
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

The Application of Adaptive Step-Size Control
in the Numerical Simulation of Calcium

Release in Vascular Smooth Muscle

Michael John Sydor

Thesis submitted to the Faculty of the Graduate School
of the New Jersey Institute of Technology

in partial fulfillment of the requirements for the degree of

Master of Science in Biomedical Engineering

May 1991

Approval Sheet

Title of Thesis : The Application of Adaptive Step-ize Control in the Numerical Simulation
of Calcium Release in Vascular Smooth Muscle.

Name of Candidate : 	 Michael J. Sydor
Master of Science. 1991

Thesis and Abstract Approved :
Dr. F . P. J. Diecke 	 Date
Chairman
Department of Physiology
University of Medicine and Dentristy o New Jersey

Signatures of other members
of the thesis committee. 	 Dr. E. V. Hersh	 Date

Associate Professor
Director of Pharmacology	 Clinical Therapeutics
University of Pennsylavania

Dr. D. Kristol	 Date
Chairman

Biomedical Engineering Program

Dr. L. Michaelson	 Date
Director
Research Computing Services
University of Medicine and Dentristy of New Jersey

VITA

Name : Michael John Sydor

Permanent Address : 68 Spring Street, Metuchen, New Jersey, 08840

Degree and date to be conferred : M. S. Biomedical Engineering, June 1991

Secondary Education : Metuchen High School, 1976

Collegiate institutions attended Dates Degree Date of Degree

New Jersey Institute of Technology 9/86- 6/87 M.S.Biomed.Eng. 6/91

New Jersey Institute of Technology 9/80-12/83 B.S.Eng.Sci 6/84

Major : BioMedical Engineering

Publications :

Bone Remodeling Under Stress, Biomedical Research at the New Jersey Institute of Technology,
June 1984 (Abstract)

3-D Reconstruction of Small Blood Vessels, 27th Am. Meeting ASCB, St. Louis, Missouri, Nov
1987 (Poster & Abstract)

Computerized 3-D Reconstruction of Small Blood Vessels from High Voltage
Electromicrographs of Thick Serial Cross Sections, Satellite Symp. IV World Cong. Microcir.
Aug 1987, "Vascular Endothelium in Health and Disease" (Abstract)

Morphological Analysis of Blood Vessels Using High Voltage Electron Microscopy and 3-D
Computerized Reconstruction, Proceedings of the Ninth Annual Conference of the IEEE
Engineering in Medicine and Biology Society, Ch. 2513-0/87 Vol. 3; 1682-1684 (1987)

Computerized 3-D Reconstruction of Small Mesenteric Arteries from Normotensive and 1-Clip-2
Kidney Goldblatt Chronic Hypertensive Dogs Using High Voltage Electromicrographs of
Thick Serial Cross Sections, Adv. Exp. Med. Biol. 242:35-42 (1988)

Positions Held :

Applications Engineer : Biosym Technologies, San Diego, CA.
Senior Systems Engineer : Concurrent Computer Corporation, Tinton Falls, NJ.
Consultant: Software Applications and Engineering, South Orange, NJ .
Teaching Assistant : Department of Physics, NJIT, Newark, NJ.
Engineer : George Shultz Laboratory for Orthopaedic Research, UMDNJ, Newark, NJ.
Development Manager, LabSoft, New York, NY.
Research Technician : General Foods Corporation, Cranbury, NJ.
Chemist : Pilot Chemical Company, Avenel, NJ.

Abstract

Title of Thesis : The Application of Adaptive Step-Size Control in the Numerical Simulation
of Calcium Release in Vascular Smooth Muscle.

Michael J. Sydor, Master of Science in Biomedical Engineering, 1991

Thesis directed by : Dr. F. P. J. Diecke, Chairman of Physiology

An algorithm for the adaptive control of numerical integration step-size is developed

and implemented for the simulation of a three compartment model for Vascular Smooth Muscle.

The three compartment model accounts for the simultaneous diffusion of Ca, 45Ca, EGTA, Ca-

EGTA, and 45Ca-EGTA, and is an extension of a two compartment model by Diecke for the

simultaneous diffusion of Ca, EGTA, and Ca-EGTA. The addition of the third compartment is

to account for the presence of the Sarcoplasmic Reticulum which stores the calcium needed for

contraction and is the primary regulator of calcium in the VSM cell. The SR has been

implicated as the slow component in calcium release, as measured by Stout and Diecke in

saponin skinned VSM.

The compartmental model is developed from mass-balance equations and is solved

numerically with a Runge-Kutta-Gill algorithm. Step-size is controlled with an adaptive

algorithm which adjusts the integration interval (step-size) for the transient and steady-state

phases of the simulation. The implementation of the various programs is designed to

accommodate automated execution and analysis of a high volume of simulation runs. Some

introduction into the methodology of modeling and simulation, as well as the complex

physiology of the SR is discussed and the complete process of modeling, simulation, and

analysis is illustrated for a simple model of a two-compartment leaky tank. A more

comprehensive introduction into numerical integration is included to provide sufficient

background for the development of the adaptive algorithm.

The adaptive algorithm allows a complex simulation to be executed in one-fifth the

time required for constant step (non-adaptive) numerical integration without incurring

significant error. This reduction in the amount of computer time required permits more

aggressive protocols for the determination of parameters and model responses by allowing more

simulation runs to be processed in the course of a study. The simulation of calcium release from

VSM revealed that the response of the system is not a multiple of the increase in rate but is

instead related via a linear function representative of the buffering capacity of the model.

Results from a similar two-compartment model suggest that the EGTA buffer system has a

significant impact of the perceived rates of release.

This Thesis is dedicated to the memory of my friend Richard "Butter"
Waterworth.

Acknowledgments

The completion of this thesis would not have been possible without the
measured patience and timely guidance of Dr. Diecke.

I am also indebted to Dr. Lief Horn for his suggestions and guidance,
particularly in his reading of the more detailed drafts and his thoughtful
prodding.

Dr. Michaelson has often been the last check point, in this and a number of
other projects, when I wandered out of bounds in the application of
computers. Whatever success I obtain by in this field will be in part
attributable to his clarity of thought and perspective in problem solving.

The fundamental shift in my facility for technical writing can be attributed to
Dr. Hersh, both in his suggestions, and his requirements as a potential user of
computer modeling techniques.

For Dr. Kristol I can only hope that this dividend is sufficient, for having
guided my efforts over the years and enduring my particular insensitivity to
the passage of time.

This project was made more interesting with the use of Dr. Art Ritter's
computer and his library, where I located the discussion on the initial form of
the algorithm -- the root of my thesis.

Table of Contents

Introduction
Background 	
Previous work 	 3

Particular Areas to be Addressed 	 4

Material and Methods
Model Equations 	 9

Effect of Volume on Rate Constants 	 1 1
Determining EGTA Equilibrium 	 1 1

Software considerations 	 15
Application

Simulation 	 1 7
Runge-Kutta Integration 	 19
Adaptive Step Change Algorithm 	 21

Model Changes 	 5

Translating the Model into DIFSIM 	 6
Analysis 	 2 8

Analysis 	 9

Determining the Rate of Release 	 31
Exponential Curve Fitting 	 3 1

Discussion
Performance

Run Times 	 3 2
Stiffness of Model Equations 	 3 2

Automatic Step Size Adjustment 	 3 3
Overall Gain in Compute Efficiency 	 3 3
How Does Precision Compare Between
Adaptive and Non-adaptive Methods 	 3 7

Experiments
Validation of the Simulation Engine 	 4 0

Analytical Solution 	 4 0
Isotope Exchange 	 .4 3
Release of Calcium from the SR 	 4 6

Conclusions
Adaptive StepSize Control 	 5 3

Modeling Environment 	 5 4
Effectiveness of 3 compartment model 	 5 4

Appendix
References 	 5 6
Software Examples

Sample Parameter (input) File 	 5 9
Sample Output (.data) File 	 6 0

FORTRAN Programs
Extras.ftn 	 61

Model12.ftn	 6 3

C Programs
Main.c 	 6 5
RungeKutta.c 	 6 7
StepChange.c 	 6 8
Model_12.c 	 7 0

List of Figures

- Proposed Three Compartment Model 	 4
2 - Vessel Cross Section 	 5
3 - Tissue Model 	 10
4 - Sample FORTRAN Runge-Kutta Integration 	 21
5 - StepRequest Fundamentals	 7 2
6 - StepRequest Strategy 	 2 3
7 - Pseudo Code for Step Change 	 2 4
8 - Hierarchy of Model Changes 	 7 6
9 - FORTRAN Representation of Verification Model 	 2 7
10 - C Representation of Verification Model 	 7 8
11 - Analysis Procedure 	 2 9
12 - Actual Run Times for 10 -7 Free Ca 	 3 3
13 - Effect of StepLimit on RunTime 	 3 4
14 - Effect of Stack Size on Run Time 	 3 5
15 - StepSize as a Function of StackSize 	 3 6
16 - Adaptive vs. Constant Step Size 	 3 8
17 - Ratio of Error 	 3 9
18 - Two Compartment Leaky Tank Model 	 4 1
19 - Leaky Tank Results 	 4 3
20 - Model For Isotope Exchange 	 4 4
21 - Half-times for First Exponential Term 	 4 5
22 - Half-times for Second Exponential Term 	 4 6
23 - Rate Change Study AM Total 45 C a 	 4 7
24 - Rate Change Study AM Total 45 Ca Normalized 	 4 8
25 - Arithmetic Mean Summary 	 4 9
26 - Rate Change Study : Results 	 5 0
27 - Total Ca45 Summary 	 5 1
28 - CPU Performance Increases, Adaptive vs Constant StepSize 	 5 3

Introduction
The application of computer technology is an important tool for the
illumination of Biological systems. In particular, the numerical solution of
mathematical models for physiological systems and processes has enabled the
elucidation of many complex biological systems. These systems are often
difficult to manage experimentally and the use of a computer model, or
simulation, often provides the only reliable platform on which the
underlying physical processes may be explored.

While the development and parameterization of a physiological model is
frequently the more demanding process, the actual simulation of the model
has become a significant problem. As the growth of experience and
acceptance in the area of computer modeling has established a rational
framework for model design, it has become reliable to construct larger
systems composed of simple, well-known components. These simple
components, such as 1st order decay processes, kinetic processes, and simple
diffusion, have been long established experimentally. Assemblies of these
simple components, in the construction of sophisticated and detailed models
(Kootsey), increase the computational demands of the ensuing simulations
due to the range and complexity of model system responses. The question is:
can the computational efficiency of a simulation be significantly increased
without compromising the physiological accuracy?

The traditional response to the increasing computational demands of
contemporary simulation has been to seek faster and more capable computer
systems. Despite the additional costs (both in dollars and the personnel time
needed to exploit newer technology) the growth in the technical level
simulation has not been impeded. The arguable point is whether the growth
in the number of practitioners even remotely parallels that of the technical
achievements.

This thesis serves to illustrate the simulation task of the modeling process by
taking a two-compartment physiological model and extending it one
conceptual increment, to three-compartments. This extension introduces a
variety of pitfalls computationally which are addressed by improving the
efficiency of the simulation engine. Achieving this efficiency entails the
development and implementation of an adaptive step-size algorithm, which
is the major contribution of this thesis. A number of other enhancements for
the generation and analysis of simulations are introduced so as to provide a
robust platform on which to further extend the modeling of vascular smooth
muscle and other related compartment models.

The content of the thesis can be summarized as follows:

1

The Introduction includes some discussion of Vascular Smooth Muscle to
provide background for the variety of experimental problems that are
encountered. Following this is a review of the two-compartment model on
which this project is based. Finally, the objectives of this project are
summarized.

The Material of the thesis is the compartmental model and its extension to
three-compartments. The Methods for the thesis are the programs, software
methods and techniques for the analysis of simulation results.

The Discussion provides the evidence as to the success of the adaptive step-
size algorithm and introduces the experiments which validate the software
implementation, improve the physiologic reality of the model, and explore
the effect of the third compartment on the release of calcium in vascular
smooth muscle.

The Conclusion summarizes the contribution of the methods developed for
the thesis and indicates potential areas for extension of the three-
compartment model and towards simulation in general.

Background

In the case of smooth muscle used in the human vascular system, defects in
function have chronic effects. In the design of strategies and drugs to
alleviate these conditions, the major focus is on the regulation of calcium
used by smooth muscle. A major regulator of calcium, used in muscle
contraction, is the Sarcoplasmic Reticulum (SR). All of the three types of
muscle -- skeletal, cardiac and smooth -- are dependent on the SR to provide
the calcium necessary for contraction.

The mechanism by which smooth muscle affects the vascular system is
contraction. Smooth muscle has other properties, such as its ability to
synthesize products, and its manner of growth and development, but these
are not as significant. Any potential regulation of the SR needs to be very
precise because the the two sides of the vasculature, arterial and venous,
have contradicting effects for the same mode of operation. For example,
contraction for the arterial side causes an increase in blood pressure which
decreases cardiac output, while contraction on the venous side causes an
increase in cardiac output. These differences are largely attributable to the
architecture of the respective vessels but illustrate that a "simple fix", such as
relaxing the vasculature to correct a hypertensive state, potentially causes
more problems by decreasing the cardiac output and increasing the strain on
the heart. The underlying regulatory process and the environment need to be
understood.

For smooth muscle, this is a considerable challenge for a number of reasons.
The first is the overall duration of contraction. Smooth muscle is not under

2

general active control as is skeletal muscle and instead responds to a variety
of nervous and hormonal factors. Its physical size and distribution make it
difficult to isolate and its internal cellular structures differ significantly from
skeletal muscle, which has been more extensively characterized. The second
is the selection of a suitable animal model for experimental use. Each
component of the vasculature, from arteries through capillaries through
veins, has different characteristics, in addition to the overall differences
between the two sides of the vasculature. There are also differences between
the same type of tissue taken from different animals. The overall result is
that literature findings are not transferrable and progress in understanding
the regulatory mechanisms has been slow.

The physical attributes of smooth muscle are well known and because the
various elements have been characterized in other tissues, particularly
skeletal muscle (Peachey), it is possible to construct a mathematical model
which relates to each of the elements. Before conclusions can be drawn about
the accuracy of a given model, it is necessary to validate its prediction with
physical experiment; this remains an ongoing problem. Although it is
straightforward to construct models of great complexity, it it unlikely that
they can ever be validated experimentally. Modeling best proceeds by "leap-
frogging" established experimental results in order to provide the direction
for a new suite of experiments (Kootsey). And as each model has been
validated, another hypothesis is added to continue the process of modeling
and experimentation.

