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Abstract

There are two different approaches for estimation of structure and/or motion of

objects in the computer vision community today. One is the feature correspondence

method, and the other is the optical flow method [1]. There are many difficulties

and limitations encountered with the feature correspondence method, while the

optical flow method is more feasible, but requires a substantial amount of extra

calculations if the optical flow is to be computed as an intermediate step.

Direct methods have been developed [2-4], that use the optical flow ap-

proach, but avoid computing the full optical flow field as an intermediate step for

recovering structure and motion. The unified optical flow field theory was recently

established in 15]. It is an extension of the optical flow (UOFF) [1] to stereo im-

agery. Based on the UOFF, a direct method is developed to reconstruct an Alpha

shape surface structure characterized by an third degree polynomial equation, and

a Sphere surface characterized by a second degree polynomial [6]. This thesis work

uses the methods developed in [5,6], to reconstruct the third degree polynomial

describing a surface.

The main difference from the simulation results obtained in [6], is that in

this case, one of the two surfaces tested is a third order, unbounded surface, and

that the image gradients are computed directly from the image data, with no prior

knowledge of the surface gray function distribution. Another important difference is

that the gray levels of the surface are quantized in this work; i.e., the computations

are done using integer image data, not the continuous gray levels as in [6]. These

differences contribute to proving that the UOFF technique can be used in a practical

manner, and with good results.

Further discussions of the contributions of this work are included in the last

chapter.
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Chapter 1

INTRODUCTION

Estimation of structure and motion from image sequences has become a major

research field in the computer vision community over the last ten years. There

are basically two different approaches to recovering the structure of an object, or

the relative motion between the object(s) and the camera(s): the optical flow field

approach, and the feature correspondence approach.

Feature-based methods require the solution of the feature detection and the

correspondence problems, which have proven to be computationally and concep-

tually difficult to solve. These methods are also highly sensitive to noise since

information from only a small portion of the image is used. Furthermore, identify-

ing features involves determining gray-level corner points and studying a correlation

problem between the various segments of consequent images; while for images of

smooth objects, it is difficult to identify good features and corners.

Flow-based methods have been proposed that use the distribution of ap-

parent velocities of movement of image brightness patterns, the so called optical

flow, over a large portion of the image, to recover depth and/or camera motion [1].

These methods achieve more robustness at the expense of more computation to de-

termine an optical flow field that is accurate enough for analysis. To compute the
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full optical flow field however, one needs additional constraints such as the heuristic

assumption that the flow field is locally smooth [3]. This in many cases leads to an

estimated optical flow field that is not the same as the true motion field.

To avoid these problems, direct methods [2-4] have been proposed that are

more robust since information about the whole image is employed, and which re-

quire less computation since readily computable data (image brightness gradients

in temporal and spatial domains) are used directly to extract depth and motion

information.

Recently, a new approach to motion analysis from a sequence of stereo images

has been developed, in which the optical flow determined by Horn and Schunck [1]

is extended to include a spatial image sequence [5]. This results in a unified optical

flow field combining both the spatial and the temporal cases. A set of equations is

established to characterize the UOFF. Another set of equations is derived to recover

the structure.

There is no need for feature correspondence in this approach. The recovered

3-D structure is for a whole continuous field. It is therefore clearly, an optical flow

approach. There are two major aspects of the UOFF concept: The first is that the

brightness function of an image is considered not only as a function of time, but

also a function of the various sensors' spatial positions. And the second is that the

brightness invariance equation is recognized not only for the time variation but also

for the space variation so that both the time and space domains are included in a

single, unified brightness invariance equation. It is noted that the optical flow for

a temporal image sequence discussed in [1] is a special case within the framework

of the UOFF.

Based on the UOFF, a direct method was developed to reconstruct a surface

9



structure characterized by an Nth degree polynomial [6]. The new method does

not require the computation of the DOFF quantities explicitly as an intermediate

step.

In this thesis, the new concept of the DOFF is studied, and its spatial case is

applied in reconstructing an Nth degree polynomial describing a surface structure.

Simulation images for a 2-nd and a 3-rd order surfaces viewed from two cameras are

used, and the structure is recovered by optimizing a performance function which

derives from the solution of the DUFF.

1.1 Preliminaries

1.1.1 Imaging Space

Consider a sensor located in a specific position in 3-D world space, that keeps

generating images about the scene . As time goes by, the sensor at this particular

position in 3-D space, forms a sequence of images. The set of these images can

be represented with brightness function g(x, y, t), where x and y are coordinates

on the image plane. This is the basic outline about brightness function g(x, y, t)

treated by Horn and Schunck [1].

A different sequence of images can be formed as follows. If at a specific

moment in time, there are infinitely many sensors in the Imaging space to view the

object from all possible different positions, then we cannot use the previous bright-

ness function g(x, y, t) to describe the gray levels of the image plane. Combining

the two factors of time and space, we obtain yet another, much larger, set of im-

ages. To describe the brightness of this new set, we need a more general brightness

function
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where s indicates the sensor's position in 3-D world space, i.e., the coordinates of

the sensor center and the orientation of the optical axis of the sensor . As mentioned

previously g is a 5-D vector. That is

where x, y and z represent the coordinate of the optical center of the sensor in 3-D

world space; β  and γ represent the orientation of the optical axis of the sensor in

3-D world space.

More specifically, each sensor in 3-D world space may be considered associated

with a 3-D Cartesian coordinate system such that its center is located on the origin

and its optical axis is aligned with the OZ axis. We choose in 3-D world space

a 3-D Cartesian coordinate system as the reference coordinate system. Hence, a

sensor with its associated Cartesian coordinate system coincident with the  reference

coordinate system, has its position in 3-D world space denoted by (0, 0, 0, 0, 0).

An arbitrary sensor position denoted by s = (x, y, z, β, γ) can be described as

follows. The sensor's associated Cartesian coordinate system has been shifted first

from the reference coordinate system in 3-D world space with its origin settled at

(x, y, z) in the reference coordinate system and then has been rotated with the

rotation angles β, about its OY axis, and, γ, , about its OXaxis, being the Euler

angles: pan and tilt, respectively.

1.1.2 Setup

The geometry of the setup is that of a typical stereo system (Fig. 3.5). There

is a world Cartesian coordinate (X, Y, Z), and two identical cameras positioned as

shown. In 3-D space, a camera can be translated with three degrees of freedom, and

rotated with two degrees of freedom. The rotation of a camera around its optical

axis is not considered since no change in the image information will result. The
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optical axis of the left camera coincides with the Z axis of the world coordinate

system, and the center of the left image plane is located at (0, 0, 1) exactly.

The surface structure has its own coordinate system. The origin of this

system is 0', which differs from 0 by a sole translation of distance D, in the positive

direction of Z. This coordinate system is used to make the description of the surface

structure easier later and to avoid numerical problems. The value of D is much

larger than 1. For the right camera, the image plane is rotated with degrees, and

translated in the X, and Z directions, maintaining a constant distance, D, between

the center of the right image plane and the origin of the surface structure.

1.2 Perspective Projection

A world point P in 3-D space is projected onto the image plane according to

perspective projection, and is located on the image plane at xp and yp, where,

From our brightness function discussed above, xp and yp are also dependent on t

and s. That is, the coordinates of the pixel can be denoted by xp = xp(t, s) and

yp = yp(t,s). So generally speaking, we have

In Horn and Schunck's framework [1], g = g(xp(t),yp(t),t) , as mentioned earlier.

This is actually a special case of Eq. (1.5), i.e.,

g = g(xp(t,s = const. vector), yp(t,s = const. vector), t, s = const. vector),

the variation of s is restricted to be zero, and the brightness varies temporally only.

The DOFF approach is not restricted to any one specific direction; all possible
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forms assumed by the general brightness function g(x, y, t, s) construct an imaging

space.

We can consider the brightness function as some kind of "density" function.

In imaging space, all of the image points corresponding to an arbitrary but fixed

point in 3-D world space possess the same brightness, hence the same density. At

an arbitrary moment in time, and for different sensor positions (varying As), these

equal-density image points form an equal-density line. When time is varied, this

equal-density line changes to another equal-density line. Except if the world point

moves out of the scene, these equal-density lines will not disappear nor terminate.

The whole imaging space can be viewed consisting of various equal-density lines.

In accordance with the movement in 3-D world space, the distribution of

these equal-density lines in imaging space is also varying. In other words, the dis-

tribution of these equal-density lines in imaging space reflects the position of objects

in 3-D world space, and the change of the distribution describes the movement of

objects in 3-D world space.
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Chapter 2

THEORETICAL
DEVELOPMENT

As mentioned earlier, the DOFF approach is a relatively new method that combines

both parameters of the brightness function: time, and space. In this chapter, we

will go through the development of the general case of the brightness invariance

equation, and then solve it for the spatial variation case, in which we are interested.

2.1 Brightness Invariance Equation (BIE)

In the imaging space, all of the image points corresponding to an arbitrary but

fixed point P at time t, in 3-D world space possess the same brightness, i.e., P is

isotropical,

If the optical radiation of a world point P is invariant with respect to a time interval

from t 1 to t 2 , we then have:

This is the brightness time-invariance equation and is utilized in the determination

of optical flow by Horn and Schunck [1]. At a specific moment t 1 , if the optical
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radiation of P is isotropical we then get:

This is the brightness space-invariance equation. If the two variables, time and

space, are considered simultaneously, we get the brightness time-and-space invari-

ance equation, i.e.,

Consider two brightness functions g(x(t,s),y(t,s) and g(x(t+Δt, s+Δs), y(t+

Δt, s+Δs), t + Δt, s + Δs) in which the variation in time, Δt, and the variation in

spatial position of sensor, Δs, are very small. Due to the time-and-space-invariance

of brightness, we can get:

The expansion of the right-hand side of the above equation in the Taylor series

leads to

where ε contains the second and higher order terms in Δt and/or Δs. The next

equation follows then from the use of Eq. (2.3)

where u=δx/δt, v=δy/δt, us=δx/δs, vs=δy/δs. Dividing both sides of the above equation

by Δt, ignoring the term containing e and examining the limit as Δt → 0 yields,
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where δs/δt=limΔt→0Δs/Δt

Denote the velocity of a point in the image space by

where d/dt = ϐ/ϐt+ϐδs/ϐsδt is a differential operator.

