

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

Error Detection and Correction
in Compressed Data

by

Nadir Sezgin

Thesis submitted to the Faculty of the Graduate School
of the New Jersey Institute of Technology in partial

fulfillment of the requirements for the degree of
Master of Science in Electrical and Computer Engineering

1991

APPROVAL SHEET

Title of Thesis: Error Detection and Correction in Compressed Data

Name of Candidate: Nadir Sezgin
Master of Science in Electrical and Computer Eng.,
1991

Thesis and Abstract Ap 	 el:— ____.,_ 	 --
Dr.r. Y. Bar-Ness	 Date

Distinguished Professor
Department of Electrical and Computer Engineering

Dr. C. Lu	 Date

Associate Professor
Department of Electrical and Computer Engineering

(..,	 i	 ,
Dr. A. Akansu	 Date
Assistant Professor
Department of Electrical and Computer Engineering

VITA

Name: Nadir Sezgin

Degree and date to be conferred: M. Sc., Dec 16, 1991.

Collegiate institutions attended: Date Degree Date of Degree

New Jersey Institute of Technology 9/90-12/91 M. Sc. Dec 1991

Middle East Technical University 9/85-5/90 B.Sc. May 1985

Major: Electrical Engineering.

Abstract

Error Detection and Correction in Encoded Data

Nadir Sezgin, Master of Science in Electrical Engineering

Thesis directed by Dr. Yeheskel Bar-Ness

Encoded data is very sensitive to the channel errors. Especially if the data

is compressed by Arithmetic Encoding procedure, then the error propagation is

very high. The error propagation in Arithmetic Coding is studied. Exploiting the

high error propagation property when compressing data by Arithmetic encoding

procedure, two different algorithms have been proposed for error detection and

correction. Under certain conditions these algorithms detect and with a very high

probability correct the errors introduced to the compressed data.

to my parents and dear brother...

Acknowledgement

I would like to express my appreciation to my supervisor Dr. Bar-Ness

for his support, knowledge and insight during my study in NJIT. His support

was far beyond of reasonable expectations.

I would also like to express my thankfulness to Dr. Lu and Dr. Akansu

for their valuable suggestions for improving the quality of my thesis.

Many thanks to the members of Communication Lab., especially my dear

friends Abdulkadir Ding, Hakan Caglar and Dr. Kim.

Contents

1

2

Introduction

Data Compression

1

3

2.1 Redundancy 	 3

2.2 Data Source Models 	 5

2.2.1 	 Markov Dependent Model 	 6

2.2.2 	 Statistically Independent Model 	 6

2.3 Data Compression Techniques 	 7

2.3.1 	 Shannon-Fano Coding 	 9

2.3.2 	 Huffman Coding 	 10

2.3.3 	 Lampel- Ziv Coding 	 11

2.3.4 	 LZW Coding 13

3 Arithmetic Coding 15

3.1 Encoding 	 16

3.1.1 	 An Encoding Example 	 20

3.2 Decoding 	 23

3.2.1 	 A Decoding Example 	 24

3.3 Integer Technique 	 25

4 Error Propagation, Detection and Correction 	 29

4.1 Error Propagation 	 29

4.2 Error Detection and CorreCtion 	 32

4.2.1 The System Structure 	 33

4.2.2 Algorithm I 	 33

4.2.3 Algorithm II 	 36

5 Results and Conclusion 	 43

111

List of Figures

2.1 Shannon-Fano Coding Procedure 	 9

2.2 Huffman Code 	 10

2.3 Dictionary for LZW Algorithm 	 13

3.1 Arithmetic Encoding 	 20

3.2 Code Points 	 21

4.1 The System Model 	 33

4.2 Encoder Unit 	 36

4.3 Decoder Unit 	 37

4.4 Encoding Routine 	 40

4.5 Channel Routine 	 41

4.6 Decoding Routine 	 42

iv

Chapter 1

Introduction

Data compression is an important topic of information theory. It broadly can be

defined as transformation of a large volume of data into a smaller volume. Data

compression is needed because of large space occupation of uncompressed data.

Especially transmission of data, from one place to another place requires data

compression. The first implementation of data compression was introduced by

Shannon[1] and Fano [2]. Then Huffman[3] proposed a coding technique which

gives optimum average code length. But all of these coding techniques require

the knowledge of source statistics before the encoding process. Therefore these

techniques are not applicable to the data sources with unknown statistics.

Davisson[4] proved that an optimum coding scheme can be designed without

priori knowledge of the source statistics. These type of coding is known as universal

coding. The most up to date universal coding techniques are Lampel-Ziv[5][6][7]

coding, LZW coding[8] and arithmetic coding algorithms[9] [10].

For convenience of the reader, these data compression techniques are dis-

cussed in the next chapter.

Because of the noisy nature of the communication channels, we cannot ex-

pect an error-free transmission from transmitter side to receiver side. There are

several channel coding techniques [11]. But all of these techniques introduce signifi-

1

cant amount of redundancy to the data in the receiver side. This process contradicts

with our goal of reducing the volume of source data.

Transmission of encoded data through communication channels, is more vital

than the transmission of un-encoded data. Because encoded data is very intolerant

to the channel errors. Even a single error in the encoded source may destroy most

of the data following the error. The amount of data decoded incorrectly following

an error is defined as error propagation.

Error propagation, depends on the data compression technique used for

encoding the source data. Narasimhan[12] in his Master thesis studied the error

propagation in the two widely-known universal data compression algorithms, name-

ly LZW coding and arithmetic coding algorithms. He showed that error propagation

in arithmetic coding algorithm is higher than it is in LZW coding algorithm.

In this thesis we proposed two different algorithms whose purpose to detect

and correct the errors introduced to the encoded data in the channel. For the first

algorithm the source data must be a text file. The second algorithm does not bring

any constraints . on the type of the source data. For both algorithms we took the

advantage of very high error propagation in arithmetic coding scheme. In order to

be able to understand the nature of the error propagation in arithmetic coding, in

Chapter 3 the arithmetic coding procedure is explained in detail. A mathematical

analysis of the error propagation in the arithmetic coding and the proposed algo-

rithms are given in Chapter 4. Finally in Chapter 5 the results obtained from the

simulation of these algorithms are discussed.

2

Chapter 2

Data Compression

Data can be represented as a sequence of symbols. The source symbols may be

digital or analog which are drawn from an alphabet. Hence we can classify data

sources as analog data sources and digital data sources. However, by "analog to

digital" conversion we can represent the analog data in digital format. Therefore

we will deal with only digital data. Some examples of digital data are English text,

numerical data, image or video, speech, music, programming language source or

object code etc.

Almost all kind of data contain significiant amount of redundancy. We start

by defining redundancy in source data.

2.1 Redundancy

We can think of a data set as made up of information and redundancy. Information

is the part of the data we wish to preserve on the other hand redundancy is the

overhead in the source data we can get rid of. Without redundacy, we can recon-

struct the original data without loosing any information. Therefore during the data

transmission or data storage we do not need to transmit or store the redundancy.

Even though we do not normally transmit reudundancy in a data compression sys-

tem, it is often necessary to reinsert it at the receiving end simply because we may

3

not recognize the original data without redundant information. As an example in

a scanned and digitized picture, for each scan line of the picture, we have regions

that contain the same picture elements or pixels. If we represent these uniform

regions on the scan lines with the value of the one pixel and run-length of the same

pixels, then we reduce the redundant information in the scan lines. However if we

represent a picture by such a representation, we will not be able to recognize the

original one.

