
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



ABSTRACT

Title of Dissertation:
Behavior of Square and L-shaped Slender Reinforced Concrete Columns
under Combined Biaxial Bending and Axial Compression.

Wen Hu Tsao, Ph.D. in Civil Engineering, January 1992

Dissertation directed by: Dr. C.T.Thomas Hsu, Professor
Department of Civil and
Environmental Engineering

A numerical analysis was developed to evaluate the complete load-deflection

and moment-curvature relationships for square and L-shaped slender rein-

forced concrete columns subjected to biaxial bending and axial load. This

computer model can be used for any cross section geometry and material

properties of normal concrete. The analysis was based on a deformation

control and both the ascending and descending branches of curves can be

studied. The finite difference method was introduced to calculate the deflec-

tions which satisfy the compatibility equations. Six square slender columns

and eight L-shaped slender columns were tested to compare their experi-

mental load-deformation results with the analytical results derived from the

theoretical studies. A satisfactory agreement was achieved for the present

study. The results of present study can be used for future design reference.



BEHAVIOR OF

SQUARE AND L-SHAPED

SLENDER REINFORCED CONCRETE

COLUMNS UNDER COMBINED BIAXIAL

BENDING AND AXIAL COMPRESSION

by
Wen Hu Tsao

Dissertation submitted to the Faculty of the Graduate studies
of the New Jersey Institute of Technology in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

December, 1991



 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPROVAL SHEET

Title of Dissertation:
Behavior of Square and L-shaped Slender Reinforced Concrete Columns
under Combined Biaxial Bending and Axial Compression.

Name of Candidate: Wen Hu Tsao
Ph.D. in Civil Engineering, December 1991

Dissertation and Abstract Approved by:

Dr. .T.T/homas Hsu, Professor/ 	 Date
Department of Civil and
Environmental Engineering

Signatures of other members Of the dissertation committee

	r -

I------r. 1 .Ansari, Professor 	 Date
Department of Civil and
Environmental Enm- lieering

Dr. A. Saa.deglivafiri, Assistant Professor 	 Date
Department of Civil and
Environmental Engineering

r. J. Schuring, Associate P4fessor 	 Date
Department of Civil and
Environmental Engineering

, 	 -
Dr. A. S. 	 r-o-f—m)es -r 	 Date
Department of Civil and
Ocean Engineering
Stevens Institute of Technology



VITA

Name : Wen-Hu Tsao

Degree and date to be conferred Doctor of Philosophy, Jan. 26, 1992.

Secondary education :

Collegiate institutions attended Dates Degree Date of degree

New Jersey Institute of Technology 1985-1991 Ph.D Jan., 1992.

Stevens Institute of Technology 1983-1985 M. E. June, 1985.

Taipei Institute of Technology 1977-1980 Diploma June, 1980.

Major : Structural Engineering, Civil Engineering.



The fear of the LORD is the beginning of wisdom,

and knowledge of the Holy One is understanding.

Proverbs 9 : 10 NW



Dedicated to the memory of my mother,

to my father and

to my wife.



ACKNOWLEDGEMENTS

The work presented in this thesis was carried out under the direction

of Professor C. T. Thomas Hsu to whom the author wishes to express his

deepest gratitude. His constant encouragement and discussions throughout

the years contributed in a large part to the development of this study.

The author also wishes to express his appreciation and gratitude to the

following persons and organizations :

The author's fellow graduate students, in particular Mr. Gang Wang

who assisted the author in computer programming. Mrs. S. M. Lin-Hsu,

Messrs. M. H. Lin, J.C. Hsu, T. Y. Lee, C. S. Chang, J. H. Fu, W. H.

Chao, M. S. Parikh, H. P. Savalia. and C. T. Chou, who assisted the author

in experimental test. Mr. Allen Luke, the staff of the Structural Concrete

Laboratory at NJIT who helped conduct the experimental tests. Mr. John

Eimess, the staff of Strength of Material Laboratory who helped prepare test

setup for the experimental tests. Their effects are greatly appreciated.

The experiments were performed using the MTS testing system which

was purchased under the NSF grant, No. CEE 8308339. Financial support

to purchase the research materials from several New Jersey corporations and

companies, graduate assistantship from NJIT which enabled the author to

carry out this study, are also greatly acknowledged.



Contents

NOTATIONS 	 iv

LIST OF TABLES 	 vi

LIST OF FIGURES 	 vii

1 INTRODUCTIONS 	 1

1.1 STATEMENT OF ORIGINALITY 	  1

1.2 LITERATURE REVIEW 	  2

1.2.1 BIAXIAL BENDING AND AXIAL LOAD 	  2

1.2.2 BIAXIALLY LOADED L-SHAPED REINFORCED

CONCRETE COLUMNS 	  12

1.2.3 SLENDER REINFORCED CONCRETE COLUMNS 15

1.3 OBJECTIVES OF THE RESEARCH 	  24

2 THEORETICAL ANALYSIS - COMPUTER METHOD 25

2.1 ANALYSIS OF STANDARD SHAPED SLENDER COL-

UMN 	  25

2.2 ANALYSIS OF L-SHAPED SLENDER COLUMN 	  37



2.3 ACCURACY AND CONVERGENCE CRITERIA 	  48

2.4 DESCRIPTION OF COMPUTER PROGRAM 	  57

3 EXPERIMENTAL TEST AND COMPARISON WITH COM-

PUTER ANALYSIS 	 60

3.1 TEST PROGRAM 	  60

	

3.1.1 INTRODUCTION     60

3.1.2 EXPERIMENTAL SETUP AND LOADING ARRANGE-

MENT 	  60

3.1.3 L-SHAPED SLENDER COLUMN TEST 	  66

3.1.4 SQUARE SLENDER COLUMN TEST 	  71

3.2 ANALYSIS OF TEST RESULTS 	  75

3.2.1 INTRODUCTION 	  75

3.2.2 TEST RESULTS OF L-SHAPED SLENDER COL-

UMN 	  76

3.2.3 TEST RESULTS OF SQUARE SLENDER COLUMN 77

3.3 COMPARISON OF TEST RESULTS AND THEORETI-

CAL MODEL 	  78

3.3.1 INTRODUCTION 	  78



3.3.2 MAXIMUM STRENGTH VALUES 	  79

3.3.3 BIAXIAL LOAD-DEFLECTION CURVES 	  79

3.3.4 BIAXIAL MOMENT-CURVATURE CURVES . 	  82

4 SUMMARY AND CONCLUSIONS 	 85

BIBLIOGRAPH 	 87

APPENDICES 	 97

APPENDIX A. EXPERIMENTAL RESULTS 	  98

APPENDIX B. STRAIN-POSITION CURVES 	  112

APPENDIX C. COLUMNS AFTER FAILURE 	  126

APPENDIX D. THEORETICAL AND EXPERIMENTAL COM-

PARISONS FOR L-SHAPED SLENDER COLUMNS 	  141

APPENDIX E. THEORETICAL AND EXPERIMENTAL COM-

PARISONS FOR SQUARE SLENDER COLUMNS 	  156

APPENDIX F. MODIFIED CRANSTON-CHATTERJI STRESS-

STRAIN CURVE 	  169

APPENDIX G. DETAILS OF SCHEME FOR REDIVISION OF

SEGMENTS 	  171



NOTATIONS

ak : area of element k.

Cij, Bij: stiffness coefficient.

CL length of segment (i).

dx, dy : deflection in X, Y axis.

du , dv: deflection in U, V axis.

dx(i+1),dx(i),dx(i-1) : deflection at segment (i + 1), ( i), (i -1) in X axis.

dy(i+1)

,d

y(i), dy(i-1) : deflection at segment (i + 1), ( i), (i - 1) in Y axis.

du(i+1)

,d

u(i), du(i-1) : deflection at segment (i + 1), ( i), (i - 1) in U axis.

dv(i+1)

,d

v(i), dv(i-1) : deflection at segment (i + 1), (i), (i - 1) in. V axis.

ex, ey: eccentricity in X, Y axis.

eu,ev. : eccentricity in U, V axis.

(E8 )k : secant modulus of elasticity for element k.

H(i),G(i),A(i),D(i) : temporary matrix notations to simplify the

expressions in the matrix operations.

Ix : moment of inertia about X axis.

Iy : moment of inertia about Y axis.

Ixy : product moment of inertia.

lc : nodal number for the middle segment.

lp : length for the plastic hinge.

Mx(c), My(c): the calculated value for the bending moment components in

X, Y axis under biaxial bending and axial compression.
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Mu(c),Mv(c) : the calculated value for the bending moment. components in

U, V axis under biaxial bending and axial compression.

P(c) : the calculated value for the axial load P under biaxial bending

and axial compression.

ϕx(i), ϕy(i) curvature at segment (i) with respect toMx(i), My(i).

UALL : allowable incompatibility for load P (k).

VALL : allowable incompatibility for strain at. coordinate origin ε0(i) .

WALL : allowable incompatibility for deflectionsdx(i), dy(i), du(i), dv(i).

x,y : centroidal coordinates for any element in the cross section.

xk,yk : centroidal coordinates for element k in the cross section.

θp : the angle between principal axes U,V and X,Y axes.

εk : strain at element k which is subjected to biaxial bending and

axial compression.