Let V = (ϐ/ϐx, ϐ/ϐy, ϐ/ϐs) be a vector operator in imaging space. Eq. (2.7) then becomes

Similar to the well-known continuity equation in fluid dynamics [5]:

There is a continuity equation in the unified optical flow field which characterizes

the brightness invariance [5]. As compared with Eq. (2.9), the left-hand side of

Eq. (2.8) lacks a term of gV • V. It is not difficult to see that the missing term is

related to the sum of all the second and higher order terms of Δt and/or Δs, i.e.,

the E in the right-hand side of Eq. (2.5).

2.2 Unified Optical Flow Field (UOFF)

The brightness time-and-space invariant Eq. (2.6) developed above, is the general

case of the UOFF approach, including both the temporal and the spacial variations

affecting the brightness function. We will now discuss all the special cases of Eq.

(2.6), and then extend our discussion in the direction of interest of this thesis,

namely the spatial variation with Δt = 0.

2.2.1 Special Cases of the BIE

Case 1: If Δs = 0, i.e., the sensor is static in a fixed spatial position, only time

varies. Dividing both sides of the equation by Δt and evaluating the limit as Δt → 0
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degenerate Eq. (2.6) into:

This is the result derived by Horn and Schunck [1].

Case 2: If Δ t = 0, its both sides are divided by Δs and Δs  → 0 is examined, Eq.

(2.6) then reduces to:

When Δ t = 0, i.e., at a specific time moment, the images generated with sensors

at different spatial positions can be viewed as a spatial sequence of images. Eq.

(2.11) is then the equation for the spatial sequence of images. It is this equation

that we will use for the recovery of depth in the next section, since in our case we

have two cameras taking pictures at the same time.

Case 3: If Δs/Δt is a constant, Eq. (2.6) is the equation for a sequence of images

taken by a sensor experiencing a uniform motion.

Case 4: If Δs/Δt f = f(s,t) and the function f(s,t) is given, Eq. (2.6) can then be

utilized to treat the case when the sensor is experiencing a known movement.

2.2.2 Solving the BIE for the Spatial Case

Reproducing the BIE developed in Case 2 above, we have,

Let us take a close look at each quantity in the above equation. As mentioned

earlier, we are pursuing the direct approach for the determination of the depth, and

one of the advantages of the direct method is that all of the quantities are readily

computable from the image data. The u s  and vs  are defined as follows. Let
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where (xR , yR ) and (xL  , yL ) are projections of the same world point on the right

and the left image planes, respectively. δx and δy are therefore, respectively, the

horizontal and vertical coordinate differences of the image points, corresponding to

the same world point in 3-D space, reflected on the right and left image planes.

And,

Hence, us  and vs  defined above are the spatial variation rates of ax and Sy with

respect to δs. These two quantities generated from the spatial sequence of images,

can be viewed as counterparts of u L  and vL , (or uR  and vR ), generated from a

temporal sequence of images.

Following our system setup, the left sensor is located at the origin of our

Cartesian coordinate system, and the other sensor is at a known different position.

The variation, and hence the variation rate, of the right sensor, from the origin of

the world coordinate center, can be decomposed into translational, and rotational

components.

We are more interested in the variation rate, rather than the variation itself; this

is what is used in the brightness invariance equation. T s  is the translational rate,

and wsthe rotational rate. The subscriptsindicates the s-domain. We also define

(see Fig. 3.6)

where the superscript T represents the transposition of the concerned vectors. Now,

if r is defined as the position of an image point, and rs, is defined as the change in
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position F due to the spatial variation .s, then,

or, in component form:

Reproducing the prospective projection formulas we have

Combining this with Eq. (2.19), we have:

and similarly with Eq. (2.20):

From Eqs. (2.22) and (2.19) we get:

and from Eas. (2.231 and (2.20) we get:
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Substituting Eqs. (2.24) and (2.25) into the brightness invariance equation for the

spacial case

one can obtain

or if we define Q = 1/Z,

Note that As , Bs, Cs, Us, Vs, Ws can be determined once the relative positions of the

two sensors in stereo imagery are known. Also, gx , gy , gs can be determined from

the given image data by similar algorithms as used in [1]. x, y are the coordinated

on the image plane, and thus are known. So now we have a way of recovering

the depth, from available image data, the next step would be to use Eq. (2.26) to

reconstruct the polynomial describing the surface.

2.3 Surface Structure

The object under study in the 3-D world, is a surface that can be described by a

polynomial of degree N, in X, Y, and Z. The general form of the polynomial is

where 0 ≤ αi + βj + γj ≤ N, and K is the number of coefficients present.

2.3.1 Finding K

For the polynomial representation used in Eq. (2.28), K is the number of coefficients

that make up the entire polynomial. It is a function of the degree of the polynomial;
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the higher the order, the bigger K becomes. For N 1 or 2, K is easily found

by intuition, but as N becomes bigger, it becomes more difficult to determine K

manually. For our solution program to be robust, it needs to be able to calculate

K readily from the knowledge of N. A procedure to compute K is developed in

Appendix A, the final formula is the following

where, N is the order of the polynomial that we want to test for, and m, is the

number of variables in the polynomial, in our case, 3: (X, Y, and Z).

This formula is used at the beginning of the program for the computation of K

knowing m = 3, and N.

2.3.2 Polynomial Normalization

As seen earlier, the surface under consideration is described by the polynomial

Out of the K different coefficients of the polynomial, there are K - 1 independent

terms, the polynomial can therefore be normalized with respect to one arbitrary

coefficient λ(r).

By rewriting the polynomial as

we divide through by term λr ,

where any λnj= λi/λr, 	 the normalized λj. This equation will be used in reconstructing

the polynomial since now we have (K - 1 ) independent coefficients.
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2.4 Reconstructing the Polynomial

Substituting Q-1  for Z n Eq. (2.30), we get:

2.4.1 A Least Squares Formation

Now, to reconstruct the original polynomial we have to use the recovered depth as

in Eq. (2.31) so we define a performance function as

where R is the region on the image plane associated with the concerned surface in

3-D space. The task here is to find a set of coefficients λnj so that the performance

function go is minimized (brought as close to zero as possible). It is well known that

the following linear equations are necessary conditions for minimization of the go

function:

where i = 0,1, 2, ... , (K - 1), and i 	 ≠ r. Differentiating with respect to λi yields

or,

with i = 0,1, 2, ... , (K - 1), and i ≠ r.
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2.4.2 A Set of Linear Equations

The above equations can be put in matrix form as follows:

In this set of linear equations, all of the coefficients of the Nth degree polynomial,

i.e., λ i , where i = 0,1,2, ... , (K - 1), and i ≠ r are unknown. All of the entries in

the matrix Mij and in the vector Di can be computed from the given image data.

The structure of the surface can therefore be recovered, because the poly-

nomial equation describing the surface has been fully determined.
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Chapter 3

SIMULATION AND RESULTS

To test the previous algorithm for recovering surface structure, a computer program

was written in C. The program can be divided into three major parts:

1. The first part is to build a pair of stereo images of a surface (Sphere, or a 3-rd

order Alpha shape, choice is user's), and save them in image files of variable

sizes (typically 128 by 128).

2. The second part, which knows nothing about the first one, deals only with

the image data created earlier, and attempts to recover the depth field at each

image pixel, by applying Eq. (2.26).

3. The final part uses the recovered depth, and sets up the M, and D matrices,

and then solves to recover the (K — 1) independent )'s.

3.1 The Simulation Images

We start with the first part, which assumes a certain polynomial structure and

performs a prospective projection from the surface onto the two image planes, the

left and the right.
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3.1.1 The Polynomials

Two different surfaces have been considered in our study: a Sphere surface, and an

Alpha shape surface.

The Sphere

The Sphere chosen is described by the following polynomial:

or in the shifted coordinates (see Fig. 3.5):

The Alpha Shape

The Alpha shape surface used is described by

Both of these two surfaces clearly fit into the general definition of the polynomial

given by

It is easier to work with the shifted set of world coordinates, as will be explained

in the next chapter.

One thing remains to be set however; to associate combinations of α j, βj , γj ,

with combinations of X, Y, Z. The standard shown in Table ( 3.1) is the one assumed

throughout our work. Any arbitrary combination will do, as long as it is not

changed in the middle of the procedure, however, this one was chosen because it
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is structured in nature, and because the higher degree terms can e added to later

without changing the lower ones.

λ α β γ
λ0 0 0 0
λ1 1 0 0
λ2 0 1 0
λ3 0 0 1
λ4 2 0 0
λ5 1 1 0
λ6 1 0 1
λ7 0 2 0

λ8 0 1 1
λ9 0 0 2
λ10 3 0 0
λ11 2 1 0
λ12 2 0 1
λ13 1 2 0
λ14 1 1 1
λ15 1 0 2
λ16 0 3 0
λ17 0 2 1
λ18 0 1 2
λ19 0  0 3

Table 3.1: The Standard α , β, γ Used

From the table, we then know that for the Sphere: λ0 = -16.0, 	 λ4 =

1.0, 	 λ7 = 1.0, 	 λ9 = 1.0.

And for the Alpha shape surface:

λ4 = 1.00, 	 λ7 = -5.00, 	 λ9 = 1.00, 	 λ16 = 1.00.

The rest are zeros. If we choose to normalize about λ(4), in both cases, then the

solution that we should expect from the program would be exactly the same as

above.
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3.1.2 Building the Images

Both surfaces are built in a similar manner. We start from the screen, project a

beam of light toward the direction of the surface, and try to solve for the closest

point in space in which the beam actually hits the surface. If no solution exists

at all, then that particular pixel does not "see" the surface, and is assigned a

background gray level value. If solutions do exist, we choose the closest one to the

image plane, and then from the knowledge of the coordinates in space of that point,

we assign a gray level value according to a generating function. The difference for

the two shapes lies in solving for the beam with the structure in space.

The polynomials describing the surfaces are actually in X',Y', 	 Z', the  shifted

world coordinate system. It is easier to deal with the shifted system as far as

describing the surface is concerned.

