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ABSTRACT
Computer aided design software in injection molding has revolutionized injection

molding, in the design and manufacturing processes. Computer Aided Engineering

can be applied to injection molding to increase the process efficiency, reduce part

costs, and produce accurate parts in less time. The mold designer has many software

programs to choose from to produce satisfactory mold designs from part geometries,

and a correct selection can produce profitable results. A study of the need for and

the scope of computers in injection molding is performed to evaluate the suitability

of a CAE package by considering the value added to the parts using these techniques.

The interactive nature of the programs is illustrated with examples and also the

ability of the programs to perform simulations of the processes are studied and the

accuracy and reliability of the programs is considered.

Evaluation of part shrinkage is very important to mold parts of required accu-

racy. The currently used methods in CAD mold design have one major drawback

that mold designers experience. The variation in shrinkage coefficients for different

resins cannot be compensated for and one cannot predict whether a specific part

can be manufactured without warpage. Most CAD simulations cannot accurately

predict the variation in shrinkage rates across all dimensions of a specific part. The

factors influencing part shrinkage are studied and the variation of shrinkage with

molding conditions is illustrated from previous experiments. A comprehensive plan

is suggested to perform experiments to enable prediction of part shrinkage more

accurately.
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Chapter 1

INTRODUCTION

1.1 The Manufacture of Plastic Parts - Prior to
Mold Filling Analysis

The manufacture of plastic parts by injection molding is an involved process and it

is performed in two stages, the design stage and the prototyping stage. Figure 1.1

shows the traditional method of plastic part manufacture in the injection molding

process.

The design stage, which involves many empirical relationships, comprises

many steps which are time consuming such as mold design and drafting. A product

design drawing is made showing the geometry of the part, the material specifications

and specifications for functional requirements. On the basis of this drawing the

mold is constructed in which the part can be produced. The molding machine

facilitates the mold filling and the solidification of the melt into the desired shape.

When the part solidifies the mold is opened to remove the finished product. The

molded part is only as good as the mold from which it is produced. A good design,

implemented with good workmanship, can produce an acceptable part. A poorly

working mold necessitates an excessive amount of attention from key personnel and

leads to high production costs as well as producing a part of poor quality that may



Figure 1.1: Traditional method of manufacturing injection molded parts
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fail its functional requirements.

It is undesirable to construct a mold that produces parts that do not meet

specifications or that costs more than the quoted price. Hence a preliminary pro-

toype design of the mold is made and it is used to mold the part. The part is

then tested for quality and functional requirements. If the part does not meet

the requirements then the necessary changes are incorporated into the mold design

and mold making. The mold is then retested. This is continued until the desired

product is produced. This is called the prototyping stage and it involves several

iterations and it would be desirable to reduce the iterations required to produce a

viable prototype in order to reduce the time involved and also the costs in making

it. The iterations are costly and can cause the prototyping stage to cost more than

the design stage. It is usually impossible to get a mold that provides the intended

level of quality and cost on the first attempt. It is important to engineer the mold

prior to construction.

The plastic parts should be designed for manufacturability by considering

the effectiveness of the manufacturing process. The effectiveness of the manufac-

turing process is directly proportional to the value added to the raw material by the

processing. But any processing of the raw material would incur an added cost for

the part. The aim of the designer should be to create a well designed part so as to

increase the value of the part and also to reduce the cost of manufacturing. While

designing a part, it should be noted that functional requirements cannot always

be stated clearly and may change. Several iterations may be needed to arrive at a

satisfactory design and new solutions may be necessary. Plastics can replace metal

products effectively when designed on the basis of functional requirements and not

as physical look-alikes.
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1.2 Need for Computers in the Design and the
Manufacture of Plastic Parts

The plastics industry is a dynamic field and a successful manufacturer needs to

have vast experience, in addition to labor and resources. The injection molding

process has many uncertain parameters that make the process complicated. To be

competitive in injection molding, optimum productivity and short start-up times

are desired. Since this process requires labor, economic considerations demand a

high efficiency in the process.

The parameters in this process such as the viscoelastic properties of the

plastic, irregular mold geometries and steep temperature gradients make the mold

design stage complicated. The low temperature of the mold cavity causes a steep

temperature gradient at the time of mold filling. This, in turn, causes a frozen

skin to be formed during the flow stage which decreases the cross section of the

flow channel and thus increases the pressure drop. This will cause lower shrinkages,

make parts larger, and cause tolerances to be exceeded. This is not desirable since

defective items would be produced.

Each mold design is unique due to the various parameters involved such

as rheology, section thicknesses and mold temperatures, which have a tremendous

influence on flow behavior. Due to this uncertain nature of molding parameters

many iterations may be required in prototyping a plastic part prior to satisfactory

molding. This would be costly in terms of time and labor.

Plastics have a very wide field of application and the need for reliable parts

has initiated a heavy competition. Any delays in manufacturing could lead to a

diminished market share. Computers can be used in injection molding as databases

and process controllers. The speed of computation and the reliable memory of a
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computer can be put to use in the design and the prototyping stages. The feature

of displaying the molding process on a graphic screen can help the mold designer

to evaluate a mold design before it is finalized for production to make necessary

changes. Also, material usage and its economical constraints can be evaluated to

perform economic analysis of the production run. Cavity filling analysis simulated

on screen can provide information on molding conditions including pressures and

temperatures and can show weld lines, meld lines and stresses. A weld line is a

discontinuity in a molded plastic part formed by merging of two or more streams

of plastic flowing together[31]. A weld line is formed across the flow. A meld line

is formed in the same manner as the weld line, but it is along the flow direction.

Finally, a CAD/CAM system can be coupled to numerically controlled mold cutting

machines to cut the mold as per design calculations.

1.3 Feasibility of the Application of Computers
in the Injection Mold Design Process

Polymer engineers and designers face many problems in manufacturing a plastic

part. The complexity of the injection molding process makes a successful produc-

tion start-up on the first attempt difficult. The various process parameters and

other criteria such as dimensional tolerances and appearance make mold design

complicated. The use of computers for the purpose of storing data collected from

human experts could eliminate the number of iterations in the prototyping stage by

simulating this stage and creating the mold design without making the mold. The

computer integrated injection molding process is shown in Figure 1.2.

Some polymer processing operations can be simulated, and the computer

skill of a computer can be used to make the heat transfer calculations and design

calculations. Computers can be used to solve the algorithms for such problems and
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Figure 1.2: Computer integrated method of manufacturing injection molded parts
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a very efficient solution can be expected for large problems. Such solutions are eco-

nomically feasible and computers could be very easily adopted for such applications.

The various machines that could be used are personal computers, advanced Com-

puter Aided Design (CAD) workstations and supercomputers. There have also been

rapid advances in the development, sophistication and acceptance of computational

algorithms, expert systems, and artificial intelligence(AI). These are components of

Computer Aided Engineering (CAE). CAE algorithms enhance the effectiveness of

existing experts. The application of computers can be in the mold filling analysis,

solidification analysis, economic analysis, cost analysis and for design aid packages.

These features underline the feasibility of the use of computers in the injection

molding process[1].

1.4 Expert Systems in Injection Molding

Injection molding satisfies many of the prerequisites of a successful implementation

of expert systems. Experts in this field can perform far better than others. Since

this field is vast, experts exist who have acquired a huge knowledge base that can

be gained by the non-experts. Human expertise in problem solving, which is guided

by a set of inference rules, can be combined with computer algorithms to give viable

systems that would solve the problems efficiently and in lesser time. A knowledge

base compiled with the experience and the evolving solutions to problems is used

to get a wide range of solutions. The knowledge base evolved from experience

is improved if the acquired expertise is stored that would otherwise be lost with

personnel. Expert systems constitute computer algorithms that aim at achieving

levels of performance in problem solving that matches a human expert by combining

computational algorithms, inference rules and a compiled knowledge base.
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1.5 Economic Justification for Computer Aided
Manufacture of Plastic Parts

The relevant question that determines the justification of CAE applications is

whether these tools expand the expertise of a designer in a cost effective manner.

CAE packages store corporate mold design expertise and the design files, program

codes and material databases are repeatedly refined and not lost with personnel.

These tools can also be also used by less experienced designers to learn the design

techniques. But these tools should also improve the productivity of designers and

process engineers. The prime question to be satisfactorily answered by a molder is

whether the use of computers would produce parts of equal quality, and cost, in a

shorter prototype period. A strong commitment is required to rationalize the long

and costly transition from part design to successful production. There are several

programs for injection molding available for the mold designer[2]. The mold de-

signer should make a choice from these programs by distinguishing between them

for useful and good programs. The designer should have good knowledge of the

injection molding process to select the program that would produce the required

results. It may be necessary for the designer to select more than one program for

specific applications, and integrate them.

The mold design stage requires many computer application packages to per-

form the functions such as analysis and drafting. This would require the designer

to study many packages and this would consume a great deal of time. This training

time must be offset by savings in the design time, which is difficult to do. The pro-

totyping stage is costly because of its iterative nature. Computer programs analyze

the molding problems in advance of actual operations and optimize the molding

quality, hence this stage is iterative.
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The CAE tools do not necessarily reduce the time to complete the design

stage. On the contrary they can increase the design time. The training time to

learn the associated software packages as well as the hardware costs combine to

make the justification of the use of CAE tools difficult. In the second stage, a

test run of the mold is made. It is usually improbable for the mold to produce a

part of the required cost and quality. In most cases, the prototyping stage involves

many iterations which make this stage costly. The CAE tools can eliminate the

prototyping stage by simulating the iterations in shorter time to compensate for the

higher expense in the design stage. Hence, accurate modeling of the mechanical,

thermal and flow behavior of the polymer melts can be used in the design stage to

shorten, or eliminate, the prototyping stage of the project.

1.6 Computer Aided Mold Filling Analysis

Predicting the performance of a mid without cutting any metal is a definite advan-

tage. The simulation of the mold filling process can be used to achieve optimum

conditions for making the product without cutting metal.

Mold filling is a most technically complicated and difficult phase to predict,

even for an experienced mold designer, because of the uncertain process parameters.

CAE is based on a solution algorithm that approximates the flow characteristics of

the melt, and the mold designer can consider all factors influencing the design.

