1.4 Com parison o f R adial Spring Constant

In B atra & Sun’s work [14] which is based on the solution of the governing differential 

equation given by Reisner [26], the radial spring constant, K r , is defined as radial 

force per unit displacement toward the center of the sphere. Though the deflection 

in the negative y direction is theoretically different from radial deflection, that 

difference is very small and hence it is acceptable to replace K r  with K y when 

describing the radial spring constant of the model. For K y , several special cases 

of 7 , and 0  combinations are computed for the purpose of comparing the spring 

constant results with those of B atra and & Sun’s work. These comparisons are 

shown in Table 5.3. It is noted th a t, as expected, the finite element method yields 

a more flexible spring constant than  B atra & Sun’s work. Since they utilized the 

differential equation solution from Bijlaard, the sphere was a closed shell without 

an opening. Naturally, a closed shell is stiffer than one with an opening. One 

further notes that the disagreement between the the results progressively decreases 

as the 0  values decrease; i.e. the discrepancy will be smaller when the opening is 

small. Thus the radial spring constant results from this dissertation is considered 

as reasonable.
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Finite Element method Bijlaard’9 Method

T  =  t =  0.4in 
All Models

&TTIO
Psi

Cco
Psi

&mo
Psi

cr co
Psi

Model A 

7, =  25 /? =  0.2
1537 926.6 1497.5 887.5

Model B 

7, =  50 0  = 0.1
2046 1294 2262.5 1300

Model C 

7, =  75 0  =  0.2
817 598.6 906.25 582.5

(Total Radial Force =  100( lb upward)

Table 5.1: Compa ison of Normal Stresses (Meridional and Circumferential) at the 
Outside Surface uue to Radial Load with B ijlaard’s work [9]

Experimental Method 
(Strain Cage)

Finite Element Method

T  = t = O.lin a co ®mo 0£O
Psi Psi Psi Psi

Model D
20700 16600 20700 15900

yt = 120 0  = 0.E
(Total Rat ial Force =  6000/6 upward)

Table 5.2: Comparison of Normal Stresses (Meridional and Circumferential) at the 
Outside Surface due to Radial Load with Rily’s. Experimental Work [19]

62



Finite Element Method
lb/in

Batra & Sun Work 
lb/in

T  = 0.4 in 

7, = 25 /3 = 0.2
3.71 x 106 4.00 x 10°

T  = 0.1 in 

7j = 50/3 = 0.1
1.39 x 10® 1.50 x 10®

T = 0.2 in 

7, = 50/3 = 0.1
6.94 x 10* 7.50 x 105

T = 1 in 

7, = 150 /3 = 0.033
7.81 x 10* 8.87 x 10*

T  = 0.4 in 

7a = 75 £ = 0.2
2.06 x 10® 2.28 x 10®

Table 5.3: Comparison of Ky with Batra & Sun s Work [14] (based on the 
Theoretical Solution from Bijlaard)
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5.2 O verturn ing M om en t

5.2.1 Local Stress

Again, numerical results show a biaxial state of stresses in circumferential and 

meridional directions. Each stress has two components, the membrane stress and

bending stress. Referring to Figure 4.3, the moment M z  causes a tensile membrane

stress across the thickness of the juncture at point B.  Also, local bending stress 

occurs at point B  that is tensile at the outside of the juncture Bu  and compressive 

at the inside B i  as shown in Figure 5.1. Using the stress coefficient, K , psi per 

unit overturning moment, to define these normal stresses, the circumferential stress 

is given by:

crc =  K c • M z  (5.13)

where K c has both membrane and bending components, i.e.

K c =  K c<m ±  K e,b (5.14)

the sign is used for the outside surface, and the sign is used for the inside

surface as shown in Appendix C. The subscript m stands for membrane, and b 

stands for bending, respectively. The meridional stress is given by:

am = K m • M z  (5.15)

where again,

K m = K m,m ± K m,b (5.16)

From Eqs. (6 8 ), (69), (70), and (71) of Bijlaard’s paper [10], and from Section 2 of 

WRC bulletin 107 [28], one may also define



M .M ;

Nozz le

J & r  M r

Sphere

B u i l t - i n  B o u n d a r y  a t  t h e  E q u a t o r
m

Figure 5.1: Superposition oi Various External Loads Applied on the Model
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K Cib - T 3 = H6 (5.17)

K m<b - T 3 = H 7 (5.18)

where He and H 7 are dimensionless parameters. From Eqs. (6 8 ), (69), (72), and 

(73) of Bijlaard’s paper [10], and from Section 2  of WRC bulletin 107 [28], one may 

define

K c<m - T 3 = H 8 (5.19)

K m , m  - T 3 = He (5.20)

where He and He are also dimensionless parameters. K c<bT 3, K m , b T 3, K c, m T 3 , and 

Km,mT3 are stress factors. They are plotted against 7 , and /? as shown in Figures 

6 .5-6.8 .

5.2.2 Com parison o f N orm al Stresses due to O verturning  
M om ent

As illustrated in the discussion of radial load, normal stress results from three 

models due to Bijlaard are compared to the normal stress results from the finite

element method due to an overturning moment. These comparisons, which exhibit

excellent agreement, are shown in Table 5.4.

In addition, Riley’s experimental results [19] with 7 , =  120 and /3 = 0.5 are 

compared with results from this study as shown in Table 5.5 and Figure 5.2. Again 

these stresses are in excellent agreement.
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llijlaard’s method Finite Element Method

T  = t = 0.4in &mo
Psi

a co
Psi

amo
Psi

<7co
Psi

Model a 

7j =  25 & =  0.2
1829 1021 2050 1019

Model b 

7j =  50 13 =  0.1
2568 1257 2433 1207

Model c 

7> =  75 (3 = 0.2
1283 797 1215 771

(Total overturning moment =  18000 in-lb)

Table 5.4: Comparison of Normal Stresses (Meridional and Circumferential) at the 
outside surface due to Overturning Moment with Bijlaard’s Theoretical Solution

Experimental Method 
(Strain Cage)

Finite Element Method

T  =  t = 0.1 in °co o <*c0
Psi Psi Psi Psi

Model d
23500 15500 20576 15258

yt =  120 0  ss O.E
(Total overturning moment =  18000 in-lb)

Table 5.5: Comparison of Normal Stresses (Meridional and Circumferential) at the 
Outside Surface due to Overturning Moment with Rily’s Experimental Work
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5.2.3 R otational Spring C onstant due to O verturning M o­
m ent

Computation results have shown that there are small deviations in 4>m  between the 

outside and inside surfaces of the juncture at point B  (Figure 3.4). The average 

value for cf>M has been used to define the spring constant. From Equations. (48), 

(6 8 ), and (69) of Bijlaard [10], one obtains

S- E T '  =  1T„ (5.21,M z ^ c o s O

where H i0 is dimensionless. The rotational spring constant is defined as

K tM = ^  (5.22)
4>m

where 4>m  is shown in the Figure 5.3, and

= ~  (5.23)

Combining Eq. (5.23) and Eq. (5.22), yields,

K<)>m  @
E T 3 “  .He

where

(5.24)

7. =  (5.25)

From Eq.(5.24), one selects K$M/ E T 3 as a normalized rotational spring constant. 

For various j ,  values, K ^M/ E T 3 is plotted as function of (3 in Figure 6.16.
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m

Figure 5.3: Angular Displacement by Overturning Moment
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5.2.4 Com parison o f R otational Spring Constant due to  
Overturning M om ent

Identical j ,  and (3 combinations are utilized in comparing the rotational spring 

constant results from Batra & Sun’s work with the results from the finite element 

method. These comparisons are shown in Table 5.6. It is noted that the results are 

in very good agreement, however, the finite element method yields a more flexible 

rotational spring constant than the theoretical method.

t*'inite Element Method
in-lb I rad

Batra & Sun Work
in-lb/rad

T =  0.4 in 

7, = 25 /? = 0.2
1.4 x 107 1.47 x 107

T =  0.4 in 

7, =  50 =  0.1
7.09 x 10* 7.3 x 10°

T  =  0.2 m 

7, = 5 0 /9  =  0.1
8.86 x 10s 9.13 x 10*

T =  0.4 in 

7. -  75 0  =  0.2
5.29 x 107 5.54 x IQ7

Table 5.6: Comparison of due to the Overturning Moment with Batra & 
Sun’s Work [15] (based on the Theoretical Solution from Bijlaard)
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5.3 T orsional M om ent

5.3.1 Local Stress

It is known that the torsional moment induces pure shear. The torsional shear 

stress is given by

r  =  K t, • M t (5.26)

where the stress coefficient, K ts, is shear stress per unit torsional moment. From 

numerical data, this shear stress coefficient can be defined as:

K t,T a =  .Hu (5.27)

■where H u  is dimensionless. and K tsT z is a shear stress factor due to torsional 

moment, which is plotted for various ys, f3 combinations in Figure 6.9.

5.3.2 Com parison o f the Shear Stress

Bijlaard employed the condition of static equilibrium to derive the average shear 

stress in the shell at the juncture as r  =  M j’/ ( 27T7’£1T). Figure 5.4 shows the 

comparison of FEM shear stress results with the above equation. It shows that the 

FEM results are in very good agreement with the average shear stress mentioned 

above.
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5.3.3 Torsional Spring Constant

Again, the average value of 6t across the thickness of the model is used to define 

the torsional spring constant:

K St =  (5.28)
VT

Referring to Figure 4.12, with

eT =  ft (5.29)

where ux and uz are normal displacements in x and z direction respectively. Again, 

one may define:

(5.30)

K st / E T z is a normalized torsional spring constant which is plotted with various 7 , 

and /? combinations in Figure 6.17

5.3.4 Comparison o f th e Torsional Spring Constant

For the case of f3 =  0.1, this study adopted the similar model as that of the nozzle- 

pipe connection developed by Chiou & Sun [29]. When (3 is very small, the juncture 

of the piping-nozzle model remains practically on the same plane, hence the cur­

vature effect is not significant. A comparison of the torsional spring constants for 

each combination for 6  special values of 7 , (10, 15, 20, 25, 30, 50) with (3 of 0.1 

is shown in Table 5.7. The torsional spring constants calculated by the finite ele­

ment method are also compared with the theoretical data derived from Eqs.(3.92) 

to (3.97) as shown in Table 5.8. It shows th a t the FEM results are in agreement 

with the theoretical results, however, the FEM values axe more flexible.
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Nozzle-Sphere Model
in-lb/rad