While the generation of the model, which expresses the process, is often
straightforward, the mathematical simulation of the resulting model may not
be as simple. This project is an outgrowth of an modeling increment which
encounters a computational and process bottleneck, indicating that even a
conservative increment in the model can result in a radical increase in
challenging problems.

Previous work

The present simulation model and program (or simulation engine) began as
an extension to a local implementation by Roeseler. The nomenclature for
the calcium exchange was implemented by Hausser. Both the original
program and the model nomenclature have been substantially modified in
order to streamline and automate the simulation process.

In previous work by Diecke and Hausser, where the two-compartment model
was implemented and its parameters for diffusion validated, it was not
possible to directly extend the model to three-compartments because the
additional equations extended the simulation duration beyond a reasonable
limit. At that time, the simulations were run on an IBM PC and took about
12 to 20 hours to complete. As the run times increased into the order of days,

3

Ca40

7-Ca40-EGTA

Ca40

EGTA

\
Ca40-EGTA

Reservoir

Ca40

EGTA

J r

the reliability of the machines became an issue and many unforeseen
problems arose.

Particular Areas to be Addressed

The following Figure 1 summarizes the extension to the existing two-
compartment model as suggested by Diecke. The horizontal arrows indicate
diffusion between compartments while the vertical arrows indicate a reaction
within a compartment. The relative volumes are indicated above each
compartment. The compartments are in series indicating that the only path
to the SR, for example, is through the other two-compartments. The
reservoir is considered to be a homogeneous pool (the concentrations do not
vary with distance) of the components at some concentration and is referred
to as a forcing function when considered in the mass balance equations.

0.56 	 0.28 0.016

Extracellular 	 Cytoplasm 	 Sarcoplasmic
Space 	 Reticulum

Figure 1 - Proposed Three-compartment Model

Along with the addition of a third compartment, it was desired as well to use
a model which better represented the actual experimental conditions, so far as
the species that were tracked by the' model. The addition of equations to
model 45Ca effectively doubled the number of equations to be evaluated. This
increased run times into the order of weeks and the results were completely
unreliable.

4

Vessel Interior Calcium Flow

Clearly, the limitation on the number of equations was unacceptable since it
did not allow an in vitro characterization of the SR, which would be
necessary to compare with the ongoing animal experiments. In order to
achieve this three-compartment model, it was necessary to explore alternate
paths unrelated to the physiologic issues. These are 1) a faster computer or
platform to run the program; 2) varying the step size in order to control the
round-off error and run-time; 3) optimizing the model so that overall run
times would be decreased. Of these paths, the second is the most reasonable.
The first requires a capital investment or some other serendipity. The third
has the potential for complicating and impairing the transferability of the
project. It is often straightforward to use lumping of parameters to reduce the
number of computations. This results in a model which is difficult and
confusing to maintain and less likely to have general application.

Stout and Diecke have shown that the S.R. can be destroyed with Triton X-100
without impairing the contractile functionality of the smooth muscle cell.
This yields a two-compartment model. Characterizing this two-compartment
model and accurately reflecting the experimental conditions still involves
number of assumptions. The following Figure 2 introduces some of these
assumptions.

Vessel Exterior

Connective Tissue

Vascular Smooth Muscle

(Internal Elastic Lamina)

Endothelium

Figure 2 - Vessel Cross Section

This is a diagrammatic representation of the pharmacological model, as
would be present in vivo. The experimental model (tissue preparation or

5

prep) uses helically cut strips of the vessel, so that both the inner and outer
wall are exposed to the test solutions. The spindle-shaped smooth muscle
cells are distributed helically about the vessel wall, so the prep results in a
sample with the cells parallel to the long axis. The connective tissue and
endothelium/internal elastic lamina are lumped together and form the first
compartment or extracellular space. This compartment introduces
considerable variability in the experimental prep and has been suggested to
account for the difference between predicted and observed rate of diffusion
(Stout).

Modeling the actual contributions of the SR to calcium release is in itself a
major undertaking. The SR has a number of established diffusion and
activation pathways as well as internal calcium storage and active transport
mechanisms. The contribution of each of these physical components (cell
architecture) during the release of calcium has yet to be established. The
performance of some of these components, when isolated from their
respective membrane structures, has been characterized chemically, although
this information is not directly transferable to the physiologic model. That is,
chemical characteristics obtained under non-physiologic conditions are not
transferable to a physiologic model. The absence of verified parameters is a
significant impediment to the modeling process.

A number of other investigators have attempted to study the SR by isolating
it from the smooth muscle cell (Hasselbach, MacLannan, Miyamoto, Ostwald,
Stewart). These studies have enumerated the components of the S.R. but
have not illuminated the in-vivo operation of the aggregate components.
They do provide insight into the functional relationships and capacities of the
components.

Given the complex role that the SR plays in the regulation of intercellular
calcium, it is not now possible to analytically characterize the whole
expression of its function with one distinct model. The presence of three-
compartments combined with the active transport and sequestering reaction
(see Tanford) is not convenient to solve analytically (see Jacobs for a typical
result). In addition, correlation of the model with experimental data is more
complex because the in-vitro experiments are performed with a radioactively
labeled species of calcium, designated 45Ca, with the additional presence of
EGTA, which acts as a calcium buffer. This increases both the number of
variables to be tracked by the model, and the models' complexity. The
addition of a buffer system adds a reaction phenomenon to the existing
simple diffusion. The absence of verified parameters for the components of
the SR will limit the functional representation to that of calcium release and
ignore the sequestering reaction and capacities, as well as the active transport
mechanism by which the SR removes calcium from the cytoplasm.

6

Until the development of experimental procedures to characterize the
unknown parameters of the SR, it would be possible to obtain a likely range
for the value of some physiologic parameter through a technique known as a
parameter study or sensitivity analysis. In this method, the parameters for
the model are varied to determine what type of effect they have on the
output. This approach is used frequently with discrete models (queueing
theory, etc.) in order to characterize the dependence of a model on some
subset of parameters, if any, which in turn further refines the model (Law,
Shannon). The drawback in this method, for continuous models (differential
equations), is that hundreds to thousands of runs are required. This is not a
problem for discrete models because they are inherently easier to evaluate
(calculate), in comparison with continuous models. Unfortunately, the
software and analysis tools initially were not amenable to such a high
volume of simulation runs and subsequent analysis.

This approach, which I will term as a rational parameter analysis, will be
considered a design goal for this project, with some cautions. With a large set
of adjustable parameters it is of course possible to fit any model to a given set
of data, and this rational method has yet to be implemented and validated. In
general, arbitrary refinement to improve the fit between model and data is
misleading and should be avoided (Cooney). A rational refinement seeks
only to establish the domain of the parameter so that appropriate experiments
might be designed to validate the estimate. The motivation (design goal) is to
reduce the duration of a simulation run, and to automate the process of
generating runs, and thus take an informed step toward an integrated facility
which would accomplish a rational parameter study.

A final consideration was to optimize the modeling environment so that
model changes were easier for a non-programming individual to effect. This
is in part to satisfy an ethical desire for process efficiency but more so to justify
the additional effort which would make the modeling process a more
accessible and useful research tool.

7

Material and Methods
This section will focus on the details of implementation necessary to facilitate
exploration of a three compartment model for calcium release. It details the
overall areas of Model Building, Simulation and Analysis as discussed in the
Introduction, with particular emphasis for the problem at hand. The
following sections on Model Equations and Development of Parameters
constitute the Model Building part, and are a direct extension of the two
compartment model by Diecke. Any interest in the rationale for
compartmental modeling of Vascular Smooth Muscle should be directed to
Diecke.

The addition of the Sarcoplasmic Reticulum introduces a number of
additional parameters, few of which have been determined experimentally.
The estimation of these unknown parameters can be constrained effectively
with a parameter study or sensitivity analysis. In a sensitivity analysis, the
initial estimate of some parameter is incremented slightly and the whole of
the model is simulated with these new values. The effect of the new value is
assessed and the overall effect of the parameter is expressed in terms of the
current model, which yields the model's sensitivity to that particular
parameter. In the course of the study, parameters which are insensitive can
be discarded or lumped in with other parameters. Although a precise value
for the parameter cannot be obtained through such methods, a good estimate
of the likely range of values for a given parameter can be established (see
Shannon).

While this approach is often applied to discrete models, which are easy to
calculate, the method is used less frequently with continuous (differential)
models, which require significantly more time to calculate. The calculation
times are significant when, depending on the number of unknown
parameters, upwards of 30,000 runs are required for statistical significance
(Shannon). Since the two compartment model by Diecke took upwards of a
day to calculate (PC-XT computer), the prognosis of obtaining any level of
sensitivity analysis with a three compartment is poor. In fact the three
compartment model took almost 10 days (PC-XT). Clearly, if there was to be
any hope of systematically determining parameters for the Sarcoplasmic
Reticulum, it would be necessary to strongly optimize both the simulation
(calculation) of the model, as well as supporting the analysis and reduction of
large amounts of data.

Thus the bulk of the methods used in this paper have to do with these issues.
After some review of the available software tools, the variety of tools
developed for each of the target compute platforms, and analysis scenarios,
are introduced. Much of the focus on the development and use of the
software tools are on the automation of the processes in which they are
applied and this reiterates the theme of simulation as a process.

8

Model Equations

The development of a model for calcium flow begins with the translation of
the physical reality into a mathematical representation. The particular
methodology is called compartmental modeling and this method basically
assigns the physical components that have significant volume a unique
compartment in the model. Next is the consideration of the components
which occupy that volume in each of the compartments. This is
conveniently handled with a mass-balance relation which accounts for the
inputs and outputs of the compartment. A mass-balance relation is
composed of variables, which describe the amounts of a component in a
compartment, and parameters, or rate constants, which describe how fast a
component can change in value depending on the relationship between
compartments. The final set of equations, and their relationships, is then
considered a model of the physical reality. (For more introduction to the
development of compartmental models, see Randell.)

The physical properties of the SR dictate the form of experiments which
elucidate its function. Since it is difficult to work on the SR directly (see
Bond), it is through these experiments that the role of the SR is
demonstrated. The value of any model is in its ability to emulate a variety of
experimental conditions, so some attention will be made as to the form of
experiments that yield some appreciation of the SR's role and capacities.

The addition of the Sarcoplasmic Reticulum (SR) into a compartmental
model offers a number of unique challenges, as the following Figure will
reveal.

9

Reservoir
(well-stirred)

Sarcoplasmic
Reticulum

Extra-cellular
is Space

Cytoplasm

Figure 3 - Tissue Model

Figure 3 is adapted from various electron micrographs (see Allen; Bond;
Jones). The two primary compartments (as modeled by Diecke) are the Extra-
cellular space (EC) and the Cytoplasm (CY). As mentioned in the
Introduction, this extra-cellular space is comprised largely of connective
tissue. Together, these represent 56% and 28% of the VSM model volume.
The SR, as the proposed third compartment, contributes 1.6% of the total cell
volume. This is motivated from a range of values between 2% to 5% in
different tissue samples (Stout). These volume differences have significant
effects on the apparent and theoretical rate constants; the method of
correcting these values will be presented later.

The shape, volume and proximity to the membrane of the SR gives it some
interesting properties. The most significant of these is that the SR acts both as
a buffer to incoming calcium (EC to CY) and as a third compartment in series
with the other two (Hurwitz; van Breemen). Calcium can flow directly from
the EC to the SR, and from the EC -> CY -> SR. Calcium is required to effect
the contraction of the muscle fibers; it has the property to act both as an agent
and as a messenger in various physiological systems. By regulating the
uptake and release of calcium the SR regulates tlfe contractile process. The
measurement of tension (force development) is the fundamental metric for
the performance of a smooth muscle preparation (Diecke; Dohi; Endo;
Hurwitz; Jones; Somlyo).

10

In addition to the SR's role as a compartment in the diffusion of calcium, the
SR is also the main store of calcium in the smooth muscle cell (Bond;
Somlyo; van Breemen). The SR is able to store, or sequester, a large amount
of calcium which is used for the maintenance of contraction. A second group
of experiments (see Dohi; Hurwitz) use the loading and discharging of
calcium to measure a quantity known as the calcium-releasable store. The
time course and magnitude of the uptake and release are, at present, the only
indicators of the corresponding mechanisms contained in the SR.

The SR is a specific membrane analogous to a mitochondria or endoplasnlic
reticulum. It has the capacity to move calcium against a concentration
gradient by way of an ATP activated translocation, or pump. This feature is
the basis for a number of methods which assess the contribution of the SR to
calcium flow by controlling the availability of ATP (see Hurwitz; van
Breemen). Attached to the interior of the SR membrane are a variety of
calcium specific binding proteins, one of which is called calsequestrin. A
single binding protein is capable of binding 20 to 40 calcium ions, depending
on the type of protein. The equilibrium for the binding proteins is at a high
concentration in the SR, relative to the cytoplasm. A small decrease in
concentration can effect a large release of calcium; that mechanism is
presently unknown.

For the initial model, this suggests that the calcium concentration in the SR
should be significantly higher than that of the cytoplasm, or third
compartment. It also suggests that in order to estimate the diffusion
parameters for the SR, it would be important to avoid sudden decreases in
calcium concentration so that the sequestering function is not activated,
causing a rapid release of calcium. This is achieved experimentally by
effecting calcium release without contraction, or by not activating the
contractile machinery of the cell.

Effect of Volume on Rate Constants

While the actual rates of passive exchange between compartments are
identical (k12 and k21), the apparent rates can be different when the
compartments are not equal in size. For example, consider two
compartments at equal concentration C. Where one compartment is two
times the size of the other (the size of a compartment is its volume V), the
larger compartment is caused to lose 10% of its material into the smaller
compartment. Assuming that the flux J will be equal between the two
compartments, then

11

Note that A1 (area) is always equal to A2 when the separating distance, or
membrane thickness, is small when compared to the area, so that A1 and A2
can be replaced by Al2, indicating the connecting area between compartments
1 and 2.

When Ci = C2 = C (equal concentration), and J12 =121 (equal flux), the
following holds:

This is the adjustment to be made when the compartment volumes are
dissimilar. While k12 = k21, presumably, the apparent rate constant is
modified by the volume ratio, and the following is found:

This is how the volume difference between compartments affects the
perceived rate constants.

In order to examine the effects of isotope exchange, it is necessary to achieve
an equilibrium condition. Since the reaction of EGTA with Calcium is also
accompanied with the exchange of these components between different
compartments, the equilibrium values can be obtained through simulation,
using initial values derived from the following method, until steady-state is
achieved. An alternate method which solves explicity for equilibrium values
follows the simulation method.

