Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

Title of Thesis: Modeling a Fuel Rich Premixed Laminar Methane Flame, OH CN NH CH Profiles Including Prompt NO.
Md. Hasan Ul Karim, Master of Science, 1990

Thesis directed by: Dr. Joseph Bozzelli
Prof. Dept. of Chemistry, Chemical
Eng. and Environmental Science.
New Jersey Institute of Technology.

A detailed reaction mechanism based upon fundamental thermochemical kinetic principles has been developed to describe the concentration profiles of OH , $\mathrm{CH}, \mathrm{NH}, \mathrm{CN}$, and NO including prompt NO radicals in laminar flow, fuel rich methane flames as well as flames doped with 700 ppm ammonia. A one dimensional laminar flat flame code which incorporated diffusion, and the detailed reaction mechanism was used to predict the radical concentration profiles from the model. These calculated values are compared to experimental data of Dean (1984).

The model consist of two reaction subsets, hydrocarbon oxidation set and an ammonia oxidation set. The reactions most important for coupling the two subset
are :

$$
\begin{align*}
& \mathrm{CH}+\mathrm{N}_{2}<--->\mathrm{HCN}+\mathrm{N} \tag{1}\\
& \mathrm{CH}_{2}+\mathrm{N}_{2}<--->\mathrm{HCN}+\mathrm{NH} \tag{2}\\
& \mathrm{CH}_{3}+\mathrm{NO}<--->\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} \tag{3}
\end{align*}
$$

The mechanism shows good agreement (within experimental error) with experimental concentration as function of distance above the burner, except for No. The mechanism predicts that reaction (1) is mainly responsible for nitrogen fixation in the fuel rich flame studied. The contribution to the nitrogen fixation by reaction (2) and the Zeldovich (1948) mechanism are negligible.

A rate constant for reaction (1) (from QRRK) consistent with the shock tube data of Bowman (1990) results in under prediction of the NO concentration by a order of magnitude. A higher value corresponding to a barrier of 10 Kcal for reaction (1) increases the NO peak by a factor of 4.5. Inclusion of the following reaction :

$$
\begin{equation*}
\mathrm{CH}_{3}+\mathrm{N}_{2}<---->\mathrm{HCN}+\mathrm{NH}_{2} \tag{4}
\end{equation*}
$$

improves the NO profile by a factor of six.
NO decomposition in the flames studied takes place mainly through reaction (3).

A higher value for rate constant for reaction 2 relative to the shock tube data of Bowman and Dean (1990) and an nitrogen fixation reaction in the form of (4) is needed to properly account for the observed nitrogen fixation.

MODELING A FUEL RICH PREMIXED LAMINAR METHANE FLAME $\mathrm{OH}, \mathrm{CH}, \mathrm{NH}, \mathrm{CN}, \mathrm{PROFILES}, ~ I N C L U D I N G ~ P R O M P T ~ N O$

by

Ma. Hasan Ul Karim

Thesis submitted to the Faculty of the Graduate School of
the New Jersey Institute of Technology in partial
fulfillment of the requirements for the degree of Master of science in Chemical Engineering

1990

APPROVAL SHEET

Title of Thesis: Modeling a Fuel Rich Premixed Laminar Methane Flame. $\mathrm{OH}, \mathrm{CN}, \mathrm{NH}, \mathrm{CH}$ Profiles Including Prompt NO

Name of Candidate: Md. Hasan Ul Karim
Master of Science in Chemical Engineering September 1990

Thesis and abstract approved:

Joseph Bozzelli
Professor
Department of Chemistry, Chemical Engineering and Environmental Science

Dr. Dana Knox

Dr. Robert Barat

Name:	Md. Hasan Ul Karim
Permenant address:	
Date of birth:	
Place of birth:	
Secondary education:	Faujdarhat Cadet College Chittagong, Bangladesh, June 1982
Collegiate institution attended	Dates Degree Date of degree
New Jersey Institute of Technology	```Spring 88 MSChE October 1990 to Summer 90```
Indian Institute	$\underset{\text { May }}{\text { Mo }} 83 \text { B.Tech. July } 1987$
of Technology, India.	May 87

Major: Chemical Engineering

ACKNOWLEDGEMENT

I am grateful to Professor Dr. J. W. Bozzelli for his guidance in this research. completion of this thesis would not have been possible without his unflinching faith in my ability and financial support.

I would also like to thank the members of my thesis commitee for their patience in going over the thesis and recommendations.

I would also like to acknowledge the help of Mr . Karthik Krishnan (System Manager NJIT Computers) for introducing me to the world of supercomputers. His help was also essential in recovering deleted files.

I would like to thank the members of Pittsburgh Super Computer Center especially to Mis. Casey Porto for their generous extension of my account in the center. CRAY YMP made it possible for me to take as many as 10 runs of my model.

Finally I would like to express my deepest gratitude towards my parents and wife whose sacrifice and love has made it possible on my part to come to U. S. A. and do this M.Sc.

