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ABSTRACT

Title of Thesis: 	 The Theory of Bootstrapped Algorithms
and Their Applications to Cross Polarization
Interference Cancelation

Abdulkadir Dinç 	 Doctor of Philosophy. 1991

Thesis directed by: Prof. Dr. Yeheskel Bar-Ness

Dual-polarized transmission has become an important method for fre-

quency re-use, particularly in satellite and microwave radio communica-

tion. Nevertheless, cross-polarization interference, which is inherent to this

method, may cause degradation in system performance.

Different canceler structures have been proposed to mitigate the effect

of cross-polarization. Among these are the diagonalizer, the least mean

square (LMS) canceler and the bootstrapped cancelers. Bootstrapped can-

celer schemes have been proposed and implemented in different applica-

tions, such as satellites, tactical communications, and quadrature ampli-

tude madulation (QAM) dual polarized microwave radio. Nevertheless, no

attempt was made in the past to quantify the probability of error of dual

polarized transmission systems when such cancelers are used, nor were im-

portant issues such as stability and the dynamic behavior of algorithms

controlling such cancelers studied.

In this thesis, the error probability performance of dual polarized QAM

transmission, for nondispersive fading channels and different configurations

of bootstrapped cross-pol cancelers, is derived and compared to the per-

formance for other cancelers. Stability analyses of different canceler con-

figurations are investigated. and an application of orthogonal perturbation

sequences in controlling the bootstrapped cancelers is considered.



It is shown that the error probability performance of the bootstrapped

canceler is always better than that of other cancelers. such as the LMS

canceler. It is also shown that. when the bootstrapped canceler is designed

to meet certain conditions. it is asymptotically stable in converging to the

calculated optimal points. Controlling the cancelers with adaptive algo-

rithms using orthogonal dithering sequences is shown to be satisfactory;

the canceler converges in the mean to the optimal condition.

The results indicate that bootstrapped algorithms are faster than other

algorithms. Considering the fact such cancelers do not require decision

feedback for their operation. we can conclude that bootstrapped algorithms

are not only advantageous for cross polarization cancelation, but perhaps

suitable for other adaptive signal processing applications, as well.
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Chapter 1

INTRODUCTION

In recent years, multi-level modulation and dual-polarization techniques have been

applied to radio communication networks to increase the transmission capacity of

limited bandwidth channels. Although multi-level modulation techniques have led

to a considerable increase in spectral efficiency, in some applications, such as satel-

lite communication and microwave radio, frequency re-use utilizing dually polarized

transmission has become an indispensible technique that doubles the channel's ca-

pacity.

In a dual polarized transmission system, the available bandwidth is doubled by

modulating the same carrier frequency with two independent information signals.

The modulated signals are then transmitted through the channel, with one having

vertical polarization (denoted by V) and the other having horizontal polarization

(denoted by H). Because of antenna imperfections and/or non ideal transmission

channel conditions (caused, for example, by fading), the received signals are not

perfectly orthogonal. Therefore, cross-polarization coupling of each information signal

into the other is created causing, in some cases, severe degradation in performance.

Channel models for dual polarized systems have been proposed by many authors

[1-6]. It has been observed that in digital radio communication, the channel responses

for both main polarization (co-pol) and cross-polarization (cross-pol) are slowly time-

variant, and sometimes even dispersive.
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Clearly, cross-polarization interference, like co-channel inband interference from

other sources, causes errors in information extraction. Many approaches have been

suggested to mitigate the effect of cross-pol interference. All involve adaptive cancel-

ing algorithms which can track slowly varying parameters of the channel and hence

utilize the dually polarized channels more efficiently. Some of these methods assume

nondispersive channels [1,3,4,7,8,9,10], as in satellite communications, while the oth-

ers include dispersion in the channel's response, as in point-to-point microwave radio

[5,6,11].

Nichols et. al. [7] proposed two adaptive cancelation algorithms; one is based on

maximum likelihood detection (MLD), while the other is the least mean square (LMS)

algorithm. QPSK modulation transmission through nondispersive fading channels

is assumed. It is shown that implementing these adaptive algorithms at baseband

avoids the the need for beacon signals, as in [1], or training sequences to find the

parameters of the channel. It is also shown that the performance obtained by using

these algorithms to eliminate cross-channel interference is significantly better than

that obtained without cancelers. The performances of the two cancelers are compared.

The authors also consider implementation problems and conclude that, while MLD

can be implemented either at IF or baseband, the LMS canceler is implementable only

at baseband. Steinberger [3] later suggested a recursive equalization algorithm that

operates at RF and is used with dual polarized 8-level phase shift keying (8-PSK)

signals.

Amitay [4] proposed an interference cancellation model which diagonalizes the

overall channel matrix. Such a cross polarization interference canceler, termed a

diagonalizer, will be discussed in more detail in chapter 2. Amitay considered 8-PSK

modulation through a nondispersive fading channel.

Kavehrad [9] studied the performance of Amitay's diagonalizer [4] and the least

mean square canceler (LMS) of [7] at baseband, for the case of dual-polarized M-
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ary quadrature amplitude modulation (M-QAM) signals. Performance results for

these systems were obtained by deriving an average probability of error as a function

of signal-to-noise ratio. The analysis is confined to a nondispersive fading channel.

Kavehrad obtained Chernoff bounds for dual-polarized 16 QAM signals. He first

considers the system performance without cancelation, then adding the LMS canceler

or the diagonalizer suggested by Amitay, he shows the amount of improvement in

performance and concludes that the LMS cross-polarization canceler outperforms

the diagonalizer. In his analysis, Kavehrad completely ignores the effect of noise

on the optimal weights for the diagonalizer, whereas he includes these effects in the

LMS canceler case. One may note that the Chernoff bounds for these two baseband

interference cancelers for 16 QAM signals might not be tight.

Brandwood [8] proposed an adaptive cross-pol interference canceler, for a dual

polarized satellite communications system, that operates directly at RF. He assumes

FM modulation and a nondispersive fading channel. He also presents experimental

results.

Bar-Ness et. al. [12] suggested a group of adaptive cross-pol interference cancel-

ers that are controlled by what are termed " bootstrapped algorithms ". They also

present measured data which depicts the improvement in performance when using a

cross pol canceler on a COMSTAR satellite link that transmits dual-pol QPSK. They

emphasize the fact that the three different configurations of bootstrapping adaptive

cross-pol cancelers proposed result in power separation, rather than interference can-

celation [13]. Their cancelers, as well as Brandwoods's, have a distinct advantage

over conventional interference cancelers, such as the LMS canceler and the diago-

nalizer. Initial carrier and timing acquisition are not a must for these cancelers'

satisfactory operations, or at least they become much easier tasks [14]. Therefore,

with bootstrapped cancelers, training sequences might not be needed. Nevertheless,

as emphasized in [13], there is a need for "discriminators" which loosely distinguish

3



between the two channel information contents.

In this work, the three configurations of bootstrapping cross-pol interference can-

celers proposed in [13] are analysed. The performance measure derived is the symbol

error probability as a function of receiver input signal-to-noise ratio. Dually polar-

ized Mary QAM signals are assumed and the channel is taken to be a nondispersive

fading channel. Performance evaluations show that the bootstrapping algorithms

outperforms the LMS and diagonalizer cancelers when they operate under the same

conditions and with the same kind of information.

In chapter 2, the dually polarized Mary signals are introduced. We also include,

some relevant material regarding the LMS canceler and the diagonalizer previously

mentioned. The chapter concludes with the presentation of the three bootstrapped

cross-pol canceler schemes and their principles of operation.

In chapter 3 to chapter 5, we analyse the three bootstrap canceler configurations:

the power-power, correlator-correlator and power-correlator algorithms , respectively.

Their performances are evaluated and the results of numerical calculations are shown.

The question of stability is addressed in chapter 6, separately for each canceler

configuration. The equilibrium points and the stability conditions for the weights are

found.

In chapter 7, we study canceler convergence using simulation. Perturbation (dither)

with orthogonal sequences, is used in the weight control process, and convergence in

the mean of these weights to their predicted optimal value is shown. The computer

experiments are performed for a nondispersive fading channel, and the residue inter-

ference power is observed as the weights are controlled adaptively by the perturbation

algorithm.

Finally, in chapter 8, the performances of three bootstrapped cancelers are com-

pared. Also shown in this chapter are performance comparisons between the boot-

strapped canceler, on one hand, and the LMS canceler and the diagonalizer on the
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other. We conclude the chapter with a listing of suggested future work.



Chapter 2

DUAL POLARIZED CHANNEL
AND CROSS—POLARIZATION
CANCELERS

2.1 Introduction

Many transmission systems achieve frequency re-use by transmitting on two orthog-

onal polarizations. However, the isolation between these polarizations degraded by

rain depolarization, channel impairments or antenna imperfections. Some of this

depolarization are time varying and can only be eliminated by the use of adaptive

interference cancelers. Many methods have been proposed in [1,2,3,4,5] to elim-

inate the degradation due to cross polarization interference. In this chapter, we

first introduce a model for the dual-channel M-ary transmission in section (2.2)

and then calculate the error probability caused by cross-polarization interference as

well as the noise (section 2.3). Two interference cancelers, namely the diagonalizer

and the LMS cancelers are introduced and their error probabilities are estimated

in section (2.4). These results are mostly based on previously published material

and presented in this work for completeness and convenience of the reader. The

bootstrapped cancelers namely, the power-power the correlator-correlator and the

power-correlator are introduced in section (2.5), their block diagram are presented

and their principle of operation are discussed.
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2.2 Dual-Channel M-ary QAM Transmission Model

The model for such channel have been well presented in the literature [1,2,3,4]. M-

ary QAM bandpass signals with the same bandwidth and the same center frequency

transmitted on two orthogonal channels can be presented as

where Re{.} stands for the real part, fc denotes the carrier frequency and

1, 2 is the complex envelopes of each of the orthogonal signals, respectively. These

complex envelope can be expressed as

i = 1,2 is a complex information symbol which takes on one of M

different complex values, where

and the quadrature component of the carrier), are independent Mary symbols

1)c}. IkR and IkI can each take values equal

are assumed to be statistically

independent and equiprobable. Also, h(t) is a complex low-pass equivalent of the

overall system impulse response, M is the number of signal level of in-phase and

quadrature component and c is a constant which determines the distance to the

decision boundary from each signal location.

The channel is assumed to be slowly time varying and nondispersive. It accepts

two orthogonally independent random data streams /1 (n) and /2 (n). It causes

distortion; a fraction of one stream of data is added to the other [4].

In matrix notation the received signal is given by

where A is the dual-channel cross coupling matrix

(2.4)

(the in-phase
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a12 and a21 are complex valued constants that denote the channels cross-polarization

(interchannel interference) responses. The factors a11 and a22 denote co-polarization

(direct path attenuation) channel constants taken as real valued [3].

and the noise

The received signals, sampled after matched filters, are denoted by;(see Fig 2.1)

where x1(n) and x 2 (n) are the sampled received signals at the first and second

channels respectively. Ii (n) and n i (n) are the corresponding signals and noises at

these outputs. Also n 1 (n) and n 2 (n) are independent samples of Gaussian zero

mean random process.

The channel coefficients a id i = 1,2, j =1,2 are assumed to vary slowly with

respect to the signal rate. These slow variations can be tracked by the adaptive

algorithms.

We define the normalized cross-polarization coefficients,

where r 1 , r2 denote the magnitude of the normalized cross polarization constants

and 0 1 , 02 are the phases of these constants assumed to be independent and uni-

formly distributed over

2.3 Performance of Dual Polarized Mary QAM
System

To estimate the performance of such system and realize the effect of cross-polarization,

we will find an estimate for the probability of errors that each output will suffer.

As a standard procedure, and based on the kind of signal processing performed
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at the outputs of receiver, we define decision parameter. In this chapter we will

take as decision parameter

normalization will be termed "amplitude" only compensation. Define,

In next chapter this

From (2.5) and (2.7), we write

Next, we write Z1 (n) in terms of its real , Z1R, and imaginary,Z1I, parts. For

this, assuming a 11 a22 we use (2.6) in (2.8) and present 12 (n) and n 1 (n) in terms

of their real and imaginary parts;

For a matter of convenience, we dropped in 2.9 the dependence on the sampling

time n.

Based on the decision parameters in (2.9), Kavehrad [9] finds the Chernoff bound

on the probability of error at the output. He also uses the Gauss quadrature rule

[14] to obtain an approximate value of the probability of error.

For the convenience of the reader, we will summarize Kavehrad's GQR proce-

dure;

Define,

'when we add canceler; yi (n) will be the output of the canceler.
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Therefore,where Y is zero mean Gaussian random variable with variance

Z1R is Gaussian with mean X/- and variance It is possible to show that,

where

Using the relation between the probability of error

have

where we used the well known relation between SNR and M-QAM signal pa-

rameter;

The average probability can be approximated, using the GQR (see appendix B)

by;

where x i nd w i are the nodes and weights of the GQR which can be obtained from

the moments of the random variable x defined in (2.15) together with (2.10).

Based on (2.17,) we calculate and present in Fig. 2.2, the probability of error

at the output of a channel for 16 QAM dually polarized signals as a function of
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the transmitter signal to noise ratio. The cross-coupling assumed to be -15 dB. 32

moments were used when applying the GQR in (2.17).

2.4 Cross-Polarization Cancelers

We notice from (2.5) that the output of the channel contains beside the noise term,

an interference (cross polarization) through the cross coupling a 12 and a21 . These

interference undoubtly causes degradation of performance. Several different canceler

structures were proposed to mitigate the effect of cross-polarization. Among these

are the diagonalizer [4] and the LMS [7] and the bootstrapped canceler [12].

For the convenient of the reader, we will summarize Kavehrad's approach to

estimate the performances of the diagonalizer and the LMS cross-pol cancelers. We

will introduce the decision parameters of these cancelers as they have been derived

for Mary QAM system by Kavehrad; follow his derivation for the Chernoff bound

on the probability of error and compares the results of these two algorithms with

each other, for different cross-couplings. It should be noticed that the decision

parameters for the outputs were derived in [9] under the assumption that only

amplitude compensation is used at the output. Also, it should be emphasized that

unlike the LMS canceler, Kavehrad completely neglects the effect of noise on optimal

weight when he deals with diagonalizer.

2.4.1 The Diagonalizer and Its Performance

The structure of this canceler is well presented in [4], [9], see Fig 2.3. The output

of the diagonalizer is given by
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and substituting (2.5) in (2.18), we get

The canceler weights are found by forcing the coefficients of the interference

signal to zero on each channel. Therefore, from (2.19) we must choose the weights

to satisfy,

By substituting the constraint of (2.20) in (2.19), we get after using (2.5),

Following Kavehrad, we define, I1(n) = y1(n)/a11 	 as an estimate of the transmitted

signal /1 (n) and hence definition of decision parameter follows

Using (2.22) in (2.21), we write the decision parameter for the output of channel

1, in terms of its real and imaginary parts;
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The Chernoff bound on P1 ( Z1 > c) is derived by [9] and some of the steps can

be found detailed in section (3.3.1) From these analysis, we find that, the probability

of error is bounded as follows;

where we again use the relation (2.14);

Kavehrad in different paper [14] uses another form of compensation;

From (2.21), he first finds the real and imaginary part of the canceler output,

then defines an estimate of the real part of I1(n ),

and similar estimate for the imaginary part of /1 (n). For the decision parameter

Z1R, then he uses
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Therefore,

This kind of compensation might be considered as "both amplitude and phase

compensation" of the co-pol channel response. In next chapter, we will use, for the

bootstrapped cancelers, a slightly different approach to this Kavehrad's compen-

sation; we will apply compensation first on the complex output and then take a

decision. Obviously, there will be difference in hardware needed to implement these

approaches.