The estimate is obtained by first noting that a reversible 1st order reaction
exists, which has the following form:

Using kf = 2x106 and kr = 0.4 , the equilibrium constant for this reaction is:

12

Since we want to determine what the concentrations of bound and free EGTA
will be, for a given total EGTA (EGTA total) such that,

the following manipulations will be performed.

Rearranging the equilibrium expression yields (4), isolating the free EGTA (
[EGTA]).

With (2), the bound concentration ([Ca-EGTA]) is isolated as (5)

Substituting (4) into (5), to eliminate [Ca-EGTA], yields (6)

Isolating [EGTA] yields (7), in terms of the total EGTA (EGTAtot), the free
Calcium ([Ca]), and the equilibrium constant (Keg).

The calculated result of (7) is substituted into (4) to determine the value for
[Ca-EGTA].

13

With equation (7), the approximate equilibrium values are determined. No
adjustment for compartment sizes has been made at this stage. These
adjustments are made to the forcing function, which is given by equation (8),

where i represents the species (Ca, EGTA, Ca-EGTA). The rate constant k01 is
the diffusion constant between the reservoir and compartment one.

For the purposes of this study, the simulation is considered to be at steady-
state when the change in total calcium is less than three significant figures.
This amounts to a change on the order of 10-10 in Calcium concentration. It is
again noted that at this point in the simulation there is still a significant
exchange between compartments, and with the EGTA buffering reaction.
This can be characterized as a bounded oscillation, since overall, the total
calcium does not change.

For this system of Ca, EGTA and Ca-EGTA it is also possible to solve explicitly
for each equilibrium value by using relations for the total EGTA (EGTAT) and
total Ca (CaT).

By noting that for the free concentrations of Ca and EGTA

For the EGTA binding reaction

Substituting equations (9) and (10) into (11) and collecting like terms yields
(12)

1 4

This quadratic equation is then soved by standard methods to yield values for
the Ca-EGTA concentration, from the total Ca and total EGTA. This is then
substituted back into equations (9) and (10) to solve for the free Ca and free
EGTA concentrations. Equation (12) can be rearranged into a standard form as
follows

Software considerations

This section will introduce the procedures by which the different software
elements are used. This begins with the model equations which are
developed with a text editor according to the conventions for the particular
programming language. This Model_file is then compiled and linked into
the rest of the simulation engine. This is carried out via the system compiler
and linker, or through a Makefile. Any computer operating system has some
facility to carry this out, though the details will vary somewhat. The
parameter file for the model is also created with a text editor. This method is
superior to interactive input of the various run parameters and permits
successive parameter files to be adapted from existing parameter files. The
organization of the parameter file is straightforward as it is designed to be
generated by a future application program which would automate the
parameter file creation. A sample parameter file can be found in the
Appendix.

A group of parameter files is submitted for processing by the SimEngine as a
Runlist. This is also a text file and contains the pathnames of the individual
parameter files. Earlier versions of the SimEngine (DIFSIIVI) used enternal
text files to control execution of the program. This was useful for single-user,
single-task systems (such as a PC) and allowed the program to be halted or re-
started without losing any data. This feature is not in the current
implementation because the runs are much more reliable and, when
necessary, more sophisticated control schemes are available.

One other file, SIMSTATUS, is generated by the running SimEngine and
contains a copy of the last set of data that was written to the file. Depending
on the version of the software, this will also report how many simulations
remain to be processed in the current Runlist.

The SimEngine program is executed as a background process, on multi-user
systems, and the form of this command will vary a little depending on the
particular system.

1 5

Once the SimEngine program has completed a parameter set and closed the
file, post-processing can begin. It is more convenient to wait until all of the
parameter sets are completed because the SPAWN program can re-use the
Runlist, saving the trouble of typing each of the filenames to be processed.
This may not be an advantage if each of the runs takes a few hours, and
results are of the essence. The final choice is up to the user.

Some thought should be given to the number of data points required for
analysis. In order to get smooth curves for plotting, it is necessary to generate
a lot of points. This does result in very large data files which will be difficult
to transfer to other systems. In other situations, such as a half-time study, it
may only be necessary to generate the minimum number of points to get a
good curve fit. This is very desirable when the curve fitting program is on a
PC, copy protected, and not part of the computing network (but part of a
sneaker network). Certainly other utilities can be developed to more closely
fit the demands of a particular simulation environment.

The initial run is often not the actual experimental run. For this study,
starting values for an experiment are first estimated, using the expressions for
EGTA estimation previously developed, and then run until equilibrium is
achieved. Equilibrium is defined as the point at which the Total Calcium is
constant for at least 1200 simulated seconds. The duration for the equilibrium
run is a function of the EGTA concentration, while the estimating function is
a linear equation.

Once the proper initial values have been established, the run variants can be
produced. For the Calcium Release experiments, this involves a reference
run with 45Ca washout conditions for 2400 seconds. The variant runs, which
modify the value of calcium diffusion from the third compartment, are
initialized with values taken from the reference run at 1200 seconds and will
run for 1200 seconds. In this fashion, the simulation can track a proposed
transient event (calcium release) without modifying the original model.
With the additional file handling it is possible to introduce simple errors,
particularly when working with 12 digit numbers, and additional work will
be needed to make this part of the simulation environment more reliable.

After a number of runs have been completed and analyzed, it would be
prudent to review performance and precision expectations. At the beginning
of this project, this meant a hiatus from modeling because the run times were
very poor and much development was needed. The result is the Adaptive
Step-control algorithm. For a future investigator, this juncture should now
only require some adjustment in the simulation configuration parameters, in
order to meet expectations.

16

(1)

(2)

Application

Simulation

This section will cover two areas. The first half will detail enhancements to
the integration method and an evaluation of its effectiveness. This will
include discussions of Runge-Kutta and Step Change algorithms. The Step
Change Algorithm is a unique implementation and comprises the main
contribution of this project.

Before embarking on this discussion, it would be prudent to review the
rationale for a numerical solution to a physiological model. Specifically, how
is it that a particular algorithm has broad applicability in evaluation systems
of this type. The system can be considered as modeling by compartmental
analysis. This type of analysis uses a simple mass balance approach to
develop linear differential equations representing how the mass of each
species changes with time. Numerical integration is the method through
which these equations are solved.

The general case under which compartmental analysis falls is an initial value
problem. This means that we have a set of answers initially and we want to
know what the answers will be at some other final point in time (simulated
time). Solving the compartment model also suggests that a numerical
solution to a system of ordinary differential equations is desired. It is
fortunate that the diffusion processes that are to be investigated are all first
order differential equations, for which numerical methods are well
understood. Of course second order, or higher, equations can also be reduced
to a combination of first order equations and a number of new variables.
Those are , however, concerns for more intractable problems.

The basic approach to solving any system of differential equations (DE's) is to
rewrite the equations in terms of finite steps, as shown below.

dY

	

= z(x) 	 Differential Form
dx

Ay

	

z(x) 	 Finite Step FormAx

	

Ay = z(x) 	 Ax 	 Numerical Approximation

1 7

The Differential Form is a continuous representation of how the function z(x)
changes when the difference between two values is infinitely small. Since
this approach is available only in the calculus, and not available practically, it
is necessary to make an approximation in terms of a finite difference, as
indicated by the D operator. Rearranging the Finite Step Form yields the
expression which is a solution via Numerical Approximation. The product
of the function z(x) with Dx yields an increment in Dy. Thus the step size is
given by D x, and in the limit of making this step size very small, a good
approximation to the underlying differential equation is achieved.

For completeness, an exact representation of this technique would be given by
Euler's method:

(3)

which is the basis for other numerical integration methods. Equation (3)
suggests that the next value of yn.f.i can be obtained by incrementing the
previous value yn by the product of the step size h and the derivative of the
function. This is identical in purpose to the previous Equation (2) by noting
the following:

(4)

(5)

(6)

By rearranging (4) and substituting according to (5) and (6), equations (3) and
(2) are shown to be identical, except for the differences in notation.

These methods are generally applicable to any system of first order differential
equations. However, the essential limitation of these numerical
approximation methods is a question of computing efficiency, which is a
strong function of the step size h. The smaller the step size becomes, the
more accurate the solution, but at the expense of additional calculations. The
step size is also not an arbitrary value and is instead related to the differential
equations at hand. Since it is possible to evaluate these equations at incorrect
step sizes (as will be shown later) it is imperative to develop an early
understanding of what a particular system will require in terms of step size.

There are a number of algorithms available which in some cases offer
enhanced efficiency while compromising any generality of application. It is a
more significant goal to maintain the broadest possible scope by using a

18

reliable, predictable algorithm which will allow us to more easily explore the
relationship of step size to the accuracy of the simulation.

The method of solution for the system of differential equations will be the
Runge-Kutta-Gill integration algorithm. This is a general purpose method,
having the advantage over other methods in that it is self-starting (it does not
require another algorithm to produce the initial values necessary to begin
approximating the solution of the model equations). One way to evaluate the
suitability of a general purpose algorithm is to look at the circumstances
under which it will break down, or become unsuitable for the problem at
hand. Until this is encountered, no other algorithms need be considered for
the purposes of this paper.

Runge-Kutta Integration

The details of the Runge-Kutta algorithm and its implementation in code
will be introduced as a prelude to the discussion of the Step Change
Algorithm. Although the algorithm is widely known and referenced, it will
be detailed here for the sake of completeness and also to serve as a platform
for introducing some of the parameters that are required for the Step Change
Algorithm. It will certainly not be the last attempt to discuss numerical
integration in more tractable terms. Of necessity, this discussion builds on the
content of the previous discussion.

From Press, the mechanism of a Runge-Kutta method is to

...propagate a solution over an interval by combining the information from
several Euler-style steps, and then using the information obtained to match a
Taylor series expansion up to some higher order.

This is concise, and perhaps sufficient, though the Runge-Kutta algorithm is
better described in geometric terms. Essentially, it breaks a single integration
interval h, or step size, into three trial calculations and a final calculation.
These estimates are made at the starting point (xn, yn), at the midpoint (xn +
h/2, yn+s), and at the end point (xn + h, yn+i). The subscript s is to reflect that a
number of evaluations are made at the midpoint. It begins by calculating an
initial slope k1 at the starting point, and uses this value to calculate a slope k2,
at the midpoint. This value for k2 is used to re-evaluate the initial estimate,
producing a new slope k3 at the midpoint. The result at this stage is used to
calculate the slope k4 at the endpoint. Each of the four slopes are averaged
with weights, and with this last evaluation, a full step from (xn, yn) to (Xn+i,

Yn+1) is made. The four slope calculations can be represented as follows:

19

As a 4th order Runge-Kutta method, this mechanism can be more simply
stated by noting that at each step, the derivative is evaluated four times: once
at the initial point, twice at trial midpoints, and once at a trial endpoint.
From these trial derivatives the final function value is calculated, as shown
below.

Since we will be working with a number of equations in our models, it will be
necessary to perform these calculations repetitive and to group the operations
efficiently. A sample segment in FORTRAN, which calculates the slopes k1
and k2_, is excerpted below:

20

1. 	 CALL MODEL_TR(X, Y, AA, BB)
2. DO21 i=1, NUMB
3. AK1(i) = Y(i)
4. T = T DT/2.0D0
5. DO 22 i = I, NUM B
6. x(i) = Z(i) + DT * AK1(i)/2.0D0
7. 22 	 CONTINUE
8. CALL MODEL_TR(X, Y, AA, BB)
9. DO 23 =
10. 	 AK2(i) = Y(i)

11. 	 23 	 CONTINUE

Figure 4 - Sample FORTRAN Runge-Kutta Integration

First the function is evaluated at the starting point. This effectively yields the
slope at that point. Next a loop is set up, over all of the equations present and
the result of the function evaluation is assigned to AK1. This is in accordance
with the algorithm outlined at the beginning of the discussion. The subscript
(i) suggests that we are indexing into an array of values. In this fashion, it is
possible to group similar operations together and thus apply the algorithm
stepwise over all of the equations, instead of computing each equation to
completion. The increment in the time T, in line 4., is just for reference and
does not enter into the calculations since they are dependent on the time step
DT (or h as before) alone. A loop is set up again and, in line 6., the initial
values of x are increment by a half step. These new x parameters are then
passed to the MODEL_TR subroutine for the function evaluation. The
procedure for the next, and successive slopes, is similar. A complete
implementation in C can be found in the Appendix.

The essence of what should be understood here is that we have characterized
and reduced the model equations to a set of slopes. This slope information is
a more meaningful measure, or metric. For example, the direction of an
automobile can be determined by the movement of the steering wheel but the
direction at any time can be more easily obtained by using a compass. The
compass is a better metric than the smaller, more frequent perturbations of
the steering wheel. In a similar fashion, the equation slopes can produce a
metric of what is generally going on with the model equations. Over these
metrics shall be a policy and it is at the level of policy that more abstract
quantities such as performance can be readily evaluated.

Adaptive Step Change Algorithm

The algorithm for adaptively changing the step size used during the
integration interval is found in Carnahan. It develops an expression for the
error over the estimates for the slope, which, after exceeding some predefined
limit, can be interpreted to mean that a change in step should be made. The
expression, which will be referred to as the ErrorRatio, is as follows:

21

ErrorRatio =

It is intended that this be calculated after each integration step. If the ratio
becomes large then the step size should be decreased. The suggested criteria
for this is on the order of a few hundredths and can be considered extremely
qualitative. The current criteria, which is established later on, is to keep the
ratio between 100 and 10-15. This domain was established because at steady-
state the denominator frequently evaluates to zero. In other situations, the
ErrorRatio evaluates to unity, when the slope estimates are particularly
good.

Though the additional computation to evaluate this ratio is small, it seems
desirable to limit the use of the slope monitoring procedure to something less
frequent than every step. This introduces another parameter,
CheckFrequency, which can also be considered to be application-dependent.