ε0(i) : strain at coordinate origin in the principal axes for segment (i).

ε0 : strain at coordinate origin in the principal axes.

ϕx, ϕy: curvature with respect to Mx, My.

ϕu, ϕv: curvature with respect to M u,Mv .

ϕ u(i), ϕ v(i): curvature at segment (i) with respect to M u(i), M v(i).
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1 INTRODUCTIONS

1.1 STATEMENT OF ORIGINALITY

The irregular shaped slender columns are required for some particular

structural design; however, the load and deformation behavior of irregular

shaped slender reinforced concrete columns is rarely available in the litera-

ture. There is no published data up to date which discuss both linear and

non-linear load-deformation behavior of L-shaped slender reinforced columns

under combined biaxial bending and axial compression, particularly for de-

scending branch of load-deformation curve.

The present research carries out not only experimental tests but also

theoretical studies as well for complete load-deformation behavior of biaxially

loaded slender reinforced concrete columns with square and L-shaped cross

sections.

The finite difference method proposed herein for both standard and L-

shaped columns has been found to be a very simple model to study the effects

of plastic hinge and ductility behavior in columns.
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1.2 LITERATURE REVIEW

1.2.1 BIAXIAL BENDING AND AXIAL LOAD

Many researchers have done a lot of investigations or designs for reinforced

concrete members under biaxial bending and axial compression. Muller [63]

proposed a design method by using a simple monograph. Chu [18] assumed

the position of the neutral axis and stress distribution across the section to

find the ultimate capacity due to axial load and moment. It can be extended

to any sections of irregular shapes subjected to any kind of loading. However,

the deformation behavior was not discussed.

Au [8] combined unsymmetrical bending in two direction, called skew

bending, He assumed an equivalent uniform stress distribution over the com-

pressive concrete section. Charts were provided to find the dimensions of the

equivalent compressive stress block. This procedure can be solved by trial

and error method.

Based on approximated failure surfaces, Bresler [15] derived some approx-

imated mathematical expressions suggested by Pannell [66]. Two alternative

methods are shown in the following:

Bresler load-contour method : A simple direct method is provided to

calculate the ultimate strength of a reinforced concrete column subjected to

2



axial compression and biaxial bending. The equation is given below:

Px , Py = the load carrying capacities under compression with uniaxial

eccentricities ex  and ey respectively.

P0 = the load carrying capacity under pure axial compression.

Bresler failure surface method: A nondimensional interaction equation

was proposed to represent the failure surface at a constant axial compression.

α, β  are exponents that depends on the dimensions of the cross section,

the reinforcement amount and location, concrete strength, steel yield stress

and amount of concrete cover.

Mx0 = Mx capacity at axial load P n, when Myis zero.

M1,0 = My0= Mycapacity at axial load PnwhenMxis zero.

ex , ey = eccentricities along x and y axis respectively.

3



Furlong [31] assumed that the neutral axis is perpendicular to the resul-

tant moments and simplified the biaxial bending on the square columns to an

uniaxial bending. The interaction diagrams were proposed by all calculations

for any arrangement of reinforced square columns.

Meek [60] assumed that the neutral axis coincides with the limit of the

Whitney stress block and the ex , ey remain constant so that if P is increased,

the bending moment Ms , My can be increased proportionately. By changing

the inclination and location of neutral axis and finding a value, the interac-

tion of biaxial eccentricity can be simplified to an uniaxial eccentricity.

Wiesinger [83] demonstrated the design of small eccentricities for sym-

metrical columns in one or two directions. where e' ft is not more than 2/3

in either direction.

e'= the eccentricity of the resultant load.

t= out-to-out dimension of column in the direction of bending.

Two dimensionless variables : "shape factor" for the gross area, g, and

"pattern factor" for the steels were introduced for convenience. The design

procedure was followed by those tables and calculated by trial and error

method.

Pannell [66] could predict stress distributions by considering the interac-

4



Lion surface based on the three dimensional curves of failure load against the

corresponding moments. The equation for transforming the actual moment

is given below

where Mx ., My are the components on the x and y axes of actual radial

moment.

ϕ= the ratio Mby/Mbx of the balanced failure moments.

F= a factor adjusting for steel cover ratio.

Mba = the balanced failure moment for the actural steel cover used.

Mbb = the equivalent moment for the ratio upon which the design curve

is based.

N= a deviation factor.

Mg= the moment to be used in conjunction with the required failure load

P.

Pannell [65] also extended Bresler's [29] equation to the following formula

5



where Mfy , Mfx = the failure moments for some load P acting in planes

x and y respectively.

Rewriting

where

and

Both equations need to make load-moment interaction curve served for

all depth-of-cover ratios. If the column has a different d2 /d ratio, then the

quantity Mfy shall be multiplied by F to obtain an appropriate value of Mfy ,

where

d=over-all depth of column.

d2 = concrete cover depth to the center line of steel.

Ang [7] proposed a method based on the "cracked section" theory to de-

sign a column under biaxial bending and axial load. The neutral axis for

untracked section was determined by using the familiar formula for eccentri-

cally loaded column as follows

6



Ang assumed the position of the neutral axis of the cracked section to be

parallel to that of the untracked section, and the final result may be obtained

by trial and error method.

Aas-Jakobsen [11 assumed the equivalent moment M e to simplify the de-

sign procedure of a column under a biaxially eccentric load.

A finite element approach was used by Warner [80] in which the con-

crete and steel areas in the cross section are broken into many small discrete

areas. Axial force and biaxial moments can be determined by summation

of the elemental forces acting on the elemental areas and summation of the

moments of the elemental forces. Any desired form of stress-strain relations

for concrete and steel can be used and any irregularities in the shape of cross

section and in any arrangement of steel reinforcement can also be calculated.

Fleming and Werner [29] presented a simplified ultimate strength design

procedure, for the most widely used ranges of concrete strength, steel yield

and steel percentage. It can be directly obtained the size of section and area

of reinforcing steel by the design curves. The neutral axis for the cross section

was determined by trial and error approach.

Weber [81] has shown a set of charts for both analysis and design of

columns with biaxial bending. There are some limitations for applying the

chart. It's only good for square column with symmetrical reinforcing and for

different combination.



Cranston [23] in 1967, presented the computer method by finding the

relations between moment, axial load and curvature (M-P-ϕ) to form the

governing differential equations. This method can take care of the columns

with different materials, cross section varied along the length of the column,

residual stresses existed, initial curved column and the moment developed in

the end restraint systems. The cross section of column was divided into strips

perpendicular to the principal axis. The bending moment of the column

was limited to only about the principal axis. The computer procedure was

followed by the inelastic analysis and could calculate all stages of behavior

up to maximum load.

Ramamurthy [70] in 1966, proposed the design method of biaxially loaded

columns by trial and error procedure and failure surface in order to determine

the ultimate load. The approach was limited for rectangular and square cross

section with symmetrical distribution of reinforcement.

Farah, Huggins [28] in 1969, studied the hinged reinforced concrete columns

under biaxial bending and axial load by an integration method. Three si-

multaneous nonlinear equations was solved by the Newton-Raphson method.

The flexure rigidity El varied along the column and for each loading condi-

tion should be renovated. The strain distribution was first assumed and by

successive iteration of the summation forces and moments which was com-

pared to the applied loads and moments in order to obtain the equilibrium

situations. The Newton-Raphson method was introduced to speed the con-
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vergence to equilibrium. The procedure could be extended for slender column

just dividing the column into segments and again into sections.

Hsu [40,46] in 1973 and 1974, presented the determination of strain and

curvature distribution in reinforced concrete sections under biaxial bending

and axial load. The computer program was developed to study the ultimate

strength, interaction diagrams and deformation behavior. The computer

analysis can handle any concrete cross section geometry, steel arrangement

and material properties. Taylor's expansion was introduced for calculating

the summation of loads and moments and the Newton-Raphson method was

used to accelerate the convergence.

Smith [77] in 1973, assumed a steel ratio for a given column size and used

the equivalent uniaxial eccentricity to simplify the biaxial bending case.

Gouwens [32] in 1975, gave a design procedure for concrete column subject

to biaxial bending. A couple of equations were illustrated to compare with

the others researcher's results.

Furlong [30] in 1979, recommended a design procedure for biaxially loaded

concrete columns. It followed the usage of a parabola-trapezoidal stress strain

function for concrete compression zone instead of the traditional rectangular

stress block and the results were found to be more accurate with the observed

results than the other analytic stress strain functions.

Taylor [78] in 1985, proposed a direct design method by two approaches
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: Firstly, the direct design contour charts was used to facilitate the design.

Secondly, an automatic design procedure was proposed using the computer

program that required some informations.

There are very few research studied the subject of reinforced concrete

member under combined biaxial bending and tension. Hsu [41] in 1986, pre-

sented an important aspect in the development of the strength-interaction

diagrams, load contours failure surface and design equations. The computer

program was created for any geometry of cross section and material proper-

ties.

Ross and Yen [74] in 1986, proposed an interaction design of reinforced

concrete columns with biaxial bending. The simplified approach was made by

assuming the biaxial bending capacity to uniaxial bending capacity and thus

obtained a mathematical description of a particular load contour representing

the intersection of the failure surface. But the equilibrium and compatibility

conditions were not always ensured and suggested for use in a square cross

section only.

