

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Title of Thesis :

Adaptive Stack Filtering by

LMS and Perceptron Learning.

Yu-chou Huang, New Jersey Institute of Technology,

Master of Electrical Engineering, 1991

Thesis directed by : Dr. Nirwan Ansari

Department of Electrical

and Computer Engineering

New Jersey Institute of Technology.

Stack filters are a class of sliding—window nonlinear digital filters that

- possess the weak superposition property(threshold decomposition) and the

ordering property known as the stacking property. They have been demon-

strated to be robust in suppressing noise. Two methods are introduced in

this thesis to adaptively configure a stack filter. One is by employing the

Least Mean Square(LMS) algorithm and the other is based on Perceptron

learning.

Experimental results are presented to demonstrate the effectiveness of our

methods to noise suppression.

2) Adaptive Stack Filtering by
LMS and Perceptron Learning

by
I)

Yu-chou Huang

Thesis submitted tc the Faculty of the Graduate
School of the New Jersey Institute of Technology
in partial fulfillment of the requirements for the

degree of Master of Science in Electrical
Engineering, 1991

APPROVAL SHEET

Title of Thesis :

Adaptive Stack Filtering by LMS and

Perceptron Learning

Name of Candidate : Yu-chou Huang

Thesis and Abstract Approved :

Dr. Nirwan Ansari
Assistant Professor
Department of Electrical
and Computer Engineering

Date
Signature of other members of the thesis committee :

Dr. Edwin S. H. Hou
Assistant Professor
Department of Electrical
and Computer Engineering

Date
Dr. Irving Y. Wang
Assistant Professor
Department of Electrical
and Computer Engineering

Date

VITA

Name : Yu-chou Huang

Permanent Address :

Degree and date to be conferred : M.S.E.E., Jan. 1991

Date of birth :

Place of birth :

Secondary education :

Collegiate institutions
attended

Chinese Culture
University

Dates

Sep.
1980

Degree

B.S.

Date of
degree

June
1984

New Jersery
Institute of
Technology

Sep.
1988 M.S.

Jan.
1991

Major : Electrical Engineering

ACKNOWLEDGEMENT

I wish to express my sincere appreciation to my advisor, Dr. Nirwan

Ansari, for his guidance and encouragement throughout this research effort.

Special acknowledgement is extended to Dr. Jean-Hsang Lin, Department

of Electrical Engineering, University of Delaware, for his comments and in-

sights on this work. The "Mexican hat" data provided by Dr. Chee-Hung

Chu, Center for Advanced Computer Studies, the University of Southwestern

Louisiana, are greatly appreciated. I also wish to thank my fellow graduate

students in the Department of Electrical and Computer Engineering at New

Jersey Institute of Technology for their friendship.

Furthermore, I would like to express my gratitude to other Committee

members for serving on the examination committee and for evaluating this

research.