Nozzle-Piping Model
in-lb/rad

T =  0.4 in 

7j =  10 0  =  0.1
1.18 x 107 1.10 x 107

T =  0.4 in 

7, =  15 (3 =  0.1
2.52 x 107 2.04 x 107

T =  0.4 in 

7j =  20 (3 =  0.1
4.26 x 107 3.62 x 107

T =  0.4 in 

7, =  25 P =  0.1
6.31 x 107 5.71 x 107

T =  0.4 in 

7j =  30)0 =  0.1
8.87 x 1U7 8.15 x 107

T =  0.4 in 

7, =  50/7 =  0.1
2 . 2  x 1 0 * 1.45 x 10®

Table 5.7: Comparison of Torsional Spring Constant with Pipe-Nozzle Connection 
Solution from Chiou and Sun (when the nozzle is very small) [29]
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7inite Element Methoc
in-lb/rad

Theoretical Method 
in-lb/rad

T =  0.4 in 

7, =  50 0  =  0.1
2.26 x 1 0 s 2.36 x 108

T =  0.4 in  

7 , =  50 (3 =  0.2
8 . 6 6  x 1 ()8 1 0 . 2  x 1 0 s

T =  0.4 in 

7, =  75 0  = 0.1
5.09 x 108 5.37 x 108

T =  0.4 in 

7, =  75 p  =  0.2
1.95 x 109 2.35 x 109

T = 0.4 in  

7 . =  1 0 0  /? =  0 . 1

9.05 x 108 9.50 x 108

T = 0.4 in  

7 , =  1 0 0  0  =  0 . 2

3.46 x 1 0 9 4.21 x 109

Table 5.8: Comparison of Torsional Spring Constant with Theoretical Solution
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5.4 H orizonta l Shear Force

In the horizontal shear force model, the nodal shear forces are uniformly applied 

in the negative z direction on the juncture as shown in Figure 4.13. The resulting 

normal stresses (circumferential and meridional) are larger as the angular position 

6 increases. Thus the maximum normal stress occurs at point Cy or Cl as shown 

in Fig.5.1. The shear stress r  at point B y  and point B i  is maximum. Due to

the thin thickness, the difference of the shear stresses between outside surface and

inside surface are insignificant. Thus the mean value of the shear stress across the 

thickness is recorded.

5.4.1 Local Stress

The numerical results also show a biaxial state of stress in both circumferential and 

merdional directions. In this study the distributed load is acting horizontally on the 

shell in the negative z direction. This load causes a tensile meridional membrane 

stress and compressive circumferential membrane stress across the thickness of the 

juncture. Also, local bending stress occurs linearly across the thickness. Again the 

normal stress coefficient, K , psi per unit horizontal shear force is used to define 

these normal stresses. The circumferential stress is given by:

<rc = K c -Vz  (5.31)

where K e has both bending and membrane components, i.e.

K c = K Cim ±  K Cjh (5.32)

where the ” 4 -” sign is used for the outside surface, and the sign used for the 

inside surface as shown in Appendix C. The subscript m stands for membrane, and
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b stands for bending, respectively. The meridional stress is given by:

&m =  Km ■ Vz (5.33)

where again,

K m  =  K m , m  ±  K m ,b (5.34)

For the numerical results, one defines:

K Cth • T 2 =  H 12 (5.35)

K m ,b • T 2 =  H 1Z (5.36)

K Cim • T 2 =  H 14 (5.37)

K m . m  ■ T 2 =  H 15 (5.38)

where H i 2 , ^ i 3 » H u ,  and H i5  are again dimensionless, and K c<b T 2 , K m i b T 2 , K CtmT 2 , 

and Km.mT2 are stress factors, which are plotted as functions of and f3 as shown 

in Figures 6.10-6.13.

From section 2.3.4 . 1  of WRC bulletin 107 [28], the shear stress coefficient can 

be defined as:

:'  T , “  ^  <5 -39>

Substituting rm = 7 t T/3 into Eq.(5.39), one obtains
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K V, T 2 = (5.40)
*1,P

From Eq.(5.40), one may plot K vlT 2, the shear stress factor, as a function of 7 , and 

/3 as shown in Figure 6.14.

5.4.2 Com parison of Stresses

Bijlaard employed the condition of static equilibrium to derive the Average shear 

stress of the shell at the juncture as:

Vz
T = 7 T T  (5-41)7r rml

However, the finite element method results show that shear force induces a signifi­

cant amount of normal stress around the juncture. Bijlaard’s solution did not pro­

vide for such normal stresses. Furthermore, the shear stress calculated by bijlaard’s 

formula is larger than the shear stress calculated by the finite element method. For 

a given 7 „, the induced shear stress is relatively large when (3 value is small. The

deviation of the shear stress between the theoretical formula and the finite element 

method decreases as the (3 value increases as shown in Figure 5.5.
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5.4.3 Shear Spring Constant

Again, the geometrical parameters 7 , and /? are used to evaluate the shear spring 

constant, K v • Referring to Figure 4.13, the 2 -deflection 6Z increases as the angular 

position 6 increases. The average value of 6Z at nodal point C  between the outside 

and inside surfaces of the juncture is used. The shear spring constant can be defined 

as:

Vz
K v =  - f  (5.42)

Applying the same reasoning used in developing Eq.(5.11) for the radial spring 

constant, we can define for the spring constant:

J |  =  (5.43)

where H 16 is dimensionless and K v / E T  is a normalized shear spring constant. This 

constant is plotted as function of 7 , and (3 in the Figure 6.18.
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C hapter 6 

Conclusion

Since the finite element method simulates both the real geometry of sphere-nozzle 

connections and the actual external loading conditions, it represents a major im­

provement over previous methods in calculating local stresses and spring constants 

due to external loading. One may conclude that:

1. For external radial force, the induced normal stresses shown in Figures 6 .1-6.4 

and the radial spring constants shown in Figure 6.15 indicate:

• For given 7 a values, the normal stresses, uc and am, decrease as (3 values 

increase.

• For a given value of /?, the normal stresses, <rc and am decrease as 7 a 

values increase.

• For given 7 , values, the radial spring constant, K y, increases as (3 values 

increase.

• For a given value of (3, the radial spring constant, K y decreases as 7 , 

values increase.

2. For overturning moment, the induced normal stresses shown in Figures 6 .5-6. 8  

and the rotational spring constants shown in Figure 6.16 indicate:
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• For a given value of 7 ,, the normal stresses, ac and am, decrease as (3 

values increase.

• For a given value of /?, all local stresses decrease as 7 , values increase.

• For a given value of 7 ,, the rotational spring constant, increases as

the /? values increase.

• For a given value of 0, the rotational spring constant, K ^M increases as 

7 , values increase.

3. For torsional moment, the induced shear stresses shown in Figure 6.9 and the 

torsional spring constants shown in Figure 6.17 indicate:

• For given 7 , values, the shear stress, r ,  decreases as 0  values increase.

• For a given value of f3, the shear stress, r ,  decreases as y, values increase.

• For given 7 * values, the torsional spring constant, KeT, increases as (3 

values increase.

• For a given value of f3, the torsional spring constant, KgT, increases as 

7 „ values increase.

4. For horizontal shear force, the induced local normal stresses shown in the 

Figures 6.10 - 6.13, the induced shear stresses shown in Figure 6.14 and the 

shear spring constants shown in Figure 6.18 indicate:

• For given 7 , values, all the local stresses (<rc, <rm, and r )  decrease as f3 

values increase.

• For a given value of 0, all the local stresses (crc, <rm, and r )  decrease as 

7 , values increase.

• For given 7 , values, the shear spring constant, K y ,  increases as (3 values 

increase.
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• For a given value of /3, the shear spring constant, K v,  decreases as 7 , 

values increase.
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A ppendix

A p p en d ix  A  A N S Y S  P rogram

A .l  Quadrilateral Shell Elem ent M odel due to Radial Force
/p rep 7 
/ title 
/show
c***mesh module

D efine C onstants

set,the,0.4 c**thickness of the nozzle
set,ths,0.4 c**thickness of the sphere
set,beta,0.4 c**/? value
set,gama,75 c**7 , value
set,rs,gama*ths c**radius of the sphere
set,rc,rs*beta c**radius of the sphere
set,hoc,rs*0.5 c**height of the nozzle
set,radi,asin(beta) c**half opening of the juncture

with respect to the symmetry axis
set,quot,(180.0)/3 .14159
set ,mult ,quot *radi
set,four,(90.0)-(mult+15)
set,thir,0
set,ang,rc/rs
set,func,asin(ang)
set,hi,rs*cos(func) c**y-coordinate of the juncture
set,high,hi+hoc c**y-coordinate of the top of the n<
set,low,hi+(hoc*0.3)
set,foe,11.3636 c**nodal force
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Set M aterial P roperties

et,l,63 c**define element type of the sphere
nuxy,l,0.3 c**fi value of the sphere
et,2,63 c**define element type of the nozzle
ex,l,30e6 c**elastic modulus of the sphere
ex,2,30e6 c**elastic modulus of the nozzle
nnxy,2,0.3 c* V  value of the nozzle
r ,l,th s
r,2,thc

D efine C onstants

c**global coordinate system

c**cylindrical coordinate system 
c**spherical coordinate system

M esh F in ite  E lem ent M odel

csys,ll 
a, 1,2,12,11 
a ,11,12,5,4 
real,l
elsize,2.25„2 c**element size
amesh, 1,2,1 c**element mesh
a,2,3,13,12 
a ,12,13,6,5 
real,l
elsize,0.9375,,2 
amesh,3,4,1 
csys,12

k,l
k,2,l
k,3,,,l
cskp,ll,2,l,3,2
cskp,12,l,l,ew„l,l,l
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real,2 
a,3,9,14,13 
a ,13,14,10,6 
elsize,1.125,,2 
amesh,5,6,1 
real,2 
a,9,7,15,14 
a ,14,15,8,10 
elsize,1.5,,2 
amesh,7,8,1
eplot c**element plot
nail
eall
arall
dsys
/angle
/pnum,elem,0
csys,0
wfront
wsort,y
symbc,0,l,0,0.05
symbc,0,3,0,0.05

f,599,fy,-foc*0.5„683,84
f,606,fy,-foc„616,l
f,684,fy,-foc„693,l
nail
eall
arall
nsel,y,0 c**select nodes located at the equator
d,all,all c**selected nodes to be constrained