Recently, Hsu [45] proposed a general equation representing a three-

dimensional failure surface of a column section. He provided a reasonable

mathematical equation that can represent both the strength interaction di-

agrams and failure surface for the member under combined biaxial bending

moments and axial load. The equation of failure surface method has been

found to be a simpler and more logical approach for analysis and design of
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columns under combined biaxial bending and axial load. A general equation

can be written as follows:

where

Pn = nominal axial compression (positive), or tension (negative).

Mmx, Mny = nominal bending moments about x- and y-axis, respectively.

P0 = maximum norminal axial compression (positive), or axial tension

(negative).

Pnb, = norminal axial compression at balanced strain condition.

Mnbx .,Mnby = norminal bending moments about x- and y-axis, respec-

tively, at balanced strain condition.
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1.2.2 BIAXIALLY LOADED L-SHAPED REINFORCED CON-

CRETE COLUMNS

The analysis and design of L-shaped columns under biaxial bending and

axial load is sometime encountered in a building project. The corner columns

in a framed structure and bridge piers are usually subjected to combined

biaxial bending and axial load.

Muller [62] in 1959, proposed the design method of the L-shaped columns

with small eccentricities. The application was limited for the column sections

symmetrical about 45 degree axis. Three sets of tables could be found useful

during the trial and error procedure.

Marin[56] in 1979, presented the design aids for L-shaped short columns

subjected to biaxial bending and axial load. The idea was illustrated by

an isobaric failure surface. The selected concrete cross sections were also

symmetrical about the 45 degree axis and the steel distributions were limited

to one kind for each thickness ratio studied. The design charts were only

available to very simple geometries.

Ramamurthy [70] in 1983, presented two approaches: First method was

based on failure surface in actual shapes of load contours using an inverse

method of analysis. Second method was proposed to design the L-shaped

section by the method of an equivalent square or rectangular cross section.

Hsu [38] in 1985, studied both the strength and deformational behavior
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of L-shaped tied columns under combined biaxial bending and axial com-

pression. The computer program was developed to satisfy the equilibrium of

forces and strain compatibility. The Newton-Raphson numerical method was

again used to handle the nonlinear convergence. For given material stress-

strain relationships for concrete and reinforcement steels, the L-shaped cross

section was divided into elements for computer analysis. Since plane sections

remain plane during bending, Hsu proposed :

where εp= uniform longitudinal strain at plastic centroid

ϕu, ϕv,= the curvature produced by bending moment M u, Mv respectively.

vk , uk = the coordinates about the principal axes for the element k. After

the strain distribution is assumed and by stress-strain curves the axial force

P and bending moment Mu , M v, can be calculated by

The iteration procedure is required to meet the convergence for each

assumed loading step with P(s) ,MVu(s),Mv(s) and can be accelerated by the
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extended Newton-Raphson method. where

where e v , e v are the load eccentricity components along u,v axes. The

coordinate transformation is also needed to calculate the load, moment and

curvature with respect to global coordinate axes x and y, respectively. They

are shown in reference Hsu[38]. From the theoretical analysis results, the

theoretical interaction curves could be obtained corresponding to centroidal

axes.

For the experimental program, the demec gage method was used by Hsu

[38] in order to obtain the strain distributions, and the curvature could be

determined by the following equation :

kd=the distance between the location with the concrete strain c c and the

point of zero strain along x or y axis.

The load contour interaction relating Mnx , Mny can be obtained from

cutting the failure surface at a constant load Pn, where
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where Mnx, M nyare nominal bending moment about x and y axis, respec-

tively.

A general non-dimensional equation as proposed by Hsu [38) : the load

contour can be again used for a design formula of L-section

where α l , α2 are dependent on the dimension of the column, steel ratio

and material properties etc.

Mox, = Mnx capacity at axial load Pn, when Mny is zero.

Moy = Mmy capacity at axial load Pn, when Mnx is zero.

1.2.3 SLENDER REINFORCED CONCRETE COLUMNS

Broms and Viest [16] in 1958, introduced the ultimate strength analysis

of long restrained ended reinforced concrete columns under bending and ax-

ial compression. The strength of a restrained column depends on both the

properties of the column and the restraining members. The deflected shape

of the column was assumed a part of cosine wave and the restraining moment

was assumed proportional to the end rotations.

Chang and Ferguson [17] in 1963, presented the study for both eccentri-

cally and concentrically loaded, slender reinforced concrete columns under
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short-time load. The concentrically loaded column analysis was based on

von Kármán's theory and Hognestad's stress-strain relationship for concrete,

and the idealized stress-strain curve for reinforcing steel. For the specific

values of column load, the moment versus edge-strain curves were plotted.

These curves were corrected between the moment and load for each in terms

of edge strains which were derived by a couple of equations. At first they

solved the load versus edge-strain equations, then obtained the moment ver-

sus edge-strain curves for a given critical load. By numerical integration of

moment versus edge-strain curve, the deflection shape, length of cracking in

the section and end slope of deflected column were determined.

Parme [68] in 1966, proposed the design aids for restrained eccentrically

loaded slender column which provided the practical method for designers. He

concluded that the design followed by the stability analysis was time consum-

ing and the use of the ACI Code reduction formulas were too conservative

to utilize.

MacGregor and Barter [53] in 1966, used the long column analysis by

Pfrang and Siess [69] to determine the eccentrically loaded long columns bent

in double curvature. The column was tended to bent in a single curvature, but

in order to obtain the double curvature , the end restraints were introduced.

A portion of moment applied to the joint was resisted by the restrained

members. The column was stronger than a hinged column subjected to

the same eccentricity. The second effect of bending moment was tended
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to strengthen the column, and the slenderness had less effect on restrained

columns than on hinged column.

Martin and Olivieri [57] in 1966, tested the slender reinforced concrete

columns under opposite eccentricity loading. A point of contraflexure be-

tween the ends of the column would produce the study of the difference in

strength reduction for length of compression members depending on the lo-

cation of the contraflexure. They used the computer program developed by

Breen and Ferguson [14] to accomplish the theoretical analysis. The analysis

was based on von Kármán's theory and Hognestad's stress block for concrete

and an elasto-plastic stress strain relationship for steel.

Drysdale [26] in 1967, studied the behavior of slender reinforced concrete

column subjected to sustained biaxial bending. The experiment was inves-

tigated by a single column size with constant material properties, and the

columns were tested in pair to ensure the accuracy of results. The math-

ematical column model was developed to study the shrinkage, creep and

elastic strains. Only half column length was used because the column bent

in symmetric single curvature. The pinned-ended condition was used.

Abolitz [3] in 1968, presented the equations instead of the regular charts

or table for working stress design of symmetrically reinforced short and long

columns subjected to flexure. The design approaches were followed, one in

accordance with ACI Code and the other was only for rectangular columns

by an alternative method and could be modified later for square or circular
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sections. The biaxial bending followed the same formulas except the addition

of the computation of weighted averages.

Warner [80] in 1969, presented a finite element approach by dividing the

concrete cross section and steel areas into small elements and by summation

of the elemental forces in order to determine the biaxial moments. It could

be used for any stress-strain relations of concrete tensile strength and the

extended unloading of concrete in compression at high strains.

MacGregor, Breen and Pfrang [50] in 1970, presented a proposal to revise

the long column design procedures of the ACI 318-63. The columns was

designed to carry the forces and moments based on a rational second order

structural analysis. A moment magnifier S was introduced for the design

procedure which was similar to the one used in ACI 1963 Specifications. This

moment magnifier was affected by the ratio of end moments and the deflected

shape. The results of this proposed procedure led the designer to understand

the basic behavior in slender columns and to evaluate the additional moment

requirements in restraining members.

Colville [19] in 1975, developed a simplified procedure of estimating a

deflection magnification factor and investigated the accuracy of the moment

magnification in the design of square reinforced concrete columns. A finite

element approach was used to study the effects of tension cracking, nonlin-

earity of the concrete in compression and yielding of the reinforcing steel.

By including the effects of secondary bending and large displacement, the
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geometric nonlinearity was considered in this study.

MacGregor, Oelhafen and Hage [52} in 1975, presented the analysis of a

step-by-step incremental rate-of-creep of a reinforced concrete columns sub-

jected to sustained loads and they were able to work out a statistical evalu-

ation of the flexural stiffness EI. A series of computer experiments were also

carried out to derive the design equations for flexural stiffness EI, as given

below :

or

where

α = 0.75 + 1.8βp but not less than 1.0 .

βp
= the ratio of the design sustained load to the total design load.

ρt = total reinforcement ratio.

I9= gross moment of inertia of uncracked concrete section.

Is= moment of inertia of the reinforcing bars.

Ec , E3 = modulus of elasticity of concrete and steel.

EI= rotational stiffness of cross section.

It was recommended to use in the current ACI Code.
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Basu and Suryanarayana [9] in 1975, proposed the computer method for

analyzing the restrained long reinforced columns under biaxial bending. No

sidesways were permitted. The load-deflection and moment-end rotation

were studied by the results of the computer analysis. Only half of the col-

umn length was inputted according to the assumed symmetrically bent single

curvature. The nonlinear governing equations were solved and the conver-

gence for iteration was assured by the delta-square extrapolation procedure.