TABLE OF CONTENTS

Acknowledgement i

Table of Contents ii

List of Figures iii

1 Introduction 1

2 Stack Filters 4

2.1 Threshold Decomposition and Stacking Properties 6

2.2 Mathematical Descriptions 7

2.3 Deterministic Properties of Stack Filters 10

3 Linear Discriminant Function, Perceptron and LMS 13

3.1 Concepts 13

3.2 The Discriminant Function and Decision Surface 14

3.3 LMS and Perceptron Learning 16

3.4 Comparison between LMS and Perceptron 21

4 Configuring Stack Filters by LMS and Perceptron Learning 23

4.1 Preview 23

4.2 General Single-neuron Structure for Configuring Stack Filters . . . 24

4.3 Training Procedure 27

4.4 Experimental Results 29

5 Conclusions - 57

Bibliography 59

List of Figures

Fig. 2.1 Median filter with window width 3. 5

Fig. 3.1 Adaline (Adaptive threshold logic element)- Adaptive

Filter Structure by LMS and Perceptron rule. 15

Fig. 4.1 Additive. 24

Fig. 4.2 Single neuron structure during training. 26

Fig. 5.1 Original signal (a combination of sinusoids) and zero

mean Gaussian noise are shown separately. 31

Fig. 5.2 Corrupted signal - a combination of sinusoids

+ Gaussian noise. 32

Fig. 5.3 Output signal obtained by filtering the corrupted signal

shown in Fig. 5.2 (a) by LMS rule, window width = 3,

(b) by Perceptron rule, window width = 3, respectively. 33

Fig. 5.4 Output signal obtained by filtering the corrupted signal

shown in Fig. 5.2 (a) by LMS rule, window width = 7,

(b) by Perceptron rule, window width = 7, respectively. 35

Fig. 5.5 Output signal obtained by filtering the corrupted signal

shown in Fig. 5.2 (a) by LMS rule, window width = 11,

(b) by Perceptron rule, window width = 11, respectively. 37

Fig. 5.6 Original signal (a combination of sinusoids) and

c-mixture Gaussian noise are shown separately. 39

Fig. 5.7 Corrupted signal - a combination of sinusoids

+ c-mixture of Gaussian noise. 40

Fig. 5.8 Output signal obtained by filtering the corrupted signal

shown in Fig. 5.7 (a) by LMS rule, window width = 3,

(b) by Perceptron rule, window width = 3, respectively. 41

Fig. 5.9 Output signal obtained by filtering the corrupted signal

shown in Fig. 5.7 (a) by LMS rule, window width = 7,

(b) by Perceptron rule, window width = 7, respectively. 43

Fig. 5.10 Output signal obtained by filtering the corrupted signal

shown in Fig. 5.7 (a) by LMS rule, window width = 11,

(b) by Perceptron rule, window width = 11, respectively. 45

Fig. 5.11 "Mexican hat" signal and €-mixture of Gaussian noise

are shown separately. 47

Fig. 5.12 Corrupted signal - "Mexican hat" signal + e-mixture

of Gaussian noise. 48

Fig. 5.13 Output signal obtained by filtering the corrupted signal

shown in Fig. 5.12 (a) by LMS rule, window width = 3,

(b) by Perceptron rule, window width = 3, respectively. 49

Fig. 5.14 Output signal obtained by filtering the corrupted signal

shown in Fig. 5.12 (a) by LMS rule, window width = 7,

(b) by Perceptron rule, window width = 7, respectively. 51

Fig. 5.15 Output signal obtained by filtering the corrupted signal

shown in Fig. 5.12 (a) by LMS rule, window width = 11,

(b) by Perceptron rule, window width = 11, respectively. 53

Fig. 5.16 Mean absolute error between the original "Mexican hat"

signal and the signal corrupted by f-mixture noise. 55

Fig. 5.17 Mean squared error between the original "Mexican hat"

signal and the signal corrupted by Gaussian noise. 56

Chapter 1

Introduction

Artificial neural networks or simply "neural nets [17]" go by many names

such as connectionism, parallel distributed processing, and neuromorphic

systems. The goal of neural nets is to achieve good performance via dense

interconnection of simple computational elements. Instead of performing a

program of instructions sequentially as in a von Neumann computer, neu-

ral nets explore many competing hypotheses simultaneously using massively

parallel nets composed of many computational elements connected by links

with variable weights.

Computational elements or nodes used in neural net models are nonlin-

ear. The simplest element sums N weighted inputs and passes the result

through a nonlinearity. Neural nets are specified by the net topology, node

characteristic, and. training or learning rules. These rules specify an initial

set of weights and indicate how weights should be adapted during use to im-

prove performance. Both design procedures and training rules are the topic

of much current research.

The subject of adaptive filters [1][15] has matured to the point where it

now constitutes an important part of statistical signal processing. Whenever

there is a requirement to process signals that result from operation in an envi-

ronment of unknown statistics, the use of adaptive filters offers an attractive

solution to the problem as it usually provides a significant improvement in

performance over the use of a fixed filter designed by conventional methods.

Furthermore, it provides new signal processing capabilities that would not

be possible otherwise.

All stack filters [2][3][5][10][11][12][19] obey the threshold decomposition

property and stacking property. The difference between two stack filters lies

solely in the Boolean operation performed on each level. A necessary and

sufficient condition for a Boolean operation to preserve the stacking property

was proven by Gilbert [13]. He showed the operation must be positive, in

which case it has a minimum sum of products representation which is free

of complements of any of the variables. Thus, only the logical AND and OR

operations are permitted. A more detailed introduction will be discussed in

Chapter 2.

Adaptive filtering approach for stack filters have recently been proposed

[4][16]. In this thesis, two new methods based on LMS and Perceptron learn-

ing are developed to configure stack filters.

Two adaptive algorithms, LMS [6] and Perceptron, along with their prop-

erties and differences will be discussed in Chapter 3. In Chapter 4, the incor-

poration of the Perceptron and LMS learning to configure stack filters will

be developed. Conclusion will be made and future research directions will be

recommended in Chapter 5.

