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Abstract

Name: Elisha Yegal Bar-Ness

Advisor: Prof. Erdal Panayirci

Thesis Title: Performance Analysis of Symbol Timing Recovery Circuits

Employed in Digital Communications Systems

An analytical approach is presented for the jitter performance of a timing

recovery circuit consisting of a prefilter, a zero-memory nonlinear device, and a

narrow band postfilter tuned to the pulse repetition frequency. Assuming first a

squarer type of nonlinearity, analytical expressions for the rms jitter in the timing

wave are obtained as a function of the pre and post filtering characteristics. These

expressions are suitable for judging the case where the baseband signal is bandlim-

ited. Also for some specific examples, the jitter performance of this kind of STR

circuit is evaluated.

Secondly, a general type of nonlinerity is assumed, and the rms jitter ex-

pressions are obtained in terms of the higher order moments of the input signal.

The higher moments themselves are shown to be computed iteratively.

Finally some numerical results are obtained for the fourth order nonlinearity

and the rms jitter curves are plotted as a function of the excess bandwidth factor

y, for several values of the quality factor Q of the postfilter
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Chapter 1

Introduction

Synchronization in Latin means "time together". It is the process of aligning to-

gether the time scales between two or more periodic processes which occur at two

spatially separated points. The synchronization process plays an important role in

the field of communications, data transmission, radar, sonar, and navigation.

In the field of digital communications, we distinguish between a hierarchy

of synchronization problems as follows:

1. Carrier synchronization

2. Clock synchronization

3. Codeword and node synchronization

4. Frame synchronization

5. Network synchronization

The third and fourth categories deal with the problem of identifying the beginning
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and end of a code word (few characters), and a group of code words, respectively.

Together with the carrier and clock synchronization, these two categories form

different levels of synchronization in point-to-point transmission. The fifth type of

synchronization, also called "packet synchronization," is needed when digital data

are received from several sources, processed and transmitted to one or more users,

(e.g. in switched digital communications networks). A variety of techniques can be

used for this purpose.

A feature which distinguishes the latter types from those of carrier and bit

(clock) synchronization is that they are usually solved by means of special design of

the message format. This involves the repetitive insertion of bit or words into the

data sequence, which serves the purpose of synchronization only. On the other hand,

it is desirable, in carrier and bit synchronization, not to add such a special timing

sequence which is a data overhead that causes a reduction in the available channel

capacity. Cases of bit or carrier synchronization, wherein the transmitted signal

contains an unmodulated component of sinusoidal carrier (pilot), can be handled by

using a phase locked loop (PLL). Such a PLL will lock onto the carrier component

and, due to its narrow bandwidth, will reject sideband components. There is a vast

literature, including several textbooks, which deal with synchronization using PLL

[1]-[7].

1.1 Carrier and Clock Synchronization [7]

Digital communication systems which are efficient in power requirement and band-

width, employ "synchronous" (uniformly spaced) signaling pulses and "coherent
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demodulation" of the received signal. For adequate demodulation of the passband

signal, one needs a local carrier reference which has the same frequency, and phase,

as the received signal. Similarly, for adequate detection of the data symbols, one

needs a local clock which is accurately time aligned with the received pulses. The

circuits which generate the local carrier and clock references are called Carrier and

Clock Synchronizers.

As previously emphasized, in carrier and clock synchronization, we are

mainly interested in cases where the reference must be extracted from the incoming

signal which does not contain a pilot carrier or training sequences. This is because,

with an efficient signal design, any components of carrier or clock are suppressed.

Nonlinear devices are necessary to regenerate these components from signals in

which carrier and clock were suppressed. Because of the need for nonlinearity,

synchronizers are difficult to treat mathematically.

The history of synchronizers followed two possible approaches; the "ad hoc

structure" approach and the "derived structure" approach. With the first approach,

different structures were created by engineering inventions followed, by the analysis

of some specific circuit configuration operating on specialized signal format. These

analysis were directed towards predicting the behavior and performance of these

circuits for the particular modulation/coding combinations.

With the derived structure approach, no a priori guesses are made on the

structure of the synchronizer. In order to determine the performance achievable for

a given signal format, channel response, and disturbances, we need a general theory

of synchronization. We also need a theory which enables us to perform synthesis
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of new configurations. The derived structure approach have several important

advantages.

1. We can systematically derive algorithms for a given modulation/coding

scheme and channel. These algorithms are, with respect to the chosen

criterion, the best. The most powerful of such algorithms is the "maxi-

mum likelihood (ML) estimation."

2. Even if the algorithms are found to be unfeasible (due to complexity),

one can use particular simplification which renders a feasible algorithm,

though only sub-optimal.

3. Lower bounds (Cramer - Rao bounds) can be obtained, which are of

great importance, particularly where it is very difficult to compute the

performance of an algorithm. Lower bounds are also important in com-

paring the performance of sub-optimal algorithm to the theoretically

best solution.

Maximum likelihood methods usually require heavy mathematical analysis. How-

ever, such approach is particularly useful when advanced modulation / coding

schemes are employed, and/or when unknown channel parameters have to be ex-

tracted from the received signal.

With the "ad-hoc" structure approach;

1. The synchronizer consists of relatively simple basic building blocks such

as nonlinearity, filters, voltage control oscillators, etc. The type and

technology of these blocks mostly depends on the data rate. Particularly

for high data rate, analog circuitry are usually used.
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2. The technique for solving ad-hoc structure problems are straight forward.

One allows some parameters within the structure to vary and chooses

those whose values are optimum for a given performance criterion.

There are two main advantages to this approach

• It uses well understood building blocks in the synchronizer which greatly

simplifies design, testing, and manufacturing.

• It uses only partial information about the channel and therefore it is not very

sensitive in detecting the modulation errors.

The most serious disadvantage of using a fixed structure is that it is often impossible

to tell whether the chosen structure is close to optimum.

Using the ad-hoc structure approach we introduce, in the next two sections,

the principle of carrier and clock synchronization

1.1.1 Carrier Synchronization

Let the transmitter signal be a passband signal, wherein a carrier, cos co o t is mod-

ulated by a baseband (See Fig. 1.1).

s(t) =-\.1.23 L (t)A cos(coo t 	 Oo)

where

sL(t) E akgT(t — kT — coT)
	

(1 .2)
k
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Figure 1.1: Carrier modulated transmission link

The symbols. ak  = ±1 , amplitude modulate a sequence of pulses of T seconds

duration and each have a pulse shape gT (t). The constant ε0 describes the time shift

of the transmitted baseband time axis relative to a hypothetical reference time point

(observer) and θT  is the transmitter phase relative to the reference phase point.

We assume that the channel (C(ω )) causes no distortion (|C( ω )| = 1) but

a delay of D seconds. D = MT + εcT. Since the receiver is only interested in

the sequence of symbols. the delay (MT) is of no concern and can be omitted.

Therefore, the received signal is given by;

where εθT = θc + θ0, and θc  is the ω0D modulu 2π .
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At the receiver, we assume having a perfect oscillator with frequency coo and

phase OR relative to the reference phase point. Multiplying the received signal by

this locally generated signal, N/r--. COS Pot — OR), we get

y(t) • \fi cos(coRt — Or ) = YL(t) cos(OT OR) + high frequency terms (1.4)

where

YL (t ) = SL(t cTT) (1.5)

Rejecting the high frequency terms, we obtain back the baseband signal, sL (t), time

shifted relative to the hypothetical reference time point by cT = co + ec . Tracking

this time is the duty of a clock synchronizer. It may seem that the multiplying

factor, cos(OT — OR), is only a constant attenuation. In fact, due to the random

nature of OT and BR, this factor can cause serious distortion. The task of a "Carrier

Synchronizer" is, therefore, to minimize the phase difference,

(I) = — OR. (1.6)

This is done by first estimating the difference between the received signal and the

locally generated oscillation. The estimate is then used in controlling the phase of

the reference oscillator to have OR = BT. Notice that only the difference phase error

(I), not 02- and OR, is involved in our synchronization process.

Circuit implementation of such carrier synchronizer is depicted by the "error

tracking" system of Fig. 1.2. An error signal, as a function of the alignment error

(phase (I)), is detected by the error detector. The error is then fed back to adjust

the carrier frequency (voltage control oscillator). If properly designed, the error

signal will be forced to zero as required.
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Figure 1.2: Basic building blocks of an error tracking system

Let us assume that the receive signal is a pure sinusoid;

Multiplying by the locally generated reference,

yields

The double frequency term can be filtered out using a lowpass filter. The other

term vanishes only when .13. = OT - OR is zero or ±7r. Additional circuits are needed

to distinguish between the correct tracking point, zero phase, and the false error

points (±7).

The multiplier serves as a phase error detector, provided that the initial

frequency difference between that of the local oscillator (adjustable clock) and of

the received signal is small enough. Otherwise, auxiliary circuits are needed for fre-

quency acquisition. The simple discussion presented so far deals with the principle

operation of PLL's.
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For modulation formats which exhibit high bandwidth and/or power effi-

ciency, such as double sideband suppressed carrier (DSB), verstigal sideband (VSB),

and quadrature amplitude modulation (QAM), we obtain, using the same error

tracking as before, different values of phase accuracy measurements [8]. For DSB,

we suffer reduction in signal-to-noise at the detector output, proportional to cos t 4),

when additive noise is present with the received signal. For VSB, we are also faced

with an extra term of interference, called "quadrature distortion," when 1) 0 0. In

the case of QAM, wherein two DSB signals are superimposed, we are faced with

a "crosstalk" interference when (I. 0 0. Therefore the price of doubling the band-

width efficiency in VSB or QAM, relative to DSB, causes an increase in phase error

sensitivity. We must also add that error detection in carrier recovery process is

more complex in VSB and QAM, relative to DSB.

1.1.2 Clock Synchronization (Principles)

To present the principles behind clock synchronization, we refer to Fig. 1.1. As-

suming we have an accurate carrier recovery, we get, from (1.4) amd (1.5) together

with (1.2);

yL(t) = akgT(t — kT — 6TT) ni,(t) (1.10)
k

where, again, ET = E0 + 6,, is the time shift of the retrieved signal relative to the

hypothetical reference time, and nL (t) is baseband additive noise. In order to obtain

the sequence { ak }, we must sample yL(t) at instances when the amplitude of the

pulse is maximum. If the sampling times, using the local clock generator, are given

by;

r(t) = E 6(t kT ERT), (1.11)
k
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Figure 1.3: "Square and Filter" clock synchronizer

where 8(t) are delta impulses, we must then adjust ER, using the difference e =

ET — ER, to make E = 0 Therefore an ad-hoc structure, similar to Fig 1.2, with delay

control of the adjustable local clock, instead of phase control, can do the job. This

is termed in the literature, "delay locked loop (DLL)."

Instead of the DLL, a practical, and frequently used, ad-hoc method to

recover the timing information from the data-carrying signal, is the squarer filter

approach depicted in Fig. 1.3. From (1.10), we get (asssuming zero noise),

If the data symbols are statistically independent and equiprobable, then the second

term has a zero mean. Since a 2k = 1, the first term is periodic with period 1/T.
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After the lowpass filter, we get the fundamental of this periodic term

27r
z(t) = fiA, sin [-2.,(t — eTT — A)] + disturbance (1.13)

The time shift A, depends on the pulse shape gT(t) and is independent of 6T. The

zero crossing of z(t) will give us the time reference needed for sampling y(t). Clearly,

due to the added disturbance, the nominal zero crossings of z(t) will fluctuate (i.e.

jitter). Also, A, may depend on the parameters of the system.

Notice, with the ad-hoc structure of Fig. 1.3,

1. We used a memoryless nonlinearity to regenerate the timing wave, and

a linear time invariant filter to extract the clock rate component.

2. Within this class of systems, for example, one might look for system pa-

rameters which minimize the random fluctuation; order of nonlinearity,

filter response, etc.

3. The random fluctuations of the zero crossings depend on the pulse shape

gT(t) and the statistical properties of the symbols.

1.2 Ad-hoc Symbol Timing Recovery (STR) Cir-
cuits

Since the objective of this thesis is to evaluate the performance of STR circuits

using a general type of nonlinearity, we scan, in this section, the different ad-hoc

STR circuits which have the principle structure of the previous section. In fact,

timing circuits might simply contain a narrowband filter tuned to a harmonic of

the pulse repetition frequency. Such a scheme works in situations where the data
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sequence has discrete spectral components. The performance of a single, high

Q, resonant circuit tuned to the pulse repetition rate has received considerable

attention, particularly in connection with its use in regenerative repeaters for PCM

systems, [9]-[11]. Assuming that a passband signal is modulated by a random

sequence, then the existence of a discrete spectral components would require that

the data sequence have a non zero mean value, and that the Fourier transform of

the data pulse not vanish at some multiple of the pulse repetition rate. [12]

As it was mentioned in the previous section, for power and bandwidth effi-

ciency, none of the above cited conditions hold. Nevertheless, it has been recognized

(see also previous section) that the previous scheme will work if a nonlinear ele-

ment such as, square law device [13], absolute value[14], fourth-law rectifier [15],

the threshold crossing device [16], and half bit delay detector [17], is placed before

the narrowband filter. For the special case when the pulses are duration limited

and nonoverlapping, the previous method of analysis used in [9]-[11] can be ap-

plied. This is so, because the output of the memoryless nonlinear element can be

interpreted as a new data sequence with a modified pulse shape. In situations of

practical interest in data communications, the signals are sharply bandlimited (du-

ration unlimited) and hence, will experience considerable pulse overlap. This results

in more difficulties in analyzing the performance of timing extraction circuits.