Abdel-Sayed [2] in 1975, proposed the improved method of slender rein-

forced concrete column under biaxially eccentric loading. A calibrating factor

was presented for the use of the section property for square symmetrically

reinforced concrete columns. the rectangular cross section could follow the

second calibrating factor by using the same section property. The method

took into account the compatibility of strains and lateral deformations. The

designers could obtain a good initial estimate for the cross section by the sec-

tion property curves. For different arrangement of reinforcement, it required

an additional set of section properties curves.

Al-Noury [4] in 1982 and [5] in 1980, used the finite segment method to

analyze the reinforced concrete column from a space structure. The cross

was divided into finite elements to calculate its tangent stiffness by solving

the governing differential equations about the principal axes. The modified

tangent stiffness approach was used to handle the material plasticity and the

geometrical change during the iterations.
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The incremental tangent stiffness matrix was derived from

δF , δD. the infinitesimal changed in force and deformation.

[Q]= the incremental tangent stiffness matrix of each element.

From the force equilibrium of equations and the stress-strain relationships

for each material, the change in forces are equal :

where

x k , yk , x i , yj = the coordinates for each element.

ρ' = the transformed steel ratio.(=Ncρ/Ns)

ρ = reinforcement ratio.

(Gc )ij , (Gs )k , (Gc ) k = the stiffness for concrete and steel.

(δεc)k, (δεc)ij, (δεs)k = the incremental change of strain for concrete and6c 

steel.

Na , N b= the number of concrete element in rows and columns.
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Nc, Ns = the number of cross section elements for concrete and steel.

ΔAc = concrete element's area.

The strain distribution assumed to be linear,

ε = strain at any point.

ε0 =  strain from the compression loading only.

ϕx, ϕy= curvature with respect to x,y axes.

Then,

The incremental deformation can be solved by

For biaxially loaded slender reinforced concrete columns, the original cen-

troid of the cross section is moved to an instantaneous centroid due to the

nonlinearity of concrete stress-strain relation.

The axes transformation and rotation are required to obtain the new

principal axes. The segment stiffness matrix [K(10 x 10)] can be obtained
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by the following equation :

The axial deformation, shear deformation and the torsional effects were

neglected by Al-Noury. He concluded that the tangent stiffness approach gave

a lower bound solution and yielded the good results for slender reinforced

concrete column under biaxial loads.
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1.3 OBJECTIVES OF THE RESEARCH

1. To develop a non-linear computer analysis of slender reinforced concrete

columns under combined biaxial bending and axial load. Both material

and geometrical nonlinearity are included in the computer analysis.

The analysis can also be used for any section geometry. The computer

analysis will evaluate the complete behavior of the moment-curvature

and load-deflection characteristics for biaxial loaded slender reinforced

concrete columns with standard and L-shaped cross sections.

2. To test six 4 feet long square reinforced concrete columns and eight 4

feet long L-shaped reinforced concrete columns under combined biaxial

bending and axial compression. The proportional loading and pinned-

ended conditions are used. The experimental ultimate load, moment-

curvature and load-deflection curves will be attained and compared

with the results of the proposed computer analysis.

3. The main purpose of this research is to investigate the behavior of the

square and L-shaped slender columns subjected to biaxial bending and

axial compression. The experiment results and computer analysis de-

rived from this study may contribute to the development of any future

design method.
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2 THEORETICAL ANALYSIS

2.1 Analysis of standard shaped slender column

To study the complete load-deflection and moment-curvature curves

of standard shaped slender columns subjected to biaxial bending and axial

compression with monotonic loadings, a strain compatibility and equilib-

rium of forces and moments which can account for any loading condition

and material properties must be utilized.

The present computer analysis is based on the following assumptions :

1. Plane section remains plane before and after bending.

2. Strains in the steel and concrete at their interfaces are assumed to be

compatible.

3. Effect of creep and shrinkage are neglected.

4. There is no initial deflection in the undeformed columns.

5. The axial deformation, shear deformation and torsional effect are all

neglected.

6. Monotonic loading.

The cross section of a standard shaped slender column can be divided

into several small elements as shown in Fig.(1) . Consider for each small
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element k. with its centroidal coordinates (x k , yk ), the strain e k is assumed

to be uniformly distributed across the element k. According to the assump-

tions that plane section remains plane . and for an element that is subjected

to biaxial bending and axial compression, the strain Ek can be expressed in

the following form:

Figure 1: Cross section of square slender column.
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Figure 2: Idealized piecewise linear stress-strain curve

Compressive stress

Figure 3: Modified Cranston-Chatterji stress-strain curve (Hsu [40])
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where

ε0 : strain at the coordinate origin of the principal axis.

ϕx : curvature with respect to Mx. ϕx is positive when it can produce

compressive strains in the positive y direction.

ϕ y : curvature with respect to My . ϕy  is positive when it can produce

compressive strains in the positive x direction.

Idealized piecewise linear stress-strain curve and modified Cranston-

Chatterji stress-strain curve (see Appendix F.) have been used for reinforc-

ing steel and concrete elements, respectively. For a value of strain εk , a

value of the secant modulus of elasticity (Es ) k for steel or concrete elements

can be obtained from Fig.(2) and Fig. (3). The secant modulus of elastic-

ity can be assured to give the positive values of (Es)k and to prevent the

singularity problem in the matrix operation. The equilibrium equations in

the cross section with n elements for the axial load P, bending moment

components Mx , My can be expressed in the following forms :

The subscript (c) from P(c),Mx(c) ,My,(c) expresses the calculated values

in an iteration cycle.
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(Es)k : the secant modulus of elasticity in element k.

εk : strain of element k.

ak : area of element k.

xk,yk : coordinates at the centroid of element k.

Substitute Eq.(1), in Eq. (2), Eq.(2) can be rewritten in the following

matrix form.

And let
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Figure 4: Slender square column divided into n segments
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For slender column, the second order effect. is important and for the case

of proportional loading. Let dx , dy be expressed the deflections of column

in x and y axis, respectively. Eq.(3) can be simplified in the following :

The finite difference method is hereby introduced to solve the three

dimensional behavior of slender columns. As shown in Fig.(4), slender

column is divided into several segments. The fundamental idea of this

method is to replace the differential equation of the deflection curve by its

finite difference approximation, and then to solve algebraically the finite

difference equations obtained at serval segments along the column. So for

the segment (i) :

where

CL=the length of segment (i).
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Substitute (5) in Eq.(4), one has

Expand Eq.(6) and rearrange it and for the segment (i)
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And let

For the pinned-ended boundary conditions,

Add i=2 to i=n, one has

For symmetrical case, the analysis can be simplified, let

lc =(n/2) +1
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n = number of sections or segments in slender column.

where lc = the nodal number for the middle segment.

and

Eq.(9) can be expressed in the following :

Select the deflection dy(c) as the control increment for each iteration

step and interchange dy(lc) and P(c) from Eq. (10), thus
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After satisfying the convergence criteria, the load P(c), deflections dx(i), dy(i)

and strain at origin eo(i) are obtained. The biaxial bending moment M x(lc), My(lc)
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at middle segment can he calculated as follows
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2.2 Analysis of L-shaped slender column

To study the complete load-deflection and moment-curvature curve

of L-shaped slender columns subjected to biaxial bending and axial com-

pression with monotonic loadings, a strain compatibility and equilibrium

of forces and moments which can account for any loading condition and

material properties can again be utilized.

The cross section of a L-shaped column can be divided into several

small elements as shown in Fig. (5). According to Hsu [5], consider for

each small element k, with its centroidal coordinates (xk,yk ), the strain εk

is again assumed to be uniformly distributed across the element k. Fig.

(5) shows an angle θp which defines the angle between the x, y coordinate

system and the principal axes u, v. The principal axes are defined as those

axes for which the product of inertia has vanished. Thus

where

Ix = the moment of inertia about x axis.

Iy = the moment of inertia about y axis.

Ixy = the product moment of inertia.

37



According to the assumption that plane section remains plane during

bending, and for an element which is subjected to biaxial bending and axial

compression, the strain Ek can be expressed as

where

ε0 : strain at the coordinate origin of the principal axes.

ϕu : curvature with respect to Mu, ϕu  is positive when it can produce

compressive strains in the positive v direction.

ϕv : curvature with respect to Mv, ϕv  is positive when it can produce

compressive strains in the positive u direction.

u,v : the coordinates for the principal axes. where

Idealized piecewise linear stress-strain curve and modified Cranston-

Chatterji stress-strain curve are again used for reinforcing steel and concrete

elements, respectively. For a value of strain εk , a value of the secant

modulus of elasticity (Es)k, for steel or concrete elements can be obtained

from Fig.(2) and Fig. (3). The secant modulus of elasticity can be assured

38



Figure 5. Cross section of L-shaped slender column.

to give the positive values and to prevent the singularity problem in the

matrix operation.

The equilibrium equations in the cross section with n elements for the

axial load P, bending moment components Mu , Mu can be expressed in the

following forms :
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The subscript (c) from P(c), Mu(c), Mv(c) represents the calculated values

in an iteration cycle.

(Es)k : the secant modulus of elasticity in element k.

εk : strain of element k.

ak : area of element k.

uk , vk : the coordinates at the centroid of element k for the principal

axes.