Chapter 2

Stack Filters

Median filters [2][3][9][10][11] and other rank-order operators [12] pos-

sess two properties called threshold decomposition property and the stacking

property. The first is a limited superposition property which leads to a new

architecture for these filters; the second is an ordering property which allows

an efficient VLSI implementation of the threshold decomposition architec-

ture.

Any filter which possesses the threshold decomposition property and

stacking property is known as a stack filter [19]. Thus, stack filters form

a very large class of easily implemented nonlinear filters which include the

rank order operators as well as all compositions of morphological operators.

Fig. 2.1 Median filter with window width 3.

Based on the threshold decomposition property and the stacking property,

stack filters can be constructed as a "stack" of Positive Boolean functions

[13] [14], which will be discussed later.

2.1 Threshold Decomposition and Stacking

Properties

As mentioned above, an entire class of filters which possess the weak su-

perposition property, also called the threshold decomposition, and the stack-

ing property, are called stack filters. These properties can be easily illustrated

by a rank order filter such as the median filter with window width three, as

shown in Fig. 2.1.

Passing an M-valued discrete time signal through a rank-order filter is

equivalent to the following procedure:

i) Decomposing the M-valued input signal into a set of M-1 binary signals.

The kth binary signal, where k is an integer in {1,2,...,M-1}, is obtained

by thresholding the input signal at value k. That is, it takes a value of 1

whenever the input signal is greater than or equal to k, but it is 0 otherwise.

Note that summing these M-1 binary signals always provides the original

input signal, as illustrated in Fig. 2.1.

ii) Filtering each binary signal independently with its own rank-order

filter. Note that each threshold level is performed in parallel. During the

process of filtering, each rank-order filter simply adds the number of bits in

the window and compares the result to an integer r, the desired rank of the

filter. The output is 1 when the summation is greater than or equal to r, and

0 when the summation is less than r. For example, if the filter's window is

b=2r+1, the filter is a median filter.

iii) Adding the output of each binary rank-order filter one sample at a

time, as shown in Fig. 2.1. It is found that the output of the rank-order filter

possesses the stacking property. This means that the binary output signals

are piled on top of each other according to their threshold levels. It can be

seen that a column of l's always has a column of 0's on top. The desired

output value is simply the value of the threshold level where the transition

from 1 to 0 takes place.

From Fig. 2.1 and these three steps, we can easily see that "superposition"

and "stacking" properties hold. That's why this class of filters is called "stack

filters".

2.2 Mathematical Descriptions

Consider a vector sequence of length n, s = (s1,32, • • • ,s,), where si -

is the zth element of this sequence s, and i = 1,2,3,• • • ,n. Two binary

sequences of length n, x = (xi , x2, • - • , xn) and y = 71i, ., ii 2 (, • , yn), are said, • •

to be equal ,x = y, if and only if x, = y, for all i. We say that x < y if x2 =1

implies y,=1 for all i, and in addition, if x y, we say x < y.

Consider an M-valued sequences. The threshold signals T1, T2, • • • , fm--1

of the sequence are defined by

1 if s(i) > j
ft' (i) = (2.1)

0 if s(i) < j,

where i stands for the ith element of the appropriate vector and each element

of a threshold vector is binary.

Note that these threshold vectors possess the stacking property

11 i > f2 > ... > TM-2 > TM-1
, (2.2)

which implies

p(i) > f2(i) > ... > fm-2(i) > TM-1(i), (2.3)

where i is the ith element of the appropriate vector.

Let x and y be two binary sequences. A filter defined by a function F(•)

is said to have the stacking property if

F(x) > F(y) whenever x > y. (2.4)

That is, for a filter with window width n,

F(xi, • • • , xn) _?_ F(Yi, • • • , yn)
(2.5)

when x, > y, V i.

Based on Equations (2.2), (2.3), (2.4) and (2.5), the output of this filter

should have the following relation

F(f1) > F(7) > • • • > F(f m-2) > F(f m-1). (2.6)

The function F(•) of a rank-order filter, in fact, is a Boolean function.

Gilbert [13] called functions satisfying these properties "frontal functions;"

elsewhere they are called "Positive Boolean functions." It means that if filters

with function F(•) have the stacking property, then F(•) must be a positive

Boolean function. The operation of these positive Boolean functions is simply

the "max" and "min" operations. For example, a function F(•) is a positive

Boolean function of a stack filter SF, and F(xi, x2, x3) = x1 + x3. Thus the

operation of the positive Boolean function is max(xi, x3).

2.3 Deterministic Properties of Stack Fil-

ters

Since median filters and rank-order filters are nonlinear, we cannot con-

sider the filtering of an input signal and the filtering of noise separately.

