
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



Graphical User Interface
for

Image Processing

By
Kumar Chebrolu

Thesis submitted to the Faculty of the Graduate School of the
New Jersey Institute of Technology in partial fulfillment of the requirements
for the degree of Master of Science in Computer and Information Sciences

1991



APPROVAL SHEET

Title of Thesis:

Name of Candidate:

Thesis and Abstract
Approved:

GRAPHICAL USER INTERFACE FOR
IMAGE PROCESSING USING MOTIF TOOLKIT

Kumar Chebrolu
M.S. in Computer & Information Sciences, 1991

Dr. Frank Shih 	 Date
Assistant Professor
Department of Computer &
Information Sciences



VITA

Name:	 Kumar Chebrolu

Permanent Address: 	 17-85/C, Srinagar Colony, Hyderabad, India - 500660

Degree and date to
be conferred:	 M.S.C.I.S. December 1991

Collegiate institutions	 Date	 Degree	 Date of Degree
attended

New Jersey Institute	 Sept. 1989-
of Technology	 Dec. 1991	 M.S.C.I.S. Dec. 1991

Nagarjuna University,	 Sept. 1984 -
India	 Jun. 1988	 B. Tech	 Jun. 1988



ABSTRACT

Title of Thesis: 	 GRAPHICAL USER INTERFACE FOR
IMAGE PROCESSING USING MOTIF TOOLKIT

Name of Candidate: 	 Kumar Chebrolu
Master of Science in Computer and Information Sciences,
New Jersey Institute of Technology, Newark, NJ.
1991

Thesis Directed by: 	 Dr. Frank Shih
Assistant Professor,
Computer and Information Sciences Department,
New Jersey Institute of Technology, Newark, NJ.

A user friendly, menu driven, highly interactive X Windows package for Image Processing
Applications using Motif Widget Set under Motif Window Manager is developed. Modules
related to Segementation, Enhancement, Representation, Transformations are
developed. The above routines are useful for image manipulation. The current gray
scale/binary image is displayed on the window. On line histogram is provided so that the
user can change the threshold value interactively. The OSF/Motif toolkit is used
efficiently and also Xlib calls to display the image by allocating colormap. An on-line
image manipulation help menu facility is incorparated in the tool to make it more versatile.



My Grandfather



Acknowledgements

I would like to express my sincere gratitude to my advisor, Dr. Frank Shih, for his remarkable
guidance throughout the course of this work.

I am thankful to all my friends and family members for supporting and encourage me to
complete my work successfully.



CONTENTS

Chapter 1 X WINDOW SYSTEM

1.1 The Server and Client 	 2

1.2 Window Manager 	 3

1.2.1 The Role of Window Manager in Motif Toolkit 	  4

1.3 Motif Toolkit  	 5

1.3.1 lntializing the Toolkit 	 8
1.3.2 Role of Xlib in Image Processing Toolkit 	 10
1.3.3 Role of Motif Toolkit in Image Processing Toolkit 	 13
1.3.4 Motif functions and macros used 	 15
1.3.5 Xt functions and macros used 	 16
1.3.6 Callback Procedures used 	 17

Chapter 2 THE REPRESENTATION SCHEMES

2.1 Rows Representation 	 19

2.1.1 Run Length Method 	 19

2.2 Block Representation 	 20

2.2.1 Quad Tree Method 	 20



Chapter 3 PIXEL CLASSIFICATION

3.1 Gray Level Thresholding 	 21

3.1.1 Automatic Thresholding 	 21
3.1.2 Interactive Thresholding 	 22
3.1.3 Histogram Equalization 	 22

Chapter 4 EDGE DETECTION

4.1. Laplacian Operator 	 24

4.2 Prewitt Operator 	 25

4.3 Sobel Operator 	 26

Chapter 5 IMAGE TRANSFORMS

5.1 Fast Fourier Transformation Definition 	 28

5.2 Rotation 	 29

Chapter 6 GUI FOR IMAGE PROCESSING 	 30

Coding

Figures

Bibliography



X WINDOW SYSTEM

The purpose of the X Window System is to provide a network-transparent and

vendor-independent operating environment for workstation software. It offers a rich

and complex environment to the programmer and use of application software.

Network transparency means that X applications running on one cpu can show

their output using a display connected to either the same cpu, or some other cpu.

To the user, an X workstation looks like it is connected to many different host cpus

at the same time. X applications are portable. The applications deal with X, so they

do not know the details of any particular workstation's display hardware, as long

as an X application is able to establish a connection to a workstation. Because the

workstation hardware is hidden by the protocol, an X application running on a cpu

from one vendor can use any workstation model, either from that vendor or from

another. It is not necessary to recompile or relink any application to give it access

to all kinds of X workstations.

The X Window System allows several applications at a time to be active on a

workstation. Individual applications may start and stop at will during a user's

session.

1



1.1.The Server and Client:

To allow applications to be run on one machine and display on another, X was

designed as a network protocol - a predefined set of requests and replies - between

two processes, one of which is an application program called a client, and the other

of which the server, controls the display hardware, keyboard, and pointer. The

user sits at the machine running the server. At first, this usage of the term server

may seem a little odd, since file and print servers are normally remote machines.

But the usage is consistent. The local display is accessible to other systems across

the network, and for those systems the X server does act like other types of server.

The X server acts between user programs and the resources of the local system

such as the keyboard and screen. It contains all device-specific code, and insulates

applications from differences between display hardware. The server allows access

to the display by multiple clients. It interprets network messages from clients and

acts on them. Some requests command the server to do drawing, while others ask

the server for information. Protocol requests are generated by client calls to xlib, xt

and motif toolkits. Server passes user input to clients by sending network messages

known as events, which represent key or button presses, pointer motion, and so

forth. In X, the display is ofter used as a synonym for server. A screen is the atual

hardware on which the graphics are drawn. A server may control more than one

screen.

The application programs displaying on the screen(s) managed by a server are

called its clients. There may be several clients connected to a single server. Clients

may run on the same machine as the server if that machine supports multitasking,

or clients may run on other machines in the network. In either case, X protocol is

2



used by the client to send requests to draw graphics or to query the server for

information, and is used by the server to send user input and replies to information

requests back to the client. The X protocol runs on top of any low-level network

protocol that provides bidirectional communication, and delivers bytes

unduplicated and in sequence. TCP/IP and DECnet are the currently-supported

networks. The communication between a client and the server is called a

connection. It is common for a user to have applications running on several

different hosts in the network, all invoked from and displaying their windows on

a single screen.

This use of the network is known as distributed processing. The most important

application of this concept is to provide graphic output for powerful systems that

don't have their own built-in graphics facilities. However, distributed processing

can also help solve the problem of unbalanced system loads. When one host

machine is overloaded, the users running clients on that machine can arrange for

some of their programs to run on other hosts.

1.2.Window Manager :

A Window Manager allows the user to control the size and location of windows on

the screen. In X, a window manager is an ordinary client application. It manages

the positions and sizes of the main windows of applications on a server's display.

The responsibility of the window manager is to mediate competing demands for

the physical resources of a display, including screen space, color resources, and the

keyboard. The Window Manager allows the user to move windows around on the

screen, resize them, and usually start new applications. The Window manager

also defines much of the visible behavior of the window system, such as whether

windows are allowed to overlap or are tiled ( side by side ), and whether the

3



keyboard focus simply follows the pointer from window to window, or whether

the user must click a pointer button in a window to change the keyboard focus.

1.2.1. The Role of Window Manager in Motif Toolkit :

In window system a top-level window resides at the top of the window ( and

widget ) tree hierarchy for the application. Its parent is the root window, which is

what the user perceives as the background behind all the windows on the desktop.

But in the Xt based toolkits, behind every visible top-level application window is

a special kind of widget known as a shell widget. Every window that can be placed

independently on the screen, including top-level windows and dialog boxes, has

its parent an invisible shell widget.

The Motif function Xm.IsMotifWMRunning checks the MOTIF WM_INFO

property to determine whether the Motif Window Manager is running on the

screen containing the specified shell.

Typically, shell widgets contain only one managed child widget whose job is

manage the layout of more primitive components such as Labels, Text widgets,

Scrollbars, and Push Buttons. These are the items that the user actually sees and

interacts with on the screen. These objects are really descendants of the shell

widget because they are contained within its boundaries. One of the shell's main

jobs is to communicate with the window manager on behalf of the application. The

window manager frame is made up of window decorations that the window

manager places on all toplevel windows ( which are the windows associated with

shell widgets ). The controls allow the user to interactively move windows, resize

them, cause them to redraw themselves, or even to close them down. The window

4



menu displays a list of window manager functions that allow the user to move,

resize or even exit the application.

Motif provides window manager protocols that allow menu items like these to

affect the application. The user can manipulate the window manager's window

menu by using many of the same types of protocols. Also the user can specify

which of the items in the window menu user want to appear, whether there are

resize handles on the frame or whether the user wnat to allow the user to iconify

the window.

1.3. Motif Toolkit :

X windows code runs on Unix machines. Unix can be considered the "bottom

level" of code. On top of Unix run some system libaries ( like stdio.h, math.h, etc.).

On top of that runs the X windows system, which is made up of the X windows

libraries, called Xlib. On top of that runs the "Xt intrinsics", which is another group

of C library routines. Finally, on top of all of this is called the Motif widget set. Motif

tries to be an object oriented set of routines that allows a programmer to build an X

windows user interface in a finite amount of time. Then on top of the pile the user

makes application program.

The Motif toolkit is based on the X Toolkit Intrinsics ( Xt ), which is the standard

mechanism on which many of the toolkits written for the X Window System are

based. Xt provides a library of user-interface objects call widgets and gadgets,

which provide a convenient interface for creating and manipulating X windows,

colormaps, events, and other attributes of the display. The widgets that Xt

provides are generic in nature and impose no user-interface policy whatsoever.

That is the job of a user-interface toolkit such as Motif.

5



Xt provides an object-oriented programming style, where the objects are widgets.

Traditionally, object-oriented programming is defined in terms of object, method,

message, class, and instance, and the concept of encapsulation.

An object contains two elements : the data that represents a state, and

code that reads or writes that data. Inside the widget code, the state data is

represented as structure members, and the methods are represented as pointers to

functions. Some state data members are public; they are resources that can be set

or retrieved from outside the object. Other state data members are private; they

cannot be read or written from outside.

A method in object oriented programming is either a method or an

action in Xt, methods are a set of functions that are fixed for a particular class,

triggered in fixed ways in response to Xt function call made by the application. A

widget's methods supply its most basic functions, such as the code needed to

create a widget or to change its resources. Actions, on the other hand, are called in

response to the events specified in a translation table, and are thus user

configurable.

Inputs to objects and communication between them are called

messages. The forms of communication are function calls, events, actions, and

callbacks.

Widget library defines classes of widgets. Each class has unique

characteristics shared with all other members of that class, but distinct from other

classes. Each time you create a widget, its creates an instance of one of these

hypothetical application. Widget characteristics can be inherited from other, more

basic classes of widgets. Inheritance means that a new class of widget has to define

6



only its own unique features, and need not re-implement those common to all

widgets, or already implemented by an existing superclass. The class hierarchy of

a particular widget class is fixed, while the instance hierarchy is set differently in

every application.

A program that uses an object must not depend on the internal

implementation of the object, but instead only on the known inputs and outputs.

The advantages of code encapsulation are that programmers can use the object

without needing to understand the internal representation (hiding details), and

that the internal implementation of the object can be changed at any tme because

no other code depends on it. It minimizes interdependencies.

Motif is a library of routines that makes the programming of user

interfaces in an X Windows environment fairly easy and straight forward. The

Motif Libraries handle a lot of the low level X windows, so that the user can create

good looking and sophisticated interfaces without having to contend with the all

of the complexity of X. But because Motif is built on top of Xwindows, and because

Xwindows is a detailed and complicated environment, Motif is for many an

intimidating, difficult to learn programming system.

7



1.3.1. Initializing the Toolkit :

Open the application's connection to the X display.

Parse the command line for any of a dozen or so standard x Toolkit

command line options plus any custom command line options the user define in

the application program.

Load the resource database from the app-defaults file.

Create the application's top-level window, a Shell Class widget that

will handle all of the application's interaction with the Motif Window Manager,

mwm, and act as the parent of all the other widgets in the application.

1. XtAppinitialize

2. &app,

3. "Tst",

4. NULL, 	 0,

5. &argc, 	 argv,

6. NULL, NULL

);

( 1 ). The Widget returned by (1) is a Shell Widget. Shell widgets handle the

application's interaction with the window manager, and act as the toplevel

window of the application. All other widgets created by the application are

created as children of the shell.

8



( 2 ). The Application Context. The first argument (2) is the address of an application

context, a structure in which Xt will manage some data internal to Xt that is

associated with the application.

( 3 ). The Application Class. The second argument (3) is the class name of the

application. A class name is used in the resource database to specify values that will

apply to all instances of an application, a widget, or a resource.

( 4 ). Command-line Arguments. The third and fourth (4) arguments specify an array

of command-line arguments defined for application program, if any and the number

of arguments in the array. When these arguments are unused, they are specified

as NULL and 0, respectively. The fifth and sixth (5) arguments contain the value

and count of any actual command-line arguments.

( 5 ). Fallback Resources. The seventh (5) argument is the start of a NULL-

terminated list of fallback resources for the toplevel shell widget created by the

initialization call.

( 6 ). Additional Initialization Parameters. The eighth (6) parameter is the first of a

NULL-terminated list of resource-value pairs that are applied to the toplevel widget

return by (1) XtAppInitialize. If there are none NULL is passed as the eighth

parameter.