Both Chernoff bound and the moment GQR can be used with (2.28). For the

second approach one can find

and a variance

Let x be the random variable

then
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Equation (2.34) can be evaluated numerically, (see appendix B). Some results on

the performance of the diagonalizer of Kavehrad are given in the following figures.

In Fig. 2.4, we use 16 QAM and compare the error probability obtained with the

moment method to the Chernoff upper bound. The cross polarization used was

r=-15 dB. Fig. 2.5 depicts the same except for using 64 QAM instead. Comparing

the performance when r.-10 dB to that when r=-15 dB is done in Fig. 2.6 using

moment method.

2.4.2 LMS Canceler

The structure of this canceler (Fig 2.7), for dually polarized nondispersive channels

is given in [7].

For the output of this canceler as in (2.18), Kavehrad performs an amplitude

normalization and obtain an estimate of the transmitted signal

i = 1,2. The optimal LMS weights are found by minimizing the sum of the squares

of the errors.

corresponding to the i-th output of the canceler.

These optimum weights are found by solving the matrix equation

15



and for a complex Gaussian noise, the optimum

weights from (2.36) can be used in (2.18) to find the optimal output y i (n). (see

appendix B of [9] for detail).

From the optimal output one can derive the decision parameter, and using it to

find an approximation to, or upper bound on the probability of error.

Some results of these calculation are given in Fig. 2.8 to 2.10.

2.5 Bootstrapped Adaptive Algorithms

In this section, we present three different bootstrapped cross-pol interference can-

celers. These cross-pol cancelers [13] differ from the other interference canceler

systems [7,9] in that it is a power separator rather than interference canceler. That

is each of the two input signals interferes with the other and the function of the

canceler is to remove the interference from both input signals rather than just one.

To obtain a high signal to interference ratio at both outputs of these cancelers,

we suggest to use bootstrapping technique. With this approach, two cancelation

paths and two summation are used to obtain the two system outputs. An adaptive

algorithm is employed to optimize the signal-to-interference power ratio at the two

output ports simultaneously.

The three configurations of the bootstrapping algorithms differ in the criterion

is set to obtain the optimal complex weight in the cancelation paths. The criterion

used to minimize either the interfering signal power at the two output ports, the

correlation between the two signals at the two output ports, or simultaneously the

interfering signal power at one port and the correlation between the two output sig-

nals at ports. Correspondingly they will be termed ;power-power, power-correlation

and correlation-correlation cross pol cancelers. The three configurations reported in

the literature [3], [8], [13] differ in the topology of their two cancelation paths, the

adaptive feedback information and hence in their hardware complexity. The use of
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either of these criteria lead power-inversion result. Each of the arrangement of boot-

strapped algorithm results in power separation through the use of discrimination

techniques.

2.5.1 Optimization Criteria

The following three configurations of bootstrapping algorithms employ different op-

timization criterion, namely power-power, correlator-correlator and power-correlator.

The first configuration has been studied by [12] , the second proposed by [8] and

the third by [3].

Power-Power Canceler

The system in Fig. 2.11 consists of two distinct control loops: Q — w 21 loop and

the P w 12 loop. Let the power ratio of the two signals at point 3, be such that

I1(n) > 12 (n). This is being the input to the weight w 12 results in power-inversion

in 12 (n) > 11 (n) at point 4. However, point 4, being the input to the weight w 21

result in 11 (n) greater than 12 (n) at point 3. This process continue resulting in a

at one output and 1", ) in the other. As a result the power-power

canceler acts as a high quality power separator. The adaptive control algorithm

varies the cancelation coefficient w 12 , w21 so as to minimize the power P and Q at

the output of the canceler. The blocks labeled "discrimination" performs functions

which make the power detection more sensitive to the undesired (a12 12 at port P)

signal than to the desired signal "a11/1". The effect of these blocks which will be

discussed in later chapters and proven to be essential for bootstrapping operation.

Correlation-Correlation Canceler

From Fig. 2.12, we notice that the adaptive control algorithm is set up to control

the cancelation weight w 12 so as to minimize the magnitude square of the correlation

very high 1
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P1 at one output and to control w 21 so as to minimize the magnitude square of the

correlation Q 1 simultaneously. The w 21 control process can operate with sample

of the single /2 (n) at point 3, which is corrupted by the signal 11(n), but needs

clean sample of the signal /1 (n) at point 4 to generate its feedback. Similarly,

for the w 12 control processor. Since initially neither points 3, or 4, contains clean

sample of /1 (n) and /2 (n), respectively, neither processor performs properly unless

the other one does. However, if one processor starts its cancelation, it results in a

cleaner sample of the proper signal needed by the other processor and vice versa.

This bootstrapping behaviour results in the desired power separation at the output

ports.

Power-Correlator Canceler

With the cross-pole canceler of Fig. 2.13, the cancelation weight w 12 is controlled

via a power criterion which minimizes the power P2 and the weight w 21 is controlled

to minimize the magnitude square of the correlation at the second output. To

obtain a perfect cancelation of the signal /2 (n) at output port 1, it is required that

the processor w 12 has a clean sample of 12 (n) at point 3 . The correlation process

which controls w 21 can operate with a sample of the signal /2 (n) at point 3, which

is corrupted by the signal I1( n ), but needs a clean sample of the signal 1 -1 (n) at

the other correlator input to generate its feedback signal. Since one of the two

processor can in effect defer its need for a clean sample of 12 (n), it makes sense

to let that processor perform its cancelation first, making a clean sample of 1 2 (n)

available to the other processor (power processor) which in turn provides a clean

sample of the sample of the signal I1 (n) at point 4, to the first processor (correlation

processor) to generate a feedback signal. Thus, although neither processor can

function properly unless the other one does, both (in bootstrap operation) can

operate properly together. Consequently the power-correlator canceler in Fig. 2.13
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can perform as a power separator.
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Figure 2.1: Dually Polarized Channel Model
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Figure 2.2: Performance of Dually Polarized 16 QAM System, without Cross-Pol
Interference Canceler
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Figure 2.3: Diagonalizer Cross-Pol Interference Canceler
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Figure 2.4: Diagonalizer Cross-Pol Interference Canceler, Chernoff bound and GQR
calculation, 16 QAM with amplitude and phase compensation, cross coupling -15
dB
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Figure 2.5: Diagonalizer Cross-Pol Interference Canceler, Chernoff bound and GQR
calculation, 64 QAM with amplitude and phase compensation, cross coupling -15
dB
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Figure 2.6: Diagonalizer Cross-Pol Interference Canceler, GQR calculation, 16 QAM
vs. 64 QAM with amplitude and phase compensation, cross coupling -15 dB, -10
DB
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Figure 2.7: LMS Cross-Pol Interference Canceler
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Figure 2.8: LMS Cross-Pol Interference Canceler, Chernoff bound and GQR calcu-
lation, 16 QAM with amplitude and phase compensation, cross coupling -10 dB
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Figure 2.9: LMS Cross-Pol Interference Canceler, Chernoff bound and GQR calcu-
lation, 16 QAM with amplitude and phase compensation, cross coupling -15 dB
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Figure 2.10: LMS Cross-Pol Interference Canceler, Chernoff bound and GQR cal-
culation, 64 QAM with amplitude and phase compensation, cross coupling -15 dB
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Figure 2.11: Power-Power Cross-Pol Interference Canceler
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Figure 2.12: Correlator-Correlator Cross-Pol Interference Canceler

31



Figure 2.13: Power-Correlator Cross-Pol Interference Canceler
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Chapter 3

PERFORMANCE ANALYSIS OF
POWER-POWER SCHEME

3.1 Introduction

In this chapter, we present the performance of the power-power scheme of boot-

strapped cross-polarization canceller for a dual M-QAM system over non-dispersive

fading channels.

In this study, the performance is evaluated in two ways; by deriving an upper

bound and by calculating the average error probability with the moment-generating

method.

After deriving the canceler's parameter, such as optimal weights with and with-

out noise effect, we find in the next section the canceler's optimal outputs. Assuming

amplitude compensation alone, and together with phase compensation of the can-

celer's outputs, we derive decision parameters for deriving the corresponding error

terms. In section 3.3, we derive the Chernoff bound on the average probability of er-

ror on one hand and define an expression to be used in calculating an approximation

to the probability of error by the method of moments, on the other. The method

of moments that is based on Gauss quadrature rule is discussed in an appendix to

this chapter. Finally, in section 3.4, we present results on the performance of the

power-power canceler showing Chernoff bounds and actual approximations to error
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probability based on the moments, for different cases and with different parameter.

These results are also compared, in order to draw conclusion in section 3.5.

3.2 Canceler Scheme and Parameters

The canceler scheme is depicted in Fig. 2.11 and its operation was detailed in

chapter 2. As it was discussed in this chapter the received signals which are sampled

after matched filters, are given by;

where x 1 (n) and x 2 (n) are the sampled received signals at the first and second

channels respectively. Ii (n) and n i (n) are the corresponding signals and noises at

these outputs.

3.2.1 Canceler Outputs

The outputs y1(n) and y2 (n) from Fig. 2.11 are as follows

Solving the system of equation (3.2) leads to

Substituting for x 1 (n) and x 2 (n) from (3.1) we get
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3.2.2 Optimal Weights

The control algorithm simultaneously minimizes the output powers

where y1d(n) and y2d (n) are the samples of the corresponding output after the

discriminations. In fact it simultaneously searches for E{ |y1d(n)|2}/w12 = 0 and

where E{.} and denote the expected and magnitude

respectively. The search for optimum weights can be performed by successive use

of the following recursive equations, provided that 1 —

(3.8)

(3.9)

where μ1 and μ2 are the constants which determine the stability of convergence.

The optimum weights that minimize the powers are the steady state weights

obtained from
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From (3.4) and (3.5), we first find the powers at the output of the discriminators,

as

denotes the effect of the i th discriminator on the different signal

powers.

Notice that in calculating the power, we assumed 11 (n) and 1.2 (n) are uncor-

related and zero mean. We will take for the derivative of any real function with

respect to a complex variable [16].

where w = wr + jw i . Hence, for the functions P in (3.12), we get,
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Further simplification yields,

and finally we can write,

(3.17)
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Similarly the derivative of the power Q in (3.13) can be written as,

Further simplification yields to,

Provided |1-w12w21|  0, equating (3.17) and (3.19) simultaneously to zero will

result in

38



where,

and,

where

The effect of the discriminators are presented by δi,j = 1,2 which are real

valued satisfying 811822 < 812(521. Note that, the first and second terms in (3.17)

are complex conjugates of the terms in (3.19). Therefore, to find a unique solution

for w 12 and w 21 using these equations, discriminators which enforce the constant

i,j = 1,2 satisfying the above condition, are essential. The simultaneous

solution of these non-linear equations give two equilibrium points; [w [w12opt1,w21opt1]

and [w12opt2 , w21opt2]. One is a stable equilibrium which provide a solution to our

problem.

3.2.3 Effect of Noise On Optimal Weights

In the absence of noise, that is when E{|n 1(n)| 2} = E{|n2(n)|2} = 0 the stable

equilibrium points can easily found to be;
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With noise, we will write

where e l and E2 are perturbations, due to noise on the optimal weights that we

intend to find.

Perturbation On Optimal Weight, w12opt

Using (3.20) and (3.24) in (3.25), we can find E l .

where Dw 12opt is defined in (3.21). Substituting for w21opt from (3.25) in (3.26),

we get after some manipulations,
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where,

It is easy to notice that the second and the fifth terms in (3.27) cancel one

another resulting in

or after collecting terms,

(3.30)

Δε1 after some simplification becomes,

(3.31)

Now write (3.30) together with (3.31) as follows
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or,

where

We claim that in (3.33) X2ε1ε*2 << ε1X3 with e l and e 2 ; the perturbation on the

optimum weight are considered to be small enough at steady state. This could be

justified as follows; since a 21 << a11 and a12 << a22 , hence for high signal to noise

ratio;

so that X2 and X3 are in the same order and our claim follows. Therefore we can

write (3.33) as
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Perturbation on Optimal Weight, w21opt

Similar step can be followed to determine € 2 from (3.25) together with (3.22). In

fact,

and using (3.22) we have,

where Dw21opt is given in (3.23).

Simplifying step by step we can get,

where,

43



or after collecting terms;

0 f2 after some algebraic simplification becomes,

We can now write (3.45) together with (3.46) as follows;

or,

where,

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

44



Again by using the same argument as in (3.40), we get

Determination of Perturbations Final Expressions

Simultaneously solving (3.40) and (3.53), we get

Using (3.34), (3.35), (3.37) together with (3.49), (3.50) and (3.52) in (3.54), we

get,

Without loss of generality, we will assume that noise variance in V and H polar-

ized channels are equal; E{|n1(n)|2} = E{|n 2 (n)|2  = E{|nn(n)|2}. This assump-

tion is particularly useful when calculating the probability of error. In fact, this is

the most difficult case that puts the worst requirement on the discriminators. Using

this assumption and the definition of the channel parameter, we write (3.56) as
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(3.57)

where

L in (3.58) can be simplified as follows: By using (3.34), (3.37), (3.49) and (3.52),

we get,

Let

then we can write

Further simplification yields,
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and using (3.60) we get,

Let AR and A/ be the real and imaginary part of A, that is;

then,
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Finally from (3.57)

Defining e as;

then,

with

and
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From (3.66) we have,

Similar calculation can be performed for € 2 : Using (3.34), (3.35) and (3.37)

together with (3.49), (3.50) and (3.52) in (3.55) we get,

with A as in (3.58) and the fact that

Using the definition of the channel parameter we write (3.74),

Defining € 2 as ,

then from (3.75) we have,
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Clearly,

then,

3.2.4 Canceler Optimal Outputs

Next using (3.25) in (3.4) with w12 w12opt and w 2 1 w21opt, we obtain y1(n)
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and after combining terms,

3.2.5 Decision Parameters with Amplitude Compensation
at the Canceler Output

The co-pole horizontally polarized signal at the output of the channel is a11Ii(n) and

hence it is reasonable to take y1(n)a11 as estimate of this signal by compensating

for the attenuation in the co-pol by a 11 . Therefore, we will take

estimate of the transmitted signal /1 (n). We will also assume the

is negligible with respect to the other terms in the denominator of this equation.

Hence from (3.84) we can write,

Define,

with Z1 (n) is taken as the decision parameter. That is the probability of error

is given by P1 (e) = P {|Z1(n)| > c}with c is the half of the distance between two

signals in the corresponding signal space. From (3.85) together with (3.86), we have
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Further simplification leads to,

where

In order to be able to calculate the probability of error, we must find the real

and imaginary part of Z 1 (n). For this, we first find KR, VR ,Kr and VI , the real

and imaginary parts of K and V respectively.

then from (2.6) and (3.75), we haveDefine K =

From (3.91), the real and imaginary parts of K A;
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But,

therefore,

with K AR and K AI as in (3.92) and (3.93), while AR and A/ as in (3.65) . Note

that KR and KI  are functions of the random variables 4

Similarly, define V = VA then from (2.6) and (3.66),

(3.97)

From (3.97), the real and imaginary of VA are ,
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where we used i = 1,2 and in our notation, we

But,

therefore,

with VAR and VA ." as in (3.98) and (3.99) while OR and A / as in (3.65). Similar to

the real and imaginary part of K, VR and VI are functions of the random variables,

01 and 02.

