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ABSTRACT 

Title of Thesis : 

Adaptive Stack Filtering by 

LMS and Perceptron Learning. 

Yu-chou Huang, New Jersey Institute of Technology, 

Master of Electrical Engineering, 1991 

Thesis directed by : Dr. Nirwan Ansari 

Department of Electrical 

and Computer Engineering 

New Jersey Institute of Technology. 

Stack filters are a class of sliding—window nonlinear digital filters that 

- possess the weak superposition property(threshold decomposition) and the 

ordering property known as the stacking property. They have been demon-

strated to be robust in suppressing noise. Two methods are introduced in 

this thesis to adaptively configure a stack filter. One is by employing the 

Least Mean Square(LMS) algorithm and the other is based on Perceptron 

learning. 

Experimental results are presented to demonstrate the effectiveness of our 

methods to noise suppression. 
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Chapter 1 

Introduction 

Artificial neural networks or simply "neural nets [17]" go by many names 

such as connectionism, parallel distributed processing, and neuromorphic 

systems. The goal of neural nets is to achieve good performance via dense 

interconnection of simple computational elements. Instead of performing a 

program of instructions sequentially as in a von Neumann computer, neu-

ral nets explore many competing hypotheses simultaneously using massively 

parallel nets composed of many computational elements connected by links 

with variable weights. 

Computational elements or nodes used in neural net models are nonlin-

ear. The simplest element sums N weighted inputs and passes the result 



through a nonlinearity. Neural nets are specified by the net topology, node 

characteristic, and.  training or learning rules. These rules specify an initial 

set of weights and indicate how weights should be adapted during use to im-

prove performance. Both design procedures and training rules are the topic 

of much current research. 

The subject of adaptive filters [1][15] has matured to the point where it 

now constitutes an important part of statistical signal processing. Whenever 

there is a requirement to process signals that result from operation in an envi-

ronment of unknown statistics, the use of adaptive filters offers an attractive 

solution to the problem as it usually provides a significant improvement in 

performance over the use of a fixed filter designed by conventional methods. 

Furthermore, it provides new signal processing capabilities that would not 

be possible otherwise. 

All stack filters [2][3][5][10][11][12][19] obey the threshold decomposition 

property and stacking property. The difference between two stack filters lies 

solely in the Boolean operation performed on each level. A necessary and 

sufficient condition for a Boolean operation to preserve the stacking property 

was proven by Gilbert [13]. He showed the operation must be positive, in 

which case it has a minimum sum of products representation which is free 



of complements of any of the variables. Thus, only the logical AND and OR 

operations are permitted. A more detailed introduction will be discussed in 

Chapter 2. 

Adaptive filtering approach for stack filters have recently been proposed 

[4][16]. In this thesis, two new methods based on LMS and Perceptron learn-

ing are developed to configure stack filters. 

Two adaptive algorithms, LMS [6] and Perceptron, along with their prop-

erties and differences will be discussed in Chapter 3. In Chapter 4, the incor-

poration of the Perceptron and LMS learning to configure stack filters will 

be developed. Conclusion will be made and future research directions will be 

recommended in Chapter 5. 



Chapter 2 

Stack Filters 

Median filters [2][3][9][10][11] and other rank-order operators [12] pos-

sess two properties called threshold decomposition property and the stacking 

property. The first is a limited superposition property which leads to a new 

architecture for these filters; the second is an ordering property which allows 

an efficient VLSI implementation of the threshold decomposition architec-

ture. 

Any filter which possesses the threshold decomposition property and 

stacking property is known as a stack filter [19]. Thus, stack filters form 

a very large class of easily implemented nonlinear filters which include the 

rank order operators as well as all compositions of morphological operators. 



Fig. 2.1 Median filter with window width 3. 

Based on the threshold decomposition property and the stacking property, 

stack filters can be constructed as a "stack" of Positive Boolean functions 

[13] [14], which will be discussed later. 



2.1 Threshold Decomposition and Stacking 

Properties 

As mentioned above, an entire class of filters which possess the weak su-

perposition property, also called the threshold decomposition, and the stack-

ing property, are called stack filters. These properties can be easily illustrated 

by a rank order filter such as the median filter with window width three, as 

shown in Fig. 2.1. 

Passing an M-valued discrete time signal through a rank-order filter is 

equivalent to the following procedure: 

i) Decomposing the M-valued input signal into a set of M-1 binary signals. 