The mold filling analysis of a three dimensional part would have to be per-

formed by describing several one dimensional flow paths and branch points. A two

dimensional analysis provides information on temperature and velocity gradients

transverse to the flow direction. The other parameters specified by the user are the

melt and mold temperature and the injection rate. These are incorporated in the

algorithm to compute the pressure drop, temperature and shear stress along the
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flow path with time. The position of weld lines and meld lines can be determined

from the coordinates where flow fronts intersect. The pressure and temperature of

the material at these flow fronts can provide information on the characteristics of

the weld line.

In another type of mold filling analysis the three dimensional geometry of

the mold cavity is specified as well as the process parameters. In this case the three

dimensional governing equations are solved using a numerical technique such as the

finite element method.

require the flowrepresentation of the filling

Numerical solutions such as the finite element method can provide an analysis

of the temperature, and pressure, as the flow front advances through the cavity.

Excessive fill pressures and weld line locations, and flow defects such as short shots

and frozen skin formation are detected easily. The user should be able to analyze the

information gathered by this method. The computation time and the cost involved

is appreciable to prompt the designer to use sound judgement in such analyses.

There are many software programs that can serve the purpose of a designer[2].

Commercially available software packages include Moldflow R , TMCONCEPT R ,

IMES R [3] and CADMOULD R. IDEAS Release V has developed a program for

injection mold analysis[4]. The designer must study the software programs and make

a choice so as to get the required results. Molding machine capabilities can also be

coupled in the CAD/CAM program to obtain precise mold designs[5]. A close link

between the resin supplier and the end user can be established by directly linking the

design, and engineering analysis, of a plastic part with automated manufacturing

using CAE[6]. Husky Injection Molding Systems, Ltd., has developed molding

machine designs CAD/CAM applications capabilities. Computerized design and

manufacture capabilities integrated in common databases make powerful tools that
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can improve injection molding efficiency and potential.

1.7 Summary

Computer aided design software in injection molding has revolutionized injection

molding, in the design and manufacturing processes. Some major advantages of

using CAD software in injection molding are, reduction in costs, better quality in

products, increased value of products and better process control.

Theoretical equations alone do not provide accurate simulation of the com-

plex range of variables in the injection molding process. Only a model based on

experimental correlations can make a comprehensive simulation of the influence

of the process variables on part quality. The parameters influencing the injection

molding process such as the viscoelastic properties of the plastic, irregular mold

geometries, and steep temperature gradients make prediction of the process behav-

ior difficult. Theoretical equations only guide the nature of the behavior, but the

evaluation of the variations into numerical data can be performed only by exper-

imentation. To develop a comprehensive simulation model it would be necessary

to perform molding cycle experiments, with varying part geometries and molding

conditions, and store the experimental data for interpolation or extrapolation of

process parameters. This technique can be adopted to develop the necessary simu-

lation data. A finite element method can be used to analyze the model to predict

pressures, temperatures and fill times.

Computer Aided Engineering can be applied to injection molding to increase

the process efficiency, veduce part costs, and produce accurate parts in less time.

The mold designer has many software programs to choose from to produce sat-

isfactory mold designs from part geometries, and a correct selection can produce

profitable results. The evaluation of the suitability of a CAE package is attempted
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by considering the value added to the parts using these techniques. Parts of equal

quality produced at less cost so as to recover the higher cost anticipated in the

design stage can justify a CAE application. For the successful implementation of

the CAE package, it should be accurate enough to predict the process variations

and the results derived from the simulation should be interpreted effectively. The

package developed for the process simulation should be accurate and should account

for process variations. The user should study the results from the software packages

that he can use for the process simulation and select the best package.
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Chapter 2

MOLDFLOWR

2.1 Simulation of Injection Molding with MOLD-
FLOW

MOLDFLOW[7] programs analyze the flow of plastics into injection molds by solv-

ing simultaneously the continuity, momentum and energy equations for flow. These

programs are used in two areas. One set of programs is used for mold design and

is commercially important. It is used for positioning gates, dimensioning runner

systems, designing flow leaders and deflectors to improve flow within the cavity. In

this context the company has developed three programs that solve the situations

encountered in plastics injection molding. These programs perform finite element

analyses which generate information for the design of injection molds and injec-

tion molded parts. The second set of MOLDFLOW programs is used in scientific

and laboratory applications. There are two programs for this purpose, a materials

database and a material selection package. The input data to these programs in-

clude specific heat, thermal conductivity and density, and viscosity as a function of

temperature, pressure and shear rate.

MOLDFLOWR is a registered software of MOLDFLOW Pty Ltd., Colchester

Road, Kilsyth, Victoria, 3137 Australia.
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2.2 CAE Technologies in Injection Molding

The range of computerized technologies available to the plastics industry are classi-

fied as geometric technologies, database technologies, engineering technologies and

manufacturing technologies.

Geometric technologies are those of solid modelling and those of drafting.

Modelling technologies are used to visualize the part and check the dimensions

and to check interference fits with other parts at the design stage. Modelling of a

part, is used as a preprocessor for analysis programs. The drafting module replaces

the manual function of drawing the part for manufacture and this module can

also perform geometric calculations, e.g. intersection of surfaces, fillets, and radii

between two complex surfaces in 3D. These systems can generate NC tapes to be

used in the machining of molds.

Database technologies are used for material selection which have functions

to search materials for particular requirements. Also, laboratory research can be

performed for materials and the data stored for future use.

Computer Aided Engineering technologies help the designer in quantifying

the complex relationships between variables involved in the molding process which

affect the quality and the performance of the finished product. The injection mold-

ing process is simulated using engineering software to identify problems before they

occur. The information needed to solve these problems is derived to optimize the

process.

Manufacturing technologies help in the use of NC machining of the molds.

NC machining produces complex three dimensional surfaces accurately and to the

required degree of precision which would be most difficult to produce by traditional

methods. Manufacturing systems can also be integrated with computers to provide

14



a closed loop feedback of the injection molding operation. This system gives a more

precise control over the injection cycle.

Management controls consist of costing systems, production scheduling pro-

grams, production control and machine monitoring. Each of these management

functions can be computerized for better efficiency.

There are four major analysis technologies which could be integrated with

the product design function to contribute to producing improved part quality and

performance. These technologies are described in the next sections.

2.3 Database Technology

Database technologies are used for material description and selection. A database

is maintained in which information on materials is stored. This helps the user in the

identification and selection of materials. The user can search for specific information

on material properties and grades. The user can determine the suitability of a

grade for a given application. This can establish limitations and capabilities of

materials that can be stored for future reference. There are also options to rank the

priorities of various material characteristics during the selection process. Certain

databases are linked with analysis programs that are intelligent, in the sense that

they store the material characteristics as functions rather than points. Hence, if

a property requirement is required, it searches the database using interpolation or

extrapolation functions between defined points. For instance the user can run an

analysis program with specific requirements for material conditions as demanded

by the part design. The program would then search the database for stored data

points and use a function depending on known behavior of particular properties

to generate specific data. This prediction of data is incorporated in the algorithm

of the program. Accurate prediction of material properties necessitates a database

15



with specific and reliable data. The complex and variable behavior of polymers and

the influence of the molding process on the properties of materials is recorded in

the MOLDFLOW database. Figure 2.1 illustrates the use of search techniques.

The physical properties of materials are recorded by laboratory testing pro-

cedures under injection molding conditions. The results of these tests are correlated

with established relationships of behavior to classify into different types. The data

is verified through classification designations which classify the materials reliably.

The system has been designed to expand the amount and type of data and

store in files by running a MOLDFLOW program, MATDB. This program is run

by a command language, unlike other MOLDFLOW programs. Instructions are

entered into the program by the user in a logical sequence of commands which

resembles a sentence of speech. The data structure is designed to accommodate

further enhancements in commands. This storage system renders concise data files

and reduces the risk of wrongly entered data. The data can be accessed easily and

fast. This system can be used for CAD AM software that performs stress analysis

and shrinkage analysis.

The material data collected from material suppliers is stored in a file called,

the standard database. There is also an option to store the users own data in a per-

sonal database which can be modified by the user according to specific requirements.

The information in both the databases has material file names, material grades and

material data. The material file names consist of names of groups of material grades

which is generally a suppliers name. The material grades are described in each of

the files with a description of properties, variables and points.

Material data in the new database is stored in point descriptions and data

required for specific points in the analysis software is derived from material charac-

teristic equations. For example, viscosity is characterized by the power law equation,
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>>SE STR='MPPO'/LOG
Search string "MPPO" not found on < Moldflow Standard Database

>>SE STR='PPO'/LOG

MATERIAL FILE NAME < Moldflow Standard Database >

GEPEUR
Material 	 Grade 	 Description 	 ( 	 Searching="PPO" 	 )

N1000 PPO NORYL 110 MOD STANDARD GRADE 	 VI(280)145
N1001 PPO NORYL N110S MOD 	 FDA GRADE 	 VI(280)145
N1002 PPO NORYL N110HG MOD 	 HIGH GLOSS 	 VI(280)145
N1003 PPO NORYL EN110 MOD 	 EXTR GRADE 	 VI(280)145
N1010 PPO NORYL 731 MOD STANDARD GRAD 	 VI(300)200
N1011 PPO NORYL 731S MOD 731 	 FDA GRADE 	 VI(300)200
N1012 PPO NORYL EN130 MOD 731 	 EXTR GRADE 	 VI(300)200
N1020 PPO NORYL SE1 MOD STANDARD V1 GRADE 	 VI(300)202
N1021 PPO NORYL SE0 MOD STANDARD VO GRADE 	 VI(300)202
N1022 PPO NORYL ENV125 MOD SE1 EXTR GRADE 	 VI(300)202
N1023 PPO NORYL PX1105 MOD ELECTRICAL GRADE 	 VI(300)202
N1024 PPO NORYL PX1107 MOD PX1105 	 10%GLASS 	 VI(300)202
N1030 PPO NORYL SE90 MOD STANDARD GRADE 	 VI(280)146
N1031 PPO NORYL ENV90 MOD SE90 EXTR GRADE 	 VI(280)146
N1032 PPO NORYL FN215D MOD STAND FOAM GRADE 	 VI(280)146
N1040 PPO NORYL SE100 MOD STANDARD V1 GRADE 	 VI(280)203