Using (3.95), (3.96), (3.101), (3.102) in (3.88), we get;

also drop the dependence of terms on the sampling time n.

Also from (3.88) the real and imaginary part of the denominator ZD are respec-

tively given by,
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Clearly ZDR and ZDI are functions of the random variables

The real and imaginary part of numerator of (3.103), ZN are given by,

ZNR and ZNI beside being function of the random variables 0 1 and 02, they are

also function of the signals and noises random variables.

Finally, we can write (3.103) as

with

Using (3.104), (3.105), (3.106) and (3.107) in (3.108), we can get after some sim-

plification, which emphasizes the dependency of the different terms on the different

random variables, the real part of the decision variable:
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Similar expression can be found for Z11.

The Decision Parameters Final Expressions

Finally we write the real and imaginary parts of Z 1 (n) in terms of the random

variable representing the real and imaginary part of signal and noises of channel 1;
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where

Notice that 	 1, 2..8 depend only on the random variables 0 1 and 02.
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3.2.6 Decision Parameter with Both Amplitude and Phase
Compensation at the Canceler Output

Instead of the amplitude compensation used in section 3.2.5, in this section we use

compensation on both amplitude and phase of the co-pol signal. That is at the

output of the canceler, the co-pol signal is the same as that send by the transmitter

and the error will be caused only by the cross coupling and the noise processes.

From (3.84) we can write

where

and with amplitude and phase compensation, we take I 1 (n) = y1(n) ΔL/Δy as esti-

mate of the transmitted signal Ii (n).

Define,

with Z1 denotes the amplitude and phase compensated output decision variable

at channel 1.

We will perform similar analysis as in previous section to find the real and

imaginary parts of the decision variable Z1(n).

From (3.124) and (3.126) we get,
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Using (2.6) in (3.127), we get the decision variable,

where we drop the dependence of terms on the sampling time n.

Also from (3.125) the real and imaginary part of the denominator Ay are re-

spectively given by,

where VR and VI are defined in the previous section. Clearly ΔyR and 	 areare

functions of the random variables .75 1 and 02.

The real and imaginary part of numerator of (3.128), ZN are given by

59



Finally, we can write (3.128) as,

with

Using (3.129), (3.130), (3.131) and (3.132) in (3.134) and (3.135), we can get

after some simplification, which emphasizes the dependency of the different terms

on the different random variables, the real part of the decision variable:

Similar expression can be found for
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The Decision Parameters Final Expressions

Finally we write the real and imaginary parts of Z 1 (n) in terms of the random

variable representing the real and imaginary part of signal and noises of channel 1;
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3.3 The Performance Analysis

3.3.1 Chernoff Bound

With Amplitude Compensation

Using the real and imaginary parts of the decision variable for channel 1 (3.113) and

(3.114) obtained under the assumption of amplitude compensation, we calculate an

upper bound for the average symbol error probability for power-power scheme of

BXPC with dual-polarized M-ary-QAM system.

An error is made on this channel if the decision variable |Z1R| > c or |Z1I| > c.

The probability of error on channel 1 can be written [9] as,

For a bound on the probability,

Chernoff bound [25,26]. Such a bound is defined as follows; for any random variable

Z and a constant c, one can find a A > 0 such that

Obviously A that minimizes the right hand side of (3.148) establishes the least

upper bound on P(Z > c). Using (3.113) in (3.125) we find

we will use the
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where we used the fact that IiR, IiI
, niR and niI, i = 1, 2 are independent of each

other. Also note that all the expected value operations inside the large parenthesis

, are conditional on 0 1 and 02, and hence the random function Y i 1, ..8

conditioned on Φ1 and Φ2 are constant with respect to these operations.

Following Kavehrad [9], we derive these expected values: The random vari-

able /-1R is a discrete Mary random variable which takes the values

with equal probability. For such random variable, we derive in ap-

pendix A an upper bound on E{exp(aI 1R )}, with a given constant a. Noting that

conditioned on Φ1 and Φ2, λY1is a constant, we obtain using (A.3) and (A.4),

Similar terms are in effect for the following expected values of (3.149);

The additive noise n1 (n) and n 2 (n) are assumed to be independent samples of

zero mean complex Gaussian random variables with
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Therefore, n iR and n il- i 1,2 are real, zero mean Gaussian random variable with

variance= σ2n. For such random variable n , we derive in appendix A the value of

E{exp(an)} with a as given constant. Again noting that conditioned on 0. 1. and 02,

λY5 is a constant, therefore we obtain from (A.7),

Similar terms for ;

Collecting terms from (3.150) to (3.157) in (3.149), we rewrite (3.149);

As a function of A, we write (3.158);

where
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Due to symmetry

bound on

Minimizing the exponent of (3.159) with respect to A, we obtain the least upper

bound;

or by using (3.160) we get,

where,

Rearranging terms, we get

where in the last step, we used (see [17])

By using the minimum upper

from (3.164) in (3.147), we can write the resulting least

upper bound on the probability error ;

65



where we used the fact that probability density function of i i = 1, 2 are,

With Amplitude and Phase Compensation

To calculate the Chernoff bound in the case where the decision variable is obtained

with both amplitude and phase compensation, we follow the same steps as in pre-

vious section except with different value of Y i = 1, 2.., 6.

As in (3.158) we have here

where YAP i = 1, 2, ..6 are defined by (3.140) to (3.146).

Minimizing the right hand side of (3.167) and taking the expected value over 0 1

and 0 2 , we write error the bound for the amplitude and phase compensated channel

1 output,

66



where

3.3.2 Method of Moments for Probability of Error Calcu-
lation

In some cases, Chernoff bound might not be sufficiently tight [18]. Therefore to

use it as a measure of performance in comparing different system might not be

adequate. Hence, in this section, we will present another method which actually

compute an approximate to the average probability of error for the power-power

scheme of BXPC. The method based upon Gauss quadrature rules (GQR) which

was shown to assure accurate and satisfactory results. We will first give a brief

description of GQR and apply it to calculate the average probability of error of

the power-power scheme. These calculations will be performed for both amplitude

compensated, and amplitude and phase compensated received signals, respectively.

With Amplitude Compensation

Again the probability of error on channel 1 is given in (3.147);

Using (3.113), we first find the conditional probability,

That is, we integrate on the joint probability

of the random variable Y;
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Define,

then from (3.113),

(3.172)

(3.173)

(3.174)

The random variable Y is zero mean Gaussian and have variance

(3.175)

Also conditioned on Φ1,Φ2,I1R,I1I, .1-2R and /21 , the random variable Z1R is Gaussian

with mean equals X I and variance σ 2 (Φ 1 , Φ2). Therefore

Hence,

where

Again due to symmetry P(|Z1R| > 	 P(|Z1I| > c), so that together with

(3.171), we get

We can write
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where the random variable x;

with

is a function of the random variables (01, 02,

Clearly, the average error probability on channel 1 can be evaluated from

with fx (x) as the pdf of the random variable x. Using (B.4) of the appendix together

with (3.170), we have

The GQR nodes x and the weights w i are determined from the moments of

random variable x, as it is described in appendix B.

Moments of x

Using the Gauss Quadrature integration, the average probability of error in (3.180)

can be calculated numerically by evaluating the 2N +1 moments of random variable

x in (3.180).

Denoting the moments of x by pi, n = 0,1, ..2N,

Substituting Xi- and co from (3.173) and (3.181) respectively, we get
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Since, the random variable in (3.187) is a function of the random variables

which are assumed independent, therefore

Using the simple binomial rule, one can write (3.187),

where

The expectation in (3.184) are taken first with respect to I ii i = 1,2 j = R, I

conditioned on 0 1 and 02 and then expectation over Φ1 and Φ2.

Equation (3.184) can be rewritten in the form,
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where

Recall that /ii , i = 1,2, j R, I are all independent equally likely M-ary

symbols from the set {±1c, +3c, ±(17/14. -1)c}, and Yk , lc = 1,2..8 are functions

of 0 1 and 02 which are independent and uniformly distributed over [—r, r]. In the

processes of evaluating (3.189), we note that the n th moment of equally likely

M-ary symbol [17,19] is given by

and for the case of independent and zero mean M-ary symbols I ij , we have

Furthermore for the n th moment of Y i = 1, ..8 which are function of 0 1 and

02, we use

Finally the moments obtained for the random variable x will be used to find the

GQR nodes and weights {x i , wi}iNi=1 which are needed for calculating approximate

average error probability in (3.183). The evaluation of the nodes and weights are

given in appendix B.
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With Amplitude and Phase compensation

Similar analysis is used to find the average probability of error for the case when

the decision variable is obtained with both amplitude and phase compensation.

In this case, using (3.138), we first calculate the conditional probability,

That is, we integrate on the joint probability of the

random variable YAP,

Define

then from (3.138),

The random variable YAP is zero mean Gaussian and have variance ;

Also conditioned on 01,42, 12R and 121 , the random variable Z1R is Gaussian

with mean equals XIAP and variance σ2oAP (Φ1, Φ2). Similar to (3.178),

Or

where the random variable xAp,
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with

is a function of the random variables (01, 02,12R,121). Because of independence

assumption,

Similar to (3.182), we can use GQR to calculate the probability of error from

the moments of the random variable xAp; viz,

where again x i and w i are the nodes and the weights of the GQR.

Moments of xAp

By denoting the moments of xAp by the sequence

Substituting XIAp and σoAp  from (3.195) and (3.201) respectively,

Since, xAp is a function of independent random variables;

, then by using the simple binomial rule, one can write (3.204),

we can write,
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We take the expected values of the inner terms in (3.205), then,

where

3.4 Results

The Chernoff upper bound on the average probability of error as a function of

signal-to-noise (SNR) ratio is evaluated for various cross coupling constants and

for 16 QAM and 64 QAM signals. The Gauss quadrature rule is also used to find

approximations to these probability of errors.

In Fig. 3.1, the bounds on error probability with 16 QAM and with cross polar-

ization coupling r= -15 dB, -10 dB and -5 dB are calculated and compared. Equation

(3.166) is used in calculating these bounds when only amplitude compensation is

employed, while (3.168) is used when both amplitude and phase compensation is

employed. Notice that adding phase compensation improve the bound when the

cross coupling is high (i.e., r=-5 dB). The effect of adding phase compensation is

hardly noticeable with low cross coupling (r=-15 dB). Fig. 3.2 depicts the same for

64 QAM. Effect of compensation is similar. Nevertheless as expected the bounds

are higher for 64 QAM displaying possibility of higher error rates with the same

SNR. Comparison of these bounds for 16 QAM and 64 QAM are shown in Fig. 3.3.

In Fig. 3.4 and Fig. 3.5, we depict the probability of error as it is calculated

using the Gauss quadrature rule, for 16 QAM and 64 QAM, respectively. These

calculations were done with cross coupling of -15 dB, -10 dB and -5 dB, and in each
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a total of 9 moments were used. Only the case with amplitude compensation was

shown since adding phase compensation did not change these results very much. In

order to show how tight are the Chernoff bounds shown in in Fig. 3.1, we depict in

Fig. 3.6 a comparison of the results obtained with GQR moments calculations to

their corresponding Chernoff bounds for 16 QAM and cross coupling of -15 dB, -10

dB and -5 dB. Fig. 3.7 shows the same for the 64 QAM case. To show the effect of

increasing the number of moments used in obtaining the GQR results, we show in

the next two figures these results with 7, 9 and 11 moments. Chernoff bound was

added to these curves for comparison. In Fig. 3.8, we present these comparisons

for 16 QAM case, while Fig. 3.9 presents the same for the 64 QAM case. Finally,

we listed in Tables 3.1 to 3.5 some of the results shown in these figures.

3.5 Conclusion

The power-power bootstrapped canceler was analysed and its performance was stud-

ied in this chapter. Particularly, the average probability of error was estimated,

using the moment generating method or by finding the Chernoff bounds. Results of

the analysis as well as computer calculation show, as expected, that with 16 QAM

performance is well better than 64 QAM. Also shown that adding phase compensa-

tion to the canceler output adds very little to the performance when only amplitude

compensation is included.

From comparing the results obtained with moment generating method to the cor-

responding Chernoff bound, we concluded that these bounds are sufficiently tight.

Comparing the results when different number of moments are used, and concluded

tightness of the Chernoff bound, we infer that approximately 10 moments are suf-

ficient for deriving a good approximation for the average probability of error using

the Gauss quadrature rule.
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Figure 3.1: Power-Power Cross-Pol Canceler, Chernoff bound 16 QAM
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Figure 3.2: Power-Power Cross-Pol Canceler, Chernoff bound, 64 QAM
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Figure 3.3: Power-Power Cross-Pol Canceler, Chernoff bound comparison 16 QAM
v.s 64 QAM
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Figure 3.4: Power-Power Cross-Pol Canceler, GQR calculation, 16 QAM
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Figure 3.5: Power-Power Cross-Pol Canceler, GQR calculations , 64 QAM
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Figure 3.6: Power-Power Cross-Pol Canceler, Chernoff bound and GQR moment
calculations comparison, 16 QAM
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Figure 3.7: Power-Power Cross-Pol Canceler, Chernoff bound and GQR moment
calculations comparison, 64 QAM
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Figure 3.8: Power-Power Cross-Pol Canceler, effect of increasing number of mo-
ments on GQR calculation results, 16 QAM
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Figure 3.9: Power-Power Cross-Pol Canceler, effect of increasing number of mo-
ments on GQR calculation results, 64 QAM
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Power-Power Scheme For 16 QAM
r1 = r2 = -15 dB

SNR Moment 9 Chernoff Bound
13 0.946E-1 1.078E-1
14 5.329E-2 6.541E-2
15 2.564E-2 3.491E-2
16 1.058E-2 1.586E-2
17 3.577E-3 5.881E-3
18 0.933E-3 1.692E-3
19 1.776E-4 3.540E-4
20 2.219E-5 4.973E-5
21 1.666E-6 4.244E-6
22 6.785E-8 1.943E-7

Table 3.1: Power-Power Cross-Pol Canceler, 16 QAM, performance calculation with
Chernoff Bound and GQR methods, with amplitude compensation for cross coupling
-15 dB
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Power-Power Scheme For 16 QAM
r 1 = r2 = -10 dB

SNR Moment 7 Moment 9 Moment 11 Chernoff Bound
13 8.615E-2 1.106E-1 1.261E-1 1.210E-1
14 4.888E-2 6.444E-2 7.172E-2 7.666E-2
15 2.480E-2 3.362E-2 3.724E-2 4.340E-2
16 1.102E-2 1.522E-2 1.719E-2 2.139E-2
17 4.158E-3 5.850E-3 6.830E-3 8.896E-3
18 1.281E-3 1.761E-3 2.235E-3 3.004E-3
19 3.067E-4 4.077E-4 5.496E-4 7.854E-4
20 5.367E-5 6.918E-5 0.936E-4 1.499E-4
21 6.343E-6 7.971E-6 1.041E-5 1.935E-5
22 0.4571E-6 0.564E-6 0.716E-6 1.532E-6