9



1.3.2. Role of Xlib in Image Processing Toolkit:

Graphics Context:

The Graphics Context is a data structure that contains information about the

attributes that determine the width of lines, foreground and background colors, fill

patterns, fonts to be used when displaying text, and so on. X stores these attributes

in an data structure known as graphics context, abbreviated as GC.

The Xlib function XCreateGC creates a graphics context and returns a resource

identifier that applications can use to refer to the GC. The X server maintains the

data associated with the graphics context, and all clients must reference the

graphics context by its own ID. GC's are associated with a specific drawable, but

can be used with any drawable of the same depth on a screen with the same visual

type.

Screen :

The XDefaultScreen function return a workstation's default screen, given a Display

pointer. This default screen comes from the default screen number in the display

name, if any.

Visual :

Every screen has a default visual structure, which contains information about its

color capabilites. Pointer is obtained to a screen's default Visual structure with the

DefaultVisual macro. PseudoColor - In this visual class, each pixel value indexes a

red-green-blue color map. The contents of the color map may be changed

dynamically. Each pixel is treated as a single index into a single color map array.

Each entry in the color map contains a red-green-blue triplet.

10



Depth :

The depth of a window is the number of planes, or the number of bits in pixel

values for that window. The depth in the default root window for a specified

screen can be obtained from the DefaultDepth macro. The depth is greater than one

for the PseudoColor workstations.

Colormap :

Color maps sometimes known as color lookup tables convert pixel values into

colors on the screen. The exact structure of a color map, and of the pixel values

which access it, depends on the visual class of the color map. A color map is an

array of color cells. Each color cell in a color map contains one combination of red,

green, and blue primary color values, which specifies one color in the gamut of the

workstation's screen. XColor structure describes the contents of each color cell.

Default Color map for a screen can be determined with the DefaultColormap macro.

XAllocColor :

The XAllocColor requests support the shared color cell strategy. The shared color

cell cell strategy is often used in applications that display images, they may use

shared color cells for such things as menus at the same time as they use the

preallocated pixel values in a standard shared color map for displaying the image

itself. XAllocColor return a single pixel value that user can use to display the color.

XQueryColors:

XQueryColors requests to obtain the primary color component values for specified

color cells. Before calling XQueryColors the user should initialize the pixel fields

in each element of the colors array.

11



Images :

Xlib provides support for image manipulation. Because the X display connetion

between the application and the workstation is a network link, images are hard to

handle in the X environment. Images typically contain large amount of data. For

a 512x512 pixel image with eight bits per pixel consumes about a quarter

megabyte. Xlib takes a substantial amount of time to convert such an image to

protocol wireformat and transmit it over a display connection. The application's

CPU and the workstation's CPU can be different makes and models. Different

computer models often encode the bits within pixel values in different orders. To

reduce the effect of the two above mentioned problems on application programs,

Xlib chose to represent images inside application programs using data structures

known as Xlmage structures.

XCreatelmage :

XCreatelmage is a utility function used for allocating memory for an Xlmage

structure and initializing the structure. XCreatelmage allocates memory for the

Xlmage structure, but not the image itself. This function returns a pointer to the

Xlmage structure. When the user finishes the using an Xlmage structure created

by XCreatelmage, XFree is used to deallocate the Xlmage Structure.

XPutlmage :

XPutlmage is a graphic primitive request for sending images to the workstation. It

uses a GC to set up the graphics pipeline. XPutlmage draws a rectangular area of

the image into the specified drawable using the attributes in the specified gc.

XClearWindow :

XClearWindow clears the contents of the window prior to drawing a new picture in

the specified window.

12



1.3.3. Role of Motif Widget Set in Image Processing Toolkit :

Widget :

Widget is a basic object in a toolkit. A widget includes both code and data, and can

therefore serve as an input or output object. Widgets consist of an X Window

along with some procedures that operate on the window. Examples of widgets

include manager widgets like rowcolumn, form and pushbuttons, scrollbars,

menus, and dialog boxes.

A structure returned by Motif Toolkit routines to identify the widget on which the

routine operates. The members of this structure should not be accesseddirectly

from applications; they should regard it as an opaque pointer. Widget is really a

pointer to a widget instance structure. Widget code accesses instance variables

from this structure.

FormWidgetClass :

A container widget that constrains its children so as to define their layout and

behavior when the Form is resized. Children may be attached to each other, to

edges of the Form, or to absolute or relative positions in the Form. Form is a type

of manager widget type subclassed from the Bulletin Board class.

RowColumnWidgetClass

The RowColumn Widget is a general purpose manager widget capable of

containing any widget type as a child. The RowColum Widget lays out its children

in row and/or column format. It has control over the spacing that occurs between

each row or column and the spacing between the edges. The Motif Toolkit uses the

Row Column widget to implement many convenience routines internally like

popup shell, MenuBars, and pulldown menus.

13



DrawingArea Widget :

The DrawingArea Widget provides a blank canvas for interactive drawing using

basic Xlib drawing primitives. The widget does no drawing of its own, not does

it define or support any Motif user interface design. Subclassed from the Manager

Widget class, the DrawingArea widget may also contain other children, although

there is frequently no assumed or regimented layout policy. DrawingArea inherits

certain translation and action tables that pass event to gadget children.



1.3.4. Motif Functions and Macros used in the Program :

The following functions returns an instance of a respective widget, returning its

widget ID.

XmCreateCascadeButton

XmCreateCascadeButtonGadget

XrnCreateDialogShell

XmCreateDrawingArea

XmCreateFileSelectionBox

XmCreateForm

XmCreateUbel

XmCreateMenuBar

XmCreateMenuShell

XmCreateMessageBox

XmCreateMessageDialog

XmCreatePopupMenu

XmCreatePromptDialog

XmCreatePulldownMenu

XmCreatePushButton

XmCreatePushButtonGadget

XmCreateRowColum

XmCreateScale

XmCreateSelectionDialog

XmCreateText

XmMessageBoxGetChild

XmCreateCreate

XmStringGetLtoR

15



XmStringFree

XmStringGetLtoR

1.3.5. Xt functions and macros used in the program :

XtAddCallback - A callback contains the information about the callback routine

associated with a particular action.

XtRealizeWidget - It displays on the screen the widget that is passed to it and the

children of that widget.

XtAppMainLoop - The application passes control to the Xt Intrinsics and the Motif

Widgets on the XtAppMainLoop function is called.

XtGetValues - It will return the current value of specified arguments for a created

widget.

XtSetValues - It will change the value of the specified arguments.

XtSetArg - The simplest way to set an element of an argument list is by using this

XtSetArg macro.

XtWindow - It returns the window of the widget.

XtDisplay - It returns the pointer to the Display of the specified widget.

XtPopup - When the user wants to map a popup shell to the screen, XtPopu should

16



be used.

XtPopdown - When the dialog is to be dismissed, XtPopdown is used.

XtManageChild - It happens to pop up the shell and XtUnmanageChild causes it to

popdown.

XtParent - It returns the parent of the specified widget.

1.3.6. Callback Procedures used in the Program :

XmAnyCallbackStruct

XmScaleCallbackStruct

XmSelectionBoxCallbackStruct

17



REPRESENTATION

SCHEMES

A subset S of a digital picture E can be represented by a binary picture Xs of the

same size as sigma, having Is at the points of S and O's elsewhere. If sigma is n x

n, the x s representation requires n2 bits. x s can be regarded as the characteristic

function of the subset S; this is the function that maps points of S into 1 and points

of S into O.

More generally, any partition of E into S1, 	 Sm can be represented by an m-

valued picture having its at the points of S i, 1 i m. In particular, if E is any

picture, then in this sense, E represents its own partition into sets of constant gray

level, i.e., Si is the set of points of E having gray level i. For an n x n picture, this

representation requires n2 log2m bits.

The storage requirements of this trivial representation are the same for all

partitions of E into a given number of sets.

18



2.1. ROWS REPRESENTATION :

2.1.1. Run Length Method :

Each row of a picture consists of a sequence of maximal runs of points such that

the points in each run all have the same value. Thus the row is completely

determined by specifying the lengths and values of these runs. If there are only a

few runs, this representation is very economical; for this reason, run length coding

is sometimes used for picture compression. Suppose that the row has length n, and

there are r runs. Since it takes 1og2n bits to sepcify the length of a run, the number

of bits needed to specify all the run length is rlog2n. Thus if there are m possible

values, this representation of the row requires r(log2n + log2m ) bits, as compared

with the nlog2m bits that are required when the row is treated as a string of lengthn.

For an n x n picture, if the average number of runs in each row is r, the total number

of bits required by the run length representation is n ( / + rlog2n ) as compared with

n2 in the binary case, or nr ( log2m+log2n) as compared with n2 1og2m in the general

case.

19



2.2. BLOCK REPRESENTATION:

2.2.1. Quadtrees :

Maximal blocks can be of any size and in any position, they are analogous to runs

in the one-dimensional case. Assume the size of the image is Z is 2k x 2k. The root

node of the tree represents the entire image. If the image has all one value, label

the root node with that value and stop. Otherwise, add four descendants to the

root node, representing the four quadrants of the picture. The process is then

repeated for each of these new nodes; and so on. In general, the nodes at level h

( if any ) represent blocks of size 2 k-h x 2k-h, in positions whose coordinates are

multiples of 2 k-h . If a block has constant value, its node is a leaf node; otherwise,

its node has four descendants at level h + 1, corresponding to the four quadrants

of the block. The nodes at level k, if any are all leaf nodes corresponding to single

pixels.

The tree constructed in this way is called a quadtree representation, since its nonleaf

nodes all have degree 4. The chief advantage of the quadtree representation is that,

unlike the nontree representations considered here, it is shift-variant. Two pictures

that differ only by a translation may give rise to very different quadtrees.

20



PIXEL CLASSIFICATION

Segmentation is basically a process of pixel classification;

The picture is segmented into subsets by assigning the individual pixels to classes.

In an attempt to distinguish dark objects from their light background, we segment

the image by thresholding its gray level; it means classifying the pixels into dark and

light classes.

In edge detection, we classify pixels into edge and not edge by thresholding the

response of some difference operator that has high values when the rate of change

of gray level is high.

3.1.Gray Level Thresholding :

3.1.1. Automatic Thresholding :

In this paper, automatic thresholding was implemented. The gray level histogram of

the picture should display peaks corresponding to the two gray level ranges. The

picture can thus be segmented by choosing a threshold that separates two peaks.

21



A histogram having two peaks is called bimodal. The average of the two peaks are

taken as the threshold value. The pixels whose gray levels are darker than the

threshold are displayed as black, and those are lighter than the threshold as the

respective gray level.

3.1.2. Interactive Thresholding :

The gray level histogram is displayed on the screen. The user can interactively give

the threshold value and do the segmentation. Thus the pixels whose gray values

are less than the threshold are considered as background and the gray values

greater than the threshold value are considered as the respective gray value.

3.1.3. Histogram Equalization :

Image Enhancement by Histogram Equalization :

A histogram of gray-level content provides a global description of the appearance

of an image. The type and degree of enhancement obtained depends on the nature

of the specified histogram.

A transformation function equal to the cumulative distribution of pixels, produces

an image whose gray levels have a uniform density. In terms of enhancement, this

implies an increase in the dynamic range of pixels, can have a considerable effect

in the appearance of an image.

The concepts developed for Histogram Equalization are formulated in discrete form.

Let the variable r represent the gray level of the pixels in the image to be enhanced.

The gray levels in an image are random quantities. Assuming the moment that

22



they are continuous variables, the original and transformed gray levels can be

characterized by their probability density functions p r(r) and ps s), respectively.

For gray levels that assume discrete values, we deal with probabilities given by the

relation

pr (rk) =
	

0<rk_.1

k = 0, 1, 	  L 1,

where L is the number of levels, pk ( rk) is the probability of the kth gray level, nk is

the number of times this level appears in the image, and n is the total number of

pixels in the image. A plot of pi. rk ) versus rk is called a histogram, and the

technique for obtaining a uniform histogram is known as histogram equalization or

histogram linearization.

The discrete form is given by the relation

sk T(rk) k E j =0 niln

=k E 	 Pr (17) 0 <=rk<=1

k = 0, 1 „ L - 1.

Since a histogram is an approximation to a probability density function, perfectly

flat results are seldom obtained when working with discrete level. For an image

with the narrow range of values occupied by pixels, Histogram Equalization is as

expected, not perfectly flat throughout the full range of gray levels, but

considerable improvement over the original image can be achieved by the

spreading effect of the Histogram Equalization technique.

23



EDGE DETECTION

4. EDGE DETECTION :

This section deals with local operations that can be used to detect various types of

local features, such as edges in a image. The gray level is relatively consistent in

each of two adjacent, extensive regions, and changes abruptly as the border

between the regions is crossed.

4.1. Laplacian Operator :

The Laplacian Operator is an orientation-variant derivative operator. The analog

of the Laplacian is given by

(V2 f(x,y).1f(x+1,y)+fix - 1,y)+f(x,y4- 1)+f(x,y - 1) - 4f(x,y)]

which is a digital convolution of f with

010
1 —4 1
010

24



since the digital laplacian is a second difference operator, it has zero response to

linear ramps, but it responds to the shoulders at the top and bottom of a ramp,

where there is a change in the rate of change of gray level.

It responds to each side of an edge once with positive sign and once with negative

sign. If the user want only positive responses, use the absolute value, or positive

value when it is greater than zero. These responses have values as high as four

times the maximum gray level. To ensure that the gray level range is preserved it

should be divided by 4. The digital Laplacian does not respond to edges, but it

responds even more strongly to corners, lines, line ends, and isolated points. In a

noisy image, the noise will produce higher Laplacian values than the edges, unless

it has much lower contrast. When Laplacian Operator is applied to a image, low

spatial frequencies are weakened, while higher ones remain relatively intact. The

results of the images after applying Laplacian operator can be observed in the user

interface.