In general, in all kind of data sources there are four kind of redundancy[8].

These are as follows:

Character Distribution

In a typical character string some characters are used more frequently than the

others. To be specific, in eight bit ASCII representations nearly three-fourths of

the possible 256 bit combinations may not be used in a specific file. Therefore, each

character used in file can be represented by 6 bits instead of 8 bits. Hence the text

file volume might be reduced by 25%.

Character Repetition

When a string of repetitions of a single character occurs, the message can usually

be represented in a more compact form if we write the single character followed by

a number which indicates the number of repetition.

High Usage Patterns

Certain sequences of characters appears with relatively high frequency in a text

file and therefore can be represented with relatively fewer bits. For example in

English text files, a period followed by two spaces is more common than most other

4

three-character combinations and could therefore be represented by using fewer

bits.

Positional Redundancy

If certain characters appear consistently at a predictable place in each block of

data, then they are at least partially redundant. An example of this is a roster

scanned picture containing a vertical line appears as a blip in the same position in

each scan, and could be more compactly coded.

These four types of redundancy mentioned above, overlap to some extend

in a data source.

2.2 Data Source Models

In 1948 C. E. Shannon[1], modelled the data source mathematically. He defined

the information content of a source by a probability function as follows:

Let a is a symbol used in the data file and let p(a) be the probability of

occurance of a in the file, then the event of "occurance of the symbol a" gives,

—logp(
	

(2. 1)

amount of information. The reason why log function is chosen is explained in great

detail in the referred paper. The base of log function is not important, it only scales

the amount of the information. For convention if we choose the base as 2 then the

unit of information is bit.

The average information content of the source file with c different symbols

is then given by,

H — Ep(ak)logp(ak) 	 (2.2)
1=1

where a 1 , a 2 , 	 , a, are the symbols used in the source file. The average information

content of a source file ,(2.2), is called the "entropy" of the file. Entropy is important

5

for comparing the amount of information that the files have. Again if we use base

2 for log function then the unit of entropy is bits! symbol. Hence it indicates that

in average each symbol used in the source file can be represented by that many

bits. Therefore the entropy of the source file determines the maximum amount of

compressibility of the file (i.e. we cannot achieve a better compression)

Data sources are customarily represented in two mathematical models. These

are Markov dependent and statistically independent source models.

2.2.1 Markov Dependent Model

For the Markov model, each sample depends on some number of contiguous previous

samples. The depth of dependency gives the order of Markov model. If we know

this dependency, we can predict the next sample. All we have to encode then will

be the information about our prediction to allow the receiver to reconstruct the

original sample sequence. As an example, let us consider the first order Markov

model:

Let s k and sk+1 be kth and (k 1)st characters from the data file, and

let p(sk) and p(sk+1) be the probabilities of their occurance. Then for this source

model,

p(sk,sk+1) =P(s0P(sk-Filsk) (2.3)

where p(sk,s k+1) is the joint probability and p(s k+i ls k) is the conditional probability

of occurance of source characters s k and sk+1.

2.2.2 Statistically Independent Model

For the case of the statistically independent model, we cannot predict and eliminate

dependent symbols. Because all the symbols are assumed to be independent from

each other. Therefore if the kth character of the data source,sk, is known, it does

not give any information about the occurance of the next character, s k+1 . For this

6

type of data,

p(sk,sk44).---p (sk)p(sk+1) 	 (2 .4)

and hence,

P(sk-Filsk) = P(sk+i) 	 (2.5)

For compression we take the advantage of the non uniform probability dis-

tribution of the source symbols used in the data source. If this distribution were

uniform then entropy would be a maximum, equal to

H = log2 c 	 (2.6)

where c is the number of different symbols used in the source data. But real

sources rarely have uniform probability distributions. Thus entropy is always less

than log2 c. Then we can define redundancy mathematically as,

Redundancy = (log 2 c) — H 	 (2.7)

and therefore zero redundancy source has

H = log2 c 	 (2.8)

It should be emphasized that we are dealing with discrete sources and for

these sources the uniform distribution of symbols maximizes the entropy. For the

continuous sources Gaussian distribution maximizes the source entropy.

2.3 Data Compression Techniques

Data Compression is the process of encoding a body of data D into a smaller body

of data A(D). It must be possible for o(D) to be decoded back to, or close to,

D[13].

Basically we can compress the data by two different methods:

7

The first is the entropy reduction technique. In this method the compression

is achieved by somewhat distorting the original data. It also called irreversible or

lossy compression. The apparent example to this technique is quantizing an analog

source, since once we quantize the amplitude values, we can never reconstruct them

exactly.

The second is the redundancy reduction technique. In this method we re-

move or reduce the portion of data which can be reinserted or reconstituted at

the receiving end of the system with no distortion. For this reason, redundancy

reduction has been called, in the literature, reversible coding, transparent coding

or lossless coding[14].

Since we do not want to loose any information in the original data source

we will only deal with redundancy reduction techniques.

Both the statistically independent and the Markov dependent source models

are used in analyzing and designing data compression schemes for discrete sources.

Neither model however is very realistic. A source with statistically independent

symbols is not very common, nor is a source in which inter-symbol dependency is

over only one previous sample.

A situation often arises in which we have insufficient information about the

source to enable us to choose an appropriate model for it. In this case we design

a compression scheme that is independent in its performance of source statistics.

Such a code is called a "universal code".

We will only deal with statistically independent data sources. For this kind

of sources the coding that makes the average word length approach the entropy is

often referred to as "optimum source coding" or "entropy coding". Extension to

Markov dependent sources is possible.

8

Symbol Probability Code

al 0.4 1 1 11

a2 0.1 1 0 10

a 3 0.1 0 1 1 011

a4 0.1 0 1 0 010

a5 0.1 0 0 1 001

a6 0.1 0 0 0 1 0001

a7 0.1 0 0 0 0 0000

Enropy	 2.529 bits

Avg. Code Lenght 2.7 bits

Figure 2.1: Shannon-Fano Coding Procedure

2.3.1 Shannon-Fano Coding

C. E. Shannon and R. M. Fanno[2] have developed source coding procedures in

which the average number of binary digits required per symbol approaches the av-

erage amount of information of the source. The Shannon-Fano coding procedure

provides a means of constructing reasonably efficient codes with instantaneous de-

codebility. Efficiency is defined here as,

Efficiency =	 x 100	 (2.9)

where 7 is the average length of the codeword. Shannon-Fano code reaches an ef-

ficiency of 100% only when the source symbol probabilities are negative powers of

2. The coding procedure is as follows:

1. Arrange the source message probabilities in descending order.

2. Divide the message set into two subsets of equal or almost equal, total proba-

bility and assign a "zero" as first code digit to one subset, and a "one" as the first

code digit to the second subset.

9

Symbol Probability Code

a1 0.5 0 0

a2 0.25 0 10

a3 0.125 0 1
1

110
a4 0.125 1 111

Figure 2.2: Huffman Code

3. Continue this process until each subset contains only one message.

The process of coding is depicted in Figure 2.1. This coding procedure is not

optimum but approach the optimum behavior when the source length approaches

infinity. Kraft[15] has derived a coding method which gives an average code length

as close as possible to optimum when the source contains a finite number of mem-

bers. In 1952 D. A. Huffman[3] realized such a code which is known as Huffman

Code. This code is detailed in the next section.