TABLE OF CONTENTS

Page
I. INTRODUCTION 1
II. THESIS OBJECTIVE AND APPROACH. 7
III. FLAT FLAME THEORY 10
A. STRUCTURE 11
B. PREMIXED FLAME EQUATIONS 17
C. NUMERICAL SOLUTION METHOD 21
IV. DISCUSSION OF BIMOLECULAR QRRK 24
A. BIMOLECULAR QRRK WITH ISOMERIZATION 26
B. NECESSARY INPUT LIMITATIONS 29
V. QRRK ANALYSIS OF CH ADDITION AND
RECOMBINATION REACTIONS 31
VI. DISCUSSION 72
VIII.CONCLUSION 92
APPENDIX A. TABLES FOR REACTION MECHANISM
FLAME CONDITION AND QRRK INPUT PARAMETERS AND OUTPUT. 95
APPENDIX B. COMPUTER OUTPUT FOR FLAME 2
AND FLAME 5 121
REFERENCES 138
1.1 Conversion of Fuel Nitrogen 3
3.1 Schematic of Flat Flame 12
3.2 Structure of Flame Code. 22
4.1 Energy Diagram for Bimolecular Reactions 25
5.1 Potential Energy Diagram for $\mathrm{CH}+\mathrm{H}_{2}$ System 34
5.2 Comparison of Temperature \& Pressure depend- 36 between Experimental and $Q R R K$ for $\mathrm{CH}+\mathrm{H}_{2}$5.3 Temperaure \& Pressure dependence Prediction37
by QRRK for $\mathrm{CH}+\mathrm{H}_{2}$ System.
5.4 Potential Energy Diagram for $\mathrm{CH}+\mathrm{N}_{2}$ System 42
5.5 Temperature and Pressure dependence Compari- 44
son between Experimental and Chemact for for $\mathrm{CH}+\mathrm{N}_{2}$ System.5.6 Temperature and Pressure depenence Prediction45
by Chemact for $\mathrm{CH}+\mathrm{N}_{2}$
5.7 Potential Energy Diagram for $\mathrm{CH}+\mathrm{NO}$ 47
5.8 Temperature and Pressure dependence Prediction 49by Chemact for $\mathrm{CH}+\mathrm{NO}$
5.8A Comparison of Temperature dependencies for 50
$\mathrm{CH}+\mathrm{NO}$
5.9 Potential Energy Diagram for $\mathrm{CH}+\mathrm{O}_{2}$ 52
5.10 Temperature and Pressure dependence Prediction 54
by Chemact for $\mathrm{CH}+\mathrm{O}_{2}$
5.10a Comparison of Temperature dependence for 55$\mathrm{CH}+\mathrm{O}_{2}$
5.11 Potential Energy Diagram for $\mathrm{CH}+\mathrm{o}^{2}$ for 56 alternative attack.5.12 Temperature and Pressure dependence Prediction57by Chemact for $\mathrm{CH}+\mathrm{o}^{2}$ for alternativeattack
5.14 Potential Energy Diagram for $\mathrm{CH}+\mathrm{CH}^{4}$ 59
5.15 Temperature and Pressure dependence Prediction 61 by chemact for $\mathrm{CH}+\mathrm{CH}^{4}$5.16 Potential Energy Diagram for $\mathrm{CH}+\mathrm{OH}$63
5.17 Temperature and Pressure depedence Prediction 64by Chemact for $\mathrm{CH}+\mathrm{OH}$
5.18 Potential Energy Diagram for $\mathrm{CH}^{2}+\mathrm{N}^{2}$ 66
5.19 Temperature and Pressure depedence Prediction 67by Chemact for $\mathrm{CH}_{2}+\mathrm{N}_{2}$
5.20 Potential Energy Diagram for $\mathrm{CH}_{2}+$ No 69
5.21 Temperature and Pressure dependence Prediction 70
by QRRK for $\mathrm{CH}_{2}+\mathrm{NO}$
6.1 Broad Outline of the Mechanism 73
6.2 Model Prediction for OH radical in Flame 2 76
6.3 Model Prediction for CH radical in Flame 2 78
6.4 CH formation Sensitivity in Flame 2 79
6.5 Models Prediction for NO in Flame 2 82
6.6 No formation Sensitivity in Flame 2 84
6.7 Models Prediction for NO in Flame 5 86
6.8 Models Prediction for CN radical in Flame 5 87
6.9 Models Prediction for NH radical in Flame 5

Introduction

The advent of the Clean Air act of 1970 led to the recognization that ambient concentrations of nitric oxide (NO) and nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$, collectively referred as nitrogen oxides $\left(\mathrm{NO}_{\mathrm{X}}\right)$, constituted a significant air pollution problem in certain urban regions of the country. In the atmosphere of industrialized urban-metropolitan centers, NO_{X} concentrations can be on the order of 50 to 100 times that of the natural background, which is only 1 to 5 parts per billion (ppb). In contrast, estimates of total man made NO_{x} only amount to 5 to 10 percent of natural emissions on an annual, global basis (Bartok, et al, 1971, 1971a; NRCNAE, 1972). This information lead to the conclusion by many environmental scientist that air quality problems involving NO_{x} are largely local, and can be solved by tailoring emission limitations of sources to the ambient air quality of geographical regions which those sources affect.

In the United States vehicular and stationary sources contribute approximately equal amounts to the total anthropogenic emission. Stationary sources result primarily from combustion processes. Non combustion sources such as nitric acid and nitrogen fertilizer plants can cause severe local problems, but contribute a relatively small amount (1.3 percent) to the composite stationary source emission rate. In 1972, total stationary source emission were estimated at 11.7 million tons per year as NO_{2} with dominant contribution
from utility and industrial boilers, 48.6 and 18.1 percent, respectively (Sarofim and Flagan, 1976).
NO_{x} is produced in these large combustors by three mechanism :

1. Thermal fixation of N_{2} from the combustion air ac cording to the extended Zeldovich mechanism shown below (Zeldovich, 1946 ; Sarofim and Pohl, 1973 ; Bowman, 1975).

$$
\begin{align*}
& \mathrm{O}+\mathrm{N}_{2}<--->\mathrm{NO}+\mathrm{N} \tag{-R-124}\\
& \mathrm{~N}+\mathrm{O}_{2}\langle--->\mathrm{NO}+\mathrm{O} \tag{R-125}\\
& \mathrm{N}+\mathrm{OH}\langle--->\mathrm{NO}+\mathrm{H} \tag{R-126}
\end{align*}
$$

2. Fixation of N_{2} from combustion air by reaction with hydrocarbon fuel fragments present in the flame, and subsequent oxidation of these fixed nitrogen species (primarily HCN) to NO . This NO is referred to as "prompt" NO because it is formed primarily in the reaction zones of flames (Fenimore, 1971; Bachmaier, et al, 1973; Hayhurst and Mclean, 1974; Haynes, et al,1975; Blauwens, et al, 1977;)
3. Conversion of organically bound nitrogen in the fuel to NO during the combustion process (Fenimore, 1972; Martin and Berkau, 1972; Turner et. al, 1972; Pershing and Wendt, 1977). It had been demonstrated in flame systems operated at fuel lean and fuel rich equivalence ratios (equivalence ratio is defined as ratio between oxidant stoichiometrically required for complete combustion of fuel