A p p ly  N o d a l Forces

nail
eall
nsel,y,high c** select nodes on the top of the nozzle

nail
eall
arall
/pbc,forc,l
/pbc,td is ,l

c**plot nodal forces 
c**plot boundary conditions
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/type„2
/v ie w „ l,l,l
nplot
eplot
iter,1,1,1
afwrite,,l
finish
/ check
/exec
/inpu t,27
finish
/p o stl
store,stres.disp 
set
set,1,1
finish
/eof c**end of the file
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A .2 Quadrilateral Shell Elem ent M odel due to Overturning 
M om ent
/prep7
/title
/show
c***mesh module

D efine C onstant

se .the,0.4 c**thickness of the nozle
se ,ths,0.4 c**thickness of the sphere
se .beta,0.4 c**0 value
se ,gama,75 c**7 s value
se ,rs,gama*ths c**mean radius of the sphere
se ,rc,rs*beta c**mean radius of the nozzle
se ,hoc,rs*0.5 c**height of the nozzle
se ,radi,asin(beta; c**half opening angle of the sphere 

with respect to the symmetry axis
se ,quot,(180.0)/3 .14159
se ,mult, quot * radi
se ,four,(90.0)-(mult-1-15)
se ,thir,0
se ,ang,rc/rs
se ,func,asin(ang)
se ,hi,rs*cos(func) c**y coordinate of the juncture
se ,high,hi 4-hoc c**y coordinate of the' top of the nozzle
se ,low,hi+(hoc*0.3)
se ,para,0.16675
se ,foe,para*l 7.858 c**nozzle force
se ,col ,0.99475 c**cos(4.09)
se ,co2,0.9898 c**cos(9.18)
se ,co3,0.977
se ,co4,0.9595
se ,co5,0.9369
se ,co6,0.9096
se ,co7,0.8777
se ,co8,0.8413
se ,co9,0.8006
se ,col0,0.7558
se ,c o ll ,0.7072
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*set,col2,0.655 
*set,col3,0.5994 
*set,col4,0.5408 
*set,col5,0.4796 
*set,col6,0.4156 
*set, col 7,0.3497 
*set,col8,0.282 
*set,col9,0.2128 
*set,co20,0.1426 
*set,co21,0.07167 
*set,co22,0.00035

D efine M aterial P roperties

c**define the element type of the sphere 
c**fi value of the sphere 
c** define the element type of the nozzle 
c**elastic modulus of the nozle, ex=ey=ez  
c**n value of the nozzle

c**define the global coordinate system

c**define the cylindrical coordinate system 
c**define the sphericcil coordinate system

D efine K eyp oin ts

csys,ll c**the spherical coordinate system
k,l,rs
k,2,rs,,four
k,3,rs„50
k,4,rs,90
k,5,rs,90,four
k,6,rs,90,50

et,l;63
nuxy.1,0.3
et,2,63

ex,2,30e6
nuxy,2,0.3
r,l,th s
r,2,thc
k .l
k,2,l
k,3,,,l
cskp.11,2,1,3,2
cskp,12,l,l,3,2
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k,ll,rs,45
k,12,rs,45,four
k,13,rs,45,50
kmove,3,ll,rs„999,12,rc,999,999
kmove,6,ll,rs,90,999,12,rc,999,999
kmove,13,ll,rs,45,999,12,rc,999,999
csys,12
k,7,re,.high
k,8,re,90,high
k,9,re,,low
k,10,re,90,low
k,14,re,45,low
k,15,re,45,high
/v iew „ l,l,l
kplot c**plot keypoints

D efine K ey areas

csys,ll 
a,1,2,12,11 
a,11,12,5,4 
a,2,3,13,12 
a,12,13,6,5 
csys,12 
a,3,9,14,13 
a,13,14,10,6 
a,9,7,15,14 
a,14,15,8,10 
/mdiv,3 
/pnum ,area,l 
/v iew „ l,l,l
aplot c**plot area made up of the keypoints
lplot c**plot line made up of the keypoints
aral
alist
klist
/pnum ,line,-l
/v iew „ l,l,l
lplot
c***et,l,63

109



M esh  F in ite  E lem en t M odel

csys.ll
a,1.2,12,11
a,11,12,5,4
real,l
elsize,2.25,,2 c**define element size
amesh,1,2,1 c**element mesh
a,2,3,13,12
a,12,13,6,5
real,l
elsize,0.9375, ,2
amesh,3,4,1
csys,12
real,2
a,3,9,14,13
a,13,14.10,6
elsize,1.125,,2
amesh,5,6,1
real,2
a,9,7,15,14
a,14,15,8,10
elsize,1.5,,2
amesh,7,8,1
eplot c** element plot
eall
dsys
/angle
/pnum,elem,0
csys,0
wfront
wsort,y
/v iew „ l,l,l
symbc,0,l,0,0.05
asymbc, 0,3,0,0.05

A pp ly  N o d a l Force
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nail
eall
nsel,y,high
f,599,fy,-foc*0.5
f,607,fy,-foc*col
f,608,fy,-foc*co2
f,609,fy,-foc*co3
f,610,fy,-foc*co4
f,611,fy,-foc*co5
f,612,fy,-foc*co6
f,613,fy,-foc*co7
f,614,fy,-foc*co8
f,615,fy,-foc*co9
f,616,fy,-foc*col0
f,606,fy,-foc*coll
f,684,fy,-foc*col2
f,685,fy,-foc*col3
f,686,fy,-foc*col4
f,687,fy,-foc*col5
f,688,fy,-foc*col6
f,689,fy,-foc*col7
f,690,fy,-foc*col8
f,691,fy,-foc*col9
f,692,fy,-foc*co20
f,693,fy,-foc*co21
nail
eall
arall
nsel,y,0
d,all,all
nlist,all
nail
eall
arall
/pbc,forc,l
/pbc,td is,l
/type„2
/view,,1,1,1
nplot
eplot
iter,1,1,1
afwrite„l
finish
/ check
/exec

c**select nodes to be constrained

c**plot nodal forces 
c**plot boundary conditions
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/in p u t,27
finish
/p o s tl
set
nail
eall
set,1,1
finish
/eof c**end of the file
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A.3 Quadrilateral Shell Elem ent M odel due to Torsional M o­
ment
/p rep7
/title
/show
c***mesh module
♦set,the,0.4 ^♦thickness of the nozzle
*set,ths,0.4 c*♦thickness of the sphere
♦set,beta,0.4 c**/3 value
*set,gama,75 c**-y, value
*set,rs,gama*ths c*♦radius of the sphere
Sitset,rc,rs*beta c# ♦radius of the nozzle
*set,hoc,rs*0.5 c^ h ig h t of the nozzle
♦set,radi,asin(beta) c ^ h a lf  opening of the juncture

with respect to the symmetry axis
♦set,quot,(180.0)/3 .14159
* set ,mult ,quot ♦radi
♦set,four,(90.0)-(mult+15)
♦set,thir,0
*set,ang,rc/rs
♦set,func,asin(ang)
*set,hi,rs*cos(func) c**y coordinate of the juncture
♦set,high,hi+hoc c**y coordinate of the top of the nozzle
*set,low,hi+(hoc*0.3)
♦set,para,0.16675
*set,foe,para*l 7.858 c^n o d a l force
♦set,col,0.99475 c#+cos(4.09)
♦set,co2,0.9898 c#+cos(9.18)
♦set,co3,0.977
♦set,co4,0.9595
♦set,co5,0.9369
♦set,co6,0.9096
*set,co7,0.8777
♦set,co8,0.8413
♦set,co9,0.8006
♦set,colO,0.7558
*set,coll,0.7072
♦set,col2,0.655
♦set,col3,0.5994
*set,col4,0.5408
♦set,col5,0.4796
*set,col6,0.4156
♦set,col7,0.3497
♦set,col8,0.282
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♦set,col9,0.2128 
♦set,co20,0.1426 
*set,co21,0.07167 
♦set,co22,0.00035 
♦set,snl, 0.0713 
*set,sn2,0.14228 
♦set,sn3,0.21252 
♦set,sn4,0.28167 
♦set,sn5,0.3494 
♦set,sn6,0.415328 
♦set,sn7,0.47915 
♦set ,sn8,0.54053 
*set,sn9,0.59916 
♦set,snlO,0.6547 
♦ se t,sn ll,0.70698 
♦set,snl2,0.75562 
♦set,snl3,0.8004 
♦set,snl4,0.8411 
♦set,snl5,0.87756 
♦set,snl6,0.9095 
*set, sn l 7,0.93685 
♦set,snl8,0.9594 
♦set ,snl9 ,0.97708 
♦set ,sn20,0.98977 
♦set,sn21,0.99743 
♦set,sn22,0.99984 
et,l,63 
nuxy,l,0.3 
et,2,63 
ex,l,30e6 
ex,2,30e6 
nuxy,2,0.3 
r ,l,th s  
r,2,thc

c##sin(4.09)
c^sin(9.18)

^♦define the element type of the sphere 
c**fj, value of the sphere 
c*♦define element type of the nozzle 
c# ♦elastic modulus of the sphere 
^♦elastic  modulus of the nozzle 
c**fj, value of the nozzle

D efine the P osition s o f  K eypoints

k ,l
k,2,l c^define the global coordinate system
k,3 ,„l
cskp ,ll,2 ,l,3 ,2

114



cskp,12,l,l,3,2
csys.ll
k ,l,rs
k,2,rs,,four
k,3,rs,,50
k,4,rs,90
k,5,rs,90,four
k,6,rs,90,50
k,ll,rs,45
k,12,rs,45,four
k,13,rs,45,50
kmove,3,ll,rs,,999,12,rc,999,999
kmove,6,ll,rs,90,999,12,rc,999,999
kmove,13,ll,rs,45,999,12,rc,999,999
csys,12
k,7.rc,,high
k,8,rc,90.1iigh
k,9,re,.low
k.l0,rc,90,low
k.l4,rc.45,low
k,15,rc,45,high
/view,,1,1,1
kplot

Define K eyareas

csys,ll 
a,1,2,12,11 
a,11,12,5,4 
a,2,3,13,12 
a,12,13,6,5 
csys,12 
a,3,9,14,13 
a,13,14,10,6 
a,9,7,15,14 
a,14,15,8,10 
/mdiv,3 
/pnum ,area,l 
/v ie w „ l,l ,l  
aplot 
lplot
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aral
alist
klist
/pnum ,line,-l 
/view ,,1,1,1 
lplot