The kth binary signal, where k is an integer in {1,2,...,M-1}, is obtained 

by thresholding the input signal at value k. That is, it takes a value of 1 

whenever the input signal is greater than or equal to k, but it is 0 otherwise. 

Note that summing these M-1 binary signals always provides the original 

input signal, as illustrated in Fig. 2.1. 

ii) Filtering each binary signal independently with its own rank-order 

filter. Note that each threshold level is performed in parallel. During the 

process of filtering, each rank-order filter simply adds the number of bits in 



the window and compares the result to an integer r, the desired rank of the 

filter. The output is 1 when the summation is greater than or equal to r, and 

0 when the summation is less than r. For example, if the filter's window is 

b=2r+1, the filter is a median filter. 

iii) Adding the output of each binary rank-order filter one sample at a 

time, as shown in Fig. 2.1. It is found that the output of the rank-order filter 

possesses the stacking property. This means that the binary output signals 

are piled on top of each other according to their threshold levels. It can be 

seen that a column of l's always has a column of 0's on top. The desired 

output value is simply the value of the threshold level where the transition 

from 1 to 0 takes place. 

From Fig. 2.1 and these three steps, we can easily see that "superposition" 

and "stacking" properties hold. That's why this class of filters is called "stack 

filters". 

2.2 Mathematical Descriptions 

Consider a vector sequence of length n, s = (s1,32, • • • ,s,), where si  - 

is the zth element of this sequence s, and i = 1,2,3,• • • ,n. Two binary 



sequences of length n, x = (xi , x2, • - • , xn) and y = 71i, ., ii  2  ( , • , yn), are said ...., • •  

to be equal ,x = y, if and only if x, = y, for all i. We say that x < y if x2 =1 

implies y,=1 for all i, and in addition, if x y, we say x < y. 

Consider an M-valued sequences. The threshold signals T1, T2, • • • , fm--1 

of the sequence are defined by 

1 if s(i) > j 
ft' (i) = (2.1) 

0 if s(i) < j, 

where i stands for the ith element of the appropriate vector and each element 

of a threshold vector is binary. 

Note that these threshold vectors possess the stacking property 

11 i > f2 > ... > TM-2 > TM-1
, (2.2) 

which implies 

p(i) > f2(i) > ... > fm-2(i) > TM-1(i), (2.3) 

where i is the ith element of the appropriate vector. 

Let x and y be two binary sequences. A filter defined by a function F(•) 

is said to have the stacking property if 

F(x) > F(y) whenever x > y. (2.4) 



That is, for a filter with window width n, 

F(xi, • • • , xn) _?_ F(Yi, • • • , yn) 
(2.5) 

when x, > y, V i. 

Based on Equations (2.2), (2.3), (2.4) and (2.5), the output of this filter 

should have the following relation 

F(f1) > F(7) > • • • > F(f m-2) > F(f m-1). (2.6) 

The function F(•) of a rank-order filter, in fact, is a Boolean function. 

Gilbert [13] called functions satisfying these properties "frontal functions;" 

elsewhere they are called "Positive Boolean functions." It means that if filters 

with function F(•) have the stacking property, then F(•) must be a positive 

Boolean function. The operation of these positive Boolean functions is simply 

the "max" and "min" operations. For example, a function F(•) is a positive 

Boolean function of a stack filter SF, and F(xi, x2, x3) = x1  + x3. Thus the 

operation of the positive Boolean function is max(xi, x3). 



2.3 Deterministic Properties of Stack Fil-

ters 

Since median filters and rank-order filters are nonlinear, we cannot con-

sider the filtering of an input signal and the filtering of noise separately. 

Instead, we have to approach the problem syntactically, and see which filter 

preserves the noisy signal and which eliminates it. 

For a median filter, this syntactical approach leads to the idea of the root 

signal [10], which is any signal that is invariant to filtering by that filter. 

Essentially, the roots of a median filter are the "passband" signals of the 

filter. Furthermore, just as a linear filter can estimate a signal within its 

passband that is corrupted by noise outside the passband, so a linear filter 

can estimate any root buried in noise. In fact, any signal of finite length will 

converge to a root in a finite number of passes of a median filter. The output 

root signal will not be the same as the original uncorrupted signal, but it 

should be very close. 