Table 3.2: Power-Power Cross-Pol Canceler, 16 QAM, performance calculation with
Chernoff Bound and effect of increasing the number of moments on GQR calcula-
tion, with amplitude compensation for cross coupling -10 dB, 16 QAM

Power-Power Scheme For 16 QAM
r 1 = r2 = -5 dB

SNR Moment 9 Moment 11 Chernoff Bound
14 1.185E-1 1.285E-1 1.194E-1
15 7.684E-2 8.555E-2 8.218E-2
16 4.746E-2 5.473E-2 5.317E-2
17 2.633E-2 3.292E-2 3.199E-2
18 1.299E-2 1.806E-2 1.760E-3
19 5.740E-3 8.119E-3 8.640E-3
20 2.199E-3 2.963E-3 3.667E-3
21 6.993E-4 0.905E-3 1.292E-3
22 1.749E-4 2.213E-4 3.605E-4

Table 3.3: Power-Power Cross-Pol Canceler , 16 QAM, performance calculation
with Chernoff Bound and effect of increasing the number of moments on GQR
calculation, with amplitude compensation for cross coupling -5 dB, 16 QAM
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Power-Power Scheme For 64 QAM
r 1 = r2 = -15 dB r1 = r 2 =- 10 dB 

SNR Moment 9 Chernoff Bound Moment 11 Chernoff Bound
22 1.552E-2 2.274E-2 2.756E-2 3.048E-2
23 5.452E-3 8.878E-3 1.076E-2 1.324E-2
24 1.483E-3 2.724E-3 3.444E-3 4.718E-3
25 3.004E-4 6.180E-4 0.828E-3 1.318E-3
26 4.157E-5 9.606E-5 1.523E-4 2.726E-4
27 3.592E-6 9.302E-6 1.942E-5 3.890E-5
28 1.722E-7 4.987E-7 1.559E-6 3.489E-6
29 0.395E-8 1.277E-8 0.707E-7 1.745E-7
30 0.359E-10 1.376E-10 1.514E-9 4.177E-9
31 1.032E-13 4.576E-13 1.279E-11 6.350E-11
32 0.695E-16 3.629E-16 0.334E-13 2.063E-13

Table 3.4: Power-Power Cross-Pol Canceler, 64 QAM, performance calculation with
Chernoff Bound and GQR methods, with amplitude compensation for cross coupling
-15 dB and -10 dB

Power-Power Scheme For 64 QAM
r1 = r2 = -5 dB

SNR Moment 9 Chernoff Bound
23 3.484E-2 4.518E-2
24 1.808E-2 2.549E-2
25 8.413E-3 1.291E-2
26 3.400E-3 5.693E-3
27 1.148E-3 2.106E-3
28 3.078E-4 6.227E-4
29 6.151E-5 1.388E-4
30 1.057E-5 2.165E-5
31 0.937E-6 2.154E-6
32 0.463E-7 1.216E-7
33 7.102E-10 3.366E-9
34 5.79E-12 1.386E-10

Table 3.5: Power-Power Cross-Pol Canceler, 64 QAM, performance calculation with
Chernoff Bound and GQR methods, with amplitude compensation for cross coupling
-5 dB
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Chapter 4

PERFORMANCE ANALYSIS OF
CORRELATION-
CORRELATION
SCHEME

4.1 Introduction

The purpose of this chapter is to study the performance of bootstrapped cross-

pol canceller with correlation-correlation scheme. It differs from the power-power

scheme in the way its weights are controlled. While in the former the output powers

are minimized in searching for the optimal weights, here the correlation between

the two outputs are used instead.

As in the case of power-power canceler, we first derive, in the next section the

correlator-correlator canceler parameters; the optimal weight, with and without

noise effects, the optimal output and the decision parameter with amplitude com-

pensation only and with both amplitude and phase compensation. Using these

decision parameter, we find in section 4.3, the least upper bound (Chernoff bound)

on the probability of error. We also derive in this section an expression which is

used to calculate an approximation to the probability of error by the method of

moments.

Results on the performance of the correlator-correlator canceler using both Cher-
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noff bound and the method of moments are presented in section 4.4 and depicted in

figures and tables located at the end of this chapter. Comparisons of these results

and conclusion are found in (4.5)

4.2 Canceler Scheme and Parameters

The correlation-correlation scheme is shown in Fig. 2.12. Its principle of operation

was detailed in chapter 2.

4.2.1 Canceler Outputs

From Fig. 2.12, the outputs of the cross-polarization canceller are given by,

where x i (n) and x 2 (n) are the received signals samples after match filtering given

in (2.5). Substituting for x 1 (n) and x 2 (n), we get for the output of the canceler,

4.2.2 Optimal Weights

In contrast to the power-power canceler, here the control algorithm simultaneously

minimizes square magnitude of the output correlations,
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(Q1(wi12,wi21) = |E{Yi2d(n)yi1(n)*}|2 	(4.6)

where yi (n) and y2 (n) are the samples of the corresponding outputs while y1d(n)

and y2d (n) are the samples of these outputs after discriminations.

In fact, it simultaneously searches for |E{y1d(n)Y2(n)*}|2 /w12 = 0 and

|E{Y2d(n)y1 (n) * }|2 /w 21 = 0, where E{.} and • denote the expected and mag-

nitude respectively. The search for the optimum weights can be performed by

successive use of the following recursive equations,

(4.7)

(4.8)

where p, 1 and p 2 are the constants which determine the stability of convergence.

The optimum weights that minimize the square magnitude of the output corre-

lations are the steady state weights obtained from ,

From (4.3) and (4.4), we first find the correlations between one output and the

second output after discrimination:
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where  i,j i,j=1,2 denotes the effect of the i th discriminator on the different signals

Ii (n) or /2 (n) .

It has been shown in [13] that the optimum weights w 12opt and w21opt that

simultaneously minimize the square magnitude of the output correlation P 1 and

Q 1 of (4.5) and (4.6), respectively can be obtained from equating simultaneously

of (4.11) and (4.12) to zero. This lead to;

with,

and
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with

The effect of the discriminator are presented by 	 j = 1, 2 real valued and

Note that, the first and second terms in (4.11) are complex conju-

gates of the terms in (4.12). Therefore, to find a unique solution for w 12 and w21

using these equations, discriminators which enforce the constant δi ,j i , j = 1, 2 satis-

fying the above condition is essential. The simultaneous solution of these non-linear

[w12opt1, w21opt1] and [w12opt2 , w21opt2]. Asequations give two equilibrium points; I

it was discussed in power-power canceler, one of these points is a stable equilibrium

which provide a solution to our problem.

4.2.3 Effect of Noise on Optimal Weight

In the absence of noise, that is when

equilibrium points can easily be found to be;

By similar approach to that followed for power-power scheme, when noise is

added, we will write

are perturbations on the optimal weights due to the existence of

input noise.

the stable
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Notice that the optimal weights w12opt and w 21opt for this scheme given by

(4.13) and (4.15) are the same as these in (3.20) and (3.22) for the power-power

scheme. Therefore, 6 1 and E 2 are the same as in (3.67) and (3.76), respectively.

4.2.4 Canceler Optimal Outputs

Substituting (4.18) in (4.3), we get for y1 (n),

and after combining term, we have,

4.2.5 Decision Parameters with Amplitude Compensation
at the Canceler Output

To compensate for the change in amplitude of the co-pol signal we use as a deci-

sion parameter I 1 (n)=y1(n)/a11. Therefore, from (4.20), we can write the amplitude
an

compensated output,

Let the decision parameter be Z1 (n)  I1(n) — I1 (n), then ,
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Our aim is to find the probability of error

a21/a11 = r2 ejΦ2, 	and V = 	 e1 a21/a11 from (3.90) and taking ε1 = ε1R + 3 ELT , we getau 

where VR and VI are specified in chapter 3. For the convenience of notation, we

dropped the dependence on sampling time n. Finally from (4.23), we write the real

and imaginary part of Z1 (n) in terms of the real and imaginary part of signals and

noises;

and
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The Decision Parameters Final Expression

From, (4.24) and (4.25), we can write the real and imaginary of Z 1 (n) in term of

the random variables representing the real and imaginary part of the signals and

noises;

where

4.2.6 Decision Parameter with Amplitude and Phase Com-
pensation at the Canceler Output

By compensating for the changes in both amplitude and phase of the co-pol signal,

we can write (4.20) ,
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We take

parameter

where,

as an estimate for the co-pol signal I1(n). Hence, the decision

becomes,

Comparing (4.37) together with (4.36) to (3.127) (3.125), we conclude that when

both amplitude and phase compensation is employed the decision parameters for

the power-power and the correlator-correlator cancelers are the same. Therefore,

the real and imaginary part of Z1AP(n) are given by (3.138) and (3.139) together

with (3.140) to (3.146).

4.3 The Performance Analysis

4.3.1 Chernoff Bound

With Amplitude Compensation

When amplitude compensation is employed, we obtain by using (4.26) in (3.158)

with the values of Y calculated in previous section,

with c is half the distance between two signal space, Y i = 1,2„, 6 are given in

(4.28) to (4.34) and M is the size of the QAM constellation. The existence of a A
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to satisfy the bound is inherent in the definition of Chernoff bound. As a function

of A, we write in compact form;

where

Minimizing the exponent of (4.39) with respect to A, we obtain the least upper

bound;

then we can write

where

Rearranging terms, we get
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where in the last step, we used,

Continuing as in section 3.3.1, we obtain the following bound;

which is the same form as 3.166 except for the function 0 -1,(0 1 , 0 2 ) and

from (4.43) instead of U1(01, 02 ) and W1 (01 , 02 ) in chapter 3.

With Amplitude and Phase Compensation

Clearly when both amplitude and phase compensation are employed then the Cher-

noff bounds are the same as for the power-power canceler, and can obtain from

section 3.3.1. In particular (3.168) can be used to calculate the least upper bound

on the probability of error.

4.3.2 Method of Moments for Probability of Error Calcu-
lation

With Amplitude Compensation

When only amplitude compensation is used, the average probability of error is

different from those obtained with power-power. The steps of calculating these

error probability using the method of moments are the same as these described in

section 3.3.2 of the previous chapter. In the following, we will summarize the results

as they relate to the correlator-correlator canceler.

From (3.178),
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with Y1 to Y7 defined in (4.28) to (4.34).

We define a random variable

with

Using x, in (4.46), we get

Hence,

with f t, (x) is the pdf of the random variable x c . Using GQR for evaluating

(4.52), we get
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where x i and w i are the nodes and the weights of the GQR obtained from the

moments of the random variable xc . These moments can be obtained in a similar

way as in section (3.3.2), (moment of x).

4.4 Results

As in the case of power-power canceler, in this section, we present results of calcu-

lations of average probability of error using Chernoff upper bound and the Gauss

quadrature rule. In these calculation which are presented in the following figures

and tables dual-polarized 16 and 64 QAM signal are used. The calculation are done

for different signal-to-noise ratios and with different cross coupling constants.

In Fig. 4.1, we depict the Chernoff bound for 16 QAM signal as a function of

SNR and with cross coupling r=-15 dB, -10 dB and -5 dB. These bounds are shown

for the case when amplitude and both amplitude and phase compensations are

employed. Equation (4.45) is used for the case with amplitude compensation. For

the case when both amplitude and phase compensation is employed, the decision

parameter turn out to be the same as the one for power-power canceler. Hence,

equation (3.168) from chapter 3 is used to plot the corresponding curve. In fact,

these results are simply repeated in this chapter to facilitate comparison to the

results obtained with amplitude only compensation. Fig. 4.2 is the same as Fig.

4.1 except for the use of 64 QAM instead of 16 QAM. Comparing of the bound for

16 QAM and 64 QAM are done in Fig. 4.3 and Fig. 4.4, for the case with amplitude

compensation and the case with amplitude and phase compensation, respectively.

The separation of these results to two figures was done to emphasize the fact that in

the correlator-correlator canceler unlike power-power different kind of compensation

plays an important role in performance. Fig. 4.5, Fig. 4.6, Fig. 4.7 and Fig. 4.8

depict the probability of error as they are calculated using the Gauss quadrature

rule. The first two use 16 QAM with amplitude compensation only and with both
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amplitude and phase compensation, respectively. The other two are same except

for using 64 QAM. Fig. 4.9, 10, 11 and 12 compare the results obtained with

GQR moment to their corresponding Chernoff bound for 16 QAM with amplitude

compensation only, for 16 QAM with both amplitude and phase compensation, for

64 QAM with amplitude compensation only and for 64 QAM with both amplitude

and phase compensation, respectively. Finally, we listed in Tables 4.1 to 4.8 some of

the results shown in the aforementioned figures. Notice that, in Fig. 9 and Fig. 11

when comparing GQR results with the Chernoff bounds, a cross over occurs. That

is the approximation with the moment method results in higher error at low SNR

with relatively high cross coupling than the Chernoff bound. This could be due to

inaccuracy in the GQR results occur particularly when amplitude compensation is

used.

4.5 Conclusion

The correlator-correlator bootstrapped canceler was analysed and its performance

was studied in this chapter. As in the previous chapter a Chernoff bound on the

probability of error at the output of the canceler was found. These errors were also

calculated using the moment method in the Gauss quadrature rule. As before two

kinds of channel compensation were employed in the performance studies; ampli-

tude compensation and both amplitude and phase compensation. Unlike the result

obtained with power-power cancelers, the two method of compensation depict large

difference in performance. Also, it was shown that decision parameters of this can-

celer when both amplitude and phase compensations are employed are the same as

the corresponding parameter for power-power canceler. It is also shown that when

only amplitude compensation is employed the Chernoff bound is not sufficiently

tight particularly when cross coupling is high ( -5 dB). This may have led to the

cross over of the Chernoff bound and GQR result discussed in previous section.
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Figure 4.1: Correlator-Correlator Cross-Pol Canceler, Chernoff bound 16 QAM
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Figure 4.2: Correlator-Correlator Cross-Pol Canceler, Chernoff bound, 64 QAM
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Figure 4.3: Correlator-Correlator Cross-Pol Canceler, Chernoff bound comparison
16 QAM v.s 64 QAM, with amplitude compensation
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Figure 4.4: Correlator-Correlator Cross-Pol Canceler, Chernoff bound comparison
16 QAM v.s 64 QAM, with both amplitude and phase compensation
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Figure 4.5: Correlator-Correlator Cross-Pol Canceler, GQR calculation, 16 QAM,
with amplitude compensation
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Figure 4.6: Correlator-Correlator Cross-Pol Canceler, GQR calculation, 16 QAM,
both amplitude and phase compensation
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Figure 4.7: Correlator-Correlator Cross-Pol Canceler, GQR calculations, 64 QAM,
with amplitude compensation
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Figure 4.8: Correlator-Correlator Cross-Pol Canceler, GQR calculations, 64 QAM,
with both amplitude and phase compensation
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Figure 4.9: Correlator-Correlator Cross-Pol Canceler, Chernoff Bound and GQR
calculation comparison, 16 QAM, with amplitude compensation