2.3.2 Huffman Coding

Consider ,for example, four symbol alphabet A = a 2 , a3 , a4 } in which the prob-

ability of occurance of the symbols are 1/2, 1/4, 1/8, and 1/8 respectively. With Huffman

encoding, we first order the symbols according to their probability and generate

the code as in Figure 2.2. Notice that as the Shannon-Fano code, this code is also

a variable length code.

When using this code ,for example, in encoding the data string "a 1a1a2a4a3a2 "

we get "0.0.10.111.110.10" where "." is used as a delimiter to show the substitu-

tion of the codeword for the symbol. It is easy to see that the code has a prefix

property(i.e. no codeword is the prefix of another).

Decoding is performed by a matching or comparison process, starting with

the first bit of the code string. For decoding of the code string 001011111010 the first

10

symbol is decoded as a (the only codeword beginning with 0). We remove codeword

0 and the remaining code is "01011111010". The second symbol is similarly decoded

as a 1 leaving 1011111010. For the string 1011111010, the only codeword beginning

with 10 is a 2 , so we are left with 11111010. Continuing in this manner, we decode

the remaining data string as a 4 , a3 and a 2 .

One disadvantage of Huffman's coding is that it needs two passes over the

source data: one pass to collect frequency counts(probability) of the characters

in the message, from which we construct a Huffman tree that is also transmitted

to the receiver. In the second pass, the tree is used to encode the characters.

Clearly such process causes delay when used in network communication, and for

the file compression applications the extra access to the memory can slow down the

algorithm.

Faller[16] and Gallager[17] independently proposed a one-pass algorithm for

Huffman coding which is called, in the literature, dynamic Huffman coding. This

algorithm, later improved by Knuth[18]

In dynamic Huffman coding, the binary tree that the encoder uses to encode

the (k + 1)st letter in the message (and that the decoder uses to reconstruct the

(k +1)st letter) is a Huffman tree for the first k letters of the message. Both encoder

and decoder start with the same initial tree and thereafter stay synchronized; they

use the same algorithm to modify the tree after each letter is processed. Thus there

is no need for the encoder to communicate the tree to the decoder.

2.3.3 Lampel- Ziv Coding

In 1976 J. Ziv and A. Lampel[6] proposed a universal coding algorithm. The al-

gorithm, basically matches the maximum length recognized data string to a fixed

length codeword. The encoded codeword consists of the buffer address and the

source symbol.

11

The algorithm is also known as "incremental parsing" algorithm. It parses

the source string into a collection of substrings. The length of substrings increases

gradually. Both encoder and decoder generate a dictionary which is initially empty.

Each time a substring is encoded, it is also put into the encoder dictionary as a

new entry. Similarly each time a substring is decoded, it is put into the decoder

dictionary. Hence encoder and decoder dictionaries are the same at each stage of

encoding and decoding processes.

As an example assume the source alphabet is A = a2, a 3 },and the source

string is "a 1 a9a 2 a3a 1 a2 a 2 a3 a3" Initially the dictionary is empty. Then the source

string is parsed into substrings as {a i , a 2 , a 2 a3 , a 1 a 2 , a 2 a3a3 }. Each substring in the

dictionary can be encoded as (x, y), where x is the address of the longest matched

substring encoded before, and y is the last source symbol concatenated to this

substring. For example "a 2 a3 a 3" is encoded as (3, a3). Because the address of the

longest matching substring, "a2 a3", in the dictionary is 3 and the concatenated

symbol to this substring is "a 3 ".

Decoding algorithm, undoes what encoding algorithm does. The dictionary

for the decoder is also empty initially. The decoder builds its own dictionary dur-

ing the decoding process. The strategy of building the dictionary is the same as

encoder. Therefore at every stage of encoding and decoding process, both encoder

and decoder have exactly the same dictionary.

One disadvantage of this algorithm is in the fact that, both encoder and

decoder need a large amount of memory for constructing their dictionaries. Another

disadvantage is it gives a poor compression for short files or the files with rapidly

changing characteristics.

12

Substring Address

a 1 1

a2 2
a3 3

aia2 4
a 2 a 1 5
a l a2 a3 6
a3a 1 7
a 1 a 2 a 2 8
a 2a3 9

a3a02 1 0

Figure 2.3: Dictionary for LZW Algorithm

2.3.4 LZW Coding

This is an improved version of Lampel-Ziv coding[8J. The difference of this coding

method from the Lampel-Ziv method is, initially encoder and decoder have the

same dictionary which is not empty. The dictionary is initialized with the source

data alphabet. In comparison to Lampel-Ziv coding, instead of using (x, y); the

address of the longest matched substring and a raw character, in the encoding

process, encoder only encodes the address of the longest matching substring x.

The new encoded substring is added to the dictionary and the last character of the

new substring becomes the first character of the next substring.

Decoding algorithm is also very simple. Each time, the decoder handles an

address of the encoded substring it can accurately decodes it since it also has the

same dictionary as encoder. The last character of the new substring is the first

character of the next substring. Hence the decoder can construct the new substring

and add this to its dictionary.

As an example consider the same data source alphabet, A 	 a2, a3 }, giv-

13

en previously. Initially encoder and decoder have the same dictionary as {a l , a2 , a3 }.

To encode the data string "a 1 a 2 a 1 a2 a3 a 1 a 2 a 2 a3 a 1 a 2 a3 a 1 " we start with "a 1 a2 ". The

longest matching substring in the dictionary is "a l ". Therefore we encode the ad-

dress 1 and add "a 1 a 2" to the dictionary in address 4, see Figure 2.3. The next

substring is "a 2 a 1 . The longest matching string is "a 2 " whose address is 2. Hence

we encode 2 as the address for the next substring. Continuing in this manner

gives the codeword of "12434279". The construction of dictionaries is shown in

Figure 2.3.

14

Chapter 3

Arithmetic Coding

The first step toward arithmetic coding was taken by Shannon[1]. He observed in

the referred paper, that messages N symbols long can be encoded by first sorting

the symbols in the order of their probabilities and then sending the cumulative

probability of the preceding symbols. The next step was taken by Peter Elias

in an unpublished result. Abramson[19] described Elias' improvement in 1963. He

observed that Shannon's scheme worked without first sorting the symbols according

to their probabilities. Instead the cumulative probability of a source of N characters

could be recursively calculated from the individual symbol probabilities and the

cumulative probability of the message of the N — 1 characters. Elias' code was

studied by Jelinek[20]. The codes of Shannon and Elias had a serious problem:

When the source length increases, it is not possible to represent the codeword by

finite precision arithmetic. These codes can be viewed as a mapping of data string

to a number which is the codeword. Rissanen[21] over come the precision problem

by suitable approximations in. designing a "last in first out" arithmetic code. In

his algorithm code string of any length could be generated with a fixed precision

arithmetic. Pasco[22] instead suggested a "first in first out" arithmetic code which

controlled the precision problem in similar idea to that proposed by Risannen. His

idea was to use floating point arithmetic to overcome the requirement for unlimited

15

precision of Elias code.

3.1 Encoding

We can look upon arithmetic encoding as a transformation, which maps the data

source strings to a point, in the interval [0,1]. The transformation to the interval

[0,1] depends on the cumulative probabilities of the source symbols.