Based on the assumption that the plane section remains plane during

bending, Eq. (16) can be rewritten in the following matrix form.

And let
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For the slender column, the second order effect may be critical for the

biaxial bending calculations, Eq.(17) can be simplified in the following form:

The finite difference method is again used to solve the three dimensional

behavior of slender columns. Fig.(6) shows the slender column that was

divided into several portions. For the segment (i) :

Substitute the above equation in Eq. (18), one obtains,
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Figure 6. Slender L-shaped column divided into n segments.
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Expand Eq.(21) and rearrange it, and for the segment (i),

And let
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For slender columns with pinned ends :

Add i=2 to i = n, it results in the following equations:

For symmetrical case, the analysis can be further simplified. Let

lc .(nnod/2)-1-1

where /c = nodal number for the middle segment of column.

nnod= number of sections or segments in slender column.

and
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Select the deflection dv(lc) as the control increment for each iteration

step and interchange d v(lc) and P(c) from Eq. (10), one has
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Once the load-deflection and moment-curvature results in the principal

axes are obtained, the deflection du(i) and dv(i) are transformed into x,y

coordinate systems. It is because all slender columns are tested in the x,y

coordinate system. The deflection for the segments from i=1 to n in the

x,y coordinate system can be calculated as follows :
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For the proportional loading system, the biaxial bending moment M x(lc) , My(lc) at

the middle segment can be obtained as follows:
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2.3 ACCURACY AND CONVERGENCE CRITE-

RIA

1. The assumption of uniform strain distribution in a small element can

be modified by increasing the number of elements in the cross section.

It will increase the CPU time for the computations. But the results

as shown in Fig. (7) indicate the analysis results of present study are

reasonably accurate.

2. The convergence criteria are developed to examine the iteration cycles

and compare with allowable incompatibilities. The allowable incompat-

ibilities are set in the present study as follows: UALL=0.01 for the load

P(c), VALL= 10-7 for the strain at coordinate origin coo) and WALL=

0.001 for the deflections dx(i) ,dy(i) , du(i) and dv(1) . The computation will

continue to go to the next increment only if the solutions satisfy allow-

able incompatibilities UALL, VALL and WALL all together.

3. It is well known that the assumption of the uniaxial stress-strain curves

for both reinforcing bars and unconfined or confined concrete may cause

a minor error since the slender columns undergo a three dimensional

behavior.

4. The slender column is divided into a different number of segments for

computing the deflections by the finite difference method. It is well-

known that the more segments are divided in the column member , the
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more accurate results are achieved as compared with the tests. Based

on the present study, it has been found that it is true only for the

ascending branch of the load-deformation curves until the maximum

load. When the column starts to form a plastic hinge at mid-height,

the behavior of column changes tremendously. Fig. (8) shows the

analysis using different number of segments (nnod), the different results

of deflections are obtained in the descending branch of the curve. When

the column starts to form the plastic hinge, the curvature is increased

tremendously within the range of plastic hinge, as seen in Fig. (9).

From the observation of tested column , it is reasonable to assume the

length of plastic hinge 1p= 1.5d to 2d. The present computer model

is corrected to set the lp after the column reaches the maximum load.

In other words, the column is re-divided into segments which is equal

to 1p at the mid-height and the same length for the rest of column as

shown in Fig. (10).

It can be seen in. Fig. (11), for example for column B2, the load-

deflection results are calculated from the different number of segments.

The final convergence can be achieved for both 8 and 16 segments.

However, the column with 8 segments gives a more reasonable and

satisfactory results.

5. The effect of torsion on slender column is neglected. During present

experimental setup, four dial gages #5,#6,#7 and #8 are arranged to
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check if the column rotates during the test. As shown in Fig. (12), the

column deforms as normal as the one without twisting moment applied

to the column. The pinned-ends in the present experiment provide

enough friction resistance to prevent the rotation of the column during

testing. The present computer model does not consider the torsional

effect in the analysis and the results of the present computer analysis

and the present experimental results reflect a good agreements between

them as shown in the study.

6. Two loading brackets were provided at each end of test column to

assist with the application of biaxially eccentric loads, these brackets

were heavily reinforced to prevent any premature failure. However,

the effect of these brackets on the behavior of slender column is also

neglected in the present computer analysis.
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Figure 7. Analysis results by number of elements in cross section.
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Figure 8. Analysis results by number of segments in column 133.
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Figure 9. Curvature values along half column at various loading stages

after maximum load.
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Figure 10. Segments are redivided when the plastic hinge forms.
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Figure 11. Convergence studies on column B2.
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Figure 12. Deflection variations along column B7
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2.4 DESCRIPTION OF COMPUTER PROGRAM

The present computer program was written in FORTRAN 77 and run

in the NJIT Tesla system. It can be used at any IBM compatible personal

computer using Microsoft FORTRAN.

The input data was created in a input file and the output file was gener-

ated by the program to store the results. The flow chart is given in Fig. 13

and the main notations are defined as follows :

• Read data : Read the input data file.

• Give initial value for boundary condition and control increment : The

boundry condition is pinned-ended, the control deflection increment is

the deflection dy at the middle segment.

• IKEY=0 : IKEY controls the current increment step. If the conver-

gence can not be reached, it will readjust the increment and go back

to iteration process for convergence.

• Tolerance incompatibility : The incompatibility tolerances are Uall for

P(c) , Wall for dx(i),dy(i) , dv(i) and dv(i) and Vail for ε0(i) , respectively.

• 333 : This is the beginning to start the ISEC iteration.(usually 300

iterations was programmed)

• Do 999: This is an iteration loop for ISEC.
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• Do 888: LC is the number of segments to be divided for column. This

is a loop to relate the local to the global system.

• Check if sym. case : Check if the cross section is a symmetrical case.

• Rotate to the principal axes : Rotate the coordinate system to the

principal axes system for computations.

• Find SUM* : This is a step to find the values of [C] matrix from Eq.

(4), or [B] matrix from Eq. (18).

• CALL CALCAU : CALCAU is a subroutine to solve the unknowns

from Eq. (11) or Eq. (26).

• Check convergence : The solutions should be the same or less than the

allowable incompatibilities.

• Check ISEC = LP : If ISEC = LP, the convergence can not be reached,

and the analysis must try a new increment for the control deflection.

• IKEY = IKEY + 1 : Go to the next increment step.

• Check curvature : If the curvature in the middle segment increases

tremendously, set the length of plastic hinge and redivide the segments.

• Check IKEY : If the analysis reaches the final load, stop the computa-

tion.
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Figure 13. Flow chart for present computer program.
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3 EXPERIMENTAL TESTS AND COMPAR-
ISON WITH COMPUTER ANALYSIS

3.1 Test program

3.1.1 Introduction

A test program was arranged to verify the accuracy of the theoretical

analysis of this study. Eight L-shaped and six square slender columns were

tested under combined biaxial bending and axial compression. Different ec-

centricities were used to examine the behavior of the slender columns. Two

types of columns were tested, B series were for L-shaped slender columns

and C series were for square slender columns. Specimens details are shown

in Table. 1. The tension test for # 2 and # 3 reinforcing bars were done

at Tinus & Olsen tension and compression test machine and all concrete

cylinders and columns were tested using MTS loading system.

3.1.2 Experimental setup and loading arrangement

Several couple sets of Ames dial gages were used to measure the deflec-

tions at the beginning of brackets and at mid-height of column in both X

and Y directions. The demec or mechanical gages were provided to measure

the strains at central portion of column in order to calculate the average

curvatures in both X and Y axes. Fig. 14 shows the demec or mechani-
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cal gages arrangements for L-shaped and square slender column specimens,

respectively.

Specimen
number

Main
bars

fy
(ksi)

f'c
(psi)

s
(in)

ex
(in)

ey
(in)

l
(in)

ρg
(%)

α
(deg.)

B1 8-# 2 63 3600 3 0.634 L359 48 4 25
B2 8-# 2 63 3636 3 0.845 1.813 48 4 25
B3 8-# 2 63 3886 3 1.061 1.061 48 4 45
B4 8-# 2 64 3886 3 1.414 1.414 48 4 45
B5 8-# 2 64 4256 3 0.354 0.354 48 4 45
B6 8-# 2 64 4256 3 0.707 0.707 48 4 45
B7 8-# 2 64 4237 3 0.609 0.793 48 4 37.5
B8 8-# 2 64 4237 3 1.218 1.587 48 4 37.5

C1 4-# 3 79 2771 3 0.383 0.924 48 4.9  22.5

C2 4-# 3 79 2695 3 0.707 0.707 48 4.9 45
C3 4-# 3 79 4212 3 1.414 1.414 48 4.9 45
C4 4-# 3 61 3700 3 0.707 0.707 48 4.9 45
C5 4-# 3 61 3700 3 0.765 1.848 48 4.9 22.5
C6 4-# 3 61 3700 3 0.383 0.924 48 4.9 22.5

α = tan'(ez/ey)
l = total length of column.

ex = eccentricity along x-axis
ey = eccentricity along y-axis
s = spacing of lateral reinforcement
fc' = ultimate strength of concrete.

fy = steel yielding stress.
ρg = steel percentage in gross cross section area.