M esh F in ite E lem ent M odel

csys,ll 
a ,1,2,12,11 
a.11,12,5,4 
real,l
elsize,2.25,,2 c**define element size
amesh,1,2,1 c**element mesh
a,2,3,13,12 
a,12,13,6,5 
real,l
elsize,0.9375,,2 
amesh,3,4,1 
csvs,12 
real,2 
a,3,9,14,13 
a ,13,14,10,6 
elsize,1.125,,2 
amesh,5,6,1 
real,2 
a,9,7,15,14 
a ,14,15,8,10 
elsize,1.5,,2 
amesh,7,8,1 
eplot 
eall 
dsys 
/  angle
/pnum,elem,0
csys,0
wfront
wsort,y
/view„l,l,l
asymbc,0,l,0,0.05

116



asymbc,0,3,0,0.05
eplot

A pply N odal Forces

nail
eall
nsel,y,hi
f,300,£x,foc*0.5

310,fx,foc*col
311,fx,foc*co2
312,fx,foc*co3
313,fx,foc*co4
314,fx,foc*co5
315,£x,foc*co6
316,£x,foc*co7
317,£x,foc*co8
318,fx,foc*co9
319,fx,foc*col0
309,£x.foc*coll
409,fx,foc*col2
410,fx,foc*col3
411,fx,foc*col4
412,fx,foc*col5
413,£x,foc*col6
414,fx,foc*col7
415,fx,foc*col8
416,£x,foc*col9
417,fx,foc*co20
418,fx,foc*co21 
408,fz,-foc*0.5
310,£z,-foc*snl
311,fz,-foc*sn2
312,fz,-foc*sn3
313,fz,-foc*sn4
314,fz,-foc*sn5
315,£z,-foc*sn6
316,fz,-foc*sn7
317,fz,-foc*sn8
318,fz,-foc*sn9
319,fz,-foc*snl0
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f,309,fz,-foc*snll
f,409,fz,-foc*snl2
f,410,fz,-foc*snl3
f,411,fz,-foc*snl4
f,412,fz,-foc*snl5
f,413,fz,-foc*snl6
f,414,fz,-foc*snl7
f,415,fz,-foc*snl8
f,416,fz,-foc*snl9
f,417,fz,-foc*sn20
f,418,fz,-foc*sn21
nail
eall
arall
nsel,y,0
d,all,all c**selected nodes to be constrained

/ty p e ,,2 
/view ,,1,1,1 
nplot 
eplot 
iter,1,1,1 
afwrite,,l 
finish 
/  check 
/exec 
/in p u t,27 
finish 
/p o s tl
store,stres,disp
set
nail
eall
set,1,1
finish
/eof c**end of the file

nlist,all
nail
eall
arall
/pbc,forc,l
/pbc,td is ,l

c**plot nodal forces 
c**plot boundary conditions
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A .4 Quadrilateral Shell E lem ent M odel due to  Horizontal 
Shear Force
/p rep7
/title
/show
c***mesh module

D efine C o n s ta n ts

*set,thc,0.4
*set,ths,0.4
*set,beta,0.4
*set,gama,75
*set,rs,gama*ths
*set,rc,rs*beta
*set,hoc,rs*0.5
* set ,radi .asin(beta)

*set,quot,(180.0)/3 .14159
* set ,mult, quot * r adi 
*set,four,(90.0)-(mult+15) 
*set,thir,0 
*set,ang,rc/rs
* set ,func, asin (ang) 
*set,hi,rs*cos(func) 
*set,high,hi-i-hoc 
*set,low,hi+(hoc*0.3)
* set,para, 1
*set,foe,para*l 7.858

c**thickness of the nozzle 
c**thickness of the sphere 
c**/3 value
c**7a value
c**radius of the sphere 
c**radius of the nozzle 
c**height of the nozzle 
c**half opening of the juncture 
with respect to the symmetry axis

c**y coordinate of the juncture 
c**y coordinate of the top of the nozzle

c** no dal force

Set M aterial Properties

et,l,63 c**define element type of the sphere
nuxy,l,0.3 c**/i value of the sphere
et,2,63 c**define element type of the nozzle
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ex,l,30e6 c**elastic modulus of the sphere
ex,2,30e6 c**elastic modulus of the nozzle
nuxy,2,0.3 c**p, value of the nozzle
r,l,th s 
r,2,thc

Set Positions o f  K eypoints

k.l
k,2,l c**define the global coordinate system
k.3,,,1
cskp,ll,2 ,l,3 ,2
cskp,12,l,l,3,2
csys.ll
k,l,rs
k,2,rs,,four
k,3,rs,,50
k,4,rs,90
k,5,rs,90,four
k,6,rs,90,50
k,ll,rs,45
k,12,rs,45,four
k,13,rs,45,50
kmove,3,ll,rs,,999,12,rc,999,999
kmove,6,ll,rs,90,999,12,rc,999,999
kmove,13,ll5rs,45,999,12,rc,999,999
csys,12
k,7,rc,,high
k,8,rc,90,high
k,9,re,,low
k,10,re,90,low
k,14,re,45,low
k,15,rc,45,high
/v iew „ l,l,l
kplot

D efine Keyareas
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csys,ll
a,1,2,12,11
a,11,12,5,4
a,2,3,13,12
a,12,13,6,5
csys,12
a.3,9,14,13
a,13,14,10,6
a,9,7,15,14
a,14,15,8,10
/mdiv,3
/pnum ,area,l
/v ie w „ l,l,l
aplot
lplot
aral
alist
klist
/pnum ,line,-l
/v iew „ l,l ,l
lplot

M esh F inite Elem ent M odel

csys,ll 
a,1,2,12,11 
a,11,12,5,4 
real,l
elsize,2.25,,2 c**define element size
amesh,1,2,1 c**element mesh
a,2,3,13,12 
a,12,13,6,5 
real,l
elsize,0.9375,,2 
amesh,3,4,1 
csys,12 
real,2 
a,3,9,14,13 
a,13,14,10,6 
elsize,1.125,,2 
amesh,5,6,1
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real,2 
a, 9,7,15,14 
a ,14,15,8,10 
elsize, 1.5„2 
amesh,7,8,1 
eplot 
eall 
dsys 
/  angle
/pnum,elem,0
csys,0
wfront
wsort,y
/view ,,1,1,1
symbc,0,l,0,0.05
asymbc,0,3,0,0.05
eplot

A pply N od al Forces

nail
eall
nsel,y,hi
f,300,fz,-foc*0.5,,408,108
f,309,fz,-foe,,319,1
f,409,fz,-foe,,418,1
nail
eall
arall
nsel,y,0
d,all,all
nlist,all
nail
eall
arall
/pbc,forc,l
/pbc,td is ,l
/type„2
/view ,,1,1,1
nplot
eplot

c**select nodes located at the juncture

c**select nodes located at the equatoor 
c**selected nodes to be constrained

c**plot nodal forces 
c**plot boundary conditions
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iter,1,1,1
afwrite,,l
finish
/check
/exec
/in p u t,27
finish
/p o s tl
store,stres,disp
set
nail
eall
set,1,1
finish
/eof c**end of the file
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A .5 Isoparam etric Solid Elem ent M odel due to Radial Force
/p rep7
/title
/show
c*** mesh module

D efine C onstants

*set,thc,0.4
*set,ths,0.4
*set,beta,0.4
*set,gama,7
*set,mid,gama*ths
*set,irs,mid-(0.5*ths)
*set,ors,mid-!-(0.5*ths)
*set,midd,mid*beta
*set,hoc,irs*0.5
*set,radi,asin(beta)

*set, quot, (180.0)/3.14159
*set,mult,quot *radi
*set,four,(90.0)-(mult+15)
*set,firs,-89
*set,seco,-45
*set,thir,0
*set,irc,midd-(0.5*thc)
*set,ang,irc/irs
*set,func,asin(ang)
*set,high,irs*cos(func)
*set,five,(hoci|t0.3)+high
*set,six,(hoc*0.6)+high
*set,seve,(hoc+high)
*set,foc,6.944
c****set,mid,irs-f(0.5*ths)
c****set,midd,irc+(0.5*thc)
*set,mido,mid+(0.25>l‘ths)

*set,midi,mid-(0.25*ths)

*set,orc,midd+(0.5*thc)

c**thickness of the nozzle 
c^^thickness of the sphere 
c**/? value 
c**7 5 value
c**mean rdadius of the sphere 
c**inside radius of the sphere 
c**outside radius of the sphere 
c**mean radius of the nozzle 
c**height of the nozzle 
c**half opening of the juncture 
with respect to the symmetry axis

c**inside radius of the nozzle

c**y coordinate of the juncture

c**y coordinate of the top of the nozzle 
c**nodal forces

c**radius of the sphere between 
c**mean radius and outside radius 
c**radius of the sphere between 
c**mean radius and inside radius 
c**outside radius of the nozzle
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*set,mddo,midd+(0.25*thc) radius of the nozzle between
c**mean radius and outside radius 

*set,mddi,midd-(0.25*thc) c**radius of the nozzle bedteen
c**mean radius and inside radius

*set.a,orc/ors
*set,nul,asin(a)
*set,b,irc/irs
*set,nu2,asin(b)

S et M a te ria l P ro p e r tie s

ex,l,30e6 c**elastic moduls of the sphere
nuxy, 1,0.3 c**/j, value of the sphere
et,2,45,,„,,,2 c**define element type of the nozzle
ex,2,30e6 c**elastic modulus of the nozzle
nuxy, 2,0.3 c*V  value of the nozzle
r,2,ths
r,l,thc