Stack filters are a generalization of median filters. The structure of a 

median filter root signal is well known, and the structure and analysis of stack 

filters are similar. Properties and analysis of stack filters have been covered 



in great details [19]. We shall only describe some properties of stack filters 

without proofs. The following notations which are related to the forthcoming 

properties of stack filters are adapted in this thesis. 

i) Let s = (51, 52, • - • , s L) be an M-valued signal of length L. Then for 

a filter of window width 2N-1-1, the corresponding appended signal is s = 

(si  , • • • , S1, s2 . • • • , 5 L-1,5L,• • • , S L) where si  and 3L_1  are repeated N+1 times. 

ii) The roots of a stack filter are all the appended signals that are invariant 

under filtering by F(-). 

iii) We use Om and 1' to denote 0 and 1 repeated m times. 

Properties of stack filters: 

Theorem 1: Suppose that S is an M-level stack filter, based on a nontrivial 

positive Boolean function F(•). Then S will preserve all constant signals. If 

F(•) is identically 0, then S will preserve only constant zero-valued signals, 

whereas if F(•) is identically 1, S will only preserve signals of value M-1. 

Theorem 2: Suppose that an M-level stack filter S, based on positive 

Boolean function F, has window width 2N+1, then S preserves all increasing 

signals if and only if F(ON1N+1) = 1 and F(ON+11N) = 0. 

Theorem 3: Let S be M-level stack filter of window width 2N+1. Then 

S preserves the roots of a median filter of window width 4N+1 if and only if 



S preserves all M-level monotonic signals. 



Chapter 3 

Linear Discriminant Function, 

Perceptron and LMS 

3.1 Concepts 

In this Chapter, we shall be concerned with linear discriminant functions, 

Perceptron and LMS learning. Linear discriminant functions have a variety of 

pleasant properties from an analytical point of view and are easy to compute. 

The problem of finding a linear discriminant function will be formulated as 

a problem of minimizing a criterion function. 



3.2 The Discriminant Function and Decision 

Surface 

A linear discriminant function [8] defined by 

g(u) = wtu + wo, (3.1) 

where u is an input pattern vector, w is the weight vector, and wo  is the 

threshold weight, is used to classify input pattern u as one of two possible 

categories. This two category classification employs the following decision 

rule: Decide ci  if g(u) > 0, and c2  if g(u) < 0. Thus u is assigned to c1  if 

the inner product wt u exceeds the threshold-wo, and u is assigned to c2  if 

the inner product Neu is less than the threshold-wo. When wt u is equal to 

wo, u can be assigned to either c1  or c2. 

If g(u) = 0, it defines the decision surface that separates points assigned 

to c1  from points assigned to c2. When g(u) is linear as shown in Equation 

(3.1), this decision surface is a hyperplane. If u1  and u2  are both on the 

decision surface, then 

w1u1  + wo  = w'u2  + wo  
(3.2) 

wt(u1  — u2) = 0. 



Therefore, w is normal to the hyperplane. In general, the hyperplane, 

we denote it H, divides the features space into two halfspaces, the decision 

region R1  for c1, and R2 for c2. The orientation of the decision surface is 

decided by w and the location of surface is determined by the wo. 

Fig. 3.1 Adaline (Adaptive threshold logic element)— 

Adaptive Filter Structure by LMS and Perceptron rule. 



3.3 LMS and Perceptron Learning 

Before talking about this algorithm, we have to consider the problem of 

constructing the criterion function. In fact, the Perceptron algorithm is an 

adaptive algorithm and the structure of the adaptive filter is shown in Fig. 

3.1. This structure has two parts: (1) A transversal filter with adjustable tap 

weights whose values at time n are devoted wi(n), w2  (n), • • • , wN(n), and (2) 

a mechanism for adjusting these tap weights in an adaptive manner. 

During the filtering process, an additional signal d(n), called the desired 

response, is supplied along with the usual tap input. In fact, the desired 

signal response provides a fame of reference for adjusting the tap weights of 

the filter. Denote eL(n) and ep(n) as the estimation error produced during 

LMS and Perceptron learning, respectively. Thus as shown in Fig. 3.1, 

eL(n) = d(n) — wt(n)u(n), (3.3) 

where the term wt (n)u(n) is the inner product of the tap weight vector w(n) 

and the tap input vector u(n), and the superscript t stands for vector or ma-

trix transpose. Because there are N-input, that means this filter with window 

width N, so the weight vector is w(n) = [wo(n), wi  (n), w2(n), • • • , wN (n)], 

and input vector is ut(n) = [1, u(n), u(n — 1), • • • , u(n — N + 1)]. 



If the tap input vector u(n) and the desired response d(n) are jointly 

stationary, then the mean squared error J(n), criterion function, at time n 

is a quadratic function of the tap weight vector. We may write 

where cr'd  is the variance of the desired response d(n), p is the cross-correlation 

vector between the tap-input vector u(n) and the desired response d(n), R 

is correlation matrix of the tap-input vector u(n). 