Instead, we have to approach the problem syntactically, and see which filter

preserves the noisy signal and which eliminates it.

For a median filter, this syntactical approach leads to the idea of the root

signal [10], which is any signal that is invariant to filtering by that filter.

Essentially, the roots of a median filter are the "passband" signals of the

filter. Furthermore, just as a linear filter can estimate a signal within its

passband that is corrupted by noise outside the passband, so a linear filter

can estimate any root buried in noise. In fact, any signal of finite length will

converge to a root in a finite number of passes of a median filter. The output

root signal will not be the same as the original uncorrupted signal, but it

should be very close.

Stack filters are a generalization of median filters. The structure of a

median filter root signal is well known, and the structure and analysis of stack

filters are similar. Properties and analysis of stack filters have been covered

in great details [19]. We shall only describe some properties of stack filters

without proofs. The following notations which are related to the forthcoming

properties of stack filters are adapted in this thesis.

i) Let s = (51, 52, • - • , s L) be an M-valued signal of length L. Then for

a filter of window width 2N-1-1, the corresponding appended signal is s =

(si , • • • , S1, s2 . • • • , 5 L-1,5L,• • • , S L) where si and 3L_1 are repeated N+1 times.

ii) The roots of a stack filter are all the appended signals that are invariant

under filtering by F(-).

iii) We use Om and 1' to denote 0 and 1 repeated m times.

Properties of stack filters:

Theorem 1: Suppose that S is an M-level stack filter, based on a nontrivial

positive Boolean function F(•). Then S will preserve all constant signals. If

F(•) is identically 0, then S will preserve only constant zero-valued signals,

whereas if F(•) is identically 1, S will only preserve signals of value M-1.

Theorem 2: Suppose that an M-level stack filter S, based on positive

Boolean function F, has window width 2N+1, then S preserves all increasing

signals if and only if F(ON1N+1) = 1 and F(ON+11N) = 0.

Theorem 3: Let S be M-level stack filter of window width 2N+1. Then

S preserves the roots of a median filter of window width 4N+1 if and only if

S preserves all M-level monotonic signals.

Chapter 3

Linear Discriminant Function,

Perceptron and LMS

3.1 Concepts

In this Chapter, we shall be concerned with linear discriminant functions,

Perceptron and LMS learning. Linear discriminant functions have a variety of

pleasant properties from an analytical point of view and are easy to compute.

The problem of finding a linear discriminant function will be formulated as

a problem of minimizing a criterion function.

3.2 The Discriminant Function and Decision

Surface

A linear discriminant function [8] defined by

g(u) = wtu + wo, (3.1)

where u is an input pattern vector, w is the weight vector, and wo is the

threshold weight, is used to classify input pattern u as one of two possible

categories. This two category classification employs the following decision

rule: Decide ci if g(u) > 0, and c2 if g(u) < 0. Thus u is assigned to c1 if

the inner product wt u exceeds the threshold-wo, and u is assigned to c2 if

the inner product Neu is less than the threshold-wo. When wt u is equal to

wo, u can be assigned to either c1 or c2.

If g(u) = 0, it defines the decision surface that separates points assigned

to c1 from points assigned to c2. When g(u) is linear as shown in Equation

(3.1), this decision surface is a hyperplane. If u1 and u2 are both on the

decision surface, then

w1u1 + wo = w'u2 + wo
(3.2)

wt(u1 — u2) = 0.

Therefore, w is normal to the hyperplane. In general, the hyperplane,

we denote it H, divides the features space into two halfspaces, the decision

region R1 for c1, and R2 for c2. The orientation of the decision surface is

decided by w and the location of surface is determined by the wo.

Fig. 3.1 Adaline (Adaptive threshold logic element)—

Adaptive Filter Structure by LMS and Perceptron rule.

3.3 LMS and Perceptron Learning

Before talking about this algorithm, we have to consider the problem of

constructing the criterion function. In fact, the Perceptron algorithm is an

adaptive algorithm and the structure of the adaptive filter is shown in Fig.

3.1. This structure has two parts: (1) A transversal filter with adjustable tap

weights whose values at time n are devoted wi(n), w2 (n), • • • , wN(n), and (2)

a mechanism for adjusting these tap weights in an adaptive manner.