S et P o sitio n s  o f th e  K ey p o in ts

k,l
k,2,l cs|'*define the global coordinate system
k,3,,,l
cskp,ll,2 ,l,3 ,2
cskp,12,l,l,3,2
csys,ll
k,l,ors,,firs
k,2,irs,,firs
k,3,ors,,seco
k,4,irs,,seco
k,5,ors
k,6,irs
k, 7,or s,,four
k,8,irs,,four
k,9,ors„50
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k,10,irs„50
k, 15, mid,, firs
k,16,mid„seco
k,17,mid
k,18,mid„four
k,19,m id,,50
k,22,ors,90,firs
k,23,irs,90,firs
k,24,ors,90,seco
k,25,irs,90,seco
k,26,ors,90
k,27,irs,90
k,28,ors,90,four
k,29,irs,90,four
k,30,ors,90,50
k,31,irs,90,50
k,36,mid,90,firs
k,37,mid,90,seco
k, 38, mid, 90
k,39,mid,90,four
k,40,mid,90,50
k,43,mido,,firs
k,44,midi,,firs
k,45,mido,,seco
k,46,midi,,seco
k,47,mido
k,48,midi
k,49,mido„four
k,50,midi„four
k,51,mido,,50
k,52,midi„50
k,57,mido,90,firs
k,58,midi,90,firs
k,59,mido,90,seco
k,60,midi,90,seco
k,61,mido,90
k, 62, midi, 90
k,63,mido,90,four
k ,64,midi ,90,four
k,65,mido,90,50
k,66,midi,90,50
kmove,9,ll,ors„999,12,orc,999,999
kmove,10,ll,irs„999,12,irc,999,999
kmove,19,ll,mid„999,12,midd,999,999
kmove,30,ll,ors,90,999,12,orc,999,999
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kmove,31,ll,irs,90,999,12,irc,999,999
kmove,40,ll,mid,90,999,12,midd,999,999
kmove,51,ll,mido„999,12,mddo,999,999
kmove,52,ll,midi,,999,12,mddi,999,999
kmove,65,ll,mido,90,999,12,mddo,999,999
kmove,66,ll,midi,90,999,12,mddi,999,999
csys,12
k, ll,iore,, five
k,12,ire,,five
k,13,orc,,seve
k,14,irc,,seve
c^»(cxck,i5,orc,,seve
c***k,16,irc,,seve
k,20,midd,,five
k,21,midd,,seve
k,32,ore,90,five
k,33,irc,90.five
k,34,orc,90,seve
k,35,irc,90,seve
k,41,midd,90,five
k,42,midd,90,seve
k,53,mddo,,five
k,54,mddi,,five
k,55,mddo,,seve
k,56,mddi,,seve
k,67,mddo,90,five
k,68,mddi,90,five
k,69,mddo,90,seve
k,70,mddi,90,seve
/v ie w „ l,l ,l
kplot

D efine K eyareas

csys,ll 
a,44,2,4,46 
a ,15,44,46,16 
a,43,15,16,45 
a,1,43,45,3 
a,46,4,6,48 
a,16,46,48,17
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a,45,16,17,47 
a,3,45,47,5 
a,48,6,8,50 
a ,17,48,50,18 
a,47,17,18,49 
a,5,47,49,7 
a,50,8,10,52 
a ,18,50,52,19 
a,49,18,19,51 
a,7,49,51,9 
a,58,23,25,60 
a,36,58,60,37 
a.57,36,37,59 
a,22,57,59,24 
a,60,25,27,62 
a,37,60,62,38 
a,59,37,38,61 
a,24,59,61,26 
a,62,27,29,64 
a,38,62,64,39 
a,61,38,39,63 
a,26,61,63,28 
a,64,29,31,66 
a,39,64,66,40 
a,63,39,40,65 
a.28,63,65,30 
r,l
csys,l2 
a,52,10,12,54 
a,19,52,54,20 
a,51,19,20,53 
a,9,51,53,11 
a,54,12,14,56 
a,20,54,56,21 
a,53,20,21,55 
a,11,53,55,13 
a,66,31,33,68 
a,40,66,68,41 
a,65,40,41,67 
a,30,65,67,32 
a,68,33,35,70 
a,41,68,70,42 
a,67,41,42,69 
a,32,67,69,34 
r,2



/mdiv,3
/pnum ,area,l
/v iew „ l,l,l
aplot
lplot
aral
alist
klist
/pnum ,line,-l
/v iew „ l,l,l

M esh Finite E lem ent M odel

lplot
et,l,45
csys,ll
v,6,27,62,48,8,29,64,50 
v,48,62,38,17,50,64,39,18 
v,17,38,61,47,18,39,63,49 
v,47,61,26,5,49,63,28,7 
elsize,0.525,,2 
vmesh, 1,4,1
v,8,29,64,50,10,31,66,52
v,50,64,39,18,52,66,40,19
v,18,39,63,49,19,40,65,51
v,49,63,28,7,51,65,30,9
elsize,0.175„2
vmesh,5,8,1
csys,12
v,10,31,66,52,12,33,68,54 
v,52,66,40,19,54,68,41,20 
v,19,40,65,51,20,41,67,53 
v,51,65,30,9,53,67,32,11 
elsize,0.175„2 
vmesh,9,12,1 
v,12,33,68,54,14,35,70,56 
v,54,68,41,20,56,70,42,21 
v,20,41,67,53,21,42,69,55 
v,53,67,32,11,55,69,34,13 
elsize,0.21„2 
vmesh,13,16,1

c**define key volume

c** element size 
c**element mesh

129



symbc,0,l ,0,0.05
symbc,0,3,0,0.05
/v ie w „ l,l ,l
/type„2
/v ie w „ l,l ,l
eplot

A pply  N odal Forces

csys,0
nail
eall
c***nsel,y,seve
c***f,all,fy,-foc
f,907,fy,-foc*0.5„914,l
f,707,fy,-foc*0.5„714,l
f,751,fy,-foc*0.5„851,50
f,756,fy,-foc*0.5„856,50
f,857,fy,-foe,,864,1
f,807,fy,-foc„814,l
f,757,fy,-foc„764,l
f.901iy,-foc*0.25„906,5
f,701,fy,-foc*0.25„706,5
nail
eall
arall
c***nsel,y,0
nsel,node,241,250,1 selected nodes located at the

outer layer of the equator 
d,all,all c**selected nodes to be constrained
nlist,all 
nail 
eall 
arall
/pbc,forc,l c**plot nodal forces
/pbc ,td is ,l c**plot boundary conditions
/type„2
/v ie w „ l,l ,l
nplot
eplot
iter,1,1,1
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afwrite„l
finish
/check
/exec
/input ,27
finish
/p o stl
c***/output,40 
store,stres.disp 
set
/v iew „ l,l,l
pldisp,l
set,1,1
save
finish
/eof c**end of the file
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A.6 Isoparam etric Solid Element M odel due to Overturning  
M om ent
/prep 7 
/ title 
/show
c*** mesh module

Define C onstants

*set,thc,0.4 c**thickness of the nozzle
*set.ths,0.4 c**thickness of the sphere
*set, beta, 0.4 c**/3 value
*set,gama,7 c**7 a value
*set,mid,gama*ths c**mean radius of the sphere
*set .irs,mid-(0.5*ths) c**inside radius of the sphere
*set,ors,mid+(0.5*ths) c**outside radius of the sphere
*set,midd,mid*beta c**mean radius of the nozzle
*set,hoc,irs*0.5 c**height of the nozzle
*set,radi,asin(beta) c**half opening of the nozzle 

with respect to the symmetry axis
*set,quot,(180.0)/3 .14159
*set,mult,quot*radi
*set,four,(90.0)-(mult+15)
*set,firs,-89
*set,seco,-45
*set,thir,0
*set,irc,midd-(0.5*thc) c**inside radius of the nozzle
*set,ang,irc/irs
*set,func,asin(ang)
* set .high ,irs v cos( func) c**y coordinate of the juncture
*set,five,(hoc*0.3)+high
*set,six,(hoc*0.6)+high
*set,seve,(hoc+high) c**y coordinate of the top of the nozzle
*set,col ,0.9848 c**cos(10) value
*set,co2,0.93969 c**cos(20) value
*set,co3,0.866
*set,co4,0.766
*set,co5,0.6427
*set,co6,0.5
*set,co7,0.342
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*set,co8,0.1736 
*set,par,0.84112 
*set,tepl,ths/(2*m idd) 
*set,tep2,ths/(4*midd) 
*set,fm,21.1576*par

*set,fi,(l-tepl)*fm
*set,fim,(l-tep2)*fm
*set,fmo,(l+tep2)*fm
*set ,fo,( 1 + te p l )*fm
c****set,m id,irs+(0.5*thS)
c****set,midd.irc+(0.5*thc)
*set,mido,mid+(0.25*ths)

*set,midi,mid-(0.25*ths)

*set,orc,midd+(0.5*thc)
*set,mddo,midd-f(0.25*thc)

*set,mddi,midd-(0.25*thc)

*set,a,orc/ors
*set,nul,asin(a)
*set,b,irc/irs
*set,nu2,asin(b)

c**nodal force applied at the mean 
radius of the nozzle, see Fig 
c** no dal force see Fig. 
c**nodal force see Fig. 
c**nodal force see Fig. 
c**nodal force see Fig.

c**radius of the sphere between 
mean radius and outside radius 

c**radius of the sphere between 
mean radius and inside radius 

c**outside radius of the nozzle 
c**radius of the nozzle between 
mean radius and outside radius 
c**radius of radius between 

mean radius and inside radius

Set M aterial Properties

et,l,45„„,,,l
ex,l,30e6
nuxy,l,0.3
et,2,45„,,,,,2
ex,2,30e6
nuxy,2,0.3

c**define element type of the sphere 
c**elastic modulus of the sphere 
c**fi value of the sphere 
c**element type of the nozzle 
c**elastic modulus of the nozzle 
c*V  value of the nozzle

Set positions o f the K eypoints
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k,l
k,2,l
k,3,,,l
cskp,ll,2 ,l,3 ,2
cskp,12,l,l,3,2
csys,ll
k,l,ors,,firs
k,2,irs,,firs
k,3,ors,,seco
k,4,irs,,seco
k,5,ors
k,6,irs
k.7,ors,,four
k,8,irs,,four
k,9,ors„50
k,10,irs„50
k,15,mid,.firs
k,16,mid,,seco
k,17,mid
k,18,mid,,four
k,19,mid„50
k,22,ors,90,firs
k,23,irs,90,firs
k,24,ors,90,seco
k,25,irs,90,seco
k,26,ors,90
k,27,irs,90
k,28,ors,90,four
k,29,irs,90,four
k,30,ors,90,50
k,31,irs,90,50
k,36,mid,90,firs
k,37,mid,90,seco
k,38,mid,90
k, 39, mid, 90, four
k,40,mid,90,50
k,43,mido„firs
k,44,midi„firs
k,45,mido,,seco
k,46,midi„seco
k,47,mido
k,48,midi
k,49,mido,,four
k,50,midi„four
k,51,mido„50

c**define the global coordinate system
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k,52,midi„50 
k,57,mido,90,firs 
k,58,midi,90,firs 
k,59,mido,90,seco 
k,60,midi,90,seco 
k,61,mido,90 
k,62,midi,90 
k,63,mi do,90,four 
k, 64, midi, 90, four 
k,65,mido,90,50 
k,66,midi,90,50
kmove,9,ll,ors„999,12,orc,999,999
kmove,10,ll,irs,,999,12,irc,999,999
kmove,19,ll,mid,,999,12,midd,999,999
kmove,30,ll,ors,90,999,12,orc,999,999
kmove,31,ll,irs,90,999,12,irc,999,999
kmove,40,11,mid,90,999,12,mi dd,999,999
kmove,51,ll,mido,,999,12,mddo,999,999
kmove,52,11,midi,,999,12,m ddi,999,999
kmove,65,ll,mido,90,999,12,mddo,999,999
kmove,66,11,midi,90,999,12,m ddi,999,999
csys,12
k,11,ore,,five
k,12,ire,,five
k,13,orc,,seve
k,14,irc,,seve
c***k,15,orc,,seve
c***k,16,irc,,seve
k,20,midd,,five
k,21,midd,,seve
k,32,ore,90,five
k,33,ire,90,five
k,34,orc,90,seve
k,35,irc,90,seve
k,41 ,midd,90 ,five
k,42,midd,90,seve
k,53,mddo,,five
k,54,mddi,,five
k,55,mddo,,seve
k,56,mddi,,seve
k,67,mddo,90,five
k ,68, mddi ,90, five
k,69,mddo,90,seve
k,70,mddi,90,seve
/v ie w „ l,l ,l
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kplot