N1042 PPO NORYL ENV100 MOD SE100 EXTR GRADE 	 VI(280)203
N1050 PPO NORYL GFN1 MOD STAN GRADE 10%GLASS 	 VI(280)170
N1051 PPO NORYL FN5110 MOD FOAMGRADE 10%GLASS 	 VI(280)170
N1052 PPO NORYL GFN1SE1 	 MOD GFN1 V1 GRADE 	 VI(280)170
N1053 PPO NORYL PX1715 MOD SP GRADE 15%GLASS 	 VI(280)170
N1060 PPO NORYL GFN2 MOD STAN GRADE 20%GLASS 	 VI(300)180
N1061 PPO NORYL GFN2SE1 MOD GFN2 V1 GRADE 	 VI(300)180
N1070 PPO NORYL GFN3 MOD STAN GRADE 30%GLASS 	 VI(300)292
N1071 PPO NORYL GFN3SE1 MOD GFN3 V1 GRADE 	 VI(300)292
N1072 PPO NORYL V01505. MOD 15%GLASS VO GRADE BOZPDATA
N1080 PPO NORYL PX1112 MOD IMPMOD GR BLACK 	 VI(290)200
N1081 PPO NORYL PX1134 MOD IMPMOD GR COLOURS 	 VI(290)200
N1090 PPO NORYL PX1180 MOD IMPMOD GR BLACK 	 VI(290)145
N1091 PPO NORYL PX1181 MOD IMPMOD GR COLOURS 	 VI(290)145
N1092 PPO NORYL PX1181 MOD BLOWMOULDING GRADE 220C BOZDATA
N1200 PPO NORYL GTX900 MOD ONLINE PAINTING GRADE (285C)BOZDATA
N1201 PPO NORYL GTX901 MOD PRELIMINARY DATA BOZDATA
N1202 PPO NORYL GTX910 MOD PRELIMINARY DATA 	 BOZDATA
N1210 PPO NORYL GTX810 MOD 10% GLASS FILLED GRADE (285C)BOZDAT
N1220 PPO NORYL GTX820 MOD 20% GLASS FILLED GRADE 	 (285C)BOZDAT
N1230 PPO NORYL GTX830 MOD 30% GLASS FILLED GRADE (285C)BOZDAT

Figure 2.1: Material search for modified polyphenylene oxide in Moldflow database,
MATDB
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Viscosity A* (shear rate) * B * exp(C * Temp) 	 (2.1)

Viscosity data of new materials in the database is represented by a power

law relation. The data for the material is stored as three points of viscosity, each

point having the coordinates of temperature, shear rate and viscosity. The param-

eters A, B and C are derived from laboratory testing procedures. The power law is

calculated whenever required in any analysis software. This relation is called a first

order viscosity characterization. A second order characterization is,

where, Y = log(viscosity)

X = log(shear rate)

Z = temperature

The data for this equation is stored in six points of temperature, shear rate

and viscosity.

Each material grade can be described by any number of properties. Each

property can be dependent upon any number of variables and each variation can

be described by any number of points. This data point structure of the database

renders it general and versatile. The advantage of this system is the ability to

change mathematical models. For a new model the point structure would have

to store only the relationship between the coefficients whereas a database storing
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coefficients only would have to store more information relating coefficients to types

of models. The point structure database exists as a filing system and is simpler to

maintain and easier to access for the analysis software.

A standard list of material properties has been prepared to classify and

manipulate data. The properties and their associated variables in the list can be

extended when required. The standard properties listed are conductivity, specific

heat, density, freeze temperature, no flow temperature, viscosity, gel time, tensile

modulus, Poisson's ratio, degree of crystallinity and degree of orientation. Each

of properties has a set of variables. This system can be expanded to describe

the complex performance of many polymer properties. Thus the database can

more precisely predict, and quantify, material performance in specific applications.

The computer printout of a list of materials and a list of properties of modified

polyphenylene oxide (MPPO) nylon resin is shown in Figure 2.2.

2.4 Flow Technology

The MOLDFLOW programs consider the dependence of viscosity of plastics on

temperature and shear rate to calculate viscosity at a point and predict pressure

distribution. Viscosity, temperature and shear will vary depending on the flow

rate. Also, flow rate varies with viscosity. Thus flow and viscosity are interlinked.

The programs analyze single sections to predict pressure and temperature over

the sections and this analysis is extended to develop a total mechanism to predict

pressure, temperature and flow patterns in a complex molding.

These programs solve the mathematical equations of heat transfer and fluid

flow using a finite difference scheme. Flow paths are defined by simple strip ge-

ometries which are broken into sections. These sections are divided into a number
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MATERIAL FILE

GETEMP
Material Grade

NAME < Moldflow Standard Database >

Description 	 ( 	 Searching="PPO" 	 )

P1000 PPO NORYL SE 100 GE VI(300)178
P1002 PPO NORYL 534-701 GE VI(300)238
P1003 PPO NORYL PX-17180-780 GE VI(300)209
P1004 PPO NORYL 731-701 GE VI(300)365
P1005 PPO NORYL 110-701 GE VI(300)168
P1006 PPO NORYL SE1-701 GE VI(300)238
P1007 PPO NORYL SEO-701 GE VI(300)204
P1008 PPO NORYL GFN3-701 GE VI(300)359
P1009 PPO NORYL GFN3-SE1 GE VI(300)340
P1010 PPO NORYL GFN2-801 GE VI(300)271
P2001 PPO NORYL N-190 GE 	 PLAC TESTED VI(300)89
P2002 PPO NORYL PN-235 GE 	 PLAC TESTED VI(300)118
R1709 PPO NORYL PX 	 1039 Y2237 GE VI(300)215
R1710 PPO NORYL PX1039Y 3106 GE VI(300)245
R5201 PPO NORYL PX1112 	 701 GE VI(300)236

...( Search Completed on string="PPO"	 )...

>>INSPECT FIL='GETEMP' CODE='P1000'/LOG

MATERIAL FILE NAME < Moldflow Standard Database >

GETEMP
Material Grade Description

P1000 PPO 	 NORYL SE 100 	 GE 	 VI(300)178
Material Grade Data

CONDUCTIVITY	 J/(m.sec.degC) ==> 	 0.100
SPECIFIC HEAT 	 J/(kg.degC) 	 ==> 	 2050.
DENSITY	 kg/cu.m	 ==> 	 1000.
FREEZE TEMPERATURE degC	 ==> 	 150.0
NO-FLOW TEMPERATURE degC 	 ==> 	 180.0

VISCOSITY

TEMPERATURE
degC

280.0
300.0
310.0

'SHEAR RATE 	 'VISCOSITY
11/sec 	 IPa.sec
1 	 100.0 	 1 	 1491.

1000. 	 1 	 178.0
1 	 1.000e+04 	 1	 24.36

Figure 2.2: Material listing in Moldflow database, MATDB and properties of mod-
ified polyphenylene oxide	 20



of slices having their own temperature, shear rate and viscosity. The normal heat

transfer equations are used to calculate the heat transfer into each slice and the flow

is analyzed by solving the flow equations by numerical integration over the section.

A significant amount of computer power is required to run these programs.

Near the frozen layer, conditions of high shear and low temperature prevail, and the

experimental results are most prone to error, rendering the results very dependent

on the analysis in this region. These schemes work well in most applications but

the development of simpler algorithms based on dimensionless analysis and curve

fitting schemes results in more practical systems.

For an isothermal flow, first the shear rate is calculated and then the viscosity

based on shear rate and temperature. This viscosity is used in standard mold filling

calculations. In a practical situation hot plastic flows into a cold mold leading

to a frozen skin formation. Hence, the thickness of the frozen layer should be

calculated and then the effects of temperature distribution across the channel should

be determined. This problem is solved by introducing dimensionless analysis.

2.4.1 Dimensionless Analysis

In dimensionless analysis two dimensionless factors are required, one for tempera-

ture and the other for time. Each of these values should vary from 0 to 1. The

dimensionless temperature factor, TEMD, is defined as

where, Tx is the temperature at point x.

The dimensionless time factor, TIMD, is derived from the ratio of residence

time of the element to the cooling time within a particular element. Thus if
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This can be scaled within the range of 0 - 1 by the following formula.

TIMD =1 — exp(--ct ) 	 (2.5)

If the residence time is zero then TIMD is zero which gives a uniform temper-

ature profile across the section. If the residence time is very long compared to the

cooling time then TIMD becomes 1 and the temperature profile across the section

becomes the equilibrium value.

Assuming that the rate of change of temperature is constant across the sec-

tion and that Tmelt and Tmold are known for the dimensionless factor, the relation

that defines the temperature at any point across the section would be

The temperature at the center, 11 can be obtained by assuming a logarithmic

cooling relation and accounting for heat generated by friction. Thus,

(Temperature at center) (original temperature at center) - (heat lost by conduc-

tion) + (heat generated by friction)

where K1  and K2 are the logarithmic cooling factors. This relation would

evaluate an equilibrium temperature distribution as time tends towards infinity. If
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a dimensionless time factor is introduced in this relation, a temperature profile at

any point can be created by using a set of formulae. The Fig.1 shows the graph of

temperature distribution as a function of time and temperature.

The flow equation relating pressure, viscosity and section geometry is as

shown,

where,

V = viscosity

Q = flow rate

P = pressure

w = width

h = thickness

and A, B, C are constants in first order material viscosity relation. This would

require the values of viscosity to be known. Viscosity is related to shear and tem-

perature as follows.

The thickness of the frozen layer can be calculated by defining a no-flow

temperature and from the temperature distribution profile. A nominal shear rate

is then calculated based on the effective flow rate in the channel by the equation,
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The effective temperature is located at a point between the center of the

channel and the frozen layer. Thus from the temperature distribution, viscosity

can be calculated and the standard flow equations can be solved to conduct a flow

analysis.