Figure 1.1 FLOW DIAGRAM FOR CONVERSION OF FUEL NITROGEN

FUEL NITROGEN

NH3, NH2

to that of oxidant actually provided in the fuel) that the yield of NO_{x} from fuel nitrogen is independent of the chemical composition of the parent nitrogen compound (Fenimore, 1973; de Soete, 1973; Sarofim et al. 1973; Morley 1976). NO is the only fixed nitrogen additive which is the exception to this generality. The observation that $N O_{x}$ yield was independent of fuel nitrogen type led to the hypothesis of a common nitrogenous intermediate which was formed rapidly from parent nitrogen species in the flame, before the formation of NO and other nitrogenous intermediate or end product could occur to an appreciable extent. Fenimore (1972) was the first to propose this now widely accepted concept. In flames with a hydrocarbon fuel and/or with a fuel nitrogen component having a $C-N$ bond, the common intermediate is generally believed to be HCN. Fenimore originally proposed that the common intermediate reacted directly with oxidizing species to form NO, and with NO to form N_{2}. However the destruction of $H C N$ is now believed to be the first step in a sequence of reactions which ultimately results in the formation of NO and N_{2} as shown from Haynes (1975) in Figure 1-1. Haynes et al, (1975) provided the first flame data which shed light on critical intermediates in the conversion process and identified the rate limiting steps. This reaction sequence is later supported by Miller and Bowman (1989) in their study with fixed nitrogen species. In addition, these intermediates provide the only known reaction pathways for conversion of HCN and CN to NH_{i} species which are ener-
getically favorable, and which can be used with reasonable rate constants to describe the observed rates of conversion. Significant progress has been made in the past twenty five years in identifying the mechanisms of thermal nitric oxide formation in flames and in developing strategies for emission control (Bartok, et al, 1969; Lachapelle, et al,1974; Sarofim and Flagan, 1976; Chen, et al, 1982). Development of emission control technology for NO formed by the Zeldovich mechanism has been particularly successful. The rate of NO formation by this mechanism increases as oxidizing species become more abundant (more specifically in the burnt gases far down stream from the flame front, the rate is proportional to the square root of the O_{2} concentrations (Sarofim and Flagan, 1976). Reaction R-124 which is rate limiting in this sequence, is endothermic by approximately 75 Kcal mole ${ }^{-1}$. The rate of No formation by this mechanism increases dramatically with temperature and becomes significant at temperatures greater than 1700 K for residence times associated with typical combustors. Techniques developed to control emissions of NO formed by this mechanism have incorporated low excess air firing technology to reduce concentrations of oxidizing species and various means of reducing peak flame temperature.

While the fixation of nitrogen by hydrocarbon has definitely been identified as a mechanism for NO formation in flames (Bachmaier,et al 1973; Haynes et al 1975; Blauwens 1977.), data on its importance as a source of fixed nitrogen in
various types of flame systems (especially under fuel rich condition) relative to emission standards is scarce. It has been found (Miller and Bowman, 1989) that thermal No produced by the Zeldovich mechanism and super equilibrim 0 atom concentration is insufficient to account for the experimentally observed No in fuel rich flames. This appears to be a general observation. Typical level of prompt No range from a few parts of per million by volume to more than 100 ppmv (Miller and Bowman, 1989).

Thesis Objective \& Approach

The present research is motivated by the need to refine the existing mechanism for prompt NO formation by updating the rate constants of existing reactions and by evaluating other reactions which may be important under fuel rich flame conditions. This work is also directed towards determination of the important, hydrocarbon radicals, and reaction pathways for coupling hydrocarbon oxidation and ammonia oxidation. This relates directly to the formation of HCN in the flame front. The uncertainities in rate constants for important prompt NO formation reactions were also evaluated. In developing a fundamental mechanism for prompt NO formation a model for conversion of fuel nitrogen to nitric oxide is also developed because both involve the same intermediate HCN.

The approach was to develop a mechanism and calculate the radical concentrations (for which experimental data were available Dean and Chou, 1984) using the one dimensional Sandia Flame (Kee, Miller, Smooke, and Grcar, 1987) code which accounts for diffusion.

The mechanism incorporates bimolecular Quantum Rice -Ramsperger Kassel (QRRK) (Kassel, 1948) theory to account for reactions of chemically activated species, formed from addition and combination reactions. In addition unimolecular QRRK theory is used to account for collisional fall off in simple dissociation, beta Scission \& isomerization reactions of stabilized radicals. Where data are not available generic
parameters are used. Required thermodynamic properties for radical intermediate is calculated using THERM computer code (Ritter, 1989) or estimated from literature values.

Sensitivity and rate-of-production analysis play a central role in identifying the important reactions for species formation and destruction. In the flame the sensitivity coefficients is displayed as :

$$
\beta_{i k}(x)=\frac{\mathrm{A}_{i}}{\mathrm{X}_{k}}-\frac{\delta \mathrm{X}_{k}}{\delta \mathrm{~A}_{\mathrm{i}}} \quad(\mathrm{x})
$$

where $\beta_{i k}(x)$ is the sensitivity coefficient for change in the mole fraction of the $k^{\text {th }}$ species, X_{k}, due to a small change in the temperature independent factor of the i th reaction rate coefficient, A_{i}. The position above the burner surface is denoted by x.

Sensitivity coefficients are more useful when they are calculated at the maximum value of each dependent variable.

$$
\begin{equation*}
\left.\beta_{i k}(x)=\frac{A_{i}}{\left(X_{k}\right)}\right)_{\max }^{\delta--\frac{\delta x_{k}}{\delta A_{i}}} \tag{2.1}
\end{equation*}
$$

$\left(X_{k}\right)^{\max }$ indicates the maximum value of X_{k} occured in the calculation. This normalization avoids artificially high sensitivity coefficients in regions where the mass fractions are approaching zero, and thus subject to numerical error. This "maximum" normalization was done by developing a post-
processor for the flame code. (Kee, smooke, Miller, and Grcar, 1987)

Contribution factors obtained from the rate-of-production (or reaction path) analysis are calculated from:

$$
R_{i k}(x)=r_{i k}(\text { forward })(x)-r_{i k(\text { reverse })}(x)
$$

where $r_{i k}$ is the rate of the forward or reverse reaction i involving the $k^{\text {th }}$ species. This reaction path analysis was also done by developing a post processor for the flame code (Kee, Smooke, Miller and Grcar, 1987).

Flat Flame structure \& General Chemistry

Ideally a flat flame has no gradient perpendicular to the axis of gas flow: i.e, horizontal temperature and species profiles are flat. In such a flame where unidirectional changes occur only along the axis of gas flow it is relatively easy to determine species reaction rates from measured temperature and composition profiles along the axial dimension. This characterstic of the flat flame makes it attractive to study flame chemistry, including reaction rate determination, hydrocarbon oxidation, prompt No formation and fixed nitrogen conversion.