110



Figure 4.10: Correlator-Correlator Cross-Pol Canceler, Chernoff Bound and GQR
calculation comparison, 16 QAM, with both amplitude and phase compensation
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Figure 4.11: Correlator-Correlator Cross-Pol Canceler, Chernoff Bound and GQR
calculation comparison, 64 QAM, with amplitude compensation
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Figure 4.12: Correlator-Correlator Cross-Pol Canceler, Chernoff Bound and GQR
calculation comparison, 64 QAM, with both amplitude and phase compensation
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Correlator-Correlator Scheme For 16 QAM
r1 = r2 = -15 dB r1 = r2 = -10 dB

SNR Moment 11 Chernoff Bound - Moment 11 Chernoff Bound
13 2.376E-1 1.121E-1 2.400E-1 1.593E-1
14 1.364E-1 6.937E-2 1.419E-1 1.150E-1
15 6.856E-2 3.816E-2 7.502E-2 7.898E-2
16 2.925E-2 1.817E-2 3.474E-2 5.156E-2
17 1.018E-2 7.252E-3 1.389E-2 3.208E-2
18 2.708E-3 2.339E-3 4.314E-3 1.914E-2
19 5.044E-4 5.844E-4 1.076E-3 1.105E-2
20 6.287E-5 1.080E-4 1.940E-4 6.257E-3
21 4.756E-6 1.403E-5 2.455E-5 3.522E-3
22 1.938E-7 1.219E-6 1.891E-6 2.001E-3
23 3.655E-9 6.765E-8 7.765E-8 1.164E-3

Table 4.1: Correlator-Correlator Cross-Pol Canceler, 16 QAM, performance calcu-
lation with Chernoff Bound and GQR method, with amplitude compensation for
cross coupling -15 dB and -10 dB
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Correlator-Correlator Scheme For 16 QAM i
r 1 = r 2 = -5 dB

SNR Moment 11 Chernoff Bound
16 9.548E-2 3.485E-1
17 5.754E-2 3.353E-1
18 3.102E-2 3.242E-1
19 1.426E-2 3.150E-1
20 5.326E-3 3.074E-1
21 1.551E-3 3.012E-1
22 3.334E-4 2.962E-1
23 4.871E-5 2.922E-1
24 4.388E-6 2.889E-1

Table 4.2: Correlator-Correlator Cross-Pol Canceler, 16 QAM, performance calcu-
lation with Chernoff Bound and GQR method, with amplitude compensation for
cross coupling -5 dB

Correlator-Correlator Scheme For 64 QAM
r 1 = r 2 . -15 dB r1 . r 2 . -10 dB

SNR Moment 11 Chernoff Bound  Moment 11 Chernoff Bound
26 2.325E-3 1.150E-3 7.914E-3 1.349E-1
27 2.381E-4 3.619E-4 1.343E-3 1.238E-1
28 1.318E-5 1.036E-4 1.385E-4 1.149E-1
29 3.404E-7 2.761E-5 7.789E-6 1.078E-1
30 3.415E-9 7.074E-6 2.063E-7 1.022E-1
31 1.059E-11 1.804E-6 2.112E-9 9.780E-2

Table 4.3: Correlator-Correlator Cross-Pol Canceler, 64 QAM, performance calcu-
lation with Chernoff Bound and GQR method, with amplitude compensation for
cross coupling -15 dB and -10 dB
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Correlator-Correlator Scheme For 64 QAM

r1 = T2-= -5 dB
SNR  Moment 7 Chernoff Bound

26 1.143E-1 6.945E-1
27 5.217E-2 6.935E-1
28 1.675E-2 6.927E-1
29 3.374E-3 6.921E-1
30 3.896E-4 6.916E-1
31 2.354E-5 6.912E-1

Table 4.4: Correlator-Correlator Cross-Pol Canceler, 64 QAM, performance calcu-
lation with Chernoff Bound and GQR method, with amplitude compensation for
cross coupling -5 dB

Correlator-Correlator Scheme For 16 QAM
r1 = r2 = -15 dB r1 = T2 = -10 dB

SNR Moment 9 Chernoff Bound Moment 11 Chernoff Bound
13 9.508E-2 1.051E-1 1.261E-1 1.128E-1
14 5.331E-2 6.329E-1 7.301E-2 7.008E-2
15 2.558E-2 3.346E-2 3.821E-2 3.874E-2
16 1.060E-2 1.502E-2 1.774E-2 1.855E-2
17 3.586E-3 5.489E-3 7.069E-3 7.449E-3
18 9.369E-4 1.550E-3 2.315E-3 2.412E-3
19 1.785E-4 3.171E-4 5.506E-4 5.998E-4
20 2.221E-5 4.332E-5 9.330E-5 1.078E-4
21 1.670E-6 3.572E-6 1.044E-5 1.296E-5

Table 4.5: Correlator-Correlator Cross-Pol Canceler, 16 QAM, performance calcu-
lation with Chernoff Bound and GQR method, with amplitude and phase compen-
sation for cross coupling -15 dB and -10 dB
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Correlator-Correlator Scheme For 16 QAM
r 1 = r 2 = -5 dB

SNR Moment 11 Chernoff Bound
15 9.337E-2 6.805E-2
16 6.016E-2 4.258E-2
17 3.615E-2 2.460E-2
18 1.857E-2 1.287E-2
19 8.062E-3 5.938E-3
20 2.979E-3 2.338E-3
21 9.231E-4 7.544E-4
22 2.278E-4 1.899E-4
23 4.191E-5 3.508E-5

Table 4.6: Correlator-Correlator Cross-Pol Canceler, 16 QAM, performance calcu-
lation with Chernoff Bound and GQR method, with amplitude and phase compen-
sation for cross coupling -5 dB

Correlator-Correlator Scheme For 64 QAM
r1 = r2 = -15 dB r1 = T 2 = -10 dB

SNR Moment 11 Chernoff Bound Moment 11 Chernoff Bound
23 5.403E-3 8.285E-3 1.063E-2 1.104E-2
24 1.471E-3 2.498E-3 3.333E-3 3.776E-3
25 2.970E-4 5.545E-4 8.247E-4 1.004E-3
26 4.119E-5 8.391E-5 1.521E-4 1.961E-4
27 3.567E-6 7.862E-6 1.942E-5 2.611E-5
28 1.712E-7 4.048E-7 1.580E-6 2.159E-6
29 3.928E-9 9.761E-9 7.086E-8 9.816E-8
30 3.580E-11 9.432E-11 1.519E-9 2.107E-9
31 1.098E-13 2.851E-13 1.283E-11 1.988E-11

Table 4.7: Correlator-Correlator Cross-Pol Canceler, 64 QAM, performance calcu-
lation with Chernoff Bound and GQR method, with amplitude and phase compen-
sation for cross coupling -15 dB and -10 dB
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Correlator-Correlator Scheme For 64 QAM

r1 = r 2 = -5 dB
SNR Moment 11 Chernoff Bound

25 1.055E-2 8.693E-3
26 4.212E-3 3.567E-3
27 1.411E-3 1.212E-3
28 3.775E-4 3.250E-4
29 7.603E-5 6.497E-5
30 1.067E-5 9.013E-6
31 9.458E-7 7.934E-7

Table 4.8: Correlator-Correlator Cross-Pol Canceler, 64 QAM, performance calcu-
lation with Chernoff Bound and GQR method, with amplitude and phase compen-
sation for cross coupling -5 dB
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Chapter 5

PERFORMANCE ANALYSIS OF
POWER-CORRELATOR
SCHEME

5.1 Introduction

In this chapter, we present the performance of the third scheme of the bootstrapped

cross-polarization canceller for a dual M-QAM system over non-dispersive fading

channels; The power-correlator scheme.

In this scheme, the two optimal weights are found; one by minimizing the output

power of one channel while the other by minimizing the correlation between the

outputs.

In the next section, after presenting the equations of the canceler two outputs, we

derive the formula for the optimal weights, then after estimating the effects of noise

on these weights and calculating the optimal outputs of each channel, we give the

expression for the corresponding decision parameters. Performance of this canceler

is estimated, as in the other cancelers, by the Chernoff bound on the probability

of errors and via direct calculations of approximates to these probabilities using

the quadrature rule. Because of the unsymmetry of this canceler, the decision

parameter for two outputs are different. Nevertheless, the procedure of performing

these calculations are the same as in previous chapters, and therefore will not be
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repeated. The reader is referred to the corresponding section of chapter 3 for a

complete detail of these procedures.

Results will be depicted in section 5.4, followed by conclusion.

5.2 Canceler Scheme and Parameters

The power-correlation canceler scheme is shown in Fig. 2.13 and its principle of

operation was explained in chapter 2.

5.2.1 Canceler Output

From Fig. 2.13 the outputs y 1 (n) and y2 (n) are given by;

where x 1 (n) and x 2 (n) are the received signals samples after the match filter

and given by (2.5). Substituting for x 1 (n) and x 2 (n) in (5.1) and (5.2) , we get

5.2.2 Optimal Weights

The control algorithm simultaneously minimizes the output power
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are the samples

of the corresponding output after the discrimination. E{.} and • I denote the

expected and magnitude of these arguments respectively. For optimum weights

are searched simulta-

neously.

The search for the optimum weights can be performed by successive use of the

following recursive equations,

where /L 1 and ,a 2 are the constants which determine the stability of convergence.

The optimum weights that minimize the power P2 and the square magnitude of

the output correlation Q2 are obtained at the steady state from

solution

It has been shown in [13] (5.9) is true if

optimum solution is obtained from simultaneously solving

Therefore, the

From (5.3), we find the power P2 at the output of the first discriminator. We

use the fact that /1 (n), n i (n), /2 (n) and n2 (n) are all independent processes.
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Also, from (5.3) and (5.4), we get,

where Si j i,j=1,2 denotes the effect of the i th discriminator on the different

signals Ii (n) or /2 (n) powers.

From (5.12) using the derivative of real function with respect to complex variable

described in chanter 3. we get.

Equating (5.14) to zero and separating terms, we get for w12opt;
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where,

It is difficult to find from (5.13) an explicit function of w 21opt in terms of w 12opt

as it was done in the other cancelers.

Nevertheless, from (5.13), we write,

In appendix C, we show that the second term can be ignored in comparison to

the other term and so is w12optw21opt  in the fifth term of (5.17). Equating the sum

of the remaining terms to zero, we have

The effect of the discriminator are presented by 	 j = 1, 2 real valued

Note that, the terms in (5.13) are complex conjugates of the

terms in (5.14). Therefore, to find a unique solution for w 12 and w 21 using these

equations, discriminators which enforce the constant S i j = 1, 2 satisfying the

above condition is essential. The simultaneous solution of these non-linear equations

give two equilibrium points; and { One is a[w12opt1 w21opt1] 	 and [w12opt2, w21opt2].

stable equilibrium which provide a solution to our problem.
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5.2.3 Effect of Noise On Optimal Weights

In the absence of noise, that is when E{|n1(n)|2} 	 = E{|n2(n)|2} = 0 the stable

equilibrium points can easily found from equating (5.13) and (5.14) to zero;

In fact, it can easily be noticed that when the noise terms are zero, w21opt = -a21/a11

will make the terms in (5.12) equal to zero while substituting this value of w21opt

in (5.14) will result in w12opt as in (5.19). By similar approach followed for other

cancelers when noise is added, we will write

(5.20)
a11

where ε1 and ε2 are perturbations on the optimal weights due to added noise.

Perturbation On Optimal Weight

From (5.20),

where

Writing for from (5.20) in (5.15), we get,

and after simplification,
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Substituting (5.21) in (5.16), we have,

or,

Finally, we write for the denominator,

Defining;
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and we can write (5.27),

For high signal-to-noise ratio, we can approximate (5.31) (see appendix C) by

Next, defining,

Using (5.32), (5.33) (5.34) in (5.24), we get,

and substituting this in (5.21), we have

where

Using (2.6) in (5.34), we get
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and for the real and imaginary parts of B,

we have,

From (5.22) , we can write k in terms of its real and imaginary parts,

Substituting (5.42) and (5.46) into (5.40), we have,

and by using (2.6) and combining real and imaginary terms together, we get

Therefore, the real and imaginary part of Y are;
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with Δ1B, BR, B1, kR and kI given by, (5.29 ), (5 . 43 ), (5.44), (5.46) and (5.47),

respectively. Similarly, we write T from (5.38) in terms of its real and imaginary

parts,

where.

and

Finally, for U in (5.39)

with

Perturbation On Optimal Weight,

To find the perturbation 6 2 , of w21opt, we proceed as follows:

From (5.20)

Substituting from (5.57) and (5.21) for w21opt and w12opt respectively in (5.18),

we obtain after arranging terms,
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In section (2) of appendix C, we show that the first term in parenthesis of (5.58)

can be approximated by

We write (5.59) in compact form;

where

Using (2.6) in (5.62), we can write Y1 in terms of its real and imaginary parts,

R and Y11 , respectively.

Therefore,
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where using (2.6) and (5.22), we have for |k| 2 ,

Determination of Perturbations Final Expressions

From (5.37) and (5.60) , we write,

From (5.61) and (5.63), we notice that U1 and T1 are real. Solving (5.67) and

(5.68) give,

Let

then,
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From (5.69),

Defining

then,

and can write (5.75) in terms of its; real and imaginary parts.

where,

Similarly, for E 2 , from (5.70), we write

Defining,

then,
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(5.83)

(5.84)

and we can write (5.82) in terms of its real and imaginary parts;

where,

(5.86)

(5.87)

5.2.4 Canceler Optimal Outputs

Unlike other two schemes of bootstrapped cancelers, power-correlator scheme is

not symmetric, its outputs and hence, the decision parameters for each output are

different.

From (5.3) with the substitution of w21 = w21opt from (5.20), we obtain y 1 (n)

Similarly from (5.4);
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Decision Parameter for the Canceler Output-1 with Both Amplitude and

Phase Compensation

We will only study the performance of the canceler when both amplitude and phase

compensation is used on co-pol signal. Therefore, we will take (Ay, defined

later) as an estimate of the transmitted signal I 1 and we will neglect ε1  E2 with respect

to the other terms in the first, second and third terms of (5.88) equation.

Therefore, from (5.88),

where

and,

is taken as the decision parameter. Therefore, the probability of error is given

with c is half of the distance between two signals in the

corresponding signal space.

Finally, from (5.92) together with (5.90), we have
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where we also use the fact that

In order to be able to calculate the probability of error, we must find the real

and imaginary part of Z 1 (n). Before we do this, for the sake of simplicity, we will

define the following terms,

and hence,

and hence,
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and hence,

and hence;

and hence,
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Notice that in the derivation of these terms, we used from (2.6)

Using (5.95), (5.100), (5.104), (5.109) and (5.114) in (5.93), we get

(5.118)

with,

and where we used

notation. We also drop the dependence of terms on the sampling time n.

Also using (5.95) and (5.91) in (5.119), the real and imaginary part of the

denominator ZD1,

Clearly ZD1R and ZD1I are functions of the random variables 0 1 and 0 2 .

Now, the real and imaginary part of numerator of (5.118), ZN1 are given by

i 	 1,2 and in our
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Z N1R and ZN1I beside being function of the random variables 01 and 0 2 , they

are also function of the signals and noises random variables.

Finally, we can write (5.118) as

with

(5.125 )

(5 .126 )

Using (5.120), (5.121), (5.122) and (5.123) in (5.124), we can get after some sim-

plification which emphasizes the dependency of the different terms on the different

random variables, the real part of the decision variable:

Similar expression for the imaginary part Z.1I
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(5.128)

The Decision Parameters Final Expressions

Finally we write the real and imaginary parts of Z 1 (n) in terms of the random

variable representing the real and imaginary part of signal and noises of channel 1;

where
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Notice that Y , i = 1,2..6 depend only on the random variables 0 1 and 02.