Franks and Bubrouski [13] considered a timing circuit involving only a

square-law device followed by a narrowband filter. They showed that such a circuit

gives satisfactory performance even when the data sequence is bandlimited to less

than the pulse repetition frequency. They used a different, untraditional, approach

in analyzing the degree of fluctuations in the position of the zero crossings of the
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timing wave, timing jitter.

It was recognized in the literature that the amount of timing jitter depends

jointly on the shape of the data pulses and the particular sequence of pulse am-

plitudes (data patterns). Takasaki [18], attempting to separate these factors, sug-

gested to examine the phase of the timing wave resulting from a repetitive pulse

pattern of a given length. The entire set of patterns, for a given pulse shape,

needs to be examined in order to determine the maximum deviation in phase shift.

Takasaki found an interesting frequency domain criteria for bounding the maxi-

mum deviation. But these criteria are easily applied only when the pattern length

is short enough.

In chapter 2, we follow Frank and Bubrouski [13] in analyzing an STR cir-

cuit employing a squarer type of nonlinearity followed by a narrow band filter

under certain band limiting conditions, for an arbitrary pulse shape. We assume

certain statistical properties of the random data sequence and examine the statisti-

cal property of the resulting cyclostationary timing wave. It is the cyclostationarity

property of the timing wave that allows us to extract timing information. In fact

the function of STR circuits is to emphasize the degree of cyclostationarity of the

data sequence.

First, in this chapter, we evaluate the mean value of the extracted timing

wave, whose zero crossings determine the nominal timing instants. Next, we eval-

uate the mean-squared value of the timing wave, both in the time and frequency

domains. Finally, we derive the final rms jitter expression. These results are ob-

tained as a function of the Fourier transform of the pulse shape, prefilter response,
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and the postfilter transfer function. We use our analytical expression to evaluate

the jitter performance for three different prefilter responses;

1. Ideal Square type prefilter

2. Raised cosine prefilter

3. Trapezoidal prefilter

The first case was completed analytically with performance results being a direct

function of the excess bandwidth, 7, and the quality factor, Q, of the postfilter.

For the other two cases, we used conventional, numerical integration, computer

routines.

The results of these calculations show that, other parameters kept equal, the

behavior of the circuit depends on the excess bandwidth of the data pulses, in such

a way that, the performance is satisfactory for medium and long values of excess

bandwidth. However the performance becomes poorer as this factor decreases.

In the extreme case of minimum bandwidth, Nyquist bandwidth, this method of

clock recovery fails. Unfortunately, clock circuits implemented with non square-law

devices are hardly tractable, mathematically, and their performance has only been

evaluated by using computer simulation. [19]

In chapter 3, we concentrate on the performance of STR circuits, imple-

mented by a memoryless device having an even, high order, nonlinearity. For

analysis, we use a new approach that is based on the moments of the input to the

nonlinear device. As in chapter 2, we first evaluate the mean value of the extracted

timing wave, using the moment method. We show that for the special case of a

15



squarer, the results are the same as those obtained using the method of chapter 2.

The mean squared value of the timing wave is related to the Fourier transforms,

Ro lf) and R2(./c ), of the Fourier coefficients, r o (T) and r2 (7), of the periodic au-

tocorrelation function, Ry (t, ․ ), of the output of the nonlinear device. Although

not simple, this autocorrelation function depends on the joint cross moments of the

input, x(t) to the nonlinearity. The cross moments of x(t), at two time points, are

related to the derivatives of the joint characteristic function. A recursive formula

is introduced, which can be used to derive these derivatives, for any type of even

nonlinearity. As in chapter 2, the rms jitter can be calculated from the mean and

mean squared values of the extracted timing wave.
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Chapter 2

Jitter Performance of STR
Circuit Employing a Squarer
Type of Nonlinearity

Symbol Timing Recovery (STR) circuits, was the subject of investigation for a

long time, by many people. A summary of their work, relative to the subject of

this thesis, was mentioned in the previous chapter. In this chapter, an analytical

approach is presented for the jitter performance of an STR circuit consisting of a

prefilter, a zero-memory nonlinear device, and a narrow band postfilter tuned to the

pulse repetition frequency. Assuming first a squarer type of nonlinearity, analytical

expressions for the mean timing wave and the rms jitter in the timing wave are

obtained as a function of the pre and post filtering characteristics. Based on these

results, exact analytical expressions are obtained for the rms jitter, for the case of

a square type of prefilter pulse shape. Then numerical computer routines are used

to evaluate the jitter performance for a raised cosine and trapezoidal types of pulse

shapes. Finally, the rms jitter curves are obtained as a function of the postfilter

quality factor, Q, for some values of rolloff factor y.
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ar■110 11(f)G(f) x(t) y(t)x2 z( t

Figure 2.1: STR circuit employing a squarer type of nonlinearity

2.1 Evaluation of rms Timing Jitter

The jitter of timing wave is defined as the deviation, LET, of the zero crossing of

z(t) from the nominal zero crossing, t o , of the mean timing wave, Erz(t)].

The main objective of this chapter is to calculate the root mean square

(rms) of the jitter of the timing wave, extracted from the output, z(t), of the

Symbol Timing Recovery (STR) circuit depicted in Fig. 2.1. Notice that z(t), the

timing wave at the output of the STR circuit, is a random process. It will be shown

later, in the next section, that the mean of the timing wave, E[z(t)], is a sinusoidal

function. We begin our derivation of the timing jitter by referring to Fig. 2.2, in

which E[z(t)] is sketched, along with another sample function of z(t) whose zero

crossing is at t o

Clearly ,L7 is a random variable depending on the particular sample func-

tion. If ,Lr is small then almost all of the sample functions will cross the horizontal

18



Figure 2.2: Timing wave sample functions

line with slopes that are almost equal, and given by

From Fig. 2.2,

therefore

where we normalized the random variable Δτ  to the period T. Hence

In the next sections we will first evaluate the mean value of the timing wave.

E[z(t)j, and equate this to zero to determine the zero crossing points, t0 . Next

19



we will evaluate the mean squared value, E[z 2 (t)] and using its Fourier domain

representation, we will obtain our results in terms of the prefilter and post filter

transfer functions. In deriving our final equation, we use certain bandlimiting

conditions which are acceptable in practical systems. Finally, we use these terms

in (2.4) to obtain the rms timing jitter.

2.2 Evaluation of the Mean Value of the Timing
Wave

From Fig. 2.1.

Making the variable change, 	 k m we get

where,

At the output of the postfilter we have the timing wave, z(t),

where the ® means convolution, and h(t) is the impulse response of the postfilter.

If we substitute the expression for y(t) in (2.8), we get
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where

The sequence of random variables { ak} are assumed to be independent of

each other with mean zero, hence

For our case where a

k

 being a binary sequence (±1) with equal probabilities, E[a2k] =

1 and E[ak] = 0, and the mean timing wave can be expressed as

The next step will be to modify (2.12), by expressing it in the frequency

domain, using the Poisson sum formula. This formula states that for any real time

function x(t) whose Fourier transform is X(f);

Therefore, using (2.12) in (2.13) yields,

where Q 0 (f) is the Fourier transform of q0(t). By using the Fourier transform of

(2.10), with rn = 0, we have

where H(f) is the transfer function of the postfilter. Substituting (2.15) into (2.14)

we obtain,
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The filter H(f) is a narrowband bandpass filter centered at the symbol rate fre-

quency 1/T and satisfies the bandlimiting condition, (see Fig. 2.3)

That is the frequency response of the filter at the second and higher harmonics of

the symbol rate frequency is zero. Taking the band limiting condition (2.17) into

Figure 2.3: Transfer function of postfilter H(f)

consideration, it is clear that all the terms in the summation of (2.16) equal zero.

except for 1= ±1. Therefore,

Note that p(t) and h(t) are real functions which implies that P(— f) and H(— f)

are the complex conjugates of P(f) and H(f) respectively. Hence,

Define
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Then (2.19) simplifies to

E[z(t)]
2 	 1
-7 ,1P0(y,-)11H(7,-)1cos(-y

27rt
7 + (2.22)

where 0 = 01 + 0 2 . Notice that from (2.7), po(t) g 2 (t) so that,

Po(f) = G(f) ® G(f) 	 (2.23)

and hence
1

Po(—) = I G(a)G(1 — a)da. 	 (2.24)
T

From (2.22) we can conclude that the mean of the timing wave, .E[z(t)] is a sinusoid

whose magnitude is
2	 1 	 1
ylPo(-7--.)11-H(y,.)1

and whose zero crossings, t o , satisfies

27rto 7r
	 + = n

2T

to = T( —- )7r

(2.25)

(2.26)

where n is an odd integer. It is at these zero crossing instants (t o ) that we evaluate

the mean of the timing waveform (see Eq. 2.4).

2.3 Evaluation of the Mean-Squared Value of
the Timing Wave

Starting from (2.9);

00	 00

z(t) 	 E E akak+mqm(i — kT) 	 (2.27)
m.-00

23



where qm (t kT) was previously defined in (2.10), to obtain the general expression

for the mean square;

E[z 2 (t)] 	 EEEE[akak+,,,,ak+jak+i+dqm(t kT)q i (t kT — jT) (2.28)
km j 1

Checking all the possibilities for m,j, and 1 we can reduce the expectation terms

according to the following conditions (see appendix A) 

E
{E[a2]} 2

2
a0

2
a0
0

for m = / j 0
A 2ac, for m 	 = 0 j 0

for m=/0 0 j= 0
for m = j 0 0 	 —j

otherwise 

E[akak+mak+Jak+i+i] = (2.29)    

Substituting in (2.28) we get:

E[z2 (t)] 	 E[4] E qc2) (t — kT) + ce,!)E > qo (t — kT)q0 (t — kT — jT)
k 	 k j j00

+c 	 E qm (t — kT)q,,,(t — kT)
k m moo

d-aZ E E qm (t — kT)q,(t — kT — rnT)
k m rn00

(2.30)

E[z 2 (t)] = E[4] E qg(i — kT) + a (2) EE qo (t — kT)q0 (t kT — jT)
	k

	
k j

	E	 qg(t - kT) + ceZ 	 e(t kT)
	k

	
km

qg(t — kT) + a E E qm(t kT)q,(t — kT — mT)
k
	

km

—0(2) E qg(i kT)
	

(2.31)
k

By letting / = k + j, in the second term of the right hand expression of (2.31), we

obtain;

E E qo (t — knqo(t — kT — jT) = E E qo(t knqo (t — 1T)
k j 	 k 	 1

.70(t 	 kT)) 
2 	

(2.32)
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Also, noting that (see appendix B)

q_ m (t kT — mT) = qm (t — kT) 	 (2.33)

we get the following expression for the mean squared value of the timing wave,

	E[z( (t)] 	 [ao E qo(t — kT)] 2 + 	 - 3aZ) E q(2) (t kT)
	k 	 k

E E qn,2 (t — kT). 	 (2.34)
k m

Using the definition of the variance,

var[z(t)] 	 E[z 2 (t)]	 {E[z(t)]} 2 	(2.35)

and noting, from (2.27), that

E[z(t)] = a°	qa (t — kT), 	 (2.36)
k

is related to the first term on the right hand side of (2.34), we obtain the expression

for the variance of the timing wave,

	

var[z(t)] = 	 E E 	 kT) 	 — 34) E qRt — kT) 	 (2.37)
k

where (see 2.10 and 2.7),

qm (t — kT) = [g(t — kT)g[t — kT — mT)] h(t) 	 (2.38)

and

a-4 = a4
 
- E[al

a° 	E [a2 ]
	

(2.39)

It should be noted that since E[z(to )] = 0, then at the zero crossings, t o , of the

mean both the variance and the mean squared values are equal. Therefore when
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we calculate the rms jitter at t o (Eq. 2.4) we can use the variance expression rather

than the mean squared.

The variance expression we obtained thus far, is a time domain representa-

tion which is rather difficult to evaluate. As a matter of fact this can probably be

done by using a computer program. However our main goal in this chapter is to de-

termine the jitter analytically. We therefore use, in the next section, the frequency

domain approach in attempt to simplify our analytical expression further.

2.3.1 Frequency Domain Representation of the Variance
of the Timing Wave

The purpose of this section is to transform the time domain expression of the vari-

ance of the timing wave into frequency domain . This will be achieved by using

the Poisson sum formula discussed earlier. The final expression will be analytically

simple. For the convenience of the reader we will separate the process into two parts.

Part 1, Frequency domain representation of E E qn,2 (t kT)

Let

a(t) = E qm(t)

where

qm (t) 	 [g(t)g(t — mT)] h(t).
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If we look at a(t) as a pulse in time domain, we could say that

00E a(t — kT) = E E (t kT)	 (2.42)
k=—co 	 k m

is periodic with period T. Using the Poisson formula we can write

where fo =

00E a(t — kT) = E Cr exp(j2rfort),
k=—oo

-41, and C',s are the Fourier coefficients given by

A(rio) Cr =

(2.43)

(2.44)

with A(f) being the Fourier transform of a(t). By substituting (2.43) and (2.44) in

(2.42) we obtain the time-frequency relation

From (2.40),

00E en	
1

(t — kT) =	 E A(
r
2, ) exp( j 

2rrt 

k m 	 r_— oo

A(f) = .T[a(t)]

= E{Qm(i) Qin(f)]

= E {[Pm(f)H(f)] 0 [Pm(.f)H(.f)}}

(2.45)

(2.46)

where .T[.] represents Fourier transform. Note that we used the fact that qm (t) =

pm (t) h(t). Our next step will be to simplify the expression for Q m (f). We know

that

pm (t) g(t)g(t — mT)	 (2.47)

implies that

Pm( f)	 G( f) 0 [G(f) exp(—j27i-frnT)]

G(v) exp(—j2irvm,T)G(f — v)dv	 (2.48)
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and

Qm(f) = H(f) IG(v)exp(—j2rvmT)G(f v)dv. 	 (2.49)

Therefore

A(f) = E LQm(a)Q,,(f — a)da
m

= 	 {1{1/(a)1,G(v)exp(—j2T-vmT)G(ce — v)dv]

[H(f — a) fi3 G (p ) exp (—j277-PmT ) G (f — a — 13)dgda} .(2.50)

We now group and rearrange the order or summation and integration to produce a

more understandable form for our equation.