4.2. Prewitt Operator

The effects of noise on the responses of a difference operator can be reduced by

smoothing the image before applying the operator. The image can be locally

averaged before differencing, or equivalently an operator that computes the

differences of local averages can be used.

A operator based on differences of averages responds blurrily to an edge in several

positions. These responses can be sharpened by suppressing nonmaxima in the

direction accross the edge, i.e., setting a response to zero if there is a stronger

response sufficiently close to it in that direction, on either side. Nonmaxima

should not be suppressed in the direction along the edge, since the edge would

25



then compete with itself. The blurriness of responses to edges, can be reduced by

averaging only in the direction along the edge. In this thesis, the \3x and 03y

operators are used, since they gave values that are symmetric around ( x, y ), where

'3x is defined as the convolution of f with

—1 0 1
—1 01
—101

and ,A3y is defined as the convolution of f with

1 1 1
1/3 0 0 0

—1 —1 —1

The digital gradient values are obtained by using the maximum of the two

perpendicular operators.

4.3. Sobel Operator :

The Laplacian and the Prewitt operators are based on unweighted averages. Sobel

operator uses the weighted averages whose x and y componenets are given by the

convolutions of f with

—1 0 1
1 / 4 —202

—101

1/3

26



and

1/4
1 2 1
000

—1 —2 —1

This operator gives greater weight to points lying closer to ( x, y ). Therefore, its

response to diagonal edges is not weakened as much as that of the Prewitt

Operator. The values are obtained by using the maximum of the two above

operators.

27



Chapter 5IMAGE
TRANSFORMS

5.1. Fast Fourier Transformation:

Two-dimensional transforms are used in the following chapters for image

enhancement, restoration, encoding and decoding. The development of a fast

Fourier transform algorithm which can be used to reduce the number of

calculations to a fraction of that required to implement the discrete Fourier

transform was made. The number of complex and multiplications and additions

required are proportional to N 2. The decompostion procedure is called fast

Fourier transform algorithm, in which the proportionality is reduced from N2 to

Nlog2N.

Computation of the two dimensional Fourier Transform

as a series of One-dimension transforms.

28



5.2. Rotation :

A geometrical transformation of the plane is defined by a pair of equations of the

form

y'=h2(x,y);

which specify the new coordinates of each point as functions of the old

coordinates. It is nontrivial to apply such a transformation to a digital image, since

the new coordinates are not necessarily integers. To make the results of the

transformation into a digital image, they must be resampled or interpolated. In

this thesis, three different types of Interpolation are used for rotation the image -

Biconstant Interpolation, Bilinear Interpolation, and Bicubic Interpolation.

The simplest method is bilinear interpolation, which is defined as follows :

Let the integer parts L xi Y.] of x" and y" be x and y, so that the point ( x", y" ), is

surrounded by the four integer-coordinate points

( x, y )

( x", y" )

In bicubic interpolation, in which the image is approximated by a linear combination

of products of cubic polynomials, E I cil gx ( x ) g1 ( y ). The coefficients of these

polynomials can be chosen so that the approximation has the same values at the

sample points. Bicubic interpolation yields smoother results.

29



USER INTERFACE
TO OLKIT

The User Interface is developed in X Windows using Motif Toolkit. The operations
one can do are listed below :

1. File :

The user can select any image file from any directory using open command. To

change the directory, use the filter button. Then select the required file and press

Ok button. The image file will be loaded.

Using Save command, it saves the current image on the original image file, i.e., the

original image is overwrited.

Using Saveas Command, the current image can be saved in to the new file. It will

ask for the filename, filename is entered in the dialog and press Ok button.

The user can print the current image file to a postscript file "PRINT" and the file can

be directed to any postscript printer.

The undo command goes to the previous command.

30



2.Transformations :

The image can be inverted using invert command i.e., the user can display the

negative image.

The image can be enlarged twice to the original image by zoomin command.

The Fourier transformation can only be applied to the binary images.

The image can be rotated by any one of these methods - Biconstant Interpolation,

Bilinear Interpolation, and Bicubic Interpolation. When the user selects the respective

button, it will popup a dialog to enter the angle. The rotated image can be

displayed on the window by pressing Ok.

3. Segmentation :

Pixel classification can be made by one of the commands - Auto threshold, interactive

threshold or by histogram equalization.

Edges of the image can be detected by three operators - Laplacian, Prewitt and Sobel.

4. Representation :

Representation of the binary images can only be applied by run length method and

quad tree method.

5.Help :

Online Help is provided for all functions listed in the menu.

31



Coding



Program : draw.c

Programmer : Kumar Chebrolu

This program sets the Graphics Context and Allocates colors in the Colormap
The displa function uses Xlib functions XCreateimage and XPutimage to
display the image on the drawing area.

#include "tst.h"

Visual *vis = NULL;
unsigned long colors[256];
XColor ctab[256];

1*** 	 ***1

set_gc( d )
Widget d;

XGCValues values;

values.function = GXcopy;

gc = XCreateGC (
XtDisplay ( d ),
XtWindow ( d ),
GCFunction,
&values
);

set v( dd )
Widget dd;

int i;

screen = DefaultScreen (
XtDisplay ( dd )
);

vis = DefaultVisual (
XtDisplay ( dd ),
screen
);

depth = DefaultDepth (
XtDisplay ( dd ),
screen



2

);

for ( i = 0; i < 256; i++ )
ctab[i].pixel = i;

colormap = DefaultColormap (
XtDisplay ( dd ),
screen
);

for ( = 0; i < 256; i++ )
allcolors[i]sed = ( u_short ) ( i « 8 );
allcolors[i].green = ( u_short ) ( i « 8 );
allcolors[i].blue = ( ushort ) ( i « 8 );
allcolors[i].flags = DoRed I DoGreen i DoBlue;
if ( !XAllocColor (

XtDisplay ( dd ),
colormap, &allcolors[i] )) (

allcolors[i].pixel = Oxffff;

XQueryColors ( XtDisplay ( dd ),
colormap,
ctab, 256
);

/*** 	 ***/

displa ( dr, IMAG )
Widget dr;
float *IMAG;

int	 i,
J;

set_gc ( dr );
set v ( dr );

DIMAGE = ( unsigned char * ) calloc ( X * Y , sizeof ( unsigned char ) );
ftod ( IMAG, DIMAGE );

image = XCreatelmage (
XtDisplay ( dr ),
vis, 8,
ZPixmap, 0,
(char * ) DIMAGE,
X, Y,
8 ,
0



3

image->byte_order = MSBFirst;
image->bitmap_bit_order = MSBFirst;

XClearWindow (
XtDisplay ( dr ),
XtWindow ( dr )
);

XClearWindow (
XtDisplay ( drawh ),
XtWindow ( drawh )
);

XSetForeground (
XtDisplay ( dr ), gc,
WhitePixel ( XtDisplay ( dr), screen )
);

XPutImage (
XtDisplay ( dr ),
XtWindow ( dr ), gc,
image,
0, 0, 70, 50,
640, 640
);

XBell ( XtDisplay ( dr ), 1000 );
free ( DIMAGE );



Program : edge.c

Programmer : Kumar Chebrolu

This Program is for detecting edges of the images.
The three operators used for detecting edges are Laplacian, Sobel and
Prewitt.

#include "tst.h"

float lap[3][3] = ({0, 1, 0), (1, -4, 1), (0, 1, 0));

float sob_h[3][3] = ( (-1,0,1), (-2,0,2), (-1,0,1));

float sob_v[3][3] = ( (1,2,1), (0,0,0),

float pre_h[3][3] = f(-1,0,1), (-1,0,1), (-1,0,1));

float pre_y[3][3] = (1,1,1), (0,0,0), (-1,-1,-1));

/*** ***I

get_threeimage(p,q,trans,orig)
int p, q;
float trans[3][3], *orig;

if ((p==0)II(q==0)) trans[0][0] = 0; else
trans[0][0] = orig[(p-1)*X+(q-1)];

if (p==0) trans[0][1] = 0; else
trans[0][1] = orig[(p-1)*X+q];

if ((p==0)11(q+1==Y)) trans[0][2] = 0; else
trans[0] [2] = orig[(p-1)*X+(q+1)];

if (q==0) trans[1][0] = 0; else
trans[1][0] = orig[p*X+(q-1)];
trans[1][1] = orig[p*X+q];

if (q+1 == Y) trans[1][2] = 0; else
trans[1][2] = orig[p*X+(q+1)];

if ((q	 0)1I(p+1 == X)) trans[2][0] = 0; else
trans[2][0] = orig[(p+1)*X+(q-1)];

if (p+1	 X) trans[2][1] = 0; else
trans[2][1] = orig[(p+1)*X+q];

if ((p+1 == X) II (q+1	 Y)) trans[2][2] = 0; else
trans[2][2] orig[(p+1)*X+(q+1)];

I*** 	 ***I

float
con(con_mat,orig_mat)



free ( sob image );
displa ( draw, IMAGE );

/*** 	 ***/

void
Laplacian()

float *lap image,
temp[3] [3];

int	 a,
b,
dd;

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

XClearWindow ( XtDisplay ( drawh ),
XtWindow ( drawh )
);

lap_image = (float *)calloc( X*Y,sizeof(float));

for (a = 0; a < Y; a++)
for (b 0; b < X; b++) (

get_three_image(a,b,temp,IMAGE);
lapimage[a*X+b] = (abs((int)(con(lap, temp))));
dd = lap_image[a*X+b];

copy ( IMAGE, PREY IMAGE );
copy ( lap_image, IMAGE );
free ( lap_image );
displa ( draw, IMAGE );

I*** 	 ***/

void
prewittO

float *pre_image,
temp[3][3],
v,
h,
vi,
hl;

int	 a,
b ,
dd;



4

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

XClearWindow ( XtDisplay ( drawh ),
XtWindow ( drawh )
);

pre_image = (float *)calloc( X*Y,sizeof(float));

for (a = 0; a < Y; a++)
for (b = 0; b < X; b++)

getthreeimage(a,b,temp,IMAGE);
h = (abs ((int) (con (pre_h, temp))));
v = (abs((int)(con(pre_y, temp))));
h1 = h/3;
vl = v/3;
pre_image[a*X+b] = max(h 1, v1);
dd = preimage[a*X+b];

copy ( IMAGE, PREV IMAGE );
copy ( preimage, IMAGE );
free ( preimage );
displa ( draw, IMAGE );



Program : enlarge.c

Programmer : Kumar Chebrolu

This program enlarges the current image and inverts the current image.

#include "tst.h"

/*** 	 ***/

getdata ( buf,k, len )
char *buf;
int len, k;

int i;
for ( i = 0; i < len; i++ )

*buf++ = IMAGE[k*len+i];

zoomin ( pp )
Widget pp;

char *a, *b, *p, *q;
int xs, ys;
int ii, i, k, j, kk;
int newxsize, newysize;
int z;
float *enimg;

ZOOM_CNT++;
if ( ZOOM_CNT < 2 ) (

xs = ys = 2;

enimg = ( float * ) XtMalloc ( X*Y*xs*ys* sizeof ( float ));

newxsize = X * xs;
newysize = Y * ys;

a = ( char * ) XtMalloc ( X* sizeof ( char ) );

b = ( char * ) XtMalloc ( newxsize* sizeof ( char ) );



2

if ( b == NULL ) (
puts ( " memory allocation failure in b " );
exit ();

)
kk = 0;

for (	 0; < Y; i++ )
getdata( a, i, X );
p = a;
q = b;
for ( k = 0; k < X; k++, p++ )

for ( j = 0; j < xs; j++ )
*q++ = *p;

}
for(j=0; j< ys; j++) {

for (ii = 0; ii < newxsize; ii++ ) (
enimg[kk] = b[ii];
kk++;

)

)

X = newxsize;
Y = newysize;

XBell ( XtDisplay(draw ), 100 );
copy ( enimg, IMAGE );
XtFree ( enimg );
XtFree ( a );
XtFree ( b );
displa ( draw, IMAGE );

)
else warn ( p , error[3] );

/*** 	 ***/

invert()

int i, j;
unsigned char *k;

k = ( unsigned char * ) XtMalloc ( X * Y* sizeof ( unsigned char ) );

for ( i =	 < Y; i++ )
for ( j = 0; j < X; j++ )

k[i*X+j] = IMAGE[i*X+j];
k[i*X+j] = 0377 " k[i*X+j] ;
IMAGE[i*X+j] = k[i*X+j];

)

XBe11 ( XtDisplay ( draw ), 100 );



3

XtFree ( k );
displa ( draw, IMAGE );

}

/*** 	 ***/



Program : file.c

Programmer : Kumar Chebrolu

This program loads the image from any directory, calculates the frequency,
copies the images etc..

