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ABSTRACT

Title of Dissertation:
Behavior of Square and L-shaped Slender Reinforced Concrete Columns
under Combined Biaxial Bending and Axial Compression.

Wen Hu Tsao, Ph.D. in Civil Engineering, January 1992

Dissertation directed by: Dr. C.T.Thomas Hsu, Professor
Department of Civil and
Environmental Engineering

A numerical analysis was developed to evaluate the complete load-deflection
and moment-curvature relationships for square and L-shaped slender rein-
forced concrete columns subjected to biaxial bending and axial load. This
computer model can be used for any cross section geometry and material
properties of normal concrete. The analysis was based on a deformation
control and both the ascending and descending branches of curves can be
studied. The finite difference method was introduced to calculate the deflec-
tions which satisfy the compatibility equations. Six square slender columns
and eight L-shaped slender columns were tested to compare their experi-
mental load-deformation results with the analytical results derived from the
theoretical studies. A satisfactory agreement was achieved for the present

study. The results of present study can be used for future design reference.
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NOTATIONS

ar : area of element k.

Cj;. By ¢ stiffness coefficient.
CL : length of segment (2).
d.,d, : deflection in X, Y axis.
d,,d, : deflection in U, V axis.

da(iny 19258z, ¢ deflection at segment (i +1),(¢), (¢ — 1) in X axis.
Ayiinry o)y, ¢ deflection at segment (2 +1),(¢), (i — 1) in Y axis.
Qugipry o Dugsys du(, _,, : deflection at segment (i +1),(z),(¢ — 1) in U axis.
duiyrysogiy 1oy ¢ deflection at segment (7 + 1), (4), (1 — 1) in V axis.

ex,ey : eccentricity in X, Y axis.

€us€y ¢ eccentricity in U, V axis.

(E,)x : secant modulus of elasticity for element k.

Hiy, Gy, Ag), Dyiy : temporary matrix notations to simplify the
expressions in the matrix operations.

I, : moment of inertia about X axis.

I, : moment of inertia about Y axis.

I., : product moment of inertia.

lc : nodal number for the middle segment.

Ip : length for the plastic hinge.

M, M

e - the calculated value for the bending moment components in

X, Y axis under biaxial bending and axial compression.

v



M, M,

Ue)? 7 Ve)

: the calculated value for the bending moment components in
U, V axis under biaxial bending and axial compression.

Py : the calculated value for the axial load P under biaxial bending

and axial compression.

by Dy ¢ Curvature at segment (1) with respect to My, My,

UALL : allowable incompatibility for load F.

VALL : allowable incompatibility for strain at coordinate origin €oyy-

WALL : allowable incompatibility for deflections d (), dy(s)» dui)s do(i)-

X,y : centroidal coordinates for any element in the cross section.

T, Yk : centroidal coordinates for element k in the cross section.

6, : the angle between principal axes U,V and X,Y axes.

€r : strain at element k which is subjected to biaxial bending and

axial compression.

€0, ¢ StTain at coordinate origin in the principal axes for segment (2).

€0 : strain at coordinate origin in the principal axes.

¢z, Py ¢ curvature with respect to M., M.

¢y, @, : curvature with respect to M,, M,.

Pugyyr Py @ curvature at segment (1) with respect to M, ., M,

Y)Y VG T
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1 INTRODUCTIONS

1.1 STATEMENT OF ORIGINALITY

The irregular shaped slender columns are required for some particular
structural design; however, the load and deformation behavior of irregular
shaped slender reinforced concrete columns is rarely available in the litera-
ture. There is no published data up to date which discuss both linear and
non-linear load-deformation behavior of L-shaped slender reinforced columns
under combined biaxial bending and axial compression, particularly for de-

scending branch of load-deformation curve.

The present research carries out not only experimental tests but also
theoretical studies as well for complete load-deformation behavior of biaxially
loaded slender reinforced concrete columns with square and L-shaped cross

sections.
The finite difference method proposed herein for both standard and L-

shaped columns has been found to be a very simple model to study the effects

of plastic hinge and ductility behavior in columns.



1.2 LITERATURE REVIEW

1.2.1 BIAXIAL BENDING AND AXIJAL LOAD

Many researchers have done a lot of investigations or designs for reinforced
concrete members under biaxial bending and axial compression. Muller [63]
proposed a design method by using a simple monograph. Chu [18] assumed
the position of the neutral axis and stress distribution across the section to
find the ultimate capacity due to axial load and moment. It can be extended
to any sections of irregular shapes subjected to any kind of loading. However,

the deformation behavior was not discussed.

Au [8] combined unsymmetrical bending in two direction, called skew
bending, He assumed an equivalent uniform stress distribution over the com-
pressive concrete section. Charts were provided to find the dimensions of the
equivalent compressive stress block. This procedure can be solved by trial

and error method.

Based on approximated failure surfaces, Bresler [15] derived some approx-
imated mathematical expressions suggested by Pannell [66]. Two alternative

methods are shown in the following:

Bresler load-contour method : A simple direct method is provided to

calculate the ultimate strength of a reinforced concrete column subjected to



axial compression and biaxial bending. The equation is given below:

L
F;

11
P, P

=+
P

P., P, = the load carrying capacities under compression with uniaxial
eccentricities e, and e, respectively.
Py = the load carrying capacity under pure axial compression.

Bresler {ailure surface method: A nondimensional interaction equation

was proposed to represent the failure surface at a constant axial compression.

o, B are exponents that depends on the dimensions of the cross section,
the reinforcement amount and location, concrete strength, steel yield stress

and amount of concrete cover.

M, = P,e,

M., = M, capacity at axial load P, when A{, is zero.
M,, = M, capacity at axial load P, when A, is zero.
es, €, = eccentricities along x and y axis respectively.

3



Furlong [31] assumed that the neutral axis is perpendicular to the resul-
tant moments and simplified the biaxial bending on the square columns to an
uniaxial bending. The interaction diagrams were proposed by all calculations

for any arrangement of reinforced square columns.

Meek [60] assumed that the neutral axis coincides with the limit of the
Whitney stress block and the e, e, remain constant so that if P is increased,
the bending moment M., M, can be increased proportionately. By changing
the inclination and location of neutral axis and finding o value, the interac-

tion of biaxial eccentricity can be simplified to an uniaxial eccentricity.

M e
— = Z = g = constant

M, ¢

Wiesinger [83] demonstrated the design of small eccentricities for sym-
metrical columns in one or two directions. where €'/t is not more than 2/3

in either direction.
e’= the eccentricity of the resultant load.
t= out-to-out dimension of column in the direction of bending.

Two dimensionless variables : "shape factor” for the gross area, g, and
"pattern factor” for the steels were introduced for convenience. The design
procedure was followed by those tables and calculated by trial and error

method.
Pannell [66] could predict stress distributions by considering the interac-

4



tion surface based on the three dimensional curves of failure load against the

corresponding moments. The equation for transforming the actual moment

is given below :

FM,secd
M, = 1 — N(sin®26)
6 = tan™! %

where M,, M, are the components on the x and y axes of actual radial

moment.

¢= the ratio M,,/M,, of the balanced failure moments.

F= a factor adjusting for steel cover ratio.

My,

F=
Mba

M;, = the balanced failure moment for the actural steel cover used.

My, = the equivalent moment for the ratio upon which the design curve

is based.
N= a deviation factor.

M,= the moment to be used in conjunction with the required failure load

Pannell [65] also extended Bresler’s [29] equation to the following formula

M, .. M, .,

5



where My, , M; = the failure moments for some load P acting in planes

X and y respectively.

Rewriting
My, . -
M, = v1+ (tan @)
where
M
tanf = p—=
an ¢ M,
and
My, secf

M, 1— Nsin®26
Both equations need to make load-moment interaction curve served for
all depth-of-cover ratios. If the column has a different d5/d ratio, then the
quantity M, shall be multiplied by F to obtain an appropriate value of M ,

where
d=over-all depth of column.
d, = concrete cover depth to the center line of steel.

Ang [7] proposed a method based on the "cracked section” theory to de-
sign a column under biaxial bending and axial load. The neutral axis for
uncracked section was determined by using the familiar formula for eccentri-

cally loaded column as follows :

P Mg :1:ch2
A 1. I,



Ang assumed the position of the neutral axis of the cracked section to be
parallel to that of the uncracked section, and the final result may be obtained

by trial and error method.

Aas-Jakobsen [1] assumed the equivalent moment M. to simplify the de-

sign procedure of a column under a biaxially eccentric load.

A finite element approach was used by Warner {80] in which the con-
crete and steel areas in the cross section are broken into many small discrete
areas. Axial force and biaxial moments can be determined by summation
of the elemental forces acting on the elemental areas and summation of the
moments of the elemental forces. Any desired form of stress-strain relations
for concrete and steel can be used and any irregularities in the shape of cross

section and in any arrangement of steel reinforcement can also be calculated.

Fleming and Werner [29] presented a simplified ultimate strength design
procedure, {for the most widely used ranges of concrete strength, steel yield
and steel percentage. It can be directly obtained the size of section and area
of reinforcing steel by the design curves. The neutral axis for the cross section

was determined by trial and error approach.

Weber [81] has shown a set of charts for both analysis and design of
columns with biaxial bending. There are some limitations for applying the
chart. It's only good for square column with symmetrical reinforcing and for

different combination.
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Cranston [23] in 1967, presented the computer method by finding the
relations between moment, axial load and curvature (M-P-¢) to form the
governing differential equations. This method can take care of the columns
with different materials, cross section varied along the length of the column,
residual stresses existed, initial curved column and the moment developed in
the end restraint systems. The cross section of column was divided into strips
perpendicular to the principal axis. The bending moment of the column
was limited to only about the principal axis. The computer procedure was
followed by the inelastic analysis and could calculate all stages of behavior

up to maximum load.

Ramamurthy [70] in 1966, proposed the design method of biaxially loaded
columns by trial and error procedure and failure surface in order to determine
the ultimate load. The approach was limited for rectangular and square cross

section with symmetrical distribution of reinforcement.

Farah, Huggins [28] in 1969, studied the hinged reinforced concrete columns
under biaxial bending and axial load by an integration method. Three si-
multaneous nonlinear equations was solved by the Newton-Raphson method.
The flexure rigidity EI varied along the column and for each loading condi-
tion should be renovated. The strain distribution was first assumed and by
successive iteration of the summation forces and moments which was com-
pared to the applied loads and moments in order to obtain the equilibrium

situations. The Newton-Raphson method was introduced to speed the con-



vergence to equilibrium. The procedure could be extended for slender column

just dividing the column into segments and again into sections.

Hsu [40,46] in 1973 and 1974, presented the determination of strain and
curvature distribution in reinforced concrete sections under biaxial bending
and axial load. The computer program was developed to study the ultimate
strength, interaction diagrams and deformation behavior. The computer
analysis can handle any concrete cross section geometry, steel arrangement
and material properties. Taylor’s expansion was introduced for calculating
the summation ol loads and moments and the Newton-Raphson method was

used to accelerate the convergence.

Smith [77] in 1973, assumed a steel ratio for a given column size and used

the equivalent uniaxial eccentricity to simplify the biaxial bending case.

Gouwens [32] in 1975, gave a design procedure for concrete column subject
to biaxial bending. A couple of equations were illustrated to compare with

the others researcher’s results.

Furlong [30] in 1979, recommended a design procedure for biaxially loaded
concrete columns. It followed the usage of a parabola-trapezoidal stress strain
function for concrete compression zone instead of the traditional rectangular
stress block and the results were found to be more accurate with the observed

results than the other analytic stress strain functions.

Taylor [78] in 1985, proposed a direct design method by two approaches



: Firstly, the direct design contour charts was used to facilitate the design.
Secondly, an automatic design procedure was proposed using the computer

program that required some informations.