In this study interest is focussed on the kinetics of prompt NO formation and its destruction in the flame front of fuel rich methane flames. It was found (Blauwens, 1977; Fenimore, 1971, Haynes, 1975 , that due to abundance of hydrocarbon fragments, a high amount of prompt NO is formed in the primary reaction zone (flame front), which can not be explained by the zeldovich mechanism (Zeldovich 1946) alone. This NO is later carried on to the secondary zone where some of it may be converted to molecular nitrogen by reaction $\mathrm{R}-124$:

$$
\begin{equation*}
\mathrm{N}+\mathrm{NO}<----->\mathrm{N}_{2}+\mathrm{O} \tag{R-124}
\end{equation*}
$$

The pathway for formation of prompt NO from hydrocarbon radicals involves the same key intermediate $H C N$ found during the fuel bound Nitrogen conversion as illustrated in Fig.1.1 This study focusses on the major radical species
profiles in the flame front of a rich methane flames, and a methane flame doped with ammomia.

Flat Flame structure

A schematic diagram of a flat flame is shown in Fig2.1. The charcteristic times and distances shown correspond to a flame operated at atmospheric pressure. The boundaries between the zones are not distinct. Therefore the spatial and characteristic time assignments in the figure are arbitrary, but they provide an idea of scale for each of the regions in the flame.

Transport processes dominate in the preheat zone. Gases in the preheat zone are heated by conduction of energy released in the primary reaction zone back along the very steep temperature gradient which separates the two regions. Simultaneously, free radicals generated in the primary reaction are transported back into the unburnt gases, the preheat zone, by molecular diffusion. The unburnt gases enter the primary reaction zone by a combination of convective and diffusive transport processes.

Several phenomena are characteristic of the primary reaction zone. Gases become hot enough for the branching reactions $\mathrm{R}-1$ and $\mathrm{R}-2$:

$$
\begin{align*}
& \mathrm{H}+\mathrm{O} 2<-->\mathrm{OH}+\mathrm{O} \tag{RI}\\
& \mathrm{O}+\mathrm{H} 2<--->\mathrm{OH}+\mathrm{H} \tag{R2}
\end{align*}
$$

to proceed at appreciable rates. These reactions are respon-

Figure 2-1
schematic or Unidimgsional flat flame
sible for generating the radical concentrations in excess of equilibrim values observed experimentally in the primary reaction zone or early in secondary reaction zone.

Consumption of hydrocarbon fuel by oxidation reactions to form CO and other combustion products is another important process characteristic of the primary reaction zone. The exothermicity of these reactions provide the major pathway for the release of chemical potential energy in the form of sensible heat during the combustion. In flames with lean or near stoichiometric fuel equivalence ratios hydrocarbon are completely converted to $\mathrm{CO}, \mathrm{CO}_{2}$, and H_{2}. The end of the primary reaction zone in fuel lean flames can be characterized by the disappearance of hydrocarbons $\left(\mathrm{CH}_{4}\right.$, $\mathrm{C}_{2} \mathrm{H}_{6}$) and the maximization of radical ($\left.\mathrm{CH}_{2}, \mathrm{CH}\right)$ concentrations, all of which occur at roughly the same position. In such lean flames the concentration of CH and CH_{2} is infintesimal. As a result the rates for the reaction $R-98$ and $R-$ 193:

$$
\begin{array}{ll}
\mathrm{CH}+\mathrm{N}_{2}<--->\mathrm{HCN}+\mathrm{N} & (\mathrm{R}-98) \\
\mathrm{CH}_{2}+\mathrm{N}_{2}<---->\mathrm{HCN}+\mathrm{NH} & (\mathrm{R}-193 \tag{R-193}
\end{array}
$$

is not high enough to form prompt NO. In such flame the source of $N O$ is the superequilibrim concentration of 0 atom (reaction $-\mathrm{R}-124$) and the Zeldovich mechanism (Zeldovich 1946):

$$
\begin{array}{ll}
\mathrm{N}+\mathrm{O}_{2}<---->\mathrm{NO}+\mathrm{O} & (\mathrm{R}-125) \\
\mathrm{N}+\mathrm{OH}<---->\mathrm{NO}+\mathrm{H} & (\mathrm{R}-126) \\
\mathrm{O}+\mathrm{N}_{2}<---->\mathrm{NO}+\mathrm{N} & (-\mathrm{R}-124)
\end{array}
$$

In rich flame hydrocarbon survive the primary reaction zone. Concentration of CH and CH_{2} are high enough to make the prompt NO formation reactions important. In such cases the end of the primary zone are appropriately characterized by the maximization of radical concentrations such as CH_{3}, $\mathrm{CH}_{2}, \mathrm{CH}$.

The secondary zone is characterized by the reduction in radical concentrations and in total moles of the system. These reductions are governed by relatively slow termolecular recombination reactions such as $R-5$ through $R-7$:

$$
\begin{array}{ll}
H+H+M<----> & H 2+M \\
H+O H+M<----> & (R 2 O+M \\
H+O 2+M<-----> & (R-6) \\
H O 2+M & (R-7)
\end{array}
$$

It is the slow rates of these combination reactions, relative to the fast bimolecular branching reactions, at the high flame temperatures which enable radicals to reach super equilibrim concentrations in the primary reaction zone. When concentrations of O_{2} and H_{2} become low near the end of the primary reaction zone, the branching reactions, as well as other bimolecular reactions becomes equilibrated. The net rate of radical generation by the branching reactions decreases to the point where termolecular, recombination reactions dominate changes in radical concentrations. In
fuel rich flames, where hydrocarbons and hydrocarbon radicals persist beyond the primary reaction, the chemistry of the early secondary zone is affected and sometime dominated by hydrocarbon oxidation chemistry.

Reviews of the literature for the rate constant of the above mentioned chain branching and recombination reactions have been conducted by seveal authors (Baluch, et al 1972, 1973; Dixon Lewis, 1979; Warnatz, 1979). The Baluch reviews are widely used critiques and summaries of rate constant information derived from flame as well as other experimental systems more suitable for study of the kinetic mechanisms.

The work of Dixon-Lewis (1979) is more recent. The recommended rate constants by Dixon-Lewis (1979) are the product of optimizing the fit of model predictions based upon reactions of hydrogen and oxygen bearing species data from flame and explosion limit systems involving $\mathrm{H}_{2} / \mathrm{O}_{2} / \mathrm{N}_{2}$ mixtures. To the extent that transport properties influence the parmeters investigated, the rate constant recommended by Dixon Lewis et al, may reflect bias and errors introduced by the particular transport model and properties selected for inclusion in their numerical models.

The recommended rate constants of Warnatz (1979) are attractive in principle because they are based upon input from independent sources, without attempting to fit flat flame model prediction to data. The Warnatz (1979) recommendations thereby eliminate potential bias in rate constants due to approximations and uncertainty in modelling of the
flat flame transport phenomena. Warnatz (1979) recommendations for the chain branching and recombination reactions are therefore used in the mechanism developed here.