During the filtering process, an additional signal d(n), called the desired

response, is supplied along with the usual tap input. In fact, the desired

signal response provides a fame of reference for adjusting the tap weights of

the filter. Denote eL(n) and ep(n) as the estimation error produced during

LMS and Perceptron learning, respectively. Thus as shown in Fig. 3.1,

eL(n) = d(n) — wt(n)u(n), (3.3)

where the term wt (n)u(n) is the inner product of the tap weight vector w(n)

and the tap input vector u(n), and the superscript t stands for vector or ma-

trix transpose. Because there are N-input, that means this filter with window

width N, so the weight vector is w(n) = [wo(n), wi (n), w2(n), • • • , wN (n)],

and input vector is ut(n) = [1, u(n), u(n — 1), • • • , u(n — N + 1)].

If the tap input vector u(n) and the desired response d(n) are jointly

stationary, then the mean squared error J(n), criterion function, at time n

is a quadratic function of the tap weight vector. We may write

where cr'd is the variance of the desired response d(n), p is the cross-correlation

vector between the tap-input vector u(n) and the desired response d(n), R

is correlation matrix of the tap-input vector u(n).

It can be found in [10], in contrast to [10], here we only consider real

input data, real weights and real desired output data, this criterion function

is based on the mean squared error,

Expanding Equation (3.5) we can get Equation (3.4).

The gradient of the criterion function denoted by V is simply the deriva-

tive of the mean-squared error J with respect to the tap-weight vector w:

If we let V = 0, it means that we can get an optimal weight vector such

that J(n) is minimized.

From the above descriptions that p is the cross-correlation vector be-

tween the tap-input vector u(n) and the desired response d(n), and R is the

correlation matrix of the tap-input vector u(n), we can write them as below:

The simplest choice of estimators R and p is to use the instantaneous esti-

mates that are based on sample values of the tap-input and desired response,

as defined by

respectively.

Correspondingly, the instantaneous estimate of the gradient vector is

According to the method of steepest descent [10], the updated value of

the tap-weight vector at time n +1 is computed by using the simple recursive

relation

where p is a positive real-valued constant.

Substituting Equation (3.6) into Equation (3.10), we have

and substituting Equation (3.8) into Equation (3.11), we have the following

LMS learning rule:

where

In Fig. 3.1, the error, ep(n), is generated after passing the linear output,

y, through the hardlimiting function, fH (•). Thus, the output yo is

Replacing y and eL by yo and ep in Equation (3.12), we having the fol-

lowing Perceptron Learning rule:

where

Based on the concept of linear discriminant function, the hardlimiting

threshold level should be chosen as follow

{ 1 if y > 0
yo = (3.16)

0 if y < O.

The single layer perceptron can be used with both continuous valued

and binary inputs. This simple net generates much interest when initially

developed because of its ability to learn to recognize simple patterns. A

perceptron that decides whether an input belongs to one of two classes (we

denote c1 or c2). In Fig. 3.1, the single node computes a weighted sum

of input elements and adds a threshold ?Do, then passes the result through

a hardlimiting nonlinearity such that the output yo is either 0 or 1. The

decision rule is to respond Class c1 if the output is 1 and Class c2 if the

output is 0. A useful technique for analyzing the behavior of nets, such as

the Perception, is to plot a map of the decision regions created in the multi-

dimensional space spanned by the input variables. These decision regions

specify which input values result in Class c1 and which result in Class c2.

When there are only two inputs, the decision boundary, hyperplane, is a line

in the 2-dimentional space, and the boundary line depends on the connection

weights and the threshold.

Rosenblatt [18] proved that if the inputs presented from the two classes

are separable, then the perceptron convergence procedure converges and po-

sitions the decision hyperplane between those two classes. One problem with

the perceptron convergence procedure is that decision boundaries may oscil-

late continuously when inputs are not separable and distributions overlap.

For a linear separable case, LMS or Perceptron learning is good enough

to classify the input samples. To classify non-linearly separable samples,

it is necessary to use multi-layer networks such as multi-layer Perceptrons

[17][20].

3.4 Comparison between LMS and Percep-

tron

Generally speaking, the Perceptron algorithm and LMS algorithm are

almost the same. Both perform weight adaptation based on the estimation

error by gradient descent method. However, the estimation error is different

from one to the other. This difference, thus, leads to different behavior.

The Perceptron learning rule [18] has been proven to be capable of sepa-

rating linearly separable samples. LMS algorithm is not guaranteed to sepa-

rate linearly separable samples. If the samples are not linearly separable, the

weight vector adapted by the Perceptron rule may oscillate forever and does

not converge to a low-error solution. On the other hand, the weight vector

obtained by the LMS rule [18] cannot be unreasonable if the samples are not

separable. Both learning rules can be generalized to a more general rule by

replacing the hardlimiting function by a sigmoid function [6].