There are very few research studied the subject of reinforced concrete
member under combined biaxial bending and tension. Hsu [41] in 1986, pre-
sented an important aspect in the development of the strength-interaction
diagrams, load contours failure surface and design equations. The computer
program was created for any geometry of cross section and material proper-

ties.

Ross and Yen [74] in 1986, proposed an interaction design of reinforced
concrete columns with biaxial bending. The simplified approach was made by
assuming the biaxial bending capacity to uniaxial bending capacity and thus
obtained a mathematical description of a particular load contour representing
the intersection of the failure surface. But the equilibrium and compatibility
conditions were not always ensured and suggested for use in a square cross

section only.

Recently, Hsu [45] proposed a general equation representing a three-
dimensional failure surface of a column section. He provided a reasonable
mathematical equation that can represent both the strength interaction di-
agrams and failure surface for the member under combined biaxial bending
moments and axial load. The equation of failure surface method has been

found to be a simpler and more logical approach for analysis and design of
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columns under combined biaxial bending and axial load. A general equation

can be written as follows:

Pn"‘-Pnb Mru: 1.5 Mny 1.5
2T L — V=10
&=, T, Ok,

where
P, = nominal axial compression (positive), or tension (negative).
Mz, My, = nominal bending moments about x- and y-axis, respectively.

Fo = maximum norminal axial compression (positive), or axial tension

(negative).
F,, = norminal axial compression at balanced strain condition.

Mabz, Myp, = norminal bending moments about x- and y-axis, respec-

tively, at balanced strain condition.
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1.2.2 BIAXIALLY LOADED L-SHAPED REINFORCED CON-
CRETE COLUMNS

The analysis and design of L-shaped columns under biaxial bending and
axial load is sometime encountered in a building project. The corner columns
in a framed structure and bridge piers are usually subjected to combined

biaxial bending and axial load.

Muller [62] in 1959, proposed the design method of the L-shaped columns
with small eccentricities. The application was limited for the column sections
symmetrical about 45 degree axis. Three sets of tables could be found useful

during the trial and error procedure.

Marin[56] in 1979, presented the design aids for L-shaped short columns
subjected to biaxial bending and axial load. The idea was illustrated by
an isobaric failure surface. The selected concrete cross sections were also
symmetrical about the 45 degree axis and the steel distributions were limited
to one kind for each thickness ratio studied. The design charts were only

available to very simple geometries.

Ramamurthy [70] in 1983, presented two approaches: First method was
based on failure surface in actual shapes of load contours using an inverse
method of analysis. Second method was proposed to design the L-shaped

section by the method of an equivalent square or rectangular cross section.

Hsu [38] in 1985, studied both the strength and deformational behavior
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of L-shaped tied columns under combined biaxial bending and axial com-
pression. The computer program was developed to satisfy the equilibrium of
forces and strain compatibility. The Newton-Raphson numerical method was
again used to handle the nonlinear convergence. For given material stress-
strain relationships for concrete and reinforcement steels, the L-shaped cross
section was divided into elements for computer analysis. Since plane sections

remain plane during bending, Hsu proposed :
€ = €p + Gu Uk + Uy
where ¢,= uniform longitudinal strain at plastic centroid

@y, Pu= the curvature produced by bending moment M,,, M, respectively.

vk, U= the coordinates about the principal axes for the element k. After

the strain distribution is assumed and by stress-strain curves the axial force

P and bending moment M,, M, can be calculated by
Pey = frax
k=1
Mu(c) = kaakvk
k=1

My = > fragus
k=1

The iteration procedure is required to meet the convergence for each

assumed loading step withF ), M), M) and can be accelerated by the
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extended Newton-Raphson method. where
M) = Pisyey
M) = Playeu

where e,, e, are the load eccentricity components along u,v axes. The
coordinate transformation is also needed to calculate the load, moment and
curvature with respect to global coordinate axes x and y, respectively. They
are shown in reference Hsu[38]. From the theoretical analysis results, the
theoretical interaction curves could be obtained corresponding to centroidal

axes.

For the experimental program, the demec gage method was used by Hsu
[38] in order to obtain the strain distributions, and the curvature could be

determined by the following equation :
€c
QS:::’ or ¢y - 'k_d

kd=the distance between the location with the concrete strain ¢. and the

point of zero strain along x or y axis.

The load contour interaction relating M,;, M,, can be obtained from

cutting the failure surface at a constant load P,,where
M., = P,e,

Mny = Pnez
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where M., M,, are nominal bending moment about x and y axis, respec-

tively.

A general non-dimensional equation as proposed by Hsu [38] : the load
contour can be again used for a design formula of L-section

Mus . or | May

ay ay _
MM.) (Moy) =10

(

where a4, a, are dependent on the dimension of the column, steel ratio

and material properties etc.
M, = M, capacity at axial load P, when M,, 1s zero.

M

oy = My, capacity at axial load P, when M, is zero.

1.2.3 SLENDER REINFORCED CONCRETE COLUMNS

Broms and Viest [16] in 1958, introduced the ultimate strength analysis
of long restrained ended reinforced concrete columns under bending and ax-
ial compression. The strength of a restrained column depends on both the
properties of the column and the restraining members. The deflected shape
of the column was assumed a part of cosine wave and the restraining moment

was assumed proportional to the end rotations.

Chang and Ferguson [17] in 1963, presented the study for both eccentri-

cally and concentrically loaded, slender reinforced concrete columns under
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short-time load. The concentrically loaded column analysis was based on
von Karman’s theory and Hognestad’s stress-strain relationship for concrete,
and the idealized stress-strain curve for reinforcing steel. For the specific
values of column load, the moment versus edge-strain curves were plotted.
These curves were corrected between the moment and load for each in terms
of edge strains which were derived by a couple of equations. At first they
solved the load versus edge-strain equations, then obtained the moment ver-
sus edge-strain curves for a given critical load. By numerical integration of
moment versus edge-strain curve, the deflection shape, length of cracking in

the section and end slope of deflected column were determined.

Parme [68] in 1966, proposed the design aids for restrained eccentrically
loaded slender column which provided the practical method for designers. He
concluded that the design followed by the stability analysis was time consum-
ing and the use of the ACI Code reduction formulas were too conservative

to utilize.

MacGregor and Barter [53] in 1966, used the long column analysis by
Pfrang and Siess [69] to determine the eccentrically loaded long columns bent
in double curvature. The column was tended to bent in a single curvature, but
in order to obtain the double curvature , the end restraints were introduced.
A portion of moment applied to the joint was resisted by the restrained
members. The column was stronger than a hinged column subjected to

the same eccentricity. The second effect of bending moment was tended
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to strengthen the column, and the slenderness had less effect on restrained

columns than on hinged column.

Martin and Olivieri [57] in 1966, tested the slender reinforced concrete
columns under opposite eccentricity loading. A point of contraflexure be-
tween the ends of the column would produce the study of the difference in
strength reduction for length of compression members depending on the lo-
cation of the contraflexure. They used the computer program developed by
Breen and Ferguson [14] to accomplish the theoretical analysis. The analysis
was based on von Kdarman's theory and Hognestad’s stress block for concrete

and an elasto-plastic stress strain relationship for steel.

Drysdale [26] in 1967, studied the behavior of slender reinforced concrete
column subjected to sustained biaxial bending. The experiment was inves-
tigated by a single column size with constant material properties, and the
columns were tested in pair to ensure the accuracy of results. The math-
ematical column model was developed to study the shrinkage, creep and
elastic strains. Only half column length was used because the column bent

in symmetric single curvature. The pinned-ended condition was used.

Abolitz [3] in 1968, presented the equations instead of the regular charts
or table for working stress design of symmetrically reinforced short and long
columns subjected to flexure. The design approaches were followed, one in
accordance with ACI Code and the other was only for rectangular columns

by an alternative method and could be modified later for square or circular
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sections. The biaxial bending followed the same formulas except the addition

of the computation of weighted averages.

Warner [80] in 1969, presented a finite element approach by dividing the
concrete cross section and steel areas into small elements and by summation
of the elemental forces in order to determine the biaxial moments. It could
be used for any stress-strain relations of concrete tensile strength and the

extended unloading of concrete in compression at high strains.

MacGregor, Breen and Pfrang [50] in 1970, presented a proposal to revise
the long column design procedures of the ACI 318-63. The columns was
designed to carry the forces and moments based on a rational second order
structural analysis. A moment magnifier § was introduced for the design
procedure which was similar to the one used in ACI 1963 Specifications. This
moment magnifier was affected by the ratio of end moments and the deflected
shape. The results of this proposed procedure led the designer to understand
the basic behavior in slender columns and to evaluate the additional moment

requirements in restraining members.

Colville [19] in 1975, developed a simplified procedure of estimating a
deflection magnification factor and investigated the accuracy of the moment
magnification in the design of square reinforced concrete columns. A finite
element approach was used to study the effects of tension cracking, nonlin-
earity of the concrete in compression and yielding of the reinforcing steel.

By including the effects of secondary bending and large displacement, the
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geometric nonlinearity was considered in this study.

MacGregor, Oelhafen and Hage [52] in 1975, presented the analysis of a
step-by-step incremental rate-of-creep of a reinforced concrete columns sub-
jected to sustained loads and they were able to work out a statistical evalu-
ation of the flexural stiffness EI. A series of computer experiments were also

carried out to derive the design equations for flexural stiffness El, as given

below :
El= Ecl, + E I
dax
or
E.l
EI - ag + 1'2E5pi]g
where

a = 0.75 + 1.8, but not less than 1.0 .

Bp= the ratio of the design sustained load to the total design load.
p:= total reinforcement ratio.

I,= gross moment of inertia of uncracked concrete section.

I,= moment of inertia of the reinforcing bars.

E., E,= modulus of elasticity of concrete and steel.

El= rotational stiffness of cross section.

It was recommended to use in the current ACI Code.
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Basu and Suryanarayana [9] in 1975, proposed the computer method for
analyzing the restrained long reinforced columns under biaxial bending. No
sidesways were permitted. The load-deflection and moment-end rotation
were studied by the results of the computer analysis. Only half of the col-
umn length was inputted according to the assumed symmetrically bent single
curvature. The nonlinear governing equations were solved and the conver-

gence for iteration was assured by the delta-square extrapolation procedure.

Abdel-Sayed [2] in 1975, proposed the improved method of slender rein-
forced concrete column under biaxially eccentric loading. A calibrating factor
was presented for the use of the section property for square symmetrically
reinforced concrete columns. the rectangular cross section could follow the
second calibrating factor by using the same section property. The method
took into account the compatibility of strains and lateral deformations. The
designers could obtain a good initial estimate for the cross section by the sec-
tion property curves. For different arrangement of reinforcement, it required

an additional set of section properties curves.

Al-Noury [4] in 1982 and [5] in 1980, used the finite segment method to
analyze the reinforced concrete column from a space structure. The cross
was divided into finite elements to calculate its tangent stiffness by solving
the governing differential equations about the principal axes. The modified
tangent stiffness approach was used to handle the material plasticity and the

geometrical change during the iterations.
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The incremental tangent stiffness matrix was derived from

{6 F} =[Q]{é D}

6 F', 6 D= the infinitesimal changed in force and deformation.
[Q]= the incremental tangent stiffness matrix of each element.

From the force equilibrium of equations and the stress-strain relationships

for each material, the change in forces are equal :

No Ny

N,
51\4 - ZZ y] c 1_7 6€c 17 + p Z yL 663)1: - PI Z yk(Gc)k(éec)kA Ac
i= 1_7 1 =
Na N

6 M, -ZZ (GL)ij(be) ,J—}—pka k(des) k—pZa:k r(be) A A,

i=1 j=1

Na Nb

§P = ZZ c)ij(be. ,J+pZ(G (bes A“"PZ k(de )i A Ae

=1 j=1

where
Tk, Yk, Ti, y;= the coordinates for each element.
p’ = the transformed steel ratio.(=N_p/N)
p = reinforcement ratio.
(Go)iss (Gs)ky (Go)k= the stiffness for concrete and steel.