Premixed Flame Equation

The equations governing steady, isobaric, quasi-one dimensional flame propagation is written as (Kee, Miller, Smooke and Grcar, 1987):

$$
\begin{align*}
& \dot{M}=\rho u A \\
& \dot{M} \frac{d T}{d x}-\frac{1}{c_{p}} \frac{d}{d x}\left[\lambda A \frac{d T}{d x}\right]+\frac{A}{c_{p}} \sum_{k=1}^{K} \rho Y_{k} V_{k} c_{p_{k}} \frac{d T}{d x}+\frac{A}{c_{p}} \sum_{k=1}^{K} \dot{W}_{k} h_{k} W_{k}=0 \\
& \quad \frac{d Y_{k}}{} \quad 3.1 \\
& \dot{M} \frac{d}{d x}+\frac{d}{d x}\left[\rho A Y_{k} V_{k}\right]-A \dot{w} W_{k}=0 \quad(k=1, \ldots . . K) \\
& \rho=\frac{p \bar{W}}{R T}
\end{align*}
$$

Where $\mathrm{x}=$ Spatial coordinate;

$$
M=\text { Mass flow rate (which is independent of } x \text {); }
$$

$$
T=\text { temperature ; }
$$

$$
Y_{k}=\text { mass fraction of kth species; }
$$

$$
\mathrm{p}=\text { pressure } ;
$$

$u=$ velocity of the mixture;

$$
\lceil=\text { Mass Density; }
$$

$$
\mathrm{W}_{\mathrm{k}}=\text { the molecular weight of kth species; }
$$

$=$ Mean molecular weight of the mixture;
$R=$ universal gas constant;
$=$ the thermal conductivity of the mixture;
$c_{p}=$ constant pressure heat capacity of mixture;

$$
\begin{aligned}
\mathrm{c}_{\mathrm{pk}}= & \text { constant pressure heat capacity of kth } \\
& \text { species; } \\
= & \text { the molar rate of production by chemical } \\
& \text { reaction of the kth species per unit } \\
& \text { volume; } \\
\mathrm{h}_{\mathrm{k}}= & \text { the specific enthalpy of kth species; } \\
\mathrm{V}_{\mathrm{k}}= & \text { the difusion velocity of kth species; } \\
\mathrm{A}= & \text { cross sectional area of the stream tube } \\
& \text { encompassing the flame (normally increas- } \\
& \text { ing). }
\end{aligned}
$$

Equation 3.1 is for the continuity of mass flow or preservation of total mass. Equation 3.2 results due to the conservation of energy in flame (an important assumption in this derivaion is, negligible heat loss). The first term in equation 3.1 denotes the temperature gradient in x direction (vertical) arising due to the conduction (2nd term), convection (3rd term) and generation (4th term) of heat. Equation 3.3 represents the individual species preservation. The first term in equation 3.3 denotes the species concentration gradient along the x direction (vertical) due to species diffusion (2nd term) and destruction or creation (3rd term). Equation 3.4 is the equation of state for ideal gas.

The net production rate w_{k} of each species k results from a competition between all chemical reactions involving that species. It is assumed that each reactions in the mechanism are elementary and follow the law of mass action. The forward rate coeficients are in the modified Arrhenius
form:

$$
\begin{equation*}
\mathrm{k}_{\mathrm{f}}=\mathrm{A} * \mathrm{~T}^{\beta} \exp \left(-\mathrm{E}_{\mathrm{a}} / \mathrm{RT}\right) \tag{3.5}
\end{equation*}
$$

Transport properties of the species, thermal conductivities and diffusion coefficients are calculated by the Transport code of Sandia National laboratory (J.F. Kee, J.F. Grcar, M.D. Smooke, 1987). The code uses the Stockmayer (Hirschfelder, Curtiss,and Bird, 1954) potential in calculating the transport properties. An extended Eucken-Hirschfelder (Hirschfelder, Curtiss, and Campbell, 1976) correction for polyatomic species is used in computing the single component conductivities. The gas mixture thermal conductivity is determined from the individual component conductivities using an empirical combination average formula (Mathur, 1967).

The formulation of species diffusion is documented in the report by Kee (1983). Briefly the diffusion velocity V_{k} is assumed to be composed of three parts.

$$
v_{k}=V_{k}+W_{k}+v_{c}
$$

\sqrt{k} is the ordinary diffusion velocity and is given by the Curtiss-Hirschfelder (1949) approximation:

$$
\sqrt{k}^{k}=-D_{k}\left(1 / x_{k}\right)\left(d x_{k} / d x\right)
$$

where X_{k} is the mole fraction, and where the mixture averaged diffusion coefficent D_{k} is given explicitly in terms of
the binary diffusion coefficents $D_{j k}$ by:

$$
D_{k}=\left(1-Y_{k}\right) /\left(\Sigma_{j=k} X_{j} / D_{k j}\right)
$$

A non-zero thermal diffusion velocity W_{k} is included only for the low molecular species H, H_{2}, and He . The trace light component limit is employed in determining W_{k} i.e.

$$
W_{k}=\left(D_{k} k_{t x} / X_{k}\right)(1 / T)(d T / d x)
$$

where k_{tx} is the thermal diffusion ratio (Chapman and Cowling, 1970). The positive sign of $k_{t x}$ makes the lower molecular weight species diffuse from low to high temperature regions.

The correction velocity V_{C} (independent of species but a function of x) is included to ensure that mass fractions sum to unity (or equivalently $\Sigma_{k=1} Y_{k} V_{k}=0$). This formulation of the correction velocity is the one recommended by Coffee and Heimerl (1981,1983) in their extensive investigation of approximate transport models in hydrogen and methane flames.

Boundary Conditions.

The appropriate boundary condition for burner stabilized laminar flame is deduced from the early work of Hirschfelder and Curtiss (1949). For burner stablized laminar flame M the mass flow reate is a known constant, the temperature and mass flux fractions:
$\left(\epsilon_{k}=Y_{k}+\int Y_{k} V_{k} A / m\right)$ are specified at the cold
boundary (flame holder), and vanishing gradient are imposed at the hot boundary.