For encoding operation, we need to define two parameters; one is the code

point C, and the other is the code interval W. C represents the leftmost point of

the interval. On the other hand W represents the width of the interval.

To make the process of encoding clear; assume, for example, we have a source

alphabet of size c, A a2, , a c}. That is the source data is constructed

by c different symbols. Further assume that we have a code alphabet of size d,

B = {b 1 , b2, , . Let p(a 2) be the probability of occurance of the different

symbols in the source alphabet. Then for each symbol, az , we define cumulative

probability by

P(ai) = 	 p(a
	

(3.1)
k=1

where i 	 , c and P(a i) = 0.

Code Point

The new leftmost point of the new interval is the sum of the current code point C,

and the product of the interval width W of the current interval and the cumulative

probability P(a i) for the symbol a i , being encoded:

Neuy C = Current C + Current W x P(a i) 	 (3.2)

16

Code Interval

The width of current code interval W is the product of the probabilities of the data

symbols encoded so far. Thus the new interval width is

New W Current W x p(ai) 	 (3.3)

where the current symbol is

To encode a source file, we have to find code point C and code interval W

for each character in the source data. Assume that after encoding kth character in

the source file, the code point is Ck and the code interval is Wk.

We start encoding process with initial values code point and code interval

which are

Co = 0 	 (3.4)

and

Wo = 1 	 (3.5)

For the first source character, we have

= Co + woP (31)
	

(3.6)

where s i is the first character of the source file and s i E {a 1 , a2, • • • ,ac}

and

= Wop (s 1)

	

(3.7)

Since Co = 0 and Wo = 1 then above equations become

	P(s1) 	 (3.8)

and

	N ei = p (s1)
	

(3.9)

17

To encode the second character in the source file we have

and

+ wiP(32)

C2 = P(30 + p(s1)P(s2)

where s 2 E	 a2, • • • lac).

Continuing in the same manner, after encoding the kth character in the source file

we have

Ck = Ck,-1 Wk-1P(Sk)	 (3.12)

and

Wk Wk-iP(sk)	 (3.13)

However since,

Ck-1 Ck-2 Wk-2P(Sk-1)	 (3.14)

then equation (3.12) becomes,

Ck = Ck-2 Wk-2P(Sk-1) +Wk-1P	 (3.15)

But

Wk-1 Wk-2P(k-1)	 (3.16)

then equation (3.13) becomes

Wk = Wk-2P(sk-02-00	 (3.17)

Continuing in this manner we get

Ck woP(so + wiP (s2) + • • + wk._ 2 P (s k_1) + wk_ iP(sk)	 (3.18)

and

Wk = WoP(si)P(s2) • - • p(sk-i)P(k) 	 (3.19)

18

Sub tut 	 fl 	 t IH , quation (3.19) we get.

)p(). • .P(sk—I)X
	

(3.20)

And 	 y , thstitutir (3.20) into (3.18), we go the code point

1)(gi))1)(.4 	 100P(..) 	 3)+ - • • 	 (3 0/0 	 • Ask-2)Ask-OP(k)

(3.21)

or

t _ 	 ..:)[P(43 -1) + PGsk	 P(sk)] • •

(3.22)

Fr,,n,3 	 1,`Alt:,, ',ion it i 	 !t

	P(st)
	

(3.23)

Th, 'onti in the

;.4 < P(s +) (3.24)

sinct- 	 Ars 4.. iVe not;re J.,

(3.25)

i .e. if 	 a, then , 	 +

is it:hn I 	 nuinçr,

4:4,11t44

scttrci aiphai,H. But P(sk.,.. 1 + 1)

com verify thot the outermost

(3,26)

d 	 441

< (P((3.27)

where P(s 1) is the cumulative probability of the first source character.

Assuming the first source character is the symbol ai from the source alphabet

then P(s i + 1) represent the cumulative probability of the next symbol ai +i from

the source alphabet.

We can conclude that the code point falls into the interval {a i , a i+i) no

matter how long the source string is. The value of the code point, representing the

source string depends on the cumulative probabilities of the string characters used

in the source string. As an extreme case if the source string is "aiaia i • • -", then

the code point is P(a i). On the other hand if the source string is "a jai+l ai+i • • •",

then the code point is very close to P(a k+l), but not equal to P(ak,44). All other

source strings begin with the source symbol a i , are encoded to the interval {a i , a i+i)

corresponding to the code point Ck such that P(a i) < < P(ai+i)•

3.1.1 An Encoding Example

As an example consider again the four symbol alphabet, A = a2, a 3 , a4 }, with

the relative frequencies 0.5, 0.25, 0.125 and 0.125 respectively. This is the same

alphabet that we used for demonstrating Huffman Coding in Figure 2.2. We relate

the arithmetic coding to the process of subdividing the unit interval successively.

Symbol Probability (Code Interval) Cumulative Probability (Code Point)

a 1 0.5 0

a2 0.125 0.5
a3 0.25 0.625

a4 0.125 0.875

Figure 3.1: Arithmetic Encoding

20

Define the "code point" as the sum of the probabilities of the proceeding

symbols, and "code interval" as the probability of the sequence encoded so far. If

we rearrange the the table in Figure 2.2 then we get the table shown in Figure 3.1.

0 	 0.5 	 0.625 	 0.875 	 1
I 	 I 	 i 	 i 	 I
P(a 1) 	 P(a2) P(a 3) 	 P(a4)

Figure 3.2: Code Points

We now view the code points as fractional values 0, 0.5, 0.625 and 0.875.

Notice that these code-points are actually the sum of the probabilities of the pre-

ceding symbols for each symbol. In other words each code-point is a cumulative

probability P.

Further we can view the codewords as code-points on the number line from

0 to 1, or the unit interval, as shown in Figure 3.2. The four code points divide the

unit interval into four subintervals. We identify each subinterval with the symbol

corresponding to its leftmost point. For example the interval for symbol "a 1 " goes

from 0 to 0.5, and for symbol "a4" goes from 0.875 to 1. Note also that the width or

size of the subinterval to the right of each code point corresponds to the probability

of the symbol. The codeword for the symbol "a 1 " has 0.5 the interval, the codeword

for "a3 " has 0.25 the interval and "a 2 " and "a4 " each have 0.125 of the interval.

Again suppose that we want to encode the data string "a 1 a 1 a2 a3" as we did

for Huffman encoding. The first symbol is "a 1 ". From equations (3.4) and (3.5)

the initial values of code point and code interval are

Co = 0 and Wo = 1

From the equations (3.2) and (3.3) the code point and code interval for the first

21

data character, s i = a l , are calculated as follows

C1 = co + P(s i) wo

= 0 + 0 x 1

= o

and

= P(si)Wo

= 0.5 x 1

= 0.5

The corresponding interval on the unit interval is [0, 0.5). This means that

the fractions equal to or greater than 0, but less than 0.5 are in the interval. The

code point and the code interval for the second source character, s 2 = a 1 , are

C2 = Cl P(32)W1

= 0 + 0 x 0.5

= 0

and

T'V2 	 p(s2)Wi

= 0.5 x 0.5

= 0.25

The interval for "s 1 s 2 " is [0, 0.25). Similarly, the code point and code interval

for the third character, s 3 = a 2 of the data string are calculated as

22

C3 = C2+ P(s3)W2

= 0 + 0.5 x 0.25

= 0.125

and

W3 := P(83) W2

= 0.125 x 0.25

= 0.03125

Hence the interval for "3 1 3 2 33 " is [0.125, 0.15625). Finally for the last character,

34 = a3, of the data string we have,

C4 = 0.14453125

and

W4 = 0.0078125

Then the data string "8 1 3 2 83 84" (i.e. "a 1 a1 a2 a3") corresponds to the codeword

0.14453125.