A(f) 	 jo[H(a)H(f — a)G(v)G(a — v)G(fi)G(f — a — [3)

E exp(—J27(v + p)mT)dOdvda 	 (2.51)

If we use the Poisson sum formula again, we can get rid of the summation

term. In fact,

leads for x(t) = 6. (t),

1 	 .2irrt
x(t — kr) = ---7 E X (T., ; ) exp(3 7,, )

T
(2.52)

E S (t — kV) = y,-
r

.27rrt
• exp(3 	

T'
) (2.53)

Substituting T = 747 , we get

1 	

6(t
 

T
- 	exp(j2irrtT)
	

(2.54)

Now make the variable change rn —r,

1
8(i — 	 = E exp(—j2rmtT) 	 (2.55)

k
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A further variable change, t = v /3, results in,

Eexp(—j2r(v f3)mT) = 1 E45(v + — ). 	 (2.56)

Note that the left hand part of (2.56) is identical to the summation term inside the

integral of (2.51). If we substitute(2.56) in (2.51) we will get a new expression for

A(f),

A(f) 1-77. f r13 H(a),H(f — a)G(v)G(a — v)G(P)G(f — a — 0)

6(v + —	 (2.57)

Integrating (2.57) with respect to v, we get

A(f) 	 1 	 [f H(a)I1(f — a)G(-; — P)G(a + 	 -— 7-,-k
T k

G(/3)G(f — a — fi)d,8dal 	 (2.58)

Equation 2.58 is the frequency domain representation of a(t) = E rn qm2 (t). Substi-

tuting (2.58) with f = 3,, in (2.45), we finally obtain

EE qm2 (t — kT) =
k 2 EE/ f H(c)H(7,-1. —a)G( y; — 0)T , k a

G(a 13 — 
T )G(0)G( 11

 
— a — f3)

exp( j 
27rrt 

)dad0T 
	

(2.59)

This is the frequency domain representation of the first sum in the expression for

the variance of z(t), in (2.37). In the next section we find the frequency domain

representation of the second sum of (2.37).
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Part 2. Frequency domain representation of > q(2) (t kT)

Just as in part 1, we start by letting

b(t) = qg(t)	 (2.60)

where

qo(t) = [g(t)g(t))	 h(t).

Therefore by using the Poisson formula we can write

E b(t kT) = E Cr exp(j2R- fort)
k 	 r

where

B(rio) Cr
T

(2.6 1)

(2.62)

(2.63)

B(f) is the Fourier transform of b(t), and fo = 4,-. Using (2.63) in (2.62), together

with (2.60), we get

E qg(t kT)
k

From(2.60) and (2.61),

7,B(_
r ) ex ( .27rrt

" T 	 ).

B(f) = Qo(i) Qo(f)

[130(.0 1-1(f)] [Po(PH (f)].

Note that we used the fact that qo (t) = po (t) h(t). Also,

po (t) = g(t)g(t),

implies,

Po(f) = G(f) G(f)

= IG(v)G(f — v)dv

(2.64)

(2.65)

(2.66)

(2.67)
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and

Qo(f) = H(f) IG(v)G(f — v)dv. 	 (2.68)

Therefore

B(f) Q o (a)Q o(f a)da

1 [11(a) 1G(v)G(a v)dv]

[H(f — a) Jr G(P)G(f — a — #)d#Jda
0

( 2.69)

We now rearrange the order of integrations to produce

B(f)	 fi;H(a)H(f — a)G(v)G(a v)

G(,(3)G(f — a — P)dfldvda.	 (2.70)

Substituting (2.70) with f = i.,- in (2.64) we obtain

Eci (t — kT) = T
1 E I I f H(a)H(Tr — 

a)G(v)G(a — v)
k	 r 	 a, ti 13

G(0)G( -11 — a — )3) exp( j 
21rrt 

)d/3dvda (2.71)
T	 T

2.3.2 Effect of the Prefilter and Postfilter on the Fre-
quency Representation of the Variance

Equations (2.45) and (2.64) determine the final frequency domain representation of

the variance of the timing wave. Substituting these equations in (2.37) we get,

var[z(t)] = A( —
r

 exp(j
 27rt

T r T
c14 3a2
	 ° E B( r exp( j 

21rrt
T	 r T

(2.72)

where, from (2.58) and (2.70) respectively,
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Ay 	H(a)Hil — a)G(--1;-; fl)G(a +

G(()G(, — a — /3)dad/ 	 (2.73)

and

B CT' =	 f 1,3 H(a)Hi.. a)G(v)G(a v)

G(13)G(i, — a — f3)dvd/3da 	 (2.74)

Equation (2.72) represents a frequency domain expression for the variance

of the timing wave z(t). Note that this equation depends on the responses of both

the prefilter and the postfiler. We will now use the bandlimiting conditions of both

responses, to determine a more simple version for the variance. We will start by

applying the conditions to the first part of the expression and then apply the same

procedure for the second part.

For the purpose of our derivations, we use a prefilter bandlimited to 1/T,

that is

G(f) = 0 	 for 	 Ifl -1T (2.75)

and a postfilter with center frequency 1/T and bandwidth T , whose low-pass equiv-

alent is

HLp(f) = 0 	 for 	
2T.
	 (2.76)

Using the condition in (2.76) we note that the product

H (a)H — a) 	 (2.77)
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yields zero except for r = 0 and r ±2. Therefore

only for r 0, ±2 	 (2.78)

Derivation of A(0)

For r = 0 we have, from (2.73),

	

A(0) = 	 f3)G(ct — 	 i3))G(0)G( —a — 13)&10. (2.79)

Notice that G(0) is a lowpass transfer function extending to a maximum of f

This includes the case of a raised cosine pulse shape with rolloff factor y < 1. Using

such assumption, it is clear that G(T — ,8)G(l) vanishes for k > 1 and hence (2.79)

reduces to

	

A(0) 	 fc, fo lH(a)1 2G(-0)G(ce 0)G(p)G(—ci — p)dadfi

TJ fie viccol2G4- — P)G(a+ fl 	 — Mdced0

4 1H(a)1 2G(--ITL — fi)G(a + + )G(13)G(-4a p)dadP.

(2.80)

Since g(t) is real, G*(f) 	 G( — f) for every f. By using algebraic manipulation

(See Eqn. C.10, appendix C) we rewrite (2.80),

A(0) ={1 	 IH(a)1 2 (IG( 3 )1 2 1G(0 + 13)1 2

-1-2Re[C(0)C*(a+ 0)1cladi3 }
	

(2.81)

where

C(f) = G(f)G(-71-, — f) 	 (2.82)
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Derivation of A(T)

For r = 2 we have, from (2.73),

= 	 ff H (a)H (;- —	 — P)G(a —(— 0))G(0)G4- — a — P)dad13.
-Lk ag

(2.83)

It can easily be seen that

G(0)G(T,	 ,(3) 	 0 	 for lki > 1. 	 (2.84)

Therefore the right hand part of (2.84) can be expanded into

[14 	 — ce)G(— PP (a + 13)G (g)G (T-2 — a — 13)dadfi

+	 H (a) H —	 I3)G(	 + a +,3)G(0)Gq_, — a — P)dad

+ 	 1/3 H(ce)H( T2 a)G( — 

T1 	 _# .) . T
1 — G( + + 0)G(0)G(T.,2 — — )dad )3]

(2.85)

Since G(f) is limited to I f j < 1/T and I G(f)1	 (— f)i, the terms G(a + 13) and

— a — fi) do not overlap, resulting in a zero product in the first integral of

(2.85). Similarly the product of G(4,- + a+ /3) and Gq, — a-0) also result in a zero

product for the third integral. We are thereby left with only the second integral.

Using (2.82), we have

C (a + — 

1
—T ) =	 +	 —

1
T )G(

1

T — — -I- j- ).
	 (2.86)

Therefore

A(2 ) = —
1 j H (a)H(

2
 — a)C AC (a + — 

1
—T d 610 .	 (2.87)

T aT	 p
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Derivation of A

For r = —2 we have, from (2.73),

A( T2 ) 	 E 	H(a)H, T2 ,
( ) a)G4- —0)G(a+P — Tk PAG'— T2

	

(	 a— (3)dad i3
k 	 ji3

(2.88)

Noting again that this equation is only valid for k = 0 and k = ±1, the right hand

side of (2.88) can be expanded into

T1 	
(

[1 H(a)H , T2
a)G(—P)G(a 0)G(0)G(—; — — p)dadfl

+ nfo H(a)H(—; — a)G(-17.7 	+ + P)G(13)G(--;- — a — f3)dadfi

+	 H(a)H(—; —	 , — P)G4-, + a + P)G03)G(- -; — a — 13)dadid

(2.89)

Similar to the previous part, note that the term G(a + 13)G(-3-, — a— 13) causes the

first integral expression to vanish. Also the product G(—+, + a+ 13)G(q, — a — 0),

in the second integral is zero. We are therefore left with only the third integral

expression which becomes

1 	 2 	 1 	 1 	 2
Ljo 	— a — 13)G(-0)G(--i,- + a p)dadfi.

(2.90)

Note that in (2.90) we made the variable changes a = —a and /3 = to aid us in

the following steps. From (2.82) and (2.86) we get, respectively,

C * (0) = G( --- )3 )G(-
1
T + 0),	 (2.91)

and

C*(a	 — —T )
	

G*(a	 — -71 )G*(--2.,1 — — + --71

= G( 17,- — a — fl)G(a + — 2 )

	

(2.92)
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Substituting (2.91) and (2.92) in (2.90), we get

A(— ;- )	 H*(a)Hq — a)C*(13)C* (a +p- 	 (2.93)

Note that, as expected A(-3-,) is the conjugate of A(1,-) and the sum of these

two terms is real.

Derivation of B(0)

Similar to the previous cases, B(i) 	 0 only for r 	 0, ±2. For r = 0, we have

from (2.74)

B(0) = f f IH(a)H(—a)G(v)G(a — v)GGEOG( —a — 0)dadfldv. 	 (2.94)
a ,0

Rearranging terms, we rewrite

B(0) = LH (a)H(—a) 	 — Odd

[G((3fo )G(—a — P)didda 	 (2.95)

We now change the variable to 	 in the second internal integral and use the

fact that G*((3) = G(-0) and obtain,

B(0) = 	 H(a)H( —a) [1: G(v)G(a — v)dvi

[fo G* (0)G* (cx — ,8)dO ida

L 1H(a)1 2 1P0 (a)1 2 da. 	 (2.96)

In the last step we used,

Po(a) = G(a) G(a) 	 (2.97)
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Derivation of B(1,-)

For r = 2, we have, from (2.74)

B(
2
y) = 	 /0 H(a)H(-; a)G (v)G(a — v)G(P)G(;.-; — — p)dacil3dv

= LH ( a ) H (-; a)P0 (a)PO 4- — a)da 	 (2.98)

with Po(a) as defined in (2.97).

Derivation of B(- 1,- )

For r = —2, from (2.74),

2 = f H(a)H(— T,2 a)G(v)G(a — v)GAG(--; — — #)dadfldv
a /9 1/

= 	 j H*(—a)H*(-
2 

+ a)G*(-0G*(—a + ii)G*(-0)G*(-
9
, + + fi)dadOdv.