2.4.2 Analysis of Actual Moldings

In actual moldings a branching flow technique is used wherein flow originates at an

element and divides into a number of flow paths. Each of the paths can further

divide into any number of paths. Figure 2.3 shows a simulated branching flow in

a mold designed to produce the parts of a digitizer mouse. The design illustrates

a method to mold all the components in a single mold. Thus flow is a series of

elements which continuously divide into a number of diverging flow paths. Though

the flow rate of each section is not known, we know by the law continuity that flow

rate into each section must equal the flow rate out of each section. This gives a

boundary condition from which the flow pattern can be calculated. This system

can be used to balance flows, for conducting quick checks on moldability and for

automatic dimensioning of runners. The disadvantage with this system is that the

user must define the flow direction which might not be easily possible for a complex

molding. This has lead to the development of finite element schemes.

The MOLDFLOW finite element scheme works by a series of meshes as the

mold is filled. A meshed computer mouse plate is shown in Figure 2.4. This method

predicts the mold filling pattern efficiently. In the 3-D flow analysis the geometry

is defined, material is selected and the molding conditions are specified.
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Figure 2.3: Branching flow in the mold designed for a computer mouse.
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Figure 2.4: Model of computer mouse meshed using FMESH
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The program then calculates the filling pattern in a series of steps, and pre-

dicts pressure drops over sections, temperature changes in the flow front, cooling

times, pressure required for mold filling, shear stress and shear rates. Results are

presented in a color graphics format showing filling pattern development the direc-

tion of flow and the position of weld lines and meld lines is known. Figure 2.5 shows

the pressure distribution in the mouse plate, the temperature distribution is shown

in Figure 2.6 and Figure 2.7 shows the filling pattern of the mold.

2.5 Integration of Technologies

MOLDFLOW has developed three processing programs which integrate the func-

tions of processing and displaying geometric data.

SMOD is a wire frame model generator which is used to create the geometric

model for use in the finite element analysis programs. The part geometry can be

defined and the part can be displayed on a computer screen. The model is ready to

be meshed by the FMESH program. SMOD is driven by a command language and

the information is stored in three files having the general model information, point

coordinate information and surface information.

FMESH is an automatic mesh generator suitable for all kinds of surfaces.

It can read SMOD files and ASCII files created from the keyboard. FMESH is

driven by a command language. The mesh density can be controlled by defining

the number of divisions across the model. The mesh can be generated across a curve

so that it can create a 3-D faceted surface without defining a multitude of surfaces.

FRES displays the simulation of flow, temperature distribution, cooling and

stress patterns. Thus it displays isobars, isotherms and isochrones. Isobars are lines

that join points at equal pressure, isotherms join points at equal temperature and
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Figure 2.5 : Pressure flow simultation 	 in the mold for a 	 co mputer 	 mouse. 4.`"
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Figu re 2.6: T emperature distribution in the mold for a computer mouse. C c4 	 ,
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Figure 2.7: Cavity filling pattern in the mold for a computer mouse.
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isochrones simulate short shots by joining points that are filled at the same time

interval.

2.6 MOLDFLOW Analysis Features

MOLDFLOW is a CAD software that attempts to model the injection molding

process by using finite element methods and simulating techniques, to provide an

interactive graphics package. The program effectively simulates the cavity filling

process that predicts part dimensions and properties before manufacturing the part.

Thus the part designer knows the outcome of the design and any changes that may

be required can be made in the design stage. The prototyping time and cost is

almost eliminated, thus reducing part cost and cycle time. The disadvantage that

some molders find is that initial cost of the software is much. This software does not

consider shrinkage into account when designing molds. It can be interfaced with

solid modeling design software and CAD/CAM systems.

MOLDFLOW Thermoplastic and Thermoset Flow Analysis has the following

features :

• Flow Analysis : The programs consider the heat transfer and flow dependence

on shear and temperature to calculate viscosity and predict pressure distribu-

tion. In mathematical terminology, simultaneous equations of heat transfer

and fluid flow are solved.

• Project Planning : This helps in approaching individual MOLDFLOW projects.

• Modelling : This part of the software helps to select the right modelling

approach.
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• Materials Selection : The package maintains a database of materials which is

used for mold design and research.

• CAD/CAM Interface : This part helps in interfacing Computer Aided Draft-

ing Systems with MOLDFLOW.
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Chapter 3

TMCONCEPTR

TMCONCEPT is a set of computer programs for injection molding. This chap-

ter explains the fundamentals of these programs and about their application and

integration to optimize a plastics part design. The aims for the design of a part

from its conception to production are to produce a part of acceptable quality, to

reduce the lead time involved in mold making, to design an economic mold and

to achieve production flexibility in the processes. Each of the variables mentioned

above influences all of the others. It is necessary to manage these conditions and

integrate these models to optimize the design.

The TMCONCEPT system works on the principle of integration of objec-

tives. There are different databases for the different objectives but the program

logic integrates the various system components. The TMCONCEPT system mod-

els the entire injection molding process and the economic aspects are given due

consideration when evaluating the technical aspects leading to a true optimization.

The approach adopted by TMCONCEPT is called an Expert/System because

it aims to put the best available technology at the disposal of the user. This

TMCONCEPTR is a registered software of Plastics & Computer Inc., Mont-

clair, NJ, USA.
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system is quantitative in nature because it integrates the scientific calcula-

tions based on the mathematical solution with the practical knowledge and experi-

ence. Thus priority is given to the needs of the industry rather than the accuracy

of the mathematical solution and it is thus different than the traditional approach.

3.1 TMCONCEPT : Program features and appli-
cations

To optimize the quality-cost relationship, the following component program pack-

ages are used:

• TMC-MS package for material selection

• TMC-MCO package for molding and cost optimization

• TMC-FA package for mold filling analysis

• TMC-CSE package for cavity dimensioning

• TMC-MTA package for mold thermal analysis

The strategy for analyzing a molding operation depends on the objectives

that are to be met and on the problems posed by the particular molding. Some

aspects may be overlooked and this could lead to unnecessary costs. TMCONCEPT

is structured so that it compels the user to consider the need for each specific step

in a logical sequence. TMCONCEPT is fully menu driven so that the user can

easily follow a sequence of steps for analyses. An on-line help facility is available by

which the relevant sections of the user manual can be accessed. The TMCONCEPT

programs also allow the user to choose any set of dimensional units as well as the

language in which he wants to work including English, Italian and German.
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To save unnecessary effort, TMCONCEPT offers solutions at different levels

of analysis. All analyses begin with a very rapid first approximation. This deter-

mines the general feasibility of the operation and decides the appropriate operating

conditions. If the user needs to refine the analysis, the next level can be entered

to complete the additional inputs and compute the best solution to the problem.

Coherence checks of user input are another highly useful feature of the TMCON-

CEPT programs. These checks are provided to catch human errors in data entry.

A comprehensive molding analysis could be guided by a study based on molding

requirements, based on certain factors such as material properties, mold geometry,

process variables and and cost constraints. TMCONCEPT has a set of software

packages that could be used to satisfy these requirements.

The first task for a full analysis of a design concept is the selection of the

best material to be used. TMC-MS selects the best material on the basis of end use

requirement by using rating classifications, and a cost index per desired property. A

differentiation in materials according to processability can be carried out using the

TMC-MCO package for molding and cost optimization. The following description

of the routines is illustrated by a demonstration analysis in which the part to be

molded is also shown.

In the first step of the TMC-MCO analysis, the MCO1 program quickly

makes the FIRST PRACTICAL OPTIMIZATION and establishes the EASE OF

MOLDING to specified part tolerances. The second program, MCO2, defines the

SINGLE CAVITY MOLDING SPECIFICATIONS and provides a complete mold-

ability analysis. The molding conditions are improved to determine the components

of the molding cycle, and the holding pressure, based on the part geometry, designed

tolerances (PART QUALITY), gate specifications and known process fluctuations.

To optimize the quality-cost relationship, we must consider cost aspects at an early
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stage to meet the total design approach. In the third step, MCO3, a PRACTICAL

MOLDING AND COST ANALYSIS is made. The molding machine is selected and

the optimum number of cavities are computed, based on cycle time, which includes

mold opening, ejection and closing times of the molding machine. Different cost fig-

ures may result for different materials and this is used to further narrow the material

selection. Machine and mold constraints, if any, are identified. Alternate solutions

are suggested by displaying the economic consequences of each constraint. For ex-

ample, assume that the clamping force for filling requires a large machine. Multiple

gating may reduce clamping requirements. The program can identify potential cost

savings, before the evaluating the technical feasibility of multiple gating.

The TMC-FA package performs a deeper mold filling analysis. It determines

the best filling condition and defines the moldability window. The program is

also used to position the weld line and to determine the quality of the weld and

the available time for packing. The program can also optimize the dimensions of

the sprue and runner system so as to minimize the material usage. In addition

to balancing the flow paths for pressure, the program also balances the average

temperature, frozen skin formation and maximum temperature attained in the cross

section of the flow path. It simulates runnerless molding, considering the effect

of cycle non-filling time on the temperature of the material in the internally or

externally heated runner system. It also simulates the flow rate control during

filling and models the operation of microprocessor programmed injection. Thus the

flow rate profile can be controlled at any location along the flow path.