It can be found in [10], in contrast to [10], here we only consider real 

input data, real weights and real desired output data, this criterion function 

is based on the mean squared error, 

Expanding Equation (3.5) we can get Equation (3.4). 

The gradient of the criterion function denoted by V is simply the deriva- 

tive of the mean-squared error J with respect to the tap-weight vector w: 

If we let V = 0, it means that we can get an optimal weight vector such 

that J(n) is minimized. 



From the above descriptions that p is the cross-correlation vector be-

tween the tap-input vector u(n) and the desired response d(n), and R is the 

correlation matrix of the tap-input vector u(n), we can write them as below: 

The simplest choice of estimators R and p is to use the instantaneous esti-

mates that are based on sample values of the tap-input and desired response, 

as defined by 

respectively. 

Correspondingly, the instantaneous estimate of the gradient vector is 

According to the method of steepest descent [10], the updated value of 

the tap-weight vector at time n +1 is computed by using the simple recursive 

relation 

where p is a positive real-valued constant. 



Substituting Equation (3.6) into Equation (3.10), we have 

and substituting Equation (3.8) into Equation (3.11), we have the following 

LMS learning rule: 

where 

In Fig. 3.1, the error, ep(n), is generated after passing the linear output, 

y, through the hardlimiting function, fH (•). Thus, the output yo  is 

Replacing y and eL  by yo  and ep in Equation (3.12), we having the fol-

lowing Perceptron Learning rule: 

where 



Based on the concept of linear discriminant function, the hardlimiting 

threshold level should be chosen as follow 

{ 1 if y > 0 
yo  = (3.16) 

0 if y < O. 

The single layer perceptron can be used with both continuous valued 

and binary inputs. This simple net generates much interest when initially 

developed because of its ability to learn to recognize simple patterns. A 

perceptron that decides whether an input belongs to one of two classes (we 

denote c1  or c2 ). In Fig. 3.1, the single node computes a weighted sum 

of input elements and adds a threshold ?Do, then passes the result through 

a hardlimiting nonlinearity such that the output yo  is either 0 or 1. The 

decision rule is to respond Class c1  if the output is 1 and Class c2  if the 

output is 0. A useful technique for analyzing the behavior of nets, such as 

the Perception, is to plot a map of the decision regions created in the multi-

dimensional space spanned by the input variables. These decision regions 

specify which input values result in Class c1  and which result in Class c2. 

When there are only two inputs, the decision boundary, hyperplane, is a line 

in the 2-dimentional space, and the boundary line depends on the connection 

weights and the threshold. 



Rosenblatt [18] proved that if the inputs presented from the two classes 

are separable, then the perceptron convergence procedure converges and po-

sitions the decision hyperplane between those two classes. One problem with 

the perceptron convergence procedure is that decision boundaries may oscil-

late continuously when inputs are not separable and distributions overlap. 

For a linear separable case, LMS or Perceptron learning is good enough 

to classify the input samples. To classify non-linearly separable samples, 

it is necessary to use multi-layer networks such as multi-layer Perceptrons 

[17][20]. 

3.4 Comparison between LMS and Percep-

tron 

Generally speaking, the Perceptron algorithm and LMS algorithm are 

almost the same. Both perform weight adaptation based on the estimation 

error by gradient descent method. However, the estimation error is different 

from one to the other. This difference, thus, leads to different behavior. 

The Perceptron learning rule [18] has been proven to be capable of sepa- 



rating linearly separable samples. LMS algorithm is not guaranteed to sepa-

rate linearly separable samples. If the samples are not linearly separable, the 

weight vector adapted by the Perceptron rule may oscillate forever and does 

not converge to a low-error solution. On the other hand, the weight vector 

obtained by the LMS rule [18] cannot be unreasonable if the samples are not 

separable. Both learning rules can be generalized to a more general rule by 

replacing the hardlimiting function by a sigmoid function [6]. 



Chapter 4 

Configuring Stack Filters by 

LMS and Perceptron Learning 

4.1 Preview 

Stack filters possess two properties—threshold decomposition property 

and stacking property. With these two properties, the implementation of 

stack filters can be easily realized by a digital circuit. With the technology 

of VLSI, the stack filters can be designed in a single chip. 

In this chapter, we introduce two training algorithms, the LMS algorithm 

and the Perceptron learning rule, to configure a stack filter. 



Fig. 4.1 Additive. 