#include "tst.h"

/*** 	 ***/

input()

char *name,
*tmp,
*tmp 1,
*tmp2;

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

XClearWindow ( XtDisplay ( drawh ),
XtWindow ( drawh )
);

name = (char * )calloc ( 50, sizeof(char));

strcpy ( name, Filename );

tmp = strtok( name, ".");
name = NULL;
tmpl = strtok ( name, "y" );
name = NULL;
tmp2 = strtok ( name, " " );
name = NULL;

if ( tmp = NULL)
puts ("ERROR: input is wrong");

else
if ( tmp 1 = NULL )

puts ("ERROR: input is wrong");
else

if ( tmp2 == NULL )
X = Y = atoi ( tmpl );

else (
X = atoi(tmpl);
Y = atoi(tmp2);



2

ZOOM CNT 0;
free ( IMAGE );
load_file 0;

)

inputiongfile()

char *name,
*tmp,
*tmpl,
*tmp2;

int	 i,
count;

name = (char * )calloc ( 50, sizeof(char));

count = 0;
for ( i = 0; i <= strlen ( Filename ); i++ )

if (Filename[i] == '/' )
count++;

strcpy ( name, Filename );

input 0;
)

/*** 	 ** *I

Frequency ( fimage )
float *fimage;

int
	

f,

J;

for ( i = 0; i <= 255; i++ )
FREQ[i] = 0;

for ( i = 0; < Y; i++ )
for ( j = 0; j < X; j++ )

f = fimage[i*X+j];
if ( f > 255 )

f = 255;
FREQ[f].-H-;

)

)



load_flle 0

int	 i,
J ,
f,
memo;

unsigned char	 ch;

printf ( "Filename = %sO,Filename );

if ( (fp = fopen ( Filename, "r" )) == NULL )
puts ("ERROR: Input File not found");

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

XClearWindow ( XtDisplay ( drawh ),
XtWindow ( drawh )
);

IMAGE = ( float * ) calloc ( 8* X * Y , sizeof ( float ));
PREY_IMAGE = ( float * ) calloc (8 * X * Y , sizeof ( float ));
TMP IMAGE = ( float * ) calloc ( 8 * X * Y , sizeof ( float ));

for ( i = 0; <	 i++ )
for ( j = 0; j < X; j++ ) (

fscanf ( fp, "%c", &ch );
IMAGE[i*X+j] = ch&0377;
f = IMAGE[i*X+j];
if ( f > 1 )

IM_TYPE = 1;
else

IM TYPE = 0;

if ( IM TYPE -= )
printf ("BINARY IMAGE 0);

else
printf ("GRAY IMAGE 0);

copy ( IMAGE, TMP_IMAGE );
XBell ( XtDisplay ( draw ), 100 );

ftod ( image, DIM )
float *image;
unsigned char *DIM;



int	 i,

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

XClearWindow ( XtDisplay ( drawh ),
XtWindow ( drawh )
);

for ( i = 0; i < Y; i++ )
for ( j = 0; j < X; j-H- ) (

DIM[i*X+j]	 ( unsigned char )image[i*X-1-j];

1* ** ___________________________________________________________________ * **I

ctof ( image, DIM )
char *image;
float *DIM;

int	 i,
i;

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

XClearWindow ( XtDisplay ( drawh ),
XtWindow ( drawh )
);

for ( i = 0; < Y; i++ )
for ( j = 0; j < X; j++)

DIM[i*X+j] = image[i*X+j];

after th ( image )
float *image;

int	 i,

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);



XClearWindow ( XtDisplay ( drawh ),
XtWindow ( drawh )
);

for ( i 0; i < Y; i++ )
for ( j = 0; j < X; j++ ) f

if ( image[i*X+j] < ( float ) ( threshold ) )
DIMAGE[i*X+j] = 0.0;

else
DIMAGE[i*X+j] = image[i*X+j];

/*** 	 ** *1

copy ( from, to )
float *from;
float *to;

int	 i,

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

XClearWindow ( XtDisplay ( drawh ),
XtWindow ( drawh )
);

for ( = 0; < Y; i++ )
for ( j = 0; j < X; j++ )

to[i*X+j] = from[i*X+j];
XBell ( XtDisplay ( draw ), 100 );

/*** 	

loaded 0

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

XClearWindow ( XtDisplay ( drawh ),
XtWindow ( drawh )
);

displa ( draw, IMAGE );



6

Frequency ( IMAGE );
draw_h 0;

/*** 	 ***/

undo 0

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

XClearWindow ( XtDisplay ( drawh ),
XtWindow ( drawh )
);

copy ( PREV_IMAGE, IMAGE );
displa ( draw, IMAGE );
Frequency ( IMAGE );
draw_h 0;

I*** 	 ***I

init 0

int	 i,
J;

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

for ( = 0; i < Y; i++ )
for ( j = 0; j < X; j++ )

IMAGE[i*X+j] = 0.0;

copy ( TivrP_EMAGE, IMAGE );
displa ( draw, IMAGE );
Frequency ( IMAGE );
draw_h 0;

/*** 	 ***/



Program : help.c

Programmer : Kumar Chebrolu

This program is written to provide online help for all the functions used in
this graphical user interface.

#include "tst.h"

char *hopen[]
"Ohe user can select a requiredOmage file from any directoryOsing filter from the popup file selectic
"Oaves the file0,
"Oave the file under the new name0,
"Ohe current image will be converted Onto postscript file named PRINT, the Oile can be directed to
"Ohe user can go to the previous command°,
"Ohe image can be inverted with this Oommand i.e., negative0,
"Opply FFi' to binary image°,
"Ohe image can be doubled°,
"Ohe Image can be rotated by using Ohree different algorithms - Biconstant Interpolation, - Bilin
"Ohe binary image can be represented Oy two methods - Quad Tree Method, - Run Length Meth
"Ohe threshold is calculated automatically0,
"Ohe threshold is to given by the user0,
"Ohe gray levels of the image are equalized°,
"Ohe image is displayed on the window0,
1;

char *one[] (
"Open",
"Save",
"Save As",
"Print",
"Undo",

char *two[]	 =
"Invert",

"Zoomin",
"Rotate",
);

char *three[]
"Edge Detection",
);

char *four[]
"Representation",

char *five[]



2

"Auto_ Threshold",
"Interactive_Threshold",
"Histogram Equalization",
),

char *six0
"Loaded Image",

);

typedef struct
char **strs;
int sizeh;
) Listltem;

Listltem help_items;
Listltem one_items = [ one, XtNumber ( one ) );
Listltem two_items = ( two, XtNumber ( two ) );
Listltem three items = ( three, XtNumber ( three ) ),
Listltem four items = four, XtNumber ( four ) };
Listltem five items = ( five, XtNumber ( five ) );
Listltem six items = ( six, XtNumber ( six ) );

I*** 	 ***/

help ( pp, str )
Widget pp;
char *str;

Widget	 helpdialog;
XmString h,

*hstr;
int	 i;

extern void helpcallback 0;

if ( ! ( strcmp ( str, "File" ) ) )
help_items.strs = one_items.strs;
help_items.sizeh = one_items.sizeh;

}

if ( ! ( strcmp ( str, "Transformations" ) ) ) (
help_items.strs = two_items.strs;
help_items.sizeh = two_items.sizeh;

if ( ! ( strcmp ( str, "Segmentation" ) ) ) {
help_items.strs = three_items.strs;
help_items.sizeh = three_items.sizeh;

if ( ! ( strcmp ( str, "Representation" ) ) ) (
help_items.strs = four_items.strs;
help_items.sizeh = four_items.sizeh;



3

if ( ! ( strcmp ( str, "Histogram" ) ) )
help_items.strs = five_items.strs;
help_items.sizeh = fiveitems.sizeh;

if ( ! ( strcmp ( str, "Display" ) ) )
help_items.strs = sixitems.strs;
help_items.sizeh = six_items.sizeh;

hstr = ( XmString * ) XtMalloc ( help_items.sizeh * sizeof ( XmString ) );

h = XmStringCreateSimple ( "Menu" );

for ( i = 0; i < help_items.sizeh ; i++ ) (
hstr[i] = XmStringCreateSimple ( help_items.strs[i] );

helpdialog = XmCreateSelectionDialog (
pp, "help",
NULL, 0
);

XtVaSetValues ( helpdialog,
XmNlistLabelString, h,
XmNlistltems, hstr,
XmNlistltemCount, help_items.sizeh,
XmNmustMatch, True,
NULL );

XtUnmanageChild XmSelectionBoxGetChild
( helpdialog, XmDIALOG HELP BUTTON),_	 _
False );

XtUnmanageChild ( XmSelectionBoxGetChild
( helpdialog, XmDIALOG_APPLY_BUTTON),
False );

XtAddCallback ( helpdialog, XmNcancelCallback, XtDestroyWidget, NULL);

XtAddCallback ( helpdialog, XmNokCallback, helpcallback, NULL );

XmStringFree ( h );

XtFree ( hstr );



-4-

XtManageChild ( helpdialog );

/***  	 ***/

helpcallback ( w, client_data, cbs )
Widget w;
XtPointer client_data;
XmSelectionBoxCallbackStruct *cbs;

int
HH;

char 	 *value,
*match;

Widget 	 dialog;
Pixel 	 fg,

bg;

XmString buffer;
Pixmap 	 map;
Display 	 *dpy = XtDisplay ( w );
int 	 screen = DefaultScreen ( dpy );

Arg 	 arg_list[2];
extern 	 DestroyShell(),

GetTopShell 0;

XmS tringGetLtoR ( cbs->value,
XmSTRING DEFAULT CHARSET, &value
);

if ( ! ( strcmp ( value, "Open" ))) HH = 0; else
if ( ! ( strcmp ( value, "Save" ))) HH = 1; else
if ( ! ( strcmp ( value, "Save As" ))) HH = 2; else
if ( ! ( strcmp ( value, "Print" ))) HH = 3; else
if ( ! ( sticmp ( value, "Undo" ))) HH = 4; else
if ( ! ( strcmp ( value, "Invert" ))) HH = 5; else
if ( ! ( strcmp ( value, "I-F1'" ))) HH = 6; else
if ( ! ( strcmp ( value, "Zoomin" ))) HH = 7; else
if ( ! ( strcmp ( value, "Rotate" ))) HH = 8; else
if ( ! ( strncmp ( value, "Edge",4 ))) HH = 9; else
if ( ! ( strncmp ( value, "Repr",4 ))) HH = 10; else
if ( ! ( strncmp ( value, "Auto " ,4 ))) HH = 11; else
if ( ! ( strncmp ( value, "Inte",4 ))) HH = 12; else
if ( ! ( strncmp ( value, "Hist",4 ))) HH = 13; else
if ( ! ( strncmp ( value, "Load",4 ))) HH = 14;

match = hopen[HH];

buffer = XmStringCreateLtoR ( match ,



5

XmSTRJNG DEFAULT CHARSET
);

XtSetArg ( arg_list[0],
XmNdeleteResponse, XmDESTROY
);

XtSetArg ( arg_list[I],
XmNhelpLabelString, XmStringCreateSimple ( "OK" )

XtSetArg ( arg_list[2],
XmNtitle, value
);

dialog = XmCreateMessageDialog (
w, "dialog",
arg_list, 2
);

XtUnmanageChild ( XmMessageBoxGetChild
( dialog, XmDIALOG_OK_BUTTON) , False
);

XtUnmanageChild ( XmMessageBoxGetChild
( dialog, XmDIALOGCANCEL_BUTTON), False

XtAddCallback ( dialog, XmNhelpCallback, XtDestroyWidget, NULL );

XtVaGetValues ( dialog,
XmNforeground, &fg,
XmNbackground, &bg,
NULL
);

map = XCreatePixmapFromBitmapData (
dpy, XtWindow ( w ),
help_bits, help_width, help_height,
fg, bg,
DefaultDepth ( dpy, screen ) );

XtVaSetValues ( dialog,
XmNmessageString, buffer,
XmNsymbolPixmap, map,
NULL
);

XtManageChild ( dialog );

for ( i = 0; < 5; i++ )
XBell ( XtDisplay ( draw ), 1 );

XtPopup ( XtParent ( dialog ), XtGrabNone );



}
/*** ___________________________________________________________________ ***/



***

Program : hist.c

Programmer : Kumar Chebrolu

This program calculates the threshold value, and histogram equalization is
done for the gray image.

*** 	

#include <Xm/Scale.h>
#include "tst.h"

char *ggrey[] =

"30",
"60",
"90",
"120",
"150",
"180",
"210",
"240",
);

/*** 	 ***/

void
auto_th()

float *aut;

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

threshold = auto threshold();

aut = ( float * ) calloc ( X * Y, sizeof ( float ) );

if ( aut == NULL )(
puts ( " memory allocation failure in aut );
exit 0;

for ( i = 0; < Y; i++ )
for ( j = 0; j < X; j++ )

if ( IMAGE[i*X+j] < threshold )
aut[i*X+j] = 0.0;



-2

else
aut[i*X+j] = 1.0;

copy ( IMAGE, PREV_IMAGE );
copy ( aut, IMAGE );
free ( aut );
displa ( draw, IMAGE );
Frequency ( IMAGE );
draw h 0;

I*** 	 ***V

int
h(j,k)
int j, k;

int	 p;

for ( p = j; p <= 255; p++ )
if ( FREQ[p] == k )

return ( );

I*** 	 ***I

int
auto_threshold()

int	 i,
j,
k = 0,
kl,
k2 = 0,
k3 = 0,
k4;

for ( i = 0; i < 200; i++ )
k= max ( FREQ[i], k );

kl = h ( 0, k );
k2 = kl + 15;

for ( j = k2; j <= 255; j++ )
k3 = max ( EREQ[j],k3

k4 = h ( kl, k3 );
thres = ( kl + k4 ) / 2;

return ( abs ( thres ) );



Widget
GetTopShell ( w )
Widget w;

while ( w && !XtIsWMShell ( w ) )
w = XtParent ( w );

return w;

I*** 	 ***I

draw_h ( )

int	 i,
hf;

float gr;

set gc( drawh );

XClearWindow ( XtDisplay ( drawh),
XtWindow (drawh)
);

XDrawLine (
XtDisplay ( drawh ), XtWindow ( drawh ), gc,
24, 10, 24, 175
);