5.2.5 Decision Parameter for Canceler Output-2 with Both
Amplitude and Phase Compensation

where as an estimate of the transmitted signal I2(n),

as the decision parameter.

From (5.138) and (5.89), we have

Define

and using K from (5.94), we get,

Substituting for the real and imaginary parts of the different terms in (5.139),

we have,

We will take

and
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The real and imaginary part of numerator of (5.144), Z N2 are given by

(5.145)

ZN2R and Z N21 beside being function of the random variables 0 1 and 02, they

are also function of the signals and noises random variables.

Finally, we can write (5.144) as

with

Substituting for ZN2R and Z N2I from (5.145), we get
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and,

The Decision Parameters Final Expressions

We write the real and imaginary parts of Z2 (n) in terms of the random variable

representing the real and imaginary part of signal and noises of channel 2;

with

(5.153)

(5.154)

(5.155)

(5.156)

(5.157)
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Notice that Y21, i = 1,2..6 depend only on the random variables 01 and 02.

5.3 The Performance Analysis

The Chernoff error performance bound as well as its approximate to of these error

using GQR moment method will be found in this section. Due to the fact that

the power-correlator canceler is not symmetric, we will perform these calculation

separately for each output.

5.3.1 Chernoff Bound

The procedure for finding the Chernoff bound is the same as in the previous chap-

ters, except for the decision parameter to be used.

Canceler Output-1

From (3.168), we write the bound for output-1;

where,
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(5.161)

with 1 i i 	 1, ..6 as they are defined in (5.131) to (5.136).

Canceler Output-2

Similarly, the Chernoff bound on the error at this output is given by (5.160) with

and Y2	 = 1, ..6 as they are defined in (5.153) to (5.158).

5.3.2 Method of Moments for Probability of Error Calcu-
lation

For using the moments method, we follow the same steps as in section 3.3.2. From

there, the probability of error is given by the Gauss quadrature rule equation (3.182);

where x i and w i are nodes and weights of the GQR obtained from the moment

of the random variable,

and
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for canceler output-1, while

and

for canceler output-2. Again Y1i i = 1, ..6 are given in (5.131) to (5.136) and

Y2 	 1, ..6 are given in (5.153) to (5.158).

5.4 Results

As in the case of other cancelers, we present in this section results of calculations

performed using the power-correlator canceler. This done by either finding the

Chernoff bound on the probability of error or by obtaining approximates to these

error using the moments method. Again, we use 16 and 64 QAM signals, with

variable SNR and different values of cross coupling.

Fig. 5.1, we depict the Chernoff bound for 16 QAM signal as a function of SNR

and with cross coupling -10 dB and -15 dB. These bounds are shown for the

case when both amplitude and phase compensation are employed. Equations (5.160)

with (5.161) are used to calculate this bound for canceler output-1 and (5.160) with

(5.162) are used to calculate the Chernoff bound for canceler output-2. Fig. 5.2 is

the same for 64 QAM. The same equations are used to obtain the Chernoff bounds.

In Fig. 5.3, we compare the bounds for 16 QAM to these for 64 QAM case. Since

the GQR results are shown to be very similar to these of the power-power canceler,

we will not plot these result again rather refer the reader to the results in section

in chapter 3.

In Fig. 5.4 and 5.5, we will compare the results obtained with the moments

method to their corresponding Chernoff bound for 16 QAM and 64 QAM , re-
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spectively. Finally, we list in tables 5.1 to 5.6 some of the results shown in the

aforementioned figures. Particularly, we draw the attention to moments results in

these tables and how they compare to the corresponding moments results shown in

the tables of section 3.4.

5.5 Conclusion

The power-correlator bootstrapped canceler was analysed and its performance was

studied in this chapter. As in the previous chapters, both the Chernoff bound on

the probability of errors as well as approximate values of these errors are calculated.

Amplitude and phase compensation was implemented. The case with amplitude can

be easily considered. Because of asymmetry of this canceler, we consider separately

the two different cancelers outputs. Nevertheless it turns out that the performances

of these outputs are very close to one another. This might be due to the fact that

with both amplitude and phase compensation, the errors in the steady state become

of the same order. Here, as in the other canceler, particularly when both amplitude

and phase compensation is used the Chernoff bound turns out sufficiently tight.
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Figure 5.1: Power-Correlator Cross-Pol Canceler, Chernoff bound 16 QAM
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Figure 5.2: Power-Correlator Cross-Pol Canceler, Chernoff bound, 64 QAM
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Figure 5.3: Power-Correlator Cross-Pol Canceler, Chernoff bound comparison 16
QAM v.s 64 QAM
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Figure 5.4: Power-Correlator Cross-Pol Canceler, Chernoff Bound and GQR calcu-
lation comparison, 16 QAM
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Figure 5.5: Power-Correlator Cross-Pol Canceler, Chernoff Bound and GQR calcu-
lation comparison, 64 QAM
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Power-Correlator Scheme, Output-1 For 16 QAM
r 1 = r 2 = -15 dB r1 = r 2 = -10 dB

SNR Moment 9 Chernoff Bound Moment 11 Chernoff Bound
14 5.345E-2 6.563E-1 7.895E-2 7.766E-2
15 2.579E-2 3.503E-2 4.120E-2 4.399E-2
16 1.068E-2 1.591E-2 1.897E-2 2.170E-2
17 3.604E-3 5.903E-3 7.507E-3 9.031E-3
18 9.402E-4 1.698E-3 2.277E-3 3.052E-3
19 1.774E-4 3.554E-4 5.316E-4 7.987E-4
20 2.194E-5 4.990E-5 8.866E-5 1.526E-4
21 1.651E-6 4.260E-6 1.005E-5 1.971E-5

Table 5.1: Power-Correlator Cross-Pol Canceler, 16 QAM, performance calculation
with Chernoff Bound and GQR method for output-1, with amplitude and phase
compensation for cross coupling -15 dB and -10 dB,
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Power-Correlator Scheme, Output-2 For 16 QAM
r1 = r2 = -15 dB r1 = r 2 = -10 dB

SNR Moment 9 Chernoff Bound  Moment 11 Chernoff Bound
14 5.356E-2 6.562E-1 7.619E-2 7.750E-2
15 2.573E-2 3.5036E-2 3.950E-2 4.390E-2
16 1.065E-2 1.591E-2 1.818E-2 2.165E-2
17 3.599E-3 5.902E-3 7.183E-3 9.010E-3
18 9.391E-4 1.698E-3 2.330E-3 3.045E-3
19 1.784E-4 3.554E-4 5.479E-4 7.967E-4
20 2.207E-5 4.993E-5 9.257E-5 1.522E-4
21 1.659E-6 4.262E-6 1.038E-5 1.966E-5

Table 5.2: Power-Correlator Cross-Pol Canceler, 16 QAM, performance calculation
with Chernoff Bound and GQR method for output-2, with amplitude and phase
compensation for cross coupling -15 dB and -10 dB,

Power-Correlator Scheme, Output-1 For 64 QAM
r 1 . r 2 = -15 dB r1 = r2 = -10 dB

SNR Moment 9 - Chernoff Bound Moment 11 Chernoff Bound
24 1.466E-3 2.727E-3  3.226E-3 4.736E-3
25 2.961E-4 6.186E-4 8.054E-4 1.323E-3
26 4.109E-5 9.615E-5 1.496E-4 2.737E-4
27 3.560E-6 9.312E-6 1.921E-5 3.907E-5
28 1.709E-7 4.993E-7 1.551E-6 3.505E-6
29 3.932E-9 1.279E-8 6.975E-8 1.753E-7
30 3.584E-11 1.378E-10 1.499E-9 4.197E-9

Table 5.3: Power-Correlator Cross-Pol Canceler, 64 QAM, performance calculation
with Chernoff Bound and GQR method for output-1, with amplitude and phase
compensation for cross coupling -15 dB and -10 dB,
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Power-Correlator Scheme, Output-2 For 64 QAM
r 1 = r 2 = -15 dB r1 = r 2 = -10 dB

SNR Moment 9 Chernoff Bound - Moment 11 Chernoff Bound
24 1.481E-3 2.727E-3 3.319E-3 4.734E-3
25 2.986E-4 6.186E-4 8.222E-4 1.322E-3
26 4.136E-5 9.615E-5 1.518E-4 2.736E-4
27 3.578E-6 9.312E-6 1.940E-5 3.904E-5
28 1.716E-7 4.992E-7 1.560E-6 3.503E-6
29 3.935E-9 1.279E-8 7.002E-8 1.752E-7
30 3.586E-11 1.376E-10 1.502E-9 4.194E-9

Table 5.4: Power-Correlator Cross-Pol Canceler, 64 QAM, performance calculation
with Chernoff Bound and GQR method for output-2, with amplitude and phase
compensation for cross coupling -15 dB and -10 dB,

Power-Correlator Scheme, Output-1 For 64 QAM
r1 = r2 = -5 dB

SNR Moment 11 Chernoff Bound
24 2.171E-2 2.588E-2
26 4.120E-3 5.785E-3
28 3.757E-4 6.330E-4
30 1.069E-5 2.201E-5

Table 5.5: Power-Correlator Cross-Pol Canceler, 64 QAM, performance calculation
with Chernoff Bound and GQR method for output-1, with amplitude and phase
compensation for cross coupling -5 dB

Power-Correlator Scheme, Output-2 For 64 QAM
r1 = r2= -5 dB

SNR Moment 11 Chernoff Bound
24 2.292E-2 2.574E-2
26 4.202E-3 5.753E-3
28 3.773E-4 6.293E-4
30 1.067E-5 2.188E-5

Table 5.6: Power-Correlator Cross-Pol Canceler, 64 QAM, performance calculation
with Chernoff Bound and GQR method for output-1, with amplitude and phase
compensation for cross coupling -5 dB
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Chapter 6

THE STABILITY OF
BOOTSTRAPPED
ALGORITHM

6.1 Introduction

In previous chapter, we found the equilibrium points for the weights of the boot-

strapped algorithm. The question which arise is that whether these points are stable

steady state points. We will answer this question for the three schemes of boot-

strapped algorithm, the power-power, correlator-correlator and power-correlator

schemes separately. We will restrict our discussion to the case of no noise. That

is the dual channel noises E{n 1 (n) 2 } and E{n 2 (n) 2 } are zero. Also, for the sake of

simplicity, we will consider the signal to be real. This is the case for example when

the transmitted data is an Mary signal.

From (2.5), the channel response in no noise case is,

where x1(n) and x 2 (n) are the sampled received signals at the first and second

channels respectively. Ii(n ) i 1,2 are the inputs of the channel, which are taken
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to be real, equally likely distributed from the set {±1c, +3c, (\/M 1)c}, c

is a constant which determines the distance to the decision boundary from each

signal location. Also, from (2.6) when the channel co-pol and cross-pol responses

are taken to be real, we have

where r 1 , r 2 denote the magnitude of the normalized cross-pol interference (XPI)

constants.

6.2 Equilibrium Points

6.2.1 Power-Power Scheme

With the arrangement of power-power cross-pol canceler ()CPC) of Fig. 2.11, the

canceler outputs, y1 (n) and y2 (n) are given by (see 3.2.1),

Substituting for x 1 (n) and x 2 (n) from (6.1), we get
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The control algorithm simultaneously minimizes the output powers P and Q.

In fact it simultaneously searches for

where E{.} the expected and y1d , y2d are the outputs of

the discriminators where, δi,j i,j = 1, 2 are enforced. This can be performed by

successive use of the following recursive equations, provided that

where μi and μ 2 are the constants which determine the stability of convergence.

Due to the assumption that the channel responses and the signals are real w 12 and

w 21 are also real. Clearly the equilibrium points must simultaneously satisfy the

following equations

Using (6.5) and (6.6), we get the power at the output of the discriminator;

(6.11)

(6.12)

When w 12 and w 21 are taken to be the steady state value of these weights from

(6.7) and (6.8) respectively. Hence these points must satisfy (6.9) and (6.10). Taking
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the derivative of (6.11) and (6.12) with respect to w 12 and w 21 and multiplying with

the convergence constants respectively we get;

where 82j i , j = 1, 2 denotes the effect of the discrimination on the different

signals /1 (n) or 12 (n). Note that without the inclusion of the discriminator the

two equations in (6.13) and (6.14) are dependent. If the discriminator are chosen

such that S11 (521 612 then (6.13) and (6.14) are independent. These solutions

determine the equilibrium points for (6.7) and (6.8). Simple inspection of (6.13)

and (6.14) shows that there are two such equilibrium points.

6.2.2 Correlator-Correlator Scheme

From Fig. 2.12, the outputs of the canceler can be written as,
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powers

searches for

Substituting (6.1) in (6.17), we get

(6.18)

Again the control algorithm simultaneously minimizes the output correlation

It simultaneously

where

BO the expected value of {.} . This can be performed by successive use of the

following recursive equations.

are the correlation between the output of

channel 1 and the output of channel 2 after discrimination and vise versa, respec-

tively. That is;
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Notice again that for equations (6.21) and (6.22) to be independent, discrimi-

nation constants S i.; are inserted.

The optimum weights can be obtained from

But from (6.21) and (6.22),

(6.25)

(6.26)

Therefore, equations (6.23) and (6.24) are simultaneously zero if and only if

A1(w12, w12, w21) and B1(w12, w21) 	 are equal to zero [13]. Therefore, the optimum weights

w12opt. and 	 are found by equating (6.25) and (6.26) to zero, respectively. Itand 	 w2optopt,

can be easily found that the optimum weights are the same with the ones found

from power-power scheme (6.15) and (6.16).

6.2.3 Power-Correlator Scheme

From Fig. 2.13 , the canceler outputs, when the noise power is zero are given by
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Substituting (6.1) in (6.27), we get

In this case, the control algorithm simultaneously minimizes the output power

P2 = E{Y1d(n)2} and the correlation power

It simultaneously searches for

0, where E{.} is the expected value of (.), and y 1d , y2d are the discriminator outputs.

This can be performed by successive use of the following recursive equations.

(6.31)

where 	 and p,2 are the constants which determine the stability of convergence.

From (6.28) and (6.29), we write the power at the output of the channel 1

discriminator

and the correlation between the output of the channel 1 and that of the channel

2 after discrimination;
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Taking the derivative of (6.34) with respect to w 12 and and multiplying by the

convergence constant !a l , we get;

From (6.33) and the definition of B 2 (w B2(w12, w21), we have

Also taking the derivative of (6.35) with respect to w 21 , we get;

w12opt is obtained by equating (6.36) to zero. Since equation (6.37) becomes

zero if and only if (6.35) becomes zero, therefore w21opt is obtained by equating

B2 (w 12 ,w 21 ) to zero [13].