4.2 General Single-neuron Structure for Con- 

figuring Stack Filters 

Denote s(n) as the original signal sequence, 71(n) as the noise process, 

and r(n) as the resulting sequence. We assume that s(n) is corrupted by 

additive noise process, and thus the resulting sequence r(n) = s(n) + 77 (n), 

as shown in Fig. 4.1. 

The problem we address in tnis thesis is to configure a stack filter S in 

order to recover the original signal sequence from the corrupted sequence. 

Since stack filters possess the threshold decomposition and stacking prop-

erties, configuring a stack filter is equivalent to first converting the input 



signal sequence into sequence of binary signals by threshold decomposition, 

and then finding the appropriate positive Boolean function used for all level. 

Now, the input signal sequence is r(n). Assume r(n) is an M-valued sequence, 

by threshold decomposition we obtain the thresholded binary sequence de-

noted by fm-1,TM-2
,   • • • , T2, f1 , where 

> > > fM-2 > TM-1
, (4.1) 

and 

1 if r(n) > j, 
P(n) = (4.2) 

0 if r(n) < j. 

Let N be the window width of the stack filter. At each threshold level, 

the input sequence is a binary sequence, and the output is a binary number. 

Thus, the input-output relationship can be realized by a Boolean function. 

Recall from Chapter 3, some binary Boolean functions can be realized by a 

linear discriminant function, and thus can be trained like the LMS or the 

Perceptron discussed in Chapter 3. However, the Boolean function obtained 

by training the single neuron may not be a positive Boolean function. Heuris-

tics which will be discussed later are introduced to ensure that the resulting 

Boolean function is a positive Boolean function. 



Fig. 4.2 Single neuron structure during training. 

The general single-neuron structure for configuring stack filters is shown 

in Fig. 4.2. The input sequence r(n) is first converted to threshold binary 

sequence T 1, f2, • • • , il'''. For each window sample of width N of the input 

sequence r(n), there are (M-1) window samples of width N of the thresholded 

binary sequences; that is, (M-1) binary input patterns are presented to the 

single-neuron. Thus, the weights of the neuron are updated by the (M-1) 

binary input patterns (M-1) times for each sample of r(n). The serial of 

the binary outputs of the neuron are then stacked back into (M-1) levels. 

Finally, the M-valued filtered output signal is reconstructed, by the stacking 

property, from the binary outputs by a search for level at which a transition 

from 1 to 0 occurs. 



4.3 Training Procedure 

Denote i', as the zth window sample of width N of the input sequence 

r(n); 1,1, i?, • • • , TM-1  as the (M-1) thresholded binary input patterns that 

result from the ith input sample rt . These parallel (M-1) threshold binary 

input patterns are transformed into a sequence binary patterns as follow: 

/73  = iltk  where j = (M —1)(i —1) + k. (4.3) 

The weights of the neuron are then updated by a learning rule. For the 

• LMS learning, using Equation (3.12) and (3.13), we have 

w3+1  = max{w3  + F173  [d3  — wYt3 ], 0}, (4.4) 

where 

3 = (M — 1)(i — 1) + k, 

2J 3  = wtit3  is the jth binary output of the neuron; i.e., the ith binary output 

value corresponding to the kth level, c/3  is the jth desired binary output; i.e., 

the ith desired binary value corresponding to the kth threshold level. 

Similarly, for the Perceptron learning, we have 

w3+1  = max{w3  + pil3 [cl, — f ff (wi773 )1,0}, (4.5) 



where f H  is the hardlimiting function. 

Note that during training, negative weights except wo  are set to zero. 

This heuristics are introduced in order to preserve the stacking property of a 

stack filter. After training, the final weight vector is used for the remaining 

inputs. It is easy to show the above heuristics preserve the stacking property. 

Denote wk  as the weight vector used for the kth thresholded level signal. 

The kth level output: 

y
o
k = fH(yk), 

yk = (i4k)twk , where and k = M — 1, M — 2, • • • , 1. 