XDrawLine (
XtDisplay ( drawh ), XtWindow ( drawh ), gc,
20, 170, 280, 170
);

for ( i = 1; i < 9; i++ )
XDrawLine (

XtDisplay ( drawh ), XtWindow ( drawh ), gc,
25+i*30, 170, 25+i*30, 175
);

for ( i = 0; i < XtNumber ( ggrey ); i++ )
XDrawString (

XtDisplay ( drawh ), XtWindow ( drawh ), gc,
18+30*i, 188,ggrey[i], strlen ( ggrey[i] )
);

g = 0;
for ( i = 0; i <= 255; i++ )

gr = max ( gr, FREQ[i] );
gr = gr / 160;



for ( = 0; i <=255; i++ )
if ( FREQ[i] != 0 )

hf = FREQ[i] / gr;
else

hf = 0;
XDrawLine (

XtDisplay ( drawh ), XtWindow ( drawh ), gc,
25 + i, 170 - hf, 25 + i, 170
);

/*** 	 ***/

void
interactive (w)
Widget w;

Widget	 dialog,
pane,
form,
widget,
scale;

Pixel	 fg,
bg;

int	 i;
extern void DestroyShellO, value();

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

dialog = XtVaCreatePopupShell ( "dialog",
xmDialogShellWidgetClass, GetTopS hell ( w ),
XmNdeleteResponse, XmDESTROY,
NULL );

pane = XtVaCreateWidget ( "pane",
xmRowColumnWidgetClass, dialog,
NULL );

XtVaCreateManagedWidget ( "Threshold Value : " ,

xmLabelGadgetClass, pane,
NULL );

form = XtVaCreateWidget ( "forml",
xmFormWidgetClass, pane,
NULL );

XtVaGetValues ( form,
XmNforeground, &fg,



5

XmNbackground, &bg,
NULL );

scale = XtVaCreateManagedWidget ( "scale",
xmScaleWidgetClass, form,
XmNleftAttachment, XmATTACH_FORM,
XmNtopAttachment, XmATTACH_FORM,
XmNorientation, XmHORIZONTAL,
XmNmaximum, 255,
XmNshowValue, True,
NULL );

XtAddCallback ( scale, XmNvalueChangedCallback, value, NULL );

for (	 0; i < 25; i++ )
XtVaCreateManagedWidget ( " ",

xmLabelGadgetClass, scale,
NULL );

XtManageChild ( form );

form = XtVaCreateWidget ( "form2",
xmFormWidgetClass, pane,
XmNfractionBase, 5,
NULL );

widget = XtVaCreateManagedWidget ( "Ok",
xmPushButtonGadgetClass, form,
XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACHPOSITION,
XmNleftPosition, 1,
XmNrightAttachment, XmATTACH_PosITION,
XmNrightPosition, 2,
XmNshowAsDefault, True,
XmNtopOffset, 20,
XmNdefaultButtonShadowThickness, 1,
NULL );

XtAddCallback ( widget, XmNactivateCallback, DestroyShell, dialog );

widget = XtVaCreateManagedWidget ( "Cancel",
xmPushButtonGadgetClass, form,
XmNtopAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
XmNleftAttachment, XmATTACH_POSITION,
XmNleftPosition, 3,
XmNrightAttachment, XmATTACH POSITION,
XmNrightPosition, 4,
XmNshowAsDefault, True,
XmNtopOffset, 20,
XmNdefaultButtonShadowThickness, 1,



6

NULL );

XtAddCallback ( widget, XmNactivateCallback, DestroyShell, dialog );

XtManageChild ( form );

Dimension h;
XtVaGetValues ( widget,

XmNheight, &h,
NULL
);

XtVaSetValues ( form,
XmNpaneMaximum, h,
XmNpaneMinimum, h,
NULL
);

XtManageChild ( pane );

XtPopup ( dialog, XtGrabNone );

I*** 	 ***/

void
value ( w, client data, cbs )
Widget w;
caddr_t client_data;
XmScaleCallbackStruct *cbs;

float *inter;
int	 i,

j,
th;

inter = ( float * ) calloc ( X * Y, sizeof ( float ) );

if ( inter	 NULL)
puts ( " memory allocation failure in inter " );
exit();

th = cbs->value;

for ( i = 0; < Y; i++ )
for ( j = 0; j < X; j++ )

if ( IMAGE[i*X+j] < th )
inter[i*X+j] = 0.0;

else
inter[i*X+j] = IMAGE[i*X+j];



copy ( IMAGE, PREV IMAGE );
copy ( inter, IMAGE );
free ( inter );
displa ( draw, IMAGE );
Frequency ( IMAGE );
draw_h 0;

void
DestroyShell ( widget, shell )
Widget widget, shell;

XtDestroyWidget ( shell );

hist eq ( p )
Widget p;

int	 infreq[256] = ( 0 ),
mapfreq[256] = ( 0 ),

j,
k,
f,
low,
high;

float *EQ_IMAGE,
ff;

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

if ( IM_TYPE == 0 )
warn ( p, error[0] );

else (
EQ IMAGE = ( float * ) calloc ( X * Y, sizeof ( float ) );

if ( EQ_IMAGE == NULL )[
puts ( 'I memory allocation failure in EQ_IMAGE " );
exit 0;

for ( i = 0; i < Y; i++ )
for ( j = 0; j < X; j++ ) (

f = IMAGE[i*X+j];
if ( f > 255 )



8

f = 255;
infreq[f]+-1-;

)

for ( i = 1; i < 256; i++ )
infreq[i] += infreq[i-1];

for ( i = 0; i < 256; i++ ) (
if ( !infreq[i] )

continue;
else {

low = i;
break;

)

}

for ( = 254; i > 0;	 )
if ( infreq[i] == infreq[i+1] )

continue;
else

high = i + 1;
break;

}

)

f = infreq[high] / ( high - low + 1 );

i = low;
mapfreq[low] = low;

for ( j = 1; j < 256; j++ ) (
if ( i >= high )

break;
while ( infreq[i] < ( j+1 ) * f)

mapfreq[i+1] = j + low;
if ( ++i >= high )

break;
)

)

for ( = 0; i < Y; i++ )
for(j= 0;j<X,j++)(

k = IMAGE[i*X+j];
EQ_IMAGE[i*X+j] = mapfreq[k];

}

copy ( IMAGE, PREY IMAGE );
copy ( EQ IMAGE, IMAGE );
free ( EQ_IMAGE );
displa ( draw, IMAGE );
Frequency ( IMAGE );
draw_h 0;
)



9

I*** 	 ***/

warn ( p, err )
Widget p;
char err[];

Widget	 dialog;
Display	 *dpy = XtDisplay ( p );
int	 screen = DefaultScreen ( dpy );
Pixel	 bg,

fg;
Arg	 arg_list[2];
XtAppContext app = XtWidgetToApplicationContext ( p );
XmS wing text;
char	 buf[2001;
TimeOutClientData *data = XtNew ( TimeOutClientData );
extem	 blink°, destroy ();

text = XmStringCreateSimple ("Cancel");

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

XtSetArg ( arglist[0],
XmNhelpLabelString, text
);

XtSetArg ( arg_list[1],
XmNdeleteResponse, XmDESTROY
);

dialog = XmCreateMessageDialog (
p, "warn",
arg jist, 2
);

XmStringFree ( text );

XtUnmanageChild { XmMessageBoxGetChild
( dialog, XmDIALOG_OK_BUTTON),
False
);

XtUnmanageChild ( XmMessageBoxGetChild
( dialog, XmDIALOG CANCEL BUTTON),
False
);

XtAddCallback ( dialog, XmNhelpCallback, XtDestroyWidget, NULL);
XtAddCallback ( dialog, XmNdestroyCallback, destroy, data );



- 10 -

XtVaGetValues ( dialog,
XmNforeground, &fg,
XmNbackground, &bg,
NULL
);

data->pix 1 = XCreatePixmapFromBitmapData (
dpy, XtWindow ( p ),
star_bits, star_width, star_height,
fg, bg,
DefaultDepth ( dpy, screen )
);

data->pix2 = XCreatePixmapFromBitmapData (
dpy, XtWindow ( p ),
starlbits, starl_width, starl_height,
fg, bg,
DefaultDepth ( dpy, screen )
);

data->dialog dialog;
data->app = app;
data->id = XtAppAddTimeOut (

app, 1000L,
blink, data
);

text = XmStringCreateLtoR ( err, XmSTRING_DEFAULT_CHARSET );

XtVaSetValues ( dialog,
XmNmessageString, text,
XmNsymbolPixmap, data->pix2,
NULL
);

XmStringFree ( text );

XtManageChild ( dialog );

XtPopup ( XtParent ( dialog ), XtGrabNone );

void
PoP (w)
Widget w;

Widget	 dialog,
pane,
form,
widget,
scale;

Pixel	 fg,
bg;



int	 i;
extern void DestroyShell(), value();

dialog = XtVaCreatePopupShell ( "pop",
xmDialogShellWidgetClass, GetTopShell ( w ),
XmNdeleteResponse, XmDESTROY,
NULL );

/* pane = XtVaCreateWidget ( "pane",
xmRowColumnWidgetClass, dialog,
NULL );

XtVaCreateManagedWidget ( "Poped Image : ",
xmLabelGadgetClass, pane,
NULL ); */

form = XtVaCreateWidget ( "forml",
xmFormWidgetClass, pane,
XmNheight, 680,
XmNwidth, 640,
NULL );

drawp = XtVaCreateManagedWidget (
"drawp",
xmDrawingAreaWidgetClass, form,
XmNtopAttachment, XmATTACHFORM,
XmNleftAttachment, XmATTACHFORM,
XmNunitType, XmlOOOTHINCHES,
XmNheight, 500,
XmNwidth, 500,
NULL );

XtVaGetValues ( form,
XmNforeground, &fg,
XmNbackground, &bg,
NULL );

XtManageChild ( form );

form = XtVaCreateWidget ( "form2",
xmFormWidgetClass, pane,
XmNfractionBase, 5,
NULL );

widget = XtVaCreateManagedWidget ( "Ok",
xmPushButtonGadgetClass, form,
XmNtopAttachment, XmATTACH FORM,
XmNbottomAttachment, XmATTACH FORM,



- 12 -

XmNleftAttachment, XmATTACH_posITION,
XmNleftPosition, 1,
XmNrightAttachment, XmATTACH POSITION,
XmNrightPosition, 2,
XmNshowAsDefault, True,
XmNtopOffset, 20,
XmNdefaultButtonShadowThickness, 1,
Nun );

XtAddCallback ( widget, XmNactivateCallback, DestroyShell, dialog );

widget = XtVaCreateManagedWidget ( "Cancel",
xmPushButtonGadgetClass, form,
XmNtopAttachment, XmATTACHFORM,
XmNbottomAttachment, XmATTACHFORM,
XmNleftAttachment, XmATTACHPOSITION,
XmNleftPosition, 3,
XmNrightAttachment, XmATTACH_POSITION,
XmNrightPosition, 4,
XmNshowAsDefault, True,
XmNtopOffset, 20,
XmNdefaultButtonShadowThickness, 1,
NULL );

XtAddCallback ( widget, XmNactivateCallback, DestroyShell, dialog );

XtManageChild ( form );

Dimension h;
XtVaGetValues ( widget,

XmNheight, &h,
NULL
);

XtVaSetValues ( form,
XmNpaneMaximum, h,
XmNpaneMinimum, h,
NULL
);

displa ( drawp, IMAGE );

XtPopup ( dialog, XtGrabNone );

1*** 	 ***I



	***

Program : las.c

Programmer : Kumar Chebrolu

This program creates a postscript file for the current image in the file
PRINT* in the current directory.

** * _____________________________________
#include "tst.h"

1*** ------------------- --___- --------
donel ( dd )
Widget dd;

XtDestroyWidget ( dd );

1*** 	 ***/

printproc ( p )
Widget p;

Widget
Display
int
Pixel

Arg
XmString

dialog3;
*dpy 1 = XtDisplay ( p );
screen = DefaultScreen ( dpy 1 );
fg,
bg;
arg_list[3];
tl,
t2;

tl XmStringCreateSimple ("Ok");

XtSetArg ( arg_list[0],
XrriNcancelLabelString, a
);

XtSetArg ( arg_list[1],
XmNdeleteResponse, XmDESTROY
);

dialog3 = XmCreatelnformationDialog (
p, "print",
arg_list, 2
);

XmStringFree ( tl );

XtUnmanageChild ( XmMessageBoxGetChild
( dialog3, XmDIALOG_HELP_BUTTON ),



False
);

XtUnmanageChild ( XmMessageBoxGetChild
( dialog3, XmDIALOG_OK_BUTTON ),
False
);

XtAddCallback ( dialog3, XmNokCallback, donel, NULL );

U = XmStringCreateLtoR ( "Oilename PRINT* is createdOn your current directory...Ohe file PRINT* can be di

XtVaSetValues ( dialog3,
XmNmessageString, tl ,
NULL
);

XmStringFree ( tl );

print_proc1 ();

XtManageChild ( dialog3 );
XtPopup ( XtParent ( dialog3 ), XtGrabNone );

/***  	 ***1

print_proc1 0

char numbs[] = "0123456789ABCDEF";

int	 i,
j,
bits,
count,
value,
px,
py;

float a,
HWR,
ptsize,
gap,
width,
height;

char pfile[10];

print_cnt++;
sprintf ( pfile, "PRINT%d",print_cnt );



-3

1p = fopen ( pfile, "w" );

if ( 1p == 0 )
puts ( "cannot open" );
exit 0;

= X;px — ,
PY = Y;
width = 6.0;
bits = 8;

HWR = ( float ) py / ( float ) px;

count = ( int ) ( py * px );

ptsize = 3.*width;

a = 4.*1820.*492./3./3./512./712.;

height = HWR * width;

fprintf ( 1p,
"%%!0);

fprintf ( 1p,
"%%%%DocumentFonts: Times-RomanO);

fprintf ( 1p,
"%%%%BoundingBox: 0 0 %d %d0, ( int )( width * 72. ), ( int )( height * 72. ) );

fprintf ( 1p,
"%%%%EndComments0 );

fprintf ( 1p,
"/inch 72 mil I def0);

fprintf ( 1p,
"/Times-Roman findfont %d scalefont setfontO, ( int) ptsize );

fprintf ( 1p,
"/picstr %d string def0, px * bits / 8 + ( px * bits % 8> 0 ? 1 : 0 ) );

fprintf ( 1p,
"fimagepinhead0 );

fprintf ( 1p,
" ( %d %d %d", px, py, bits );

fprintf ( 1p,
" [Tod 0 0 -%d 0 %d]0, px, py, py );



-4

fprintf ( 1p,
"	 currentfile picstr0 );

fprintf ( Ip,
" readhexstring pop ) image° );

fprintf ( 1p,
" ) def0 )•

fprintf ( Ip,
"gsave0 );

fprintf ( 1p,
" 1.25 inch 2.50 inch translate° );

fprintf ( Ip,
" %.2f inch %.2f inch scale0, width, height );

fprintf ( 1p,
" (} seuransfer0 );

fprintf ( 1p,
"imagepinhead0 );

if ( bits != 8 )
px.(px% 8)?px/ 8 +1 :px/8;

for ( i = 0; i < Y; i++ )
for ( j = 0; j < X; j++ )

value = IMAGE[i*X+j];
fprintf ( 1p, "%c", numbs[value»4] );
fprintf ( 1p, "%c", numbs[value&OxOf] );
if ( j % 38 == 37 )
fprintf ( 1p, "0 );

fprintf ( Ip,
"Orestore0 );

fprintf ( 1p,
"gsave 1.25 inch 2.50 inch translate° );

fprintf ( Ip,
"grestore0 );

fprintf ( 1p,
"showpage0 );

fprintf ( 1p,
"%%%%Trailer° );



5



Program : menu.c

Programmer : Kumar Chebrolu

This program provides a warn dialog, and the routines for File submenu in
the GUI.