This method is further extended so that the slope expression can be used to
suggest when the step size should be increased. This of course is also
qualitative and therefore application dependent, requiring that parameters be
selected for both upper and lower bounds on the error. These will be called
ErrorUpLimit and ErrorLowLimit, respectively. If we consider under what
criteria the step is to be changed under the aforementioned constraints, the
following policy is developed:

DECREASE <-- Slope 	 ErrorUpLimit

PASS 	 <-- Slope < ErrorUpLimit
StepRequest 	 PASS 	 Slope > ErrorLowLimit

INCREASE <-- Slope <= ErrorLowLimit

Figure 5 - StepRequest Fundamentals

The meaning of INCREASE and DECREASE is obvious. The PASS is intended
to suggest that no change in step is required. The value of StepRequest would
be passed to another procedure which would accomplish the actual change in
step. This is done so as to permit the exploration of various policies on
changing the StepSize. The best policy to date is a buffering of the
StepRequests so that any changes in the StepSize are more strategic. This
policy can be depicted as follows:

22

DECREASE • Slope >= ErrorUpLimit

StepRequest

PASS ID— RequestStack IP-- Slope < ErrorUpLimit
PASS 11-- RequestStack 411--- Slope > ErrorLowLimit

RequestStack 0-- Slope <= ErrorLowLimit

RequestStack n_i 41—Slope <= ErrorLowLimit
INCREASE 0- RequestStack n 	 <= ErrorLowLimit

Figure 6 - StepRequest Strategy

When the slope is greater than or equal to the ErrorUpLimit, this is cause for
an immediate DECREASE. When a slope is between the ErrorUpLimit and
the ErrorLowLimit, a PASS is placed on the RequestStack. Since the overall
effect is to send a PASS along the chain to StepRequest, it is depicted as such
in Figure 7. It is important that PASS is placed on the RequestStack since this
could be part of some cyclic behavior as far as the number of StepRequests
that would be processed. For those slopes <= ErrorLowLimit, the path to
StepRequest is buffered by the RequestStack.

In order for a request for an INCREASE to get through StepRequest, it is
necessary that the entire RequestStack contain a DECREASE at each one of its
levels. In this way, any increase in step size must be ongoing for some period
of time, while any oscillation between PASS and INCREASE, or between
DECREASE and INCREASE, will be effectively ignored. There are two
parameters that affect the success of this procedure. They are the size of the
stack (StackSize) and the frequency at which the slopes are examined
(NextTest).

Once the decision (by the main program, via CheckFrequency) to attempt a
step change is achieved, there is a little more work to do. This will involve
various tests to assess what the impact on the step size should be, and will
introduce the routines that manage the RequestStack: PUSH_STACK and
TEST_STACK. The essentials of this process are detailed in the next figure:

23

evaluate the ErrorRatio for each equation and keep the largest value

If LARGEST_ERROR > ErrorUpLimit Then
Call PushStack(DECREASE)
Else If LARGEST ERROR < ErrorLowLimit Then

Calculate new step size
If the NEW_STEP_SIZE is valid Then

Call PushStack(INCREASE)
If TestStack(INCREASE) is TRUE Then

Change the StepSize
Else PASS

Else PASS

Else PASS

Figure 7 - Pseudo Code for Step Change

The first step is to evaluate the ErrorRatio for each of the equations present
in the model and collect the LARGEST_ERROR. If there were any interest in
determining which equation was the problem, then that code would be
implemented here. As mentioned previously, additional code within this
subroutine is not likely to impact performance.

With the LARGEST_ERROR in hand, it is then tested against the bounds for
the error. If a DECREASE is called for, that action is placed onto the
RequestStack. What is not explicit in Figure 7 is that the new decreased time
step has been calculated and tested for bounds within the smallest allowable
step size. This will be illustrated with the INCREASE portion, and is omitted
for the sake of keeping the Figure uncluttered. If no DECREASE is possible,
meaning that the minimum value for the step size had been achieved, no
further action will be taken. The call to PushStack is still necessary so that the
RequestStack is invalidated for any INCREASE until at least StackSize (or n)
number of INCREASEs have been made. This ensures that there will be no
cyclic INCREASing and DECREASing about the lower limit for the step size.

If no DECREASE is necessary, the LARGEST_ERROR is checked against the
ErrorLowLimit to see if an INCREASE is possible. First the new step size is
calculated and checked against the bounds for the step size. If this is valid,
then the INCREASE request is pushed onto the RequestStack via the
PushStack subroutine. Before the new step can be implemented, the contents
of the RequestStack must be evaluated to determine that a request to
INCREASE has been suggested for n or StackSize times. This function is

24

performed by TestStack, which will return a value of TRUE if the evaluation
is successful. When TRUE, the new step will be passed back to the simulation
engine.

In all other cases, the result will be to PASS, as suggested at the bottom of each
of the decision points. There are of course numerous opportunities
throughout this algorithm to collect meaningful metrics about the frequency
of DECREASES, PASSES, INCREASES, the ErrorRatio, and the actual step size.

In order to successfully implement this algorithm, a number of other
considerations (such as how to establish error criteria, when to increase or
decrease, and how to evaluate the performance of various strategies) need to
be explored.

Model Changes

Ideally, all of the variable components of a model are represented in the
parameters for the model. In this fashion, the changes to the actual equations
of a model are infrequent, and the focus is instead on managing the
parameters used in the simulation. With the use of the Adaptive Step
Algorithm, a second level of changes might arise in the course of simulation
and analysis: those parameters associated with the configuration. Figure 8
summarizes the scope and frequency of the changes that should be expected.

25

Ramifications of the Model

Model Changes Simulation
Configuration Model Parameters

Adjustments to meet observations

Figure 8 - Hierarchy of Model Changes

The initial decision on the Model has ramifications that extend to the
parameters used in the model. When adjustments are desired in order to
emulate additional experiments, these changes should be confined to the
parameter file. If performance monitors should indicate that the calculations
are inefficient or encountering problems, changes should be made in the
adaptive parameters, while keeping the model parameters constant. Finally,
when further extensions to the model are desired, the model equations
themselves will be changed. Each of the preceding parameter files should
then be re-run to verify that the new model substantially achieves the older
model results.

Translating the Model into DIFSIM

In order to prepare the model for simulation the equations must be translated
into FORTRAN using the variable and parameter notation described by
Diecke. Recalling equations (1) and (2), the following code segments reflects
the complete translation into the DIFSIM methodology. This example is for
the verification model, which is detailed in the Discussion section.

26

SUBROUTINE MODE L_TR(x,y,aa,b b)

c 0 1-01-90 	 Setting up simengine verification...

REAL° 8 X, AA, BB, Y
DIMENSION X(20, B B(2,4), Y(20), AA(2 0)

Y(1) = -AAj 1) • X(1)

Y(2) = AA(1) X(1) -A4(2)* X(2)

Analytical Model
Equations

(1) dA=-Ki A

(2) dB= Ki A - K2 B

RETURN
END

I FORTRAN Representation

this fragment is from VERIFY.FTN

Figure 9 - FORTRAN Representation of Verification Model

The differential quantities are contained in the Y array, while the current
value for each equation are contained in the X array. The equation
coefficients, or parameters are kept in array AA. The model is kept as a
separate subroutine and linked into the main program. This makes efficient
use of disk storage space and also focuses any changes in the code onto one
file. This is also convenient for documenting various models. The
declaration of the variable types and the storage definitions (REAL and
DIMENSION) are necessary because the subroutine is external to the main
program. For anyone familiar with FORTRAN, the translation from
analytical to FORTRAN equations is clearly straightforward.

It is also possible to substitute more descriptive labels for the equations and
parameter coefficients, as is done with the C language (program SimEngine)
version.

27

C Representation/* <C>oefficients */
#define K1 	 param_set.ec[0].value
#define K2 	 param_set.ec[1].value

/* <E>quations
#define Compt_A 	 0
#define Compt_B 	 1

extern double x[MaxEqns];
extern double y[MaxEqns];
extern struct run_param param_set;

void Model_TR (void)

y[Compt_A] = - K1 * x[Compt_A I;
y[Compt_B] = 	 K1 * x[Compt_A] - K2 * x[Compt_B];

Figure 10 - C Representation of Verification Model

This is a much more useful approach when the number of equations (and
their relationships) are both large and complex. Details of the model for
calcium release, in either programming language, can be found in the
Appendix.

Analysis

The development of tools to aid analysis is essential because management of
and insight into the simulation are opposing policies. In management, the
objective is to keep the output data "manageable" -- how much raw data is
enough? For insight, it is necessary instead to determine the "right"
parameter that characterizes the simulation. The difficulty is that it is not
known initially what or where the "right" parameter is.

The emphasis on the idea of a tool, rather than a procedure, is that a tool has
an obvious use and a procedure always seems open to debate and
modification. In this sense, one would always know what a hammer will do
but can still have plenty of debate as to when a hammer should be used in the
course of a building project. At the beginning of this project, appropriate
tools, and an environment in which to develop them, were not available.
More convenient tools did exist on platforms other than the compute
platform, although the level of integration (in this case the effective data
transfer speed) was poor.

28

Load Data Modem

Copy To Model
Analysis Procedure]

Do Analysis

Plotting Make Export
Files

Export Data Modem

The following Figure 11 summarizes the procedure used to analyze the
results of the simulation run and to generate the parameter files for
additional runs. This procedure is convenient when the run duration is
longer than one might be willing to wait for. It also allows for remote access
via a PC, which is more accommodating for a graduate student's schedule and
working habits.

Figure 11 - Analysis Procedure

The ability to access a system via a modem or some other network is actually
an example of a distributed processing environment where various compute
platforms and facilities are optimized for a particular task. For example, a
CRAY is very efficient at numerical calculations but very poor at display
graphics; in fact it has no direct graphics facility. A Macintosh is handy for
displaying graphics but is a terribly poor compute platform. More
sophisticated modeling endeavors should actually expect to use a variety of
compute and analysis resources, which would be available both locally and
remotely.

Analysis

In any event, the conclusion of a simulation often results in a large file of
data. At the initial phase of a modeling project, a good deal of flexibility is
desired because it may not yet be apparent as to what the more interesting
aspect of the results will be, or how best to analyze them. Toward the end of
the simulation, when the analysis procedures are well known, the emphasis

29

will be on production -- the rapid and automated analysis of additional
experiments. Towards this goal, a number of additional programs were
developed in order to extract appropriate data from the simulation results
and prep in for analysis on a remote platform.

The first of these is SPAWN, which takes the .data file and creates three other
files: .time, .plot, and .stat. The .time file has only the simulation time and
the time stamp for when that particular set of data was written out to the file.
This file permits analysis of where the simulation is spending its time, as
revealed in the interval between the data reports. For a constant step size run
each of these intervals should be the same. Using a constant step run can
reveal if the compute process is getting enough compute time. This is useful
with multi-user and multi-tasking machine.

The .plot file is the primary form for utilizing the simulation data. The .data
file contains a header and a summary of the parameter file on other run
parameters and documentation. This is intended to put together all the
useful information about the run, so that it may be reconstructed at a later
date. The .plot file is the subset of the .data file without this header file.

The .stat file is a further subset of the .piot file in that it contains the
Adaptive parameter values for each simulation time step. This is useful to
track what the SlopeError is doing as well as track when increases and
decreases in step are occurring during the simulation. Any of these can
reveal additional transients in the simulation, as well as establish the onset
and duration of steady-state, in terms of what the Adaptive algorithm needs
to respond to. On the basis of these quantities, changes in the values of the
simulation parameter would be made.

This program has been recently redeveloped for UNIX systems and is
designed to be operated via command-line parameters and uses stdin and
stdout. This makes the procedure more automated and precise, and the use
of the standard I/O locations allows the command to pass information to
another command (perhaps to do some analysis) without the use of
intermediate files.

The common form for the results is to add the compartments which contain
45Ca together. It is also useful to modify these values, prior to summation, by
multiplying by the respective compartment volume. With this result, the
data can be fitted and compared directly with the experimental results which
have been analyzed in similar fashion. There is a program CRUNCH which
does this calculation. The calculation is also done with a Spreadsheet
program and has the added benefit of an integrated plotting facility through
which to view the data. The .plot file is loaded into a spreadsheet template
which has the appropriate formulas set up. The flexibility of the spreadsheet,
tempered by the additional time it takes to transfer and load the file, is an

30

example of the initial phase analysis. A spreadsheet is not suitable for
production analysis and manipulation but is amenable for seat-of-the-pants
inquiry and graphical presentation.

Determining the Rate of Release

The typical analysis of the total Calcium is the rate or arithmetic mean, given
by the following expression:

Arithmetic Mean

This is evaluated within the CRUNCH program, the spreadsheet templates,
and more recently with an AWK program get rate. This last program is an
example of the ongoing automation of the analysis procedures, where the
results of the SPAWN program can be piped directly to the get rate program,
without the use of an intermediate file. The application of each of these
programs results in a much smaller data file, lessening the time it takes to
transfer the file for the final analysis and presentation.

Exponential Curve Fitting

Curves for the Isotope exchange study were generated by fitting the results of
the AM calculation to the following equation:

The non-linear regression was calculated by Graph Pad and the parameters
were fit to an error < 0.1%. The results of the curve fit yield parameters for
the slope and time constant for each exponential term. The half-time is also
reported and these values are present in the Discussion section.

31

Discussion

The discussion of the results of the various methods delineates two distinct
areas. The first section addresses the overall performance of the adaptive step
change algorithm in terms of ease of use, relative increases in computational
speed and the impact on the accuracy of the simulation. The second section
introduces the experiments that both validate and explore the use of the
simulation engine and associated analysis tools.

Performance

Run Times

A number of experiments have been collected that impart some interesting
insights into the computational challenges of the current model. No one
result was verified on all versions of software or hardware used in the course
of this project and various results should not be directly compared. Given
that the initial run times were on the order of days, and current run times are
on the order of minutes, these magnitudes of difference make direct
comparison impossible. However, the overall trend of the results will be the
same for the successive pairings of hardware and software. Where possible,
the results are stated in terms of constant and adaptive step, for the same
combination of software and hardware. Any other combination of hardware
and software is expected to have a linear relation to the initial combination.

Stiffness of Model Equations

The largest single contributor to the computational complexity has been the
stiffness of the model equations. A set of differential equations is considered
stiff when the components of the equations differ by a few orders of
magnitude. This effect is not apparent when a constant step size is used
because the relative error is not considered. The accuracy does suffer and this
is illustrated when runs with successively smaller step sizes are compared.
The following experiment utilized the same parameter and adaptive step
change values, varying only the EGTA concentration. Each of the runs began
at equilibrium values for the particular EGTA concentration and was washing
out 45Ca.

32

Actual Run Times for e-7 Free Ca

Run Time (days)

EGTA (mM)

Figure 12 - Actual Run Times for e-7 Free Ca

The result for the 10-7 free calcium indicates that the model equations are
sensitive to the EGTA concentration. While the experimental conditions are
more often on the order of 0.1 to 1 mM EGTA, the current free Ca
concentrations of 10-10 only exacerbates this sensitivity.