(6€)k, (b€c)i;, (6€s)r = the incremental change of strain for concrete and

steel.

N,, N,= the number of concrete element in rows and columns.



N., N,= the number of cross section elements for concrete and steel.
A A.= concrete element’s area.

The strain distribution assumed to be linear,

€=€0+y¢r+$¢y

e= strain at any point.
€o= strain from the compression loading only.

¢z, ¢,= curvature with respect to x,y axes.

Then,
6 M:L‘ Qll Q12 QIB ‘5¢r
6 My = Qm sz Q23 5¢y
6P st sz Qsa beo

The incremental deformation can be solved by
{6 D} =[Q)7 {6 F}

For biaxially loaded slender reinforced concrete columns, the original cen-
troid of the cross section is moved to an instantaneous centroid due to the

nonlinearity of concrete stress-strain relation.

The axes transformation and rotation are required to obtain the new

principal axes. The segment stiffness matrix [K(10 x 10)] can be obtained



by the following equation :

f8(3)

fa(3) ua(3)
ma(2) | _ |, 04(2)
= [ k(10 x 10) } (3)
mp(2) (2)
The axial deformation, shear deformation and the torsional effects were
neglected by Al-Noury. He concluded that the tangent stiffness approach gave

a lower bound solution and yielded the good results for slender reinforced

concrete column under biaxial loads.



1.3 OBJECTIVES OF THE RESEARCH

1. To develop a non-linear computer analysis of slender reinforced concrete
columns under combined biaxial bending and axial load. Both material
and geometrical nonlinearity are included in the computer analysis.
The analysis can also be used for any section geometry. The computer
analysis will evaluate the complete behavior of the moment-curvature
and load-deflection characteristics for biaxial loaded slender reinforced

concrete columns with standard and L-shaped cross sections.

2. To test six 4 feet long square reinforced concrete columns and eight 4
feet long L-shaped reinforced concrete columns under combined biaxial
bending and axial compression. The proportional loading and pinned-
ended conditions are used. The experimental ultimate load, moment-
curvature and load-deflection curves will be attained and compared

with the results of the proposed computer analysis.

3. The main purpose of this research is to investigate the behavior of the
square and L-shaped slender columns subjected to biaxial bending and
axial compression. The experiment results and computer analysis de-
rived from this study may contribute to the development of any future

design method.
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2 THEORETICAL ANALYSIS

2.1 Analysis of standard shaped slender column

To study the complete load-deflection and moment-curvature curves
of standard shaped slender columns subjected to biaxial bending and axial
compression with monotonic loadings, a strain compatibility and equilib-
rium of forces and moments which can account for any loading condition

and material properties must be utilized.

The present computer analysis is based on the following assumptions :

1. Plane section remains plane before and after bending.

2. Strains in the steel and concrete at their interfaces are assumed to be

compatible.
3. Effect of creep and shrinkage are neglected.
4. There is no initial deflection in the undeformed columns.

5. The axial deformation, shear deformation and torsional effect are all

neglected.

6. Monotonic loading.

The cross section of a standard shaped slender column can be divided

into several small elements as shown in Fig.(1) . Consider for each small
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element k, with its centroidal coordinates (T, yx), the strain € is assumed

to be uniformly distributed across the element k. According to the assump-

tions that plane section remains plane , and for an element that is subjected

to biaxial bending and axial compression, the strain ¢, can be expressed in

the following form:

€ = €0 + Py + DOy

(1)

Element 1 to 4 steel element.
Element 5 to 32 unconfined concrete
Element 33 to 64 confined concrete

Y
|
0.5 in 5 12
0.375 in 32 (1) 33 36 2
0.325 in | 48 49 52|37
0.3in | 6016162
0.3 in L 6463
0.325 in | 45 |58 55 | 40
M-
0.375 in @ 44 41 @
0.5 in 26 19
J
o © SDT.C’ .Q) Sel e
- e

> X

Figure 1: Cross section of square slender column.
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where
€o : strain at the coordinate origin of the principal axis.

¢. : curvature with respect to M.. ¢, is po‘sitive when it can produce

.compressive strains in the positive y direction.

¢, : curvature with respect to M,. ¢, is positive when it can produce

compressive strains in the positive x direction.

Idealized piecewise linear stress-strain curve and modified Cranston-
Chatterji stress-strain curve (see Appendix F.) have been used for reinforc-
ing steel and concrete elements, respectively. For a value of strain ¢ , a
value of the secant modulus of elasticity (E,), for steel or concrete elements
can be obtained from Fig.(2) and Fig. (3). The secant modulus of elastic-
ity can be assured to give the positive values of (E,); and to prevent the
singularity problem in the matrix operation. The equilibrium equations in
the cross section with n elements for the axial load P, bending moment

components M,, M, can be expressed in the following forms :

n

Py = Y (E)kerar

k=1

M., = > (B.)kexaru (2)
k=1

My(c) = Z(E,)kekakmk
k=1

The subscript (¢) from P, My ,,, My, expresses the calculated values

in an iteration cycle.
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(E,); : the secant modulus of elasticity in element k.
€ : strain of element k.

a; : area of element k.

Zx,yr - coordinates at the centroid of element k.

Substitute Eq.(1), in Eq. (2), Eq.(2) can be rewritten in the following

matrix form.

Py Ciai(Borar  Tia(Eoraryr Tici(Edraxzi ] [ €0
Mz, o= | Tici(Eearye Tici(Eraryi Thoi(Eorearziyn ¢z
My, She1(Brarze Tioi (B hvarziye Tioy(Eorarzy | | Sy

(3)
And let

Ci = Z(Es )kak
k=1

n

Ciz = Cn= Z(Es)kak?}k
k=1

T

Cizs = Oy =Z(Ea)kak93k

k=1

Coy = Z(Es )kakyﬁ
k=1

Ci = Cszzz(Es)kakwkyk

Caz = Z(Ea)ka‘kwlzc
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Figure 4: Slender square column divided into n segments
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For slender column, the second order effect i1s important and for the case
of proportional loading. Let d.,d, be expressed the deflections of column

in x and y axis, respectively. Eq.(3) can be simplified in the following :

P(c) Cii Cra Cis €0
P(t)(ey +dy) = | Ca Ca Cas Pz (4)
Pylez + d2) Cs Csp Cas ¢y

The finite difference method is hereby introduced to solve the three
dimensional behavior of slender columns. As shown in Fig.(4), slender
column is divided into several segments. The fundamental idea of this
method is to replace the differential equation of the deflection curve by its
finite difference approximation, and then to solve algebraically the finite
difference equations obtained at serval segments along the column. So for

the segment (1) :

d —2d,,, +d

Y(i+1) (i) Y-y . 5
(CL)2 (Qs:c)(’) ( )
d. . —2d. . +d.,.
T(it1) T(i) -1 .
(CL)2 (d)y)(’)

where

CL=the length of segment (3).
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Substitute (5) in Eq.(4), one has

Py Cn G2 Cis €ogiy
P(c)(ey—i‘dy(,-)) = CZI 022 C123 "'(dy(,'.H)_Zd'y(,')—*-dy(;_x))/(CL)g
-P(C)(e:c + d:t(;)) C31 C32 033 —(d:c(”,l) - 2d::(‘) + d.‘r(g_;))/(C‘L)z
(6)
Expand Eq.(6) and rearrange it and for the segment (1)
2 Py
(CL) P(C)(ey + dy(g)) =
P(C)(e-'f + dx(.))
€og;)
’ d'y(i_n
(CL)ZCHM “Cll’(-‘) _013(-‘) 2012({) 2013({) ”’Cl%) Cl% d’%’—la
(CL)ZCHM —C”(i; "0230‘) 2022(:‘) 2023(:‘) _022(:') 023(-') dy(»’)
(CL)ZC‘“U) _032(") _03%‘) 2032(5) 2033(0 "03%‘) 033(»‘) d‘x(f)
dy(-'+1)
(i)
(7)
2 Py
(CL) ‘P(C)(ey + dy({)) =
P(C)(e: + d“(i))
0
dy(.‘—l)
T{i—1)
0 —Cip,y —Cugyy (CL)Cuy, 201z, 203, 0 —Ciy, —Ciay, €0
0 _022(-') —Czew (CL):C“(f) 202%’) 2023(»‘) 0 —sz(‘.) '"023(-‘) dy(-‘)
0 —03%) "033(-') (CL) C31(=‘) 2032(:‘) 2033(0 0 "032(=') _033(-‘) dm(f)
0
dy(-‘m
\ Tli+1)

32

(8)




And let

0 _Cl%‘) _Cl%’)
“4(‘i) = 0 _022(,') _C23(“)
0 _032(-') _03,3(:‘)

(CL)ECM(‘, 2012“) 2013(,-)

Dy = (CL)2021(0 2022(-‘) 2023({)
(CL)ZCal(,.) 203, 205,
For the pinned-ended boundary conditions,
dy,) = day, =0
Bynsy) = dagpyy, =0
Add i=2 to i=n, one has
1
e, + 4, i
| o
Y A Dy A 0
. . :
2 —
(CL) P(c) (ey + dy(.‘)) - A(i) D(i) A(i)
(ez +d::(,-)) .. ..
1 0
(ey + dy(n)) i
(ez + d:(n)) J

For symmetrical case, the analysis can be simplified, let

le =(n/2)+1

33

Ay Dy |

(9)

€0(a)
Y(2)

T(2}

€o;)
Y(s)

E(i)

€0(n)

Y(n)

L\ T E(n)




n = number of sections or segments in slender column.
where lc = the nodal number for the middle segment.

and

d

Y(le+1) = dy(zc—a)
d

T(te+1) = dz(lc-x)

60(1c+1) = 60(1:—1)

Eq.(9) can be expressed in the following :

1 ) €03,
(ey + d'ym) ) i dy(?)
(€2 + dagy)) Dy Ag dagy)
: Aisy Dy A :
1 o,
2
(CLYPlyq (ey+dy,) = Ay Doy Ag dy;,
(e: + d:c(e)) d-"’(i)
: Agc-1y Dye-1y Afie-1) :
1 | 2‘4(16) D(IC) . €01
(ey + dy(lc)) dy(lc)
(ez + d-’f—(xc)) J d“(lc) J
(10)
Select the deflection dy(xc) as the contro! increment for each iteration

and P from Eq. (10), thus

step and interchange d,,,
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( 0 3
0
0
”dy(xc) -Cu(,c_l) =
_ng(lc—l)
—Csz(lc 1}
2012(1:)
2022(“)
203y,
known
[ (CL)L)CHM 2012(2) 2013(2) e "‘(CL)2 O ] 50(2)
(CL)Cn,, 2Cn,, 20, —(CL)*(ey + dy,,) 0 Ay,
(CL)"’C'31(2) 2032(2) 2033(2) v —(C'L)z(ex + d’(i’)) 0 dx(:,,
€o;
—-(CL) —Cra. dygy
"(CL):(ey + dy(!c—l)) _023(“_1) d“’(i)
_(CL) (e:t +2(23:(lc—1)) _033(x<—1)
0 (CL;((CLZL dye) ig”’“" e
- \ €y Y(lc) 23(1c) P(c)
| _(C’L) (e: + dz(lc)) 2033(1c) J dzuc)
(11)
known unknown

After satisfying the convergence criteria, the load Pi.), deflections d“’(s‘) , dy(‘.)

and strain at origin €0,y are obtained. The biaxial bending moment Mz(zcw My,
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at middle segment can be calculated as follows :

M:(lc) = P(c)(ey + dy(lc))

]My(tc) = P(C)(e== + dx(zc))
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2.2 Analysis of L-shaped slender column

To study the complete load-deflection and moment-curvature curve
of L-shaped slender columns subjected to biaxial bending and axial com-
pression with monotonic loadings, a strain compatibility and equilibrium
of forces and moments which can account for any loading condition and

material properties can again be utilized.