#include "tst.h"

/*** 	 *4,41

void
get_filename ( nw,

client_data,
cbs )

Widget nw;
char *client data;
XmSelectionBoxCallbackStruct *cbs;

XmStringGetLtoR ( cbs->value,
XmSTRING DEFAULT CHARSET, &Filename );

XtDestroyWidget ( XtParent(nw) );
input 0;

/*** 	 ***/

void
getiongfilename ( nw,

client data,
cbs )

Widget nw;
char *client_data;
XmSelectionBoxCallbackStruct *cbs;

XmStringGetLtoR ( cbs->value,
XmSTRING_DE,FAULT_CHARSET, &Filename );

XtDestroyWidget ( XtParent(nw) );
input_longfile 0;

/*** 	 ***/

new ( p )
Widget p;



2

static Widget	 dialog;
Arg	 arg_list[3];

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

XtSetArg ( arg_list[0],
XmNselectionLabelString,
XmStringCreateSimple ( " Enter the New filename : " )

);

XtSetArg ( arg_list[1],
XmNautoUnmanage, False

);

dialog = XmCreatePromptDialog (
p, "newd",
arg_list, 2
);

XtUnmanageChild ( XmSelectionBoxGetChild
( dialog, XmDIALOG_HELP_BUTTON ),
False
);

XtAddCallback ( dialog, XmNokCallback, get_filename, p );
XtAddCallback ( dialog, XmNcancelCallback, XtDestroyWidget, NULL);

XtManageChild ( dialog );

XtPopup ( XtParent ( dialog ), XtGrabNone );

/*** 	 ***/

void
opend ( pi )
Widget p1;
(

Widget	 dialog 1 ;

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

dialogl = XmCreateFileSelectionDialog (
pl, "opend",
NULL, 0
);

XtAddCallback ( dialogl, XmNokCallback, get longfilename, p 1 );
XtAddCallback ( dialog1, XmNcancelCallback, XtDestroyWidget, NULL );



XtManageChild ( dialogl );

/*** 	 ***I

void
blink ( data )
TimeOutClientData *data;

XBell ( XtDisplay ( draw ), 100 );

data->id = XtAppAddTimeOut ( data->app, 250L, blink, data

XtVaSetValues ( data->dialog,
XmNsymbolPixmap,
(data->which = data->which) ? data->pix 1 : data->pix2,
);

1*** 	 ***1

void
destroy ( dialog,

data )
Widget dialog;
TimeOutClientData *data;

Pixmap	 symbol;

XtRemoveTimeOut ( data->id);

XFreePixmap ( XtDisplay ( data->dialog ), data->pix 1 );
XFreePixmap ( XtDisplay ( data->dialog ), data->pix2 );

XtFree ( data );

void
done (dialog )
Widget dialog;

XtDestroyWidget ( dialog );
XClearWindow ( XtDisplay ( draw ),

XtWindow ( draw )
);



4

saved ( p2 )
Widget p2;

Widget	 dialog2;
Display	 *dpy XtDisplay ( p2 );
int	 screen = DefaultScreen ( dpy );
Pixel	 bg,

fg;
Arg	 arg_list[2];
XmS tring text;

XtAppContext app = XtWidgetToApplicationContext ( p2 );

TimeOutClientData *data = XtNew ( TimeOutClientData );

text = XmStringCreateSimple ("Save");

XtSetArg ( arg_list[0],
XmNokLabelString, text );

XtSetArg ( arglist[1],
XmNdeleteResponse, XmDESTROY );

dialog2 = XmCreateMessageDialog (
p2, "saved",
arg_list, 2
);

XmStringFree ( text );

XtUnmanageChild ( XmMessageBoxGetChild
( dialog2, XmDIALOG_HELP_BUTTON),
False
);

XtAddCallback ( dialog2, XmNokCallback, done, NULL);
XtAddCallback ( dialog2, XmNcancelCallback, XtDestroyWidget, NULL );
XtAddCallback ( dialog2, XmNdestroyCallback, destroy, data );

XtVaGetValues ( dialog2,
XmNforeground, &fg,
XmNbackground, &bg,
NULL
);

data->pix 1 = XCreatePixmapFromBitmapData (
dpy, XtWindow ( p2 ),
star_bits, star_ width, star_height,
fg, bg,
DefaultDepth ( dpy, screen )
);

data->pix2 = XCreatePixmapFromBitmapData (



dpy, XtWindow ( p2 ),
starl_bits, starl_width, starl_height,
fg, bg,
DefaultDepth ( dpy, screen )
);

data->dialog = dialog2;
data->app = app;
data->id = XtAppAddTimeOut (

app, 1000L,
blink, data
);

text = XmStringCreateSimple ( "Overwriting on the file " );

XtVaSetValues ( dialog2,
XmNmessageString, text,
XmNsymbolPixmap, data->pix2,
NULL
);

XmStringFree ( text );

XtManageChild ( dialog2 );

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

XtPopup ( XtParent ( dialog2 ), XtGrabNone );

/*** 	 ***/

getnewfile ( sw, client data, cbs )
Widget sw;
char *client_data;
XmSelectionBoxCallbackStruct *cbs;

char	 *savefile;
unsigned char	 chs;
int

XmStringGetLtoR ( cbs->value,
XmSTRING DEFAULT CHARSET, &savefile
);

sa fopen ( savefile, "w");

if ( sa == NULL)
puts ( " unable to open new file " );



6

XtDestroyWidget ( XtParent(sw) );
return ;

for ( = 0; i < Y; i++ )
for (j = 0; j < X; j++ )

chs = IMAGE[i*X+j];
fprintf ( sa, "%c", chs );

XtDestroyWidget ( XtParent(sw) );

/*** 	 ***/

saveas_proc ( p )
Widget p;

static Widget	 dialogs;
Arg	 arg_list[3];
int

i;

XtSetArg ( arglist[0],
XmNselectionLabelString,
XmStringCreateSimple ( "Enter the new file name : " )
);

XtSetArg ( arglist[1],
XmNautoUnmanage, False
);

dialogs = XmCreatePromptDialog (
p, "savea",
arg_list, 2 );

XtAddCallback ( dialogs, XmNokCallback, getnewfile, p );

XtAddCallback ( dialogs, XmNcancelCallback, XtDestroyWidget, NULL );

XtManageChild ( dialogs );

XtPopup ( XtParent ( dialogs ), XtGrabNone );

I*** 	 **Sy



Program : rep.c

Programmer : Kumar Chebrolu

This program will represent the binary image using runlength method and
quadtree methods. The result will be displayed on the regular window. The
future work can be done to display the tree on the drawing area widget.

#inc lude "tst.h"

1***  	 ***1

void
run_proc( p )
Widget p;

int	 a,
b ,
count,
ans;

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

if ( IM TYPE == 1 )
warn ( p, errortll );

else (

for (a = 0; a < Y;a++) (
for (b = 0; b < X; b++)

if (b == 0) (
count = 1;
ans = IMAGE[a*X+b];
printf(" %d",ans);

else if (ans = IMAGE[a*X+b])
count++;

else (
printf(" %d",count);
ans = IMAGE[a*X+b];
count = 1;

printf(" %d0,count);



char
*get_level( 1 )
int 1;

if ((>=0) && (1<=50))
return "A";

else
if ((l>=51) && (k=100))

return "B";
if ((>=101) && (1<=150))

return "C";
if ((1>=151) && (1<=200))

return "D";
if (1>255)

return "E";

I*** 	 ***/

void
run_procl()

int	 a,
b,
count,
ans;

char *level;

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

for (a = 0; a < Y; a++) [
for (b = 0; b < X; b++)

if (b == 0)
count = 1;
ans = IMAGE[a*X+b];
level = get level(ans);
printf("%s ",level);

else if (level == get_level((int)IMAGE[a*X+b]))
count++;

else [
level = get level(ans);
printf("%©s ",level);
printf("%d0,count);
ans = IMAGE[a*X+b];
count = 1;

printf("%d0,count);



int
get_power( n )
int n;

int p,
PP;

for ( p = 0; n > shift(p); p++)
pp = p + 1;

return pp;

I*** 	 ***1

void
quad_proc( pp )
Widget pp;

int
q,
r,
Xnew,
Ynew,
gp,
nsize;

float *con_image;

XClearWindow ( XtDisplay ( draw ),
XtWindow ( draw )
);

if ( IM_TYPE == 1 )
warn ( pp, error[2] );

else (
if ( X != Y )

warn ( pp, error[5] );
else {

gp = get_power ( max ( X, Y ) );

X new = shift ( gp );
Ynew = shift ( gp );
nsize = X new * Y new;

con_image = ( float * ) canoe ( nsize , sizeof ( float ) );

if ( con_image == NULL )(



puts ( " memory allocation failure in con_image " );
exit 0;

for ( p 0; p < Y; p-H-)
for ( q = 0; q < X; q++ )

con_image[p*X new+q] = LMAGE[p*X+q];

if ( check ( 0, 0, X_new, Ynew )	 1 )
printf ( "(%d)", IMAGE[0] );

else
divide( 0, 0, X_new, Y_new );

/*** _______________________________________________________________ ** *I

int
check(ix,iy,cnx,cny)
int ix, iy, cnx, cny;

int temp,
p ,
q;

temp = IMAGE[iy*X+ix];

for ( p = iy; p < cny; p-H- )
for ( q = ix; q < cnx; q++ )

if ( temp != IMAGE[p*X+q] )
return ( 0 );

return ( 1 );

divide(ix, iy, dnx, dny)
int ix, iy, dnx, dny;

int	 halfx,
halfy;

halfx = (ix + dnx) /2;
halfy = (iy + dny) /2;

printf( "C' );

if ( check ( ix, iy, halfx, halfy ) )
printf ( "%d", ( int ) ( IMAGE[iy*X+ix] ) );

else
divide ( ix, iy, halfx, halfy );

if ( check ( halfx, iy, dnx, halfy ) )



else printf( "%d", ( int ) ( IMAGE[iy*X+hallx] ) );

divide ( halfx, iy, dnx, halfy );

if ( check ( ix, halfy, halfx, dny ) )
printf ( "%d", ( int ) ( IMAGE[iy*X+halfx] ) );

else
divide ( ix, halfy, halfy, dny );

if ( check ( halfx, halfy, dnx, dny ) )
printf( "%d", ( int ) ( IMAGE[halfy*X+halfx] ) );

else
divide ( halfx, halfy, dnx, dny );

printf( ")" );



Program : rot.c

Programmer : Kumar Chebrolu

This program rotates the current image using three different interpolation
methods - Biconstant, Bilinear, and Bicubic.