Automatic Step Size Adjustment

Overall Gain in Compute Efficiency

Determining the optimum step-size for a particular model is often through
trial and error. Typically, a series of runs are attempted, with varying step-
size, and some estimate is made as to the accuracy and duration each value of
step-size produces. The Adaptive method obviates the need for such
exploratory simulations, since it will automatically select the optimum step,
but must also consider this in terms of the minimum step size desirable.
Because of the nature of numerical integration, which is very predictable in
terms of its computational performance, it is very often easier to determine
the step-size at which the simulation will take too long to run. This worst
case scenario, where the step-size is so small that the simulation takes too
long, is called the StepLimit and is a parameter used in the Adaptive
algorithm. The choice of this parameter affects the overall efficiency for the
algorithm.

33

Effect of Step Limit on Run Time

Step Limit (sec)

Figure 13 - Effect of StepLimit on Run Time

In Figure 13, the result of the runs in terms of the duration versus the
StepLimit is illustrated. The runs varied in duration from about 5 hours to
153 hours. The range of values for the StepLimit were selected to bracket a
typical value for the step-size of 10-4, used by Diecke, in studies of two-
compartment models for calcium release. All values for the free calcium at
the end of the run were identical to 14 decimal places. The figure suggests
that moving from 10-6 to 10-4 in StepLimit represents a significant savings in
run time. Furthermore, increasing the StepLimit to 10-3 has no significant
effect on this system. From this, a maximum StepLimit of 10-3, and a
minimum StepLimit of 10-5 were selected for the all successive runs in the
ensuing studies.

The rationale for this effect is that a step size of 10-5 is a point beyond which
the simulation will consume more than a reasonable amount of time.
Clearly, the arbitrary selection of step size as a means of insuring precision for
the calculation is not useful. Since some 2400 seconds of simulated time was
experienced for each run, without any significant change in the free calcium
(details follow in the next sections), the calculated results for the calcium
release model are not sensitive to a particular StepLimit. If an arbitrary
assignment should be made, then let it arbitrarily be the one that insures the
greatest savings in Run Time.

34

Another important parameter for the Adaptive algorithm is the size of the
RequestStack. This parameter controls a mechanism which buffers incoming
requests for an increase in step while allowing requests for a decrease in step
to be immediately acted on. It has a more subtle effect on the overall
efficiency of the run, although not as dramatic as the StepLimit parameter.
Exploring this RequestStack parameter is straightforward. First, collect a
control simulation, without using the RequestStack. Then generate some
variations, taking care to only vary the StackSize. The following Figure
reveals the effect of the size of the RequestStack buffer.

Effect of Stack Size on Run Time

Actual Value is 41877
...about 5x greater duration than
a non-zero StackSize

Stack Size

Figure 14 - Effect of Stack Size on Run Time

The scale is somewhat exaggerated in order to highlight the the slight
differences between the set of parameters (3, 5, 10). The difference between
using the RequestStack and not using such a buffering mechanism is more
dramatic and on the order of about one fifth the duration of the control run.
Frequently, it has been observed that the adjustments to the RequestStack can
oscillate around a given ErrorRatio, in terms of a rapid succession of
increases followed by decreases, etc. The RequestStack mechanism
circumvents this phenomenon by insuring that any request for an increase in
RequestStack is motivated by a general trend. Figure 15 illustrates how the
StepSize varies over the course of the simulation, in response to the
variations in the size of the RequestStack.

35

All three STK curves overlap

b63 STK:5

b64 STK:10

b65 STK:3

b66 No Step

0 	 250 	 500 	 750 	 1000 	 1 250

Time (sec)

Figure 15 - StepSize as a Function of StackSize

Basically, we find that the same pattern of step size adjustment is present for
each of the StackSize variants; that is, all three STK curves overlap for the
duration of the run. Thus, it will be necessary to explore some other metrics
before a conclusion can be drawn as to the effectiveness of each StackSize
variant; this will be covered in later sections. The curve revealing how the
StepSize is varying is more important now, since this is the observational
foundation underlying the Adaptive step-size approach.

In Figure 15 there are four distinct phases. In the first 50 seconds (0->50), there
is a rapid increase in step size representing the initial accommodation to the
low inertia of the system. This rapid initial increase in step is obscured
somewhat by the scale of the graph, and it should be noted that all four curves
start at 10-4 StepSize. Within the first 50 seconds of the simulation the three
STK curves rise form 1x10-4 to 4x10-4- and then drop to 1.3x10-4.

36

In the next 50 seconds (50->100), or phase two, system inertia increases and
the step size drops suddenly to about 1.3x10-4. This can be characterized as a
response to the acceleration of the flux. At about 120 seconds, phase three, the
step has increased to a constant level for the next 400 seconds. This represents
the optimum step for the particular simulation (as defined by the StepChange
parameters), once the initial flux velocities have become constant. In the
fourth phase, at about 550 simulated seconds, the step size begins a constant
linear increase, until the simulation ends. This can be characterized as the
steady-state response, or equilibrium, for the system.

With regard to any possible limit on the change in the step size that is related
by some function to the step change parameters, the slope of the fourth phase
is clearly under no such constraint. Compared with the much steeper slope of
the second phase, it suggests that the slope in the fourth phase may be
reflective of the approach to steady state. This offers a significant check as to
the planned duration of the simulation, to insure that all of the dynamic
phenomena have been examined.

Finally, the overall difference between the step change algorithm and the
constant step suggests that a vast improvement in the overall run time can be
achieved, without sacrificing accuracy. This is on the order of 76%, for this
system.

How Does Precision Compare Between Adaptive and Non -adaptive Methods

There are differences between simulations performed with Adaptive step-size
control and simulations with constant step-size. The issue is whether or not
these differences are significant. To make this evaluation it would be
necessary to compare some range of bulk properties, such as the Total 45Ca (as
is measured experimentally), and the smallest quantity measured in the
model, which would be 45Ca in the first compartment. This will allow some
determination of how any fit of experimental data would be affected, and
whether or not the model can accurately track the smallest values of its
components.

37

30002000

Adaptive vs Constant Step-Size Tot Ca45 % Difference

Ca45 in Compt 1 % Difference

4.00e-4 -

3.00e-4

2.00e-4

1.00e-4

0.00e+0
1 000

Time (sec)

Figure 16 - Adaptive vs. Constant Step Size

Data from outfa (const)
and outf5b (adptv)

This Figure summarizes the differences between Adaptive and non-adaptive
runs and is the difference between the values, divided by the average of each
pair of values, in percent. The overall, worst-case error is on the order of
4x10-4% and, in terms of the Total 45Ca, is certainly well within any
experimental error. In terms of the smallest quantity tracked by the
simulation, the error is comparable in magnitude but has a significantly
different time-course. At the end of the simulation run, the error becomes
very small, suggesting that steady-state for the model can be achieved through
multiple pathways.

The difference between the two curves suggests that the smaller component is
more sensitive than the bulk 45Ca, and is reasonable given that there are four
orders of magnitude difference in the values. The appearance of this error,
relative to simulation time, coincides with the third phase of Figure 15 and
indicates the the rapid increases in step size are over-estimating the 45Ca in
the first compartment. Apparently, this over-estimate is absorbed by the
model, as the differences again begin to even out. In the ending phase of the
simulation, as the StepSize is consistently increased, comparable levels of
over-estimation are encountered. While the curves themselves are dramatic
it should not be overlooked that the magnitudes of difference, in percent, are
very small. The curves lend greater insight into the response of the Adaptive

38

Ratio

1000 2000 3000

step-size control algorithm more than they reveal any impact on the result of
the simulation.

The ability of the model to absorb these small changes can be made more
prominent if the ratio of the two error curves is plotted, as in the following
Figure.

Ratio of Error : Tot 45Ca / 45Ca in Compartment 1

Time (sec)

Figure 17- Ratio of Error : Tot 45Ca - 45Ca Compartment I

Note that the curve does not begin at the origin, where the error between
Adaptive and Constant step control schemes is zero, but at the first report
interval at 60 seconds. The ratio is small initially and then grows as the
smaller values of Total 45Ca are under-estimated. It is unlikely that the actual
value is in error because the differences are within the precision for the
numbers used and error due to numerical round-off would not be present. It
is more likely that the differences are attributable to the increased step-size for
the Adaptive run. This would suggest that the 1st compartment is changing
more rapidly than the Total 45Ca, which is supported by experiment (Stout).
This rapidly changing component is not being tracked efficiently by the
Adaptive algorithm and perhaps some changes in the StepChange parameters
should be explored. The actual error; however, does not support that
suggestion.

39

Experiments

Validation of the Simulation Engine

The most reliable approach to verification of a simulation is to evaluate a
well understood model and compare its results to that provided by the
simulation. In this, we must conduct a series of tests with the model in order
to build up confidence in its predictive power. An even better choice is to use
a model that can be solved analytically so that a numerical comparison can be
made, and with this reduce the number of iterations required to achieve
confidence. Such a model was borrowed from Randell, and simulates a two-
compartment leaky tank.

The parameters used for this model are of no particular consequence since the
objective is a explore a model which has an analytical solution and can also be
evaluated numerically. Randell's software is in BASIC and should not be
considered useful for a more computationally intensive simulation. It was
intended as a teaching exercise in homeostatic physiology.

What follows is the analytical solution of the model, its representation in the
current simulation environment, and a brief analysis of the results.

Analytical Solution

Essentially, this example model accounts for accumulation and clearance of
some substance according to first order kinetics. This model can be
considered analogous to a two-compartment leaky tank, as diagrammed
below:

4 0

Compartment A

1

Compartment B

K2

Figure 18 - Two-compartment Leaky Tank Model

Here, compartment A is charged with some amount of material which flows
into compartment B, where the material disappears. The parameter K1 is for
the rate of exchange between compartments A and B, and the parameter K2 is
for the rate of disappearance. All exchanges are one way, as indicated.

The leaky tank is a suitable model for compartmental analysis of various
species in a physiologic system (see Murthy), and is suitable as an analogy for
absorption, metabolism and loss of the components.

The equations for the net rate of change are as follows:

(1) dA = -K.1 A

(2) dB = Ki A - K2 B

Analytically, we find for equation (1), by inspection, that

(3) 	 A = e- ki t

Substituting (3) into (2) and rearranging, we get

41

(4)

It is also easy to determine from (4) that there are two partial solutions

(5)

(6)

Combining the results found in (5) and (6) gives a total solution of

(7)

or,

(8)

This example model was selected for its simplicity so as to provide an exact
analytical solution with which to verify the model. For an introduction into
more formal mathematical representations of models, see Casti. As a note, it
is possible to derive an analytical solution to a three-compartment model
(see Jacobs) although that system is not applicable here.

The result of this verification is presented in Figure 19, and is in good
agreement with that found by Randell. For this particular set of diffusion
parameters, there is accumulation in the second compartment which is
maximal at 3 simulated seconds.

4 2

Leaky Tank Model

Time

Figure 19 - Leaky Tank Results

To review the implementation of these equations, see Figures 9 and 10. The
CPU time needed to evaluate this model is generally less than one minute,
although a typical PC could take about five minutes. Reviewing the
numerical results yields errors on the order of 10-7 to 10-10 percent when
compared with the analytical values. This is certainly acceptable for
compartmental modeling, and suggests that the simulation engine is
operating as expected.

Isotope Exchange

The first extension to the two-compartment model by Diecke is the additional
equations for 45Ca. Taking these equations into consideration precipitated the
need for additional compute resources. As the number of equations in a
given model increases, so goes the run duration for the simulation (Cooney).
The addition of 45Ca introduced four more equations, for a total of ten, while
the run times went from one day to five days on an IBM PC with an
accelerator card. Moving from the IBM PC to the HPA900 reduced the run
duration to about two hours. The application of the adaptive algorithm
reduced the run durations to between 6 and 150 minutes, depending on how
close the system was to equilibrium.

43

Reservoir
Ca45

Ca40

Ca45

Ca40

The basic run procedure for this experiment is to generate estimates for the
Ca/EGTA equilibrium and simulate these parameters until they are at steady-
state. With the calcium distributed as 50% Ca and 50% 45Ca, the labeled
species are removed from the reservoir and replaced with equal amount of
the unlabeled species. This keeps the overall concentration the same so that
an isotope exchange or 45Ca washout will take place. A wide range of
conditions will be explored to assess how the calcium and EGTA
concentration might affect the washout rates. The following Figure 20
summarizes the model.

Model For Isotope Exchange

50% Ca40
50% Ca45

50% Ca40
50% Ca45

100% Ca40
100% Ca40-EGTA

EGTA
0% Ca45
0% Ca45-EGTA

EGTA

Ca45-EGTA

•Ca40-EGTA

Extracellular
Space

EGTA

Ca45-EGTA

Ca40-EGTA

Cytoplasm
Sarcoplasrnic
Reticulum

Figure 20 - Model For Isotope Exchange

The third compartment is shaded to indicate that it is not considered in this
part of the study and illustrates that two more equations will need to be added
in order to have a three-compartment model for 45Ca washout. The
horizontal arrows indicate diffusion between compartments while the
vertical arrows indicate a reaction within a compartment. The EGTA because
of its size does not cross into the third compartment.

The Total 45Ca remaining is calculated and the form of the washout curve is a
double exponential decay, easily fitted by computer to reveal the rate
constants for each of the components. These rate constants are much more

44

revealing than the washout curves (omitted), as the following Figure 21
reveals.

Half Times for 1st Exponential Coefficient

EGTA (mMole)

Figure 21 - Half-times for First Exponential Term

This set of curves depicts the half times for first washout component, fitted
using GraphPad. The range of calcium explored is higher than that used
during the experiment (typically 10-7 and recently 10-10) but is still useful in
illustrating the relationship between Ca, EGTA, and washout rates.

The primary observation of Figure 22 is that calcium and EGTA have a
distinctly non-linear relationship. While the calcium levels that yield the
more unusual behavior are not used experimentally, it is not unlikely that a
transient will generate some part of this phenomenon. With the e-4 B (Ca
10-4) curve at low EGTA, the washout has over-run the buffer system; while
at high EGTA concentrations the buffering has linearized the washout
differences attributable to calcium concentration. The e-6 B curve has a
different effect. While this curve seems to be linearly related to the EGTA
concentration, the washout half times are increasing slightly at low EGTA.
This suggests that a low concentration of buffer and a low free calcium level
will result in an underestimation of washout rate. Similar results are
obtained for the second exponential component.