The cross section of a L-shaped column can be divided into several
small elements as shown in Fig. (5). According to Hsu [5], consider for
each small element k, with its centroidal coordinates (z, yx ), the strain ¢,
is again assumed to be uniformly distributed across the element k. Fig.
(5) shows an angle 6, which defines the angle between the x, y coordinate
system and the principal axes u, v. The principal axes are defined as those

axes for which the product of inertia has vanished. Thus

—21,
tan 26, = I, _i (12)
1, =2,
Hp:§tan 1(I_;_') (13)
v -

where
I. = the moment of inertia about x axis.
I, = the moment of inertia about y axis.

I

zy = the product moment of inertia.
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According to the assumption that plane section remains plane during
bending, and for an element which is subjected to biaxial bending and axial

compression, the strain €, can be expressed as

€k = €9 T Qﬁu'v + Qzl)vu’ (14)

where
€o : strain at the coordinate origin of the principal axes.

¢, : curvature with respect to M,. ¢, is positive when it can produce

compressive strains in the positive v direction.

¢, : curvature with respect to M,. ¢, is positive when it can produce

compressive strains in the positive u direction.

u,v : the coordinates for the principal axes. where

u | _ | cosb, —sind, T
{v }~[sin6p cos 6, ]{y} (15)

Idealized piecewise linear stress-strain curve and modified Cranston-
Chatterji stress-strain curve are again used for reinforcing steel and concrete
elements, respectively. For a value of strain ¢ , a value of the secant
modulus of elasticity (E,); for steel or concrete elements can be obtained

from Fig.(2) and Fig. (3). The secant modulus of elasticity can be assured
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Figure 5. Cross section of L-shaped slender column.

to give the positive values and to prevent the singularity problem in the

matrix operation.

The equilibrium equations in the cross section with n elements for the
axial load P, bending moment components M,, M, can be expressed in the

following forms :

n

P(c) = Z(Es)kekak
k=1

n

]\/Iu(c) = Z(E,)kekakvk (16)

k=1
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n

My, = > (Eearw

k=1

The subscript (c) from Py, M, , M,

(s My, Tepresents the calculated values

in an iteration cycle.
(E,)x : the secant modulus of elasticity in element k.
€ : strain of element k.
ar @ area of element k.

uk, v : the coordinates at the centroid of element k for the principal

axes.

Based on the assumption that the plane section remains plane during

bending, Eq. (16) can be rewritten in the following matrix form.

Pl [ Tha(Bokar Tin(Borarve Tin(Brarue ] [ €
My, ¢t = | Sia(Bkavor Tioy(Brarv?  Ticy(Eearurve | ¢
M, | Sr (Borarur i (Borarurvr S (Borarui | L

(17)
And let

Bn = Z(Es)kak
k=1

By; = By = Z(Ea)kakvk
k=1 :

n

Bis = By = Z(Es)ka'kuk

k=1
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Bys = Bs = Z(Es)kakukvk

=1

Bss = > (E,)raru}

For the slender column, the second order effect may be critical for the

biaxial bending calculations, Eq.(17) can be simplified in the following form:

P(c) By; By; Bis €0
Peyev+dy) p = | Bay By Bas P (18)
Proy(ew + du) B3y Bss Bass o

where
e | _ c‘os 6, —sinf, € (19)
€ sinf, cosb, ey
The finite difference method is again used to solve the three dimensional

behavior of slender columns. Fig.(6) shows the slender column that was

divided into several portions. For the segment (z) :

dy. .. —2d,. +dy, ’
Y(i+1) b(d) Y- ; 20
Cis (¢4) (20)
ugiyy) = 2ugy + Duy) = —(Py):
(CLy ’

Substitute the above equation in Eq. (18), one obtains,

P(c) Bll B12 B13 60(,’) ,
.P((_.)(fiiJ + dv(;)) = B21 Bzg B23 _(d”(-’+1) - Zd‘,(i) + d,_,(‘.—_l))/(CL)z
P(c)(eu + du(;)) B31 B3, B33 "“(du(‘-_n) - zdu(i) + du(i_l)){éCL)

1
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Figure 6. Slender L-shaped column divided into n segments.
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Expand Eq.(21) and rearrange it, and for the segment (),

Pe)
(CL)2 P(c)(ev + d”(i)) = (22)
P(c)(eu + d‘U(i))
€0y |
Vii-1})
(CL)QBHM — B, —Bas, 2Bay; 2B1g; =By, — By oy
(CL)*Byy,y —Bay, —Bas, 2B25y 2Bas;, —Bazy, —Basy, du,)
(CL)2B31(.-) —Baa, = Bay, 2B32, 2By, —Bay, —Bag, dug;
V(i+1)
Ufi+1)
Py
(CL)Z P(c)(ev + d’v(,')) = (23)
P(C)(eu -+ d,_,m)
0
d"(»-l)
” dvn—n
0 _B“m _313(-‘) (CL)-BHU) 2312(:‘) 2313(-’) 0 _B”m _B”m €o;)
0 _B”m _B23m (CL)2321<=') 2B22(=‘) 2323(:’) 0 —ng(‘.) "’B23m (1)
0 ”B“'zm “B33(i) (CL)ZB‘”(:') 2B32m 2333(,-) 0 _B32(-') B33(:‘) d“(a')
0
dv(i-u)
U(i41)
And let

0 "B”(x‘) _Bmu)
G(i) =10 _B”(f) _Bz%)
0 _B32(=’) _B33<:‘)

(CL)an(‘.) 2‘B12(i) 2B13('.)

Hi = (CL)zBmm 2B33;,, 2Bag,,
(CL)ZBgl(i) 2B32(‘.) 2B33(‘.)
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For slender columns with pinned ends :

d

d,

(nt1) dﬂ(w) =

va) = dugy =0

0

Add :=2 to i = n, it results in the following equations:

1
(e” + d”(z))
(e, + dus))

1
(CL)QP(C) (es + dvm) =
(e + dum)

1
(e, + dv(n))
(eu + du(n)) J

[ Hizy G

Giey Hpy G

Gu Hp G

For symmetrical case, the analysis can be further simplified. Let

lc =(nnod/2)+1

where lc = nodal number for the middle segment of column.

nnod= number of sections or segments in slender column.

and

d

d

Ureqr)

d

V(let1) = V(lc—1)

d

U(lc—1)

€0(1c41) T €0pc—y
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1 3
(ev T dv(z))
(eu + du(g))

1
(CL)z.P(C) (eu -+ dv(‘.)) =
eu + dy,
1
(e, + dv(zc))

(eu + du(zc)) J

Select the deflection d

step and interchange d,

—d

[ Hzy G

V(ic)

and P from Eq. (10), one has

Ge) Hie G

Goy Hu G

as the control increment for each iteration

aw]

Y(ie) ——B12(1c_,1)

45

€0(2)
v(2)

Y(2)

€0
()

U1y

€0(1c)
ie)

U(le)




[ (CL)Buy,, 2B, 2Bus, : ~(CLY 0
(CL)Zle(z) 2322(2) 2’823(2) T —(CL)*(en + d“(2)) 0
(CL)2B31(2) 2332(2) 2B33(2) s —(CL)Z(GU + d’“(z)) 0

—(CL)2 _~B13(lc—1)

—(CL)f(ev + dv(zc—x)) _B23(1c~1)

_(CL)-(eu + du(lc—l)) *B33(1c-1)
—(CL)? 2By3,,,,
0 _(CL)j(ev + dv(zc)) 2Bm(lc)
_(CL) (eu + du(zc)) 2B33(lc)
(26)

known unknown

Once the load-deflection and moment-curvature results in the principal

and d

axes are obtained, the deflection d are transformed into x,y

¥(1) Y(s)
coordinate systems. It is because all slender columns are tested in the x,y
coordinate system. The deflection for the segments from :=1 to n in the

X,y coordinate system can be calculated as follows :
d,. cosf, sind dy,.
=) | » P u(s)
{ dy) } [ —sinf, cosé, } { Ay } (27)
And’

d - Qdy(;) + dy(;—z)

(¢=)i = — e (CL)? (28)
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dm(f-u) _ de(f) + dr(f—n
(CL)?

(Qby)i ==

For the proportional loading system, the biaxial bending moment M., ,My(k) at

the middle segment can be obtained as follows:

Mﬂ?(zc) = P(C)(ey + dy(zc))

My(lc) = P(C)(e:r + di?(zc))
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2.3 ACCURACY AND CONVERGENCE CRITE-
RIA

1. The assumption of uniform strain distribution in a small element can
be modified by increasing the number of elements in the cross section.
It will increase the CPU time for the computations. But the results
as shown in Fig. (7) indicate the analysis results of present study are

reasonably accurate.

2. The convergence criteria are developed to examine the iteration cycles
and compare with allowable incompatibilities. The allowable incompat-
ibilities are set in the present study as follows: UALL=0.01 for the load
Py, VALL= 1077 for the strain at coordinate origin €0 ;, and WALL=

0.001 for the deflections dy,,, dy), du;;, and dy,,. The computation will

RON
continue to go to the next increment only if the solutions satisfy allow-

able incompatibilities UALL, VALL and WALL all together.

3. It is well known that the assumption of the uniaxial stress-strain curves
for both reinforcing bars and unconfined or confined concrete may cause
a minor error since the slender columns undergo a three dimensional

behavior.

4. The slender column is divided into a different number of segments for
computing the deflections by the finite difference method. It is well-

known that the more segments are divided in the column member , the
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more accurate results are achieved as compared with the tests. Based
on the present study, it has been found that it is true only for the
ascending branch of the load-deformation curves until the maximum
load. When the column starts to form a plastic hinge at mid-height,
the behavior of column changes tremendously. Fig. (8) shows the
analysis using different number of segments (nnod), the different results
of deflections are obtained in the descending branch of the curve. When
the column starts to form the plastic hinge, the curvature is increased
tremendously within the range of plastic hinge, as seen in Fig. (9).
From the observation of tested column , it is reasonable to assume the
length of plastic hinge lp= 1.5d to 2d. The present computer model
is corrected to set the lp after the column reaches the maximum load.
In other words, the column is re-divided into segments which is equal
to lp at the mid-height and the same length for the rest of column as
shown in Fig. (10).

It can be seen in Fig. (11), for example for column B2, the load-
deflection results are calculated from the different number of segments.
The final convergence can be achieved for both 8 and 16 segments.
However, the column with 8 segments gives a more reasonable and

satisfactory results.

. The effect of torsion on slender column is neglected. During present

experimental setup, four dial gages #5,#6,#7 and #8 are arranged to
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check if the column rotates during the test. As shown in Fig. (12), the
column deforms as normal as the one without twisting moment applied
to the column. The pinned-ends in the present experiment provide
enough friction resistance to prevent the rotation of the column during
testing. The present computer model does not consider the torsional
effect in the analysis and the results of the present computer analysis
and the present experimental results reflect a good agreements between

them as shown in the study.

. Two loading brackets were provided at each end of test column to
assist with the application of biaxially eccentric loads, these brackets
were heavily reinforced to prevent any premature failure. However,
the effect of these brackets on the behavior of slender column is also

neglected in the present computer analysis.
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Figure 7. Analysis results by number of elements in cross section.
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Figure 8. Analysis results by number of segments in column B3.
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Figure 9. Curvature values along half column at various loading stages

after maximum load.
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Figure 10. Segments are redivided when the plastic hinge forms.
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Figure 11. Convergence studies on column B2.
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Figure 12. Deflection variations along column B7
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2.4 DESCRIPTION OF COMPUTER PROGRAM

The present computer program was written in FORTRAN 77 and run
in the NJIT Tesla system. It can be used at any IBM compatible personal

computer using Microsoft FORTRAN.