3.2 Decoding

For decoding the first step is comparing the code point, Ck, with the cumulative

probabilities of the source symbols. The first decoded character is the source symbol

which has the largest cumulative probability less than or equal to Ck. Then to find

the code point for the second decoded symbol; first we subtract P(s i) from Ck:

Ck — P(S1)	 1) (3 1)P(S2)	 P(S1)P(3 2)P(3 3) 4- • • • + P(8 1)P(32)P(33) • • P(Sk.-1P(Sk)

(3.28)

23

then we divide Ck - P(81) by p(s 1) to get the new code point for decoding the

second symbol:

C'j 2) = P(s 2)+ p(s2)P(s3)	 p(s2)p(s3)P(s4) + • - • + p(s2)p(s3) • • • p(sk—OP(sk)

(3.29)

where d2) represents the new code point to decode the second source character.

In order to decode the second source data character we compare C' / .2) with

the cumulative probabilities of the source data symbols. The symbol with the

largest cumulative probability which is smaller than or equal to the code point is

the second decoded character.

Similarly the code point for decoding the third source character,

cP) = P (s3) + p (s3)P (s4) + p (83)p(s4)P (s5) + • • • + p(s3)P(54) • • p(sk-i)P(sk)

(3.30)

Continuing in this manner, for decoding the last source character we have:

ct) = P(s k)
	

(3.31)

which is the cumulative probability of the kth source character, and the decoding

process is complete.

3.2.1 A Decoding Example

Decoding procedure is basically the reverse procedure of the encoding process. That

is decoder undoes whatever the encoder does. Considering the same example that

we have given for encoding process the encoded string 0.14453125. This code point

is in the interval [0, 0.5), therefore, the first data symbol, s 1 , must be "a1".

24

c1„3) =
0.5

= 0.578125

0.2890625 — 0

From Figure 3.2, P(s i) = 0 and p(s i) = 0.5. Using this in equation (3.28)

we get

cp) — 0.14453125 — 0
0.5

= 0.2890625

This point is again in the interval [0, 0.5) therefore the second decoded character

is also a l . For this character, P(s 2 = 0 and p(s 2) = 0.5. Similarly the third code

point is found as

This point is in the interval [0.5, 0.625) and hence the third decoded character is

a 2 , with P(s 3) = 0.5 and p(s3) = 0.125. Hence the fourth code point is found as

c14) = 0.578125 — 0.5
0.125

= 0.625

This is exactly the code point which correspond to a 3 , the last symbol decoded.

The decoded string is thus "a i a ia 2 a3 .

3.3 Integer Technique

In conventional arithmetic coding the interval of decoding becomes more finely

divided as more symbols are included in the source sequences. The capacity of the

coder to accept more source symbols is limited by the ability of its fixed registers

to resolve the boundaries between intervals. The capacity of the system is greatly

extended by the adoption of what is essentially floating point representation of

these boundaries. This method is implemented by the explicit manipulation of

integers [23] .

25

In this case it is necessary to find an alternative representation of the prob-

abilities P(s) by applying a scale factor u that effectively converts a probability to

a frequency rate per u source symbols.

Assume the source alphabet is A = 	 a2, a3, 	 , a c } and the code alphabet

is B	 ,bd}. Then define

a; as an arbitrary sequence of symbols (i.e. data source string),

as i , as concatenation of a and a new character 	 where sk, E	 a2, • • ,

j ; as an integer such that x — 1 < [xi < x.

The boundaries of the interval corresponding to the source sequence are

represented by tree functions, namely X(a), Y(a) and L(a).

X(a) and Y(a) are integers, represent the code point and code interval

respectively. L(a) supplies an exponent —L(a) — w by which base d is raised to

give a scale factor. The relation between the conventional code point, Ck and X(a)

is as follows
X(ask)

Ck	 dri(aso+w (3.32)

Similarly, the relation between the conventional code interval, Wk, and Y(a) is

defined as
If (ask)

Wk dg.so+w

Further we define

Fai : the cumulative frequency of occurance of as in the source data file.

(3.33)

P(aj) x u	 (3.34)

where u is a constant, chosen such that Faj is an integer for all a j in the data source

alphabet.

Hence we get,
•

P(a9) =
Fay

U
(3.35)

26

and

13(ai) 	
Fa

3+1u

— 	
(3 .36)

Conventional code point and code interval equations, 3.12 and 3.13 can be repre-

sented as follows

and

X (aa j) 	 X (a) 	 Y(a)
dL(oraj)-}-w 	 dL(ce)+w 	 (dL(a)+w)

 u

Y(aa j)	 (_ Y(a) \ (Fai+ , — Fai)
dL(aaj)+ ,11 	dL(a)+w

(3.37)

(3.38)

Let L(aa j) = L(a) + 1 where t is an integer to be chosen to satisfy the

accuracy requirement such that

clw < (aaj) < clw+ 1

where the parameter w determines the number of d-ary digits of precision used

to represent the width of the interval. The scaling by d i insures that smaller an

interval becomes, its width is still represented with sufficient precision for further

division. Then the equations (3.37) and (3.38) simplify as follows

X(aaj) = (X(ct) + 17 (a) f,L:i 2)d i 	(3.39)

and

Y(aaj) 	
Fa• 	 F

(Y(a) 	 61,)d i
	

(3.40)

In order to be able to to represent X(aaj) and Y(azai) as integers then we

use Lxi function. To eliminate the effect of the rounding performed by Lx] function

2 is added to x. Hence we get

and

1
X(aai) = (X(a) + LY(a)

Fa?
----u + —2nd

1	 1
Ir (acia) = (LY(a)

F„,+,
 + 	 -

,
(a)—u + —2 .ndu	 2

27

The value of / needed for the above equation such that Y(aa j) satisfies

du' < Y (aaj) < c/w+1

can always be satisfied as long as

Fa .	 1 	 Fa
LY(a) 	 > LY(a)	 +

2
j (3.43)

For this inequality to be true for any Y(a), Fa , and u, it is sufficient to require

17 (a) (F.3 +1 — 	 > u

since Y(a) > du' then it is sufficient to find / so that

dw (Faj — 	 > u

where

ai ,ai_ i E

This is constrained value of u needed after the value of w has been decided upon.

28

Chapter 4

Error Propagation, Detection
and Correction

4.1 Error Propagation

From the previous chapter, the transformation of data string "8 1 8 2 s3 - • • s k " to the

corresponding code word is given in equation (3.22) as

Ck = P(s i) + p()P(s2)+P(si)P(s2)P(s3) + • • •+P (si)P(3 2) • • • 23(sk—i)P (sk) (4.1)

An error introduced to the codeword at this point, changes the value of C k by an

amount of A. Then erroneous codeword can be written as

= P(-)+p(si)P(s)+ P (8 01) (32)P(83)+ • • +P(3 0.73 (s2) • '•P(sk-OP(sk) + A

(4.2)

Depending on the size of A, CT 1 may not fall into the interval {1) (s 1), P(s i + 1))

which causes the next source character being incorrectly decoded. However if A is

such that C1' falls into this interval, that is

P(s1) < C 1 < P(s i + 1) 	 (4.3)

then the next source character is decoded correctly.