Notice that as in the other cases if all discrimination constants δij i,j = 1,2 are

taken to equal to each other, then (6.35) and (6.36) become dependent equations.
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For a unique solution to the optimum weights, these two equations must be made

independent from each other. This is the reason for the discriminators and the

resulting constants. Two equilibrium points can be found from simultaneously

equating (6.35) and (6.36) to zero;

and;

6.3 Stability Parameters

Equations (6.7) (6.8), (6.19) ,(6.20) and (6.30), (6.31) are all nonlinear in w 12 and

w 21 . Therefore to classify the equilibrium points of these equations , we will consider

a small deviation from the equilibrium points, i.e, by varying w 12 and w 21 to w12opt+

Awn and w21opt + Δw21, respectively with Awn and Δw21  very small. For 0w12

and 0w 21 and any twice differentiable function X(w12, w21) can be approximated,

by
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where

In matrix notation

where

The stability of equilibrium points depend on the eigenvalues of matrix A. Con-

sidering the characteristics equation of the matrix A from |λI— A|= 0, we can find

the eigenvalues of A by solving

where
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The nature of the eigenvalues of A in the complex plane, or equivalently the

relation between b and c defined in (6.48) and (6.49) determines the classification

of the equilibrium point. Next, we intend to find the different entries of A for the

different bootstrapped schemes.

6.3.1 Stability Parameters of Power-Power Scheme

Here, X1(w12,w21) and X2(w12,w21) are given by μ1P(w12,w21) and μ2Q(w12,w21),

respectively from (6.13) and (6.14). First notice that for any rational function in x,

Using this relation in (6.13) and (6.14), we get

164



Substituting for wopt  from (6.15) and (6.16) in (6.51), we obtain respectively

and substituting from (6.15) and (6.16) in (6.52), we obtain respectively

Similarly by applying (6.50) to (6.13) and (6.14) with respect to w 21 and w12

respectively;
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Also, substituting (6.15) and (6.16) in (6.57) , we obtain respectively

and using (6.15) and (6.16) in (6.58), we obtain respectively

Using (6.53) and (6.55) in (6.48), we can calculate bopt1 and by using these

equations together with (6.59) and (6.61) in (6.49) we can calculate c ool.

then for the first equilibrium point

For the second equilibrium point, by using (6.54) and (6.56) in (6.48), we calcu-

late bopt2 and by using these equations together with (6.60) and (6.62) in (6.49),

we calculate copt2;
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6.3.2 Stability Parameters of Correlator-Correlator Scheme

For this scheme.

from (6.21)

and (6.22), respectively.

From (6.23),

In section 6.2.2, we concluded that for the optimum weight, we must have

= 0. Therefore, (6.67) results in

Similar argument lead from (6.23) to

Similarly using (6.24), we get

Notice that,

are given by
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Also using (6.21) and (6.22), we can write,

Substituting (6.15), (6.16) in (6.68), we get respectively, for the two equilibrium

points,

(6.75)

(6.76)

(6.77)

(6.78)

Finally, from (6.69), we obtain respectively, for the two equilibrium points,
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Finally using (6.74) and (6.76) in (6.48), we calculate b1opt1 and using these

equations together with (6.78) and (6.80) in (6.49), we can calculate

then for the first equilibrium point,

Similarly, for the second equilibrium (6.16) , using (6.75), (6.77) in (6.48) and

together with (6.79), (6.81) in (6.49), we can calculate b1opt2 and c1opt2, respec-

tively.
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6.3.3 Stability Parameters of Power-Correlator Scheme

For this scheme,

from (6.35), respectively.

From (6.36);

and from (6.35)

But in section 6.2.3, we concluded that at the optimum weights, we must have

Therefore, (6.89) becomes

Substituting (6.39) and (6.40) in (6.88), we get, for the two equilibrium points,
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From (6.35) together with (6.39) with (6.40) in (6.91), we have for the two

equilibrium points,

Also taking the derivative of (6.36) with respect to w 21 , we get

From the definition of Q2(w12,w21), we have,

But at equilibrium point B 2 (w 12 , w 21 ) is equal to zero and we get,

where, from (6.35)
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Substituting (6.39), (6.40) in (6.96), we get respectively,

Also, using (6.39) and (6.40) with (6.38) and (6.97) in (6.98) , we get respectively,

Finally using (6.92), (6.94) in (6.46) , together with the definition of X 1 and X2

for this scheme, we calculate b2opt1 and then by using these equations together

with (6.100) and (6.102) in (6.47), we calculate

For the second equilibrium point in (6.40) we calculate b2opt2 by using (6.93)

and (6.95) in (6.46) and by using these equations together with (6.101) and (6.103)

in (6.47), we calculate c2opt1.
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6.4 Stability Conditions

From the characteristics equation in (6.45), the two eigenvalues A i and A 2 are related

to b and c as they are defined at the two equilibrium points;

The stability condition can be summarized as follows,

• If c < 0, the eigenvalues of (6.45), A i and A2 are both real and )i'2 < 0. Since

one of the eigenvalue is positive , then the equilibrium is unstable.

• If c > 0 ,the two eigenvalues are either both real or complex-conjugate pair, and

Al A2 > 0. Both eigenvalues (if they are real) or their real part (if they are complex)

are negative if b < 0, positive if b > 0. Therefore, the system is stable if c > 0 and

b < 0 and unstable if c > 0 and b > 0.

• If c = 0, then one of the eigenvalue is zero an the other one is equal to b and the

system is unstable [20].

6.4.1 Stability Conditions for Power-Power Scheme

The equilibrium points for this scheme are given by (6.15) and (6.16). First, for c at

the first equilibrium point to be positive , we must have from (6.64); S 	 ,S δ21δ12 >	22

and for b to be negative, we must have from (6.63) < 0. These two conditions

will result in convergence of the algorithm at point (6.15). However, from (6.65)

and (6.66) these conditions will result in divergence at the second equilibrium point

in (6.16) (saddle point).
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6.4.2 Stability Conditions for Correlator-Correlator Scheme

The equilibrium for this scheme is the same as the previous scheme and given by

(6.15) and (6.16). Again at the first equilibrium point it is convergent if 821612 >

811 822 and I'll or p, are negative. This results from the signs of c 1 and b 1 given in

(6.82) and (6.83), respectively. The same condition leads to divergence as a result

of the signs of c 1 and b 1 given in (6.84) and (6.85).

6.4.3 Stability Conditions for Power-Correlator Scheme

The equilibrium point for this scheme are given by (6.39) and (6.40). For c2 at the

first equilibrium point in (6.39) to be positive, we must have from (6.104);

and for b2 < 0 to be negative, we must have 	 p,2 or a must be less than zero.

Furthermore, for the second equilibrium point from (6.105), the same conditions

lead to convergence.
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Chapter 7

DYNAMIC ANALYSIS OF
BXPC FOR Mary SIGNALS
USING PERTURBATION
SEQUENCES

7.1 Introduction

In previous chapters, we studied the steady state behaviour of the different con-

figurations of the bootstrapped schemes. In each scheme, the computation of the

optimal weights require the knowledge of the channel model of (2.4) as well as the

signal and the noise powers.

Alternative procedures to find these optimal weights are to use the recursive

relations given in (3.9) for power-power, in (4.8) for correlator-correlator and in

(5.7) for power-correlator schemes of bootstrapped algorithm. All these recursive

procedures require knowledge of the gradient of the output powers or the gradient

of correlation between the outputs.

In this chapter, we will study the dynamic analysis of the power-power scheme.

We will present a technique for finding the optimal weights with a recursive weight

updating procedure using estimates of the gradients. With this technique, the esti-

mate of the gradients are obtained by applying orthogonal perturbation sequences

to the weights simultaneously, and measuring the corresponding changes at the
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output powers P and Q of the power-power scheme.

7.2 Dynamic Power-Power Scheme

For the convenient of the reader, we will repeat in this section some equations from

chapter 3 rather than referring to them. The received signals sampled after matched

filters, were denoted in chapter 3 by;

where x 1 (n) and x 2 (n) are the sampled received signals at the first and second

channels respectively. Ii(n) and n i (n) are the corresponding signals and noises at

these outputs such that Ii i = 1, 2 are M-ary signals from set

and aij i,j = 1, 2 are real channel couplings.

Also n 1 (n) and n 2 (n) are independent samples of zero mean Gaussian with

7.2.1 Output of the Canceler

From Fig. 7.1, the outputs y 1 (n) and y2 (n) are as follows
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from (7.1) we get the outputs after the dis-

crimination at the n th instant of time, respectively,

Substituting for

Also, from Fig. 7.1 ,we can write the weights w 12 (n) and w21(n ) as a sum of a

nominal value w 12 (i) and w 21 (i) plus perturbation sequences pi (n) and p2 (n) whose

magnitudes are A. That is

7.2.2 Approximate Canceler Outputs

In chapter 3, we found that, in the no noise environment the optimal weights are;

Given that the cross-couplings

The assumption in (7.10) will be used to simplify the analysis of dynamic study.

With this approximation, we can write (7.6) and (7.7) as
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7.2.3 Mean Output Powers

In the steady state, using (7.11) and (7.12) respectively, we can write the mean

output powers with weights fixed at w 12 and w 21 ; P(w12,w21) = E{y21d(n)} and

respectively,

and output power Q at the second channel,

where E{(.)} denotes the expected value of (.).

7.2.4 Optimum Weights

The optimal weight vector; w opt [w12opt, wnopt]T which minimizes the mean

output powers P and Q are found by taking the derivative of P and Q with respect

to w 12 and w 21 and equating the result to zero, respectively.
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From (7.13) and (7.14), we get respectively,

and,
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7.3 Gradient Descent

An alternative way to get to the optimum weights is to use gradient descent method.

With this technique, the weight vector at time i+1 is computed by using the gradi-

ents (7.15) and (7.16) according to the following recursive relation,

7.3.1 Gradient Estimation Using Perturbation Sequences

The use of random search and weight perturbation techniques for gradient estima-

tion in adaptive systems have been reported by many authors [21], [22]. In this

section , we will follow Cantoni's gradient estimation definition [22], in which the

estimate gradient is obtained by perturbing the weights (different sequence for each

weight) simultaneously with different perturbation sequences and correlating the

outputs with the same sequences.

That is with this procedure, one can find the gradients of P and Q with respect

to w 12 and w 21 , respectively by perturbing the weights with mutually orthogonal

zero mean sequences and then correlating the corresponding instantaneous output

powers with the corresponding sequences.

Therefore, we can obtain estimates of the gradients of the output from;

are the instantaneous output powers P and Q, respec-

tively. g 1 (i) and g 2 (i) are taken to be the estimates of the true gradients given in

(7.15) and (7.16), respectively.
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7.3.2 Properties of the Orthogonal Perturbation Sequences

The desired sequence to be used in the estimation of the gradient will be mutually

orthogonal and zero mean over N cycle. For normalization, we divide by the cycle

period N to obtain unit average power. Such sequence will satisfy the following,

and for higher moments

where p i is a periodic perturbation sequence with period N and perturbation

size A. A is a positive real constant and Λ << 1. The sequence can be selected

to yield an unbiased gradient estimate (for example, the rows of Hadamard matrix

[22])

7.3.3 Weight Updating Using the Gradient Estimates

The weight vector is updated at time i by using the estimated gradients g1 (i) and

g2 (i) in the following recursive relation,
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where, clip(.) is a clipping function such that

and p, is the constant which determines the stability of convergence. The clipping

operation ensures that each weight is bounded by a constant a to be less than one

for the desired equilibrium point.

7.3.4 	 Gradient Estimates,

From (7.19), we write the expected value of gradient estimates conditioned on the

weights,

Substituting (7.11) in (7.28), and taking the expectation of both sides condi-

tioned on the weight vector w(i), we get

and
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where w 12 (m) and w 21 (m) are the perturbed weights and related to the nominal

values w 12 (i) and w 21 (i) by equation (7.8) and (7.9). Using these relation and the

orthogonal properties of the perturbation sequence stated in (7.20) to (7.22), we

find in appendix D,

Similar evaluation as well as exploiting symmetry properties between y1d(m)

and y2d (m), we get for the expected value of gradient estimator g 2 (i) conditioned

on w(i);
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7.4 Convergence in the Mean

In this section, we will investigate the convergence of the recursive relation in (7.23)

(7.24) to the optimum weights in the mean. We will also find an upper bound

for the step size to satisfy the mean weight convergence for the stability of the

recursive weight updating algorithm.

7.4.1 The Error's Mean

Convergence in the mean of weight vector;

means

We begin our analysis by defining a weight error vector at time i as

with
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We know that at the optimum weights, the gradients of the mean output powers

P and Q are equal to zero, i.e

Subtracting the optimum weights w 12opt and w21opt from both sides of (7.23)

and (7.24), respectively. and the gradients in (7.15) and (7.16) from the estimate

of the gradients g1 (i) and g2 (i) in these equation respectively, we can write,

By using the definition in (7.34) and (7.35) in (7.38) and (7.39), respectively, we

write,
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In order to investigate the convergence in the mean, we take the expectation of

(7.40) and (7.41) conditioned on the weight vector, w(i). We get,

7.4.2 Approximate Terms for the True and Estimate Gra-
dients

In the case when the cross coupling constants

<< 1 , and we can approximate the true gradients from (7.15) and (7.16),

by;
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Similarly, under the assumption that

k = 1,2, then, the estimated gradients can be approximated from (7.29),

(7.30) to get

and

Subtracting the true gradients in (7.44) and (7.45) from the estimate gradients

in (7.46) and (7.47) , we get respectively,

and also
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Using (7.48) , (7.49) in (7.42) and (7.43) respectively, we have

where;

In matrix notation, we can write

where I and A are the identity and the weight error matrices, respectively.

Taking the expected value of (7.56) over the weights, w(i) we can write ,
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Therefore, we can establish an upper

bound for the convergence constant

where Amax is the maximum eigenvalue of the weight error matrix A.

7.5 Results

Using computer, we simulated nondispersive fading channel and employed power-

power canceler to eliminate the effect of cross-pol interference. Perturbation se-

quences used in the computer simulation are chosen from the rows of Hadamard

matrix (i.e p i = [1, —1, 1, —1, ..] and p 2 = [1, 1, —1, —1,1,1, ..]).

The block diagram of power-power canceler using perturbation sequences in the

control algorithm is given in Fig. 7.1. We applied two independent uniformly

distributed bipolar data to the nondispersive channel. Then, corrupted data is

applied to the canceler. In Fig. 7.2, the interference power residue versus data

sample is given for -14 dB cross-pol interference with perturbation length N=8

and different perturbation magnitudes A. Same experiment is done for different

perturbation sequence sizes and depicted in Fig. 7.3. The results depicted in these

figures aforementioned are the average of four random experiments.

7.6 Conclusion

In this chapter, we studied the dynamic analysis of power-power canceler by using

orthogonal perturbation sequences in the control algorithm. The results of the com-

puter analysis shows that as the perturbation magnitude is reduced, the interference

power residue decreases. Also, as the perturbation sequence length is increased a

smooth estimate of the gradient is obtained, but the convergence time takes longer,

as expected.
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We conclude perturbation sequences can be used effectively in cross-pol inter-

ference cancelation.

190



Figure 7.1: Power-Power Cross-Pol Interference Canceler controlled by orthogonal
perturbation sequences
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Figure 7.2: Effect of Different Perturbation magnitudes on convergence
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Figure 7.3: Comparison of Different Perturbation Lengths on convergence
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Chapter 8

PERFORMANCE
COMPARISON and
CONCLUSIONS

We conclude our study by comparing the performance of the different boot-

strapped cancelers, and then comparing the performances of these cancelers with

those of the diagonalizer and LMS cancelers. The performance measure will be the

symbol error probability.