4 5

Half Times for 2nd Exponential Coefficient

e-6 D

e-5 D

e-4 D

EGTA (mMole)

Figure 22 - Half-times for Second Exponential Term

This set of curves has the same non-linear behavior as Figure 21 and is in
better agreement with expectations. The EGTA buffer system is acknowledged
to be exhibit linear performance at low EGTA (0.1mM to 1.-mM) and low
calcium (10-7). While the non-linearity at higher calcium and EGTA is
present as before, the e-6 D curve is flat over the major range of EGTA. The
left hand part of the curve still suggests that calcium is capable of
overwhelming the buffer system and underestimating the release half-time.

This may be a critical point and additional runs will need to be considered
before a conclusion is drawn. This is because any significant calcium release
is certainly capable of an order of magnitude jump in concentration. Even if
the jump is from 10-8 to 10-7, as opposed to 10-6 to 10-5, there will certainly be
an underestimation of the washout half time. Whether or not this is
significant experimentally, when the half times differ by 5 or 10 seconds, the
calcium washout rate will appear to be faster at low calcium, low EGTA
concentrations.

Release of Calcium from the SR

Before the calcium that participates in Calcium Release can be distributed
among the components of some future model, it is important to quantify that
the quantity of calcium participating in release can be measured with current
experimental techniques. This simulation experiment will explore a number

4 6

of release rates to determine what effect on the total calcium can be perceived.
Since the present model does not include a mechanism to cause activation of
the release phase, the simulation will be re-started at 1200 simulated seconds
with a new parameter for diffusion from the third compartment, and will
run for another 1200 seconds.

Rate Change Study

outf_5b

AM Total 1x

AM Total 2x
AM Total 5x

AM Total 10x

Time (AM sec)
(Arithmetic Mean based on 60 Seconds)

Figure 23 - Rate Change Study AM Total 45Ca

Each of the curves in Figure 23 was developed by collecting all of the 45C a
components and calculating the rate or arithmetic mean as described in the
Methods. To insure that the inflections in the release variants were not due
to the restarting of the simulations, a control run using the original
parameter values was included with the variants. The results of the control
run were identical with the initial run. The initial run is the dotted line on
the left and the continuation of that curve is indicated as solid where the
control run is present.

The two outstanding features of Figure 23 are the levels at which the calcium
release stabilizes and the slope of the rise from the onset of the new rate, until
the final level is achieved. These features can be accentuated if the curves are
normalized with respect to the baseline, as in the following Figure 24.

47

Rate Change Study
Normalized Curves

Outf 5b Normalized

1x Normalized

2x Normalized
5x Normalized

10x Normalized

- - - -
Time (AM sec)

(Arithmetic Mean based on 60 Seconds)

Figure 24 - Rate Change Study : AM Total 45Ca Normalized

Consider the slopes of the changes in each of the variants. For the 2x variant
the slope is noticeably more gradual than the variant at 10x. By extrapolating
reference lines perpendicular to the baseline and intersecting the onset of the
plateau it can be determined that the 10x variant actually reaches its plateau
before the 2x run is halfway to its own plateau. This suggests that a large
release of calcium is more quickly absorbed by the model than a smaller
release. In terms of a physiologic calcium release this would suggest that a
large release of short duration (impulse) would be rapidly equilibrated
(absorbed) by the tissue. This would result in slightly elevated levels of 45Ca
over a longer period of time. Following this reasoning, a smaller release,
which equilibrates more slowly, would probably result in a small transient
increase and a lower equilibration level in comparison with a large release.

Before addressing the relationship between the plateau values of the variants
it would be useful to point out another issue that arises from this type of
analysis: the interval at which the arithmetic mean is calculated. This relates
to the earlier issue of how many data samples are appropriate. Figure 25
presents some of the differences between data sampling at 10 seconds and 60
seconds and the effect this has on the final determination of the relationship
between rate variants and their final plateaus.

48

	

Run 	 lx 'kW, 	 2x AN AM 	 5x AM 	 10x AM
	rs_5d	 1.77090E-04 3.14960E-04 6.57700E-04 1.18674E-03

	

rs 5b 	 1.06272E-03 1.88083E-03 3.94653E-03 7.12051E-03

Absolute Difference 	 0.00088563 	 0.00156587 	 0.00328883 	 0.00593377
Average % 	 142.9% 	 142.6% 	 142.9% 	 142.9%

Normalized Results
	rs_5d:AM basel0	 1 1.778530691 	 3.71393077 6.701338303

	

rs_5b:AM base 60 	 1 1.769826483 	 3.71361224 6.700269121
	Average	 1.0 	 1.8 	 3.7 	 6.7

Figure 25 - Arithmetic Mean Summary

In the top portion of Figure 25 are the final values for each of the variants
obtained by calculating the arithmetic mean on the Total 45Ca remaining in
the model. The middle box calculates the absolute difference between the 10
second and 60 second basis and relates it as the average of of each of the
percent errors for each variant. The net result of this is that the runs, despite
their sampling interval, are linearly related. The bottom portion shows that
when the curves are normalized, the linear relationship is removed and the
results are in agreement. The conclusion from this is that normalizing the
curves facilitates comparison with other data sets, and is independent of the
sampling interval used to calculate the rate (arithmetic mean).

The increase in the rate constant does not have a corresponding increase in
the magnitude of the maximal change in rate but they are linearly related as
Figure 26 reveals.

49

Rate Chanae Study : Results

Maximum Rate

y 	 0.48061 + 0.62653x RA2 = 0.999

Release Increment

Figure 26 - Rate Change Study Results

It seems likely that this represents the response of the buffer to the release of
calcium rather than that of the compartment. In simple systems (those
without a buffer reaction) changes in rate resulting from concentration
differences are linearly related. It would be interesting to see what
relationships this curve might have for varying free [Ca] and [EGTA],
considering the behavior of the buffer system previously discussed in Figures
21 and 22.

Figure 27 summarizes the impact of adaptive vs constant step-size when
considering the Total 45Ca that would be available for experimental
verification. This will help determine if the adaptive algorithm has the
potential to introduce erroneous results.

50

	

Run 	 ix Tot Ca45 2x Tot Ca45 5x Tot Ca45 10x Tot Ca45

	

rs_5d 	 6.15184E-03 6.14278E-03 6.11282E-03 	 6.06391E-031

	

rs_5b 	 6.08467E-03 6.13889E-03 6.10478E-03 	 6.04951E-03

Absolute Difference 	 6.71728E-05 3.89214E-06 8.04362E-06 	 1.43951E-0f.
Average % 	 1.10% 	 0.06% 	 0.13% 	 0.24%

	Step Size	 1.2E-02 	 9.5E-04 	 1.4E-02 	 8.9E-03
	Log Difference	 2.08 	 0.98 	 2.15 	 1.95

Normalized Results
	rs_5d:AM base10	 1 	 0.9985 	 0.9937 	 0.9857

	

rs_5b:AM base 60 	 1 	 1.0089 	 1.0033 	 0.9942
	Average	 1 . 0	 1 . 0	 1 . 0	 1 . 0

Figure 27 - Total 45Ca Summary

The top section contains the total 45Ca at approximately 1350 seconds. There
is a five second difference between the rs_5b (1350 sec) and rs_5(1 (1355 sec)
samples and this is due to the difference in output intervals for each of the
simulations. The intent is not to measure the absolute differences, which
were presented earlier, but to evaluate the impact of these slight differences
on the results as a whole.

The middle section calculated the differences between the actual adaptive
step-size, and the constant 10-4 step-size of the non-adapting run. There does
not appear to be a conclusive relationship between the Average % Error and
the running step-size. The averages ending up at approximately 1.0 suggests
that relying simply on the absolute value of 45Ca is not sufficient to
distinguish differences within the smaller components (volume based) of the
model. Only by examining the relative rates of change can the effects of the
various components be delineated.

The 1.10% difference in the 1xTot 45Ca column is probably due to error
introduced by the adaptive step algorithm. Adaptive step is more suitable
when there is something to adjust for, in terms of error. When the system
approaches steady-state, the step-size increases more than is accurate for the
particular calculation. This will tend to under-estimate the more accurate
value, which is established by running at a constant step, as can be inferred
from the table. The adaptive method should be considered more appropriate
for simulations in which some significant transient is expected to occur
which would give the adaptive algorithm something to respond to. Another
advantage in using adaptive step-size control is that rapid decreases in step
size will be made even if the initial step is inaccurate. The constant step-size
result will not reveal when the step-size is inappropriate, except in the case
where the step is so large that the calculation overflows. This makes the

51

adaptive approach more attractive, especially in determining the optimum
step size, as well as the overall computation efficiency. The arbitrary selection
of step-size is likely to be conservative and would result in a smaller-than-
needed step-size. While the overall impact on computational precision is
small and subjective, the effect on the total duration of the simulation run
can be quite dramatic and undesirable.

52

Conclusions

Adaptive StepSize Control

The accuracy of the Adaptive Algorithm is good, at approximately 10-4% of
comparable runs using constant step-size. The additional overhead to
implement the Adaptive control is minimal, compared with traditional step
size control algorithms which typically make a step-size correction at each
calculation interval. (See Press for examples of these methods.) The
flexibility in sizing the response parameters, and the availability of
performance monitors, should allow the Adaptive method to be extended to
other model systems. The Algorithms' intended function is to easily handle
non-linear models, or models with pronounced transient events, and it
should be quite versatile in handling these more difficult calculations.

The bottom line for the performance of the Algorithm, questions of precision
notwithstanding, is in how much it improves the overall duration of the
run. The following Figure summarizes the performance increases for the
most current generation of Computer platforms considered in this study.

C P U 	 Constant StepSize 	 Adaptive StepSize

(minutes) 	 (minutes)
SG320VGX 	 58 	 12

HP9000 	 119 	 25

Figure 28 - CPU Performance Increase, Adaptive vs Constant StepSize

The parameters used were outf5a and outf5b, for 12 equations, 0.1mM EGTA,
45Ca Washout. The simulation results were exact, which is some testimony
to the better standardization of the C programming language. The run
durations reveal that an improvement of about 5-fold can be expected and it
would appear that it is independent of the CPU platform. The SGI, a more
recent product, is two times faster than the HP9000, for this application. The
suggestion that the results only seem independent of hardware is because
both of these machines are of a much higher performance computationally
than those used for the bulk of this study. The improvements in
performance between a PC and a minicomputer were much more dramatic
because a PC is not intended for this type of intensive computing. It is
suggested, however, that any extension of the adaptive step-size method be
limited to a higher performance compute platform since this would be more
in line with the goal of being able to achieve some type of parameter study.

5 3

Modeling Environment

Overall, the simulation environment has alleviated most of the problems
originally encountered. The management of multiple models,
straightforward generation of model parameters, and facility to batch and
schedule a series of runs, are clear steps towards streamlining the simulation
process and improving its reliability. The generation and maintenance of the
parameter sets is still cumbersome, and really needs an application program
to take care of the details for generating the files.

Part of the motivation to move the simulation engine over to a UNIX
compute platform was to take advantage of the additional utilities for data
reduction that are available. The most useful tool is called AWK (Aho), and
the ongoing plan is to convert all of the data extraction and analysis
procedures to UNIX scripts and AWK programs. UNIX is a programming
language in its own right, and its additional tools would go a long way
towards completing the automation of the simulation process.

At that point when the new utilities are developed, and a better user interface
for the generation of the parameters is available, the facility for initiating a
comprehensive parameter study will be achieved. The ongoing benefit in
working towards this goal is that in the development of these additional tools
a more consistent framework for doing large-scale simulations is achieved,
regardless of the application area.

Effectiveness of the 3 Compartment Model

Clearly the changes in calcium can be tracked and the contribution of the SR
quantified. Whether or not this can be achieved experimentally is not clear.
The apparent ability of the model to buffer the transient calcium release
clearly suggests that the phenomenon will not be characterized with current
experimental procedures. It remains a challenge to physiologically validate
the predictions for the Sarcoplasmic Reticulum, obtained with the current
model. Until then, work can progress by modeling the other significant
components of the SR to see what their likely contribution would be, in
anticipation of improved experimental techniques that might validate those
new findings.

There are a number of opportunities for future work. Some of the results
need to be extended with additional conditions in order to more completely
characterize the effect of the EGTA buffer system on calcium release. Once the
time duration of release for the SR has been established, it would be
interesting to develop a kinetic model of the SR to see if initial parameters for
the calcium pump and calcium sequestering can be developed based on the
number of those components. To provide more insight into the tissue
experiments, it would be challenging to quantify the variability of the 1st

5 4

compartment (presently attributed to physical differences in the connective
tissue) to see if it would account for the variability in those results.