The input data was created in a input file and the output file was gener-
ated by the program to store the results. The flow chart is given in Fig. 13

and the main notations are defined as follows :

e Read data : Read the input data file.

e Give initial value for boundary condition and control increment : The
boundry condition is pinned-ended, the control deflection increment is

the deflection d, at the middle segment.

o IKEY=0 : IKEY controls the current increment step. If the conver-
gence can not be reached, it will readjust the increment and go back

to iteration process for convergence.

e Tolerance incompatibility : The incompatibility tolerances are Uall for
Py, Wall for dz(‘),dy(l.),du(i) and dy,, and Vall for €, respectively.

e 333 : This is the beginning to start the ISEC iteration.(usually 300

iterations was programmed)

e Do 999 : This is an iteration loop for ISEC.
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Do 888 : LC is the number of segments to be divided for column. This

is a loop to relate the local to the global system.
Check if sym. case : Check if the cross section is a symmetrical case.

Rotate to the principal axes : Rotate the coordinate system to the

principal axes system for computations.

Find SUM* : This is a step to find the values of [C] matrix from Eq.
(4), or [B] matrix from Eq. (18).

CALL CALCAU : CALCAU is a subroutine to solve the unknowns
from Eq. (11) or Eq. (26).

Check convergence : The solutions should be the same or less than the

allowable incompatibilities.

Check ISEC = LP : If ISEC = LP, the convergence can not be reached,

and the analysis must try a new increment for the control deflection.
IKEY = IKEY + 1 : Go to the next increment step.

Check curvature : If the curvature in the middle segment increases

tremendously, set the length of plastic hinge and redivide the segments.

Check IKEY : If the analysis reaches the final load, stop the computa-

tion.
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Figure 13. Flow chart for present computer program.
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3 EXPERIMENTAL TESTS AND COMPAR-
ISON WITH COMPUTER ANALYSIS

3.1 Test program
3.1.1 Introduction

A test program was arranged to verify the accuracy of the theoretical
analysis of this study. Eight L-shaped and six square slender columns were
tested under combined biaxial bending and axial compression. Different ec-
centricities were used to examine the behavior of the slender columns. Two
types of columns were tested, B series were for L-shaped slender columns
a&@_@/g@i@s were for square slender columns. Specimens details are shown
in Table. 1. The tension %ést for # 27 and # 3 reinforcing bars were done
at Tinus & Olsen tension and compression test machine and all concrete

cylinders and columns were tested using MTS loading system.

3.1.2 Experimental setup and loading arrangement

Several couple sets of Ames dial gages were used to measure the deflec-
tions at the beginning of brackets and at mid-height of column in both X
and Y directions. The demec or mechanical gages were provided to measure
the strains at central portion of column in order to calculate the average

curvatures in both X and Y axes. Fig. 14 shows the demec or mechani-
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cal gages arrangements for L-shaped and square slender column specimens,

respectively.

Specimen | Main | f, . s ex €y I | p, a

number | bars | (ksi) | (psi) | (in) | (in) | (in) | (in) | (%) | (deg.)
B1 8-#2| 63 |3600| 3 |0.634|1.359| 48 4 25
B2 8-#2] 63 (3636 3 |0.845)1.813| 48 4 25
B3 8-#2| 63 | 3886 3 |1.061}1.061| 48 4 45
B4 8-#2) 64 3886 3 |1.4141.414 48 4 45
B5 8-#2| 64 | 4256 3 |0.354}|0.354| 48 4 45
B6 8-#2| 64 | 4256} 3 |0.707 | 0.707 | 48 4 45
B7 8-#2| 64 |4237| 3 |0.609;0.793 | 48 4 37.5
B8 8-#2| 64 4237 3 |1.218]1.587| 48 4 37.5
Cl | 4#3| 79 | 2771 3 103830924 48 | 49 | 225
C2 4-#£3 1 79 (2695 3 |0.707]0.707 | 48 | 4.9 45
C3 4-#3 | 79 | 4212 3 [1.414|1.414| 48 | 4.9 45
C4 4-#3 1 61 | 3700 3 |0.707|0.707 | 48 | 4.9 45
C5 4-#3 | 61 [ 3700 | 3 |0.765| 1.848 | 48 | 4.9 | 22.5
C6 4-#3 | 61 [ 3700 3 {0.3830.924| 48 | 4.9 | 22.5

a = tan"'(e./€y)

I= total length of column.
e, = eccentricity along x-axis

e, = eccentricity along y-axis
s = spacing of lateral reinforcement
fi= ultimate strength of concrete.

fy = steel yielding stress.

p, = steel percentage in gross cross section area.
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All biaxially loaded columns were tested on MTS loading system. The
details of experimental setup are shown in Fig. 15 for L-shaped and square
column tests, respectively. Stroke control was operated at the constant
loading rate during testings. The readings from the dial gages and the

demec gages were obtained at each loading increment.

0.5 1n point
- 1 .
) 1.0 1n 5 .
’ 1.0 in
: - 0.5 1n 3 .
\. L, 05in 4 .
h 1.0 in
j __.7'r.__ ® 5 °
: 1.0in
| —F— e : 6 .
NG 1.0 n
B N e 1 7 .

| 10.0 in ’]

Figure 14a. Demec gage setup for L-shaped slender column specimens.
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L ]
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N 5in -
N 0.5 ] - .
N 0.51n
AN ° 8 ¢
N - . .
N 0.2 1mn

Figure 14b. Demec gage setup for square slender column specimens.
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Figure 15a. Experimental setup for L-shaped slender columns.
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Figure 15b. Experimental setup for square slender columns.



3.1.3 L-shaped slender column test

L-shaped slender columns were made of 4 feet long, longitudinally rein-
forced by eight #2 bars which were tied by 14 gage steel wires at spacing
3-inch intervals. Cross section of test column is shown in Fig. 16. The typ-
ical stress-strain curves for # 2 reinforcing bars are shown in Fig. 17a and
Fig. 17b. The brackets were one foot long on each end which were heavily
reinforced to prevent local failure. The reinforcements were assembled into a
unit before it was placed in the mold as shown in Fig. 18. The concrete used
to cast the test specimens was prepared from sand, Portland cement Type
IIT and water. The water cement ratio was 0.7 and the cement sand ratio was
3.0. The concrete properties and the stress-strain curves were determined by
using 3 by 6 inches cylinder. The cylinders were to be cast by filling the mold
in three equal layers and rodding each layer 25 times. After three days the
molds of column were stripped and the cylinders were taken out for curing.
Two days before the testing, the cylinders were capped and the column were
dried. The failure conditions for each column specimens are shown in Table

2. Fig. 19. shows the test specimens after failure.
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Test results of B-series columns

Specimen location of length of no. of

number plastic hinge plastic hinge | buckled bars
B1 close to upper bracket 6 inches 3
B2 near the middle 4 to 6 inches none
B3 right at middle 5 to 6 inches 3
B4 close to lower bracket 5 inches 2
B5 near the middle 5 to 6 inches 1
B6 right at the middle | 5 to 6 inches 2
BT near the muddle 3 to 6 inches 2
B8 near the middle 3 to 4 inches 2

Table 2. Failure conditions for L-shaped slender columns.
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Figure 16. Test specimen details for L-shaped cross section.
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Figure 17a. Stress-strain curve of # 2 bar for B1, B2 and B3 column tests.
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Figure 17b. Stress-strain curve of # 2 bar for B4 to B8 column tests.
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Figure 18. Reinforcement details for L-shaped slender columns,
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Figure 19. L-shaped slender columns after failure.
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3.1.4 Square slender column test

Square slender columns were made of 4 feet long, longitudinally rein-
forced by four #3 bars which were tied by 14 gage steel wires at spacing
3-inch intervals. The typical stress-strain curves for # 3 reinforcing bars are
shown in Fig. 20a. and Fig. 20b. The brackets were eight inches long at
each end which were heavily reinforced to prevent local failure. The cross
section of test column is shown in Fig. 21. The concrete used to cast the
test specimens was prepared from a graded mixture of crushed quartz, sand,
Portland cement Type IIl and water. The failure conditions are shown in

Table 3. Fig. 22 illustrates the column specimens after testing.

Test results of C-series columns

Specimen location of length of no. of
number plastic hinge plastic hinge | buckled bars

C1 close to upper bracket | 6 to 7 inches none

C2 near the middle 8§ to 9 inches none

C3 close to lower bracket | 8 to 9 inches none

C4 right at the middle | 8 to 10 inches none

C5 right at the middle 6 to S inches none

C6 right at the middle 7 to 8 inches none

‘Table 3. Failure conditions for square slender columns.
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Figure 22. Square slender columns after failure.



3.2 Analysis of test results
3.2.1 Introduction

In all, eight L-shaped (B1 - B8 specimens) and six square (Cl - C6
specimens) slender reinforced concrete column were tested at the present
study. Except B-1 specimen as a trial specimen, all other column test

results were analyzed.

The applied loads were determined directly from the MTS loading sys-
tem. Due to close-loop nature of the MTS loading system, which enables
eliminating sudden collapse of the slender column specimen at maximum
load. Thus both the ascending and descending branches of the biaxial load-

deflection and moment-curvature curves were successfully determined.

The experimental values of 1f, and 1/, were computed using the ex-
perimental axial load values obtained from the load measurements and
the load eccentricities were corrected for the mid-height deflection of the
column. These experimental values at maximum are detailed in Table 4.

Other experimental results can be found in Appendix A.

The deflection d can be calculated by d = d; — dy, where d; = the dial
.gage readings from each loading increments and dy = the initial dial gage
reading. There are two dial gages in both X and Y directions at mid-height
of the column. Thus, the average deflection values were computed for each

loading increments in X and Y-directions, respectively.
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The strains e from demec or mechanical gages can be determined by
€ = (l; — lp)/lo, where I; = length of demec gages at each loading step, and
[; = initial length of demec gages at zero loading. After determinations
of the strains at demec gage points 1-2-3 & 4-5-6-7 from B-series column
specimens and point 1-2-3-4 & 5-6-7-8 from C-series column specimens in X
and Y-directions, the strain-position curves were drawn as seen in Appendix

B.

The curvature values at the present study were determined by the slope
of the strain distribution diagrams as shown in Appendix B in both X and
Y-direction. Usually, the linear strain distribution curves are obtained. If
the strain distributions are not linear, the regression method of statistical

analysis will be preformed to compute the curvature values.

The present test results were analyzed by the Lotus 1-2-3 and the final
graphs were printed by Quattro. The crack and crush patterns for the series

B and C are given in appendix C.

3.2.2 Test results of L-shaped slender column

The details of strain-position curves for L-shaped slender column tests
are given in Appendix B. The complete biaxial load-deflection curves and

moment-curvature curves are given in Appendix A.
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3.2.3 Test results of square slender column

The details of strain-position curves for square slender column tests
are given in Appendix B. The complete biaxial load-deflection curves and

moment-curvature curves are also given in Appendix A.

Test results of B & C-series column tests

Specimen P M. M,

number | (LBS) | (LB-IN) | (LB-IN)
B2 10250 | 21771 15398
B3 12824 | 15071 21660
B4 10117 17172 21754
B5 28823 | 13598 16673
B6 16071 { 15254 21259
B7 16063 | 16509 15106
B8 10520 | 19011 17332

C1 15521 | 24357 9697
C2 12820 | 15315 15306
C3 8990 16267 15928

C4 19060 | 18992 19645
C5 10710 | 24343 11175
Cé6 18710 | 25311 11665

Table 4. Maximum axial load and moments from tests.
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3.3 Comparison of test results and theoretical model

3.3.1 Introduction

The analytical values of load, bending moment components M, and M,,
deflections and curvatures in both X and Y directions were computed for
all specimens using the present computer analysis mentioned in the previous

section.