D efine Keyareas

csys,ll 
a,44,2,4,46 
a ,15,44,46,16 
a,43,15,16,45 
a,1,43,45,3 
a,46,4,6,48 
a,16,46,48,17 
a,45,16,17,47 
a,3,45,47,5 
a,48,6,8,50 
a,17,48,50,18 
a,47,17,18,49 
a,5,47,49,7 
a,50,8,10,52 
a,18,50,52,19 
a,49,18,19,51 
a ,7,49,51,9 
a,58,23,25,60 
a,36,58,60,37 
a,57,36,37,59 
a,22,57,59,24 
a,60,25,27,62 
a,37,60,62,38 
a,59,37,38,61 
a,24,59,61,26 
a,62,27,29,64 
a,38,62,64,39 
a,61,38,39,63 
a,26,61,63,28 
a,64,29,31,66 
a,39,64,66,40 
a,63,39,40,65 
a,28,63,65,30 
r,l
csys,12 
a,52,10,12,54 
a,19,52,54,20
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a,51,19,20,53 
a,9,51,53,11 
a,54,12,14,56 
a,20,54,56,21 
a,53,20,21,55 
a ,11,53,55,13 
a,66,31,33,68 
a,40,66,68,41 
a,65,40,41,67 
a,30,65,67,32 
a,68,33,35,70 
a,41,68,70,42 
a,67,41,42,69 
a.32,67,69,34 
r,2
/mdiv,3
/pnum ,area,l
/view„l,l,l
aplot
lplot
aral
/pnum ,line,-l
/view„l,l,l
lplot

M esh  F in ite  E lem en t M odel

et,l,45
csys,ll
v,6,27,62,48,8,29,64,50 
v,48,62,38,17,50,64,39,18 
v,17,38,61,47,18,39,63,49 
v,47,61,26,5,49,63,28,7 
elsize,0.525,,2 
vmesh,1,4,1
v,8,29,64,50,10,31,66,52 
v,50,64,39,18,52,66,40,19 
v,18,39,63,49,19,40,65,51 
v,49,63,28,7,51,65,30,9 
elsize,0.175,,2 
vmesh,5,8,1

c**define key volume

c**element size 
c**element mesh
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csys,12
v,10,31,66,52,12,33,68,54
v,52,66,40,19,54,68,41,20
v,19,40,65,51,20,41,67,53
v,51,65,30,9,53,67,32,11
elsize,0.175,,2
vmesh,9,12,1
v,12,33,68,54,14,35,70,56
v,54,68,41,20,56,70,42,21
v,20,41,67,53,21,42,69,55
v,53,67,32,11,55,69,34,13
elsize,0.21,,2
vmesh,13,16,1
symbc,0,1,0,0.05
asymbc,0,3,0,0.05
/view,,1,1,1
/ ty p e , ,2
/view„l,l,l
eplot

A p p ly  N o d al Forces

csys,0
nail
eall
f,906,fy,fo*0.5
f,914,fy,fo*col
f,913,fy,fo*co2
f,912,fy,fo*co3
f,911,fy,fo*co4
f,910,fy,fo*co5
f,909,fy,fo*co6
f,908,fy,fo*co7
f,907,fy,fo*co8
f,856,fy,fmo*0.5
f,864,fy,fmo*col
f,863,fy,fmo*co2
f ,862,fy,fmo* co3
f,861,fy,fmo*co4
f,860,fy,fmo*co5
f,859,fy,fmo*co6
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f,858,fy,£mo*co7
f,857,fy,fmo*co8
f,806,fy,fm*0.5
f,814,fy,fm*col
f,813,fy,fm*co2
f,812,fy,fm*co3
f,811,fy,fm*co4
f,810,fy,fm*co5
f,809,fy,fm*co6
f,808,fy,fm*co7
f,807,fy,fm*co8
f,756,fy,fim*0.5
f,764,fy,fim*col
f,763,fy,fim*co2
f,762,fy,fim*co3
f,761,fy,fim*co4
f,760,fy,fim*co5
f,759,fy,fim*co6
f,758,fy,fim*co7
f,757,fy.fim*co8
f,706,fy,fi*0.5
f,714,fy,fi*col
f,713,fy,fi*co2
f,712,fy,fi*co3
f,711,fy,fi*co4
f,710,fy,fi*co5
f,709,fy,fi*co6
f,708,fy,fi*co7
f,707,fy,fi*co8
nail
eall
arall
nsel,node,281,290,1

d, all, all 
nail 
eall 
arall
/pbc,forc,l
/pbc,td is,l
/  type„2
/v iew „l,l,l
nplot
eplot
iter,1,1,1

c**selected nodes at the 
outer layer of the equator 

c**selected nodes to be constrained

c**plot nodal forces 
c**plot boundary conditions
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afwrite,,l
finish
/check
/exec
/in p u t,27
finish
/p o stl
store,stres.disp 
set
csys,0 
set,1,1 
save 
finish 
/eof c**end of the file
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A .7 Isoparam etric Solid E lem ent M odel due to  Torsional M o­
ment
/p rep7
/title
/show
c*** mesh module

D efine C onstants

*set,thc,0.4 c**thickness of the sphere
*set,ths,0.4 c**thickness of the nozzle
*set,beta,0.4 c**/3 value
*set,gama,7 c**7 a value
*set,mid,gama*ths c**mean radius of the sphere
*set,irs,mid-(0.5*ths) c**inside radius of the sphere
*set,ors,mid+(0.5*ths) c**outside radius of the sphere
*set,midd,mid*beta c**mean radius of the nozzle
*set,hoc,irs*0.5 c**height of the nzzle
*set,radi,asin(beta) c**half opening of the juncture

with respect to the symmetry axis
*set,quot,( 180.0)/3 .14159
*set ,mult ,quot *radi
*set,four,(90.0)-(mult+15)
*set,firs,-89
*set,seco,-45
*set,thir ,0

*set,irc,midd-(0.5*thc) c**inside radius of the nozzle
*set,ang,irc/irs
*set,func,asin(ang)
*set,high,irs*cos(func)
*set,five,(hoc*0.3)+high
*set,six,(hoc*0 .6 )+high
*set,seve,(hoc+high) c**y coordinate of the top of the nozzle
*set,col,0.9848 c**cos(1 0 ) value
*set,co2,0.93969 c**cos(2 0 ) value
*set,co3,0.866
*set,co4,0.766
*set,co5,0.6427
*set,co6,0.5
*set,co7,0.342
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*set,co8,0.1736 
*set,snl,0.1736 
*set,sn2,0.342

c**sin(1 0 ) value 
c**sin(2 0 ) value

*set,sn3,0.5 
*set,sn4,0.64278 
*set,sn5,0.766 
*set,sn6 ,0 . 8 6 6  

*set,sn7,0.9397 
*set,sn8,0.9848 
*set,f,59.526 
*set,par,0.84112 
*se t,tep l,ths/(2 *midd)
*set,tep2,ths/(4*midd)
*set,fm,21.1576*par
*set,fi,(l-tepl)*fm
*set,fim ,(l-tep2 )*fm
*set,£mo,(l-j-tep2 )xfm
*set,fo,(l+tepl)*£m
c****set,mid,irs+(0.5*ths)
c****set,midd,irc+(0.5*thc)
*set,mido,mid+(0.25*ths) c**radius of the sphere between

mean radius and outside radius
set,midi,mid-(0.25*ths) c**radius of the sphere between 

mean radius and inside radius 
c**outside radius of the nozzle 
c**radius of the nozzle between

*set,orc,midd+(0.5*thc)
*set,mddo,midd+(0.25*thc)

mean radius and outside radius
set,mddi,midd-(0.25*thc) c5|t*radius of the nozzle between

mean radius and inside radius
*set,a,orc/ors
*set,nul,asin(a)
*set,b,irc/irs
*set,nu2 ,asin(b)
et,l,45„ ,,,„ l
ex,l,30e6
nuxy,l,0.3
et,2,45„,„„2
ex,2,30e6
nuxy,2,0.3

c**define element type of the sphere 
c!t:*elastic modulus of the sphere 
c**/z value of the sphere 
c**define element type of the nozzle 
c**elastic modulus of the nozzle 
c**fj, value of the nozzle