To associate a gray level with the surface, it is much more practical to convert

the Cartesian coordinates into spherical coordinates as follows (see Fig. 3.6):

and based on θ and φ, the gray level function is assigned.

After a considerable time of experimentation, the following gray function was cho-

sen:

where K1 	= 2048.0, and Δ = 25.0. K2 and K3 are chosen later on a trial-and-error

basis, to see which combination gives the best results.

This gray function is a continuous one, however the one saved in the image files is

a quantized version of this one, which will produce some quantization error to be
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discussed later.

For both surfaces, there is a difference in the way the left sensor image and the

right sensor image, are created. These differences are discussed here.

The Left Image

The left sensor is aligned with the world coordinate system, and thus it is relatively

a simple matter to project world points onto the screen. The distance D between

the origin of the world coordinate system and the origin of the shifted coordinate

system is chosen to be 100.0 units(meters or feet, etc.) The same length units are

assumed for the surface, so we have a relative idea about the size of the surfaces

being considered.

To maximize efficiency, the light from the object should occupy about 75%

of the screen; so the screen size is taken to be 0.11 x 0.11 length units. The screen

is made of I nxJnpixels.iandjare used as row, and, column indices of the screen.

x and y are related linearly to i and j as follows:

where for the sphere, x 0 = -0.055 is the offset in the x direction, and, y o = 0.055 is

the offset in the y direction, and for the Alpha shape, y0 = 0.07. Note thatxmoves

in the same direction of j, while y moves in the opposite direction of i. Note also

that for the Alpha shape image, the y = 0 line is not evenly placed in the screen,

this is because the surface considered expands very rapidly for negative values of y.

If we include a larger portion of the negative y axis in the picture, either the picture

will go out of the screen boundaries distorting the image information, or we will

be forced to distance the camera more from the object, thus reducing considerably

the size of the portion of the image corresponding to the positive y axis.
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In building the left image, we have to start from the screen, not from the

world point, and our Algorithm goes as follows: For a point p(i, j) on the screen,

x, and y are calculated as in Eq. (3.5). The surface equation for the Alpha shape

surface in the world coordinates is

remember, D here is the distance between the origin of the world coordinate system

and the origin og the shifted coordinate system. Using prospective projection, we

replace X and Y, with x2 and yZ, respectively, and substitute them into Eq. (3.6)

above to obtain a 3rd order equation with one unknown:

which can be very easily solved numerically to get Z.

When Z is obtained, we get Z' = (Z - D), Y' = yZ, andX' xZ.FromX',Y',Z',

we get θ and φ as shown above, and we obtain the gray level value from the function.

The quantized value of g is then assigned to the pixel at (i, j) which we started

with.

This is repeated for all the screen pixels, and if at some pixel no reasonable

solution is obtained for Z, the program then knows that this pixel does not "see"

the image, and assigns a background gray value to it.

The Right Image

The right sensor's position in 3-D space differs from that of the left sensor by a

mere rotation of angle β about the O'Y' axis. The angle is positive when viewed

from the positive Y' axis down onto the origin and moves clockwise. The arm of

rotation is D, and thus the distance between the camera and the world origin is
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kept the same. Furthermore, the relation between i and j, and xR and yR  remains

the same, namely,

Note that the surface is symmetric about the O'Y' axis, the axis of rotation. There-

fore, since both sensors stay coplanar, no change in the shape will take place in the

right camera.

The difference will come from the gray function values. The gray function

will have to be rotated in the opposite direction for our simulation to be correct.

So the same procedure is followed here to get X', Y', Z', but in the gray function

φ is replaced with (φ + β ). Following exactly the same procedure from here on, we

build the right sensor image and save it in an image file.

3.2 Recovering the Depth

We now have the two stereo images needed for the analysis, the next step is to use

the image data to recover the depth field. That is done by using Eq. (2.26):

The direct method, as mentioned earlier, can recover directly the depth from the

image data. We are going to examine the terms that make up Eq. (2.26), and see

how we can obtain all of them.

3.2.1 x and y

Q, is an array of the same size of the image screen, i.e. In by Jn. The depth Z,

in other words, is computed for all the pixels of the screen. The solution program

deals with image pixels and not with continuous values of x and y. If we denote i
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Figure 3.1: Alpha Shape Surface Seen from the Left Camera 
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Figure 3.2: Alpha Shape Surface Se n from the Right Camera (f3 = 15°) 
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Figure 3.3: Sphere Surface Seen from the Left Camera 
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Figure 3.4: Sphere Surface Seen from the Right Camera ((3 == 10°) 
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to represent the row index, and j to represent the column index, then we have, as

seen earlier, a linear relation between the indices and the real values. x and y in

Eq. (2.26), are calculated as shown in Eq. (3.5), or,

3.2.2 Gray Level Gradients

Reproducing the brightness invariance equation ( 2.12) we have,

For short, we have referred to δLg/δx, δLg/δy, and δLg/δsasgx, gy,and, gs,respectively.as 

Obtaining gx and gy

Horn and Scunck in [1] describe a simple approximation of gx and gy. We are

interested in computing the x and y gradients for a spatial sequence of images, not

a temporal one. The approximations from [1] are therefore modified slightly:

where L(i, j) and R(i, j), are the gray values of the pixels at row i and column j,

of the left, and right images, respectively. Considering the change in the values of

x, and y, from pixel to pixel,
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where In, and Jn are the number of pixels in the row and the column, respectively.

This way, we can approximate δLg/δx, δLg/δy by:

Obtaining gs

The same reference as above [3], provides an approximation for g3 , which we use

here:

Now, gs is a rate of change of spatial gradient, so it has to be divided by

an argument that contains a measure of the transition between the left and right

cameras; the spatial transition.

where x and z, represent the displacement of the right optical center from that of

the left optical center. Dβ  is the length of the arc made by the rotation of the

camera. In short, δs is a measure of the movement from the first camera to the

second, the "Spatial" movement. gs is therefore approximated as:
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3.2.3 Translation and Rotation Rates

In Eq. (2.26), As , Bs , Cs, are the components of the rotation rate vector of the

right camera in the X, Y, and, Z directions, respectively (see Fig. 3.5). Us, Vs, and,

Ws, are the components of the translation rate vector of the right camera in the

X, Y, and, Z directions, respectively. For a setup like the one shown in Fig. 3.5,

the values of these components are as follows:

It is seen that all the terms in Eq. (2.26) can be computed from available

image data, and hence, the depth can be recovered by this method, as a first step

to reconstruct the surface polynomial. Note here, that δs  can be factored out from

both the numerator, and the denominator of Eq. (2.26), since all of the added

terms contain it. Factoring δs out makes the calculations faster, especially that

these calculations will have to be performed a huge number of times. What this

factoring means is a normalization in the direction of g` in the spatial case, or t in

the temporal case.
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Figure 3.5: System Setup
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3.3 Evaluating the Set of Linear Equations

Now, that we've recovered the depth, the next step is to optimize our performance

function and estimate the polynomial coefficients.

3.3.1 Numerical Considerations

For a sum of reasons, discussed in the next chapter, solving for Mi,jand Dias

defined in Eq. (2.36) and Eq. (2.37), did not give good results. Briefly, the value of

Q -1 is very large compared with the values of X and Y, so the significance of the

values of X and Y was being lost. It was needed to rewrite the performance function

in a way that would eventually prevent, or reduce, multiplications of numbers that

are too small, or too large, compared to one another. Restarting from Eq. (2.30),

and describing the surface in the X', Y', Z' system, we have

Going back to the X, Y, Z system, and replacing (X', Y', Z')T by (X, Y, (Z D))T  ,

and then putting that into the above equation and substituting Q -1 for Z, we get:

where X = xZ, and Y = yZ.

Our performance function is then defined as:
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Figure 3.6: The Surface in X', Y', Z' Coordinates
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So, our M matrix becomes:

and, the D vector:

By putting the equations in this form, the numbers being multiplied are

compatible, and will eliminate the type of numerical error that would have been

present otherwise.

3.3.2 Computer Algorithm

For the computer, the above integrations in the computation of M and D, are

performed as summations. So the computer calculates M and D as follows

We have seen earlier how all of the terms in the equations above can be obtained.

3.4 Results

Many parameters affect the accuracy of the reconstruction, as will be discussed

shortly. The following is a presentation of the best results obtained, for both

surfaces, and their associated parameters.
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3.4.1 The Alpha Shape Surface

The following data was obtained for k1 = 4096.0, k2 0.0, k3 = 3.6.
The size of the image was 64 x 64.
The rotation angle of the right camera β  = 2.0 degrees.
Normalization is done with respect to λ 4 .

n Term λn
λ0 1 -0.012383080956
λ1 X 0.09040302193
λ2 Y 0.09594640335
λ3 Z 0.11946278846
λ4 X2 1.00000000000
λ5 XY 0.04575281194
λ6 XZ -0.04139833537
λ7 Y2 -4.63054524910
λ8 YZ -0.07763573426
λ9 Z2 1.046629711797
λ10 X3 -0.00236808628
λ11 X 2 Y -0.02518825026
λ12 X2 Z 0.04122164258
λ13 XY2 0.00619991298
λ14 XY Z 0.01708973018
λ15 XZ2 -0.00686164899
λ16 Y3 0.89073972725
λ17 Y 2 Z -0.05525919378
λ18 YZ2 -0.09711923003
λ19 Z3 0.04964413011

Table 3.2: Results for the Alpha Shape Reconstruction

The numbers in boldface type, are the ones we are looking for: λ4 , λ7 , λ9 , and λ16.

We can see that the reconstruction error is bounded to within 12% on the maximum.

The other λ's, should all be zero. We see some of them not very close to zero such

as λ2 , λ3 , and λ8 . Compared with the smallest non-zero coefficients, which equal

1.00, the errors in the zero-coefficients are bounded to about 15%.
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The sources of these errors will be discussed in the next chapter.

3.4.2 The Sphere Surface

Since the sphere is a second order surface, it was much more robust to the various

errors present. The M matrix here is 9 x 9, instead of 19 x 19 for the Alpha shape.

This, not only made it almost 500% faster to test than the Alpha shape, for an equal

size image file, but also made it easier to detect where the errors are originating

from. The discussion of the sources of error is a part of the next chapter.