*** 	 ***/

#include "tst.h"
/*** 	 ***/

proc_arr 0

float xoff,
yoff,
tranx,
trany,
finx,
finy,
*rotimage,
c,
s,
tx = 0.0,
ty = 0.0;

int	 i,
J,
con;

rotimage = ( float * ) calloc ( X * Y , sizeof ( float ) );
XClearWindow ( XtDisplay ( draw ),

XtWindow ( draw )
);

if ( rotimage == NULL )
puts ( " memory allocation failure " );
exit 0;

xoff = X / 2.0 - 0.5 ;
yoff = Y / 2.0 - 0.5 ;

tranx = tx + xoff;
trany = ty + yoff;

c = cos (rad( angle) );
s = sin (rad( angle ) );

for ( = 0; i < Y; i++ )
for(j=0;j<X;j++)(



finx = ( i - tranx ) * c
+ ( j - trany ) * s
+ xoff;

2

finy = ( j - trany ) * c
- ( - tranx ) * s

switch ( ROT TYPE )
case 0 : con = biconstant ( finx, finy, IMAGE );

break;
case 1 : con = bilinear ( finx, finy, IMAGE );

break;
case 2 : con = bicubic ( finx, finy, IMAGE );

break;

if ( con < 0 ) con = 0;
else if ( con > 255 ) con = 255;

rotimage[i*X+j] = con;

}

copy ( IMAGE, PREV_IMAGE );
copy ( rotimage, IMAGE );
free ( rotimage );
displa ( draw, IMAGE );

biconstant ( fx, fy, im )
float fx, fy;
float *im;

if ( ( fx	 0 ) && ( fx < (X - 1) ) &&
(fy>= 0 )&&(fy<(Y- 1)))

return ( *( im + ( ( int ) ( fx + 0.5 ) * X ) + ( int ) ( fy + 0.5) ) ) ;
else
return ( 0 );

bilinear ( fx, fy, im
float fx, fy;
float *im;

float *imm;
float coord[2][2] =

( 0, 0 ),
f 0, 0 )

float dO,
dl,

+ yoff;



dx,
dy;

int	 val;

imm = im + ( int )fy * X + ( int ) fx;

if ( fx >= 0 && fx < X-1 && fy >= 0 && fy < Y-1 )
coord[0][0] = *imm;
coord[1][0] = *(imm+1);
coord[0][1] = *(imm+X);
coord[1][1] = *(imm+X+1);

else
if ( fx < 0 && fx >= -1 )

if ( fy < 0 && fy >= -1 )
coord[0][0] = 0;
coord[1][0] = 0;
coord[0][1] = 0;
coord[1][1] = *(imm+X+1);

)
else if ( fy >. Y-1 && fy < Y)

coord[0][0] = 0;
coord[1][0] = 0;
coord[0][1] = 0;
coord[1][1] = *(imm+1);

)
else (

coord[0][0] = 0;
coord[1][0] = 0;
coord[0][1] = *(imm+1);
coord[1][1] = *(imm+X+1);

)

else if ( fx >. X-1 && fx < X )
if ( fy < 0 && fy >. -1 ) (

coord[0][0] = 0;
coord[1][0] = 0;
coord[0][1] = 0;
coord[1][1] *(imm+X);

)
else if ( fy >= Y-1 && fy < Y )

coord[0][0] = 0;
coord[1][0] = 0;
coord[0][1] = 0;
coord[1][1] = *(imm);

)

else
coord[0][0] = 0;
coord[1][0] = 0;
coord[0][1] = *(imm);
coord[1][1] = *(imm+X);

)
else if ( fy < 0 && fy >= -1 )



-4-

coord[0][0] = 0;
coord[1] [0] = 0;
coord[0][1] = *(imm+X);
coord[1][1] *(imm+X+1);

else if ( fy >= Y-1 && fy < Y ) [
coord[0][0] = 0;
coord[1][0] = 0;
coord[0][1] *(imm);
coord[1][1] = *(imm+1);

else return ( 0 );

dx = fx - (int)fx;
dy = fy - (int)fy;
dO = coord[0][0] + dx * ( coord[1][0] - coord[0][0] );
dl = coord[0][1] + dx * ( coord[1][1] - coord[0][1] );
val = a int )( dO + dy * ( dl - dO ))+ 0.5 );

return ( val );

)

1*** _______________ _ _______________________________________________________ ***I
lcub ( cub )
float cub;

return ( ( cub * cub * cub / 6) + ( cub * cub + 2) * ( cub + 4.0/3 ));

/*** 	 ***/

hcub ( cub )
float cub;

return ( ( cub * cub * cub / ( -2 ) ) - ( cub * cub ) *( 2.0/3 ) );

bicubic ( fx, fy, im )
float fx, fy;
float *im;

float *imm;
float ox,

oy,
val = 0;

float xy[4][2] =
( 0, 0 ),
( 0, 0 ),



( 0, 0 ),
0, 0 }

);

if(fx>= 1 &&fx<X-2&&fy>=1&&fy<Y-2)(
ox = fx - ( int )fx;
oy = fy - ( int )fy,
xy[0][0] = - ( 1 + ox );
xy[0][1] = - ( 1 + oy );
xy[1][0] - ( ox );
xy[1][1] = - ( oy );
xy[2][0] = - ( 1 - ox );
xy[2][1] = - ( 1 - oy );
xy[3][0]=-(2-ox );

xy[3][1] = - ( 2 - oy );

imm=im+((int)fy-1)*X+((int) a -1);
val += ( *imm++ ) * lcub ( xy[0][0] ) * lcub ( xy[0][1] );
val += ( *imm++ ) * hcub ( xy[l][0] ) * lcub ( xy[0][1] );
val += ( *imm++ ) * hcub ( xy[2][0] ) * lcub ( xy[0][1] );
val += ( *imm++ ) * lcub ( xy[3][0] ) * lcub ( xy[0][1] );

imm=im+((int)fy)*X+((int)fx-1);
val += ( *imm++ ) * lcub ( xy[0][0] ) * hcub (xy[1][1] );
val += ( *imm++ ) * hcub ( xy[1][0] ) * hcub ( xy[1][1] );
val += ( *imm++ ) * hcub ( xy[2][0] ) * hcub ( xy[1][1] );
val += ( *imm++ ) * lcub ( xy[3][0] ) * hcub ( xy[1][1] );

imm=im+((int)fy+1)*X+((int)fx-1);
val. += ( *imm++ ) * lcub ( xy[0][0] ) * hcub ( xy[2][1] );
val += ( *imm++ ) * hcub ( xy[l][0] ) * hcub ( xy[2][1] );
val += ( *imm++ ) * hcub ( xy[2][0] ) * hcub ( xy[2][1] );
val += ( *imm++ ) * lcub ( xy[3][0] ) * hcub ( xy[2][1] );

imm = im + ( ( int ) fy + ) * X + ( ( int ) fx - 1);
val += ( *imm++ ) * lcub ( xy[0][0] ) * lcub ( xy[3][1] );
val += ( *irnm++ ) * hcub ( xy[1][0] ) * lcub ( xy[3][1] );
vat += ( *imm++ ) * hcub ( xy[2][0] ) * lcub ( xy[3][1] );
val += ( *imm++ ) * lcub ( xy[3][0] ) * lcub ( xy[3][1] );

return ( ( int ) val + 0.5 );

get_angle ( aw,
client data,
cbs )

Widget aw;
char *client_data;
XmSelectionBoxCallbackStruct *cbs;



6

char *ang;
int	 a;

XmStringGetLtoR ( cbs->value,
XmSTRING DEFAULT_CHARSET, &ang
);

a = atoi ( ang );

angle = (double)(a);
XtDestroyWidget ( XtParent ( aw ) );
proc arr 0;

/44* 	 ***/

rotm ( p )
Widget p;

Arg	 arg_list[3];
static Widget	 dialog;

XtSetArg ( arg_list[0],
XmNselectionLabelString,
XmStringCreateSimple (" Enter the angle for rotation : ")

);

XtSetArg ( arg_list[1],
XmNautoUnmanage, False

);

dialog = XmCreatePromptDialog (
p, "rotm",
arg_list, 2
);

XtAddCallback ( dialog, XmNokCallback, get_angle, p );

XtAddCallback ( dialog, XmNcancelCallback, XtDestroyWidget, NULL);

XtManageChild ( dialog );

XtPopup ( XtParent ( dialog ), XtGrabNone );

/*** 	 ***/



Program : tst.c

Programmer : Kumar Chebrolu

This is the main program for the GUI. It will create the main window, menu
bar, and callbacks for the different subroutines are called from here.

#include "tst.h"

char *titles('	 =	 f "File",
"Transformations",
"Segmentation",
"Representation",
"Display" ,
"Help",
);

char *file items[] = ( "Open",
"Save",
"Save As",
"Print  ",
"Undo",
"Quit",
);

char *trans items[] = f "Invert",

"Zoomin",
"Rotation",
},

char *rot_items[1 = f "Biconstant Interpolation",
"Bilinear Interpolation",
"Bicubic Interpolation",

1,

char *seg_items0 = ( "Pixel Classification",
"Edge Detection",
);

char *edgeitems0 = ( "Sobel",
"Laplacian",
"Prewitt" ,
);

char *rep items[] = ( "Quad Tree Method",
"Run Length Method" ,
);



2

char *his_items[] = ( "Auto_ Threshold",
"Interactive",
"Equalization" ,
};

char *disitems0 = { "Display Image",
"Initial Image",
"Pop",
};

char *quit items[] = { "No",
"Yes",
};

void printwidgettree ( w)
Widget w;

while (XtParent (w )) {
w = XtParent ( w);
printf ("%s.", XtName (w));

/*** 	 ***1

void
call_proc ( parent,

client_data,
call_data)

Widget parent;
char *client_data;
XmAnyCallbackStruct *call_data;
{

Widget par;
int i;

par = XtParent ( parent );

for ( i = 0; i < XtNumber ( titles ) -1 ; i++ ) {
if 0( strcmp ( titles[i], client data ))) {

help ( par, titles[i] );
break;

if (!( strcmp ( "Open", client_data )))
opend( par );

else if (!( strcmp ( "Save", client_data )))
saved ( par );

else if (!( strcmp ( "Save As", client_data )))



3

saveas_proc ( par );
else if (!( strncmp ( "Prin", client_data, 4 )))

print_proc ( par );
else if (!( strncmp ( "Undo", client_data, 4 )))

undo ( );
else if (!( strncmp ( "Yes", client_data, 3 )))

exit (0);

else if (!( strncmp ( "Invert", client data, 6 )))
invert 0;

else if (!( strncmp ( "WC", client_data, 3 )))
fast ( par );

else if (!( strncmp ( "Zoomin", client_data, 6 )))
zoomin 0;

else if (!( strncmp ( "Bicon", client data, 5 ))) (
rotm ( par );
ROT TYPE = 0;
}

else if (!( strncmp ( "BilM", client_data, 5 )))
rotm ( par );
ROT TYPE = 1;

else if (!( strncmp ( "Bicub", client data, 5 )))
rotm ( par );
ROT TYPE = 2;

else if (!( strncmp ( "Sob", client_data, 3 )))
sobel();

else if (!( strncmp ( "Lap", client data, 3 )))
Laplacian 0;

else if (!( strncmp ( "Pre", client_data, 3 )))
prewitt 0;

else if (!( strncmp ( "Run", client_data, 3 )))
run_proc ( par );

else if (!( strncmp ( "Quad", client_data, 4 )))
quad_proc ( par );

else if (!( strncmp ( "Auto", client_data, 4 )))
autoth 0;

else if (!( strncmp ( "Inter", client_data, 5 )))
interactive ( parent );

else if (!( strncmp ( "Equalizat", client_data, 9 )))
hist eq ( par );

else if (I( strncmp ( "Disp", client_data, 4 )))
loaded 0;

else if (I( strncmp ( "Init", client_data, 4 )))
init 0;

/*** 	 ***I



4

Widget
menu_option ( namel,

but )
char *namel;
Widget but;

Widget	 sub_button;
Arg	 arg_list[5];
int	 ar;
XmString name;

name = XmStringCreateSimple ( namel );
ar = 0;

XtSetArg ( arg_list[ar],
XmNlabelString, name
); ar++;

sub_button XtCreateManagedWidget (
namel,
xmCascadeButtonGadgetClass, but,
arg_list, ar
);

XtAddCallback ( sub_button, XmNactivateCallback, call_proc, namel );

return ( sub_button );

/*** 	 ***/

Widget
create_pulldown_button ( name,

mbil )
XmS tring name;
Widget mbil;

Widget	 button,
cascade_but;

Arg	 arg_list[5];
int	 ar;

ar = 0;
button = XmCreatePulldownMenu (

mbil, name,
arg_list, ar
);

ar 0;
XtSetArg ( arg_list[ar], XmNsubMenuld, button ); ar++;
XtSetArg ( arg_list[ar], XmNlabelString, name ); ar++;

cascade but XtCreateManagedWidget (



"name",
xmCascadeButtonGadgetClass, mbil,
arg_list, ar
);

return ( button );

void
createinenuitems ( mbi )
Widget mbi;

Widget	 but,
subbut,
subbutl;

XmString one,
two;

int	 i,
j, k;

Arg arg_list[5];
int ar;

for ( i = 0; i < XtNumber ( titles ) ; i++ ) (
but = create_pulldownbutton (

XmStringCreateSimple ( titles[1] ),
mbi
);

if ( i == 0 )
for ( j = 0; j < XtNumber ( fileitems ); j++ )

if ( == 5 )
subbutl = create_pulldown_button (

XmStringCreateSimple ( fileitems(51 ),
);

for ( k = 0; k < XtNumber ( quit_items ); k++ )
subbut = menu_option ( quit items[k], subbutl );
else
subbut = menu_option ( ffleitems[j], but );

if ( i == 1 ) (
for ( j = 0; j < XtNumber ( transitems ); j++ )
if(i==. 3 )(
subbutl create_pulldown_button (

XmStringCreateSimple ( trans_items(31 ),
but
);

for ( k = 0; k < XtNumber ( rot items ); k++ )



6

subbut menu_option ( rot items[k], subbutl );
)
else

subbut = menu_option ( trans_items[j], but );

if(i==2)(
for ( j = 0; j < 2; j++ )
subbutl = create_pulldown_button (

XmStringCreateSimple ( segitems[j] ),
but
);

if (j	 ) (
for ( k = 0; k < XtNumber ( his items ); k++ )

subbut = menu_option ( hisitems[k], subbutl );

else (
for ( k = 0; k < XtNumber ( edge_it,ems ); k++ )

subbut = menu_option ( edge_items[k], subbutl );
)
)

if ( i == 3 )
for ( j = 0; j < XtNumber ( rep items ); j++ )

subbut = menu_option ( rep_items[j], but );
if ( i == 4 )

for ( j = 0; j < XtNumber ( disitems ); j++ )
subbut = menu_option ( dis_items[j], but );

if ( i == 5 )
for ( j = 0; j < XtNumber ( titles ); j++ )

subbut = menu_option ( titles[j], but );