Numerical Solution Method

The equations (3.1,3.2,3.3,3.4) for the burner stabilized flames are solved by using the FLAME code developed at Sandia National Laborataries (J.F. Kee, J.R. Grcar, M.D. Smooke, M.D. Miller, 1987). The numerical solution procedure begins by making finite difference approximations to reduce the boundary value problem to a system of algebraic equations. The initial approximation are usually on a very coarse mesh that may have as few as five or six points. After obtaining a solution on the coarse mesh, new mesh points are added in regions where the solution or its gradient changes rapidly. An initial guess for the solution on the finer mesh is obtained by interpolating the coarse mesh solution. This procedure continues until no new mesh point are needed to resolve the solution to the degree specified.

The system of algebraic equation are solved normally by by damped Newton method. If the Newton algorithym fails to converge, the solution estimate is conditioned by a time integration. This provides a new starting point for the Newton algorithm that is closer to the solution and thus more likely to be in the domain of convergence for Newton

Figure 2.2: Relationship of the flame program To CHEHKIN γ TRANSPORT preprocessors and input and output file. (Xe. Miller, 1988)
method. As the mesh becomes finer it is normally found that the estimate interpolated from the previous mesh is within the domain of convergence of Newton's method. This is the key point to the solution strategy.

Finally the structure of the flame code in relation to the CHEMKIN (Kee, Miller, Jefferson, 1980) code is given in the Figure 2.2. In figure 2.2 unit 5 is the elementary reaction mechanism developed in this study and unit 21 is the thermodynamic data base for the species in the mechanism. These are the two inputs for the Chemkin interpreter (Kee, Miller, Jefferson, 1988) which generates a binary link file (Unit 25). The transport property fitting code (Kee, Warnatz, Miller, 1988) generates the binary transport link file (Unit 35) for the species in the mechanism. These two binary file along with the Keyword input (Unit 5 which species the flame condition) are the input for the flame code (Kee, Miller, Smooke, Grcar, 1988). The flame code then solves the equation $3.1,3.2,3.3,3.4$ following the procedure stated earlier. It generates a output file (Unit 6) which contains the solution (species concentrations, temperature and Mass flow rate in all the mesh), along with a binary version of the output.

Discussion of Bimolecular $Q R R R$

In the mechanism developed in this work bimolecular QRRK is extensively used to predict rate constants for reactions which proceed through energized adducts, including radical recombination, insertion, and addition to unsaturates. The fate of the chemically activated adduct as shown in Figure 3-1 is determined among the following pathway:
a. It can decompose back to reactants.
b. It can be collisionally stabilized.
c. It can isomerize.
d. It can decompose to new products.

Bimolecular QRRK formulated by Dean (1985) is used to determine the temperature and pressure dependencies of the above mentioned pathways.

Dean bimolecular $Q R R K$ is based on quantum version of Kassels (1928) unimolecular theory. Kassel in his now famous article showed that for unimolecular reactions the rate constant at high pressure k_{∞} is truely independent of pressure.

Similarly Dean (1985) showed that for bimolecular reactions the stabilization and the chemically activated pathways have different pressure dependencies. The stablization channel rate constant is independent of pressure at its high pressure limit. The rate constants for the activated reactions are pressure independent in its low pressure limit.

Figure 3.1 Energy Diagram for bimolecular reactions

Bimolecular QRRR with isomerization

Chemically activated isomerization is a plausible extension for Bimolecular QRRK pheonomena. Any unimolecular reaction that is open to the ground state adduct is also available to the excited adduct, and isomerization clearly fits this requirement. Dean (1985) QRRK approach has been extended to allow the chemically activated complex to isomerize twice, such that the system has three potential wells. The following scheme represents this where A, B, C are the stable isomers, P_{2} to P_{7} are the possible reaction products from the chemically activated complexes and $R+R^{*}$ are the combining reactant species.

Applying the steady state assumption to the activated activated species A^{*}, B^{*}, C^{*} one can define the follow ing apparent rate constants :
$k_{\text {stab } A}=d[A] / d t /[R]\left[R^{*}\right]=k_{1} \Sigma\left[\left\{Z Y-k_{-7}(E)\right\} \beta k_{S}[M]\right] / D E N O M f(E, T)$
$k_{p 2}=d\left[p_{2}\right] / d t /[R]\left[R^{*}\right]=k_{1} \Sigma k_{2}(E)\left\{Z Y+k_{7}(E) k_{-7}(E)\right\} / D E N O M \quad f(E, T)$
$\mathrm{k}_{\mathrm{stab}} \mathrm{B}_{\mathrm{C}} \mathrm{d}[\mathrm{B}] / \mathrm{dt} /[\mathrm{R}]\left[\mathrm{R}^{*}\right]=\mathrm{k}_{1} \Sigma\left\{\mathrm{~K}_{4}(\mathrm{E}) \beta \mathrm{K}_{\mathrm{S}}[\mathrm{M}]\right\} / \mathrm{DENOM} \mathrm{f}(\mathrm{E}, \mathrm{T})$
$k_{p 6}=d\left[p_{6}\right] / d t /[R]\left[R^{*}\right]=k_{1} \Sigma\left\{Z k_{4}(E) \beta k_{S}[M] / D E N O M f(E, T)\right.$
$k_{\text {stab }} C=\alpha[C] / \alpha t /[R]\left[R^{*}\right]=k_{1} \Sigma\left\{k_{7}(E) k_{4}(E) \beta k_{S}[M] / D E N O M \quad f(E, T)\right.$
$k_{p g}=d\left[p_{g}\right] / d t[R]\left[R^{*}\right]=k_{1} \Sigma\left\{k_{7}(E) k_{4}(E) k_{9}(E)\right\} / D E N O M \quad f(E, T)$
Note that all summation runs from $n=m_{i}$ to $n=\infty$, where n and m_{i} are defined below.

Where $D E N O M=X * Z * Y-X * k_{-7}(E) * k_{7}(E)-Z * k_{-4}(E) * k_{4}(E)$

$$
\begin{aligned}
& x=\left\{k_{-1}(E)+k_{2}(E)+k_{4}(E)+k_{3}(E)+\beta k_{S}[M]\right\} \\
& Y=\left\{k_{5}(E)+k_{6}(E)+k_{7}(E)+k_{-4}(E)+\beta k_{S}[M]\right\} \\
& z=\left\{k_{8}(E)+k_{9}(E)+k_{-7}(E)+\beta k_{S}[M]\right\}
\end{aligned}
$$

Where $f(E, T)$ is the fraction of A^{*} at a specific energy level with energy content of E. The hv and $E_{\text {crit }}$ is the threshold energy to dissociate back to reactant. The chemical activation distribution function $f(E)$ can be expressed as :

$$
f(E)=k_{-1}(E) K(E) /\left\{\sum_{0}^{N} k_{-1}(E) K(E)\right\}
$$

With $K(E)=\alpha^{\mathrm{n}}(1-\alpha)^{\mathrm{n}}(\mathrm{n}+\mathrm{s}-1) /(\mathrm{n}(\mathrm{s}-1)\}$
Where $\alpha=\exp (-h v / K T) ; s=$ Number of vibrational degrees of freedom. v is the geometric mean of the vibrational frequencies.