Table 1. Details of specimens.
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All biaxially loaded columns were tested on MTS loading system. The

details of experimental setup are shown in Fig. 15 for L-shaped and square

column tests, respectively. Stroke control was operated at the constant

loading rate during testings. The readings from the dial gages and the

demec gages were obtained at each loading increment.

Figure 14a. Demec gage setup for L-shaped slender column specimens.
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Figure 14b. Demec gage setup for square slender column specimens.
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Figure 15a. Experimental setup for L-shaped slender columns.
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Figure 15b. Experimental setup for square slender columns.
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3.1.3 L-shaped slender column test

L-shaped slender columns were made of 4 feet long, longitudinally rein-

forced by eight #2 bars which were tied by 14 gage steel wires at spacing

3-inch intervals. Cross section of test column is shown in Fig. 16. The typ-

ical stress-strain curves for # 2 reinforcing bars are shown in Fig. 17a and

Fig. 17b. The brackets were one foot long on each end which were heavily

reinforced to prevent local failure. The reinforcements were assembled into a

unit before it was placed in the mold as shown in Fig. 18. The concrete used

to cast the test specimens was prepared from sand, Portland cement Type

III and water. The water cement ratio was 0.7 and the cement sand ratio was

3.0. The concrete properties and the stress-strain curves were determined by

using 3 by 6 inches cylinder. The cylinders were to be cast by filling the mold

in three equal layers and nodding each layer 25 times. After three days the

molds of column were stripped and the cylinders were taken out for curing.

Two days before the testing, the cylinders were capped and the column were

dried. The failure conditions for each column specimens are shown in Table

2. Fig. 19. shows the test specimens after failure.
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Test results of B-series columns
Specimen
number

location of
plastic hinge
	 length of
plastic hinge

I 	 no. of
I buckled bars

B1 close to upper bracket 6 inches 3
B2 near the middle i 4 to 6 inches none
B3 right at middle I 5 to 6 inches 3
B4 close to lower bracket 5 inches 2
B5 near the middle 5 to 6 inches 1
B6 right at the middle 5 to 6 inches 2
B7 near the middle 3 to 6 inches 2
B8 near the middle 	 f 3 to 4 inches 2

Table 2. Failure conditions for L-shaped slender columns.

Figure 16. Test specimen details for L-shaped cross section.
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Figure 17a. Stress-strain curve of # 2 bar for B1, B2 and B3 column tests.

Figure 17b. Stress-strain curve of # 2 bar for B4 to B8 column tests.
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Figure 18. Reinforcement details for L-shaped slender columns.
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Figure 19. L-shaped slender columns after failure.
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3.1.4 Square slender column test

Square slender columns were made of 4 feet long, longitudinally rein-

forced by four #3 bars which were tied by 14 gage steel wires at spacing

3-inch intervals. The typical stress-strain curves for # 3 reinforcing bars are

shown in Fig. 20a. and Fig. 20b. The brackets were eight inches long at

each end which were heavily reinforced to prevent local failure. The cross

section of test column is shown in Fig. 21. The concrete used to cast the

test specimens was prepared from a graded mixture of crushed quartz, sand,

Portland cement Type III and water. The failure conditions are shown in

Table 3. Fig. 22 illustrates the column specimens after testing.

Test results of C-series columns
Specimen
number

location of
plastic hinge

length of
plastic hinge

no. of
buckled bars

C1 close to upper bracket 6 to 7 inches none
C2 near the middle 8 to 9 inches none
C3 close to lower bracket 8 to 9 inches none
C4 right at the middle 8 to 10 inches none
C5 right at the middle 6 to S inches none
C6 right at the middle 7 to 8 inches none

,Table 3. Failure conditions for square slender columns.
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Figure 20a. Stress-strain curve of 	 3 bars for C1 to C3 column test

Figure 20b. Stress-strain curve of # 3 bars for C4 to 06 column test.
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Figure 21. Test specimen details for square cross section.
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Figure 22. Square slender columns after failure.



3.2 Analysis of test results

3.2.1 Introduction

In all, eight L-shaped (B1 - B8 specimens) and six square (C1 - C6

specimens) slender reinforced concrete column were tested at the present

study. Except B-1 specimen as a trial specimen, all other column test

results were analyzed.

The applied loads were determined directly from the MTS loading sys-

tem. Due to close-loop nature of the MTS loading system, which enables

eliminating sudden collapse of the slender column specimen at. maximum

load. Thus both the ascending and descending branches of the biaxial load-

deflection and moment-curvature curves were successfully determined.

The experiment al values of Mx  and My  were computed using the ex-

perimental axial load values obtained from the load measurements and

the load eccentricities were corrected for the mid-height deflection of the

column. These experimental values at maximum are detailed in Table 4.

Other experimental results can be found in Appendix A.

The deflection d can be calculated by d = di-d0wheredi=the dial

gage readings from each loading increments and do = the initial dial gage

reading. There are two dial gages in both X and Y directions at mid-height

of the column. Thus, the average deflection values were computed for each

loading increments in X and Y-directions, respectively.
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The strains ε from demec or mechanical gages can be determined by

ε=(li- l0)/l0, where li= length of demec gages at each loading step, and

l0= initial length of demec gages at zero loading. After determinations

of the strains at demec gage points 1-2-3 4-5-6-7 from B-series column

specimens and point 1-2-3-4 & 5-6-7-8 from C-series column specimens in X

and Y-directions, the strain-position curves were drawn as seen in Appendix

B.

The curvature values at the present study were determined by the slope

of the strain distribution diagrams as shown in Appendix B in both X and

Y-direction. Usually, the linear strain distribution curves are obtained. If

the strain distributions are not linear, the regression method of statistical

analysis will be preformed to compute the curvature values.

The present test results were analyzed by the Lotus 1-2-3 and the final

graphs were printed by Quattro. The crack and crush patterns for the series

B and C are given in appendix C.

3.2.2 Test results of L-shaped slender column

The details of strain-position curves for L-shaped slender column tests

are given in Appendix B. The complete biaxial load-deflection curves and

moment-curvature curves are given in Appendix A.
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3.2.3 Test results of square slender column

The details of strain-position curves for square slender column tests

are given in Appendix B. The complete biaxial load-deflection curves and

moment-curvature curves are also given in Appendix A.

Test results of B & C-series column tests
Specimen
number

P
(LBS)

Mx
(LB-IN)

My
(LB-IN)

B2 10250 21771 15398
B3 12824 15071 21660
B4 10117 17172 21754
B5 28823 13598 16673
B6 16071 15254 21259
B7 16063 16509 15106
B8 10520 19011 17332
C1 15521 24357 9697
C2 12820 15315 15306
C3 8990 16267 15928
C4 19060 18992 19645
C5 10710 24343 11175
C6 18710 25311 11665

Table 4. Maximum axial load and moments from tests.
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3.3 Comparison of test results and theoretical model

3.3.1 Introduction

The analytical values of load, bending moment components Ms and My ,

deflections and curvatures in both X and Y directions were computed for

all specimens using the present computer analysis mentioned in the previous

section.

For analysis purpose, the cross section of L-shaped column specimens was

divided into 52 confined concrete elements, 40 unconfined concrete elements

and 8 steel elements as shown in Fig. 5. Fig. 1 also shows that the square

cross section consists of 32 confined concrete elements, 28 unconfined concrete

elements and 4 steel elements. The slender column was also divided into

a different number of segments for computing the deflections in X and Y

directions. At present analysis, convergence can be achieved by dividing and

redividing the segments for before and after the formation of plastic hinge as

seen in Fig 10.

3.3.2 Maximum strength values

An examination of Tables 5, 6, 7 and 8 shows that good agreement was

achieved between the experimental strengths and the computed values for
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all L-shaped and square reinforced concrete slender column specimens. Due

to the second order effect, it should be noted that the loads to calculate

the maximum moment values are not necessary to be the maximum load.

3.3.3 Biaxial load -deflection curves

The deflections components along the x and y axes were measured

using dial gages with a least count of 0.001 in; the theoretical mid-height

deflection components were calculated using the present numerical analysis.