P

(2.99)

Changing the variables

a = —a

= -0

—

we get

BHT-) = [L 	 H(a)H(
9
i,- — a)G(v)G(a — zi)G(3)G4., — a — 13)] dadi3dv

2
= B*(—

T
) (2.100)

Just as in the expression for A(T), B(-3-,) and B(,) are complex conjugates and

therefore their sum is real.
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2.3.3 Final Frequency Domain Expression of the Variance

In our process, trying to determine the frequency domain expression for the variance

of the timing wave z(t), we managed to reduce the expression from a complicated

one (Eq. 2.72) involving summations and triple integrations to one involving merely

a double integration. The resulting expression consists of only six terms. Next, we

will further reduce this expression to one with only two terms. Before doing so, lets

note that since we are using a binary sequence {ak} with equal probability, then

2	 1E[cqj = —2 (1) 2 + 	 = 1 	 (2.101)

= E[at 	
1 	 1

= —2 (1) 4 + --2-(-1) 4 = 1 	 (2.102)

Using these values in (2.72), we obtain

227rrt 	 2 	 r 	 .27rt
var[z(t)] = 	 E A(-

T
1-1 ) exp(j 	 ) 

T 
> B(

T
) exp( .7 	

T r=0 ±2	 r=0 ±2 

E "V„ exp(j 
27rt 

), (2.103)
r=0 ±2

where

Vr
= [ ._172 A(Iir 	 ;B(Iir )]

(2.104)

for r = 0 and ±2. Since 17_2 = 172* , we finally obtain

Var[z(t)] = Vo 	1V2 1cos(
47rt
—7—, - 0)	 (2.105)

where

	

Vo = —
2 

[A(0) — B(0)] 	 (2.106)

1 1721 = 2T iA(-
2
T ) B(2	T 	

(2.107)

0 arctan [A(; ) — B( T-2 (2.108)

with A(0) and B(0) defined in (2.81) and (2.96), respectively, while A(-22-,) and B(f)

are defined in (2.87) and (2.98), respectively.
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2.4 Final Rms Jitter Expression

By definition

E[z2(to)] 	 var[z(to)] + lEk(to)11 2 . 	 (2.109)

Since IE[z(to)]} 2 is zero, by using (2.105), we have

E [ z2 (to)]
	

var[z(to)]

Vo + 21V2 1cos( 47to + 0).
T

(2.110)

Substituting to from (2.26) we have

E[z2 (t o )] = 	 21V2Icos(n7r — 20+ 0), n odd 	 (2.111)

Also using (2.22), we get

7r 	 1 	 1
E[.*°)] = 	

4 
—T2113o( —T )11H( ) 	

27rto

(4111(1)1sin(721) 	 n odd 	 (2.112)
T2 ° T	 T	 2

Using (2.111) and (2.112) in (2.4), we finally obtain

(AT) 	 T [V0 + 21V2 cos(nir 	 + 0)]1/2

rms 	47r	 1Po(PiiH(P11sin(2)1

The minimum rms jitter occurs when 20 = 0. For that case

2 1 V2 1) 112

rms min 	 47ru1

where, from (2.106) together with (2.81) and (2.95),

= 2 j_if:0 ,H(,)12 {1: p(f+v)12,G(v),2dv

„ i re° G(f — OG(v)dv1 2

+23?..e EC* (f v)C(v)dv} df.

Vo

(2.113)

(2.114)

(2.115)
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from (2.107), together with (2.87) and (2.98),

V2 	
2 foo 	 2	 00 	 1

—
T2 —03 

H(—T 
— f)H(f)	 C (f — 

T 
v)C(v)dv

—TP0(-
2
T — f)Po(f)} df, (2.116)

and
1	 1	 1
T T	 T

(2. 11 7 )

with C(f), as was defined in (2.82), Po(f) in (2.99) and H(f) being the transfer

function of the postfilter.

2.5 Example

In this section we apply the results obtained in the previous sections of this chapter

to a specific, and practical, example. We use a prefilter whose bandwidth is varied

between 1/T and 2/T hertz. The evaluation will be performed using analytical

tools. Also note that we selected a bandpass postfilter, whose lowpass equivalent,

HI,p(f), has a single pole, given by

1 
HLp(f ) 

= 1 -I- j2fTQ

where 1/T is the baud rate and Q is the quality factor.

(2.118)
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2.5.1 Ideal Bandlimiting Prefilter Response

Let G(f) be given by,

and depicted in Fig. 2.4, 7 = 0 corresponds to the minimum transmission band-

Figure 2.4: G(f), prefilter frequency response

width needed for zero Inter Symbol Interference 181, Nyquist bandwidth, and 7 = 1

corresponds to the case of 100 percent excess bandwidth. Also notice that the area

under G(f) is taken to be unity so that g(0) = 1.
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Evaluation of V0

Using (2.115) we first rewrite

where

can be shown to have the form

which is depicted in Fig. 2.5, for 7 0.5 and T = 1.

Also,
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can be shown to have the form

which is depicted in Fig. 2.6, for 'y = 0.5 and T 	 1.

Figure 2.6: Y(f), Evaluated for 1, = 0.5 and T = 1

Finally,

where, by definition
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Therefore Z(f) can be shown to have the form

which is depicted in Fig. 2.7, for γ  = 0.5 and T =1.

Figure 2.7: Z(f), Evaluated for γ  = 0.5 and T =1

In order to calculate V0 we need to obtain |H(f)|2, the bandpass response

of the postfilter, whose center frequency is at 1/T. Notice that

where HLP (f) was defined in (2.118). One can easily observe that
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For sake of simplicity we separate the integral expression for Vo , (2.120), into three

parts as follows

170 	 1.1 — .12 + .13	 (2.130)

where it can be observed that

Il 	 _72_1_00.1H (f)1 2x (f) df 	 (2.131)

.;,_EIH(f)12Y(i)df
	

(2.132)

IH(f)1 2 7ZeZ(f)df
	

(2.133)

X(f), Y(f), and Z(f) were calculated previously and their results were given in

(2.122), (2.124), and (2.127) respectively.

1. Evaluation of

Substituting (2.122) and (2.129) into (2.131) we can write

where

f
1.1 = 

2
2 

2 LT IHLP(f	 a f b)df (2.134)

a

b

(2.135)

(2.136)

Note that we also used the fact that the integrand in (2.131) is an even function of

f. Using (2.119) to substitute for HLp(f) we get

T
	42
	 —af b 	df	

(2.137)
= T 2 io 1 + 4Q 2 (fT — 1)2
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This integral can be evaluated by first making a change of variable and then using

table of integrals. Doing so, the final result obtained is,

a 	 4Q2 + 1
Il 

4 [bt — a 	
_1 2Q7 (2.138)= 	 2Q (tan 	 + tan -1- 2Q) -I- 8Q2 In 4(22,12 +

where a and b defined in (2.135) and (2.136), respectively.

2. Evaluation of /2

Substituting (2.124) and (2.129) into (2.132) we obtain, by using the fact that the

integrand of (2.132) is an even function of f,

T 	4T f it" 	— F)2 
12 	 df

1+ -y	 4Q2(fT — 1) 2
(2.139 )

Again, this integral can be evaluated by first changing variables and then applying

a suitable table of integrals. The final expression for /2 yields

/2
4 	 1 	 -y 	 1

(1 + 7 )2Q 4Q 	 ( 8Q2 	2
-y2

 ) (tan -1 2(27 + tan- 1 2Q - + 	 in  4Q2)	 -1- 14Q 4Q 2 72

(2.140)

3. Evaluation of /3

Substituting Eqns. (2.127) and (2.129) into (2.133) we obtain, by using even sym-

metry of the integrand,

T 	4 &,	 —ctif
A3 T2 JO 1 + 4Q 2 (fT — 1)

2df (2.141)

46



where

T  ) 4
a 1 = 2

1 +
T37b1 = 2

(1 + 7) 4

(2.142)

(2.143)

Just as in the evaluation of I1 and /2 , we again use the table of integrals to produce

	

a1 	4Q2 + 1 4 [[ Tbi2c2— (tan -1 2Q(7 1) + tan -1 2Q) + 8(22 in 4Q2(7 — 1 )2 + 1
(2.144)

Evaluation of V2

Similar to the process used for evaluating Vo , we rewrite (2.116) as

V2 = 7.272- 	- f)H(f) [V(f) — TW (f)] df 	 (2.145)

where,

V(f) = reo C(f 	 v)C(v)dv 	 (2.146)

can be shown to have the form
T3  ( 	 1 + fT )

(i-f-y) 4 `
1 —7 < f < T  

V( f) = 	 -I- 1 — fT) T < f <

0 	 elsewhere

which is depicted in Fig. 2.8, for -y = 0.5 and T = 1. Also

W(f) = Po ( -2T f)P0(f)

(2.147)

(2. 148 )

where, by definition,

Po(f) = G( f) 0 G( f) 	 (2.149)
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Frequency (Hz)

Figure 2.8: V(f), Evaluated for γ  = 0.5 and T = 1

can be shown to have the form

Therefore W(f) can be shown to have the form

which is depicted in Fig. 2.9, for γ  = 0.5 and T = 1.

In order to evaluate V2 , we first need to calculate the term H(f)H(2/T - f).

By using (2.128) we get
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Figure 2.9: W(f), Evaluated for γ  = 0.5 and T = 1

where we assumed that HLP (f) = 0 for If > 1/T, and used the fact that HLP(-f) =H* LP

(f).

For the sake of simplicity, we rewrite V2 of (2.145) as a sum of two integrals.

where it can be observed that

and

with V(f) and W(f) given in (2.147) and (2.151), respectively, and relation (2.1.52)

also taken into consideration.
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1. Evaluation of L 1

Substituting (2.147) into (2.154) we write

2 	2	L 	r 	LTA r, (4.

	1 	T2 (1 + 7) 4 	1.1-'11P°

1
y,)1 2 (1 + 7 — fT)df (2.156)

where we used the fact that the integrand in (2.154) has an even symmetry with

respect to 1/T. Using the expression for HLp(f) we get

L 1 -- 	
4T	 4.2 	+ 7 — fT  df

(1 + 7) 4 IT 	+4Q2 (fT — 1) 2
(2.157)

Finally, by making a suitable change of variables and applying an appropriate table

of integrals, we obtain

=	 {4Q7 tan -1 2Q7 ln(4Q 27 2 + 1)]
2Q2 

1

(1 H-ey)4
(2.158)

2. Evaluation of L2

Substituting (2.151) into (2.155) we can write,

L2 = 2 2  T 2  f i-P	 1
—
T

)I 2 [f2 T2 2fT (1 — -y 2 )] df	 (2.159)
T (1 + 1/4 )

where, again, we used the symmetric property of the integrand of (2.155) with

respect to 1/T. Using the expression for HLp we get

4T 	f2T2 —2fT+(1 —72 )
df	=	 ( 	 )2.160

	

L2--
	 + .7) 4 IL 	 1+ 4(2 2 (fT — 1) 2

which, using table of integrals, it can be shown that,

L2 =	
2 

	[(7-
2 	 1

—tart-1 2Ch —
(V .1 + 72 ) 	 4Q2 	 2Q

( 2.16 1 )
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Evaluating the Denominator of (2.114)

From (2.117), the denominator is given by

1= 7-,11/(y,-)11P0(y-,-)1

Clearly H(+) = 1, and from (2.150)

(2.162)

therefore

1 	 'YT NT- ) = (1 + 7) 2

= 47r  (1 + „02 .

Magnitude of the Extracted Timing Wave

From (2.22)

E[z(t)J = 2Th-IP0( 1y)11H(y)1 cos(T27rt + 0).

Using (2.163) for Po(+,) and knowing that IH(+)1 = 1 we determine

1E[z(t)]1= 
( 1 + ,y )2

(2.165)

( 2.166 )

Rms Jitter

Gathering all the parts together we determine the rms jitter expression as

L'217 rms , min

[(Jr — 1-2 + 13) — 2(Li L2)1112 
47pi

(2.167)
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where /1 ,/2,1-3,L1,L2 , and u 1 , are given by (2.138), (2.140), (2.144), (2.158), (2.161),

and (2.164) respectively.

In conclusion, we notice that the minimum rms jitter in this example de-

pends solely on the postfilter's quality factor Q and the prefilter's excess bandwidth

parameter ry. A simple computer program was written in order to obtain the values

of the jitter, (2.167), as a function of Q and

2.6 Results

In this section we depict the results obtained from the analytical approach for a

squarer type of nonlinearity employing an ideal type of prefilter. We then proceed

by evaluating the performance using different type of prefilters such as raised cosine

and trapezoidal.

Due to the complexity of the terms, for the raised cosine and trapezoidal

responses, we can not derive V0 and V2 as a function of 1 , and Q directly. Instead

we use equations 2.115 and 2.116 to calculate V0 and V2 , respectively, and then,

together with the results of the denominator (2.117), we determine the rms jitter.

2.6.1 Ideal Square Type of Prefilter

In Fig. 2.10 we depict the values of the minimum rms jitter as a function of Q,

between 25 — 150 in steps of 25. The excess bandwidth, 0.2 — 0.8 in steps of 0.2,
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was used as a parameter for these curves. Also, for the convenience of the reader.

tabulated results are given in Table (2.1). Last we plot, in Fig. 2.11, the mag-

Q γ =0.20.2 γ  = 0.4 γ =0.60.6 γ = 0.8
25 0.034799 0.017216  0.011643 0.009436
50 0.019663 0.00975 0.006574 0.005245
75 0.013932 0.006915 0.004656 0.00369
100 0.010868 0.005397 0.003631 0.002867
125 0.008947 0.004445 0.002989 0.002353
150 0.007624 0.003789 0.002547 0.002001

Table 2.1: rms jitter as a function of Q, for an ideal bandlimiting filter response

Figure 2.10: rms jitter for an ideal square type of prefilter

nitude of the extracted timing wave as a function of the excess bandwidth γ , (2.164).
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Figure 2.11: Magnitude of the mean timing wave for ideal bandlimiting filter re-
sponse

From these figures, we notice that the magnitude of the extracted timing

wave decreases as γ  decreases and finally vanishes as γ  approaches zero. The rms

jitter, on the other hand, increases as γ  decreases, for a fixed quality factor Q of

the postfiler. Also for a fixed a better quality factor for the postfilter produces a

better jitter performance. Note that, with the reduction of the excess bandwidth γ ,

not only are we worsening the jitter but we are also left with a smaller amplitude

for the extracted timing wave and hence are more susceptible to noise. In order

to improve both of these performance factors, amplitude and jitter, we need to

increase our excess bandwidth and use a postfilter with a high qualify factor.
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2.6.2 Raised Cosine Filter

For the second example we use a prefilter whose frequency response is

which is depicted in Fig. 2.12, for y = 0.5 and T = 1. As in the first example.

Figure 2.12: Raised cosine prefilter response for -y = 0.5

g(0)	 1. It is known that the raised cosine response. like the ideal bandlimited

prefilter response (with -y = 0), satisfies the Nyquist 'condition g(kT) = 0 for k 0

and hence has zero ISI. However, because of the smaller sidelobes of the pulse (in

comparison to the ideal bandlimited response), a system containing a raised cosine

type of filter is less sensitive to sampling errors.