For analysis purpose, the cross section of L-shaped column specimens was
divided into 52 confined concrete elements, 40 unconfined concrete elements
and 8 steel elements as shown in Fig. 5. Fig. 1 also shows that the square
cross section consists of 32 confined concrete elements, 28 unconfined concrete
elements and 4 steel elements. The slender column was also divided into
a different number of segments for computing the deflections in X and Y
directions. At present analysis, convergence can be achieved by dividing and
redividing the segments for before and after the formation of plastic hinge as

seen in Fig 10.

3.3.2 Maximum strength values

An examination of Tables 5, 6, 7 and 8 shows that good agreement was

achieved between the experimental strengths and the computed values for
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all L-shaped and square reinforced concrete slender column specimens. Due
to the second order eflect, it should be noted that the loads to calculate

the maximum moment values are not necessary to be the maximum load.

3.3.3 Bilaxial load-deflection curves

The deflections components along the x and y axes were measured
using dial gages with a least count of 0.001 in; the theoretical mid-height
deflection components were calculated using the present numerical analysis.
The experimental and theoretical load-deflection curves for L-shaped and
square columns are shown in Appendix D and E. The comparisons show
satisfactory agreement between experimental and theoretical curves. The
descending branch of theoretical and experimental load-deflection curves

were mostly successfully obtained for all specimens.
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Maximum axial load and deflection results
Specimen Test Analysis nnod*=6
number | P,.. | d. dy | Prae | Ratio®™* | d, d,
B2 10250 | 0.69 | 0.40 | 10479 | 1.022 | 0.48 | 0.37
B3 12824 | 0.72 | 0.28 | 11872 | 0.926 | 0.55 ] 0.31
B4 10117 1 0.82 | 0.38 | 9400 0.929 | 0.54 | 0.31
B5 28823 1 0.37 | 0.20 | 25727 | 0.893 | 0.35] 0.18
B6 16071 | 0.68 | 0.28 | 16721 { 1.040 | 0.44 | 0.25
B7 16063 | 0.48 | 0.27 | 17358 | 1.081 | 0.41} 0.26
B8 10520 | 0.65 | 0.46 | 10051 | 0.955 | 0.55| 0.35
Maximum axial load and deflection results
Specimen Analysis nnod*=8 Analysis nnod*=16
number | P,.. | Ratio** | d, dy | Pma | Ratio®™ | d, d,
B2 10500 | 1.024 | 0.48 | 0.37 | 10509} 1.025 | 0.48 | 0.37
B3 11890 | 0.927 | 0.55 | 0.31 {11907 | 0.928 | 0.55( 0.31
B4 9416 0.931 | 0.54 | 0.31| 9431 0.932 | 0.54 | 0.31
B5 25781 0.894 | 0.35|0.18| 25841 | 0.897 | 0.35| 0.18
B6 16718 | 1.040 | 0.44 ) 0.25| 16758 | 1.043 | 0.44] 0.25
B7 17365 1.081 | 0.41]0.26 | 17400 ] 1.083 | 0.41] 0.26
B8 10055 | 0.956 | 0.55 | 0.35| 10064 | 0.957 | 0.55 | 0.35

* nnod= number of segments for computations.
**Ratio= P(analysis)/P(test)
units : P, (LBS), d.,d, (INCHES)

Table 5. Maximum axial load and deflection results for L-shaped slender

columns.
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Maximum axial load and deflection results
Specimen Test Analysis nnod*=8
number | Po.. | d. dy | Pmee | Ratio®™* | d, d,
C1 15521 | 0.24 | 0.68 | 14642 | 0.943 | 0.31 | 0.59
C2 12820 | 0.47 | 0.49 | 14085 | 1.099 | 0.47 | 0.47
C3 8990 | 0.52 | 0.56 | 10193 | 1.134 | 0.47 | 0.47
C4 19060 | 0.38 | 0.40 | 16431 | 0.862 | 0.35]0.35
Ch 107101 0.38 | 0.64 | 10342 | 0.966 | 0.26 { 0.53
Cé 18710 { 0.30 | 0.55 | 16907 | 0.904 | 0.24 { 0.47

Maximum axial load and deflection results

Specimen Analysis nnod*=16 Analysis nnod*=32

number | P,.. | Ratio** | d, dy | Pnae | Ratio™ | d, d,

C1 14659 | 0.944 | 0.31|0.59 | 14665 | 0.945 | 0.31]0.59
C2 14109 | 1.101 | 0.47 047} 14114 | 1.101 | 0.47 | 0.47
C3 10195 | 1.134 | 0.47)0.47) 10195 1.134 | 0.47 | 0.47
C4 16465 | 0.864 | 0.35 0.35| 16468 | 0.864 | 0.35| 0.35
C5 10345 | 0.966 | 0.26 | 0.53 | 10352 | 0.967 | 0.26 | 0.53
C6 16945 | 0.906 | 0.24 | 0.47| 16947 | 0.906 [ 0.24| 0.47

* nnod= the number of segments for computations

** Ratio= P(analysia)/P(test)
units : Ppee (LBS), ds, d, (INCHES)

Table 6. Maximum axial load and deflection results for square slender

columns.
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3.3.4 Biaxial moment-curvature curves

The experimental strain distribution along both axes for specimens
was obtained using the data from demec or mechanical gages. A set of
strain values in X and Y directions were first established before evaluat-
ing the moment-curvature relationships. The experimental and theoretical
moment-curvature values for specimens B series and ( series are shown in
Appendix D and E. Good agreement was obtained between the theoretical
and experimental curves from zero load up to failure. Both ascending and
descending branches of moment-curvature curves were achieved. The termi-
nations in the experimental curvature measurements were due to dislodging
of demec or mechanical gages because of the crushing of concrete or because
of severe tension cracks. The theoretical results of maximum moment with
different number of segments and experimental results of maximum mo-
ment are shown in Table T and Table 8, respectively. It is noted that a

good agreement is also achieved.

82



Maximum moment results

Specimen Test Analysis nnod*=6
number M, M, M, | Ratio' | M, | Ratio®
B2 21771 | 15398 | 22911 | 1.052 | 13929 | 0.905
B3 15071 | 21660 | 16244 | 1.078 | 19089 | 0.881
B4 17172 | 21754 | 16215 | 0.944 | 18348 | 0.843
B5 13598 | 16673 | 13796 | 1.015 | 18073 | 1.084
B6 15254 1 21259 | 15944 | 1.045 | 19198 | 0.903
B7 16509 | 15106 | 18186 | 1.102 {17711 | 1.172
B8 19011 | 17332 | 19483 | 1.025 | 17750 | 1.024
The results of maximum load and deflection
Specimen theoretical nnod*=8 theoretical nnod*=16
number M, | Ratio' | M, | Ratio®| M, | Ratio'| M, | Ratio®
B2 22956 | 1.054 | 13950 | 0.906 | 22976 | 1.055 | 13960 | 0.907
B3 16270 | 1.080 | 19112 ) 0.882 | 16291 | 1.081 | 19137 | 0.884
B4 16242 | 0.946 | 19137 | 0.845 | 16270 | 0.947 | 18410 | 0.846
B5 13825 ] 1.017 | 18379 | 1.087 | 13859 | 1.019 | 18168 | 1.090
B6 15940 | 1.045 | 19196 | 0.903 | 15980 | 1.048 | 19243 | 0.905
B7 18196 | 1.102 | 17715 | 1.173 | 18232} 1.104 | 17754 | 1.175
B8 19487 | 1.025 | 17752 | 1.024 | 19493 | 1.025 | 17741 | 1.024
* nnod= number of segments for computations
Ratio'= M. .. ../M:...,
Rati02: Aly(analysi.)/My(xeat)

units : M,, M, (LB-IN)

Table 7. Maximum moment results for L-shaped slender columns.
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Maximum moment results

Specimen Test Analysis nnod*=8
number M, M, M, | Ratio* | M, | Ratio®
C1 24357 | 9697 | 22168 | 0.914 | 10137 | 1.045
C2 15315 | 15306 | 16578 | 1.082 | 16578 | 1.083
C3 16267 | 15928 | 19204 | 1.181 | 19204 | 1.206
C4 18992 | 19645 | 17368 | 0.914 | 17368 | 0.884
C5 24343 | 11175 | 24592 | 1.010 | 10570 | 0.946
Cé 25311 | 11665 | 23567 | 0.931 | 10503 | 0.900
The results of maximum load and deflection
Specimen theoretical nnod*=16 theoretical nnod*=32
number M, | Ratio' | M, | Ratio* | M, | Ratio' | M, | Ratio?
C1 22194 0.915 | 10158 | 1.048 | 22202 | 0.915 | 10163 | 1.048
C2 16606 | 1.084 | 16606 | 1.085 | 16612 | 1.085 } 16612 | 1.085
C3 19207 | 1.181 | 19207 | 1.206 | 19208 | 1.181 | 19208 | 1.206
C4 17404 | 0.916 | 17404 | 0.886 | 17407 | 0.917 | 17407 | 0.886
C5 24598 | 1.010 | 10578 | 0.947 | 24615 | 1.011 | 10584 | 0.947
C6 23620 | 0.933 | 10528 | 0.903 | 23623 | 0.933 | 10531 | 0.903
* nnod= number of segments for computations
Ratio'= Mz .. . Me,..o
Ratio*= M

Y(analysis)

Yitest)

units : M., M, (LB-IN)

Table 8. Maximum moment results for square slender columns.
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4 SUMMARY AND CONCLUSIONS

A computer model which simulates the biaxial load-deflection and moment-
curvature behavior of standard and L-shaped slender reinforced concrete
columns subjected to combined biaxial bending and axial load is presented.
The secant stiffness method is used to determine the moment-curvature-
thrust relationship for any column sections. The finite difference method is
also used successful to study the three-dimensional load-deformation analysis.
The present computer program can be used to compute both ascending and
descending branches of load-deformation curves with the deformation incre-
ments control. Nonlinearity due to material plasticity and geometric change

of the slender column are overcome by a successive iteration approach.

A total of six square and eight L-shaped slender reinforced concrete
columns were tested to verify the accuracy of the theoretical analysis de-
veloped herein. Good agreement was achieved between theoretical results
and test results. Based on the results presented, the following conclusions

may be made :

1. The assumptions of the present theoretical analysis have been found
reasonable and this computer model is able to predict the behavior of

slender columns under combined biaxial bending and axial compression.

2. For determination of descending branch of the load-deformation curves,
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the convergence criteria for the finite difference method in analysis is
obtained by redividing the sections or segments once the plastic hinge

starts forming at critical section.

. Both the experimental results and computer analysis developed herein
may be found useful in limit analysis and design of two or three dimen-

sional reinforced concrete structures.

. Using the suitable stress-strain curves for steels and concretes, the
present computer program can be easily modified to study the behavior
of slender composite reinforced concrete columns, behavior of slender
prestressed reinforced concrete columns and behavior of slender high

strength reinforced concrete columns with and without steel fibers.
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 Appendix A. EXPERIMENTAL RESULTS

Experimental results of load-deflection and mmoment-curvature curves
for L-shaped and square slender reinforced concrete columns are shown
herein. Fig. A.1 through Fig. A.14 present B-series columns tests and Fig.