55

Appendix

References

Abelson, H., Eisenberg, M., Halfant, M., Katenelson, J., Sacks, E., Sussman, G.J.,
Wisdom, J., Yip, K. : Intelligence In Scientific Computing, Communications of the
ACM: (1989) May Volume 32 Number 5

Aho, A.V., Kernighan, B.W., Weinberger, P.J. : The AWK Programming Language
Addison-Wesley Publishing Company : Chapter 6 (1988)

Allen, J.C., Seidel, C.L. : The Regulation of Calcium in Smooth Muscle, appearing in
"Sarcoplasmic Reticulum in Muscle Physiology Volume II", Entman, M.L., Van
Winkle, W.B. Editors, CRC Press Inc. (1985)

Biosym Technologies : Discover 2.6 Reference Manual

Bond, M., Kitazawa, T., Somlyo, A.P., Somlyo, A.V. : Release and Recycling of
Calcium by the Sarcoplasmic Reticulum in Guninea-Pig Portal Vein Smooth
Muscle, Journal of Physiology: (1984), 355, pp 677-695

Carnahan, B., Luther, H.A., Wilkies, J.O. : Applied Numerical Methods.
Addison-Wesley : 361-366 (1968)

Casti, J.L. : Alternate Realities - Mathematical Models of Nature and Man
John Wiley & Sons, Inc.: 1-44, 466-474 (1989)

Cooney, D.O., Biomedical Engineering Principles : An Introduction to Fluid, Heat,
and Mass Transport Processes, Marcel Dekker, Inc. (1976)

Diecke, F.P.J., Gardner, J., Hausser, R. : Mathematical Modeling of the Simultaneous
Diffusion of,EGTA, Ca-EGTA, and Ca2+ in a Two-Compartment System
Representing Skinned Smooth Muscle, Preprint

Dohi, Y., Aoki, K., Fujimoto, S., Kojima, M., Matsuda, T. : Alteration in
Sarcoplasmic Reticulum-dependent Contraction of Tail Arteries in Response to
Caffine and Noradrenaline in Spontaneously Hypertensive Rats, Journal of
Hypertension 1990, Vol 8 No 3

Dostal, D.E., Murahashi, T., Peach, M.J. : Regulation of Cytosolic Calcium by
Angiotensins in Vascular Smooth Muscle, Hypertension, Vol 15, No 6, Part 2, June
1990

Endo, M. : Calcium Release from Sarcoplasmic Reticulum, Current Topics in
Membranes and Transport, Volume 25 1985

56

Hamming, R.W. : Numerical Methods for Scientists and Engineers. McGraw-Hill
Book Company, Inc.: 211-222, 370-382, 394-401 (1962)

Hasselbach, W. : Structural anc)roer..ties of the 	 Trl 	 Transporting
Membranes of the Sarcoplasmic Reticulum Annals of the New York Academy of
Sciences Vol 137, Art 2. pp 403-1048 (1966)

Hurwitz, L.: Characterization of Calcium Pools Utilized for Contraction in Smooth
Muscle, appearing in Smooth Muscle Pharmacology and Physiology, Worcel, M.,
Vassort, G. Editors (1975), Vol 50, pp. 369-380

Iyengar, S.S., Rao, R.M., Quave, S. : Chapter 2; A Four-Level Software Engineering
Approach to Model Complex Biological Systems, "Computer Modeling of Complex
Biological Systems", Iyengar, S.S. Ed. CRC Press, Inc.: 13-19 (1984)

Jacobs, J.R. : Analytical Solution to the Three-Compartment Pharmacokinetic
Model, IEEE Transactions on Biomedical Engineering, Vol 35, No. 9, September 1988

Jones, A.W. : Vascular Smooth Muscle and Alterations During Hypertension,
appearing in "Smooth Muscle: an assessment of current knowledge", edited by
Bulbring, E., Brading, A.F., Jones, A.W., Tomita, T., University of Texas Press (1981)

Kootsey, J.M. : Complexity and Significance in Computer Simulations of Physiologic
Systems Federation Proceedings Vol. 46, No. 8, June 1987

Law, A.M., Kelton, W.D. : Simulation Modeling and Analysis McGraw-Hill, Inc.
(1982)

MacLennan, D.H. : Isolation of a Second Form of Calsequestrin Journal of Biological
Chemistry Feb. 249(3) 1974

Miyamoto, I-I., Kasai, M. : Asymetric Distribution of Calcium Binding Sites of
Sarcoplasmic Reticulum Fragments Journal of Biochemistry (Tokyo) Mar. 85(3)
1979

Murthy, E.V.K. : Chapter 5; Modeling and Simulation for Drug Design, "Computer
Modeling of Complex Biological Systems", Iyengar, S.S. Ed. CRC Press, Inc.: 77-90
(1984)

Ostwald, T.J., MacLennan, D.H. : Effects of Cation Binding on the Conformation of
Calsequestrin and the High Affinity Calcium-binding Protein of Sarcoplasmic
Reticulum The Journal of Biological Chemistry Vol. 249, No. 18, Issue of
September 25, pp. 5867-5871, 1974

5 7

Ostwald, T.J., MacLennan, D.H. : Isolation of a High Affinity Calcium-Binding
Protein from Sarcoplasmic Reticulum The Journal of Biological Chemistry Vol.249,
No. 3, Issue of February 10, pp. 974-979, 1974

Peachey, L.D. : The Sarcoplasmic Reticulum and Transverse Tubules of the Frog's
Sartorius, Journal of Cell Biology 25:209 June 1965

Press, W.H, Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. : Numerical Recipes in
C The Art of Scientific Computing, Cambridge University Press: 566-580 (1988)

Randall, J. E. : Microcomputers and Physiological Simulation. Addison-Wesley
Publishing Company: 57-64 (1980)

Roeseler, A.: Program GNRKG (General Numerical Runge-Kutta-Gill) 1984

Shannon, R.E. : Systems Simulation - The Art and Science Prentice-Hall, Inc.: 1-35
(1975)

Somlyo, A.P., Wasserman, A.j., Kitazawa, T., Bond, M., Shuman, H., Somlyo, A.V. :
Calcium and Sodium Distribution and Movements in Smooth Muscle, Experientia
41 (1985)

Stewart, P.S., MacLennan, D.H. : Surface Particles of Sarcoplasmic Reticulum
Membranes The Journal of Biological Chemistry Vol.249, No. 3, Issue of February
10, pp 985-993, 1974

Stout, M.A., Diecke, F.P.J. : Ca Distribution and Transport in Saponin Skinned
Vascular Smooth Muscle, The Journal of Pharmacology and Experimental
Therapeutics, Vol 225, No 1, 1983

Tanford, C.: Twenty Questions Concerning the Reaction Cycle of the Sarcoplasmic
Reticulum Calcium Pump, CRC Critical Reviews in Biochemistry Volume 17,
Issue 2 1984'

van Breemen, C., Leuten, P., Yamamoto, H., Aaronson, P., Cauvin, C. : Calcium
Activation of Vascular Smooth Muscle, State of the Art Lecture, Suppl II
Hypertension, Vol 8, No 6, June 1986

Vander, A.J., Sherman, J.H., Luciano, D.S. : Human Physiology: The Mechanisms of
Body Function, McGraw-Hill Book Company, 3rd Edition (1980)

The following are the manuals used for code development in FORTRAN for the
Hewlet-Packard systems.

58

FORTRAN 77 Reference Manual RTE-CVM and REE,A. FIP1000 Computer System;
PartNumber92836-90001; June 1983 E0683

LINK Relocating Loader Manual RTE-A and RTE-6VM; Part Number 92077-90009;
January 1983 E0183

Symbolic DEBUG/1000 User's Manual; Part Number 92860-90001; May 1983 E0583

RTE-6VM CI User's Manual; Part Number 92084-90036; December 1983 E1283

The following are the manuals used for code development in C for the UNIX
systems.

A Practical Guide to UNIX System V; Sobell; Benjamin/Cummings Publishing
Company, Inc. (1985)

Programming in ANSI C; Kochan, S.G., Hayden Books (1988)

The UNIX Programming Environment; Kernighan, B.W., Pike, R, Prentice-Hall
(1984)

The C Programming Language; Kernighan, B.W., Ritchie, MA, Prentice-Hall (1978)

Software Examples
Sample Parameter (input)

DIFusion Model OUTF 5b Model 12 	 OUTF5a
60 sec output interval...
StepChange off, reduced Change Step Interval to 50...
.1e-3 12 2400 60
5
.507419919415497e-10 .253725269576535e-4 .127474624605384e-6 0.0e0 0.0e0

10
5.1e-2
2.55e-1
7.5e-2
1.5e-1
3.75e-3
7.5e-3
2.0e4-6
0.4e0
1.332e-1
1.998e-5

KOlc = KlOc for Calcium
KOle = KlOe for EGTA
K12c for Calcium
K21c for Calcium
K12e for EGTA
K21e for EGTA
Rf for Ca-EGTA binding

Rb for Ca-EGTA binding
K23c for Calcium
K32c for Calcium

.5021865e-6 	 .1660044e-3 .41699785e-3

.5021865e-6 	 .1660044e-3 .41699785e-3

.5021865e-6 	 .41699785e-3

.5021865e-6 	 .41699785e-3

.627733125e-2 	 .627733125e-2

59

outf5b.data
03-19-91 	 Config Header
1.0e0 	 Maximum Step Size
1.0e-5 	 Minimum Step Size
1.0e-2 	 Error Up Limit
1.0e-3 	 Error Low Limit
0.1e0 	 Percent Response
50 	 Change Step Interval
10 	 Change Request Stack Size
END OF HEADER

Sample Output (.data) File

DIFusion Model OUTF 5b Model 12 	 OUTF5a
60 sec output interval...
StepChange off', reduced Change Step Interval to 50...

Step Size 	 : 1.000000e-04
Number of Equations : 	 12

There are 5 Forcing Functions : 0

Time Limit 	 : 2.400000e+03
Output Interval : 6.000000e+01

1>5.074199e-11 	 2>2.537253e-05 	 3>1.274746e-07 	 4>0.000000e+00
5>0.000000e+00

There are 10 Equation Constants

KOlc = KlOc for Calcium 	 : 5.100000e-02
KOle = KlOe for EGTA 	 : 2.550000e-01
Kl2c for Calcium 	 : 7.500000e-02
K21c for Calcium 	 : 1.500000e-01
K12e for EGTA 	 : 3.750000e-03
K2le for EGTA 	 : 7.500000e-03
Rf for Ca-EGTA binding 	 : 2.000000e+06
Rb for Ca-EGTA binding 	 : 4.000000e-01
K23c for Calcium 	 : 1.332000e-01
K32c for Calcium 	 : 1.998000e-05

Initial Values for Model Equations

	

1>5.021865e-07 	 2>1.660044e-04 	 3>4.169979e-04 	 4>5.021865e-07 	 5>1.660044

	

6>4.169979e-04 	 7>5.021865e-07 	 8>4.169979e-04 	 9>5.021865e-07 10>4.16997S
11>6.277331e-03 12>6.277331e-03

Runtime Data Output Filename
outf5b.data

Parameters for the StepChange Algorithm

03-19-91 	 Config Header
Maximum Step Size 	 : 1.000000e+00
Minimum Step Size 	 : 1.000000e-05
Error Up Limit 	 : 1.000000e-02
Error Low Limit 	 : 1.000000e-03
Percent Response 	 : 1.000000e-01
Change Step Interval 	 : 50

60

	

Change Request Stack Size 	 : 10

END OF HEADER
0.000000000e+00 5.021865000e-07 1.660044000e-04 4.169978500e-04 5.021865000e-07
1.660044000e-04

4.169978500e-04 5.021865000e-07 4.169978500e-04 5.021865000e-07
4.169978500e-04

6.277331250e-03 6.277331250e-03

	

1.000000000e-04 	 0.000000000e+00 	 0 	 0 	 0 Tue Mar 19
21:59:19 1991
6.000004510e+01 1.777543864e-08 1.012562333e-04 8.841701060e-06 4.342610337e-07
1.250853561e-04

2.715861846e-04 1.679831581e-08 8.346872860e-06 4.341218599e-07
2.714992198e-04

6.273570608e-03 6.273570094e-03

	

7.325494808e-05 	 2.168457285e-03 	 10 	 12 	 9 Tue Mar 19
22:01:33 1991

2.489659518e-05
1.265183151e-05 9.273130659e-10 4.195440202e-07 1.018668117e-07

1.245159560e-05
6.027041017e-03 6.026602966e-03

	

1.531613150e-02 	 2.761856804e-04 	 359 	 277 	 1566 Tue Mar 19
22:11:13 1991
END OF DATA
Run complete @ Tue Mar 19 22:11:13 1991
END OF STATS

FORTRAN Programs
Extras.ftn

c EXTRAS.ftn 	 8-01-88

c use this module for testing the step change algorithm...

c Link to DIFSIM for superior model simulations...

SUBROUTINE push_stack(request)

c Takes the current REQUEST (integer) and "pushes" it onto the
c Request Stack. This is done to buffer incoming requests in hopes ofthe
c halting the cycle of increase followed by decrease, when the slope ratio
c has a problem maintaing the optimum step size. Decreases are favored
c over Increases such that an Increase in step will be performed ONLY when
c the Request_Stack is all increases. This function is performed by
c test_stack...

Integer stack_size, rqst stack
Dimension rqst_stack(20)
Common /one/ stack_size, rost_stack, true, false

61

Integer request,iii,true,false

Do 10 iii=stack_size, 2, -1
10 	 rqst_stack(iii) = rost_stack(iii-1

rqst_stack(1) = request

Return
End

integer FUNCTION test stack(request)

c This function evaluates the Request_Stack, comparing with the request.
c If the Stack is homogeneous AND equal to the request (integer) then
c test_stack remains TRUE. Otherwise test_stack becomes FALSE...

Dimension rqst_stack(20)
Common /one/ stack_size, rest_stack, true, false
Integer stack_size, rqst_stack, true, false
Integer request,iii

test_stack = 1
Do 10 iii=1,stack_size

10 	 if (rqst_stack(iii).ne.request) test_stack = 0
return

end

	 Step_Change

Subroutine step_change

Integer stack_size, rqst_stack, increase, decrease, nt, numb
Rear8 DT_increases, DT_decreases, DT_passes
Integer true, false

Real*E3 DT, min_step, max_step, error_up_limit, error_low_limit
Rear8 largest_error, response, ak1, ak2, ak3, ak4
Rear8 term 1, term2, error, temp_DT

Integer i, test_stack
Dimension ak1(20), ak2(20), ak3(20), ak4(20)

Dimension rest_stack(20)

Common /one/ slack_size, rqst_stack, true, false
Common /two/ nt, numb, largest_error, response, increase, decrease

Common /three/ error_up_limit, error_low_limit, max_step, min_step
Common /four/ DT, DT_increases, DT_decreases, DT_passes

62

Common /five/ ak1, ak2, ak3, ak4

c Evaluate slope's ratio and change step-size_

nt = 0
largest_error = 0

Do 200 i = 1,numb

term1 = ak3(i) - ak2(i)
term2 = ak2(i) - ak1(i)

If ((term1.eq.0).or.(term2.eq.0)) Then
error = 0

Else
error = DABS(term1 / term2)

Endif

If (error.GT.largest_error) largest_error = error

200 Continue

If (largest_error.GT.error_up_limit) Then
temp_DT = DT - response * DT * 3
If (temp_dt.GE.min_step) Then

Call push_stack(decrease)

c NOTE*** the Rqst_Stack does not affect a decrease...always decrease!!!

DT = temp_DT
DT_decreases = DT_decreases + 1

Endif
Else If (largest_error.LT.error_low_limit) Then

temp_DT = DT + response * DT
If (temp_DT.LE.max_step) Then

Call push_stack(increase)
If (test_stack(increase).E0.true) Then
DT = temp_DT
DT_increases = DT_increases 4- 1

Else
DT_passes = DT_passes + 1

Endif
Endif

End if
Return

End

Mode112.ftn
MODEL12.FTN 	 08-14-88

c These equations model isotope exchange. The third compartment is
c considered. Equations 1-6 have been verified with R. Hauser

63

c 2-compartment single species model...

SUBROUTINE MODEL_TR(x,y,aa,bb)

REAL*8 X, AA, BB, Y
DIMENSION X(20),BB(20), Y(20),AA(20)

c Identifiers for Forcing Function Array

c Ca40 	 EGTA 	 Ca40-EGTA Ca45 Ca45-EGTA

c	 Equation Identifiers...