As in the previous example, we depict, in Fig. 2.13, the rms jitter as the
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function of Q with 7 used as a parameter. Again, for the convenience of the reader

we tabulated the results in Table 2.2. Finally, the magnitude of the extracted

timing wave is plotted in Fig. 2.14.

Q γ  = 0.2 γ  = 0.4 γ  = 0.5 γ  = 0.6 γ  = 0.8 γ  = 1.0
25 0.121379 0.044075 0.030396 0.021595 0.011361 0.005725
50 0.062815 0.022594 0.015548 0.011094 0.005819 0.002956
75 0.039757 0.015028 0.010439 0.007309 0.003915 0.001950
100 0.028647 0.011533 0.007868 0.005641 0.002884 0.001497
125 0.022475 0.009549 0.006324 0.004506 0.001865 0.001298
150 0.019066 0.007303 0.005298 0.003935 0.002126 0.000999

Table 2.2: rms jitter values, raised cosine response

Figure 2.13: rms jitter for a raised cosine prefilter response
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Figure 2.14: Magnitude of mean of timing wave, raised cosine prefilter response

2.6.3 Trapezoidal prefilter

As a last example we use a filter whose response is as follows;

elsewhere

which is depicted in Fig. 2.15, for γ  = 0.5 and T = 1. Again, notice that, g(0) = 1.

The results for this kind of response are depicted in Table 2.3 and Figs. 2.16 and

2.17, respectively.
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Figure 2.15: Trapezoidal prefilter response for 7 0.5

Q γ  = 0.2 γ  = 0.4 γ  = 0.5 γ  = 0.6 γ  = 0.8 γ  = 1.0
25 0.081620 0.027248 0.017698 0.011686 0.004464 0.000813
50 0.042157 0.013994 0.009087 0.006003 0.002315 0.000496
75 0.028432 0.009421 0.006118 0.004044 0.001571 0.000364

100 0.021447 0.007104 0.004614 0.003050 0.001193 0.000295
125 0.017169 0.005704 0.003706 0.002453 0.000964 0.000252
150 0.014422 0.004767 0.003098 0.002052 0.000810 0.000223

Table 2.3: rms jitter values, trapezoidal response

58



Figure 2.16: rms jitter for a raised trapezoidal prefilter response

Figure 2.17: Magnitude of mean of timing wave, trapezoidal prefilter response
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2.6.4 Performance Comparison

Based on the results of the previous section, the performance of STR circuits in

extracting the timing wave, when using a square, raised cosine, and trapezoidal

pulse shapes, are compared in Figs. 2.18 and 2.19 (for y = 0.5). In the Fig. 2.18,

we show the amplitude of the mean value of the extracted timing wave as a function

of the excess bandwidth parameter, y. The ideal type of prefilter response resulted

in larger extracted timing amplitude than the trapezoidal response, which in turn

was larger than the raised cosine response. Also note that, except for the ideal type

of prefilter response, all responses yielded a. linear amplitude gain as a function of

the excess bandwidth.

An important category of our research involves timing extraction at lower

transmission bandwidth. Paying particular attention to the lower part of Fig. 2.18,

we notice how, around y < 0.2, the amplitude of the extracted timing wave slowly

vanishes and becomes insignificant for extraction purposes. This is where timing

recovery fails, and we have to look for other methods of extractions. Such method

is the topic of the next chapter.

In Fig. 2.19, comparison of the three responses is made for the Rms jitter,

as a function of the quality factor Q. Again, the ideal square type of response

seems to outperform all the others. We also note that the using the trapezoidal

response, due to it's side characteristics, is slightly better than the raised cosine

type of response. We should emphasize, however, that the square pulse shape, with

non zero excess bandwidth, does not satisfy the Nyquist pulse shape condition and

hence it is not a zero /S/ pulse. Therefore, we shall conclude that for the purpose
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of timing extraction using a squarer type of nonlinearity, a trapezoidal prefilter

response is the best selection.

Figure 2.18: Comparison of amplitudes of the extract timing wave for the different
types of prefilter responses

Figure 2.19: Comparison of rms jitter of the extracted timing wave for the different
types of prefilter responses
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Chapter 3

The Moment Method for
Evaluating the Jitter
Performance of STR Circuits
Employing High Order
Nonlinearity

The investigations on clock recovery employing a square-law device, performed in

the previous chapter, show that other parameters being kept the same, it's behavior

depends on the excess bandwidth of the input pulses. The results obtained showed

us that a satisfactory performance is achieved for medium and large values of excess

bandwidth 7. However, the performance of the circuit deteriorates as -y decreases.

In the extreme case of 7 = 0, Nyquist bandwidth, the magnitude of the recovered

timing wave becomes zero and hence this method of timing recovery fails. Therefore,

when dealing with such strongly bandlimited pulses, we must consider other types

of nonlinearity. Unfortunately, clock circuits implemented with non square law

devices are difficult to evaluate analytically, using the method of chapter 2. In fact,
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such circuits are hardly tractable mathematically and their performance has only

been evaluated by computer simulations [19] .

In this chapter, we describe a new technique for evaluating the performance

of a zero memory STR circuit which employs an even, high order, nonlinearity. The

technique implements the moments of the input signal to the timing circuit. We

begin the following section, using the same steps used in chapter 2, by deriving the

expression for the jitter performance.

In section 3.2 the moments of the input to the nonlinear device are used

to find the mean of the extracted timing wave at the output of the STR circuit.

The particular case of second order nonlinearity results are compared to those

obtained in chapter 2. The mean squared value of the timing wave is related to

the autocorrelation function, Ry(t, 8), of the output of the nonlinear device. Using

the fact that this function is periodic, its Fourier series coefficients are obtained

and the Fourier transform of those coefficient is used to obtain our results. Taking

the transfer function of the post filter into effect, only the Fourier transform of the

zero, ro (T), and second, r 2 (r), order coefficients enter into the final expression for

the mean squared value of the timing wave.

To pursue determining ro(T) and r 2 (r), we relate Ry(t, s) to the joint mo-

ments of the inputs to the nonlinear device. Then, in section 3.4, we relate these

moments to the joint characteristic function and its derivatives, which could be

obtained by some recursive formulation. These recursions can be used for any type

of even order nonlinearity.
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ak 	
G(f)
	 x(t) 

E C,,X 2n y (t)
	

H(f)
	 zt

Figure 3.1: Basic STR circuit employing a general type of nonlinearity

3.1 Evaluation of the rms timing jitter

As in Fig 2.1, the basic model is redrawn in Fig 3.1 where, instead of y(t) = x 2 (t),

we used y(t) f[x(t)]. The transformation f[.] is a high order, zero memory,

nonlinear device represented by the finite power series of the form

y(t) = f[x(t)]
N

= 	 cnx2n(t) (3.1)
n=0

where the Cn 's. n 	 1.2 • N are given real constants and 2N is the order of the

nonlinearity. The postfilter to be used, same as in chapter 2, is a narrowband band-

pass filter whose transfer function, H(f), is centered at the symbol rate frequency

1/T and satisfies the band limiting condition

H(f) = 0	 for
1

> 2T •
(3.2)    

Equation (3.2) reflects the condition that the second and higher harmonics of the

symbol rate are eliminated.

For the evaluation of the rms timing jitter, we refer to equation (2.2) of the

64



previous chapter
(A'T 	 A 1 {E[z 2 (to )]} 2

T trrns 	T E[i(to )]
	 (3.3)

In the following sections, we will follow the same steps as in chapter 2, using the

moments of the input to the nonlinear device.

3.2 Evaluation of the Mean Value of the Timing
Wave

From Fig. 3.1, z(t) is the convolution of y(t) with h(t), the impulse response of the

postfilter.

E[z(t)] = f:E[y(a)]h(t a)da	 (3.4)

However, from (3.1)

N
E[y(t)] 	 EC,E[x2n(t)]

n=0

E c,,m„(t)	 (3.5)
n=0

where 1112,(t) is the 2n — th moment of the random variable x. The moment,

M2n(i) can be obtained by using the recursive equation [20], (Also see Appendix

D, in particular, D.13 and D.19).

( — 1/1/2,(t) = — 2 	 2n— 	(-1YM2( ,,_0 (t). A(0) 21-1 } 	 (3.6)
2i 	 1

where

A2i—(0) = 2=(2t — 
 I B2i E[g(t —111)]2i1 

 2 (3.7)

with Bi being the Bernouli numbers [21], g(t) the impulse response of the prefilter,

and Mo is constant and defined to equal one. We should also note that in obtaining
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the moments in (3.6), we used the fact that
00

x(t) E akg(t kT) 	 (3.8)

with the data sequence, { a k }, being an independent random variable whose values

are ±1, with equal probability. Since x(t) is a cyclostationary process (CT), the

high order components, x 2n(t), at the output of the non-linear device are also CT

processes. Therefore their mean functions, M2n (t) = E[x 2n(t)], are periodic in time,

with period T, and they can be expanded into Fourier series as:

/1/2n (t) =
E 7742n) exp( 27tk

), 	 n = 0, 1, • , N 	 (3.9)
T

where the complex Fourier coefficients mi2n) are computed from
T

(2n) 	 1 [ 2

Mk 	 M2n(ce) exp( j 
27rak 

)da.
T -1 T2

Using (3.5) and (3.4) we get

c° NE[z(t)] J E CnM2n(ce)h(t — cr)da
--("3 n=0

and by using (3.9) we obtain

E [Z (0] = 	 E cn 	 m(k2n ) expo. 27rak )h(i a))
T

	da
-°° n=0 	 -oo

' CON 	 co
	= E cn E rri, 	

—

(2n) 	 h(t — a) exp( j 
27k )da

n=0 	 k=-oo oo

(3.10)

(3.11)

co
cn E 	 expu2rkt (3.12)

n=0 	 k -

However, H(f) is centered around 1/T, and as a result of (3.2) we have H(k/T) 0 0

only for k = ±1 and therefore,
N

	. 27-t 	 . 27rt
	E[z(t)] = E cn [rrir)H(— T

)exp(--j—
T	

(2n) 
H(-

1
T

)exp(3
T

)
n=0

E ConV1 exp(j 2; 	
=o

	1 ) 	 (1/(-1) N Cnni (..2_in) ) exp( j 277,rt ).
n=0 	 T 

(3.13)
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= E cinrn 2n) ,
N 	 N

12 = E c (2n)nrn-1 (3.14)

Defining

n=0 	 n=o

and noting that /2_ 1 = /4 and H(—T) = H* (+), we obtain the following expression

for E[z(t)],
27rt

E[z(t)] = 2H(
1

y-,- )1Pi I cos( T- (3.15)

where cb is the phase of p i . When Cm 's are zero, except for C N (only 2N — th order

component), then

1 ,, 	 ( 	 27rt
E[z(t)] = 2C2N H (y,- )1"2 1

2N,
 cos(--7,— + 0) • (3.16)

Equation (3.15) represents the mean value of the timing waveform from which it is

clear that the larger the 1p11, the better the timing recovery circuit will perform.

As a specific case, if N = 1 and C2 =1, (3.16) becomes

E[z(t)] = 2H( 1T )Im i
(2)

 cos(
27rt
—7,— + 0) 	 (3.17)

It can be shown (see appendix E) that m? ) 03o(+) and therefore (3.17) is the

same equation as (2.20) of chapter 2.

3.3 Evaluation of the Mean squared Value of the
Timing Wave

From Fig. 3.1 we can write

co ie.)
E[z 2 (0] =E [f 	 _oo h(a)h(fi)y (t a)y(t — P)dadid 	 (3.18)

	

= rfoo h(a)h(P)E [y(t a)y (t 0)] dad )3 	 (3.19)
00 00

Note that the term inside the expectation is actually the auto-correlation function

of the random process y(t). Since we can not assume stationarity of this process
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we must use

R(t - a,t - /3) 	 E[y(t a)y(t - /3)]. 	 (3.20)

We will now rewrite (3.19) as

E[z 2 (t)] = 	 h(a)h(P)R(t - a, t f3)dadP
	

(3.21 )

Since x(t) is a CT process, so is y(t) and therefore it's correlation function R(t -

a, t - is periodic with period T . Hence we can represent the auto-correlation

function by the Fourier series expansion as follows,

(t - a ,t - ,a) 	 E r k(a (3) exp[jT,7r  (2t - a - /3)] 	 (3.22)
k=—oo

where the Fourier coefficients are given by (See appendix F)

i1 T
	 T 	 T 	 .27rks

rk(7-) = -i--, __ Ru (s - -2 ,s + -2 ) exp( 3  T  )ds
I-

Using (3.22) and (3.23) we rewrite (3.21) as,

(3.23)

1 .0 00

E[z 2 (t)] 	 h(a)h(13) E rk(a - /3) exp[j-7 (2t - a - (3)]dad$ (3.24)
I-co k=—oo

expu 27rkt foo foo
h(a)h(0)rk(a - 0) exp[-j—rk (a + /3)]dad/3

k=—oo T J -00 -00 •
(3.25)

Equation (3.25) represents a time domain expression of the mean squared function

of the extracted timing wave z(t). By using the Fourier transform relation between

h(t) and its transfer function H (f), we write (3.25) as follows

E[z 2 (t)] = Eexp(j 2rP) Jo [if -ff(nexP(..7 27rf a))df]J

H (v) exp(j2ry g)dv] • rk(a )3) exp[-j 7rk-7., (a + P)]dad#

(3.26)
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Rearranging the order of integrations, we obtain

E[z 2 (t)] = 	 exp(j27rTkt) 	 H(f)H (OD: Jo exP(i27/ce)exPri 27-v0)

r k (a ,I3) exp[ — j i-r24 (a + P)]dad /31 df dv, 	 (3.27)

and changing the variable T = a — /3 in (3.27) yields,

= E exp , 27rkt,E[z2 (t)] 	 , 	 )[ .1 H (f)H (v) [10, exp[j2rce(f v — 	 dcx]
k 	f

	[fr k (T) exp[—j27-r(v -FT-k )]dr]] df dv 	 (3.28)

Note that the integral on 7 is a Fourier transform, Rk(f), of r k(T) . Therefore

E[z 2 (t)]
= E

k

 expu 27rTkt {1/
	[f o, H(f)H(v) exp[jara(f v 	 )]da]

Rk(v — 	 )df dv 	
(3.29)

}

The integration on a yields 8(f v — +.,), so that, after finally integrating on f we

obtain

E[z2(t)] E exp(j 27r
 kt

) H (—
k 

— v)H(v)Rk(v —
k )dv 	 (3.30)

k 	 T	 T	 2T

where H(f) is the transfer function of the postfilter and Rk(f) is the Fourier trans-

form of rk(r), the Fourier coefficients of Ry(oe, /3).