The following data was obtained for kl = 4096.0, k2 = 0.0, k3 = 0.7500.
The size of the image was 64 x 64.
The rotation angle of the right cameraβ = 1.475 degrees.

Normalization is done about λ4 .

Table 3.3: Results for the Sphere Shape Reconstruction

Again, the numbers that are in boldface in Table ( 3.3) are the non-zero

coefficients. It is seen here that the maximum error is bounded to 1.00 %

n λn
λ0 -15.9990001671

λ1 0.0913221380
λ2 -0.0406793652
λ3 -0.0491134118
λ4 1.0000000000
λ5 0.0042998058
λ6 0.9975087321
λ8 0.0222900959
λ9 1.0138346650
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3.4.3 Multiple-Run Results

The following are samples of multiple-run applications of the program, to demon-

strate the sensitivity to the various parameters.

λ versus k3

The following data was obtained for k1 = 4096.0, k2 = 0.0
The size of the image was 64 x 64.
The rotation angle of the right camera β = 1.400 degrees.
Normalization is done about λ4 .

k3 λ0 λ4 λ7 λ9

0.6500 -15.773061 1.000000 0.990632 1.033322
0.6600 -15.796425 1.000000 0.991945 1.031614
0.6700 -15.803293 1.000000 0.992367 1.030295
0.6800 -15.825661 1.000000 0.993266 1.027575
0.6900 -15.826480 1.000000 0.994136 1.031076
0.7000 -15.854684 1.000000 0.994858 1.025469
0.7100 -15.864268 1.000000 0.995469 1.023938
0.7200 -15.883771 1.000000 0.995847 1.021146
0.7300 -15.885682 1.000000 0.996210 1.022712
0.7400 -15.909165 1.000000 0.996516 1.019486
0.7500 -15.925507 1.000000 0.996118  1.017167
0.7000 -15.947952 1.000000 0.997057 1.014855
0.7700 -15.928014 1.000000 0.997377 1.020163
0.7000 -15.912178 1.000000 0.997469 1.019900
0.7900 -18.757997 1.000000 0.947441 0.329484
0.8000 -19.337301 1.000000 0.931492 0.179540

Table 3.4: Effect of k3 on the Sphere Shape Solutions

Note that in Table ( 3.4), for some values of k 3 , (k3 = 0.8), the results are highly

erroneous. For most of the remaining runs versus k3 , the errors are bounded to

±5%.
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λ  versus β

The following data was obtained for k 1 = 4096.0, k2 = 0.0, k3 0.7500
The size of the image was 64 x 64.
Normalization is done about λ4 .

β λ0 λ4 λ7 λ9

0.1000 -17.005822 1.000000 0.789060 -0.19465
0.3500 -16.442779 1.000000 0.960108 0.758533
0.4750 -16.280832 1.000000 0.986284 0.865729
0.6000 -16.128859 1.000000 0.987973 0.934429
0.7250 -16.223021  1.000000 0.988703 0.911685
0.8500 -16.052388 1.000000 0.992791 0.974399
0.9750 -16.062600 1.000000 0.996652 0.976688
1.1000 -16.018273 1.000000 0.999690 0.997282
1.2250 -16.053506 1.000000 0.996623 0.984401
1.3500 -15.981759 1.000000 0.996400 1.005005
1.4750 -15.999000 1.000000 0.996888  0.997988

Table 3.5: Effect of β on the Sphere Shape Solutions

Note in Table ( 3.5) that for very small values of β , the camera rotation angle, the

solution obtained is highly erroneous.

λ versus k1

From the previous two variations, we find that we get best results for β ≈ 1.475,

and k3 ≈ 0.7500. We will use these values in the next case.

The effect of gray level quantization is very clear in Table ( 3.6), the results

do not start to become acceptable until k1 becomes 512. Note that this is performed

with the best combination of β and k3 obtained from above.

A versus Image Size
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The following data was obtained for k2 = 0.0, k3 = 0.7500
The size of the image was 64 x 64.
The rotation angle of the right camera β = 1.475 degrees.
Normalization is done about λ4

k1 λ0 λ4 λ7 λ9

16.0 -7.171405 1.000000 0.502592 0.204058
32.0 -4.984379 1.000000 0.451841 0.268776
64.0 -17.031454 1.000000 0.736041 -0.374813

128.0 -17.369817 1.000000 0.810806 0.025142
256.0  -16.572301  1.000000 0.959069 0.718738

512.0 -16.161894 1.000000 0.972644 0.868655
1024.0 -15.845913 1.000000 0.990752 1.024426

2048.0 -15.993857 1.000000 0.995443 1.010252
4096.0 -16.010043 1.000000 0.997509 1.013835
8192.0  -16.006061  1.000000 0.998338 1.022081

Table 3.6: Effect of k 1 on the Sphere Shape Solutions

The following data was obtained for k 1 = 4096.0, k2 = 0.0, k3 = 0.7500
The rotation angle of the right camera β = 1.475 degrees.
Normalization is done about λ4

DIM λ0 λ4 λ7 λ9

16 -15.991239 1.000000 0.870979 0.905877
32 -16.130688 1.000000 0.987538 1.011918
64 -16.010043 1.000000 0.997509 1.013835

128 -15.929016 1.000000 0.996361 1.017398

Table 3.7: Effect of Image Size on the Sphere Shape Solutions
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Observations

The above tables give an idea of how the various parameters present in the problem

affect the solution. Tables (3.4) and (3.5) present the variation in the results as

we vary the angle of rotation 0 and the factor k3 . Although it is true that very

small values of /3 give erroneous results, increasing /3 indefinitely does not guarantee

good results. A very small value of 0 means that the change of the images as seen

from the left camera or the right camera is very small, and may be lost in the

quantization process. This, clearly, would result in errors in obtaining the image

gradients, and thus errors in recovering the depth and reconstructing the structure.

By choosing the best possible combination of Q and k3 from Tables (3.4)

and (3.5), the other parameters are studied as we see in Tables (3.6) and (3.7).
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Chapter 4

CONCLUSIONS

In this thesis, the DOFF method for recovering surface structure has been used.

We showed that all the terms necessary for the computations, are readily available

from image data. We shall briefly discuss the major sources of errors encountered,

and talk about the differences of this work from previous works.

4.1 Sources of Error

There are many sources of error that can affect the kind of computation that we're

performing. To help us see the various sources of error, Fig. ( 4.1) below is pro-

duced. It shows a sample of the process followed in computing Q, the depth, for

the Sphere shape, at a particular pixel.

The names of the variables shown in the figure are those used in the program,

and they are very similar to the names used in in the theoretical work.

Quantization Errors

Fig. 4.1 shows what steps are taking place during the calculations done to get Q,

at row #9, and column #28. The two small windows shown, are opened around the
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concerned pixel, for us to see the data that the program is using. The brightness

invariance equation is as we've seen:

where from Eq. (2.24) and Eq. (2.25), u., and v 3 are:

and,

To test how close the calculated terms in the BIE are to zero, we use the Ac-

tual depth, variable Az , which is obtained from the image generating subroutines,

and is present throughout the program.

Please note that Az is not used to solve anything; it is there for testing pur-

poses, to enable the user to track the errors and see how good the depth recovering

is. Using the correct us, and vs, we see thatg/xus+g/yvs= 59.149503.

And gs = -78.5, a little too big, it should be -59.15 for the BIE to be exactly

satisfied.

It was observed that, as β, or k3 , become smaller or larger, gs becomes

smaller or larger accordingly, which is not surprising. It is this choice of some

parameters in the simulation part, that affects the results. The question of where

to choose β and k3, such thatgsis not too large, but yet not too small.

It was also observed, that as the dynamic range of the gray level function

increases, gs , (and g x,and gy), tend to have less quantization error, and produce

better results. Gray level quantization is one of the most penetrating errors, because

almost all of the terms used in the recovery of the depth depend on the gray level
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values read from the image array. Namely, gx , gy , and gs , all depend on the gray

levels of the image array.

The recovered depth in Fig.( 4.1) was Z' = -0.837082, or Z = D + Z' =

99.16, while the actual Z' was Za.' = -0.624162; a difference of about 25%. Remem-

ber that the calculations necessary to compute the M matrices will need to use the

depth information extensively, and therefor a small error my accumulate.

Fig.( 4.2) shows the same calculations for a different pixel in which the depth

recovered was more accurate.

The error here between the actual depth and the recovered depth is about

0.3%.

4.1.1 Loss of significance

Due to the large difference of magnitude between the values of X and Y, and the

value of Z, some numerical error is inevitable. Q -1 is Z, and should be close to

the value of D, namely 100. So Q is in the order of 0.01, and any variations in Q,

takes place 3 digits after the decimal point. Eq. (2.26) calculates Q; but if there is

a 10% error in Q, it translates to about 20% error in Z', because the perspective

projection is a nonlinear transformation. In other words if the actual Q is 0.011,

and the recovered Q is 0.0121 (10 % error), then the actual Z' is -9.091, and the

recovered Z' is -17.35, 45% error.

4.1.2 Singularities

Due to the gray level quantization, and the sampling effect on x, and y, the di-

mensions on the screen, we may have some points in the image where one of the

gradients becomes zero. This has shown to produce huge errors which could have
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a tremendous effect on the final output if not handled in proper manner. It is very

difficult to predict this type of error, however a better way to deal with it is that

if the value of the recovered z' is outside a certain range, i.e. too far from zero,

that particular pixel is excluded from the computations in M and D. This method,

however, if the range is not carefully chosen, may end up excluding too many pixels,

and thus still affecting the results. In the experiments performed using the provided

program, the percentage of the points that had to be excluded was always less than

0.1% for runs with good results.

4.1.3 Unbounded Surface

The Alpha shape surface used here is an unbounded (infinite) surface, i.e. not closed.

This is one of the factors that affect the accuracy of the reconstruction, sinc the

Algorithm does not see all the surface. That is why higher errors were experienced

with the Alpha shape, than with the Sphere shape.

4.2 Accomplishments

The major accomplishments of this work can be summerized in the following:

• The Algorithm used starts with no knowledge at all about the image, and

therefore is a practical and realistic approach.