The experimental and theoretical load-deflection curves for L-shaped and

square columns are shown in Appendix D and E. The comparisons show

satisfactory agreement between experimental and theoretical curves. The

descending branch of theoretical and experimental load-deflection curves

were mostly successfully obtained for all specimens.
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Maximum axial load and deflection results
Specimen Test Analysis nnod*=6
number Pmax d dy Pmax Ratio** dx dy

B2 10250 0.69 0.40 10479  1.022 0.48 0.37
B3 12824 0.72 0.28 11872 0.926 0.55 0.31
B4 10117 0.82 0.38 9400 0.929 0.54 0.31
B5 28823 0.37 0.20 25727 0.893 0.35 0.18
B6 16071 0.68 0.28 16721 1.040 0.44 0.25
B7 16063 0.48 0.27 17358 1.081 0.41 0.26
B8 10520 0.65 0.46 10051 0.955 0.55 0.35

Maximum axial load and deflection results

Specimen Analysis nnod*=8 Analysis nnod =16
number P rmax Ratio dx dy P nmax Ratio** dx dy

B2 10500 1.024 0.48 0.37 10509 1.025 0.48 0.37
B3 11890 0.927 0.55 0.31 11907 0.928 0.55 0.31
B4 9416 0.931 0.54 0.31 9431 0.932 0.54 0.31
B5 25781 0.894 0.35 0.18 25841 0.897 0.35 0.18 1
B6 16718 1.040 0.44 0.25 16758 1.043 0.44 0.25
B7 17365 1.081 0.41 0.26 17400 1.083 0.41 0.26
B8 10055 0.956 0.55 0.35 10064 0.957 0.55 0.35

* nnod= number of segments for computations.
* * Ratio= P(analysis)/P(test)
units : Pmax (LBS), dx , dy, (INCHES)

Table 5. Maximum axial load and deflection results for L-shaped slender

columns.
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Maximum axial load and deflection results
Specimen Test Analysis nnod*=8
number Pmax dx dy Pmax Ratio** dx dy

C1 15521 0.24 0.68 14642 0.943 0.31 0.59
C2 12820 0.47 0.49 14085 1.099 0.47 0.47
C3 8990 0.52 0.56 10193 1.134 0.47 0.47
C4 19060 0.38 0.40 16431 0.862 0.35 0.35
C5 10710 0.38 0.64 10342 0.966 0.26 0.53
C6 18710 0.30 0.55 16907 0.904 0.24 0.47

Maximum axial load and deflection results

Specimen Analysis nnod*=16 Analysis nnod*=32
number Pmax, Ratio**

dx

dy Pmax Ratio**

dx

dy

Cl 14659 0.944 0.31 0.59 14665 0.945 0.31 0.59
C2 14109 1.101 0.47 0.47 14114 1.101 0.47 0.47

C3 10195 1.134 0.47 0.47 10195 1.134 0.47 0.47

C4 16465 0.864 0.35 0.35 16468 0.864 0.35 0.35

C5 10345 0.966 0.26 0.53 10352 0.967 0.26 0.53

C6 16945 0.906 0.24 0.47 16947 0.906 0.24 0.47 1

* nnod= the number of segments for computations

** Ratio= P(analysis) /P(test)
units : Pmax (LBS), dx, dy  (INCHES)

Table 6. Maximum axial load and deflection results for square slender

columns.
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3.3.4 Biaxial moment-curvature curves

The experimental strain distribution along both axes for specimens

was obtained using the data from demec or mechanical gages. A set of

strain values in X and Y directions were first established before evaluat-

ing the moment-curvature relationships. The experimental and theoretical

moment-curvature values for specimens B series and C' series are shown in

Appendix D and E. Good agreement was obtained between the theoretical

and experimental curves from zero load up to failure. Both ascending and

descending branches of moment-curvature curves were achieved. The termi-

nations in the experimental curvature measurements were due to dislodging

of demec or mechanical gages because of the crushing of concrete or because

of severe tension cracks. The theoretical results of maximum moment with

different number of segment s and experiment al results of maximum mo-

ment are shown in Table 7 and Table 8, respectively. It is noted that a

good agreement is also achieved.
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Maximum moment results
Specimen
number
	 Test Analysis nnod*=6

Mx My Mx . Ratio1 My Ratio2
B2 21771 15398 22911 1.052 13929 0.905
B3 15071 21660 16244 1.078 19089 0.881
B4 17172 21754 16215 0.944 18348 0.843
B5 13598 16673 13796 1.015 18073 1.084
B6 15254 21259 15944 1.045 19198 0.903
B7 16509 15106 18186 1.102 17711 1.172
B8 19011 17332 19483 1.025 17750 1.024

The results of maximum load and deflection
Specimen

number
theoretical nnod*=8 theoretical nnod*=16

Mx Ratio1 My Ratio2 Mx Ratio1 My Ratio 2
B2 22956 1.054 13950 0.906 22976 1.055 13960 0.907
B3 16270 1.080 19112 0.882 16291 1.081 19137 0.884
B4 16242 0.946 19137 0.845 16270 0.947 18410 0.846
B5 13825 1.017 18379 1.087 13859 1.019 18168 1.090
B6 15940 1.045 19196 0.903 15980 1.048 19243 0.905
B7 18196 1.102 17715 1.173 18232 1.104 17754 1.175
B8 19487 1.025 17752 1.024 19493 1.025 17741 1.024

* nnod= number of segments for computations

Ratio1  = Mx(analysis)/Mx(test)

Ratio2 .= Mx(analysis)/Mx(test)

units : Mx , My (LB-IN)

Table 7. Maximum moment results for L-shaped slender columns.



Maximum moment results
Specimen
number

Test Analysis nnod*=8
Mx My Mx Ratio1 My Ratio2

C1 24357 9697 22168 0.914 10137 1.045
C2 15315 15306 16578 1.082 16578 1.083
C3 16267 15928 19204 1.181 19204 1.206
C4 18992 19645 17368 0.914 17368 0.884
C5 24343 11175 24592 1.010 10570 0.946
C6 25311 11665 23567 0.931 10503 0.900

The results of maximum load and deflection

Specimen
number

theoretical nnod =16 theoretical nnod*=32
Mx Ratio1 My Ratio2 Mx Ratio1 M y Ratio2

Cl 22194 0.915 10158 1.048 22202 0.915 10163 1.048
C2 16606 1.084 16606 1.085 16612 1.085 16612 1.085

C3 19207 1.181 19207 1.206 19208 1.181 19208 1.206
C4 17404 0.916 17404 0.886 17407 0.917 17407 0.886
C5 24598 1.010 10578 0.947 24615 1.011 10584 0.947

C6 23620 0.933 10528 0.903 23623 0.933 10531 0.903

* nnod= number of segments for computations

Ratio1 = Mx(analysis)/Mx(test)

Ratio2 = 

M

x(analysis)

/M

x(test)

units : Mx , My (LB-IN)

Table 8. Maximum moment results for square slender columns.



4 SUMMARY AND CONCLUSIONS

A computer model which simulates the biaxial load-deflection and moment-

curvature behavior of standard and L-shaped slender reinforced concrete

columns subjected to combined biaxial bending and axial load is presented.

The secant stiffness method is used to determine the moment-curvature-

thrust relationship for any column sections. The finite difference method is

also used successful to study the three-dimensional load-deformation analysis.

The present computer program can be used to compute both ascending and

descending branches of load-deformation curves with the deformation incre-

ments control. Nonlinearity due to material plasticity and geometric change

of the slender column are overcome by a successive iteration approach.

A total of six square and eight L-shaped slender reinforced concrete

columns were tested to verify the accuracy of the theoretical analysis de-

veloped herein. Good agreement was achieved between theoretical results

and test results. Based on the results presented, the following conclusions

may be made :

1. The assumptions of the present theoretical analysis have been found

reasonable and this computer model is able to predict the behavior of

slender columns under combined biaxial bending and axial compression.

2. For determination of descending branch of the load-deformation curves,

85



the convergence criteria for the finite difference method in analysis is

obtained by redividing the sections or segments once the plastic hinge

starts forming at critical section.

3. Both the experimental results and computer analysis developed herein

may be found useful in limit analysis and design of two or three dimen-

sional reinforced concrete structures.

4. Using the suitable stress-strain curves for steels and concretes, the

present computer program can be easily modified to study the behavior

of slender composite reinforced concrete columns, behavior of slender

prestressed reinforced concrete columns and behavior of slender high

strength reinforced concrete columns with and without steel fibers.
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Appendix A. EXPERIMENTAL RESULTS

Experimental results of load-deflection and moment-curvature curves

for L-shaped and square slender reinforced concrete columns are shown

herein. Fig. A.1 through Fig. A.14 present B-series columns tests and Fig.

A.15 through Fig. A.26 present C-series columns tests, respectively.
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Figure 4.1 Load-deflection curve for column B2

Figure A.2 Moment-curvature curve for column B2
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Figure A.3 Load-deflection curve for column B3

Figure A.4 Moment-curvature curve for column B3
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Figure A.5 Load-deflection curve for column B4

Figure A.6 Moment-curvature curve for column B4
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Figure A.7 Load-deflection curve for column B5

Figure A.8 Moment-curvature curve for column B5
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MOMENT-CURVATURE CURVE FOR COLUMN B6

Figure A.10 Moment-curvature curve for column B6
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Figure A.11 Load-deflection curve for column B7

Figure A.12 Moment-curvature curve tor column B7
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Figure A.13 Load-deflection curve for column B8

Figure A.14 Moment-curvature curve for column B8
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Figure A.15 Load-deflection curve for column Cl

Figure A.16 Moment-curvature curve for column C1
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Figure A.17 Load-deflection curve for column C2

Figure A.18 Moment-curvature curve for column C2
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Figure A.19 Load-deflection curve for column C3

Figure A.20 Moment-curvature curve for column C3
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Figure A.21 Load-deflection curve for column C4

Figure A.22 Moment-curvature curve for column C4
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Figure A.23 Load-deflection curve for column C5

Figure A.24 Moment-curvature curve for column C5
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Figure A.25 Load-deflection curve for column C6

Figure A.26 Moment-curvature curve for column C6
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Appendix B. Strain-position curve

Strain-position curves for L-shaped and square slender reinforced

concrete columns are shown herein. Fig. B.1 through B.14 present B-series

column tests and Fig. B.15 through B.26 present C-series column tests,

respectively.
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Figure B.1 Strain position curve for column B2 from point 1-2-3.