It is easy to show that, by using the band limiting conditions on H (f), that

the product H(k/T — v)H(v) is identically zero except for the case when k = 0

and k = E2. Taking this into consideration, we simplify (3.30) to the summation

of three terms as,

.E[z 2(t)] = r ,H(,),„0,,,dv

+ exp(3 	
	. 471-kt

) 	 11(—
r _, 2	 1

— v)H(v)R2(v — —
T

)dv
T -0, T

+exp( 3 	
.471-kt

)	 11
f

T	 -
e.
00

 ... , . ,
(— 

2 	 1
— — v)H(v)R2(v + —

T
)du (3.31)

T
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and

V2 = ° H(2 — v)H(v)R2 (v — —)dv
_00 T

(3.34)

Finally, we can show (see appendix G) that the third term in (3.31) is the complex

conjugate of the second term. Therefore we write our expression, similar to chapter

2, as

where

. 	 kt
Vo + V2 exp(3 

47rT 	V2* exp( 
. ki )

T
(3.32)

Vo 	IH(v)I2R0(v )dv 	 (3.33)

Upon simplification of (3.32) our mean squared expression yield a final form of

2rt
E[z2(t)] = Vo -I- 21172 1 cos(-7,- -I- 0)

where IV2 1 and 0 are the magnitude and phase of V2.

(3.35)

From (3.34), together with (3.32) and (3.33), it can be observed that the

mean squared value of the timing wave depends on the post filter's transfer function,

H(f), as well as the Fourier transforms, Ro(f) and R 2 f of the Fourier coefficients,

ro (r) and r2 (r), of the auto-correlation function R y (t, s). Although not simple, this

function depends on the joint cross moments of the input x(t) to the non linear

device. This is the case since, from (3.1),

Ry(a, 0) CmCrix2m (a)x2n(p)]

= EE C,C,E [x 2m(a)x2n(13)] (3.36)

and therefore, in order to determine Ro (f) and R2 ( f), one must first evaluate the

surface Ry (a, 0), then using (3.23) determine it's Fourier coefficients r o (r) and

r2 (7), and finally take their Fourier transforms. Keeping in mind that the surface

Ry (ce,#), depicted in (3.36), depends on the joint moment M2 ,„„2, of x(t), we must
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determine this joint moment for any m and n. This means we must derive a

recursive formula similar to the one we had in the previous section for evaluating

the joint moments.

3.4 Derivation of the Cross-Moments Mm'n

Let

X(t) Ek akg(t kT)

x(s) = Ek a kg(s — 121 )

A
Xi 	 akak
X2 	 Ek aki0k

The joint characteristic function of x 1 and x 2 is defined by;

43 (wi, w2) = E [exP[i(w1xi + 4,-)2x2)]]

and from the definition of x 1 and x 2 we get

4)(1-015 w2) = E [exp[j E ak(wicek 4,02132)]]

Now, if ak's are independent, then

'1)(w1,w2) =1-1 E [exP ak(wlak w202)]]

(3.37)

(3.38)

(3.39)

(3.40)

and for ak = ±1 with equal probabilities we have

1° 	 ,W2) = II COS(Wi Cek	 (.02/32)
	

(3.41)
k

One can easily show that, if ak's are identically and independently distributed with

zero mean, then

0
E [xr x 121 = Alm'n = { 	

if m + n is odd
(3.42)

0 if m + n is even
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Expanding (3.39) we get

2[, . k i
(1) Pi , co2) = E 1 + i Pi x 1 + ch)2x 2) + - g (4.01. x 1 + w2x2) 2 + • • • -r —k-fLwixi + w2x2) k • • •

(3.43)

But

Min'n = E [xi	 = E [xi 	(s)]	 (3.44)

hence

(I) (wi,w2)

2
= 	 ml ,0 w2M°'1) 	 (wm2,0 2wicji2 .m1,1 + ci4A/0,2)

2!	 1
ik k	 k

ict Ei=0 )

,,k—i,,i )1,f-k—i,i +
'1 "12' • • • (3 .45)

From (3.42) we determine that the non zero cross moments are M 2''2n and M2m+1,2n+1

for any m and n. By comparing (3.45) with (3.43) we conclude the following iden-

tities;

2.

3.

1. 	 (NO, 0) = 1

(92m-F2n(wi 
2 )

84m (94.4 n

(wi w2 )

awi2m+1 aw2n+1

(3.46)

(D2m,2n(0 , 0) = (_1)m-Fnm2m,2n 	 (3.47 )

(1,2M+1,2ri+1 	 = (-1)7n+114-1.11/2M+1,2n+1

W3 =0 , W2=0

wi =0 , w2=0

(3.48)

3.4.1 Derivation of (1. 2 "72n(0, 0)

From (3.40), by taking the derivative with respect to w 1 , we obtain

a
eL,

 w
	(wi,w2)

L 	 L
ol

= 	 E ak sin(wiak w24) IT cos wiceL w213L) (3.49)
k=—L	 1=—L

4) 1,0(w1 4.02 )
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Multiplying and dividing by cos(w l ak Wilik) we get

4) 1 ,0( .01, c.02 ) 	 _A 00;0(4.03. w2) `'0 ,0 	 w2 ) 	 (3.50)

where
L

AO:0 	 E ak tan(wicek w20k)	 (3.51)
k=—L

and (1."(ci.) 1 ,w2), as given in (3.40) is truncated from —L to L. Similarly, by taking

the derivative with respect to w 2 we get

413. 0,1 (4.01, w2) == 	 w2 )4)0,0	 , (.4)2 )

where
L

N0,01
^	 ti-)1, C4)2) = E pk tan(wi a k 	Li.) 2 13 k)

k=—L

Recall that ak = g(t — kT) and ,8k = g(s — 171 ).

(3.52)

(3.53)

Similar to the steps used in Appendix A for the one dimensional moment

case, if we take the derivatives of A"(w1 ,w2 ) iteratively, we get

aP+qAlicy, Q(0 , 0) 	 A0,0((.4)1,4.02)
84,94

CsJ1=0,W2=0 

{

2P+9+1 (2P+9+ 1 —1) n 	 I 	 aq ; _c p 	 q is oddp+q+1 	 i.DP-i-g+1 I k=-L "k 	 k

0 	 if p q is even
(3.54)

Similarly

ap+q
AP,7q(0 0) = 	 10,0(

awp4,01'13 4"1,t.')2) 
(.01=0,w2=0 

vk 	 a2P+ q+1 (2P+g+1 	I	 L 	 p q+1
p+q+1 	 Bp-i-q+1 Z.-ak=-L akPk

0

if p q is odd

if p q is even
(3.55)
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2n — 1 2n1 2m 2m—k,2n-1-1
/

(

Ek=0 k A 	wi,u)43,2m.,2n (wi , 44.72)= _ E2n-1

1=0

By successive differentiation of (3.50) with respect to w1 we get

(W1, W2)
1

Aj'0 ( (-02)(1) P-1--1 '° (wi, w2) (3.56)

and following the same steps used in appendix D we end up, for the even order of

derivatives, with

43,2m,0(0 , 0) =

i=1

2m — 1 ) A 22ai-1 '° (0 0).1) 2(m-i) '° (0, 0).
2i — 1

(3.57)

Similarly, for the derivatives with respect to w2

4)"n(0, 0) =

Furthermore, from (3.52)

.=1 	2i — 1
2n 1

ACl2i-1 (0, 0)4 (3 '2(r1"--1) (0, 0)

w2) = E P Ak,0 ( ui w2 ),e,0 	 (.02 ) ,
k 	 13k=o

(3.58)

(3.59)

and by successive differentiation of (3.59) with respect to w2 , q— 1 times, we obtain

q-1 	 q 	 1

F'q (W1, W2) = k 	 1 	 As	 1-1 (col , w2 A k i l (w1 w2 ) 	 (3.60)
k=o 	 t=o

Changing the order of summation, we get for the even order of derivatives, p = 2m

and q = 2n,

e ' l Pi, 4-021

(3.61)

We now separate the internal summation by grouping those with even 1 (1 = 2i)

and those with odd 1 (1 = 2i + 1), as follows;

R2i (col , (.02) =
( 2m

k=0

) Ai32m-k,2n-1-2i pi, co2 )  k,2i(wi , w2 ) , (3.62)

R2i+1(w1, w2 ) =
( 2m

k=0

2m-k,271-1-(2i+1A 	)
/3 	

, 	
(W]. W2). (3.63)
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Therefore,

n-1 2n — 1 )	 ( 2n — 1 	 I2m,2n(coi 4,02 ) = E 	
R2i,w2) - 2 	 w2)2i	 i(w 	 2i + 1i.o

(3.64)

At w1 = 0 4.02 = 0, some of the terms in R2i(0, 0) and R2i +1 (0, 0) are zero. This

depends on the two indices of 41)(0,0) and Ap(0, 0) as follows

AV(0, 0) 0 0 only when p q is odd
	

(3.65)

	

41."(0, 0) 0 0 only when p q is even
	

(3.66)

From (3.62), in order to satisfy (3.66), k must be even. Let k = 2j, then

R2 i ( 0, 0 ) =
m )	( 2m	 A2m-2j,2n-1-2i( 0) 4b2j,2i(0 , 0)

	2j 	 °
(3.67)

Notice that the sum of the indices of Ap are odd, satisfying (3.65). Also from (3.63),

to satisfy (3.66) k must be odd. Let k = 2j — 1, then

R2i+1 (0, 0) =
3=

2rn
2j — 1 ) A

2m–(2.j-1),2n-1–(2i+1) ( 0, 0 ) 4)2j-1,2i-F1 (0 , 0)
p (3.68)

Again we notice that the indices of Ap are odd, satisfying (3.65).

The result from (3.64) together with (3.67) and (3.68) are summarized in

Table 3.1.
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4)2m '2n (0, 0) =

where

n-1 ( 2n — 1 	
R0 0 	

n 	 2n — 1 	 if, ,\— E
i=0	

2i 	 ) 	 2i(, ) — E 2i + 1 ) (3.69)

R2i (0, 0)
( 2777, ) Alm-2:7,2n-1-2i(0, 0)0,2i(0 , 0)= (3.70)

=0 	 2j

R2i+1(0, 0)
	Em	 ( 	 2m 	 AT32-(2j-1),2n-1-(2i-4-1) (0, 0) (D2j-1,2i+1 (0 ,=
	i 	2j	 1

0)(3 . 71)

Table 3.1

Equivalently, we can start the derivation of Wm- 2n from (3.50) instead of

( 3 .52)
q (q

(1)11q (W1, W2) =
1=0

A° , q-l (wi , w2)e' l (wi , w2)
) a

(3.72 )

and by successive differentiation with respect to w 1 , we obtain 

(
V' q 0-01 (.02) = - 	

p-1

)	

p 	 1 ) Apc: _ k , - 1 (co cf.) 2 ) k , 1 (u) L02 )

/=0 	 [k=0

Changing the order of summation we have, for the even derivatives,

. 	 (3 .73) 

(1) 2m ,2n
1

( 2m — 1 )	 ( 2n
1

k=0 	 1=0 iA2m--1.--k,2n--1(0, 0),e,l(wi, w2 )

(3.74)

We separate the internal summation to those with even k and odd k

( 2m — 1cD 2m,2n(wi w2 ) = _ E
2jJ=0

R2j(W1) w2)
2m-1
2j + 1

) R2i+1(4•011 w2

(3.75)
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where

R2j (0)1 ,
1=0 /

2n ) A2,,m-1-2j,2n-1 (k, 44-71, C'-)2)w 	 kw1) (4,2)
/ 	 (3.76)

and

R2j+1(W1, W2) =
1=0 ( 2n ) Ao27-1-(2i+i),2n--/ (wi w2)4,2j+1,1(wi , 4.1)2 )	 (3.77)

Dropping the zero terms of A c,(0, 0) and CO, 0), according to (65) and (66), we get

and

R2j (0, 0) =
( 2n

22i=o

A2m-1-2,1,2n-2i (0 , 0)4)2j,2i (0 , 0) (3. 78)

R2i+ 1 ( 0, 0 ) =
1=0

2n
2i — 1

2m-1-(2J+1),2n-(2i-142j+1,2i-1 (0 , 0 )
0,0)

(3.79 )

The Equivalent expression for 432m,2n, of Table 3.1, are summarized in Table 3.2.