Chapter 4

Configuring Stack Filters by

LMS and Perceptron Learning

4.1 Preview

Stack filters possess two properties—threshold decomposition property

and stacking property. With these two properties, the implementation of

stack filters can be easily realized by a digital circuit. With the technology

of VLSI, the stack filters can be designed in a single chip.

In this chapter, we introduce two training algorithms, the LMS algorithm

and the Perceptron learning rule, to configure a stack filter.

Fig. 4.1 Additive.

4.2 General Single-neuron Structure for Con-

figuring Stack Filters

Denote s(n) as the original signal sequence, 71(n) as the noise process,

and r(n) as the resulting sequence. We assume that s(n) is corrupted by

additive noise process, and thus the resulting sequence r(n) = s(n) + 77 (n),

as shown in Fig. 4.1.

The problem we address in tnis thesis is to configure a stack filter S in

order to recover the original signal sequence from the corrupted sequence.

Since stack filters possess the threshold decomposition and stacking prop-

erties, configuring a stack filter is equivalent to first converting the input

signal sequence into sequence of binary signals by threshold decomposition,

and then finding the appropriate positive Boolean function used for all level.

Now, the input signal sequence is r(n). Assume r(n) is an M-valued sequence,

by threshold decomposition we obtain the thresholded binary sequence de-

noted by fm-1,TM-2
, • • • , T2, f1 , where

> > > fM-2 > TM-1
, (4.1)

and

1 if r(n) > j,
P(n) = (4.2)

0 if r(n) < j.

Let N be the window width of the stack filter. At each threshold level,

the input sequence is a binary sequence, and the output is a binary number.

Thus, the input-output relationship can be realized by a Boolean function.

Recall from Chapter 3, some binary Boolean functions can be realized by a

linear discriminant function, and thus can be trained like the LMS or the

Perceptron discussed in Chapter 3. However, the Boolean function obtained

by training the single neuron may not be a positive Boolean function. Heuris-

tics which will be discussed later are introduced to ensure that the resulting

Boolean function is a positive Boolean function.

Fig. 4.2 Single neuron structure during training.

The general single-neuron structure for configuring stack filters is shown

in Fig. 4.2. The input sequence r(n) is first converted to threshold binary

sequence T 1, f2, • • • , il'''. For each window sample of width N of the input

sequence r(n), there are (M-1) window samples of width N of the thresholded

binary sequences; that is, (M-1) binary input patterns are presented to the

single-neuron. Thus, the weights of the neuron are updated by the (M-1)

binary input patterns (M-1) times for each sample of r(n). The serial of

the binary outputs of the neuron are then stacked back into (M-1) levels.

Finally, the M-valued filtered output signal is reconstructed, by the stacking

property, from the binary outputs by a search for level at which a transition

from 1 to 0 occurs.

4.3 Training Procedure

Denote i', as the zth window sample of width N of the input sequence

r(n); 1,1, i?, • • • , TM-1 as the (M-1) thresholded binary input patterns that

result from the ith input sample rt . These parallel (M-1) threshold binary

input patterns are transformed into a sequence binary patterns as follow:

/73 = iltk where j = (M —1)(i —1) + k. (4.3)

The weights of the neuron are then updated by a learning rule. For the

• LMS learning, using Equation (3.12) and (3.13), we have

w3+1 = max{w3 + F173 [d3 — wYt3], 0}, (4.4)

where

3 = (M — 1)(i — 1) + k,

2J 3 = wtit3 is the jth binary output of the neuron; i.e., the ith binary output

value corresponding to the kth level, c/3 is the jth desired binary output; i.e.,

the ith desired binary value corresponding to the kth threshold level.

Similarly, for the Perceptron learning, we have

w3+1 = max{w3 + pil3 [cl, — f ff (wi773)1,0}, (4.5)

where f H is the hardlimiting function.

Note that during training, negative weights except wo are set to zero.

This heuristics are introduced in order to preserve the stacking property of a

stack filter. After training, the final weight vector is used for the remaining

inputs. It is easy to show the above heuristics preserve the stacking property.

Denote wk as the weight vector used for the kth thresholded level signal.

The kth level output:

y
o
k = fH(yk),

yk = (i4k)twk , where and k = M — 1, M — 2, • • • , 1.