Next, the TMC-CSE package can be used to design the cavity to compensate

for shrinkage. It considers the flow orientation, tool making quality that decides

the mold tolerances, and the contour of the mold (male/female). This establishes a

direct relationship between part dimensions with their respective tolerances, mold
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< ENTER > to confirm < SPACE BAR > to c

Plastics & Computer 	 TMconcept-MCO for molding optimizE

MC01 - MOLDABILITY : FIRST APPROXIMATION

< 1 > RANGE OF COOLING TIMES VS WALL THICKNESS
< 2 > TOLERANCE LEVELS VS PART DIMENSION
< 3 > INDICATION OF MAXIMUM FLOW LENGTH VS THICKNESS
< 4 > INJECTION PRESSURE AND CLAMPING FORCE
< 5 > OPERATIVE CONDITIONS
< 6 > NEW ANALYSIS
< 7 > PROGRAMS MENU

< MAT - M200 / DEMOUSA >

Select number ( ? = help )

[ MCO1 - table 3 ]

Plastics & Computer 	 TMconcept-MCO for molding optimiza

MCO1 - MOLDABILITY : FIRST APPROXIMATION

RANGE OF COOLING TIMES VS WALL THICKNESS [ 1 - 8 mm ]

MATERIAL FILE : MAT - CODE : M200 - FILE DESCRIPTION : ACETAL HOMOPOL

Excluding molding machine cycle components and ejection problems;
A: Lowest quality B:Best quality AVG. average quality

MOLD TEMPERATURE [ 60 - 120 ] 	 C 	 65

THICKNESS mm 	 A: REQ COOL. 	 s 	 B: REQ COOL. 	 s 	 AVG
2.000 	 9.5 	 12.8 	 11.1
3.000 	 17.8 	 24.3 	 20.8
4.000 	 27.7 	 38.3 	 32.6

A: REQ COOL. s 27.7 	 B: REQ COOL. s 38.3 	 AVG s 32.6

Figure 3.1: First practical approximation
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Plastics & Computer - 'TMconcept' Expert

TMconcept-MCO for molding optimization : MCO3 - PRACTICAL MOLDING AND

PRACTICAL MOLDING AND COST ANALYSIS FILE : DEEPAK 	 FILE DESCRIPTIO
SETUP FILE : DEMOUSA 	 FILE DESCRIPTION : Illustrative US plant an
MATERIAL FILE : MAT - CODE : M200 - FILE DESCRIPTION : ACETAL HOMOPOL

PART PARAMETERS :
QUALITY < I=Industrial E= Aesthetic >
PART VOLUME 	 cm^3 	 23.1
MAXIMUM THICKNESS 	 mm 	 4
WEIGHTED AVG. THICKNESS 	 mm 	 3.16
section near the gate 	 •
THICKNESS 	 mm 	 4
MINIMUM WIDTH 	 mm 	 30

MOLDING PARAMETERS :
•SINGLE MOLDING MACHINE : N

INJECTION TIME 	 s 	 2.18
PACKING TIME 	 s 	 17.28
COOLING TIME 	 s 	 45.51
COMPUTED CYCLE TIME 	 s 	 47.68
TIME LEFT FOR PLASTICATING 	 s 	 28.23
CYCLE DEAD TIME < 0 - n > 	 s 	 .5
Single cavity - PROJECTED AREA 	 cm^2 	 38.5
Single cavity - CLAMPING FORCE 	 Ton 	 28.31671
FILLING PRESSURE 	 bar 	 1000
HOLDING PRESSURE 	 bar 	 750
AUTOMATIC MOLDING <Y/N>
MACHINE OPERATORS < 0 - n. > 	 n. 	 0
MOLDING HOURS PER DAY 	 16
DAYS PER WEEK 	 5

MOLD PARAMETERS :
SINGLE CAVITY INSERT DIMENSION 	 •
Horizontal 	 mm 	 100
Vertical 	 mm 	 80
FRONT + REAR CAVITY-PLATE HEIGHTS 	 mm 	 150
NUMBER OF MOLD CAVITIES 	 n. 	 8
MAX. THEORETICAL CAVITIES LAY-OUT 	 •
Horizontal 	 n. 	 2
Vertical 	 n. 	 8
DISTANCE BETWEEN CAVITY INSERTS 	 •
Horizontal 	 mm 	 25
Vertical 	 mm 	 25
SPRUE LENGTH 	 mm 	 70
AVG. RUNNER LENGTH PER CAVITY 	 mm	 70
MIN. MOLD OPENING FOR EJECTION 	 mm 	 105

Figure 3.2: Practical molding and cost analysis
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dimensions with their tolerances, and molding conditions with their permissible

fluctuations.

The TMC-MTA package for mold thermal analysis performs the heat ex-

change calculations and quantifies the heat to be removed from the mold to main-

tain the mold surface temperature within specified limits. It also considers the part

quality in this computation. Also, since shrinkage is dependent on mold tempera-

ture, and tolerances are the result of variations in shrinkage, it becomes necessary

to identify the dimensions that ought to have close control of mold temperature.

This is a feature of this analysis.

The final solution is a set of optimized cost figures obtained from the PRAC-

TICAL MOLDING AND COST ANALYSIS(MCO3). This analysis provides spec-

ifications for material selection, molding conditions, mold filling conditions, mold

dimensions and their optimal tolerances, mold thermal conditioning specifications

and cost and production planning data. The TMCONCEPT package is very com-

prehensive with an accurate set of models that simulate the injection molding pro-

cess.

3.2 The TMC-MCO program package

The TMC-MCO package for molding and cost optimization correlates the design,

quality and cost of the part to the molding process. The program is supported

with a library of data acquired from a number of industrial moldings including

material, part design, mold design, processing variables, machine characteristics

and cost constraints. This feature of the program renders itself suitable for practical

applications. The package comprises three programs that refine the analysis in steps

from a first approximation. The MCO1 program makes an approximation of the

mold based on the geometry of the part and the material used. It determines
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approximate values of the molding cycle time, tolerances attainable, the injection

pressure and the clamping pressure. The program MCO2 considers the gate design

and location, orientation of the part with respect to the mold surface, holding

pressure and mold temperature to determine the estimated cycle time, estimated

injection time, screw forward time and suggested mold tolerances. The program

MCO3 accounts for economic and cost factors, production requirements and plant

operating conditions to calculate molding cycle time, molding pressures, number

of cavities, optimum batch size and material, processing and tooling costs. The

user gets a complete simulation of the process including economic parameters for

molding the part.

The user can also change the economic and equipment parameters that guide

the simulation of the molding process, by changing the SETUP files. SETUP files

store data on machine parameters and molding conditions specific to any particular

plant location. The machine variables defined in the files include labor costs, pro-

ductivity standards and financial costs. The molding variables include platen size,

clamping force, plasticating capacity, injection capacity, injection pressure and its

fluctuation. •

The program stores a material database that describes major thermoplastic

resins. The variables of the resins stored in the database include density, thermal

expansion and variables that correlate the molding conditions to the mold design

such as the non-linear relation between holding pressure and shrinkage for any

mold temperature and part thickness. The user can update this database thus

incorporating his/her own experience. There is a test procedure that should be

followed by the user to gather material data.
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3.3 The TMC-CSE program package

The TMC-CSE program package computes mold dimensions and their tolerances

considering various parameters. The user notes the part dimensions and their tol-

erances in the part drawing and sets the tool making tolerances. Material shrinkage

affects the part dimensions and it depends on many factors such as part geometry,

flow orientation, mold variables and molding conditions such as gate location and

dimensions and post-molding dimensional change. The programs relate shrinkage

to these variables and part quality. TMC- CSE should follow an analysis with

the MCO2 Moldability program of the TMC-MCO package to obtain the best and

most comprehensive shrinkage analysis in order to consider the complex interac-

tions of these variables. The molding conditions assumed by the CSE program are

within the window of moldability defined by the TMC-MCO program. The direct

interaction between CSE and other programs makes this analysis fairly accurate in

computing tolerance and shrinkage data. The shrinkage analysis that needs to be

performed without support from any other program of the TMCONCEPT system,

the CSE1 and CSEO programs could be used. The programs calculate the allow-

able minimum and maximum shrinkage for any dimension. The program suggests

manageable tolerance levels when the allowable limits are close.

Any shrinkage analysis starts with a CSEO program. This program sorts and

classifies part dimensions based on the type of tolerance so as to assure that all di-

mensions requiring a degree of precision are analyzed appropriately. The tolerances

on the part can be specified as critical dimensions having functional constraints

or specified as general tolerances on the part drawing. The program identifies di-

mensions with sufficiently wide tolerances for which shrinkage allowances are not

necessary. This is the first of the three levels of computation that the program
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identifies. Cost savings in such case may be possible by relaxing the tool making

tolerances. Also, dimensions that would be difficult to machine due to the need for

non-standard tools can be avoided. CSEO analyses compute with the data created

during a preceding MCO2 analysis. The next level of computation identifies the

range of dimensions for which analysis with average shrinkage values is sufficient.

Thus the user can save the effort of analyzing each dimension with the MCO2 pro-

gram. The user determines critical dimensions requiring a precise MCO2/CSE2

analysis that is performed in the third level of computation with computed shrink-

age values.

The CSE1 program is independent of other TMCONCEPT programs. It

computes mold dimensions with tolerances, allowable range for shrinkage values

and part dimensions and tolerances after molding. The program computes mold

dimensions and tolerances with a precision that is unattainable with traditional

methods. The direction of part tolerance and the contour of the mold surface is

considered.

The CSE2 program calculates cavity dimensions with shrinkage values com-

puted by the MCO2 program. The computation is based on shrinkage for specific

part geometries, mold design and molding conditions such as holding pressure, mold

temperature and the like. MCO2 determines molding conditions based on part qual-

ity and gate specifications. The database used is common for TMC-MCO and CSE2

and so it interrelates shrinkage with these variables. Once the user analyzes MCO2,

the CSE2 program can be accessed to determine the mold dimensions and tolerances

for each analyzed dimension.

The CSE2 program utilizes the same database that is used for the TMC-MCO

package. Data stored covers all major categories of thermoplastics. Each resin is

described by 80 variables related to physical, rheological and thermal properties.
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The CSE1 program has its own database that contains shrinkage data for all major

categories of thermoplastic materials.