It is important to emphasize that the error probability, although an important

factor, is certainly not the only advantage of the bootstrapped canceler. We mention

the following other points in favor of these cancelers:

1. Under the same system condition, the bootstrapped canceler steady state in-

terference residue is smaller.

2. It is found under many practical conditions to be a faster algorithm.

3. To implement the bootstrapped algorithm one needs less complex hardware

than for the diagonalizer, which needs a zero forcing algorithm, and for the

LMS canceler, which needs decision feedback information. In fact, it is clear

that adding a decision feedback to the bootstrap schemes will result in faster
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convergence and still better performance than that which we obtained in the

current analysis.

4. The fact that the bootstrapped cancelers do not need decision feedback makes

them ideal for acquisition and, hence, suitable for channels with fast and deep

fading which causes occasional system outage.

Before comparing the performances of the different bootstrapped schemes analysed

in previous chapters, we observe the following: It was found that the three cancelers

behave quite similarly when we implement both amplitude and phase compensation.

This is not true when only amplitude compensation is applied to the outputs of the

cancelers. Using amplitude compensation only is practical since it can be performed

via simple AGC on the stronger, co-pol signal. Therefore, our comparisons are made

for only this compensation.

In Fig. 8.1, for 16 QAM, we depict the Chernoff bound for the power-power

canceler in comparison to that of the correlator-correlator canceler. Comparisons are

made for r = —15 dB and r = —10 dB (we take r 1 r2 r). From this figure, it

is clear that the power-power canceler outperforms the correlator-correlator canceler,

particularly, for higher cross coupling (r = —10 dB).

Fig 8.2 shows the same results when using the moment method. This figure

does not depict the big difference we noticed with the Chernoff bound approach.

Clearly, this indicates that the Chernoff bound approach is not tight for the case of

the correlator-correlator canceler. Similar behavior is noticed in comparing Fig. 8.3,

which depicts the Chernoff bound for 64 QAM, with Fig. 8.4, where the moment (or

GQR) method is used for 64 QAM.

In Fig 8.5, we compare the performance of the power-power canceler to that of

the LMS canceler, for 16 QAM and r —10 dB. Fig 8.6 depicts the same comparison

with r = —15 dB. To emphasize the need for cancelers in dual polarized systems, we

add, to these two curves, the error performance without cancelers.
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Figs. 8.7 and 8.8 are the same as Figs. 8.5 and 8.6, except for the use of 64 QAM

instead of 16 QAM. In the last four figures, the moment method was used. For each

curve, the number of the moments are marked in parentheses.

The three cancelers, power-power canceler, LMS canceler and the diagonalizer,

are compared in Figs. 8.9 and 8.10. A 16 QAM signal is assumed in these figures,

with r —10 dB and r —15 dB, respectively. Although GQR calculation has been

done for amplitude and phase compensated diagonalizer (see chapter 2), the GQR

calculation has not been done for amplitude compensated diagonalizer. Therefore,

the comparisons are based on the Chernoff bound.

Finally, we would like to remark on some suggested future work:

1. The bootstrapped canceler can be extended to multi-input, multi-output sys-

tems. As such, it has a potential for implementation as an algorithm for neural

network control.

2. The issue of adding decision feedback and assessing its effect upon performance

still needs to be examined.

3. More results need to be obtained for different compensation approaches so as

to facilitate complexity versus performance comparisons.

4. The issue of dynamic performance with different perturbation sequences needs

to be studied further.

5. It is well known that LMS cancelers depend heavily upon the relative power of

the received signals and their SNR's, as reflected in the eigenvalues of the cor-
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relation matrix of the inputs. An interesting question is whether this behavior

is better or worse in the case of bootstrapped algorithms.
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Figure 8.1: Performance Comparison of Power-Power with Correlator-Correlator
cancelers, Chernoff bound, 16 QAM, with amplitude compensation, -15 dB, -10 dB
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Figure 8.2: Performance Comparison of Power-Power with Correlator-Correlator
cancelers, GQR calculation, 16 QAM, with amplitude compensation, -15 dB, -10
dB
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Figure 8.3: Performance Comparison of Power-Power with Correlator-Correlator
cancelers, Chernoff bound, 64 QAM, with amplitude compensation, -15 dB, -10 dB
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Figure 8.4: Performance Comparison of Power-Power with Correlator-Correlator
cancelers, GQR calculation, 64 QAM, with amplitude compensation, -15 dB, -10
dB
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Figure 8.5: Performance Comparison of Power-Power with LMS cancelers, GQR
calculation, 16 QAM, with amplitude compensation, -10 dB
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Figure 8.6: Performance Comparison of Power-Power with LMS cancelers, GQR
calculation, 16 QAM, with amplitude compensation, -15 dB
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Figure 8.7: Performance Comparison of Power-Power with LMS cancelers, GQR
calculation, 64 QAM, with amplitude compensation, -10 dB
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Figure 8.8: Performance Comparison of Power-Power with LMS cancelers, GQR
calculation, 64 QAM, with amplitude compensation, 45 dB

205



Figure 8.9: Performance Comparison of LMS, Diagonalizer and Power-Power can-
celers, Chernoff bound, 16 QAM, with amplitude compensation, -10 dB

206



Figure 8.10: Performance Comparison of LMS, Diagonalizer and Power-Power can-
celers, Chernoff bound, 16 QAM, with amplitude compensation, -15 dB
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Appendix A

Derivation of Some Equations

•Derivation of (3.150)

For a discrete random variable I which takes the values

1)c} with equal probability p(I) =

By using summation of geometric series, we get

Changing the variable of summation in (A.1), it is possible to show that,

we can write,

Saltzberg [23] proved that the sum in (A.3) can be upper bounded as follows
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(AA)

•Derivation of (3.154)

For any normal random variable n N(0, ten) and for any given constant a

(A.5)

where En {.} denotes the expected value taken over the random variable, n.

Completing the quadratic term, we get

(A.6)

The integral equal to unity and

(A.7)
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Appendix B

Computing the Distribution of
Random Variables/Gauss
Quadrature Rules

In this appendix, we discuss numerical method to calculate integral of the form

and apply it for (3.181) in which fx (x) is the probability density function of the

random variable x and g(x) is continuous function of x, as in (3.179) for example.

B.1 Taylor Series Expansion

By knowing the moments of the random variable x, it is possible to find a numerical

approximations to (E{g(x)}), where g(.) is a known deterministic function and x

defined on the interval [a,b].

In fact, for a function g(.) analytic at x o , one can use Taylor series expansion to

present the random variable Y = g(x);
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By taking termwise expectation of (B.1), we get

where E{(x— x o )n} are the n th moment centered on xo . Approximation of E{g(x)}

in (B.2) based on its N finite moments can be written as

That is E{g(x)} can be evaluated on the basis of knowledge of its central mo-

ments provided that the series in (B.3) converges . It may seem that the error in

approximating E{g(x)} can be made small by taking N sufficiently large. Neverthe-

less, the higher moments are difficult to compute with sufficient accuracy. Hence,

using higher N in (B.3), not necessarily improve approximation accuracy [19].

This motivates the use of another technique, known as Gauss quadrature rules,

to compute approximation to the expectation of g(x).

B.2 Gauss Quadrature Rules

With this method we write, provided g(x) has continuous derivatives up to 2N [24];

where

RN (r) is a remainder which is equal to zero if g(x) is a polynomial of degree

< 2N — 1, in which case the Gauss quadrature rule (GQR) is exact. Otherwise
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is only an approximation. The real values {x i } called the nodes of the GQR are

the distinct real roots of the unique N th degree polynomial

The polynomials Pn (x) are orthonormal with respect to fx (x). That is;

The values {w i }, called the weight of the GQR, are strictly positive and are

given by,

The 2N-tuple are known as the N-point rule corresponding to

Generating the point rule

Several algorithms have been proposed to generate the N-point rule for a given

p.d.f. The most useful ones are the modified moment algorithm of Gautchi [25] and

the unmodified moment algorithm of Golub and Welsch [26]. Both algorithm rely

on Cholesky decomposition of positive definite matrix of moments. Limitation in

machine accuracy causes this matrix to become non-positive definite due to roundoff

errors. Meyer [24] suggested an alternative method for performing the Cholesky

decomposition that avoids taking square root at each step in the algorithm and

hence, reduce the effect of roundoff.

For any set of orthonormal polynomial

recurrence relationship.

we have the three terms
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so that then,

It is simple to show that in matrix notation, (B.11) can be written as,

where

and

From (B.12), we note that 0 if and only if

That is the nodes of GQR are the eigenvalues of the tridiagonal matrix T,

corresponding to the vector P(xi). Will [27] also show that instead of (B.10), it is

possible to obtain the GQR weights from the identity

where are the eigenvector associate with the eigenvalue If we normalize

this eigenvector,

Comparing with (B.15), we conclude that
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or by using (B.16)

Therefore, if we choose Po (x) = 1 then the GQR weights

from the square of firts elements of the normalized eigenvectors that correspond to

x i .

B.3 Determining the Three Term Relationship
from the Moments

We show in the previous section that the GQR's 2N-tuple

from the eigenvalues and the corresponding eigenvectors of the matrix T. T is a

tridiagonal matrix whose elements depend on the coefficients { a i , bi , ci } of the three

terms relationship. T which have been tabulated for a number of functions fx(x).

In this section, we describe a method of generating these coefficients, and hence

the matrix T, using Gautchi's modified moments technique [25], or using the special

case of this technique suggested by Golub and Welsch [26] that uses the unmodified

moments E{xn}. This special case technique of Golub and Welsch which uses the

nonorthogonal polynomial Pn(x) xn is termed the GQR based on the moments

method.

Let the modified moments matrix M be defined by

where

can be found
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Method to Evaluate the nodes x i and the weights

The procedure can be summarized as follows:

•compute 2N moments - of random variable

where fx (x) is the probability density function of x.

positive definite matrix M where the entries of this

matrix are the moments of random variable x. where,

therefore,

• Compute, M = RTR the Cholesky decomposition of M where R is a upper

triangular matrix and which is positive definite if M is positive definite. Particularly

the diagonal terms of R is positive and are the square root of a diagonal matrix D.

where ft is an upper triangular with units along the diagonal. In case M is ill

conditioned, finite arithmetic may cause the matrix to appear singular.

A modified version of Cholesky decomposition can overcome this ill-conditioned

by only requiring square roots to be computed at the end of the decomposition and

not at each step [24].
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With this approach, we find the elements r ij of R by the following recursive

equations:

where d i and mij are the elements of the diagonal matrix D and the moment matrix

M, respectively.

Notice that as R	 diag (rii ) the square roots are not required until the final

step which is the advantage of this modified decomposition.

• J, symmetric NxN tridiagonal matrix with the entries

then formed,

whose entries are given by the following relation

(B.25)

• The final step is to obtain the nodes and the weights from the eigenvalues

and eigenvectors of J matrix. The nodes x i are the eigenvalues and the weights

wi are the square of the first components of the corresponding eigenvector of this

tridiagonal matrix.

The eigenvector e i corresponding to the eigenvalue x i is found from the equation
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The eigenvalues of the J matrix are the nodes 	 and the positive weights

are the square of the first elements of the corresponding eigenvectors e i . That is,

where
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Appendix C

Approximation of some Equations

•Approximations in (5.18)

1. We intend to show that

small in comparison to other terms. Particularly, comparing this term with the

fourth term of (5.17), we notice that by using (5.20), we have,

also by using (5.20),

But, for any complex number x;

then,

(C.2)
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Finally,

For sufficiently small r 1 and r 2 and small e 2 the lower bound of (C.2) is much

larger than |a11E2|2 of (C.1). Hence for 1/ 1 (n)1 2 and 1/2 (n)1 2 of the same order, we

have,

which complete our claim.

2. We also claim that the term w21optw12opt  in the fifth term of (5.17) can

be ignored. In

comparison to one, if we assume that the cross coupling r 1 and/or r 2 are of the

order of at least -.5 dB. For the imaginary part, we use in our comparison the

imaginary part of the sixth term of this equation;

provided, we use the same assumption on r1 and r 2 , so that I|w21opt|2 will be

much smaller than unity, and that the noise powers are of the same order.

• Approximation in (5.32)

From (5.31) and (5.30), we write,
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(C.6)

and using (5.46) and (5.45), we get,

and substituting (C.8) and (C.9) in (C.7), we have,

Therefore,
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Next, we write (5.28) by substituting for | a12/a22|2

and by substituting 1k1 2 from (5.47) and for

It is easy to upper bound (C.12) by,

and lower bound (C.16) by,

Combining (C.13) with (C.15), we have,

are of the same order and for

r1 r2 small so that (1 — r1r2 ) ti 1, then due to the fact that (El is small, the upper

bound in (C.17) is much smaller than the lower bound of (C.16). Therefore,

It is easy to see that if
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Appendix D

• Evaluating (7.29)

Let

(D.1)

k 	 1, ..4 are the different four terms in (7.29). For the sake of

simplicity, we evaluate (7.29) term by term,

That is;

-where

(D.2)
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where we also used the fact that the random sequences Il (i) and nl(i) 1 1, 2

are stationary.

Using (7.8), (7.9) in (D.2), we can get;

where,

As a function of the perturbation p1(m) and p2 (m), we write (D.7) and (D.8) as
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where,

(D.11)

(D.12)

(D.13)

(D.14)

(D.15)

(D .16)

(D.17)

(D.18)

(D.19)

(D.20)

(D.21)

Therefore, from (D.6), and by using the orthogonal properties of the perturba-

tion sequences p 1 (m) and p 2 (m), we get

For A << 1 the second and the third terms in the paranthesis is small in

comparison to the first and we have,

with A, B, D and E defined in (D.11) , (D.12) , (D.14) and (D.15) respectively.

Therefore;

225



Similarly, using (7.8) and (7.9) in (D.3), we get,

where,

as in (3/10) ,

As a function of the perturbation p1(m), we write (D.26) as

(D.27)

where,

(D.28)

(D.29)

(D.30)

Therefore, from (D.25) and by using the orthogonal properties of p 1 (m) and

p2 (m), we get,
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For A << 1, the second and the third terns in the paranthesis is small in com-

parison to the first and we have,

with A1 , B1 , D and E defined in (D.28), (D.29), (D.14), (D.15), respectively.

Therefore.

Again, using (7.8) and (7.9) in (D.4) , we get,

with X12 (m) as in (D.10) ,

Applying the orthogonal properties of the perturbation, we get

For A small the second term can be neglected and using (D.15) and (D.20) in

(D.35), we get;
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Finally, using (7.8) and (7.9) in (D.5), we get,

where;

and X12 (m) as in (D.10)

Again applying the orthogonal properties of the perturbation, we get

With the same approximation in (D.33), we can write

With D and E defined by (D.14) and (D.15), respectively. Therefore,
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Combining the four terms from (D.24), (D.32), (D.36) and (D.41) in (D.1), we

write,

Similar lengthy manipulation can be applied to obtain the estimate of the gra-

dient of Q with respect to w 21 . However, due to the symmetry, we can obtain

Q(w12 ton ) from P(w12 , W21) by taking 12(i), n2 (i) , a22, a21 , w 21 respectively in-

stead of /1 (i), n 1 (i), a11 , a12 , w 12 and vise versa. Also, replacing 8 11 and 812 by S22,
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Applying these changes and replacements to (D.42) we get,
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