29

Assuming that z is a uniformly distributed random variable over the interval

[0, 1] then CV is also a random variable over the same interval. That is C ke,' can be

any point in the interval [0, 1] with equal probability.

Therefore the probability of

E [F(s1), P(s i + 1)) 	 (4.4)

is proportional with the length of code interval [P(s i), P(si + 1)) which is p(si)•

Hence the probability of "first source character being incorrectly decoded" is

r(4) = 1 — P(81)
	

(4. 5)

where s i E 	 a2, a3 , 	 , a c l and si indicates that s i is incorrectly decoded.

In average the the probability of first character being incorrectly decoded

after introducing an error to the encoded source is

E p(ani)(1 — p(ani))
	

(4.6)

Assume that the first source symbol is decoded correctly. To decode the

second source symbol, from equations (3.29) and (4.2) we get

Ck^ = P(s2)-Fp(s2)P(s 3)+p(s2)p(s3)P(s4)+• • • -1-p(s2)p(s3) • • p(sk-dP(sk)- Ap(so

(4.7)

CP is compared with the cumulative probabilities of the source symbols.

E [P(8 2), P(s 2 +1)) then the second source character is also decoded correctly.

the probability of "CP E [P(s 2), P(s2 + 1)) given CV E [P(81), P(si 1))" is

proportional to the length of new code interval [P(s2), P(s2+1)) which is p(s0P(s2)•

Hence the the probability of "the second symbol will be incorrectly decoded,

given the first symbol decoded correctly" is

p(s21s1) = 1 — P(s1)P(82)
	

(4.8)

where s 1 , 82 E 	 a2, a3, • , acl•

30

In average this probability is

C	 C

E {413 -1 } = E E P(ariP(an2)(1 P(ani)P(an2))
	

(4.9)
n 1 =1 n2=1

where we assume the statistical independence between the characters.

Continuing in the same manner, after k iteration we have the average prob-

ability of the event "the kth source symbol will be decoded correctly, given k 1

previous source symbols are decoded correctly" is

	Ets/k 1sis2 • • • sk-i} = 	 E • • • E P(anip(an,) • • • p(ank)(1—p(anI)p(a,),) • • • P(ank))
n1=1 722=1 	 nk=1

(4.10)

Finally from equations (4.6), (4.9) and (4.10) we can conclude that the

the expected value of "decoding the source data incorrectly after an error being

introduced to the encoded data" is

	E {err or}	 E	 Efs21sil + •	 E {s idsis2 • • • sk—i}	 (4.11)

From equation (4.6),

E {4} = 1 —	 p2(an)
	

(4.12)
n=1

From equation (4.9),

Efs t2 isil

Similarly, from (4.10)

1 — E E p2(an1)p2(a„)
n1=1 n2=1

[E p2(an)]2

n=1
(4.13)

Ef.418132...sk-11 = 1 — 1:p,2(arolk 	 (4.14)
n=1

Substituting equations (4.12) through (4.14) into equation (4.11) we obtain

E {err or}	 k

-

EE P2 (an) (E P 2 (a n)) 2 ' • • + (E P2 Can))1
n=1 	 n=1

k - E p2(am)[1. [ic=1P22((an
an T]

, pn=1 	 1 —
(4.15)

31

which is a measure of error propagation in the arithmetic coding.

It is clear that for k not necessarily very large, E {error} = k. That is

with probability almost one, all the characters after introducing the error will be

incorrectly decoded.

4.2 Error Detection and Correction

When compressed data is transmitted through a communication channel, depend-

ing on the characteristics of the channel, errors are generated. However, since

the redundancy in the source data is removed by the data compression algorithm,

the encoded data is very sensitive to channel errors. A single error introduced to

compressed data garbles a significiant amount of decoded data at the receiver end.

In this section we describe two different algorithms for detecting and cor-

recting the errors in the compressed data. Both algorithms exploit the advantage

of high error propagation in the compressed data. We have chosen Arithmetic Cod-

ing as the data compression technique because of the very high error propagation

inherent to this technique.

The first algorithm can be used only for text files. However the second

algorithm can be used for any kind of data representation. Another drawback of

the first algorithm is in using the assumption that if a word is a new word (i.e.

it occurs for the first time in the source data) then the corresponding codeword is

error-free. However unless we use some initialization at the beginning of the source

file most of the words are "new". Experimental results showed that this assumption

may hold for very big files, if the errors are not introduced at the beginning of the

file.

With the second algorithm we do not impose any restriction on the position

of the errors in the encoded file. We assumed that the errors are uniformly dis-

32

tributed through the whole length of encoded source. However we require that the

errors are not of burst type, (two errors must occur approximately at least 500 bits

away from each other) which is a reasonable assumption even for the very noisy

channels. The need for this constraint is made clear in the process of describing

the algorithm.

We can view the second algorithm as an improved version of the first al-

gorithm. Therefore after a brief explanation of the first algorithm, the second

algorithm is described in great detail.

4.2.1 The System Structure

The system model is depicted in Figure 4.1. It consists of an encoder unit, a noisy

channel and a decoder unit.

Figure 4.1: The System Model

4.2.2 Algorithm I

Source data is a text file whose symbols are withdrawn from two different sets. The

first set contains the symbols that construct words, while the second set, contains

the symbols that separate the words. A word is defined as a group of characters

separated by one or more separators.

Encoder encodes the incoming data, symbol by symbol. It uses arithmetic

encoding algorithm. It has a buffer for storing the current word which is being

encoded, and a dictionary for storing the words which are used in the data source

33

for the first time. If an encoded word is a new word, after encoding the last character

in the word, a special character is generated and encoded for informing the decoder

that the received word is a new word.

Channel is a noisy communication channel. But we assume that the proba-

bility of introducing error to a new word is very low. As we indicated before, this

assumption is reasonable only if the source file is big enough to construct the word

dictionary at the decoder side. In addition, we assume that the errors are not burst

type and two errors are far from each other, in such a way that before encountering

the second error, we should be able to correct the first one.

Decoder decodes the received data. It uses arithmetic decoding algorithm.

Mainly it has three code buffers, one string buffer and one incomplete word buffer.

It also has a dictionary which is initially empty and built during the decoding

process.

Error Detection

Initially all the buffers are empty. Received encoded symbols are stored in the

"current code buffer". At the same time these symbols are decoded and the decoded

data is stored in the "string buffer". Whenever the code-buffer is full, we check

the content of the string buffer word by word. If the word ends with previously

introduced special character, we decide that it is a new word and store it into the

dictionary. On the other hand, if it is not a new word then it must be used before

and should be in the dictionary. If it is not in the dictionary then we conclude that

it is an erroneous word and one of the bits in the corresponding code buffer must

be erroneous.

34

Error Correction

To correct the error we toggle each bit in the code buffer and decode the new buffer

content each time. If the decoded data (i.e. the string in the string buffer) is

not valid, we replace the original bit in the code buffer and toggle the next one.

This process continue until we find the valid combination of the words in the string

buffer.