3.4 TMCONCEPT Features

The TMCONCEPT program simulates cavity filling considering molding conditions

and also accounts for machine characteristics, shrinkage coefficients for materials

and polymer cost. The user is able to incorporate data acquired with experience

from previous moldings into new designs. For example, part shrinkage varies with

geometry and if shrinkage coefficients are determined for a geometry from experi-

ments, the same can be retained for use in future. This feature of the software is

very useful. The molder can select machine characteristics from the database in the

program, and also update the database by including in it, characteristics of existing

machines.
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Plastics & Computer - 'TMconcept' Expert

TMconcept -CSE for shrinkage calculation : CSE1 - CAVITY DIMENSIONS WITH C

CSE1 FILE : DEEX2 - DESCRIPTION : EXAMPLE 2 (10-09-1990 )

MATERIAL FILE : PLAST - CODE : M420 - 	 (10-02-1985 )
DESCRIPTION : NYLON 6/6 standard

GENERAL VARIABLES :
MATERIAL TEMPERATURE 	 C 	 270 - 	 290
MOLD TEMPERATURE 	 C 	 60 	 90
HOLDING PRESSURE 	 bar 	 600 - 	 400
SHRINKAGE [ P ] 	 1.200 - 1.600
SHRINKAGE [ T ] 	 1.300 - 1.700
POST-MOLDING DIMENSIONAL CHANGE 	 .5 ******
TOOL MAKING QUALITY ISO 1-17 	 n. 	 8
GENERAL TOLERANCES 	 micron 100

IDENTIFICATION
DESCRIPTION

n. 	 deg. 	 I/M/F

PART DIMENSIONS
DIMENSION 	 TOLERANCE

mm 	 micron

MOLD DIMENSIONS
DIMENSION 	 TOLERANCE

mm 	 micron

1 45 I 25.0000 100 -100 25.2357 17 	 -17
( 25.2190 25.2524 	 )

2 90 I 25.0000 100 -100 25.2481 17 	 -17
( 25.2314 25.2649 	 )

3 0 I 25.0000 100 -100 25.2233 17 	 -17
( 25.2065 25.2400 	 )

4 45 M 25.0000 100 -100 25.2275 33 	 0
( 25.2275 25.2610 	 )

5 45 F 25.0000 100 -100 25.2456 0 	 -33
( 25.2121 25.2456 	 )

6 45 I 10.0000 100 -100 10.0943 12 	 -12
( 10.0821 10.1065 	 )

Figure 3.3: Cavity dimensions with given shrinkage
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Chapter 4

Previous Experimental Results

4.1 Shrinkage Behavior

In order to study the shrinkage behavior of resins, it is necessary to understand the

reason for part shrinkage, which is explained below.

In the period when the melt fills the mold and begins to cool, it tends to

shrink, thus changing the part dimensions. To compensate for the shrinkage, pres-

sure is applied to pump more melt into the cavity. This pressure, called the holding

pressure or packing pressure, is effective only until the gate, runner or sprue are

frozen after which the pressure in the cavity decreases. After the part cools and

reaches the required structural stability it is ejected from the mold. The part con-

tinues to cool and shrink after ejection from the mold.

Shrinkage measurement is very important in order to mold parts of required

dimensions and tolerances. The parameters influencing shrinkage are pressure in

the mold cavity, temperature of the melt, viscosity of the melt and the effect of

filler materials and reinforcements. At the cavity surface, a frozen skin may be

formed, because of very high temperature gradients, that forms an effective insulat-

ing layer and so the material underneath the frozen skin cools slowly and continues

to flow. This may lead to different shrinkage rates within the mold, and make
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shrinkage measurement difficult. A change in viscosity of the resin would also vary

shrinkage in the part, and shrinkage would increase if the viscosity increases. The

molecular orientation of the resin during filling, and fiber orientation in the case

of reinforced materials, are other important parameters that influence shrinkage.

Reinforced resins exhibit anisotropic mold shrinkage, and shrinkage in the direction

of material flow is always less than in the transverse direction[30]. The reason for

this characteristic is that the reinforcement fibers tend to align themselves in the

direction of the material flow, and when solidification occurs, the fibers inhibit the

shrinkage of the material in this direction. The factors influencing shrinkage vary

the shrinkage rate within a mold and it is difficult to create a theoretical model that

would describe the shrinkage behavior of a mold precisely.

4.2 Previous Experimental Work

Previous experiments on part shrinkage were performed by resin manufacturers

and molders on test moldings, that included parts like plates, plaques, or other

commonly used shapes with various parameters including part thickness, molding

pressure, mold temperature and part geometry. The experimental results described

in this chapter are derived from data provided by resin manufacturers' catalogs. The

results of the shrinkage tests are plotted as graphs showing the variation of shrink-

age coefficient with each of the influencing parameters including gate area, part

thickness, direction of flow and mold temperature at different melt temperatures

and holding pressures. The results for three resins are described in the following

text.

46



4.2.1 Part Shrinkage of Acetal Copolymer

The following data shows the effect of molding conditions on mold shrinkage in

the flow and transverse directions of Acetal Copolymer[30]. The factors influencing

mold shrinkage include thermal properties of the resin, temperature range over

which the molded part cools, usually room air temperature, part design, particularly

wall thickness, mold design and molding conditions.

The following mold shrinkage data was obtained in laboratory studies on

standard flexural bar test specimens.

Average mold shrinkage for Acetal Copolymer determined on

end gated flex bars (5" Long x 1/2" Wide x 1/8" Thick)

Acetal Copolymer
Grade

Shrinkage in Flow Direction
inch/inch (mm/mm)

Shrinkage Transverse To Flow
inch/inch (mm/mm)

M90
M270
GC-25A

0.023 (0.023)
0.022 (0.022)
0.004 (0.004)

0.020 (0.020)
0.020 (0.020)
0.018 (0.018)

Figure 4.1 and Figure 4.2 show the influence of molding conditions on mold

shrinkage, the molding conditions for which are,

Mold Temperature
Injection Pressure
Melt Temperature

150 °F
14200 psi
500 °C

The curves are labelled A through E in order of increasing mold shrinkage.

Areas bounded by the highest letter show the range of conditions which will provide

the highest mold shrinkage. These two figures and the table may be used as a guide

to design a mold for shrinkage.

Standard tensile bar specimens and some design parts are shown in Figure

4.3. Figure 4.4 describes the effects of molding conditions and wall thicknesses on
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Figure 4.1: Influence of molding conditions on mold shrinkage of Acetal Copolymer
in direction of flow. Ref: Manufacturer's brochure, Celanese Engineering Resins, a
division of Celanese Corporation.

Figure 4.2: Influence of molding conditions on mold shrinkage of Acetal Copolymer
transverse to flow. Ref: Manufacturer's brochure, Celanese Engineering Resins, a
division of Celanese Corporation.

48



mold shrinkage.

Annealing parts of Acetal Copolymer in a post molding operation will cause

shrinkage and an additional allowance must be made for the mold cavities and cores,

typical values for which are also supplied by the manufacturer[30].

4.2.2 Part Shrinkage of Acetal Homopolymer

The following figures describe the shrinkage variation for Acetal Homopolymer from

data supplied by the manufacturer, DU PONT[31].

The mold shrinkage of Acetal Homopolymer acetal resins is dependent on

such factors as mold temperature, injection pressure, screw forward time, melt tem-

perature, gate size and part thickness. The manufacturer has developed a nomo-

graph to show the relation of mold shrinkage to the combined effect of part thickness

and gate area. The nomograph is shown in Figure 4.5. There are two sets of values

of mold shrinkage marked typical and optimum. Both sets of values are based on

a mold temperature of 93°C (200°F), injection pressure of 112 MPa (16,000 psi),

and a melt temperature of 210°C (410°F). For the optimum values, it is assumed

that the the gate is designed with a minimum thickness equal to one-half of the

wall thickness. It is also assumed that screw forward time is at least equal to the

time required for the gate to freeze. When molding with a screw forward time less

than the time required for gate to freeze, the shrinkage values are closer to those

shown as typical values. Figure 4.6 shows post- molding shrinkage values for Acetal

Homopolymer.

Mold Temperature
Injection Pressure
Melt Temperature

93 °C
112 MPa
210 °C
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Figure 4.3: Typical part shrinkage for Acetal Copolymer. Ref: Manufacturer's
brochure, Celanese Engineering Resins, a division of Celanese Corporation.
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Figure 4.4: Effect of molding conditions and wall thickness on mold shrinkage of
Acetal Copolymer. Ref: Manufacturer's brochure, Celanese Engineering Resins, a
division of Celanese Corporation.
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Figure 4.5: Nomograph to determine mold shrinkage for varying molding conditions
for Acetal Homopolymer. Ref: Manufacturer's brochure, Delrin Acetal Resins,
DUPONT.



Figure 4.6: Post molding shrinkage of Acetal Homopolymer. Ref: Manufacturer's
brochure, Delrin Acetal Resins, DUPONT.
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4.2.3 Part Shrinkage of Nylon 66

The following figures describe shrinkage variation for Nylon 66 resins from data

supplied by the manufacturer, DUPONT{32]. The mold shrinkage for a range of

grades of Nylon 66 specified in the manufacturers' brochure can be approximated

by two nomographs shown in Figure 4.7 and Figure 4.8. The nomograph is divided

into two sections, section A depends on the mold design and section B depends

on the molding conditions and type of nylon. The mold shrinkage for a resin is

determined by adding the value A obtained from the mold variables and and the

value B obtained from the processing variables. For example, to estimate the mold

shrinkage of Zytel 131 NC-10 in a 3" x 6" x 0.125" plaque mold with a rectangular

gate 0.09" thick and 0.125" wide. Inserting the mold dimensions into Figure 4.7,

the value of A is calculated as 20.5 milsin. Also, inserting into Figure 4.8, melt

temperature equal to 550°F, mold temperature of 150°F, and injection pressure

of 15,000 psi, until line B1 is reached. Proceed horizontally from line BI to line

B4 for Zytel 131 L NC-10 and get the values of B4, which are 14 milsin in the

direction of flow and 9 mils/in transverse to flow.For half-round gates, the effective

gate thickness is 80 % of the radius and the effective gate width is equivalent to the

diameter. The mold shrinkage of other Nylon 66 resins not shown in Figure 4.7 and

Figure 4.8, are given in Figure 4.9.

Mold shrinkage of other Nylon 66 resins

(not covered in Figure 4.7 and Figure 4.8. Ref: Manufacturer's brochure, Zytel

Nylon Resins, DUPONT)
Resin Shrinkage(mils/inch)1

1/16 in thick (1.59 mm)
Shrinkage(mils/inch) 1

1/8 in thick (3.17 mm)
ZYTEL 151 L NC-10
ZYTEL 158 L NC-10

7-13
7-13

10-17
10-17
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Figure 4.7: Variation of mold shrinkage for Nylon 66 -Part A. Ref: Manufacturer's -
brochure, Zytel Nylon Resins, DUPONT
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Figure 4.8: Variation of mold shrinkage for Nylon 66 -Part B. Ref: Manufacturer's
brochure, Zytel Nylon Resins, DUPONT
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Figure 4.9: Shrinkage during annealing vs. mold temperature for Nylon 66. Ref:
Manufacturer's brochure, Zytel Nylon Resins, DUPONT.