• gx ,gy , and, gs are approximated using standard image processing techniques,

while in [6], they were evaluated analytically from a known structure gray

function distribution. In [6] it was done that way to prove that the method

is accurate if the brightness gradients were not a source of error, since the

method was still new; here, we extend that to show that it works with the

gradients obtained with the usual processing techniques.
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• The gray levels of the two images are integers. This also adds to the quanti-

zation errors, but makes the approach more realistic.

• The program developed during the course work of this thesis, is a powerful

tool for future research in this field. It has been included in the thesis, with

a clear documentation. It allows the user to investigate the effect of most, if

not all, of the parameters, without too much change in the source code.

• With the reasonably good results obtained here, we show that the UOFF

method for recovering depth, and structure, is a robust, and capable tech-

nique.

• To make the algorithm more automatic, a formula for obtaining K, the num-

ber of variables in the polynomial, as a function of the degree N, was devel-

oped. It is used at the beginning of the program to evaluate K from the sole

knowledge of N.

4.3 Future Research

There are many interesting potential extensions to the work presented here, that

utilize the UOFF method in the field of recovering structure and motion:

• Many of the errors encountered here were, in one way or another, due to the

simulation of the two stereo images. Although the simulation is correct, the

gray level generating function used has a potential for causing more than a

few singularities. In other words, the gray level function is too sensitive to

some parameters, such as fi, k 2 , and k3 . If we could reduce this sensitivity,

there is a good case that many of the errors will vanish.
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• To run the program, the user has had to provide N, the degree, for the pro-

gram to test at. If N is unknown to start with, a possible approach is to start

from N = 1 and keep increasingNby 1 and computing the corresponding

λ's. When the coefficients corresponding to a certain layer, do not change

with the increase of N, it might mean that the previous layer had the highest

powers and we can stop there. Work can be done here to test this algorithm

and/or come with better solutions to this problem.

• In our work we normalized about the X2 term, λ(4), for both the Sphere

and the Alpha shape. In [6], normalization was done with respect to the

constant term λ(0). In both cases, we had to know something about the

original structure of the surface to know which term we can normalize about,

and which we cannot. This could be an interesting area of investigation, if

we want our algorithm to be as independent and robust, as possible.

46



Limg 9] [28] = 4879 	 Rimg[ 9] [28] = 4801

26 	 27 	 28 	 29 	 30 	 26 	 27 	 28 	 29 	 30

i= 7 	 10 	 10 	 10	 10 	 10 	 10 	 10 	 10 	 10 	 10
i= 8 	 10 	 10 	 10 	 10 	 10 	 10 	 10 	 10	 10 	 10
i= 9 	 10 	 10 148791 4056 3401 	 10 	 10 148011 3977 3323
i=10 4627 4174 3769 3397 3047 	 4548 4095 3690 3319 2971
1=11 4111 3794 3497 3214 2943 	 4032 3716 3419 3137 2867

As = 0.000000 	 Bs = -0.025744 Cs = 0.000000
Us = 2.574076 	 Vs = 0.000000 	 Ws = 0.033135
x=-0.006111 	 y=0.039286

gx=-347636.363636 	 gy=514618.181818 	 gs=-78.500

dg/dx * u_s : -347636.3636 * -0.00015990 	 : 55.589114609 +
dg/dy * v_s : 	 514618.1818 * 0.00000691 	 : 3.5603892125 +
gs 	 : -78.50000000 =
dg/dx*u_s + dg/dy*v_s + gs 	 = -19.35049618

p=9031.428563 	 q=895582.810721 Q=0.010084 	 z = -0.837082
Az = -0.624162

Figure 4.1: Run Sample 1
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Limg [18] [30] = 2775 	 Rimg[18][30] = 2701
jr -->

28 	 29 	 30 	 31 	 32 	 28 	 29 	 30 	 31 	 32

i =16 3130 2961 2796 2633 2474 	 3054 2885 2721 2560 2402
i =17 3102 2942 2784 2630 2478 	 3026 2866 2710 2556 2406
i =18 3080 2926 127751 2627 2481 	 3004 2851 127011 2553 2409
i =19 3061 2913 2767 2624 2483 	 2985 2838 2693 2551 2411
i =20 3046 2902 2761 2622 2485 	 2970 2827 2687 2549 2413

As = 0.000000 	 Bs = -0.025744 Cs = 0.000000
Us = 2.574076 	 Vs = 0.000000 	 Ws = 0.033135
x=-0.002619 	 y=0.023571

gx=-84509.090909 	 gy=3054.545455 gs=-73.750000

dg/dx * u_s : 	 -84509.0909 * -0.00086994 	 : 73.518252911 +
dg/dy * v_s : 	 3054.545454 * 0.00000648 	 : 0.0198108222 +
gs 	 : -73.75000000 =
dg/dx*u_s + dg/dy*v_s + gs 	 = -0.211936266

p=2249.338557 	 q=217542.567908 Q=0.010340 	 z =-3.285983
Az =-3.276869

Figure 4.2: Run Sample 2
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Appendix A

Finding K

The following procedure is developed to compute K.

For a polynomial degree of N, there are (N+1) layers that make up the entire

polynomial. Each layer contains coefficients of a single order n; n = 0, 1, , N. At

any specific layer, α j + βj+ γj= n. We can imagin αj, βj, λjas n stones that are

thrown randomly on top of X, Y, and Z.

The question is, in how many different ways can the stones settle for each

n? If we imagin X, Y, and Z, as three boxes in which the falling stones will land,

then there are two walls separating the stones. Note that the relative position of

the stones is unimportant, while the relative position of the walls, and thus X, Y, Z,

is important. If we let 712 equal the number of dimensions that we have, in our case,

it is three: X, Y, Z, then we have the problem of combining n indistinguishable

objects with (m — 1) distinguished objects.

This is similar to the Bose-Einstein problem, and the solution is that the

number of combinations per layer is
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which if worked out yields

possible different combinations per layer. K, therefore, is the summation of all the

possible (N 1) layers, or:

This formula is used at the beginning of the program for the computation

of K knowing m = 3, and N.
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Appendix B

The Program

/* The following program has been developed as a testing tool

for the Unified Optical Flow Field approach, for reconstructing

the surface structure of a surface from two images taken

of it by two cameras

The program is divided into three major parts:

1. Building the images that the analysis will be

conducted upon later

2. Recovering the depth of the world point facing

each pixel in the left image plane.

3. Solving the optimization problem to recover the

surface structure.

The last two parts do not use any of the information given to

the first part. They deal only with the image pairs generated
in the first part.

The names of the variables used has been kept as close as possible

to those used in the thesis.

Global Variables:

N The order of the polynomial that we want to perform
the exp. for, (1, 2, 3, ...etc)

IDIM No. of rows used in the image screen

JDIM No. of columns used in the image screen

BKGND Gray level assigned to the pixels of the image array
that don't

contain a part of the surface
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k1,k2 variables used to vary the gray generating fn. for creating

the images

Limg, Rimg integer arrays of size IDIM*JDIM each, containing the

Left and Right image arrays.

As,Bs,Cs Rotation rates of the right camera

Us,Vs,Ws Translation rates of the right camera

a, b, c alpha, beta, and gamma, used in the surface polynomial

K The number of coefficients in the polynomial

0.11*0.11 The size of image plane in real world coordinate units.

OFFSTx x value we want left border of image plane to start at.

OFFSTy y value we want top border of image plane to start at.

Zb Distance "D" between center of surface and world coor. origin.

This program was designed to be relatively flexible, enabling

its user to conduct a large number of different experiments without

much changing the source code.

# begin{sf}

# include <stdio.h>

# include <math.h>

# define N 3

# define IDIM 128

# define JDIM 128

# define BKGND 10

# define Id 1000.0

# define k2 0.0

# define OFFSTx (-0.055)

# define OFFSTy ( 0.065)

# define PI (4.0*atan(1.0))

# define ERR 1.0e-5

# define TINY 2.0e-7

# define Zb 100.0

# define M_SAVING_FORMAT "%d\t%d\t%le\n" /* Format for saving M */

# define D_SAVING_FORMAT "%d\t'LleNn" /* Format for saving D */

THE SUBROUTINES

void testfor(); /* Performs complete procedure for the

given variables*/
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void drawA(); /* Draws the Alpha image */
double Aroots();

void drawS(); 	 /* Draws the Sphere image */
double Sroots();

double dmax();
int 	 fctrl();

void imgmake(); /* Saves the image drawn in a file */

void stdrabc(); /* Loads a,b,c with standard setting */

short int getK(); /* Finds K from N */

void ABCUVW(); /* Loads Translational and rotational vars. */
void knowtask();

void imgread(); 	 /* Reads the saved image files */
void prepare();

double getEx();

double getEy();
double getEs();

double getp();

double getq();

void getQ(); /* Computes Q */

void compM(); /* computes M */

void compD(); /* computes D */

void Mxsave();

void Vcsave();

void Lamsave();

void Lamplot();

void Mxload();

void Vcload();
void Gauss();

void prepMD();

void intrprt();

short int Limg[IDIM] [JDIM], Rimg[IDIM][JDIM];

double As,Bs,Cs,Us,Vs,Ws,DLS;

short int a[20], b[20], c[20], Norm;
short int K;
double AQ[IDIM] [JDIM];

double k3;

main()
/* main prog starts here */
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int i;

double bet;

K = getK(N);
stdrabc();

/* The following do-while statements command the performance of the

experiment for a variaty of bet and k3, as seen. Any variables of

the testf or routine can be varied depending on the user's intension.
Here we are testing for an Alpha image ("A"), and normalizing

about lambda 4 */

bet = 0.1;

while ((bet>=0.0) && (bet<1.5))
{

k3 = 0.5;

while ((k3>=0.0) && (k3<4.0))
{

testfor("A", "TEST_A.128", 2, 1, bet, 	 4);

k3 += 0.125;
}

bet += 0.125;
}

1
/* main prog ends here */
/* 	  */

/* The following subroutine performs one experiment for
the given set of variables.