(13. 2mt 2n(0, 0)

where

=— E
=0

( 2m — 1
2j

m ( 2m — 1 
R2j+1 0)i=iR2j( 0 , 0 ) — E 2j + 1

(3.80)

R2j(0, 0) = 	
n 	2n ) 2 -1-2j,2n-2i(0 , 0) 4) 2j,2i(0 , 0) 	 (3.81)

i=0 2i
n

R2j.+.1(0, 0) = 2i _ 1 ) A iitm-i-(2J+1),271-(2i-i)(0 , 0)4) 2j-14,2i-12n 0, 0)(3.82)
i=1

Table 3.2

The results depicted in Tables 3.1 and 3.2 are equivalent recursive equations, one

uses Ap(0,0) and the other uses A c,(0, 0).
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2m-F1 	 el	 I 1.4772	 w2 	 k2i(wi 4,02 )s2i(wi,w2)= 2 	 k
k=0

( 3.84)

3.4.2 Derivation of 14
2m+1,2n+1 (01 0)

From (3.60), with p 27n + I and q = 2n + 1, we get

IA)32m+1.—k2n—lpi, w2 ) (Dk,1 pi , (.02 )

(3.83)

Again, separating the internal summation into terms with even 1 (1 = 2i) and odd

1 (/ = 2i + 1), we define

41 2m+1,2n4-1(w i w ) E2 =
2n ( 9n \ rtFrn 1 ( 2rn 	)

1=0 	 /	 k=0

and

2m+1
S2i+1 ( 01, W2) 	 E

k=0

We therefore write,

( 2 772 + 1 	
Ag

2m+i—k,271—(2i+1) pi , w2) ,D k,2i+i
k 	

(col , w2) (3.85)

n
2m+1,2n+1(wi w2) = E

i=0
2n ) 	 ( 2n
2i 	 3 21kwl w2 2_, 	 2i 4. 	S2i+i(wi,w2) (3.8 6 )

Applying the condition for AP/P(0,0) and (1■P'q (0, 0), in (3.65) and (3.66), we are left,

in (3.84), with terms having k = 2j, even, so that,

m 	2rn + 1 ) ,2m+1-2j,2n-S2i(0,0) = E
2j 	 AP

i=0
(

oWo i (o,o) 	 ( 3.87 )

In (3.85) we are left with terms having k = 2j + 1, odd, so that

2172 + 	 Alm-2j,2n—(2i+1) ( 0 , 0 ) 4)2j+1,2i-F1 (0 , 0)
S2i+1(°) °) = L, 	 2j + 1j=0

(3.88)
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In summary we have

12m+1,2n+1ru u =
( 2n

	

) S2i(0, 0) 2_,	 22i	
i2n 

1 ) 82i+1 (0 0)	 (3.89)(

i=0 	 i=0 	
+

where

2m+ 1
S2i(0, 0) =

3 =0

2 j

m
S2i-I-1( 0 , 0) =

227++ 11

3 =o

) 2m+1-2 2n-2i (0 0)Ao	 .7,	 ,	 (D2./,2i (0 0)	 (3.90), 

02m-2J,2n-(2i-o) (0 0)41,2J+1,2(i+i) ( 0, 0) (3.91 )

Table 3.3

Equivalently from (3.73), with p = 2m + 1 and q = 2n + 1, we get

4) 2m-1-1,2n+1 	 4.02) =
1 	 A,yrn 	 (4.01,c0 e' l (wi, W2)]

	

2m 
	 9m 	 2n-F1 2n + 1	 2 — k 2n+1-1

	

k=0 	 1=0

S2 j (W1 W2 =
	 --r- 1 A2m-2j,2n+1-1(w1, 4,12),112ill 	 , W2)

	
(3.93)

1=0

(3.92)

Separating the internal summation into terms with even and odd k, we have, re-

spectively

and

2n-F1

S2j+1 (Wl W2) = E
1=0

A2m—(2j+1 ) ,2n-}-1-1 W2 (3.94)

We therefore write

43,2m-F1,2n+1 (
(h.2 1 I W2) =

m

k=0 2j SziP1 ' w2) Ek=o	
2j + 1 ) 5'2j-0(4)1, W2)

m-1 ( 27 -n2m

(3.95)
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S2a (0, 0) =

S234_ 1 (0, 0) =

( 2n + 1
2ii=o

( 2n + 1
L-• 2i + 1i=o

A 2rn- 2j,2n+1-2i 	 0)1,25,2j(0, 0) 	 (3.99)

A2m—(2j+ 1 ),2n-2i (0 , 0) 4,2j+1 ,2i+1) (0 , 0) (3.1 00)

For the condition on Al;3' 4 (0, 0) and (1."(0, 0) to be non zero, we are left, in (3.93),

with terms having even / (/ = 2i), so that

( n	 )
S2j(0, 0) = En 	

2 + 1	 2A 0em-2,j,2n1-1-2i (0 , 0)4) 2j,2i (0 , 0) 	 (3.96)
2ii=o

In (3.94) we are left with terms having odd / (/ = 2i + 1), so that

n 2n + 1
S2j+1 (0, 0) = E

2i + 1=o

In summary we have

A2
/3
m-(2j+1),27L-2i (0, 0 ) 44 2j+1,2i+1 (0 , 0) (3.97)

( 	 )4,2m-1-1,2n+i (0 , 0) = _ 
M	 2m	

-(0 2 .	 23 7

( 	 )
3 

S 	 0 ) — 	 2
2m
3 + 1	 Szi-H. (0, 0)

where

k=0 	 k=0
(3.98)

Table 3.4

In conclusion, in order to determine the moment, m2n1,2n 	 m2m+1,2n-1-1 we

first refer to (3.47) and (3.48) which relate these moments to the derivatives of the

joint characteristic function;

	m2m,2n	 (_1)m+n42m,2n(0 , 0) 	 (3. 1 01 )

	m2m+1,2n+1	 Fir+n+14) 2m+1,2n+1 (0 , 0) 	 (3.102)
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The joint characteristic functions (D2m,2n(0, 0) and 01) 2m+1,2n+1 (0, 0) can be evaluated

by using Tables 3.1 and 3.3 respectively. Equivalently, Tables 3.2 and 3.4 could also

be used where A, (0, 0) and its derivatives are used instead of Ap (0, 0). The equations

presented in Tables 3.1 and 3.1 are recursive formulas involving the terms R2i and

R2i+1, or S2i and S2i+1 which are, in turn, recursive formulas involving (1,2m72n (0 , 0)

and (D2m+1,2n+1 (0 , 0) .
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Chapter 4

Numerical Results of Jitter
Performance for STR Circuits
Using the Moment Method

In this chapter, we will present and compare some of the numerical results obtained

by using the moment method for evaluating the performance of STR circuits as it

is described in chapter 3.

For the purpose of our discussion, as a prefilter, we selected a raised cosine

pulse shape (2.168), which is of most importance in practice;

T 	 If' < 12-T

2 	- sin irj-r (If f -•-y 	 2T)} 2T - 	 - 2T< If I < 1±2 (4.1)G(f) =

0 elsewhere

with being the excess bandwidth, and 1/T is the baud rate. For the post filter,

we used the following bandpass filter, centered at 1/T,

11(f) = HLP(f -
1
 )+ H.L,p(f + 

1
 )
	

(4.2)
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where the lowpass equivalent transfer function, Hip(f), is given by

H.Lp(i) 	
1 

j2fTQ
(4. 3)

with Q being the quality factor.

4.1 Calculating the Mean Value of the Timing
Wave

Using the recursive formulas in (3.6) and (3.7), we first calculated the moments

M2n(t), for n 1, 2, 3, and 4. These results are depicted in Figs 4.1 and 4.2 for

ry = 0.1 and 7 0.5, respectively. Note that we did not perform the evaluation for 7

greater than 0.5 since bandwidth efficiency is one of our main concerns. Since the

input to the nonlinear device is cyclostationary, the moments /14.2„(t) = .E[x 2n(t)]

are periodic with period 1/T. This is shown in Figs. 4.3 and 4.4, for n = 1, 2, 3,

and 4, for = 0.1 and 0.5, respectively.

As a function of the excess bandwidth 7, in Fig. 4.5, we depict the amplitude

of the mean value of the extracted timing wave, where the order, n =1,2,3,4, is

kept as a parameter. We notice from this figure that, the higher the order of the

nonlinearity the larger the amplitude of the extracted timing wave. Particularly,

for low values of -y we see how the second order failed. This is one of the advantages

of STR circuits employing a high order nonlinearity.
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Figure 4.1: M2n,(t) for n = 1,2,3, and 4, γ  = 0.1

Figure 4.2: M2n (t) for n = 1,2,3, and 4, γ  = 0.5
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Figure 4.3: Few Cycles of M 2n,(t), γ 	0.1

Figure 4.4: Few Cycles of M2n (t), γ  0.5
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Figure 4.5: Amplitude of the mean value of extracted timing wave as a function of
'y, for n = 1,2,3, and 4
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4.2 Calculating the Jitter Performance

Since calculating the jitter performance is a rather complex process, we must first

calculate all the parts which make up of, and lead to, the final expression. This

involves first using the equations in Tables 3.1 and 3.3, or 3.2 and 3.4, to calculate

a 3-dimensional surface plots, which represents the joint moment, M2m ,2m (t, s), of

the input to the nonlinear device.

For the case of second order nonlinearity (N=2), we show, in Fig. 4.6, the

joint moment M2,2(t, s) for ey = 0.1. We also include the same plot, rotated by

90 degrees, to emphasize its shape in other directions. Fig. 4.8 depicts the same

results as 4.6, except that the rolloff factor 7 is now 0.5. Last, in Fig. 4.10 we

depict the results for 'y = 0.9. Notice that for the added convenience of the reader,

we inserted the contour plots, corresponding to these 3-dimensional views, in Figs

4.7, 4.9, and 4.11 for the values of 7 = 0.1,0.5,0.9, respectively.

For the case of fourth order nonlinearity (N=4), we show, in Fig 4.12, the

joint moment M4 ,4 (t, s) for 7 = 0.1. We also included the same plot rotated by 90

degrees. Similarly, in Fig. 4.14, we show the plots for 7 = 0.5, and last, we show

the plots for -y = 0.9, in Fig. 4.16. Again, just as before, we added the contour

plots, corresponding to the 3-dimensional figures, in Figs. 4.13, 4.15, and 4.17, for

= 0.1, 0.5, and 0.9 respectively.
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Figure 4.6: (left) Joint Moment M 2 ,2 (t, s), γ = 0.1 (right) Joint Moment
M2 , 2 (t, s), γ  = 0.1. rotated 90 degrees

Figure 4.7: γ  = 0.1, topographical map
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Figure 4.8: (left) Joint Moment M2,2(t,s),γ = 0.5 (right) Joint Moment
M2 , 2 (t, s), γ  = 0.5, rotated 90 degrees

Figure 4.9: M2,2 (t,s), γ = 0.5, topographical map
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Figure 4.10: (left) Joint Moment M2,2 (t, s), γ = 0.9 (right) Joint Moment
M 2 , 2 (t, s), γ= 0.9, rotated 90 degrees

Figure 4.11: M 2,2 (t, s), γ = 0.9, topographical map
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Figure 4.12: (left) Joint Moment M4,4(t, s), γ  = 0.1 (right) Joint Moment
M4 ,4 (t,s), γ = 0.1, rotated 90 degrees

Figure 4.13: M 4 ,4 (t, s), γ  = 0.1, topographical map
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Figure 4.14: (left) Joint Moment M4,4 (t,s) γ = 0.5 (right) Joint Moment
M4 , 4 (t, s), γ = 0.5, rotated 90 degrees

Figure 4.15: M 4 ,4 (t, s), γ  = 0.5, topographical map
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Figure 4.16: (left) Joint Moment M4,4 (t, s), γ = 0.9 (right) Joint Moment

M4,4 (t, s), γ = 0.9, rotated 90 degrees

Figure 4.17: M 4,4 (t,s), γ = 0.9, topographical map
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From these figures, one can easily notice that the joint moments are periodic

along lines s = t c (c is constant), with period 1/T. The peaks of these plots

occur at the line s t(c 0), and are almost equal in amplitude. Along the t or s

axis, the peaks are not equal. The value of the peaks become lower as 7 increases,

and the difference between the peaks and valleys becomes smaller. Last we note

that, perpendicular to the line s = t, the plot is no longer periodic but rather

symmetric. Similar conclusion can be stated for the case of N = 4, except that

the peaks are more emphasized and the entire plot gains amplitude compared to

thecase of N = 2.

From (3.36) we have,

Ry (t, s) =
{

M-2 , 2 (t, s) for second order nonlinearity
1114 ,4 (t, s) for fourth order nonlinearity (4.4)

We next use the previous results shown in Figs. 4.6-4.11, for N = 2 and Figs.

4.12-4.17, for N = 4, to calculate the Fourier coefficients, rk(r), of these moments,

for k = 0 and k = 2. For the second order nonlinearity, we show in Figs. 4.18

and 4.19, the Fourier coefficients r o (T) and r 2 (T), respectively. Similar behavior is

expected of ro (T) and r 2 (T) for N = 4.
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Figure 4.18: Fourier Coefficients ro (r) N = 2, 7 = 0.5

Figure 4.19: Fourier Coefficients r 2 (7), N = 2, -y = 0.5
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4.3 Final Jitter Results

The last step in determining the rms timing jitter is to gather all the results obtained

from the previous figures, of the previous sections, and combine them to yield one

final result. All the parts, which make up of the jitter, we evaluated using a fortran

program, ran on the VAX computer.