Legend: 1. Data based on 3" x 5" (75 mm x 125 mm) x thickness plaques.

The annealing shrinkage of plaques of Nylon 66 (2" x 2" (50 mm x 50 mm)

x various thicknesses) versus mold temperature is given in Figure 4.9. Figure 4.10

shows the combined mold shrinkage and annealing shrinkage as a function of mold

temperature for the same plaque of ZYTEL 101.

4.3 Need for Shrinkage Experiments

Material suppliers provide average shrinkage coefficients for most of resins. The

values of shrinkage coefficients are obtained by experimenting on test molds with

various part thicknesses and varying molding conditions. The mold geometry may

be as simple as a rectangular plate or shrinkage could be measured for common

shapes and sizes. For example, the test part could be a bar, 5 x 1/2 x 1/8 inches,

or a plaque, 3 x 13/4 x 1/8 inches, or an ASTM tensile bar, 1/8 inch thick. Mold
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Figure 4.10: Total shrinkage after annealing vs. mold temperature for Nylon 66.
Ref: Manufacturer's brochure, Zytel Nylon Resins, DUPONT.

dimensions and part dimensions are measured with varying molding conditions for

different part thicknesses. The shrinkage coefficients measured for these tests may

not hold good for practical applications. The mold design considering these shrink-

age values would produce parts that might not meet tolerance requirements. Hence

the mold designer would rely on a method wherein the mold cavity would be un-

dercut and a test run made. The cavity is made larger according to measurements

on part dimensions. This delays the production start-up and increases the cost.

A CAD simulation of part shrinkage that would yield actual shrinkage values will

help the mold designer to achieve required tolcvances by eliminating the trial run.

A simulation model of shrinkage must account for the interrelated factors such as

part geometry, mold design and molding conditions that affect shrinkage variation.

Material shrinkage data parallel and transverse to flow are different and

should be considered individually in any simulation model. During the period when

the melt cools, the inner material cools at a slower rate than the outer surface,
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because of which, there is an increase in melt viscosity in the outer part of the

melt and thus increased shrinkage. Another difference in shrinkage data parallel,

and transverse, to the flow is because of the decrease in pressure in the direction of

flow that causes a decrease in melt viscosity and an increase in the shrinkage in the

direction of flow. The other factors that influence shrinkage are crystallinity and

molecular weight. The shrinkage rate for amorphous polymers is much less than

for crystalline materials. For crystalline resins such as polypropylene, polyethylene

and polyacetal the specific volume decreases significantly at the freezing or melting

temperature whereas for amorphous polymerw there is a gradual change in specific

volume with temperature. In the melt, the polymer chains are in a disordered mass.

When the polymer solidifies, the chains form a more orderly and dense crystalline

structure, thus increasing the density and the shrinkage. Thus, shrinkage for amor-

phous polymers is much less than for crystalline materials. Molecular weight also

influences shrinkage. A higher molecular weight causes an increase in melt viscos-

ity and also increases the pressure gradient during mold filling, resulting in lower

pressure in the cavity, and may lead to increased shrinkage. Reinforcements gener-

ally cause a reduction in shrinkage, but they may diminish the difference between

longitudinal and transverse shrinkage.

Part geometry has a major influence on shrinkage. Thicker parts reduce

the cooling rate thus increasing shrinkage, particularly in unreinforged crystalline

materials. Restrictions along the flow path reduce the available pressure in the

cavity as well as the time over which it is applied, thus increasing shrinkage. This

happens when long, restrictive runners are employed.

Mold variables, such as runner dimensions and gate sizes, influence the pres-

sure applied to the mold cavity and thus affect the shrinkage. The mold temperature

affects the rate of cooling of the material and thus causes shrinkage variation.
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Molding conditions, such as holding pressure, melt temperature, injection

rate and hold time have been found to influence shrinkage. Higher melt temperature

and higher mold temperature cause an increase in shrinkage. The mold temperature

influences shrinkage more than the melt temperature since it can be varied over a

wider range. The influence of the injection speed on shrinkage is complex and

difficult to predict. At low speeds, the frozen skin is thicker and this would increase

shrinkage. Other factors influencing shrinkage are orientation, changing flow rate

and shear rate.

Post-molding changes due to moisture absorption must also be accounted for

in evaluating a shrinkage model. The shrinkage evaluation would suggest the toler-

ance limits that could be achieved in the molded part and the degree of difficulty

encountered in attaining them. Process variability such as shot-to-shot fluctuation

of melt pressure and temperature that is inherent to the molding machine are im-

portant in shrinkage analysis. The shrinkage analysis should be coordinated with a

molding analysis that accounts for all influencing factors.

The following table describes the parameters that influence mold shrinkage.

Parameter Shrinakge
In the direction of flow Increases

Transverse to flow Decreases
Increase in melt viscosity Decreases

Increase in pressure Decreases
Reinforcements Decreases

Increase in part thickness Increases
Higher melt temperature Increases
Higher mold temperature Increases
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Chapter 5

Results

5.1 Part Shrinkage of Acetal Copolymer

For both flow and transverse directions, mold shrinkage decreases with increasing

injection pressure, increasing injection speed, decreasing mold temperature and melt

temperatures in the lower molding range of 340 to 360°F (171 to 182°C). Conversely

mold shrinkage increases with decreasing injection pressure, decreasing injection

speed, increasing mold temperature and melt temperature in the range of 360 to

410°F (182 to 210°C). Typical molding conditions suggested for providing minimum

and maximum mold shrinkage are delineated below:

Minimum
Mold Shrinkage

Maximum
Mold Shrinkage

Melt Temperature, °F(°C) 340-360 (171-182) 360- 410 (182-210)
Mold Temperature, °F(°C) 110-230 (43-110) 250 (121)
Injection Pressure, psi 15,000-20,000 5,000
Injection Speed Maximum Minimum

Screw rotational speed has little effect on mold shrinkage of unreinforced

Acetal Copolymer grades.

The following table summarizes the effect of molding conditions on mold

shrinkage for unreinforced Acetal Copolymer.
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Mold
Shrinkage

Injection
_

Melt
Temperature

Mold
Temperature

Screw
Speed

Injection
Speed

To Decrease Increase Decrease Decrease — Increase
To Increase Decrease Increase Increase — Decrease

Legend : — No Significant Effect.

Because of the several influencing factors, it is difficult to predict mold shrink-

age precisely particularly in parts of complex geometry, because of uneven shrinkage

rates. By simulating the cavity filling process, this task could be made easier by

predicting the shrinkage, using stored data from shrinkage experiments.

5.2 Part Shrinkage of Acetal Homopolymer

The mold shrinkage of Acetal Homopolymer resins is dependent on such factors as

mold temperature, injection pressure, screw forward time, melt temperature, gate

size and part thickness.

For parts of uniform wall thickness, mold shrinkage tends to be uniform

throughout. For parts having variable thickness, shrinkage will tend to be nearly

uniform if it is gated into the heaviest section, the gate is properly sized, and screw

forward time equals or exceeds gate freeze time otherwise, shrinkage will tend to be

greater in the thick sections.

In actual moldings shrinkage values may vary from the estimated values be-

cause of such as factors as insufficient machine capacity, insufficient clamp capacity,

different melt temperatures, screw forward time shorter than gate seal time, too

rapid freezing of a very thin gate, operating with mold temperature other than

93°C (200°F), injection pressure too low, poor gate location for adequate filling of

mold.
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5.3 Part Shrinkage of Nylon 66

Mold shrinkage depends on the type of nylon being processed, the molding condi-

tions and the mold design. The as-molded crystallinity of parts molded in Nylon 66

depends on the mold temperature, part thickness and the type of nylon being pro-

cessed. Appreciable post-molding crystallization is observed in thin sections molded

in cold molds that results in additional part shrinkage whereas the crystallinity of

thick section parts molded in hot molds remains fairly constant. The annealing

process increases the rate of post- molding shrinkage. For any part thickness, the

annealing shrinkage decreases with increasing mold temperature and the annealing

shrinkage increases as the part thickness decreases at constant mold temperature.

The total shrinkage is only slightly affected by mold temperature.
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Chapter 6

Conclusions

Evaluation of part shrinkages is very important for mold parts to ensure accuracy.

Part shrinkage behavior is influenced by molding conditions and part thicknesses,

and prediction of shrinkage is difficult. Shrinkage behavior prediction can be im-

proved with CAD simulations. Part shrinkage coefficients evaluated by resin sup-

pliers are average values observed in experiments on standard shapes and sizes at

specified molding conditions. In actual moldings, part shapes and sizes may be

different than those used by the resin supplier, and it may be necessary to perform

experiments to predict part shrinkage using actual molding conditions and actual

part geometries. CAD simulations of the cavity filling process can be used to predict

part shrinkage. This is performed by storing experimental data from part shrinkage

experiments and then using the stored data to interpolate, or extrapolate, during

actual applications.

The currently used methods in CAD mold design have one major drawback

that mold designers experience. The variation in shrinkage coefficients for different

resins cannot be compensated for and one cannot predict whether a specific part

can be manufactured without warpage. Most CAD simulations cannot accurately

predict the variation in shrinkage rates across all dimensions of a specific part. The

shrinkage rates vary with material type and part geometry from 1% to 10%[10]. The
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method used at present by most mold designers to extrapolate an average shrinkage

coefficient given by the resin supplier into accurate shrinkage compensation values

for all critical dimensions of a specific part is to allow for the effect of changes in

wall thickness and other dimensional variations on shrinkages rates. The general

practice adopted by mold makers is to cut the mold cavity undersize and then

enlarge it gradually by measuring a series of trial parts to account for actual part

shrinkage rates.

The shrinkages values that are evaluated from such experiments are used

to construct the mold undersize, so that part tolerances are met. The shrinkage

coefficient is expressed as a percentage of part size, with molding conditions specified

as used during the experiments. The variation of part shrinkage with respect to

molding conditions are plotted praphically, and these graphs are used to correlate

actual molding conditions with actual shrinkage values. The molding conditions

can thus be varied to obtain required part tolerances.
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Chapter 7

Future Work

7.1 Experiments using TMCONCEPT

The shrinkage analysis is conducted on a resin to determine the gate freeze-off

time, minimum ejection time, optimal ejection time and part shrinkage parallel, and

transverse, to flow. The experimental setup suggested by TMCONCEPT includes,

a mold with adjustable part thickness and a suitable molding machine, that are

described in the following text.