A.15 through Fig. A.26 present C-series columns tests, respectively.
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Figure A.1 Load-deflection curve for column B2
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Figure A.2 Moment-curvature curve for column B2
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Figure A.4 Moment-curvature curve for column B3
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Figure A.6 Moment-curvature curve for column B4
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Figure A.8 Moment-curvature curve for column B5
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Figure A.10 Moment-curvature curve for column B6
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Figure A.16 Moment-curvature curve for column C1
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Figure A.20 Moment-curvature curve for column C3
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Figure A.22 Moment-curvature curve for column C4
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Figure A.24 Moment-curvature curve for column C5
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Appendix B. Strain-position curve

Strain-position curves for L-shaped and square slender reinforced
concrete columns are shown herein. Fig. B.1 through B.14 present B-series
column tests and Fig. B.15 through B.26 present C-series column tests,

respectively.
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Figure B.1 Strain position curve for column B2 from point 1-2-3.
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Figure B.2 Strain position curve for column B2 from point 4-5-6-7.
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Figure B.3 Strain position curve for column B3 from point 1-2-3.
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Figure B.4 Strain position curve for column B3 from point 4-5-6-7.
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Figure B.6 Strain position curve for column B4 from point 4-5-6-7.
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Figure B.7 Strain position curve for column B3 from point 1-2-3.
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Figure B.8 Strain position curve for column B5 from point 4-5-6-7.
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Figure B.9 Strain position curve for column B6 from point 1-2-3.
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Figure B.10 Strain position curve for column B6 from point 4-5-6-7.
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Figure B.11 Strain position curve for column B7 from point 1-2-3.
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Figure B.12 Strain position curve for column B7 from point 4-5-6-7.
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Figure B.13 Strain position curve for column B8 {rom point 1-2-3.
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Figure B.14 Strain position curve for column B8 from point 4-3-6-7.
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Figure B.15 Strain position curve for column C1 from point 1-2-3-4.

STRAIN-POSITION CURVE FOR COLUMN C1 (point 5-6-7-8)

0.004 1

0.003+

0.002+

0.0017

STRAIN (IN/IN)

-0.001+

-0.002 ; —r ]
0.5 1 1.5 2 2.5 3

POSITION (IN)

Figure B.16 Strain position curve for column C1 from point 5-6-7-8.
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Figure B.17 Strain position curve for column C2 from point 1-2-3-4.

STRAIN-POSITION CURVE FOR COLUMN C?2 (point 5-6-7-3)
0.02 -

STRAIN (IN/IN)

POSITION (IN)

Figure B.18 Strain position curve for column C2 from point 5-6-7-8.
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Figure B.19 Strain position curve for column C3 from point 1-2-3-4.
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Figure B.20 Strain position curve for column C3 from point 5-6-7-8.
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Figure B.21 Strain position curve for column C4 from point 1-2-3-4.
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Figure B.22 Strain position curve for column C4 from point 5-6-7-8.
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Figure B.23 Strain position curve for column C3 from point 1-2-3-4.
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Figure B.24 Strain position curve for column C5 from point 5-6-7-8.
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Figure B.25 Strain position curve for column C6 from point 1-2-3-4.
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Figure B.26 Strain position curve for column C6 from point 3-6-7-8.
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Appendix C. COLUMNS AFTER FAILURE

Crack and crushed patterns for L-shaped and square slender reinforced
concrete columns are shown herein. Fig. C.1 through C.8 present B-series

column tests and Fig. C.9 through C.14 present C-series column tests.
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Figure C.1 Crack and crush patterns for column B1.
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Figure C.3 Crack and crush patterns for column B3.
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Figure C.4 Crack and crush patterns for column B4.

130



Major

tension crack Compression crush

8 in

2.5 1n

Compression steel bars

buckled # 4

Figure C.5 Crack and crush patterns for column B5.
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Figure C.6 Crack and crush patterns for column B6.
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Figure C.7 Crack and crush patterns for column B7.
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Figure C.8 Crack and crush patterns for column BS.
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Figure C.11 Crack and crush patterns for column C3.
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Figure C.14 Crack and crush patterns for column C6.
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- Appendix D.
Theoretical and Experimental Comparisons for

B-series L-shaped Slender Columns.

Fig. D.1 through D.14 present theoretical and experimental compar-
1sons of load-deflection curves and Fig. D.15 through D.28 present theoret-

ical and experimental comparisons of moment-curvature curves.
-5~  Experimental results.

——  Theoretical results. (8 segments)
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COMPARISON LOAD-DEFLECTION CURVE (X-DIR) FOR COLUMN B2.
12

Theoretical results
8 segments

LOAD (LB)
(Thousands)

033 1 T 7 T T H T T
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

DEFLECTION (IN)

Figure. D.1 Comparison load-deflection curve (X-DIR.) for column B2.

COMPARISON LOAD-DEFLECTION CURVE (Y-DIR) FOR COLUMN B2.

12
104
— 8“
=
~—— g 6'
% S Theoretical results
2 8 segment
S = N \ segments
o] Experimental results
O:;: T T T T 7
0 0.2 0.4 0.6 0.8 1 1.2

DEFLECTION (IN)
Figure. D.2 Comparison load-deflection curve (Y-DIR.) for column B2.
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COMPARISON LOAD-DEFLECTION CURVE (X-DIR) FOR COLUMN B3.
14

Experimental results

/

LOAD (LB)
(Thousands)
P

Theoretical results

8 segments

O T T 1 H T i H I T
0 02 04 06 0.8 1 12 14 16 18 2

DEFLECTION (IN)

Figure. D.3 Comparison load-deflection curve (X-DIR.) for column B3.

COMPARISON LOAD-DEFLECTION CURVE (Y-DIR) FOR COLUMN B3.

14
Experimental results
12+ \ :
N // \E
3T 9 /
g Theoretical results
o B
< © 8 segments
Q=
’q ~—— 4...
2...
O : T T T T H
0 0.1 0.2 0.3 0.4 0.5 0.8

DEFLECTION (IN)

Figure. D.4 Comparison load-deflection curve (Y-DIR.) for column B3.
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COMPARISON LOAD-DEFLECTION CURVE (X-DIR) FOR COLUMN B4.

12

/
V]

/

LOAD v(LB)
(Thousands)

Theoretical results
8 segments
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s

O= T
0.2
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1.4
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1.2 1.6

0.6 08
DEFLECTION (IN)

Figure. D.5 Comparison load-deflection curve (X-DIR.) for column B4.

COMPARISON LOAD-DEFLECTION CURVE (Y-DIR) FOR COLUMN B4.
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107

;
/

(Thousands)
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e Experimental results
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0.1

T T

0.5 0.6 0.7

0.2 0.3 0.4
DEFLECTION (IN)

Figure. D.6 Comparison load-deflection curve (Y-DIR.) for column B4.
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COMPARISON LOAD-DEFLECTION CURVE (X-DIR) FOR COLUMN BS.

30

25+

LOAD (LB)
(Thousands)

Theoretical results
P segments

02 03 04 05
DEFLECTION (IN)

T 7 T

0.6 0.7 0.8 0.8

Figure. D.7 Comparison load-deflection curve (X-DIR.) for column B3.

COMPARISON LOAD-DEFLECTION CURVE (Y-DIR) FOR COLUMN Bs.

30

257
20+
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DEFLECTION (IN)
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Figure. D.8 Comparison load-deflection curve (Y-DIR.) for column B5.
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COMPARISON LOAD-DEFLECTION CURVE (X-DIR) FOR COLUMN Bé.
18

16+

145
12+

;

Theoretical results

‘“\ 8 segments
/ZJ Experimental results

10-

LOAD (LB)
(Thousands)
oy
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0 0.1 g2 03 04 05 06 07 08 08 1

DEFLECTION (IN)
Figure. D.9 Comparison load-deflection curve (X-DIR.) for column B6.

COMPARISON LOAD-DEFLECTION CURVE (Y-DIR) FOR COLUMN B6.
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164
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=€ 10 /
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DEFLECTION (IN)

Figure. D.10 Comparison load-deflection curve (Y-DIR.) for column Bé.
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COMPARISON LOAD-DEFLECTION CURVE (X-DIR) FOR COLUMN B7.

18
16-
Theoretical results
147 4+~ 8 segments
12
R 107
— 3
a3 8
< S
SE 8
4 Experimental results
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0 , : . [
0 0.5 1 1.5 2 2.5

DEFLECTION (IN)
Figure. D.11 Comparison load-deflection curve (X-DIR.) for column B7.

COMPARISON LOAD-DEFLECTION CURVE (Y-DIR) FOR COLUMN B7.
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16
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Figure. D.12 Comparison load-deflection curve (Y-DIR.) for column B7.
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COMPARISON LOAD-DEFLECTION CURVE (X-DIR) FOR COLUMN B8.

12
10+
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)
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DEFLECTION (IN)

Figure. D.13 Comparison load-deflection curve (X-DIR.) for column B8.

COMPARISON LOAD-DEFLECTION CURVE (Y-DIR) FOR COLUMN B8.
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Figure. D.14 Comparison load-deflection curve (Y-DIR.) for column B8.
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COMPARISON MOMENT-CURVATURE CURVE (M.&¢.) FOR COLUMN B2.

25

207

(Thousands)

MOMENT (LB-IN)
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Experimental results
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CURVATURE (1/IN)

Figure. D.15 Comparison moment-curvature curve (M. &, ) column B2.

COMPARISON MOMENT-CURVATURE CURVE (M,&¢,) FOR COLUMN B2,
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Figure. D.16 Comparison moment-curvature curve (M,&¢,) column B2.
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COMPARISON MOMENT-CURVATURE CURVE (M.&¢.) FOR COLUMN B3.

18 Theoretical results
167 L~ 8 segments
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124

107
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(Thousands)

0 0.001 0.002 0.003 0.004 0.005 0.0068 0.007
CURVATURE (1/IN)

Figure. D.17 Comparison moment-curvature curve (M;&¢@:) column B3.

COMPARISON MOMENT-CURVATURE CURVE (M,&#,) FOR COLUMN B3.
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Figure. D.18 Comparison moment-curvature curve (M,&a,) column B3.
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COMPARISON MOMENT-CURVATURE CURVE (M &¢:) FOR COLUMN B4,
18

161

o |
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CURVATURE (1/IN)

Figure. D.19 Comparison moment-curvature curve (M. &o.) column B4.

COMPARISON MOMENT-CURVATURE CURVE (M, &o¢,) FOR COLUMN B4,
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Figure. D.20 Comparison moment-curvature curve (M,&¢,) column B4.
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COMPARISON MOMENT-CURVATURE CURVE (M.&¢.) FOR COLUMN Bs.

18

14- Theoretical results
/ 8 segments
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CURVATURE (1/IN)

Figure. D.21 Comparison moment-curvature curve (M:&@.) column B5.

COMPARISON MOMENT-CURVATURE CURVE (M,&4,) FOR COLUMN B35

25
Theoretical results
L 4 8 segments

20+ " .

15— \
E Experimental results
m e 107 7
E—q w
Z 3 ) /
[ S 22
=B
)]
2 o T T T T T H

0 0.001 0.002 0.003 0.004 0.005 0.008 0.007

CURVATURE (1/IN)

Figure. D.22 Comparison moment-curvature curve (M,&o,) column B5.

152



COMPARISON MOMENT-CURVATURE CURVE (M.&¢.) FOR COLUMN BS.

18
Theoretical results
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CURVATURE (1/IN)

Figure. D.23 Comparison moment-curvature curve (M, &@.) column B6.
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COMPARISON MOMENT-CURVATURE CURVE (M,&¢,) FOR COLUMN B6.
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Figure. D.24 Comparison moment-curvature curve (M,&¢,) column B6.
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COMPARISON MOMENT-CURVATURE CURVE (M.&¢.) FOR COLUMN B7.

20

18- Theoretical results
4« 8 segments
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CURVATURE (1/IN)

Figure. D.25 Comparison moment-curvature curve (M.&@.) column B7.
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Figure. D.26 Comparison moment-curvature curve (M, &a,) column B7.
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COMPARISON MOMENT-CURVATURE CURVE (M,&¢.) FOR COLUMN BS.
20
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Figure. D.27 Comparison moment-curvature curve (M_,&o,) column BS8.
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Figure. D.28 Comparison moment-curvature curve (M,&@,) column BS.
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Appendix E.
Theoretical and Experimental Comparisons for

C-series Square Slender Columnuns.

Fig. E.1 through E.12 present theoretical and experimental comparisons
of load-deflection curves and Fig. E.13 through E. 26 present theoretical

and experimental comparisons of moment-curvature curves.
= Experimental results.