Set P ositions o f K eypoints
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k,l
k,2 ,l
k,3„,l
cskp,ll,2 ,l,3 ,2
cskp,12,l,l,3,2
csys,ll
k,l,ors,,firs
k,2 ,irs,,firs
k,3,ors,,seco
k,4,irs,,seco
k,5,ors
k,6 ,irs
k,7.ors,,four
k,8 ,irs,,four
k,9,ors„50
k,10,irs,,50
k,15,mid,,firs
k,16,mid,,seco
k,17,mid
k.18,mid,.four
k,19,m id,,50
k,22,ors,90,firs
k,23,irs,90,firs
k,24,ors,90,seco
k,25,irs,90,seco
k,26,ors,90
k.27,irs,90
k,28,ors,90,four
k,29,irs,90,four
k,30,ors,90,50
k,31,irs,90,50
k,36,mid,90,firs
k,37,mid,90,seco
k, 38, mid, 90
k,39,mid,90,four
k,40,mid,90,50
k,43,mido,,firs
k,44,midi„firs
k,45,mido,,seco
k,46,midi„seco
k,47,mido
k,48,midi
k,49,mido,,four
k,50,midi„four
k,51,mido„50

c**define the global coordinate system
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k,52,midi„50
k,57,mido,90,firs
k,58,midi,90,firs
k,59,mido,90,seco
k,60,midi,90,seco
k,61,mido,90
k,62,midi,90
k,63,mido,90,four
k,64,midi,90,four
k,65,mido,90,50
k,66,midi,90,50
kmove,9,ll,ors„999,12,orc,999,999
kmove, 10,11, irs,,999,12, ire,999,999
kmove,19,ll,mid„999,12,midd,999,999
kmove,30,ll.o rs ,90,999,12,ore,999,999
kmove,31,11,irs,90,999,12,ire,999,999
kmove,40,11,mid,90,999,12,midd,999,999
kmove,51,11,mi do,,999,12,mddo,999,999
kmove,52,11,mi di„999,12,mddi,999,999
kmove,65,ll,m ido ,90,999,12,mddo,999,999
kmove,66,11,midi,90,999,12,m ddi,999,999
csys, 1 2

k,1 1 ,ore,,five
k,1 2 ,ire,,five
k,13,orc,,seve
k,14,irc,,seve
c***k,15,orc„seve
c***k,16,irc„seve
k,2 0 ,midd,,five
k,2 1 ,midd,,seve
k, 32, ore, 90, five
k,33,ire,90,five
k,34,orc,90,seve
k,35,irc,90,seve
k,41,midd,90,five
k,42,midd,90,seve
k,53,mddo,,five
k,54,mddi„five
k,55,mddo,,seve
k,56,mddi,,seve
k,67,mddo,90,five
k,68,mddi,90,five
k,69,mddo,90,seve
k,70,mddi,90,seve
/v iew „ l,l,l
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kplot

D efine K eyareas

csys,ll 
a,44,2,4,46 
a,15,44,46,16 
a,43,15,16,45 
a,1,43,45,3 
a,46,4,6,48 
a,16,46,48,17 
a.45,16,17,47 
a,3,45,47,5 
a,48,6,8,50 
a,17,48,50,18 
a,47,17,18,49 
a,5 ,4 1 ,49, i 
a,50,8,10,52 
a,18,50,52,19 
a,49,18,19,51 
a,7,49,51,9 
a,58,23,25,60 
a,36,58,60,37 
a,57,36,37,59 
a,22,57,59,24 
a,60,25,27,62 
a,37,60,62,38 
a,59,37,38,61 
a,24,59,61,26 
a,62,27,29,64 
a,38,62,64,39 
a,61,38,39,63 
a,26,61,63,28 
a,64,29,31,66 
a,39,64,66,40 
a,63,39,40,65 
a,28,63,65,30 
r,l
csys, 1 2  

a,52,10,12,54 
a,19,52,54,20
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a,51,19,20,53 
a,9,51,53,11 
a,54,12,14,56 
a,20,54,56,21 
a,53,20,21,55 
a ,11,53,55,13 
a,66,31,33,68 
a,40,66,68,41 
a,65,40,41,67 
a,30,65,67,32 
a,68,33,35,70 
a,41,68,70,42 
a,67,41,42,69 
a,32,67,69,34 
r ,2

/mdiv,3
/pnum ,area,l
/view,,1 ,1 ,1

aplot
lplot
aral
/pnum ,line,-l 
/view ,,1 .1 ,1  

lplot

M esh F in ite Elem ent M odel

et,l,45
csys,ll
v,6,27,62,48,8,29,64,50 
v,48,62,38,17,50,64,39,18 
v,17,38,61,47,18,39,63,49 
v,47,61,26,5,49,63,28,7 
elsize,0.525,,2 
vmesh,1,4,1
v,8,29,64,50,10,31,66,52 
v,50,64,39,18,52,66,40,19 
v,18,39,63,49,19,40,65,51 
v,49,63,28,7,51,65,30,9 
elsize,0.175,,2 
vmesh,5,8 ,1

c**define key volume

c**element size 
c**element mesh
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csys, 1 2

v,10,31,66,52,12,33,68,54
v,52,66,40,19,54,68,41,20
v,19,40,65,51,20,41,67,53
v,51,65,30,9,53,67,32,11
elsize,0.175,,2
vmesh,9,1 2 ,1

v,12,33,68,54,14,35,70,56
v,54,68,41,20,56,70,42,21
v,20,41,67,53,21,42,69,55
v,53,67,32,11,55,69,34,13
elsize,0 .2 1 , , 2

vmesh,13,16,1
symbc,0,l,0,0.05
asymbc,0,3,0,0.05
/view, ,1 ,1 ,1

/type ,,2
/v iew „ l,l,l
eplot c**element plot

A pply N odal Forces

csys,0

nail
eall
f,501,fz,-f*0.5
f,507,fz,-f*col
f,507,fx,f*snl
f,508,fz,-f*co2
f,508,£x,f*sn2
f,509,fz,-f*co3
f,509,fx,f*sn3
f,510,fz,-f*co4
f,510,£x,f*sn4
f,511,fz,-f*co5
f,511,fx,f*sn5
f,512,fz,-f‘co6
f,512,fx,f*sn6
f,513,fz,-f*co7
f,513,fx,f*sn7
f,514,fz,-f*co8
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f,514,fx,f*sn8
f,506£c,f*0.5
nail
eall
arall
nsel,node,281,290,1

d,all,all 
nail 
eall 
arall
/pbc,forc,l
/pbc,tdis,l
/type „ 2

/view, ,1 ,1 ,1

nplot
eplot
iter,1 ,1 ,1

afwrite,,l
finish
/check
/exec
/inpu t,27
finish
/p o stl
store ,stres,disp 
set
csys,0

type„ 2

/v iew „ l,l,l
set,1 ,1

save
finish
/eof

c** select nodes located at
the outside layer of the equator 

c**selected nodes to be constrained

c**plot nodal forces 
c**plot boundary conditions

c**end of the file

148



A .8 Isoparam etric solid E lem ent M odel due to H orizontal 
Shear Force
/prep7
/title
/show
c*** mesh module

Define C onstants

set,ths,0.4 c**thickness of the sphere
set,the,0.4 c** thickness of the nozzle
set,beta,0.4 c**/3 value
set,gama,7 c**7 j value
set,mid,gama*ths c**mean radius of the sphere
set,irs,mid-(0.5*ths) c**inside radius of the sphere
set,ors,mid-t-(0.5*ths) c**outside radius of the sphere
set,midd,mid*beta c**mean radius of the nozzle
set,hoc,irs*0.5 c**height of the nozzle
set,radi,asin(beta) c**half opening of the juncture

with respect to the symmetry axis
set,quot,(180.0)/3 .14159
set, m ult, quot *radi
set,four,(90.0)-(mult+15)
set,firs,-89
set,seco,-45
set,thir ,0

set,irc,midd-(0.5*thc) c**inside radius of the nozzle
set,ang,irc/irs
set ,func,asin( ang)
set, high, irs*cos(func) c**y coordinate of the juncture
set, five, (hoc*0 .3 )+high
set,six,(hoc*0 .6 )+high
set,seve,(hoc+high) c**y coordinate of the top of the nozzle
set,col,0.9848 c**cos(1 0 ) value
set,co2,0.93969 c**cos(1 0 ) value
set,co3,0.866
set, co4,0.766
set,co5,0.6427
set,co6,0.5
set, co7,0.342
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*set,co8,0.1736 
*set, par ,0.84112 
*set,tep l,ths/(2 *midd)
*set,tep2,ths/(4*midd)
*set,fm,21.1576*par
*set,fi,(l-tepl)*fm
*set,fim,(l-tep2 )*fm
*set,fm o,(l+tep2 )*fm
*set,fo,(H-tepl)*fm
c****set,mid,irs+(0.5*ths)
c****set,midd,irc+(0.5*thc)
*set,mido,mid+(0.25*ths) c**radius of the sphere between

mean radius and outside radius

*set,orc.midd-f-(0.5*thc)
*set,mddo,midd+(0.25*thc)

set,midi,mid-(0.25*ths) c**radius of the sphere between 
mean radius and inside radius 
c**outside radius of the nozzle 
c**radius of the nozzle between

mean radius and outside radius
set, mddi ,midd-(0.25*thc) c**radius of the nozzle between

c**mean radius and inside radius
*set,a,orc/ors
*set,nul,asin(a)
*set,b,irc/irs
*set,nu2 ,asin(b)

Set M aterial Properties

ex,l,30e6
nuxy,l,0.3
et,2,45,,,,,,,2
ex,2,30e6
nuxy,2,0.3

et,l,45,,,,,,,l c**define element type of the sphere 
c**elastic modulus of the sphere 
c**fi value of the sphere 
c**define element type of the nozzle 
c**elastic modulus of the nozzle 
c**fi value of the nozle

D efine K eypoints
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k,l
k,2 ,l
k,3,,,l
cskp,ll,2 ,l,3 ,2
cskp,12,l,l,3,2
csys,ll
k,l,ors,,firs
k,2 ,irs,.firs
k,3,ors,,seco
k,4,irs,,seco
k,5,ors
k,6 ,irs
k,7,ors,,four
k, 8 ,irs,,four
k,9,ors,,50
k,10,irs„50
k,15.mid,,firs
k,16,mid,,seco
k,17,mid
k,18,mid,,four
k,19,m id,,50
k,22,ors,90,firs
k,23,irs,90,firs
k,24,ors,90,seco
k,25,irs,90,seco
k,26,ors,90
k,27,irs,90
k,28,ors,90,four
k,29,irs,90,four
k,30,ors,90,50
k,31,irs,90,50
k,36,mid,90,firs
k,37,mid,90,seco
k,38,mid,90
k,39,mid,90,four
k,40,mid,90,50
k,43,mido,,firs
k,44,midi„firs
k,45,mido,,seco
k,46,midi,,seco
k,47,mido
k,48,midi
k,49,mido,,four
k,50,midi,,four
k,51,mido„50

c**define the global coordinate system
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k,52,m idi,,50 
k,57,mido,90,firs 
k,58,midi,90,firs 
k,59,mido,90,seco 
k,60,midi,90,seco 
k,61,mido,90 
k,62,midi,90 
k,63,mi do,90,four 
k, 64, midi ,90, four 
k,65,mido,90,50 
k,66,midi,90,50
kmove,9,ll ,o rs ,,999,12,ore,999,999
kmove,10,ll,irs„999,12,irc,999,999
kmove,19,11,mid,,999,12,midd,999,999
kmove,30,ll ,o rs ,90,999,12,ore,999,999
kmove,31,11,irs,90,999,12,ire,999,999
kmove,40,11,mid,90,999,12,midd,999,999
kmove,51,ll,mido„999,12,mddo,999,999
kmove,52,11,midi,,999,12,mddi,999,999
kmove,65,11,mi do,90,999,12,mddo,999,999
kmove,66,11,midi,90,999,12,mddi,999,999
csys, 1 2

k,ll,ore,,five
k, 1 2 , ire,, five
k,13,orc,,seve
k,14,irc,,seve
c***k,15,orc,,seve
c**Jtck,i6,irc,,seve
k,2 0 ,midd,,five
k,2 1 ,midd,,seve
k,32,ore,90,five
k, 33, ire, 90, five
k,34,orc,90,seve
k,35,irc,90,seve
k,41,m idd,90,five
k,42,midd,90,seve
k,53,mddo,,five
k,54,mddi,,five
k,55,mddo,,seve
k,56,mddi,,seve
k,67,mddo,90,five
k ,6 8 ,mddi ,90,five
k,69,mddo,90,seve
k,70,mddi,90,seve
/v ie w „ l,l,l
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kplot