Since

TM-1TM-2 -- ritm 2 < _.... ri-i.
i • • • 1-- /

and

w(m-1) = w(M-2) = ... w(1) = L ---... --_ o,

Hence,

Y(m-1) < Y (4-2) <- (1)
o — 0 — .. . -.- Y0 •

4.4 Experimental Results

Two methods to configure stack filters were developed and discussed in

details in the last section. We shall demonstrate the effectiveness of our pro-

posed algorithms for noise suppression by experimental results. We have ex-

perimented with various types of signals and noise, but we shall only present

results for two types of signals and two types of noise. Fig. 5.1 shows the

original signal obtained by a linear combination of five sinusoids and the

zero mean Gaussian noise. The corrupted signal obtained by adding the

signal and noise is shown in Fig. 5.2. The filtered output signals obtained

by the LMS and Perceptron rule with various window widths are shown in

Fig. 5.3-5.5. Similarly, Fig. 5.6-5.15 show other type of signal, noise and

filtered outputs. Fig. 5.16 and Fig 5.17 show the mean absolute error and

mean squared error between the desired output and the filtered output by

LMS and Perceptron rule using various window widths.

From these results, we can draw the following conclusions:

(1) Perceptron rule outperforms LMS rule in the stack filter.

(2) The noise suppression depends on the signal, noise and filter window

width.

Fig. 5.1 Original signal (a combination of sinusoids) and
zero mean Gaussian Noise are shown separately.

Fig. 5.2 Corrupted signal — a combination of sinusoids + Gaussian noise.

Fig. 5.3 Output signal obtained by filtering the corrupted signal
shown in Fig. 2 by (a) LMS rule, window width = 3, and
(b) Perceptron rule, window width = 3, respectively.

Fig. 5.3, continued.

Fig. 5.4 Output signal obtained by filtering the corrupted signal
shown in Fig. 2 by (a) LMS rule, window width = 7, and
(b) Perceptron rule, window width = 7, respectively.

Fig. 5.4, continued.

Fig. 5.5 Output signal obtained by filtering the corrupted signal
shown in Fig. 2 by (a) LMS rule, window width = 11, and
(b) Perceptron rule, window width = 11, respectively.

Fig. 5.5, continued.

Fig. 5.6 Original signal (a combination of sinusoids) and
c-mixture Gaussian noise are shown separately.

Fig. 5.7 Corrupted signal — a combination of sinusoids + f-mixture
of Gaussian noise.

Fig. 5.8 Output signal obtained by filtering the corrupted signal
shown in Fig. 7 by (a) LMS rule, window width = 3, and
(b) Perceptron rule, window width = 3, respectively.

Fig. 5.8, continued.

Fig. 5.9 Output signal obtained by filtering the corrupted signal
shown in Fig. 7 by (a) LMS rule, window width = 7, and
(b) Perceptron rule, window width = 7, respectively.

Fig. 5.9, continued.

Fig. 5.10 Output signal obtained by filtering the corrupted signal
shown in Fig. 7 by (a) LMS rule, window width = 11, and
(b) Perceptron rule, window width = 11, respectively.

Fig. 5.10, continued.

Fig. 5.11 "Mexican hat" signal and f-mixture Gaussian noise
are shown separately.

Fig. 5.12 Corrupted signal — "Mexican hat" + E-mixture
of Gaussian Noise.

Fig. 5.13 Output signal obtained by filtering the corrupted signal
shown in Fig. 12 by (a) LMS rule, window width = 3, and
(b) Perceptron rule, window width = 3, respectively.

Fig. 5.13, continued.

Fig. 5.14 Output signal obtained by filtering the corrupted signal
shown in Fig. 12 by (a) LMS rule, window width = 7, and
(b) Perceptron rule, window width = 7, respectively.

Fig. 5.14, continued.

Fig. 5.15 Output signal obtained by filtering the corrupted signal
shown in Fig. 12 by (a) LMS rule, window width = 11, and
(b) Perceptron rule, window width = 11, respectively.

Fig. 5.15, continued.

Fig. 5.16 Mean absolute error between the original "Mexican hat" signal
and the signal corrupted by &mixture noise.

Fig. 5.17 Mean squared error between the original "Mexican hat" signal
and the signal corrupted by Gaussian noise.

Chapter 5

Conclusions

A framework for configuring stack filters using LMS and Perceptron rules

was established and tested. We have demonstrated through experimental re-

sults that our proposed algorithms perform the noise suppression task well.

The current design only makes use of a simple single neuron. Further im-

provement is expected if a multi-layer network(multi-layer Perceptron) is

employed.