/*** 	

main(argc, argv)
int argc;
char *argv[];

Widget	 form,
menubar,
frame;

Arg	 arg_list[5];
int	 ar;
XtAppContext app;

top = XtAppinitialize (
&app,
"Tst",
NULL, 0,
&argc, argv,



7

NULL, NULL
);

form = XtCreateManagedWidget (
"form",
xmFormWidgetClass, top,
NULL, 0
);

menubar = XmCreateMenuBar (
form, "menubar",
NULL, 0
);

XtManageChild ( menubar );

ar = 0;
XtSetArg ( arglist[ar], XmNtopAttachment, XmATTACH_FORM ); ar++;
XtSetArg ( arg_listfarl, XmNleftAttachment, XmATTACH_FORM ); ar++;

XtSetValues ( menubar, arg_list, ar );

create menu items ( menubar );

draw = XtVaCreateManagedWidget (
"draw",
xmDrawingAreaWidgetClass, form,
XmNtopAttachment, XmATTACH_WIDGET,
XmNtopWidget, menubar,
XmNleftAttachment, XmATTACH_FORM,
XmNunitType, XmlOOOTH INCHES,
XmNwidth, 6400,
XmNheight, 6400,
NULL
);

drawh = XtVaCreateManagedWidget (
"drawh",
xmDrawingAreaWidgetClass, form,
XmNleftAttachment, XmATTACH_FORM,
XmNbottomAttachment, XmATTACH_FORM,
XmNunitType, XmlOOOTHINCHES,
XmNx, 200,
XmNwidth, 4800,
XmNheight, 2400,
NULL
);

XtRealizeWidget ( top );
XtAppMainLoop (app );

I*** 	 ***I



8



Program : tst.h

#include <Xm/Xm.h>
#include <Xm/Form.h>
#include <Xm/RowColumn.h>
#include <Xm/PanedW.h>
#include <Xm/CascadeB.h>
#include <Xm/CascadeBG.h>
#include <Xm/PushB.h>
#include <Xm/PushBG.h>
#include <Xm/DrawingA.h>
#include <Xm/Frame.h>
#include <Xm/SelectioB.h>
#include <Xm/MessageB.h>
#include <Xm/TextF.h>
#include <Xm/Fi1eSB.h>
#include <Xm/DialogS.h>
#include <Xm/LabelG.h>
#include <Xm/MainW.h>
#include <Xm/Text.h>

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <X11/Xos.h>
#include <X11/Xatom.h>
#include <X11/Intrinsic.h>

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <ctype.h>

#include "bitrnap/star"
#include "bitmap/starl"
#include "bitmap/help"

#define max( A, B ) ((A) > (B) ? (A) : (B))
#define pi 3.1415926
#define rad(theta) (theta)/ 180.0 * pi
#define conv(a) ((a) & 255 )
#define shift(x) (1<<x)

typedef struct
XtIntervalId id;
int which;
Pixmap pixl, pix2;
Widget dialog;
XtAppContext app;



2

) TimeOutClientData;
char *Filename;
unsigned char *DIMAGE, *re_im,

float *IMAGE, *TMP IMAGE, *PREV IMAGE;

int X, Y;
int EN, oX, oY;
int FREQ[255];
int thres, threshold;
int IM TYPE;
int RdiTYPE;
int ZOOM CNT;
int print_cnt;
int screen;

double angle;
1 BILE *lp, *fp, *fopen(), *so;

GC gc;
GC *theCopyGC, *theXorGC;
Colormap colormap, mycolormap;
XColor alcolors, allcolors[256];
Xlmage *image;

Widget drawp, draw, top, drawh;
Pixmap pixmap;
int depth;

Status res;
Visual *vis_to_use;
XVisuallnfo vinfo_ret;
int class;

static char *error[] = "Ohe Histogram EqualizationOan be done only to Gray Level Image°,
"Ohe Run Length MethodOan be done only with Binary ImageO,
"Ohe Quad Tree MethodOan be done only with Binary Image°,
"Ohe Zooming can be doneOwo times only ... 0,
"Ohe 1-.F1' can be doneOnly for the Binary Image°,
"Ohe Quad Tree RepresentationOan be done to theOquare image only0,



!Please don't change the executable file name, it should be "tst".
tst.height: 840
tst.width: 740
tst.background: lightblue
tst.x: 50
tst.y: 2
*dialog.x: 400
*dialog.y: 400
tst.form.menubar*FontList: 8x13bold
tst.form.menubar*name*FontList: 9x15bold
tst.form.menubar*background: grey
!tst.form.menubar*newd*background: LightSeaGreen
tst.form.menubar*newd*background: grey
tst.form.draw.background: grey
tst.form.drawh.background: black
tst.form*drawh*foreground: red
*pop*background: grey



#define starlwidth 16
#define starl _height 16
static char star1 bits0 = (

Ox00, Ox00, 0x44, Ox11, Ox4a, 0x29, 0x54, 0x15, 0x68, OxOb, 0x50, 0x05,
Oxbe, Ox3e, 0x40, Ox01, Oxbe, Ox3e, 0x50, 0x05, 0x68, Ox0b, Ox54, 0x15,
Ox4a, 0x29, 0x44, Ox11, OxOO, OxOO, Ox00, Ox00),



#define star_width 16
#define star_height 16
#define star_x_hot 7
#define star_y_hot 7
static char star_bits[] = {

Ox00, Ox00, 0x80, Ox00, 0x80, Ox00, 0x88, 0x08, 0x90, 0x04, OxaO, 0x02,
0x40, Ox01, Ox3e, Ox3e, 0)(40, Ox01, OxaO, 0x02, 0x90, 0x04, 0)(88, 0x08,
0x80, Ox00, 0x80, Ox00, Ox00, Ox00, Ox00, Ox00);



#define help_width 64
#define help_height 64
static char help bits[] = 

{

0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0xf8, 0xfe, 0xff, 0x01, 0x00,
0x00, 0x00, 0x00, 0xf8, 0xfc, 0xff, 0x03, 0x00, 0x00, 0x00, 0x00, 0x7c,
0xf8, 0xff, 0x07, 0x00, 0x00, 0x00, 0x00, 0x3e, 0xf8, 0xff, 0x07, 0x00,
0x00, 0x00, 0x00, 0xlf, 0xf0, 0xff, 0x0f, 0x00, 0x00, 0x00, 0x80, 0x0f,
0xe0, 0xff, 0xlf, 0x00, 0x00, 0x00, 0x80, 0x0f, 0xc0, 0xff, 0x3f, 0x00,
0x00, 0x00, 0xc0, 0x07, 0xc0, 0xff, 0x3f, 0x00, 0x00, 0x00, 0xe0, 0x03,

0x80, 0xff, 0x7f, 0x00, 0x00, 0x00, 0xf0, 0x01, 0x00, 0xff, 0xff, 0x00,
0x00, 0x00, 0xf8, 0x00, 0x00, 0xfe, 0xff, 0x01, 0x00, 0x00, 0xf8, 0x00,
0x00, 0xfe, 0xff, 0x01, 0x00, 0x00, 0x7c, 0x00, 0x00, 0xfc, 0xff, 0x03,
0x00, 0x00, 0x3e, 0x00, 0x00, 0xf8, 0xff, 0x07, 0x00, 0x00, 0x1 f, 0x00,
0x00, 0xf0, 0xff, 0x0f, 0x00, 0x80, 0x0f, 0x00, 0x00, 0xf0, 0xff, 0x0f,
0x00, 0xc0, 0x07, 0x00, 0x00, 0xe0, 0xff, 0x1f, 0x00, 0xc0, 0x07, 0x00,
0x00, 0xc0, 0xff, 0x3f, 0x00, 0xe0, 0x03, 0x00, 0x00, 0x80, 0xff, 0x7f,
0x00, 0xf0, 0x01, 0x00, 0x00, 0x80, 0xff, 0x7f, 0x00, 0xf8, 0x00, 0x00,
0x00, 0xf8, 0xff, 0xff, 0xff, 0xff, 0x0f, 0x00, 0x00, 0x08, 0x00, 0x00,
0x00, 0x00, 0x08, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00,
0x00, 0x08, 0x21, 0x00, 0x02, 0x00, 0x08, 0x00, 0x00, 0x08, 0x21, 0x00,
0x02, 0x00, 0x08, 0x00, 0x00, 0x08, 0x21, 0x3e, 0x02, 0x3e, 0x08, 0x00,
0x00, 0x08, 0x3f, 0x02, 0x02, 0x42, 0x08, 0x00, 0x00, 0x08, 0x21, 0x02,

0x02, 0x42, 0x08, 0x00, 0x00, 0x08, 0x21, 0x02, 0x02, 0x42, 0x08, 0x00,
0x00, 0x08, 0x21, 0x3e, 0x02, 0x3e, 0x08, 0x00, 0x00, 0x08, 0x21, 0x02,
0x3e, 0x02, 0x08, 0x00, 0x00, 0x08, 0x00, 0x02, 0x00, 0x02, 0x08, 0x00,
0x00, 0x08, 0x00, 0x02, 0x00, 0x02, 0x08, 0x00, 0x00, 0x08, 0x00, 0x02,
0x00, 0x02, 0x08, 0x00, 0x00, 0x08, 0x00, 0x3e, 0x00, 0x02, 0x08, 0x00,
0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x08, 0x00, 0x00,
0x00, 0x00, 0x08, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00,
0x00, 0x08, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0xf8, 0xff, 0xff,
0xff, 0xff, 0x0f, 0x00, 0x00, 0x00, 0xf8, 0x80, 0xff, 0x7f, 0x00, 0x00,
0x00, 0x00, 0x7c, 0x00, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x7c, 0x00,
0xfe, 0xff, 0x01, 0x00, 0x00, 0x00, 0x3e, 0x00, 0xfe, 0xff, 0x01, 0x00,
0x00, 0x00, 0xlf, 0x00, 0xfc, 0xff, 0x03, 0x00, 0x00, 0x80, 0x0f, 0x00,
0xf8, 0xff, 0x07, 0x00, 0x00, 0xc0, 0x07, 0x00, 0xf1), 0xff, 0x0f, 0x00,
0x00, 0xe0, 0x03, 0x00, 0xf0, 0xff, 0x0f, 0x00, 0x00, 0xe0, 0x03, 0x00,
0xe0, 0xff, 0xlf, 0x00, 0x00, 0xf0, 0x01, 0x00, 0xc0, 0xff, 0x3f, 0x00,
0x00, 0xf8, 0x00, 0x00, 0)(80, 0xff, 0x7f, 0x00, 0x00, 0x7c, 0x00, 0x00,

0x80, 0xff, 0x7f, 0x00, 0x00, 0x3e, 0x00, 0x00, 0x00, 0xff, 0xff, 0x00,
0x00, 0x3e, 0x00, 0x00, 0x00, 0xfe, 0xff, 0x01, 0x00, 0x1f, 0x00, 0x00,
0x00, 0xfc, 0xff, 0x03, 0x80, 0x0f, 0x00, 0x00, 0x00, 0xfc, 0xff, 0x03,
0xc0, 0x07, 0x00, 0x00, 0x00, 0xf8, 0xff, 0x07, 0xe0, 0x03, 0x00, 0x00,
0x00, 0xf0, 0xff, 0x0f, 0xe0, 0x03, 0x00, 0x00, 0x00, 0xe0, 0xff, 0xlf,
0xf0, 0x01, 0x00, 0x00, 0x00, 0xe0, 0xff, 0x1f, 0xf8, 0x00, 0x00, 0x00,
0x00, 0xc0, 0xff, 0x3f, 0x7c, 0x00, 0x00, 0x00, 0x00, 0x80, 0xff, 0x7f,
0x3e, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff),



EXEC= tst
CC= gcc
CFLAGS= -0 -s
LIBS= -1Xm -1Xt -1X11 -lm
OBJECTS= tst.o	 menu.o	 file.o	 edge.o	 hist.o	 rot.o draw.o las.o rep.o en

$(EXEC): $(OBJECTS)
$(CC) -o $(EXEC) $(OBJECTS) $(LIBS)



Figures













Bibliography

[1] Rosenfield. A., and Kak.C.A, "Digital Picture Processing,

Volume 1 & 2", Academic press, 1982.

[2] Pratt. W. K.,, "Digital Image Processing", John Wiley, 1978.

[3] Gonzalez. R. C., and Wintz. P.,, "Digital Image Processing",

Addison-Wesley, 1987.

[4] Frank Y. Shih and 0. Robert Mitchell, " Decomposition of Gray Scale

Morphological Structuring Elements", Presented at IEEE workshop on

Computer Vision, Florida, Nov. 30- Dec. 2, 1987

[5] Dan Heller, "Motif Programming Manual for OSFIMotif 1.1, Volume 6",

O'Reilly & Associates, Inc, 1991.

[6] Jones 0., "Introduction to the X Window System", Prentice Hall, 1989.

[7] "OSFIMOTIF Programmer's Guide", Open Software Foundation, 1991.

[8] Nye, A., "Xlib Programming Manual, Volume 1", O'Reilly & Associates,

Inc, 1991.

[9]	 Young, D., "The X Window System: Applications and Programming with

Xt ( Motif Version )" , Prentice Hall, 1989.


	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Approval Page
	Vita
	Abstract
	Dedication
	Acknowledgments
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: X Window System
	Chapter 2: Representation Schemes
	Chapter 3: Pixel Classification
	Chapter 4: Edge Detection
	Chapter 5: Image Transforms
	Chapter 6: User Interface Toolkit
	Coding
	Figures
	Bibliography