1st 	 2nd 	 3rd

c Ca-40 	 1 	 4 	 11
c EGTA 	 2	 5
c Ca-40-EGTA 	 3 	 6
c Ca-45 	 7 	 9 	 12
c Ca-45-EGTA 	 8 	 10

Y(1) = - AA(1)*X(1) - AA(2)*X(1)*X(2) + AA(3)*X(3) +
AA(4)*X(4)

$ 	 + BB(1)

Y(2) = - AA(5)*X(2) - AA(2)*(x(1)+x(7))*x(2)+aa(3)*(x(3)+x(8))
$ 	 +AA(6)*X(5)

$ 	 + BB(2)

Y(3) = AA(2)*X(1)*X(2) - AA(7)*X(3) + AA(6)*X(6)
$ 	 + BB(3)

y(4) = aa(8)*X(1) - aa(4)*X(4) - aa(2)*X(4)*x(5) +
aa(3)*x(6) - aa(10)*x(4) + aa(11)*x(11)

Y(5) = AA(6)*X(2) - AA(8)*X(5) - AA(2)*(x(4) + x(9))*X(5) +
AA(3)*(x(6) + x(10))

Y(6) = AA(6)*X(3) - aa(9)*X(6) + AA(2)*X(4)*X(5)

Y(7) = - AA(1)*X(7) - AA(2)*X(7)*X(2) + AA(3)*X(8) +
AA(4)*X(9)

$ 	 + BB(4)

Y(8) = AA(2)*X(7)*X(2) - AA(7)*X(8) + AA(6)*X(10)
$ 	 + BB(5)

y(9) = aa(8)*X(7) - aa(4)*X(9) - aa(2)*X(9)*x(5) +
aa(3)*x(10) - aa(10)*x(9) + aa(11)*x(12)

Y(10) = AA(6)*X(8) - aa(9)*X(10) + AA(2)*X(9)*X(5)

y(11) = aa(10)*x(4) - aa(11)*x(11)

64

y(1 2) = aa(1 O)*x(9) - aa(1 1)*x(1 2)

RETURN
END

C Programs
Main.c

/* Main .c

03-05-91 : MJS

*/
#include <math.h>
include <stdio.h>
include <stdlib.h>
#include <string.h>
#include <time.h>

#include "Dimensions.h"
#include "State.h"
#include "Environment.h"
#include "Difsim.h"
#include "Parameters. h"

extern int DumpData ();
extern FinishStamp();
extern GetGillCoefficients();
extern int GetParameterSet(char *filename);
extern InitEnviornment();
extern int InitHeader ();
extern InitState();
extern Model_TR();
extern Problem(char *message);
extern QuitStamp();
extern RungeKutta();
extern StepChange();

char *sys_control;
char *sys_runlist;

char *sys_status ;

clock t start, finish;/*start and finish times for the simulation run*/
clock-t begin, end; /*begin and end times for the batch run */
FILE 7FP_runlist,

*FP_ control
*FP_ status; 	 /*file pointers for difsim system files.*/

struct run_param param_set; 	 /* parameter set 	 */

int request stack [MaxStepRequestStack] ;

main()
1

int nt; 	 /* this is the NEXT TEST interval
counter 	 */

char runlist[LineWidth];/* array of the filenames

65

for parameter sets */
int ok; 	 /* enables a clean shutdown for errors */
int i;	 /* counter 	 */

ok = TRUE;
this_run = 0;

InitEnviornment();
InitState();

GetGillCoefficients();

/* Open System Files...

if (ok)
if ((FP runlist = fopen(sys_runlist, "r")) == NULL) 1

PrOblem("Main: Unable to open runlist data file\n");
ok = FALSE;

if (ok)
if ((FP_control = fopen(sys_control, "r")) == NULL) (

Problem("Main: Unable to open control data file\n");
ok = FALSE;
1

if (ok)
if ((Fp_status = fopen(sys_status, "w")) == NULL) (

Problem("Main: Unable to open status data file\n");
ok = FALSE;

/******** Main Loop...

fprintf(FP_status,"Beginning batch run on %s \n",ctime(&begin));

while(ok) {

if (!feof(FP_runlist)) 	 {
if (!(fscanf(FP_runlist, "%[^\n] \n", runlist) > 0)) (

Problem (
"Read failed on RUNLIST, possible bad text format.. .\n");

ok = FALSE;

if (ok) ok = GetParameterSet(runlist);
if (ok) ok = InitHeader();

next_ test = param_set.config.next_test.value;
time step = param_ set.step_size;

for(I=0;i<param_set.number of_equations;i4-0 {
x[i] = param_set.i_yTi];
z[i] = param_set.i_y[i];
1

if (ok) ok = DumpData ();

while((t < param_set.timejimit) && ok) {
if ((next_output = t + param_set.output_interval)

6 6

> param set.time_limit)
next output = param_set.time_limit;

while (ok 	 t < next output)
if ((t + (next_test * time step))

<= next_outpa)
for (nt - 0; nt < next_test; nt++)

RungeKutta ();
else

while (t < next_output)
RungeKutta ();

StepChange ();
}

if (ok) ok = DumpData ();
1

if (ok) ok = FinishStamp():
InitState ();
this_run++;

else ok = FALSE; /* no more param sets to run */
1
QuitStamp (FP status);
fclose (FP control);

RungeKutta.c
/* RungeKutta.c

03-05-91 : MJS

*/

#ifndef SUCCESS
#include "Dimensions.h"
#include "Parameters.h"
#endif

extern double t;
extern double time_step;

extern double x[MaxEqns];
extern double y[MaxEqns];
extern double z[MaxEqns];

extern double akl[MaxEqns];
extern double ak2[MaxEqns];
extern double ak3[MaxEqns];
extern double ak4[MaxEqns];

extern double a;
extern double b;
extern double c;
extern double d;

extern struct run_param param_set;

/* Side effects...

67

- this routine increments the value of t
- this routine modifies the value of z[]

*/
void RungeKutta (void)

int i;

Model_TR();
for(i=0;i<param_set.number_of_equations;i++) {

akl[i] =
x[i] = z[ii + time step*akl[i)/2.0;
}

t += (time_step/2.0);

Model_TR();
for(i=0;i<param set.number_of_equations;i++) (

ak2[i] =
x[i) = z[i] + time_step*(c*akl[i] + a*ak2[i]);
1

Mddel_TR();
for(i=0;i<param_set.number_of_equations;i++) (

ak3[i] =
x[i] = z[i] + time step*(d*ak2[i] + b*ak3[i]);
1 	 —

t += (time_step/2.0);

Model_TR();
for(i=0;i<param set. number of_equations;i++) {

ak4[i] =
x[i] = z[i]+ time step*(akl[i]+ 2.0*a*ak2(i)+ 2.0*b*ak3[1]

+ ak4 [i]) /6.0;
z[i] =

StepChange.c
/* StepChange.c

03-05-91 : MJS

#include <math.h>

#ifndef SUCCESS
#include "Dimensions.h"
#include "Parameters. h"
#endif

void StepChange (void);
void PushStack (int request);
int TestStack (int request);
double GetLargestError (void);

extern struct run_param param_set;
extern int request stack [MaxStepRequestStack];

68

void StepChange (void)

extern double time step;
extern int dt_decreases;
extern int dt_increases;
extern int dt_passes;
extern double largest_ error;

double error;
double temp_dt;

error = GetLargestError ();

if (error > param_set.config.error_up_limit.value) (
temp_dt = time step -

param_set.config.response.value*time_step;
if (temp_dt >= param set.config.min_step.value) (

PushStack (DECREASE);
time step = temp_dt;
dt dcreases += 1;
—

)
else {

if (error < param_set.config.error_low_limit.value) (
temp_dt = time step +

param_seT.config.response.value*time_step;
if (temp_dt <= param set.config.max_step.value) (

PushStack (INCREASE);
if (TestStack (INCREASE) == TRUE)

time_step = temp_dt;
dt_increases += 1;
1

else
dt_passes += 1;

1
largest_error = error;

void PushStack (int request)

/*
Takes the current REQUEST and "pushes" it onto the request stack.
This is done to buffer incoming requests so that a frequent cycle
of increase followed by decrease followed by increase, can be avoided.
This can occur when the slope_ratio has a problem maintaining the
optimum step size. Decreases are fovored over Increases such that an
Increase in step will be performed only when the request_stack is all
Increases.

The testing of the request stack is performed by TestStack...
*/

int

69

for(i= param_set.config.stack_size.value-1; i>0;--i)
request_stack[i] = request_stack[i-1);

request_stack[0) = request;
1

int TestStack (int request)

/*
This function evaluates the request stack, comparing with the current
request. If the stack is homogeneous AND equal to the request, then
TestStack returns TRUE. Otherwise, TestStack returns false.
*/

int i;

for(i=0;i<param_set.config.stack_size.value;i++)
if (request_stack[i) != request)

return (FALSE);

return (TRUE);

double GetLargestError (void)

extern double akl[MaxEqns 1;
extern double ak2 [MaxEqns];
extern double ak3 [MaxEqns];
extern double ak4[MaxEqns];

double largest_ error;
int i;
double error;
double terml, teim2;

largest error = 0.0;
for(i=0;i<param set. number of_equations;i++) (

teiml = 	 - ak2 [i] ;
teim2 = ak2[i] - akl[i];

if ((teiml =- 0) I 	 (term2 == 0))
error = 0;

else
error = fabs (terml / term2);

if (error > largest_error) largest_error = error;

return (largest_error);

Model_12.c
/* 	 MODEL_ 12.c

03-10-91 : MIS

70

#ifndef SUCCESS
4include "Dimensions.h"
4include "Parameters.h"
#endif

/* <C>oefficients */

#define KOlc 	 param_set.ec[0].value /* kOlc = klOc 	 */

*define KlOc 	 param set.ec [0].value
#define KOle 	 param set.ec [1].value /* kOle = kl0e 	 */

#define K10e 	 param_set.ec[1) .value
#define K12c 	 param set.ec[2].value /* 	 */

#define K21c 	 param set.ec [3] .value /* 	 */

define K12e 	 param set.ec [4] .value /* 	 */

#define K21e 	 param set.ec [5].value /* 	 */

#define Rf 	 param_set.ec[6].value /* Ca-EGTA binding 	 */

#define Pb 	 param set.ec [7].value /* Ca to EGTA binding */
#define K230 	 param_set.ec[8].value /* 	 */
4define K32c 	 param_set.ec[9].value /* 	 */

/* Variables and Equations */

*define Ca40_1 	 0
*define Egta_l
define Ca40 E 1 	 2 	 / E:EGTA */
#define Ca40-2- 	 3
*define Egta 2 	 4
#define Ca40-E 2 	 5 	 /* E:EGTA */
#define Ca45-1- 	 6
#define Ca45-E 1 	 7 	 /* E:EGTA */
#define Ca45-2- 	 8
#define Ca45-E 2 	 9 	 /* E:EGTA */
#define Ca40-3- 	 10
#define Ca45 3 	 11

/* <F>orcing <F>unctions */

#define Ca40_res 	 param_set.ff[01
#define Egta res 	 param set.ff[1]
#define Ca40-E res 	 param_set.ff[2]
#define Ca45-re-s 	 param set.ff[3]
#define Ca45-E res 	 param set.ff[4]

extern double x[MaxEqns];
extern double y[MaxEqns];

extern struct run_param param_set;

void Model_TR(void)

y[Ca40 1] = 	 - KlOc * x[Ca40_1]
- K12c * x[Ca40 1]
- Rf 	 * x[Ca40-1]*x[Egta_1]
+ Rb 	 * x[Ca40-E 1]
+ K21c * x[Ca40_2]
+ Ca40 res;

7 1

y[Egta_1] = 	 - K_1Oe * x[Eg-ta 1)
- K12e * x[Egta 1)
- Rf 	 * (x[Ca4-0 1) + x[Ca45 1])*x[Egta_1]
+ Rb 	 * (x [Ca40_E_1] + x
+ K21e * x[Egta
+ Egta_res;

y[Ca40E] = - K_1Oe * x[Ca40
- K12e 	 x[Ca40
- Rb 	 * x[Ca40-E 1]
+ Rf 	 * x[Ca40-1T*x[Egta_1]
+ K21e * x[Ca4011E2]
+ Ca40 E res;

y[Ca40 2] = 	 - K21c * x[Ca40 2)
- K23c * x[Ca40 2]
- Rf 	 * x[Ca40-2]*x[Egta_2]
+ Rb	* x[Ca40-E 2]
+ K12c * x[Ca40_1]
+ K32c * x[Ca40_3];

y[Egta_2] = 	 - K21e * x[Egta 2]
- Rf 	 * -(-x[Ca40 2] + x[Ca45 2])*x[Egta_2]
+ Rb 	 * (x [Ca40-E_2] + x [Ca-4-5E2])
+ K12e * x[Eg-ta:f];

y[Ca40 E 2] 	 - K21e * x[Ca40 E 2]
- Rb 	 -x-[Ca40 E 2]
+ Rf 	 * x[Ca40-2T*x[Egta_2]
+ K12e * x[Ca401E1];

y[Ca45 1] = 	 - K_1Oc * x[Ca45 1]
- K12c * x[Ca45 1]
- Rf 	 * x[Ca451]*x[Egta_1]
+ Rb 	 * x[Ca45 E 1]
+ K21c * x[Ca45_2]
+ Ca45_res;

y[Ca45 E 1] = - KlOe * x[Ca45 E 1]
- K12e *-xICa45
- Rb 	 * x[Ca45-E 1]
+ Rf 	 * x [Ca45_1]*x [Egta_1]
+ K21e * x[Ca4511_2]
+ Ca45 E res;

y[Ca45_2] = 	 - K21c * x[Ca45 2]
- K23c * 3-([Ca45_2]
- Rf 	 * x[Ca45 2]*x[Egta_2]
+ Rb 	 * x[Ca45-E 2]
+ K12c * x[Ca45_1]
+ K32c * x[Ca45:3];

y[Ca45 E 2] = - K21e * x[Ca45 E 2]
- Rb 	 Tc[Ca45 E 2]
+ Rf 	 * x[Ca45-2]*x[Egta_2]
+ K12e * x[Ca45-E 1];

y[Ca40_3] = - K32c * x[Ca40_3] + K23c * x[Ca40_2];

7 2

y[Ca4 5_3 	 - K32c * x[Ca45_3] + K23c * x [Ca4 5_2] ;

7 3

	Copyright Warning & Restrictions
	Personal Info Statement
	Title Page
	Approval Sheet
	Vita
	Abstract
	Acknowledgments
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Material and Methods
	Chapter 3: Discussion
	Chapter 4: Conclusions
	Appendix: References

	List of Figures