Since 

TM-1TM-2 -- ritm 2 < _.... ri-i. 
i • • • 1-- / 

and 

w(m-1) = w(M-2) = ... w(1)  = L ---... --_ o, 

Hence, 

Y(m-1) < Y (4-2) < ....- (1) 
o — 0 — .. . -.- Y0 • 



4.4 Experimental Results 

Two methods to configure stack filters were developed and discussed in 

details in the last section. We shall demonstrate the effectiveness of our pro-

posed algorithms for noise suppression by experimental results. We have ex-

perimented with various types of signals and noise, but we shall only present 

results for two types of signals and two types of noise. Fig. 5.1 shows the 

original signal obtained by a linear combination of five sinusoids and the 

zero mean Gaussian noise. The corrupted signal obtained by adding the 

signal and noise is shown in Fig. 5.2. The filtered output signals obtained 

by the LMS and Perceptron rule with various window widths are shown in 

Fig. 5.3-5.5. Similarly, Fig. 5.6-5.15 show other type of signal, noise and 

filtered outputs. Fig. 5.16 and Fig 5.17 show the mean absolute error and 

mean squared error between the desired output and the filtered output by 

LMS and Perceptron rule using various window widths. 



From these results, we can draw the following conclusions: 

(1) Perceptron rule outperforms LMS rule in the stack filter. 

(2) The noise suppression depends on the signal, noise and filter window 

width. 



Fig. 5.1 Original signal (a combination of sinusoids) and 
zero mean Gaussian Noise are shown separately. 



Fig. 5.2 Corrupted signal — a combination of sinusoids + Gaussian noise. 



Fig. 5.3 Output signal obtained by filtering the corrupted signal 
shown in Fig. 2 by (a) LMS rule, window width = 3, and 
(b) Perceptron rule, window width = 3, respectively. 



Fig. 5.3, continued. 



Fig. 5.4 Output signal obtained by filtering the corrupted signal 
shown in Fig. 2 by (a) LMS rule, window width = 7, and 
(b) Perceptron rule, window width = 7, respectively. 



Fig. 5.4, continued. 



Fig. 5.5 Output signal obtained by filtering the corrupted signal 
shown in Fig. 2 by (a) LMS rule, window width = 11, and 
(b) Perceptron rule, window width = 11, respectively. 



Fig. 5.5, continued. 



Fig. 5.6 Original signal (a combination of sinusoids) and 
c-mixture Gaussian noise are shown separately. 



Fig. 5.7 Corrupted signal — a combination of sinusoids + f-mixture 
of Gaussian noise. 



Fig. 5.8 Output signal obtained by filtering the corrupted signal 
shown in Fig. 7 by (a) LMS rule, window width = 3, and 
(b) Perceptron rule, window width = 3, respectively. 



Fig. 5.8, continued. 



Fig. 5.9 Output signal obtained by filtering the corrupted signal 
shown in Fig. 7 by (a) LMS rule, window width = 7, and 
(b) Perceptron rule, window width = 7, respectively. 



Fig. 5.9, continued. 



Fig. 5.10 Output signal obtained by filtering the corrupted signal 
shown in Fig. 7 by (a) LMS rule, window width = 11, and 
(b) Perceptron rule, window width = 11, respectively. 



Fig. 5.10, continued. 



Fig. 5.11 "Mexican hat" signal and f-mixture Gaussian noise 
are shown separately. 



Fig. 5.12 Corrupted signal — "Mexican hat" + E-mixture 
of Gaussian Noise. 



Fig. 5.13 Output signal obtained by filtering the corrupted signal 
shown in Fig. 12 by (a) LMS rule, window width = 3, and 
(b) Perceptron rule, window width = 3, respectively. 



Fig. 5.13, continued. 



Fig. 5.14 Output signal obtained by filtering the corrupted signal 
shown in Fig. 12 by (a) LMS rule, window width = 7, and 
(b) Perceptron rule, window width = 7, respectively. 



Fig. 5.14, continued. 



Fig. 5.15 Output signal obtained by filtering the corrupted signal 
shown in Fig. 12 by (a) LMS rule, window width = 11, and 
(b) Perceptron rule, window width = 11, respectively. 



Fig. 5.15, continued. 



Fig. 5.16 Mean absolute error between the original "Mexican hat" signal 
and the signal corrupted by &mixture noise. 



Fig. 5.17 Mean squared error between the original "Mexican hat" signal 
and the signal corrupted by Gaussian noise. 



Chapter 5 

Conclusions 

A framework for configuring stack filters using LMS and Perceptron rules 

was established and tested. We have demonstrated through experimental re-

sults that our proposed algorithms perform the noise suppression task well. 

The current design only makes use of a simple single neuron. Further im-

provement is expected if a multi-layer network(multi-layer Perceptron) is 

employed. 

Future research efforts include 

(1) Analyze the proposed adaptive filter structure mathematically. 

(2) Extend a single-neuron structure to a multi-layer neural network. 

(3) Implement adaptive filters using VLSI technology based on the properties 



of stack filters. 
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