In Fig. 4.20 we depict the rms jitter for N = 2. This figure is drawn as a

function of the quality factor of the postfiler, where the excess bandwidth, -y, was

used as a parameter. In Fig. 4.21 we depict the jitter performance for N = 4.

Last, for sake of comparison we show, in Fig. 4.22, a comparison of the rms jitter

function for N = 2 vs N = 4, for the same excess bandwidth, 7. In all the figures,

we used an ideal square type of prefilter.

It can be observed from figs 4.20 - 4.22 that the jitter performance gets

better as we increase the quality factor of the postfilter. Furthermore, as we shift

from one curve to the other, we note that the jitter performacnce also improves.

The same characteristics apply to the case of fourth order, N = 4, nonlinearity.

Comparing the two type of nonlinearity in Fig. 4.22, we see that the second order

nonlinearity superceeds the performance of the fourth order. However, we should

keep in mind that we are not only concerned with the jitter performance, but

also with bandwidth efficiency and timing extraction with significant amplitude.

Therefore for our purposes we conclude that a fourth order nonlinearity, at low

transmission bandwidth, superceed the second order.
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Figure 4.20: Rms Jitter, N = 2

Figure 4.21: Rms Jitter, N 4
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Figure 4.22: Rms Jitter, N = 2 vs N = 4
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Chapter 5

Conclusion

This thesis presents a general method for evaluating the jitter performance of a

popular type of Symbol Timing Recovery (STR) circuit for baseband digital trans-

mission systems. The STR circuit consists of any even symmetric, zero memory,

non-linear device followed by a narrow band postfilter tuned to the signaling rate

(1/T), along with a prefilter for reshaping the pulses entering the timing path. The

output of the STR circuit is nearly a sinusoidal timing wave whose zero crossings in-

dicate the appropriate sampling instants for demodulating the incoming signal. For

a random data sequence, the timing wave exhibits phase fluctuations which strongly

depend on the pulse shapes entering the timing path and the quality factor (Q) of

the postfilter.

In Chapter 2, after defining the rms jitter for a timing wave, we first con-

sidered a squaring type of nonlinearity and obtained exact analytical expressions

for the rms phase jitter in the timing wave as a function of the rolloff factor (y)

of the pulse shape. These expressions have a form which is especially suitable for
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studying the case where the baseband signal is band limited to frequencies less than

1/T. The rms jitter, based on derived expressions, was computed as a function of

Q, for various values of rolloff factors. In addition, numerically obtained rms jitter

values for the raised cosine and trapezoidal pulse shapes were plotted on the same

scale and compared to each other.

In Chapter 3, the results obtained for the squaring type of nonlinearity were

extended for the case of any even symmetric, zero memory, nonlinear device. The

rms jitter of the STR circuit was evaluated by means of higher order moments of

the input signal. An iterative method was given for the evaluation of the higher

order cross moments of the input signal, and then, these moments were expressed

in the frequency domain to compute the rms jitter.

Chapter 4, discussed numerical jitter performance investigations for the STR

circuit employing squaring and fourth order nonlinearities. The cross moments

corresponding to these cases were obtained and their three dimensional plots were

drawn. The rms jitter curves were obtained and plotted as a function of the quality

factor, for several values of rolloff factors, and compared to each other.

The main conclusions drawn are as follows

1. rms jitter decreases as Q increases.

2. rms jitter increases as -y decreases. In fact, for the squarer type of STR

circuit, the jitter takes very large values as -y 	 O.

3. Fourth order STR circuits work as well for small 'y values. This is one

of the major advantages over the squaring STR circuit.
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For Further Research

1. Noise can be added into the analysis

2. Analysis can be extended to include multi level and correlated data

3. Other type of nonlinearities, such as absolute value and tan hyperbolic

functions, can be investigated
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Appendix A

• Evaluation of E [akak+mak+jak+j+l ] of (2.29)

The value of E [akak+mk+jak+j+l ] can be evaluated by combining the different in-

dices. We consider separately the different cases of m, 1, and j, from the following

table.

case m 1 j
1 0 0 0
2 0 0 ≠ 0
3 m = l ≠ 0 0
4 m = l ≠ 0 ≠ 0
5 m = j ≠ 0 j = -l
6 m = j ≠ 0 j≠ -l
7 m ≠ j

m ≠ l

(1) when m  = l = j = 0 we get E [a4k] .

(2) when m = l = 0 and j ≠ 0 we get,
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(3) when m = / 0 and j =0 we get

E [a ka k-fm a k a ki-m, = E [4] E[ak+m ]
	

(A.4)

= {.E[4]} 2

	
(A.5)

A 	 2
	

(A.6)

(4) when m = / 0 0 and j 0 0 we get

Ekt k]E[ak+mak+jaki.j.on ] = 0 if j = —m
E[akak+mak+jak+i+m] = E[ a 2kiE[ak+miE[ak_ m l = 0{ 	 if j 0 —m

(5) when m j 0 and j = —1 we get

(A.7)

E [ak a k+ rn a k-i-j a k+j -I-1]
	

E[akak+,nak+ma k]
	

(A.8)

E[cd]E [alc+m ]
	

(A.9)

(A.10)

(6) when m = j 0 and j —/

Ektkak+mak+Jak+i+11 = E[aka2k4.,j ak+i-Fi]
	

(A.11)

= E[ak]E[alc+,2]E[ak+i+i]
	

(A.12)

= 0
	 (A.13)

(7) when in j and n 	 /

j --; 	 7E[CIDE[ak+m].E[aki-ji = 0 	 if 	 (A.14)
{ 	 r l 'rE[akak+maki-jak+i-Fli = 	 ELaki, Lak+miE[ak+a]E[ak+i+i] = 0 if j T —4
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Appendix B

•Proof of (2.33)

From the definition of qm (t) and (2.7)

qm(t — kT) = (t — kT)g(t kT — mT)] h(t). 	 (B.1)

Therefore

q_m (t — kT — mT) = [g (t kT — mT)g (t kT — mT m,T)] h(t)

= qm (t — kT) h(t) 	 (B.2)
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(C. 1)

Appendix C

•Derivation of (2.82)

Let

C(f) = G(f)G(
1
y, f).

Therefore the conjugate

C*(f) = G* (f)G* —

G(— f)G(f — 1

and hence we can write

C*(a fi) g( — ce MG(cY -I- /3-7,-)

Combining (C.1) and (C.4), we can rewrite the second expression in (2.80) using

the fact that

G(P)G(1 — i3)G( —ce p)G(ct + — 	 = C(P)C*(a /3) 	 (C.5)

As for the third expression in (2.80) we first make the variable change /3 = —0 and

a = — a to get

1
— 	 I.H(—a)12G(— 1 + ,3)G(—a — 	 -1-A—fl)G(cf + 0)&43. 	 (C.6)
T «	 -27
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Using (C.3)

c.(p). 	 s)G(p -) 	 (C.7)

and from (C.1)

C (a + 0) G(a	 — a — ,8)	 (C.8)

Combining (C.7) and (C.8) we get

G(— 0)G(13 — -12 ,)G(a 0)G(y1 — a — 0) C* (p)C (a + p). 	 (C.9)

Finally, using the fact that IH(—a)1 2 IH(a)I2, we have, for the second and third

terms of (2.80)

1 jo I H(ce)I 2 [C (0)C* (ce fi) C* (13)C (a + 13)]cladP.	 (C.10)
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Appendix D

• Derivation of moment function M 2„,(t), Eq. (3.6)

The characteristic function of a random variable x is defined by

cx:
.1)(w) = f o exp(jwx)p(x)dx 	 (D.1)

where p(x) is the probability density function of x.

(jw)2n
4) (CO) = 1 + siCOMi Cw)2 M2 + + 	

2!	 n!

with Mn = E[x n]. It is easy to prove that .(0) = 1 and

(D.2)

elnt(w) 

dwn =(iu))-mn
w=0

(D.3)  

For our case, the random variable x(i) is related to the data sequence, {ak } by

00

x(t) = E akg(t — kg) 	 (D.4)
k=-00

therefore 
[03

4 x (w) = B exp jw E akg(t — kg)
k=—oo

are independently distributed, then

(D.5)

If { ak} 

00

1,„(w)= JJ E [exP(jakwg(t — kT)] 	 (D.6)
k=—oo
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cu)) 	 - E g(t —
k=—oo

E g(t
k=--oo

A(W) (1) ( 4') )

=

kT) tan(wg(t — kT)) H cos(wg(t — 1T))
1=- 00

— kT) tan(wg(t kT )) Cw)

(D.9)

where Bn, are the Bernouli numbers. It is possible to show that

[g(t — kT)] 22 ' + ' ((i2+1+1 );-1) IB1+1I 1 odd{

0
	 1 even

d 1

dcol 
tan wg(t kT)

(.0=0

For {a k} ±1 with equal probabilities, then

1	 1
4)x (w)	 H ( 

2 
exp(jwg(t — kT)) 	 exp(jcog(t — kT)))

k=—oo 	 2

cos(wg(t kT)). 	 (D.7)
oo

Taking derivatives

(1.1(w)
dw

00
— E g(t — kT) sin(wg(t — kT)) 11 cos(wg(t — 1T)) (D.8)

k=—oo 	 1=-0o lOk

Multiplying and dividing the left hand side of (D.8) by cos(wg(t — kT)), we get

00
	

00

(w )

where
00

a(w)	 E g(t kT) tan(wg(t kT)) 	 (D.10)
k=—co

The derivatives of A(w) can be obtained from the power series expansion of tan(wg(t-

kT)) around the origin, (See 4.3.67 of [20]).

tan (wg(t — kT)) = wg(t — kT)+
(wg(t —

3! 

kT))3 + + 221(
(
2

22
1
n

—
) 

1) 
1-B211(wg — kT)) 21-1 "

= 00 g(t — kT) —
di 

tan wg(t — kT)
k=—oo dcol

co 	 2/+1 (21+1 — 1)= E g(t — kT) 1+ 1	(1 4. 1) 	1131+11
k=—co

Therefore

d' A(w )
dw 1 w=0 o=0

(D.13)
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By successive differentiation of (D.9) we get

1-1 ( 1— 1 	 - 	 /-1- •Cu)) — E 	 ,v(w)o 2(w)
i=0 	 3

(D.14)

One can show directly from the definition and the fact that a k has a zero mean,

that the odd moments are zero. Hence from (D.3) we are interested only in the

even order of the derivatives of 4)(w), such that,

4) 2/(w ) 	 _ [21-1 21— ) Ai(c0A2/-1-i(u. )1
i=o

From the above summation, we take only the even derivatives of 4), (w). Consider

21— 1 — j = 21— 2i, or 1 j = 2i. Using this index change,

(
4)21(w) 	

2/ 	 1 ) A2i--1 (w)(1,2(I-0(w )
2i — 12i=1

(D.16)

The first terms contains A°(w). Note, from (D.10) that A 0 (0) 0. Hence we get

X 21 (0) = - ( 2/ — 1 ) A 2i--1 (0) 2(/-0( 0 )
2i — 1i=i

Last, we note that

m21 . (-02
1 (0)

(
therefore

1 21—  1M21 = 	 )2i — 1 (-1)1/1/20_02i-1(0)

(D.15)
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Appendix E

• Derivation of Mean Eq. (3.17) for 2-nd order nonlinearity

In order to compare (3.17) with (2.25), we notice from (3.10), with n = 1 and by

using (3.8), that

m(2) 	 E 	 akg(t	
expt_i 2irt \dt

T 	 kT)]2	 T1 (E.1)

But ak are, identically distributed, random variable. ak = ±1 with probability 1/2.

Therefore

m _11 g 2 t —

j 212, g2 (t) exp(

g2 (

kT) exp(--j-27rt )dt

.2711
7,)dt

— kT) exp(—j-271 )cli (E.2)

Since g(t) 0 for	 > T/2, the first integral is the Fourier Transform of g2 (t) at

f = 1/T and the second integral is zero. Hence

where

(2) 	1	 1
mi = T P0(—T

Po(f) = G(f) G(f)

® stands for convolution.

1 10



a —
— = s

2

then
a —0

t—fi=s+ 	
2

2t — — = 2s

and hence

Appendix F

• Evaluation of (3.23)

Let

Substituting in (3.23), we get

Rys 	2 	 2 )

Therefore

= E rk(a P) exPU 	 s). (F.4)

/3) = —1 	Ry	 a —
2

/3
'

s a —
2

P ) exp
T J- T 	

.27k
rk(a — 	 s)ds 	 (F.5)

with a. —13 	 T, we finally get (3.23)
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Appendix G

• Derivation of (3.32)

we wish to show that

.4irkt foo 	 2 	 1
exp(3 T  ) 	 — v)H(v)R2 (v —

T I*
exp( j 4-7rkt ) foo H ,_ 2

( 	 OH(v)R2(v+
T J-03	 T

(G. 1)

therefore

[exp( j zirkt	
H(--

2 
— OH( v)R2 (v —

1
)dvi *

T -cc 	 T 	 T

H(2 v)H(—v)R2(—v —
T 

)dv (G.2)
T

changing the variable 71 = — v, di? = dv, yields

f H(-2 ri)H(n 	
1

)R2(77 — —)c177
TJ,, 	 T

(G .3)

which is equal to the second term of (F.1). This therefore proves the validity of

3.32.
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