INPUTS:

Surname "A" for the Alpha image, "S" for the Sphere image,

extendible.
Lname Name of file to save result in.

ndx used in calculating x and y grad.: 1 or 2 only,
see getEx, getEy

nds used in calculating s grad. : 1 or 2 only,
see getEs.
Beta Anlge of rotation of right camera, Degrees.

norm element in polynomial to normalize about.
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OUTPUTS:

* Save the M and D matrices (Optional)
* Save the result of Lambda in file Lname (Optional)
* Save selected Lammbdas for plots (for multp. runs)

*/

void testfor(Surname,Lname,ndx,nds,Beta,norm)

char Surname[2],Lname[20];

int ndx, nds, norm;

double Beta;
{

FILE *fp;

short int i, j, I, J, Lin[IDIM] [JDIM], ALin[IDIM][JDIM];

double X, Y;

double M[22][22], D[22], L[22], sen, sad;

double Q[IDIM] [JDIM];

char Mname[22], Dname[22];

char Limgnm[22], Rimgnm[22];

Beta = Beta*PI/180.0;

Norm = norm;

knowtask (Lname,Mname,Dname,Limgnm,Rimgnm);

ABCUVW(Beta,nds);

if (Surname[0] == 'A') drawA(Beta,AQ,ALin);

else if (Surname[0] == 'S') drawS(Beta,AQ,ALin);

else

printf("Unknown drawing request\n");

exit();
}

prepare(Lin);

getQ(Lin,Beta,ndx,Q);

compM(Q,Lin,M,Norm);

compD(Q,Lin,D,Norm);

prepMD(M,D,Norm);

Gauss(M,D,(K-1),L);
intrprt(L,Norm);
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Lamplot ((K-1),L,Norm,Beta);

/* Lamsave (Lname,(K-1),L,Norm,Beta,ndx,nds);

Lamsave is best used if a single experiment is run, because it

would consume a lot of memory otherwise and be difficult

to comprehend */

}

/* 	  */

/* getQ is the subroutine used to recover the depth

INPUTS:

in int flagame size as img array, signals pixel is in(1) or out(0).

Beta Angle of rotation of left camera

ndx used in getEx, and getEy subroutines

OUTPUTS:
in modified to exclude some points where recovered depth

is not reasonable

Q (1/Z), the recovered depth.*/

void getQ(in,Beta, ndx,Q)

short int in[IDIM][JDIM];

double Beta;

double Q[IDIM][JDIM];

int ndx;

int i,j, count, outcnt, negcnt;

double Ex, Ey, Es , x, y, z, Az;

double p,q, gam, Qsum;

double u_s, v_s;

Qsum=0.0;

count=0;

outcnt=0;

negcnt=0;

for (i=0; i<IDIM; i++)

for (j=0; j<JDIM; j++)

Q[1][j] = 0.00001;
}
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for (i=0; i<IDIM; i++)
{

for (j=0; j<JDIM; j++)

{

if ( i==(IDIM-1) II j==(JDIM-1) ) in[i][j] = 0;

if (in[i] [j] == 0) Q[i][j]=0.00001;

else if (in[i][j] == 1)
{

count += 1;

Ex 	 = getEx(i,j,ndx);

Ey 	 = getEy(i,j,ndx);

Es 	 = getEs(i,j);

x 	 = ( 0.11*(double)j)/(JDIM -1) + OFFSTx ;

y 	 = (-0.11*(double)i)/(IDIM -1) + OFFSTy ;

/*

u_s 	 = (-Us*AQ[i] [j] -Bs) - x*(-Ws*AQ[i] [j] + Bs*x) ;

v_s 	 = y*(Ws*AQ[i][j] - Bs*x);

Es 	 = -(Ex*u_s + Ey*v_s);

See the brightness invariance equation,

These are used to test intermediate states of

the solution using Actual depth. They are NOT used

in the reconstruction. If these statements are

included in the program you should get a PERFECT

solution (tested) */

p 	 = getp(x,y,Ex,Ey,Es);
q 	 = getq(x,y,Ex,Ey,Es);

Q[i] Cj] = p/q ;

z 	 = 1.0/Q[i]Ej] 	 Zb;

if (fabs(z)> 18.0 II Q[i][j]<(1.0/Zb))
{

/* if solution is too big, exclude it */

in[i][j] = 0;

outcnt += 1;
}

if (Q[i][j] < 0.0)
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{

in[i] [j] = 0; /*if Q<0 exclude it */

negcnt += 1;

}

}

1

}

}

/* 	  */

/* This subroutine uses the filename chosen in 'testf or'

and generates similar names to save M and D in them. */

void knowtask(Lname,Mname,Dname,Limgnm,Rimgnm)

char Lname [20] , Mname [20] , Dname [20];

char Limgnm [20], Rimgnm[20];

int i,size;

for(i=0; i<15; i++)

Mname[i] = Lname[i];

Dname[i] = Lname[i];

}

Mname[ 0] =

Mname[ 2] =

Mname[ 7] = 'M';

Dname[ 0] =

Dname[ 2] =

Dname[ 7] =

Limgnm[ 0] =

Limgnm[ 1] =

Limgnm[ 2] = 'a';

Limgnm[ 3] = 'g';

Limgnm[ 4] = 'e';

Limgnm[ 5] =

Limgnm[ 6] = '/';

Limgnm[ 7] =

Limgnm[ 8] =

Limgnm[ 9] = Lname[4];

Limgnm [10] = Lname[5];

Limgnm[11] = '/';
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Limgnm[12] = 'L';
Limgnm[13] = Lname[4];
Limgnm[14] = Lname[5];
Limgnm[15] = '.';
Limgnm[16] = Lname[11];
Limgnm[17] = Lname[12];

for(i=0; i<=17; i++)

if 	 (i != 12) Rimgnm[i] = Limgnm[i];
else if (i == 12) Rimgnm[i] = 'R';
}

1
/* 	  */

/* This subroutine prepares the 'in' flag from the image data */

void prepare(Lin)
short int Lin[IDIM][JDIM];
{

int i,j;

for (i=0; i<IDIM; i++)
{

for (j=0; j<JDIM; j++)
{

if (Limg[i][j] == BKGND) Lin[i][j]=0;

else Lin[i] [j] = 1;
}

}

}

/* 	  */

/* This subroutine computes the M matrix
INPUTS:
Q Depth information
in in flag
norm
*/

void compM(Q,in,M,norm)
double Q[IDIM][JDIM];
short int in[IDIM][JDIM];
double M[22] [22];
short int norm;
{
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double powXm, powYm, powQm;
double 	 MX , 	 MY , 	 MQ, z, x, y, X,Y;
short int i,j,I,J;

for (I=0; I<=(K-1) ; I++)
for (J=0; J<=(K-1) ; J++) M[I][J] = 0.0;

for (I=0; I<=(K-1); I++)

for (J=0; J<=(K-1); J++)
{

if((I != norm) && 	 != norm))
{

powXm = (double)(a[J] + a[l]);
powYm = (double)(b[J] + b[I]);
powQm = (double)(c[J] + c[I]);

for (i=0; i<IDIM; i++)

for (j=0; j<JDIM; j++)

z = (1.0/Q[i][j] - Zb);
if (in[i][j] == 1)

x = ( 0.11*(double)j)/(JDIM -1) + OFFSTx ;
y = (-0.11*(double)i)/(IDIM -1) + OFFSTy ;
X = x/Q [i] [j] ;
Y = y/Q 	 [j] ;

if (X == 0.0) MX=0.0;
else MX = pow(X, powXm);

if (Y == 0.0) MY=0.0;
else MY = pow(Y, powYm);

if (z == 0.0) MQ=0.0;
else if (powQm == 0.0) MQ=1.0;
else MQ = pow(z , powQm);

}
else if Una] Li] == 0)

MX=0.0;
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M[I][J] = KIM] + MX*MY*MQ ;
}

}

}

}

}

}

/* 	  */

/* This subroutine computes the D vector */
void compD(Q,in,D,norm)
double D[22];

double Q[IDIM] [JDIM];

short int in[IDIM][JDIM];
short int norm;
{

double powXd, powYd, powQd;

double 	 DX , 	 DY , 	 DQ , z , x, y , X, Y;
short int i,j,I;

for (I=0; I<=(K-1); I++) 	 = 0.0;

for (I=0; I<=(K-1); I++)

if (I != norm)

powXd = (double)(a[I] + a[norm]);

powYd = (double)(b[I] + b[norm]);

powQd = (double)(c[I] + c[norm]);

for (i=0; i<IDIM; i++)

for (j=0; j<JDIM; j++)

z = ((1.0/Q[i][j]) - Zb);

if (in[i] [j] == 1)

x = ( 0.11*(double)j)/(JDIM -1) + OFFSTx ;

y = (-0.11*(double)i)/(IDIM -1) + OFFSTy ;

X = x/Q [i] [j] ;
Y = y/Q [i] [j] ;

if (X == 0.0) DX=0.0;
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else DX = pow(X, powXd);

if (Y == 0.0) DY=0.0;
else DY = pow(Y, powYd);

if (z == 0.0) DQ=0.0;
else if (powQd == 0.0) DQ=1.0;
else DQ = pow(z ,powQd);

}

else if (in[i] [j] == 0)
DX = 0.0;

D[I] = Da] - DX*DY*DQ ;

}
}

}
}

}

/* 	 *1

/* This subroutine is used to save the M matrix */
void Mxsave(fname, I, J,M,norm)
char *fname;
int I,J, norm;
double M[20][20];

FILE *fp;
int i,j;

if ((fp=fopen(fname, "w")) == NULL)
{ /* if there is error in opening file */
printf("Error in opening file 7,10s \n",fname);
exit();

}
else

{

for(i=0; i<= I; i++)

for (j=0; j<= I; j++)

if((i!=norm)&&(j!=norm))
fprintf(fp,M_SAVING_FORMAT,i,j,M[i][j]);
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}
fclose(fp);

}
/* 	 */

/* This subroutine is used to save the D vector */
void Vcsave(fname, I,V,norm)
char *fname;

int ',norm;

double V[20];

{

FILE *fp;
int i;

if ((fp=fopen(fname, "w")) == NULL)

{ /* if there is error in opening file */

printf("Error in opening file 7.10s \n",fname);

exit();