The energy dependent rate constant $k_{i}(E)$ is written
from Kassel (1928):
$k_{i}(E) \quad=A_{i, \infty} \quad \frac{n!\left(n-m_{i}+s-1\right)!}{\left(n-m_{i}\right)!(n+s-1)!}$
where $A_{i, \infty}$ is the high pressure preexponential factor for reaction i. $n=E / h v$, i.e. the total number of quanta of energy available, $m_{i}=E_{i} / h v$, i.e. the number of quanta corresponding to the energy threshold for reaction i.

The value of collisional rate constant k_{s} is computed by using Lennard Jones collision rate:

$$
\mathrm{k}_{\mathrm{s}}=2.708 \mathrm{k}_{\mathrm{hs}}(\mathrm{e} / \mathrm{KT})
$$

where k_{hs} is the hard sphere collision rate constant. Collision efficiency is calculated from Troe (1977) expression :

$$
\beta /\left(1-\beta^{1 / 2}\right)=-\left\langle\Delta E_{C O l l}\right\rangle / F(E) \mathrm{KT}
$$

The term $\left\langle\Delta E_{\text {coll }}\right\rangle$ denotes the average amount of energy transfered per collision and $F(E)$ is a factor weakly dependent on energy, that is related to the number of excited states. $F(E)$ was found to have a median value of 1.15 (Troe, 1977) over the temperature interval of 300-2500 for a series of reactions. Note that β is dependent on temperature.

A computer program following the above scheme has been developed, by modifying the existing QRRK/CHEMACT code (Ritter, 1989) which predicts the temperature and pressure
dependency of the different chemical activated pathways for a three well system.

All the QRRK or CHEMACT (Ritter, 1989) calculation reported in the subsequent section had been carried out by using this code. Another improvement in this code over earlier code is in the manner it writes the output. It writes out apparrent generated rate only for the activated products, for any specified temperature and pressure in a format which is easily amenable for LOTUS or HARVARD GRAPHICS plotting.

Necessary Input data for bi-molecular QRRR and limitations:

Reasonably accurate predictions can be made quickly using QRRK, in part because the input data are few and relatively easy to obtain. These data are:
a. Pre-exponential factors and activation energies in the high pressure limit, A_{∞} and $E_{\text {act, }}$;
b. The number of vibrational degrees of freedoms for the adduct, ($3 * n_{\text {atoms }}{ }^{-5}$ for linear, $3 * n_{\text {atoms }}{ }^{-6}$ for nonlinear);
c. The geometric mean vibrational frequencies, of the adduct $<\mathrm{v}>$;
d. Molecular weight and the Lennard -Jones transport properties σ and ϵ / k, for the adduct and for the third body gas; and
e. The average energy transferred per collision with the third body gas, $\left\langle\Delta E_{\text {coll }}\right\rangle$, which has been experimentally evaluated for a variety of gases.

Obtaining A_{∞} and $E_{\text {act, }}$ may be the most difficult. These parameters are obtained from literature data, thermochemical kinetic methods (Benson, 1976;Benson, 1983), generic rate constants (e.g. Dean, 1985), or the reverse rate constant (high pressure limit) and the equilibrim constant.

Lennard - Jones collisional properties (Reid, Prausnitz and Sherwood, 1977; Kee et al. , 1983)for the stabilized species A and the third-body gas M are used to calculate a collision number $Z_{L J}$. Establishing the $<\Delta \mathrm{E}_{\text {Coll }}>$ needed to calculate collisional efficiency β is an active area of research. The geometric mean frequency for the adduct is obtained from literature. In the absence of literature data CPFIT from THERM computer code (Ritter, 1989) is used to obtain the necessary data.

Ambiguities in these parameters cause uncertainty in the rate constant predictions. For example the $Q R R K K_{r x n}(E)$ equation contains the assumption that A_{∞} and $E_{a c t, \infty}$ are independent of temperature, but they may not be. Second the vibrational degrees of freedom include internal rotations, which are not well approximated as harmonic oscillators. The equivalent frequency for an internal rotation can be rather low, so uncertainity in this can affect a geometric mean frequency <v> dramatically. Third the assignment of all the excess energy to vibrational energy can be inexact when there are significant energy changes in angular momentum. Finally, the rationale for using a single <v> to represent all the v's in a molecule may not always be correct.

CH RADICAL ADDITION AND COMBINATION REACTIONS

CH is one of the most important radicals in the present mechanism for the formation of prompt NO. It is also proposed as the key radical in a wide variety of reaction systems. Examples include chemionization in hydrocarbon flames [Kistiakowsky et al. 1964] and chemiluminescence [Lichtin, 1984]. It is also implicated as a major species in the chemistry of planetary atmospheres [Strobel, 1982]. Chemiluminescence originating from the $A^{2} A_{-}->X^{2} \pi$ transition of cH at 430 nm has been observed in a number of hydrocarbon and hydrocarbon doped systems. It also has been found to accompany the low temperature reactions of 0 atoms with hydrocarbons, especially in discharge flow studies involving unsaturated compounds.

In this section result from the QRRK analysis for CH radical reactions with $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{NO}, \mathrm{O}_{2}, \mathrm{CH}_{4}$ are discussed. Note that in this section Chemact (for chemical activation) and QRRK may be used interchangeably.

Temperature and pressure dependencies of these reactions as predicted by chemical activation analysis provides plausible pathways for these reactions under high temperature oxidation condition. Comparisons of the temperature and pressure dependent predictions are made with experimental data wherever it is available. Prior to the more recent kinetic investigation using tunable dye lasers (Berman and

Lin, 1983, Zabarnick, and Fleming, 1984) experimental data for CH kinetics were scarce. In fact there were only two such studies, both only at room temperature. Braun et al (1967) measured the rate of reactions of CH with $\mathrm{H}_{2}, \mathrm{~N}_{2}$, and CH_{4} by the vacuum UV flash photolysis/UV absorption technique, monitoring the disappearance of CH via the $\mathrm{C}^{2} \mathrm{\Sigma}^{+}$ <---- $x^{2} \pi$ transition at 314 nm . Bosnali and Perner (1971) used a combination of electron beam initiation and UV absorption (at 314 nm) to determine the rates of CH reactions with a number of reaction partners. No studies of temperature and pressure effects were included in these earlier works.