Future research efforts include

(1) Analyze the proposed adaptive filter structure mathematically.

(2) Extend a single-neuron structure to a multi-layer neural network.

(3) Implement adaptive filters using VLSI technology based on the properties

of stack filters.

Bibliography

[1] S. T. Alexander, Adaptive Signal Processing Theory and Application,
New York, NY: Springer-Verlag New York Inc., 1986.

[2] E. Ataman, V. K. Aatre and K. M. Wong, "Some Statistical Properties
of Median Filters," IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-29, pp. 1073-1075, Oct. 1981.

[3] A. C. Bovik, T. S. Huang and D. C. Munson, "A Generalization of
Median Filtering Uning Linear Combinations of Order Statistics," IEEE
Trans. Acoust., Speech, Signal Processing, vol. ASSP-31, pp. 1342-1349,
Dec. 1983.

[4] C. H. Chu, "A Genetic Algorithm Approach to the Configuration of
Stack Filters," Proc. Intl. Conf. on Genetic Algorithms, George Mason
University, June 4-7, 1989, pp. 218-224.

[5] E. J. Coyle and J. H. Lin, "Stack Filters and the Mean Absolute Error
Criterion," IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-
36, pp. 1244-1254, Aug. 1988.

[6] S. C. Douglas and T. H. Y. Meng, "Optimum Error Nonlinearities for
LMS Adaptation," ICASSP 90, Albuquerque, New Mexico, April 3-6,
1990.

[7] S. C. Douglas and T. H. Y. Meng, "An adaptive Edge Detection Method
Using a Modified Sigmoid-LMS Algorithm," 23rd Annual Asilomar
Conf. on Signal, Syst., Comput., Asilomar, CA, Nov. 1989.

[8] R. 0. Duda and P. E. Hart, Pattern Classification and Scene Analysis,
Menlo Park, CA: John Wiley & Sons. Inc., 1973.

[9] J. P. Fitch, E. J. Coyle and N. C. Gallagher, "Median Filtering by
Threshold Decomposition," IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol. ASSP-32, pp. 1183-1188, Dec. 1984.

[10] J. P. Fitch, E. J. Coyle and N. C. Gallagher, "Root Properties and
Convergence Rates of Median Filters," IEEE Trans. Acoust., Speech,
Signal Processing, vol. ASSP-33, pp. 230-239, Feb. 1985.

[11] N. C. Gallagher and G. L. Wise, "A Theoretical analysis of the properties
of Median Filter," IEEE Trans. Acoust., Speech, Signal Processing, vol.
ASSP-29, pp. 1136-1141, Dec. 1981.

[12] —, "Threshold Decomposition of Multidimensional ranked-order Op-
erations," IEEE Trans. Circuits Syst., vol CAS-32, pp. 445-450, May
1985.

[13] E. N. Gilbert, "Lattice-theoretic properties of frontal switching func-
tions," J. Math. Phys., vol. 33, pp. 57-67, Apr. 1954.

[14] S. E. Hampson and D. J. Volper, "Disjunctive Moldels of Boolean Cat-
egory Learning," Biological Cybernetics, vol. 56, pp. 121-137, 1987.

[15] S. Haykin, Adaptive Filter Theory. Englewood Cliffs, NJ: Prentice-Hall,
1986.

[16] J. H. Lin, T. M. Selike and E. J. Coyle, "Adaptive Stack Filtering Un-
der the Mean Absolute Error Criterion," IEEE Trans. Acoust., Speech,

• Signal Processing, vol. ASSP-38, pp. 938-954, Jun. 1990.

[17] R. P. Lippmann, "An Introduction to Computing with Neural Nets,"
IEEE Trans. Acoust., Speech, Signal Processing Magazine, pp. 4-22,
Apr. 1987.

[18] R. Rosenblatt, Principles of Neurodynamics, New York, Spartan Books,
1959.

[19] P. D. Wendt, E. J. Coyle and N. C. Gallagher, "Stack Filters," IEEE
Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, pp. 898-911,
Aug. 1986.

[20] B. Widrow, R. G. Winter and R. A. Baxter, "Layered Neural Nets for
Pattern Recognition," IEEE Trans. Acoust., Speech, Signal Processing,
vol. ASSP-36, pp. 1109-1118, Jul. 1988.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Vita
	Acknowledgment
	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Stack Filters
	Chapter 3: Linear Discriminant Function, Perceptron and LMS
	Chapter 4: Configuring Stack Filters by LMS and Perception Learning
	Chapter 5: Conclusions
	Bibliography

	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)