Figure B.2 Strain position curve for column B2 from point 4-5-6-7.
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Figure B.3 Strain position curve for column B3 from point 1-2-3.

Figure B.4 Strain position curve for column B3 from point 4-5-6-7.
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Figure B.5 Strain position curve tor column D4 from point 1-2-3.

Figure B.6 Strain position curve for column B4 from point 4-5-6-7.



Figure B.7 Strain position curve for column B5 from point 1-2-3.

Figure B.8 Strain position curve for column B5 from point 4-5-6-7.
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Figure B.9 Strain position curve for column B6 from point 1-2-3.

Figure B.10 Strain position curve for column B6 from point 4-5-6-7.
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Figure B.11 Strain position curve for column B7 from point 1-2-3.

Figure B.12 Strain position curve for column B7 from point 4-5-6-7.
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Figure B.I3 Strain position curve for column B8 from point 1-2-3

Figure B.14 Strain position curve for column B8 from point 4-5-6-7.
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Figure B.15 Strain position curve for column C1 from point 1-2-3-4.

Figure B.16 Strain position curve for column C1 from point 5-6-7-8.
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Figure B.17 Strain position curve for column C2 from point 1-2-3-4.

Figure B.18 Strain position curve for column C2 from point 5-6-7-8.
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Figure B.19 Strain position curve for column C3 from point 1-2-3-4.

Figure B.20 Strain position curve for column C3 from point 5-6-7-8.
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Figure B.21 Strain position curve for column C4 from point 1-2-3-4.

Figure B.22 Strain position curve for column C4 from point 5-6-7-8.
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Figure B.23 Strain position curve for column C5 from point 1-2-3-4.

Figure B.24 Strain position curve for column C5 from point 5-6-7-8.
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Figure B.25 Strain position curve for column C6 from point 1-2-3-4.

Figure B.26 Strain position curve for column C6 from point 5-6-7-8.

125



Appendix C. COLUMNS AFTER FAILURE

Crack and crushed patterns for L-shaped and square slender reinforced

concrete columns are shown herein. Fig. C.1 through C.8 present B-series

column tests and Fig. C.9 through C.14 present C-series column tests.
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Figure C.1 Crack and crush patterns for column B1.
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Figure C.2 Crack and crush patterns for column B2.
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Figure C.3 Crack and crush patterns for column B3.
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Figure C.4 Crack and crush patterns for column B4.
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Figure C.5 Crack and crush patterns for column $5.
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Figure C.6 Crack and crush patterns for column B6.
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Figure C.7 Crack and crush patterns for column B7.
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Figure C.8 Crack and crush patterns for column B8.
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Figure C.9 Crack and crush patterns for column Cl.
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Figure C.10 Crack and crush patterns for column C2.
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Figure C.11 Crack and crush patterns for column C3.
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Figure C.12 Crack and crush patterns for column 04.
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Figure C.13 Crack and crush patterns for column C5.
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Figure C.14 Crack and crush patterns for column CO.
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Appendix D.

Theoretical and Experimental Comparisons for

B-series L-shaped Slender Columns.

Fig. D.1 through D.14 present theoretical and experimental compar-

isons of load-deflection curves and Fig. D.15 through D.28 present theoret-

ical and experimental comparisons of moment-curvature curves.

-6-- 	 Experimental results.

Theoretical results. (8 segments)
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Figure. D.1 Comparison load-deflection curve (X-DIR.) for column B2.

Figure. D.2 Comparison load-deflection curve (Y-DIR.) for column B2.
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Figure. D.3 Comparison load-deflection curve (X-DIR.) for column B3.

Figure. D.4 Comparison load-deflection curve (Y-DIR.) for column B3.
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Figure. D.5 Comparison load-deflection curve (X-DIR.) for column B4.

Figure. D.6 Comparison load-deflection curve (Y-DIR.) for column B4.
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Figure. D.7 Comparison load-deflection curve (X-DIR.) for column B5.

Figure. D.8 Comparison load-deflection curve (Y-DIR.) for column B5.
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Figure. D.9 Comparison load-deflection curve (X-DIR.) for column B6.

Figure. D.10 Comparison load-deflection curve (Y-DIR.) for column B6.
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Figure. D.11 Comparison load-deflection curve (X-DIR.) for column B7.

Figure. D.12 Comparison load-deflection curve (Y-DIR.) for column B7.
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Figure. D.13 Comparison load-deflection curve (X-DIR.) for column B8,

Figure. D.14 Comparison load-deflection curve (Y-DIR.) for column B8.
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Figure. D.15 Comparison moment-curvature curve (Mx&ϕx ) column B2.

Figure. D.16 Comparison moment-curvature curve (My&ϕy ) column B2.
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Figure. D.1T Comparison moment-curvature curve (Mx&ϕx ) column B3.

Figure. D.18 Comparison moment-curvature curve (My&ϕy ) column B3.
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Figure. D.19 Comparison moment-curvature curve ( Mx&ϕx ) column B4.

Figure. D.20 Comparison moment-curvature curve (My&ϕ y ) column B4.
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Figure. D.21 Comparison moment-curvature curve ( Mx&ϕx ) column B5.

Figure. D.22 Comparison moment-curvature curve ( My&ϕy ) column B5.
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Figure. D.23 Comparison moment-curvature curve (Mx&ϕx )) column B6.

Figure. D.24 Comparison moment-curvature curve (My&ϕy ) column B6.
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Figure. D.25 Comparison moment-curvature curve ( Mx&ϕx ) column B7.

Figure. D.26 Comparison moment-curvature curve (My&ϕy ) column B7.
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Figure. D.27 Comparison moment-curvature curve (Mx&ϕx ) column B8.

Figure. D.28 Comparison moment-curvature curve (My&ϕ y ) column B8.
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Appendix E.

Theoretical and Experimental Comparisons for

C-series Square Slender Columns.

Fig. E.1 through E.12 present theoretical and experimental comparisons

of load-deflection curves and Fig. E.13 through E. 26 present theoretical

and experimental comparisons of moment-curvature curves.

Experimental results.

-F- 	 Theoretical results. (8 segments)
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Figure. E1 Comparison load-deflection curve (X-DIR.) for column C1.

Figure. E.2 Comparison load-deflection curve (Y-DIR.) for column Cl.
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Figure. E.3 Comparison load-deflection curve (X-DIR.) for column C2.

Figure. E.4 Comparison load-deflection curve (Y-DIR.) for column C2.
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Figure. E.5 Comparison load-deflection curve (X-DIR.) for column 03.

Figure. E.6 Comparison load-deflection curve (Y-DIR.) for column 03.
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Figure. E.7 Comparison load-deflection curve (X-DIR.) for column C4.

Figure. E.8 Comparison load-deflection curve (Y-DIR.) for column C4.
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Figure. E.9 Comparison load-deflection curve (X.-DIR.) for column C5.

Figure. E.10 Comparison load-deflection curve (Y-DIR.) for column C5.
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Figure. E.11 Comparison load-deflection curve (X-DIR.) for column C6.

Figure. E.12 Comparison load-deflection curve (Y-DIR.) for column 06.
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Figure. E.13 Comparison moment-curvature curve (Mx&ϕx ) column C1.

Figure. E.14 Comparison moment-curvature curve ( My&ϕy ) column C1.
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Figure. E.15 Comparison moment-curvature curve (Mx&ϕx ) column C2.

Figure. E.16 Comparison moment-curvature curve ( My&ϕy ) column C2.
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Figure. E.17 Comparison moment-curvature curve ( Mx&ϕx ) column C3.

Figure. E.18 Comparison moment-curvature curve (My&ϕy ) column C3.

165



Figure. E.19 Comparison moment-curvature curve (Mx&ϕx ) column C4.

Figure. E.20 Comparison moment-curvature curve (My&ϕy ) column C4.
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Figure. E.21 Comparison moment-curvature curve ( Mx&ϕx ) column C5.

Figure. E.22 Comparison moment-curvature curve ( My&ϕy ) column C5.
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Figure. E.23 Comparison moment-curvature curve (Mx&ϕx ) column C6.

,
Figure. E.24 Comparison moment-curvature curve ( My&ϕy ) column C6.
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Appendix F.

Modified Cranston-Chatterji stress-strain curve
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Ritter's parabola:
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Appendix G. DETAILS OF SCHEME FOR REDIVISION
OF SEGMENTS

171



The finite difference method is again used to solve the three dimensional

behavior of slender columns after the plastic hinge forms. Fig. (10) shows

segments are redivided.

For symmetrical case, the analysis can be further simplified. Let

lc =(nnod/2)+1

where lc = nodal number for the middle segment of column.

nnod= number of segments in slender column.

For segment (i),

For segment (lc),

For segment (lc - 1),
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Substitute Eq. (20),(G.1),(G.2) in Eq. (18),

For segment (i),

For segment (/c),

For segment (lc - 1),
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Expand Eq. (18) and rearrange it and for segment (i),

For segment (lc),

Let
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For segment (lc — I),

Rearrange above Eq. (G.8) and for segment (i),
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And let

For segment (/c),

For segment (lc - 1
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Add i=2 to i 	 /c, it, results in the following equations :
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Select the deflection dv(lc) as the control increment for each iteration

step and interchange dv(lc) and P(c) from Eq. (G.10), one has
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