— Theoretical results. (8 segments)

156



COMPARISON LOAD-DEFLECTION CURVE (X-DIR) FOR COLUMN C1.
16

14+ Theoretical results

4 8 segments

/

Experimental results

LOAD (LB)
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O = T T H 1 T T
0 0.2 0.4 0.6 0.8 1 1.2 1.4
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Figure. E.1 Comparison load-deflection curve (X-DIR.) for column C1.

COMPARISON LOAD-DEFLECTION CURVE (Y-DIR) FOR COLUMN C1.
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Figure. E.2 Comparison load-deflection curve (Y-DIR.) for column C1.
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COMPARISON LOAD-DEFLECTION CURVE (X-DIR) FOR COLUMN C2,
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Figure. E.3 Comparison load-deflection curve (X-DIR.) for column C2.
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COMPARISON LOAD-DEFLECTION CURVE (Y-DIR) FOR COLUMN C2.
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Figure. E.4 Comparison load-deflection curve (Y-DIR.) for column C2.
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COMPARISON LOAD-DEFLECTION CURVE (X-DIR) FOR COLUMN C3.
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Figure. E.5 Comparison load-deflection curve (X-DIR.) for column C3.
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Figure. E.6 Comparison load-deflection curve (Y-DIR.) for column C3.

T

l 7

0 0.2 0.4 0.6 0.8 1

DEFLECTION (IN)

159

1.2



COMPARISON LOAD-DEFLECTION CURVE (X-DIR) FOR COLUMN C4.
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DEFLECTION (IN)

Figure. E.7 Comparison load-deflection curve (X-DIR.) for column C4.

COMPARISON LOAD-DEFLECTION CURVE (Y-DIR) FOR COLUMN C4.
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Figure. £.8 Comparison load-deflection curve (Y-DIR.) for column C4.
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COMPARISON LOAD-DEFLECTION CURVE (X-DIR) FOR COLUMN Cs.
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Figure. E.9 Comparison load-deflection curve (X-DIR.) for column C5.

COMPARISON LOAD-DEFLECTION CURVE (Y-DIR) FOR COLUMN C5.
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Figure. E.10 Comparison load-deflection curve (Y-DIR.) for column C5.
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COMPARISON LOAD-DEFLECTION CURVE (X-DIR) FOR COLUMN C6.
20
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Figure. E.11 Comparison load-deflection curve (X-DIR.) for column C6.
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Figure. E.12 Comparison load-deflection curve (Y-DIR.) for column C6.
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COMPARISON MOMENT-CURVATURE CURVE (M.&4.) FOR COLUMN CL1.
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CURVATURE (1/IN)

Figure. E.13 Comparison moment-curvature curve (M.&¢.) column C1.
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Figure. E.14 Comparison moment-curvature curve (M,&¢,) column C1.
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COMPARISON MOMENT-CURVATURE CURVE (M.&¢.) FOR COLUMN C2.
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Figure. E.15 Comparison moment-curvature curve (M.&o;) column C2.
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Figure. E.16 Comparison moment-curvature curve (M &¢,) column C2.
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COMPARISON MOMENT-CURVATURE CURVE (M.&¢.) FOR COLUMN C3.
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Figure. E.17 Comparison moment-curvature curve (1:&dz) column C3.
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Figure. E.18 Comparison moment-curvature curve (M,&d,) column C3.
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COMPARISON MOMENT-CURVATURE CURVE (M.&¢.) FOR COLUMN C4.
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Figure. E.19 Comparison moment-curvature curve (M, &¢.) column C4.
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Figure. E.20 Comparison moment-curvature curve (M, &¢,) column C4.
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COMPARISON MOMENT-CURVATURE CURVE (M.&¢.) FOR COLUMN Cs.
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Figure. E.21 Comparison moment-curvature curve (M:&¢;) column C5.
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Figure. E.22 Comparison moment-curvature curve (M, &¢,) column CS5.
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COMPARISON MOMENT-CURVATURE CURVE (M,&¢.) FOR COLUMN CS.
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Figure. £.23 Comparison moment-curvature curve (M.&¢:) column CG.
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Figure. E.24 Comparison moment-curvature curve (My&d,) column C6.
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Appendix F.

Modified Cranston-Chatterji stress-strain curve
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Ritter’s parabola:
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"
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f, = 500psi, E. = 9;_— = 1000 f!
t
500 1

= 1000 7 27

170




Appendix G. DETAILS OF SCHEME FOR REDIVISION
OF SEGMENTS
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P(c) By B2 Bis I €o
P(e, +d,) p=1| By Bay Bag Oy (19)
Pyley + dy) B3y B3, Bas 1 o2

The finite difference method is again used to solve the three dimensional
behavior of slender columns after the plastic hinge forms. Fig. {10) shows

segments are redivided.
For symmetrical case, the analvsis can be further simplified. Let
le =(nnod/2)+1
where [c = nodal number for the middle segment of column.
nnod= number of segments in slender column.

For segment (7),

d — 2d,

iy

Vii+1) (1—1) A N 20
Ly (0y) (20)
d“u-m - ?‘d“m - d“(' b (03 )
(CL)? o
For segment (lc),
d —2d,, . +d
Ufle+1) Y{ic) Dle=n) Do Jic G.1
(CL2)2 (¢ )i ( )
du(lc+1) - Qdu“‘) + du”c_” = "‘(qsv)lc
(CL2)?

For segment (lc — 1),
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2CL)d,,, —2CL2+ CL)d,, _,, + 2(CL2)d,

le—2)

= — (@ )ie- G.2
(CL2+ CL)CL)CL2) (@ulie-r (G.2)
2CL)du = 2ACL2 + O gy = ACLunsy __
(CL2+ CL)CL)CL2) v le1
Substitute Eq. (20),(G.1),(G.2) in Eq. (18),

For segment (1),

P(c) Bu Blz Bl3 60(1') Y
Ployles + dv( ) By1 B2y Bag _(d”(:‘M) -2 dv( + dv( x>>/(CL)6
Pay(ew + dury) Bai Bs: Bay | | —(dup,, — 2duy, + duy_y, )/(CL)?

(G.3)
For segment {lc),

P By Biz Bis €0y
Piefes +duy,) ¢ = | B B B (doiesny = 2dusy T duyey) )/ (CL2)?
Preyles + duuc)) Bsi Bap Bas —(d“(th) o 2d’*‘ (e T d“(‘c—ll)/(cLz)z

(G:4)

For segment (lc — 1),

P(C) By Biz Bis
Pey(es + dv(lc-—z)) By; Ba; B
Py(ew + du(z 1)) B3y Bz Bss

60“:—1

~2(CL)dy,,, + 2(CL2 + CL)d,, _,, — 2(CL2)d,,_, /(CL2+ CL)(CL)(CL2)
~2(CL)du,, + 2ACL2+ CL)dy, _, — 2(CL2)dy,._, /(CL2+ CL)(CL)(CL2)
(G.5)
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Expand Eq. (18) and rearrange it, and for segment (2},

. P(C)
(C‘L)— ]D(C)(ev + dv(,‘)) -
+d

P(C)(eu* u(.‘))

(CL»):')B}l“) _qu(x') —Bls(i) QBIE{{) 2313(,) —BIQ(X‘) _-BISM
(C‘Z:')Q‘Bgl“) _B'.Z?l,') “B'_’S(,-) 2B22(,’} 2‘823(‘) _B'_’Qh’) _B'_’3(1)
(CL)*Bay,, By, —Basy, 2Bss,, 2Bsy,, —DBs, —Bas,,
For segment (lc),
. P
(CL2)* ¢ Poles ~dy,,,) ¢ =
P(C)(eu - du(lc))
(CLz)zBll(lc) "‘Bl2“c) ""'Blli(;c; Z'Bl?.“c) 2313(1{:) “B'lz“c) B13

(CL2)?Ba,, —B
(CL2)2B31U¢) —"532(1:

——B23(lc) 2322(“) 2323(!:) "‘.B'm . "".823

_B33(3c} 2B32“c) 2333(15) —332(&) —BBS

Let
CO ZCL
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(

Vis+1)

Uit}

G.6)

€0y
V(le—1)

U(lc—1)

Aoy
d

Ufte)
V(le+1)

Uffet1}




¢, = (CL—CL2)(CL)(CL2)

For segment (lc — 1),

P(c) C3B11(zc—1)
Cs< Poyle. = dv“:_“) = CSB21“5_13

Csle(k_l,

P(c)(ﬁu - d

Yite—1} )

2(C1)Baz,,_,, 2(C1)Bia,,
2(C1)Baz,,_,, 2(C1)Bas,,
L 2(01)Bsz(lc_i) -2(01)333“c 1

CO)BQ?.“C_”

o

€010

2.

Vle—2)
U{le—2)

V{lc—1)

o, fa, [

Ufle~1})
d”(’:)
d

Yic)

(G.8)




0 _“BIZ(,') _—B13(,‘) (CO);BII(;) 2B12f,-) 2¢4y

0 —Bny. "B2'xi) (CO)QBZI(“ 28B4, . 2323(‘_) 0 —Bas — By

=2 234 2344
0 "Bazm _B33m "(09)2331(;, 2B3, 2B3s,, O —Bszm —B:sa(,-)

“(1)

(G.9)

And let

2313{:‘)
Hy = (00)2321(;) 2322(;) 23231;)

2 G
(CO) B31(,) ZBSZ(” QB"S{,’)

For segment (ic),

0 _Bmuq _Bl3(zc)

G(lc) = O -B')‘) _323(1c)

“e(le})

0 *Baz(,c) '—333(

ic})

(02)2B11uc) 2312(1:) 2B13(xc)
H(lc) - (02)2B21(1c) 2B22(1c) 2’823(1:)
(02)233%:) 2832(&) 2333(15;

For segment (lc — 1),

176




0 —2(Cy)Bs,_,, —2(C2)Bs,._,,
Gl(lc-l) = G _-2(02)'822“5_1) "‘2(03).323“(_”
] 0 ”2(02)‘832(1:—1) *2(02)B33(1c 1)

| 0 —2(00)B12“c_1) —2(CO)B13(IC-—1) ]
G2e-1y= | 0 —2(Co)Baa,._,, —2(Co)Bas,
] 0 —2(00)‘832uc—1) ”2(00)B33(1<—1) i

(CS)Bll(xc—l) Q(Cl)Bll’(zc—z) 2(01 )Bls(lc—l)
Hpe1y = (Cs)Bnuc_;) 2(01)322(“_}; 2(01)B23(1c—x)
(03)B31(1c-1) 2(01)B32(Ic-—15 2(01 )B33(lc-—l)

Add =2 to 1 = lc, it results in the following equations :

(Co)? Py
(Cg)zp(c)(ev -+ dv(g))
(Co)*Pioy(ew + duy,,)

(Co)* Prey
(CO)QP(C)(G‘U _TL dv(i))
(Cﬂ)zp(C)(eu + dU({))

(Cs)P(c)
(03)P(c)(ev -+ d”(lc-—l))
(03)P(C)(eu + du(z:-;))

(C2)* Py
(Cz)ZP(C)(ev -+ dv“c))
(C2) Poy(ew + duy,y) )
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€ogz)
A&

Uiy

€0y
d

Vis}

d”(l’)

€0y4c)

d

dullc)
(G,10)

Yliey

Select the deflection dv(m as the control increment for each iteration

step and interchange d, |

—d

and P, from Eq. (G.10), one has

Ylte)

o

known
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[ (CO)ZBUQ)
(Go)szl(g,
(00)2-831(2)

2.822(2)
2B32(2)

2B,
2B,
2B33,,

known
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_(C'O
__.(C‘D’

—(Cs)(ew + du(l‘c—)))
—(Cs)(ey + du(lc_”)

~(Co)’

—(Cs)

—(Cs)?

(
(ev + di’(z))
(ew +duy)

)

unknown
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