The test mold should have a rectangular cavity with side dimensions greater

than 50 mm whose thickness can be changed. A rectangular gate should be located

in the middle of one side of the cavity, with the facility to change gate dimensions

independent of part thickness. The gate width should be greater than or equal to

the gate thickness with a 0.5 mm constant gate length with smoothing radii. The

runner system should have short runners with a diameter greater than or equal to

1.4 times part thickness, which meet the gate at an angle of 45 degrees. There

should be an an effective ejection system helped by adequate taper on the sides of

the part side. Eight measuring surfaces without taper should be provided on the

part to be used in precise shrinkage measurements. These measuring surfaces should

be about 5 mm long, have a width slightly less than the part thickness (to avoid
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the influence of the edges during part measurements) and should be located about

5 mm from the four corners of the rectangular part. There should be an efficient

cooling system, which preferably is machined directly into the cavity insert.

The molding machine that is to be used for the experiment should have,

an excellent shot to shot reproducibility of processing variables ample plasticating

capacity and an ability to provide thoroughly homogeneous melt for the entire

volume required for one shot.

The tests are to be carried out under the following conditions:

• constant melt temperature

• at least 3 mold temperatures

• at least 3 holding pressures

• at least 3 part thicknesses

• at least 4 gate to part thickness ratios. A gate thickness equal to the part

thickness must be included in this evaluation. Other gate to part thickness

ratios ranging from 3/4 to 1/4 are suggested. Testing the full range of gate

thicknesses is especially important for the most typical part thickness in which

the particular resin is used.

Two types of tests are to be performed, one in which gate thickness is equal to

the part thickness and the other in which gate thickness is less than part thickness.

The experimental data is recorded in the following tables.

Tests with gate thickness = part thickness.
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Thickness:
Width near gate:
Width opposite gate:
Length:

[shrink.P1]
[shrink.T]
[shrink.P2]

PART DIMENSIONS (measuring precision > 1/5000 of dimension)

GATE DIMENSIONS

Thickness: 	 I Width: 	 I Length: 	 0.5 mm

MELT TEMPERATURE
INJECTION TIME (part only)
FLOW RATE
MOLD OPENING AND CLOSING TIME
MOLD TEMPERATURE (evaluate at least 3 temperatures) 1

UNITS TEST 1 TEST 2 TEST 3
HOLDING PRESSURE
HOLDING PRESSURE TIME'
PLASTICATING TIME
TOTAL CYCLE'
PART WEIGHT 4

SHRINKAGE P1 5 %
STANDARD DEVIATION
SHRINKAGE P2 %
STANDARD DEVIATION
SHRINKAGE P3 %
STANDARD DEVIATION

Legend:

(1) Evaluate at least 3 holding pressures (e.g. 200, 800, 1400 bar) at each of 3 mold

temperatures.

(2) Minimum time to attain maximum part weight.

(3) To achieve best dimensional results.

(4) Parts to be conditioned in dry atmosphere at 23°C for at least 24 hours prior
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Thickness:
Width near gate:
Width opposite gate:
Length:

[shrink.P1]
[shrink.T]
[shrink.P2]

to measuring. Use care to avoid erroneous readings through contact with the part

edges.

Tests with gate thickness the part thickness.

PART DIMENSIONS (measuring precision L 1/5000 of dimension)

GATE DIMENSIONS

Thickness: 	 I Width: 	 Length: 	 0.5 mm

PART THICKNESS
GATE THICKNESS/PART THICKNESS RATIO
MELT TEMPERATURE
INJECTION TIME (part only)
FLOW RATE
MOLD OPENING AND CLOSING TIME
MOLD TEMPERATURE'
HOLDING PRESSURE'
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UNITS TEST 1 TEST 2 TEST 3
HOLDING PRESSURE TIME
PLASTICATING TIME
TOTAL CYCLE A 7

PART WEIGHT
SHRINKAGE P1 %
STANDARD DEVIATION
SHRINKAGE P2 %
STANDARD DEVIATION
SHRINKAGE P3 %
STANDARD DEVIATION
TOTAL CYCLE B 8

PART WEIGHT
SHRINKAGE P1 %
STANDARD DEVIATION
SHRINKAGE P2 %
STANDARD DEVIATION
SHRINKAGE P3 %
STANDARD DEVIATION

Legend:

(6) Typical values.

(7) Minimum cycle to eject without deformation.

(8) Cycles must be identical to those of the preceding test (Gate Thickness = Part

Thickness).

7.2 Integration Of Data Into TMCONCEPT

The data obtained from the experiments should be retained for future use. The

TMC-CSE program has this facility and a molder can perform shrinkage experi-

ments with actual parts and molding conditions, and store the data in the CSE

database. The Update routine has to be used to add new data. The CSE program

can calculate dimensions of the mold corrected for shrinkage, thus saving much
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time in shrinkage computation. Such data can provide better accuracy in predict-

ing shrinkage for mold dimensions. Consequently, tolerances on mold are specified

depending on tolerances specified on part. This feature will indicate whether speci-

fied part tolerances could be met with no allowance for shrinkage, thus saving time

and cost. The molder can also change part tolerances to eliminate shrinkage al-

lowance, if it is feasible. Thus, the shrinkage evaluation routine is integrated with

design routines to effectively predict mold dimensions and tolerances directly, and

also predict cost savings whenever feasible. Figure 5.1 lists materials with codes, in

the CSE database.

7.3 Proposed Experimental Plan

Part shrinkage as measured by resin suppliers may not hold good in actual moldings.

The suppliers' data is based upon test specimens that may include bars, plaques,

or other shapes. Geometry of actual moldings may be intricate and may produce

part shrinkage varying from predicted coefficients. Hence, it is desirable to perform

shrinkage tests on parts, with different geometries, different resins and with varying

molding conditions, to generate a database that will predict part shrinkage with a

better accuracy.

The experiments could be performed on actual part geometries, using actual

materials and at actual molding conditions. The data for the experimental plan may

also be gathered from existing products from different manufacturers. A computer

model could be developed to interpolate or extrapolate the stored data for actual

moldings. A database could be maintained to show the shrinkage variation for

frequently used mold shapes and sizes with various molding conditions. This would

make part shrinkage prediction more accurate. This database could be coupled with

a CAD/CAM system so that mold dimensions could be corrected for shrinkage and
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Plastics & Computer - 'TMconcept' Expert Sy:

TMconcept-MCO for molding optimization : UPDATE MATERIAL FILE ( R.4.6 )

MATERIAL FILE : PLAST

CODE

M100
14110
14115
M120
M125
M130
1414 0
M2 0 0
M2 0 2
M204
M210
M2 5 0
M2 5 2
M254
M2 6 0
113 0 0
1302
M304
M3 0 6
144 0 0
M4 0 9
M410
M411
M412
/44 2 0
144 2 5
M4 2 8
/44 2 9
144 3 0
144 3 2
M4 3 4
1435
M4 4 0
M450
1460
M470
1480
I45 0 0
M503
14510

ABBREVIATION 	 DESCRIPTION

ABS gp 	 ABS general purpose
ABS mhi 	 ABS medium high impact
ABS vhi 	 ABS very high impact
ABS mhr 	 ABS medium heat resistant
ABS hhr 	 ABS high heat resistant
ABS 15-20% gr 	 ABS - 15-20% glass reinforced
ABS fr 	 ABS flame retardant
POMh my 	 ACETAL HOMOPOLYMER medium viscosity
POMh hv 	 ACETAL HOMOPOLYMER high viscosity
POMh lv 	 ACETAL HOMOPOLYMER low viscosity
POMh 20% gf 	 ACETAL HOMOPOLYMER - 20% glass fille
POMc my 	 ACETAL COPOLYMER medium viscosity
POMc by 	 ACETAL COPOLYMER high viscosity
POMc lv 	 ACETAL COPOLYMER low viscosity
POMc 25% gc 	 ACETAL COPOLYMER - 25% glass coupled
PMMA my 	 ACRYLIC medium viscosity
PMMA by 	 ACRYLIC high viscosity
PMMA lv 	 ACRYLIC low viscosity
PMMA it 	 ACRYLIC impact resistant
PA
PA
PA
PA
PA

6
6 35% gr
6 30% gr
6 25% gr
6 20% gr

NYLON 6
NYLON 6 - 35% glass reinforced
NYLON 6 - 30% glass reinforced
NYLON 6 - 25% glass reinforced
NYLON 6 - 20% glass reinforced

PA 6/6 std NYLON 6/6 standard
PA 6/6 n NYLON 6/6 nucleated
PA 6/6 40% gr NYLON 6/6 - 40% glass reinforced
PA 6/6 35% gr NYLON 6/6 - 35% glass reinforced
PA 6/6 30% gr NYLON 6/6 - 30% glass reinforced
PA 6/6 25% gr NYLON 6/6 - 25% glass reinforced
PA 6/6 20% gr NYLON 6/6 - 20% glass reinforced
PA 6/6 10-15% im NYLON 6/6 - 10-15% glass reinf. impE
PA 6/6 mr NYLON 6/6 mineral reinforced
PA 6/12 NYLON 6/12
PA 11 NYLON 11 'RILSAN'
PA 12 NYLON 12
PA 12 30% gr NYLON 12 - 30% glass reinforced
PPO mod 'NORYL' 731
PPO mod fr 'NORYL' SE0
PPO mod 30% gr 'NORYL' GNF3 - 30% glass reinforced

Figure 7.1: List of materials in CSE database
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machined directly.

Research in this area could use a software package to store the test data

and extrapolate shrinkage coefficients for different part dimensions. Moldflow Pty.,

has developed a software package that predicts actual shrinkage rates and not just

average coefficients[10]. This package could increase the accuracy of mold designs,

reduce mold rework and virtually eliminate post-molding warpage of parts. The

software is now being tested by a selected group of resin suppliers and molders.

Such experimentation will require molds with geometries that are commonly

used in actual products. This will need much investment to construct molds of

required shapes and sizes. Many molders and suppliers could, instead, share their

experiences and store the past history in a database.
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