}

else

{

for(i=0; i<= I; i++)
if(i!=norm)

fprintf(fp,D_SAVING_FORMAT,i,V[i]);

}
fclose(fp);

1
/* 	  */

double getp(x, y, Ex, Ey, Es)

double x,y,Ex,Ey,Es;

double p;
p = (double)((-As*y+Bs*x)*(x*Ex+y*Ey) - Ex*(-Bs+Cs*y)

- Ey*(-Cs*x+As) - Es);

return p;

}
/* 	  */

double getq(x, y, Ex, Ey, Es)

double x,y,Ex,Ey,Es;

{

double q;
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q = (double) ((x*Ws*Ex) + (y*Ws*Ey) 	 (Us*Ex) 	 (Vs*Ey) ) ;
return q;
}

/*    */
double getEx(i,j,ndx)
short int 	 j , ndx ;
{

double Ex , gx ,dx ;

gx = (double) (Limg 	 [j +1] -Limg [i] [j]+Limg[i+1] [j +1] -Limg [i+1.] [j]
+ Rimg[i] [j +1] -Rimg 	 [j] +Rimg [i+l] [j +1] -Rimg [i+1] [j] ) ;

if (gx == 0.00) gx=1.0e-9;

if 	 (ndx == 1) dx = 1.0;
else if(ndx == 2) dx = (double)(0.11/JDIM);

Ex = 0.25*gx/dx;

return Ex;
}

/* 	  */
double getEy(i,j,ndx)
short int i,j,ndx;

double Ey,gy,dy;

gy = (double) (Limg [i+1] [j] -Limg Li] [j] +Linz [i+1] [j +1] -Limg Li] [j+1]
+ Rimg [i+1] [j] -Rimg [i] [j] +Rimg [i+1] [j+1] -Rimg [i] [j +1] )

if (gy == 0.00) gy=1.0e-9;

if 	 (ndx == 1) dy = -1.0;
else if(ndx == 2) dy = (double)(-0.11/IDIM);

Ey = 0.25*gy/dy;

return Ey;
}

/* 	  */

double getEs(i , j )
short int 	 j ;
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{

double gs,Es;

gs = (double) (Rimg [i] [j] -Limg 	 [j] + Rimg [i+1] [j] -Limg [i+1] [j]

+ Rimg [i] [j+1] -Limg [i] [j+1] + Rimg [i+1] [j+1] -Limg [i+1] [j +1] ) ;

Es = 0 .25*gs/DLS;

return Es;
}

/*    */

/* This subroutine computes K */

short int getK(Num)
int Num;

{
short int m=3;

int n, k;
k=0;

for (n=0; n<=Num; n++)

k = k + (fctrl(m+n-1))/(fctrl(n)*fctrl(m-1));
return k;
}

/* 	  */

/* calculates the factorial of input n */

int fctrl(n)

short int n;
{

int f,i;

f=1;

if (n >= 1)
{

for (i=1; i<=n; i++) f=f*i;

return (f);
}

else return 1;
}

/*    */
/* This subroutine loads a,b, and c, with the standard setting
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assumed in the reconstruction */
void stdrabc()
{

short z;
z=200;

a[0] 	 = 0; b[0] 	 = 0; c[0] 	 = 0;

a[1] 	 = 1; b[1] 	 = 0; c[1] 	 = 0;
a[2] 	 = 0; b[2] 	 = 1; c[2] 	 = 0;

a[3] 	 = 0; b[3] 	 = 0; c[3] 	 = 1;

a[4] 	 = 2; b[4] 	 = 0; c[4] 	 = 0;

a[5] 	 = 1; b[5] 	 = 1; c[5] 	 = 0;

a[6] 	 = 1; b[6] 	 = 0; c[6] 	 = 1;

a[7] 	 = 0; b[7] 	 = 2; c[7] 	 = 0;

a[8] 	 = 0; b[8] 	 = 1; c[8] 	 = 1;

a[9] 	 = 0; b[9] 	 = 0; c[9] 	 = 2;
a[10] 	 = 3 ; b[10] = 0; c[10] 	 = 0;
a[11] 	 = 2; b[11] 	 = 1; c[11] 	 = 0;

a[12] 	 = 2; b[12] = 0; c[12] 	 = 1;

a[13] 	 = 1; b[13] = 2; c[13] 	 = 0;

a[14] 	 = 1; b[14] 	 = 1; c[14] 	 = 1;
a[15] 	 = 1; b[15] 	 = 0; c[15] 	 = 2;

a[16] 	 = 0; b[16] 	 = 3; c[16] 	 = 0;

a[17] 	 = 0; 13[17] 	 = 2; c[17] 	 = 1;

a[18] 	 = 0; b[18] 	 = 1; c[18] 	 = 2;
a[19] 	 = 0; b[19] 	 = 0; c[19] 	 = 3;

/* 	  */

/* This subroutine is used for saving the solutions of

a multiple run experiment in a plot ready format

NOTE THAT YOU NEED TO CHANGE THE FILE NAMES FROM HERE

AND TO MAKE SURE THAT ANY OLD VERSION OF THE SAME FILE

NAME IS ERASED BEFORE THE NEW RUN,

otherwise it would just append at the end of the old file.
*/

void Lamplot(I,L,norm,BB)

int I,norm;

double L[22],BB;

{

FILE *fp1, *fp2;

int i;
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L[norm] = 1.0;

if ((fpl=fopen("Plots/Anz", "a+")) == NULL)

{ /* if there is error in opening file */

printf("Error in opening file %10s \n","Plots/Anz");

exit();

1
else

fprintf(fp1,"Beta = %3.4f\tk3 = %1.4f\t\t
%2.6f\t%2.6f\t%2.6f\t%2.6f\t\n",

(BB*180.0/PI),k3,L[4],L[7],L[9],L[16]);

fclose(fp1);

if ((fp2=fopen("Plots/Az", "a+")) == NULL)

{ /* if there is error in opening file */

printf("Error in opnning file %10s \n","Plots/Az");

exit();
}

else

fprintf(fp2,"Be=%3.3f k3=%1.4f\t",(BB*180.0/PI),k3);

for(i=0; i<=13; i++)
{

if(i!=4 && i!=7 && i!=9 && i!=16)
fprintf(fp2,"%2.3f ",L[i]);

}

fprintf(fp2,"\n");
}

fclose(fp2);

}

/* 	  *1

/* This subroutine Reads the saved image */

void imgread(fname, fp, intimg)

short intimg[IDIM] [JDIM];

FILE *fp;

char *fname;
{

short i,j,c;
if ((fp=fopen(fname, "r")) == NULL)
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{ /* if there is error in opening file */

printf("Error in opening file %10s \n",fname);
exit();
}

else
{

for(i= 0; i< IDIM; i++)
{

for (j=0; j< JDIM; j++)
{

intimg[i] [j] = getc (fp) ;
}

}

}

fclose(fp);
}

/* 	 */

/* makes two image files from the two integer arrays

Limg and Rimg */

void imgmake(fname, fp, intimg)

short intimg[IDIM+1][JDIM+1];

FILE *fp;

char *fname;

{

int i,j;

if ((fp=fopen(fname, "w")) == NULL)
{ /* if there is error in opening file */

printf("Error in opening file %10s \n",fname);

exit();
}

else
{

for(i=0; i< IDIM; i++)
{

for (j=0; j< JDIM; j++)
{

putc(intimg[i] [j] , fp);
}

}

}
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fclose(fp);
}

/* 	
void ABCUVW(Beta,nds)
double Beta;
int nds;
{

double xht, zht;
xht = (Zb*sin(Beta));

zht = (Zb*(1.0 - cos(Beta)));

if 	 (nds == 1) DLS = 1.0;

else if (nds == 2) DLS = sqrt(xht*xht + zht*zht + Zb*Zb*Beta*Beta);

else 	 ("Check nds !!!!\n");

As = 0.0;

Bs = (-Beta)/DLS;

Cs = 0.0;

Us = (Zb*sin(Beta))/DLS;

Vs = 0.0;

Ws = (Zb*(1.0 - cos(Beta)))/DLS;

}

/* 	  */

void intrprt(L, norm)

double L[22];

int norm;
{

int i,I;

double 1[22];

for(i=1; i<=(K-1); i++)

l[i] = L[i];

for (I=0; I<=(K-1); I++)
{

if (I<norm) L[I] = 1[1+1];

else if (I>norm) L[I] = 1[I];
}

}

/*     */
void prepMD(M, D, norm)

double M[22][22], D[22];

70



int norm;

{

double m[22][22], d[22];

int i,j,I,J;

for (I=0; I<=(K-1); I++)

{

for (J=0; J<=(K-1); J++)

if ((I!=norm) && (J!=norm)) m[I][J] = M[I][J];

if (I != norm) d[I] = D[I];

}

for (I=1; I<=(K-1); I++)

{

for (J=1; J<=(K-1); J++)

if (I<=norm) i=I-1;

else if (I>norm) i=I;

if (J<=norm) j=J-1;
else if (J>norm) j=J;

M[I] [J] = m[i] [j] ;
}

= d[j] ;
}

}

/* 	  */
/* This subroutine solves the system of linear equations ML=D */

void Gauss(M,D,n,x)

double M[22] [22] , D[22], x[22];
int n;

int i,j,k, lk, 1[22];

double A[22][22],B[22],S[22],smax,rmax,r,xmult,sum ;

for (i=1; i<=n; i++)

for (j=1; j<=n; j++)

A[i] [j] = ma] [j] ;
B[i] = Da] ;
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}

for (i=1; i<=n; i++)

1 [i] = i ;
smax = 0 . 0 ;
for (j=1; j<=n; j++)

smax = dmax(smax,(double)(fabs(A[i][j])));
S[i] = smax;
}

for (k=1; k<=(n-1); k++)

rmax = 0.0;
for (i=k; i<=n; i++)

r = (double) (f abs (A [ (1 [i]) [k] / S [(1 [i] ) )
if (r > rmax)

j = i;
rmax = r;
}

}

lk =l [j] ;
l[j] = l[k] ;
l [k] = lk ;
for (i=(k+1) ; i<=n ; i++)

xmult = A [1 [i] ] [k] / A [lk] [k] ;
for (j=(k+1); j<=n; j++)