35

4.2.3 Algorithm II

The source data is fed into encoder sequentially. There are no restrictions on the

type of data, source being encoded. It may be a text file or some other data file

represented by a binary alphabet. A "word" is defined as a fixed number of data

source symbols its length being "word size" many symbols. Further we define a

"word marker" to be a special character which is used for punctuating the source

data after every word size many symbols.

The internal structure of encoder unit is shown in Figure 4.2. It has a

counter for counting the incoming characters. After every word has been fed into

the encoder, a word marker is automatically generated as the next character to be

encoded. Hence we can summarize the function of encoder unit, as marking the

original source data by word markers appropriately and then encoding the marked

data by arithmetic encoding procedure.

Figure 4.2: Encoder Unit

It may seem that by introducing a word marker after every word we are

adding a large amount of redundancy into the source file. However, since the

marked file is encoded, this redundancy is decreased significantly. Especially for

large data files, the increase in the size of the encoded file due to the marking

36

process is insignificant.

Channel is assumed to be a noisy communication channel. The algorithm is

tested for the channels which have different bit error rates. We assume that errors

do not occur in a burst and that two errors occur at least "two current code buffer

size" plus "one next code buffer size" away from each other. The reason for this is

made clear in the discussion of the algorithm. If the current code buffer size and

next code buffer size is not very large then this assumption is reasonable.

Decoder decodes the incoming encoded source by arithmetic decoding algo-

rithm. The internal structure of the decoder is depicted in Figure 4.3.

Figure 4.3: Decoder Unit

Other than the arithmetic decoding unit the decoder has four code buffers:

Previous code buffer, current code buffer, next code buffer and general code buffer.

The previous code buffer and current code buffer have a size of "code buffer size".

The next code buffer has "next code buffer size" and finally the general code buffer

has a size of previous, current and next code buffer sizes added together (i.e. 2

37

code buffer size and 1 next code buffer size).

Initially all the switches (i.e. sl, s2, s3 and s4) are in Position 1. Encod-

ed data, enters the decoder sequentially. The data is decoded by the arithmetic

decoding unit and the stored in the current string buffer. After word size many

decoded characters we must have a word marker as the next decoded character

in the current string buffer. If a word marker does not appear in this location in

the decoded file, then it is clear that an error in the encoded data has caused the

change. An erroneous bit in that part of the encoded source must have caused the

error. The encoded source which is most recently decoded is in the current code

buffer. However depending on the propagation speed the erroneous bit which cause

the error may not be in the current code buffer (i.e. the length of the current code

buffer may not be enough for the error to propagate). Therefore in order not to

loose the erroneous bit in the buffer when the current code buffer is full, the content

of this buffer are transferred to another code buffer which we call the previous code

buffer. Similarly the content of the current string buffer is transferred to another

string buffer, called the previous string buffer. At this point the current code buffer

and the current string buffer are cleared for the next iteration.

Control unit (not shown in the figure) keeps checking for the presence of

the word marker at specified locations. If the word marker is not in its location

a flag, called error flag, is set and an error have been detected. For the error

correction all the switches in the decoder (i.e. sl, s2, s3 and s4) are switched to the

position 2. Then we fill the next code buffer with encoded data and transfer the

contents of the previous, current and next code buffer into a code buffer which we

call "general code buffer". Due to the assumptions about the error characteristics

of the communication channel, it is assumed that there is only one erroneous bit

in the general code buffer. But since we do not have any idea about which bit it

38

is, starting from the first bit in the general code buffer, each bit is reversed, one at

a time, and for each change the content of the general code buffer is decoded and

the decoded data is checked for the presence of the word markers at the expected

positions. If the word markers are present where they are expected to be, the

error is assumed to have been corrected. If we toggle the wrong bit, then including

the erroneous bit we have 2 erroneous bits in the general code buffer. Because of

very high error propagation in the encoded data which is encoded by arithmetic

encoding procedure, it is unlikely that we would find the word markers in their

correct positions. However if the next code buffer is not long enough then decoded

source may not be enough for checking word marker positions. To avoid such a

situation, the size of the next code buffer is chosen such that it should be long

enough to give at least one word size many characters at the decoder output to

be able to check at least the word marker position. Various code buffer sizes have

been tried for various data files.

After observing the word markers in their correct positions in the decoded

source which is located in the general string buffer, we decide that the general code

buffer content must be the correct combination and hence the error is corrected.

39

There are two main routines in the algorithm: Encoding and Decoding rou-

tines. To simulate the channel characteristics a random number generator is used.

These random numbers are used for introducing errors to the encoded source. As

long as the constraint that we specified about the number of error free characters

between two consecutive errors is satisfied and regardless of channel type every

error is detected. Depending on the code buffers (current code buffer and next

code buffer) sizes, almost every error is corrected successfully. In our simulation we

assume that the introduced errors are distributed uniformly.

Encoding Routine:

The encoding routine is depicted in Figure 4.4.

Figure 4.4: Encoding Routine

40

Channel Routine:

The channel routine is depicted in Figure 4.5. "Bound" is a variable number

which varies depending on the bit error rate of the channel.

Figure 4.5: Channel Routine

41

Decoding Routine:

The decoding routine is depicted in Figure 4.6 below.

Figure 4.6: Decoding Routine

42

Chapter 5

Results and Conclusion

First, we observe the amount of expansion in the encoded file. as a result of the

marking process. Various characters have been used as word markers, on various

type of the data files'. Percentage increase in the size of the encoded files are

depicted in the following figures for word size = 5 characters and word size = 10

characters. Different results are obtained are shown for different characters used as

word markers.

Figure 5.1: Percentage increase in the encoded file size

File 1 is an non technical article with a size of 8252 characters. File 2 is technical book
with 127537 characters. File 3 through File 8 are the chapters of a scientific book each one has
approximately 15000 characters. File 9 is a well documented C computer language program with
30627 characters. File 10 is the manual for Unix mail facility with 29405 characters. File 11 is a
non technical report written in latex format with 4490 characters.

43

It is clear that inserting word markers into the source data, cause an expan-

sion in the encoded data which is smaller than the expansion in the source data.

The choice of word marker is the main factor for the amount of the expansion in

the encoded file. If the word marker is a commonly used character (such as " char-

acter) in the source file then the amount of expansion is not significant. However

if the word marker is rarely used or not used in the source file then the expansion

in the encoded data is more significant.

In the following tables, we observe the performance of the algorithm for

various code buffer lengths and word markers. Since error detection and correction

depends on the error propagation in the code buffers, the sizes of these buffers

effect the performance of the algorithm significantly. To be able to correct an

error after detecting it in the encoded data we need to check at least one word

marker position after decoding the code string which starts from the erroneous bit

position. Therefore especially the next code buffer length is an important factor in

error correction procedure.

The choice of word marker is also an important factor in error correction. If it

is a commonly used character in the source file then from the nature of arithmetic

coding, its corresponding decoding interval in [0, 1] interval is much larger than

the decoding intervals corresponding to other data source characters. Hence the

probability of decoding a word marker in its correct position without correcting the

erroneous bit is relatively high. On the other hand if the word marker is a symbol,

rarely used in the data source or not used at all, then such a false decoding is rare.

That is, in this case decoding a word marker in its correct position is an indication

with high probability that the error has been corrected.