D efine K eyareas

csys,ll 
a,44,2,4,46 
a ,15,44,46,16 
a,43,15,16,45 
a ,1,43,45,3 
a,46,4,6,48 
a,16,46,48,17 
a,45,16,17,47 
a,3,45,47,5 
a,48,6,8,50 
a ,17,48,50,18 
a,47,17,18,49 
a,5,47,49,7 
a,50,8,10,52 
a ,18,50,52,19 
a,49,18,19,51 
a ,7,49,51,9 
a,58,23,25,60 
a,36,58,60,37 
a,57,36,37,59 
a,22,57,59,24 
a,60,25,27,62 
a,37,60,62,38 
a,59,37,38,61 
a,24,59,61,26 
a,62,27,29,64 
a,38,62,64,39 
a,61,38,39,63 
a,26,61,63,28 
a,64,29,31,66 
a,39,64,66,40 
a,63,39,40,65 
a,28,63,65,30 
r,l
csys,1 2  

a,52,10,12,54 
a ,19,52,54,20
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a,51,19,20,53 
a,9,51,53,11 
a,54,12,14,56 
a,20,54,56,21 
a,53,20,21,55 
a ,11,53,55,13 
a,66,31,33,68 
a,40,66,68,41 
a,65,40,41,67 
a,30,65,67,32 
a,68,33,35,70 
a,41,68,70,42 
a,67,41,42,69 
a,32,67,69,34 
r ,2

/mdiv,3
/pnum ,area,l
/view,,1 ,1 ,1

aplot
lplot
aral
/pnum ,line,-l
/view„l,l, l
lplot

M esh Fin ite Elem ent M odel

et,l,45
csys,ll
v,6,27,62,48,8,29,64,50 
v,48,62,38,17,50,64,39,18 
v,17,38,61,47,18,39,63,49 
v,47,61,26,5,49,63,28,7 
elsize,0.525,,2 
vmesh, 1,4,1
v,8,29,64,50,10,31,66,52 
v,50,64,39,18,52,66,40,19 
v,18,39,63,49,19,40,65,51 
v,49,63,28,7,51,65,30,9 
elsize,0.175„2 
vmesh,5,8 ,1

c**define key volume

c**element size 
c**element mesh



csys, 1 2

v,10,31,66,52,12,33,68,54
v,52,66,40,19,54,68,41,20
v,19,40,65,51,20,41,67,53
v,51,65,30,9,53,67,32,11
elsize,0.175,,2
vmesh,9,1 2 ,1

v,12,33,68,54,14,35,70,56
v,54,68,41,20,56,70,42,21
v,20,41,67,53,21,42,69,55
v,53,67,32,11,55,69,34,13
elsize,0 .2 1 „ 2

vmesh,13,16,1
symbc,0,l,0,0.05
asymbc,0,3,0,0.05
/v ie w „ l,l ,l
/ty p e , ,2

/v ie w „ l,l ,l
eplot

A pply  N odal Forces

csys,0

nail
eall
f,501,fz,-f*0.5„506,5
f,507,fz,-f„514,l
nail
eall
arall
nsel,node,281,290,1 0 * * 5 6 1 6 0 1  nodes located at the

outside layer of the equator 
d,all,all c**selected nodes to be constrained
nail 
eall 
arall
/pbc,forc,l c**plot nodal forces
/pbc,td is ,l c**plot boundary conditions
/ty p e „ 2

/v ie w „ l,l ,l
nplot
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eplot 
iter,1 ,1 ,1  

afwrite,,l 
finish 
/ check 
/exec 
/in p u t,27 
finish 
/p o stl
store, stres,disp 
set
csys,0  

set,1 ,1

m § h

/eof c**end of the file
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A p p en d ix  B: K elv in  F unctions and th eir  D eriva­
tives

The real and imaginary parts of Ju(xe3vi/4) are denoted by Berux and Beiu and are 

given as follows:

Ber x = ( - ) u f '  COŜ  +  ^ 7r ( — )k 
{2 } ^ Qk\T(u + k ^ l ) { 4 }

Beivx = C - r  £  sin[(^ + .2M (^  
V  ^ k W i u  + k + i y  4 '

where

r( i/  +  A +  l)  =  (k +  1 )!

The functions Berx  and Beix  (i.e. functions of zero order) are given as follows:

S e„  = ! _  +  I f W . . . .
(2! ) 2 (4! ) 2

4 (3!)2 (5!)2

The real and imaginary parts of e_n’r,/2 JCn(*eirt,/4) are denoted by kernx and keinx 

and are given as follows:

l / * \  „  r / 3 n  k .  J n  — k —  1)1 .x2 . r .  . , x . „  t t  _  .
kernx = - ( - )  n cos[(—  +  - ) tr ]  - -(— ) -  In(~ )Bernx +  - 5 e z ns

, rf 3n A ,(¥ (*  +  1) +  $ («  +  * +  l))  ®2 *
2 "2 h c°s[{~  + ~^] W TW  (T }

1 I  n V '  • U ^ 71 k \ 1 (n — k  — !)• z*2 \k t X TT

keinx = - - ( - )  n E sin[ ( j  +  2 ^  kl - ln( 2 ^BeinX ~ J BeTr,Xk= 0

, l / * x «  V - i n h 371 I kx7r]$(k + 1) + $(n+ k + 1),x\k
2 2 S sm|(T  +  2 ),rl i ifS T Ij i  T>
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where $ (n ) is given as follows:

For n =  1:

$(1) =  - 7

For n2:

$ ( n ) =  _ 7  + ^ ( f c - 1 )

fc=i

where 7 =  0.5772156649 = Euler’s Constant

The functions kerx and keix (i.e. functions of zero order) are given as follows:

, ! , x \ ^  • v-'/ ^(2fc +  1 ), x 2 s2k
kerx =  - ln ( - )5 e r®  +  - B e i x  +  ] T ( -1 )  ^ 2 fc) ! ) 2 ^

.  • i  z ^ i n  77 -r,  ■ V ^ /  ,  ^ ( 2 ^  +  2 )  . X 2ketx  =  - I n ( - ) B e r x  -  - B e i x  +  £ ( - 1 )

The functions kerx and keix (i.e. Kelvin functions of first order) can be 

obtained by substituting n =  1 in expressions for kernx and keinx. The derivatives 

of Kelvin functions (ker'x and kei 'x) are obtained as follows

. . kerix +  keiixher x  = --------- 7=-------
y/2

— k e r^ x 4- ke i \X
kei'x =

V2
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A p p en d ix  C S u p erp osition  o f  all Loads

Fig.
No.

Read
curves
for

Calculate absolut 
values of stress 
and enter result

: STRESS: if load is opposite that 
shown, reverse signs show

Au A i  B y  B l Cu Cl D u D l

6.3 K c,mT 2 {Kc,m T 2) P / T 2

6.1 K c,bT 2 (K CibT 2) P /T 2 — + — J- — - r — +

6.7 K c,mT 3 (K c,mT 3)Mx / T 3 — — + _L

6.5 CO (.K c,bT 3)Mx / T 3 — -j- —

6.7 K c,mT 3 {Kc,mT 3)Mz / T 3 — — + -j-

6.5 K c,bT 3 (K CibT 3)Mz / T 3 — + —

6.12 K c,mT 2 ( K \ mT 2)Vx / T 2 - r _j_ — —

6.10 K c,bT 2 ( K \ bT 2)Vx / T 2 — T — — — + — +

6.12 K c,mT 2 (Kc,mT 2)Vz / T 2 — — + +

6.10 K c,bT 2 (Kc,bT 2)Vz / T 2 — + -r —

Algebraical summation of crc =

6.4 K m,mT 2 (.Km%mT 2) P / T 2

6.2 K m,bT 2 ( K m,bT 2) P / T 2 — + — + — + — -i-

6.8 K m,mT s (.Km,mT 3)Mx / T 3 — — + -

6.6 K m , bT 3 (KmibT 3)Mx / T 3 — + + —

6.8 AVmT3 (,Km,mT 3)Mz / T 3 — — + +

6.6 K m,bT 3 (.KmtbT 3)Mz / T 3 — + + —

6.13 K m , m T 2 (Km,mT 2)Vx / T 2 — — + +

6.11 K m ib T 2 (K mibT 2)Vx / T 2 — + — + — + — +

6.13 V  T 2 **m,m •* (KmtmT 2)Vz / T 2 + + — —

6.11 K m,bT 2 (K m,bT 2)Vz / T 2 — + + —

Algebraical summation of <rm =
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Fig.
No.

Read
curves
for

Calculate absolut 
values of stress 
and enter result

: STRESS: if load is opposite that 
shown, reverse signs show

Au A l B u B l Cxj Cl D u Dl

6.14 Kv>T2 (K ST 2)VX / T 2 — — + +

6.14 KvsT2 (KvsT 2)Vz / T 2 + + — —

6.9 K t . T 2 (.K uT 2)Mt / T 2 + + + + + + + +

Algebraical summation of r  =

Combined stress intensity S.I.  =

When crc and <rm have like signs:S.I. = Gc +  OVn +  \/{< Tc ~  Cm) 2 +  4 t 2]

When r  = 0: S.I.  =largest of G c ,G m  or \ g c — <rm|

When <rc and crm have unlike signs:S.I. =  yj(<Jc — <rm ) 2 + 4 r 2
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