A [l [i]] [j] = A [1 [i] [i - xrault*A Dki [j] ;
A [1 [i] ] [k] = xmult ;

}

for (k=1; k<=(n-1); k++)

for (i=(k+1); i<=n; i++)
B [1 [i]] = B [1 [i] ] - A [1 [i] ] [k] *B [1 [k]] ;

}

x In] = B[1 [n] ] / A [1 [n] ] [n] ;
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for (i=(n-1); i>=1; i--)

{

sum = BUM];

for (j=(i+1); j<=n; j++)
sum = sum - A[l[i]][j]*x[j];

x 	 = sum/A [l [i] Li] ;

}

/* 	  */
double dmax(a,b)

double a,b;

{

double x;

x = a;

if (b>x) x=b;

return x;

}

/* 	  */

/* This subroutine saves the solution of a single run,
along with many of the variables that one run from another */

void Lamsave(fname, I,V,norm,BB,ndx,nds)

char *fname;

int I,norm,ndx,nds;

double V[22],BB;

FILE *fp, *fp2, *fp3;

int i;

if ((fp=fopen(fname, "a+")) == NULL)

{ /* if there is error in opening file */
printf("Error in opening file 7,10s \n",fname);

exit();

else

fprintf(fp,"\n\n 	

fprintf(fp,"\n \t IDIM =\t'Ad\n",IDIM);
fprintf(fp,"\nThis result is for Zb=%g\n",Zb);

fprintf(fp,"And for Beta=%g\n\n",BB*180.0/PI);
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fprintf(fp,"As = %f\tBs = %f\tCs = %f\nUs = %f\t
Vs = %f\tWs = %f\n",As,Bs,Cs,Us,Vs,Ws);

fprintf(fp,"k1 = %f\tk2 = %f\tk3 = %f\n",k1,k2,k3);

fprintf(fp,"ndx=%d 	 nds=%d\n",ndx,nds);
fprintf(fp,"%30s",fname);
fprintf(fp,"\n\n");
for(i=0; i<= I; i++)

if (i != norm)
fprintf(fp,"Lambda[%2d] = \t %1.12f\n",i,V[i]);

else if (i == norm)
fprintf(fp,"Lambda[%2d] = \t %1.12f\n",i,1.00);

1
fclose(fp);
}

/* 	  */

void Mxload(fname,Surname, I, 3, M, norm)
char *fname;
int I,J,norm;
double M[22][2];
{

FILE *fp;
short i,j,c;
int 1,m;

if ((fp=fopen(fname, "r")) == NULL)
{ /* if there is error in opening file */
printf("Error in opening file %10s \n",fname);

exit();
}

else
{

for(i= 0; i<= I; i++)
{

for (j=0; j<= J; j++)
{

if((i!=norm) && (j!=norm))

c = fscanf(fp, M_SAVING_FORMAT,&l,&m,&M[i][j]);
if(c==EOF)printf("Error in loading file %9s",fname);

/*printf("Mxload: \tM[%2d][%2d] = %g \n",i,j,M[i][j]);*/

}
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}

}

fclose(fp);
}

/* 	
void Vcload(fname, I, V,norm)
char *fname;

int I,norm;

double V[22];
{

FILE *fp;

short i,c,l;

if ((fp=fopen(fname, "r")) == NULL)

{ /* if there is error in opening file */
printf("Error in opening file %10s \n",fname);

exit();
}

else
{

for(i= 0; i<= I; i++)

if(i != norm)
{

c = fscanf(fp, D_SAVING_FORMATA1,&V[i]);
if (c == EOF) printf("Error in loading file %9s",fname);
/*printf("Vcload: \tD[X2d] = %g \n",i,V[i]);*/
}

1
}

fclose(fp);
}

/* 	  */

/* This subroutine 'draws' the Alpha image and puts it in
the arrays Limg and Rimg. It also returns the ACTUAL Q and "in"

matrices to be used for testing by the user,

NOT to be used in the reconstruction */

void drawA(Beta,Q,in)

double Beta;

double Q[IDIM] [JDIM];

short int in[IDIM] [JDIM];
{
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double X,Y,z,Z,x,y,XL, YL;
int i,j,gl,gr,soln;
double r,th,phi,Y2,Dr,D1;
double Xi,Zet;
FILE *fp;
char *fname;

for (i=0; i<IDIM; i++)
{

for (j=0; j<JDIM; j++)
{

Limg[i][j] = BKGND;
Rimg[i][j] = BKGND;
}

}

for (i=0; i<IDIM; i++)
{

for (j=0; j<JDIM; j++)
{

x = ( 0.11*(double)j)/(JDIM -1) + OFFSTx ;
y = (-0.11*(double)i)/(IDIM -1) + OFFSTy ;

Z = Aroots(x,y);

if (fabs(Z - Zb) <=80.0) soln=1;
else soln=0;

if(soln == 1)

XL = x*Z;
YL = y*Z;
z = Z - Zb;
r = sqrt(XL*XL + z*z);
th = atan( r/(YL+TINY));
phi= atan(z/(XL+TINY));

if(XL<0.0) phi = phi+PI;
if(XL>=0.0 && z<0.0) phi = phi+2.0*PI;

gl =(int)(kl*cos(k2*th)*sin(k3* phi 	 )+k1+0.5)+25;

gr =(int)(ki*cos(k2*th)*sin(k3*(phi+Beta))+k1+0.5)+25;
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Limg[i][j] = (short)(g1);
Rimg[i] [j] = (short)(gr);

Q[i][j] 	 = 1/Z;
in[i][j] 	 = 1;

}
else if (soln == 0)

gl 	 = BKGND;

gr 	 = BKGND;
Limg[i] [j] = (short)gl;

Rimg[i][j] = (short)gr;

Q[i] [j] 	 = 1/Z;

in[i] [j] 	 = 0;
}

1
 }

}
/* 	 */
/* Given the position of the pixel on the screen,

this subroutine calculates the Actual depth for the

Alpha shape image */

double Aroots(l,m)

double 1,m;

double a,b,c,d;
double fx,dfx,x,start;

int i;

double Z;

/* printf("x y %.6e\t%.6e\n",l,m); */

if (fabs(m)<TINY)

Z = 100000.0;

return Z;

1

a = m*m*m;

b = 1*1 - 5.0*m*m + 1.0;

c = -2.0*Zb;

d = Zb*Zb;
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b = b/a;

c = c/a;

d = d/a;

a = a/a;

/* printf("a b c d \t%.6e\t%.6e\t%.6e\t%.6e \n",a,b,c,d); */

start = Zb - 5.0;

x=start;

fx = x*x*x + b*x*x + c*x + d ;

for (i=0; i<= 12; i++)
{

dfx = 3.0*x*x + 2.0*b*x + c ;

x = x - fx/dfx;

fx = x*x*x + b*x*x + c*x + d ;
}

/* printf("i z fz \t%d\t'%.10e\t%g \n",i,x,fx); */

if ((fx > ERR) II (-1.0*fx > ERR))

Z=100000.0;

/* 	 printf("No solution at this x,y \n"); */

return Z;
}

else

Z = x;
/* printf("Solution found at current x,y \n"); */

/* printf("Z \t%.5g\n",Z); */

return Z;
}

}

/* 	 */

/* This subroutine 'draws' the Sphere image planes and puts them

in Limg and Rimg. It also returns the ACTUAL Q and in matrices

to be used for testing by the user,

NOT to be used in the reconstruction */

void drawS(Beta,Q,in)
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double Q[IDIM] [JDIM];
short int in[IDIM] [JDIM];
double Beta;
{

double z,Z,x,y,xr,yr, X,Y, XL, YL;
int i,j,gl,gr,soln;
double r,th,phi;
FILE *fp;
char *fname;

for (i=0; i<IDIM; i++)
{

for (j=0; j<JDIM; j++)

Limg[i][j] = BKGND;
Rimg[i][j] = BKGND;
}

for (i=0; i<IDIM; i4+)
{

for (j=0; j<JDIM; j++)
{

x = ( 0.11*(double)j)/(JDIM -1) + OFFSTx ;
y = (-0.11*(double)i)/(IDIM -1) + OFFSTy ;

Z = Sroots(x,y);

if (fabs(Z - Zb) <=80.0) soln=1;
else soln=0;

if(soln == 1)

XL = x*Z;
YL = y*Z;
z = Z - Zb;
r = sqrt(XL *XL + z*z);
th = atan( r/(YL+TINY));
phi= atan( z/(XL+TINY));

if(XL<0.0) phi = phi+PI;
if(XL>=0.0 && z<0.0) phi = phi+2.0*PI;
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gl =(int)(kl*cos(k2*th)*sin(k3* phi 	 )+k1+0.5)+25;

gr =(int)(kl*cos(k2*th)*sin(k3*(phi+Beta))+k1+0.5)+25;

Limg[i][j] = (short)(gl);
Rimg[i] [j] = (short)(gr);

	[j]	 = i/z;
in[i][j] 	 = 1;
}

else if (soln == 0)
{

XL = 0.0;

YL = 0.0;

gl = BKGND;
gr = BKGND;

Limg[i] [j] = (short)(g1);

Rimg[i] [j] = (short)(gr);

Q[i] [j] = 1/Z;

in[i][j] 	 = 0;
}

}

/*
for (i=0; i<IDIM; i++)

{

for (j=5; j<20; j++) printf("%4d",Limg[i][j]);

printf("\t");

for (j=5; j<20; j++) printf("%4d",Rimg[i][j]);
printf("\n");
}

*/

}

/* 	 */

double Sroots(l,m)

double l,m;

double a,b,c,d;
int i;

double Z;

/* printf("x y %.6e\t%.6e\n",l,m); */
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a = l*1 + raft + 1.0;

b = -2.0*Zb;

c = Zb*Zb - 16.0;

d = b*b - 4.0*a*c;

if (d < 0.0)

Z = 100000.0;
}

else if (d>=0.0)

Z = (-b - sqrt(d))/(2.0*a);

/* printf("x=%1.4f 	 y=%1.4f \t\tZ=%f\n",l,m,Z); */
return Z;
}

/* 	 */
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