These results are shown in the following tables:

44

word marker = ", word size = 5 char

Data Files
current code buffer size

5 char 10 char 15 char
gen. det. cor. gen. det. cor. gen. det. coy.

next code buffer size = 5 char
File 1 49 49 32 49 49 40 49 49 46
File 2 57 57 22 56 56 34 57 57 44
File 3 18 18 6 19 19 13 19 19 16
File 4 26 26 13 26 26 16 26 26 20

next code buffer size = 10 char
File 1 49 49 33 50 50 48 49 49 47
File 2 57 57 42 58 58 49 57 57 55
File 3 18 18 13 18 18 14 18 18 15
File 4 27 27 24 27 27 26 26 26 26

next code buffer size = 15 char
File 1 50 50 46 50 50 50 50 50 50
File 2 57 57 44 57 57 51 57 57 56
File 3 19 19 14 19 19 18 18 18 18
File 4 26 26 26 26 26 26 26 26 26

Table 5.1: Performance of Algorithm II, for word size = 5 characters
and word marker = "space"

45

word marker = ", word size = 10 char

Data Files
current code buffer size

10 char 20 char 30 char
gen. det. 1	 cor. gen. det. cor. gen. det. cor.

next code buffer size = 10 char
File 1 47 47 25 47 47 40 48 48 43
File 2 54 54 27 55 55 31 55 55 52
File 3 17 17 9 18 18 12 18 18 13
File 4 25 25 19 25 25 22 25 25 22

next code buffer size = 20 char
File 1 48 48 44 47 47 47
File 2 55 55 43 54 54 53
File 3 18 18 15 18 18 16
File 4 25 25 25 25 25 23

next code buffer size = 30 char
File 1 47 47 43
File 2 56 56 44
File 3 18 18 12
File 4 25 25 21

Table 5.2: Performance of Algorithm II, for word size = 10 characters
and word marker = "space"

46

word marker = 	 ^ C', word size 	 5 char

Data Files
current code buffer size

5 char 10 char 15 char
gen. det. con gen. det. cor. gen. det. cor.

next code buffer size = 5 char
File 1 52 52 44 53 53 52 53 53 51
File 2 64 64 57 64 64 61 64 64 63
File 3 20 20 15 21 21 20 21 21 21
File 4 29 29 23 28 28 28 28 28 28

next code buffer size = 10 char
File 1 52 52 52 52 52 52 52 52 52
File 2 64 64 58 64 64 62 64 64 64
File 3 21 21 19 20 20 20 20 20 20
File 4 28 28 26 28 28 28 28 28 28

next code buffer size = 15 char
File 1 52 52 50 53 53 53 52 52 52
File 2 64 64 64 63 63 63 64 64 64
File 3 20 20 16 21 21 21 21 21 21
File 4 28 28 28 28 28 28 28 28 28

Table 5.3: Performance of Algorithm II, for word size = 5 characters
and word marker = "^ C"

47

word marker = ' C, word size = 10 char

Data Files
current code buffer size

10 char 20 char 30 char
gen. det. cor. gen. det. cor. gen. det. cor.

next code buffer size = 10 char
File 1 50 50 47 50 50 48 50 50 48
File 2 60 60 60 60 60 60 61 61 61
File 3 19 19 19 19 19 19 19 19 19
File 4 26 26 25 27 27 27 27 27 27

next code buffer size = 20 char
File 1 49 49 49 50 50 50
File 2 60 60 60 60 60 60
File 3 19 19 17 20 20 20
File 4 26 26 25 27 27 27

next code buffer size = 30 char
File 1 50 50 48
File 2 59 59 59
File 3 19 19 17
File 4 26 26 26

Table 5.4: Performance of Algorithm II, for word size = 10 characters
and word marker = "^ C"

48

Bibliography

[1] C. E. Shannon, A Mathematical Theory of Communication, Bell System Tech-

nical Journal, Vol. 27, 1948, pp.379-423,623-656.

[2] R. M. Fano, The Transmission of Information, Technical Report number 65,

MIT Research Lab of Electronics, 1949.

[3] D. A. Huffman, A Method of Constructing Minimum Redundancy Codes, Pro-

ceedings of the IRE, Vol. 40, Sept. 1952, pp. 1098-1101.

[4] L. D. Davisson, Universal Noiseless Coding, IEEE Transactions on Information

Theory, IT-19, No. 6, November 1973, pp. 783-795.

[5] J. Ziv, Coding Theorems for Individual Sequences, IEEE Transactions on In-

formation Theory, IT -24, No. 3, July 1978, pp. 405 -412.

[6] A. Lempel and J. Ziv, A Universal Algorithm for Sequential Data Compres-

sion„ IEEE Transactions on Information Theory, Vol. IT-23, No. 3, May 1977,

pp. 337-343.

[7] J. Ziv and A. Lempel, Compression of Individual Sequences via Variable -Rate

Coding, IEEE Transactions on Information Theory, IT-24, No. 5, September

1978, pp. 530-536.

[8] T. A. Welch, A Technique for High Performance Data Compression, IEEE

Computer Journal, June 1984, pp. 8-19.

49

[9] Jorma Rissanen, Generalised Kraft Inequality and Arithmetic Coding, IBM

Journal of Research and Development - 20, 1976, pp. 198-203.

[10] Glen G. Langdon Jr., An Introduction to Arithmetic Coding, IBM Journal of

Research and Development, Vol. 28, No. 2, March 1984.

[11] A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Cod-

ing, McGraw-Hill Book Company, New York, 1979.

[12] P. Narasimhan, Error Propagation and Error Correction in Universal Coding

Systems, M. Sc. Thesis, Department of Electrical Engineering, NJIT, 1990.

[13] J.A. Storer, Data Compression : Methods and Theory, Computer Science

Press, 1988.

[14] T.J. Lynch, Data Compression : Techniques and Application, Lifetime Publi-

cations, Belmont, CA, 1985.

[15] L. G. Kraft, A Device for Quantizing, Grouping and Coding Amplitute-

modulated Pulses, Electrical Engineering Thesis, MIT, Cambridge, Mass.,

1949.

[16] N. Faller, An Adaptive System for Data Compression, In record of the 7th

Asilomar Conference on Circuits, Systems and Computers, 1973, pp. 593-597.

[17] R. G. Gallager, Variations on a Theme by Huffman, IEEE Transactions on

Information Theory, IT-24, 6, November 1978.

[18] D. E. Knuth, Dynamic Huffman Coding, J. Algorithms 6 (1985) pp. 163-180.

[19] N. Abramson, Information Theory and Coding, McGraw-Hill Book Co., Inc.,

New York, 1963.

50

[20] F. Jelenik, Probabilistic Information Theory, McGraw-Hill Book Co., Inc., New

York, 1968.

[21] J. Rissanen, A Universal Data Compression System, IEEE Transactions on

Information Theory, Vol. 29 No. 5, pp 656-664, September 1983

[22] R. Pasco, Source Coding Algorithms for Fast Data Compression, Ph.D. Thesis,

Department of Electrical Engineering, Stanford University, California, 1976.

[23] C. B. Jones, An Efficient Coding System for Long Source Sequences, IEEE

Transactions on Information Theory, Vol. IT-27, No. 3, May 1981, pp. 280-

291.

51

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Approval Sheet
	Vita
	Abstract
	Dedication
	Ackowledgmement
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Data Compression
	Chapter 3: Arithmetic Coding
	Chapter 4: Error Propagation, Detection and Correction
	Chapter 5: Results and Conclusion
	Bibliography

	List of Figures