The development of new experimental techniques with the advent of tunable dye lasers facilitated some of the recent experiments on CH reactions. These will be referenced in later sections, on temperature and pressure dependence of the CH radical reactions

Reaction of CH with Hydrogen molecule

The reaction :

$$
\begin{align*}
& \mathrm{CH}+\mathrm{H} 2<---->\mathrm{CH}_{3} \tag{5.1}\\
&<---->\mathrm{CH}_{2}+\mathrm{H} \tag{5.2}
\end{align*}
$$

is a very important in the flame chemistry. Because the reverse of reaction 5.2 establishes the $C H$ profile in the flame, which in turns largely governs the prompt NO formation via the reaction:

$$
\begin{equation*}
\mathrm{CH}+\mathrm{N}_{2}<--->\mathrm{HCN}+\mathrm{N} . \tag{5.4}
\end{equation*}
$$

In addition to its importance in combustion and in planetary atmospheres, the reaction $\mathrm{CH}+\mathrm{H}_{2}$ is of considerable fundamental interest as a prototype for carbyne chemistry. It involves the methylidyne radical the simplest carbyne and H_{2} the simplest diatomic molecule. As a result, this reaction has attracted both experimental and theoritical atention. Ab initio molecular orbital calculation by Brooks and Schaefer (1977) showed that the least motion insertion path occur when the CH radical is perpendicular to the H_{2} molecule, with an energy barrier of about 75 Kcal/mole. For the non least motion or parallel approach they found there was little or no energy barrier.

Experimental studies (Berman and Lin, 1984, Bosnali and Perner, 1971, Butler and Fleming 1981, Zabarnick and Fleming, 1984) for this reaction were carried out under quite different conditions. As a result these experimentally determined rate constants varied by a factor of 20 . In this study we attempt to explain some of these results and describe the reaction mechanism.

The energy level diagram and the input parameters for the chemical activation calculation on the reaction of $\mathrm{CH}+$ H_{2} are illustrated in Figure 5.1 and Table A-2 in the Appendix respectively. The parameters in table A-2 are referenced to the ground state (stablized) level of the complex.

The recently measured value of k_{1} by Berman et al. (1984) was used for the insertion/addition forward direction

Figure 5.1 P.E. diagram for $\mathrm{CH}+\mathrm{H} 2$

channel. A zero activation energy for the forward direction and initial structures are as per Brooks and Schaeffer (1977). The barrier and A factor for dissociation of the complex back to reactants were obtained via ΔH_{300} and ΔS_{300} (using an S_{f} of Transition state of CH_{3} which is 1 cal/mole higher than stable CH_{3}). The kinetic parameters for the dissociation to $\mathrm{CH}_{2}+\mathrm{H}$ were obtained using a value of $1.2 E+14$ suggested by Berman and Lin (1984) for the high pressure recombination rate constant for the reverse reaction. The geometric mean frequency was calculated by method of Benson (1976) for the transition state complex. The Lennard Jones collision diameter and well depth were taken from Kee, Warnatz and Miller (1988).

As shown in the Figure 5.1 the $\mathrm{CH}+\mathrm{H}_{2}$ system has two available reaction channels, a stabilization to CH_{3} Equation (5.1) and an dissociation (abstraction) to $\mathrm{CH}_{2}+\mathrm{H}$ equation (5.2). The abstraction pathway is slightly endothermic with $\Delta \mathrm{H}_{298}=2.5 \mathrm{kcal} /$ mole. The competition between reaction channels including dissociation back to reactant manifest itself in the observed over all rate constants. Figure 5.2 presents the available experimental data and the QRRK results. The data shows a decrease in overall reaction rate constants with increase in tempeature below 400 K . The QRRK/Chemact results are consistent with the data of Berman and Lin (1984).

In Figure 5.3 QRRK result demonstrates that stabilization will dominate in lower temperature. Dissociation to CH_{2}
$\mathrm{CH}+\mathrm{H} 2----\mathrm{CH} 2+\mathrm{H}$
Comparison al QRRK and Experiment:

- QRRK + Experiment (Fleming)
$\mathrm{CH}+\mathrm{H} 2--\mathrm{CH} 2+\mathrm{H}$ Comparison of QRRK and Experiment

- QRRK + Experiment (Berman * Lin)

CH + H2 -----> Products Comparison of QRRK and Experiment:

$$
-Q R R K+\text { Experiment (Berman\& Lin) }
$$

Figure 5.2: Comparison of Temperature \& Pressure dependence

QRRK ANALYSIS: $\mathrm{k}(\mathrm{app})$ vs. $10000 / \mathrm{T} @ 760$. $\mathrm{CH}+\mathrm{H} 2---->$ Products

Log k apparent:

Figure 5.3 : Temperature \& Pressure dependence
$+H$ will dominate at higher temperature, which is consisent with the Berman and Lin (1984) data. In the temperature region above 400 K the rate increases and as a result the overall total results show an inversion in the temperature dependence at 400 K . At lower temperatures the QRRK method underestimates the overall rate constant by factor of two and half. This is also the case in RRKM calculations by Berman and Lin (1984). This can perhaps be attributed to the temperature dependence of β_{C} (collisional efficiency) as defined by Troe (1977). We note that a shallower well (Higher Energy) would amplify this underestimation.

Comparison of the apparent rate constant for the abstraction channel with the data of Zabarnick and Fleming (1984) in Figure 5.2 also shows good agreement.

Even though at high pressure the QRRK over estimates the overall rate constant it is quite reasonable to use the predicted apparent rate constant for the abstraction channel at 760 torr in the mechanism developed for flame modeling. This is because of the pressure independence of the abstraction channel in the temperature regime of flame, where the stabilization channel is insignificant in comparison to the abstraction channel.

Reaction of CH with N 2 molecule

The reaction of $\mathrm{CH}+\mathrm{N}_{2}$ is of considerable importance due to its role in the chemistry of planetary atmospheres and hydrocarbon flames. This reaction is included in modeling
the chemistry of the nitrogen and hydrogen rich atmosphere of Titan (Strobel, 1982) This reaction is also of considerable importance for the present mechanism because it establishes the NO profiles in the flames studied. The $\mathrm{CH}+\mathrm{N} 2$ system is interesting to the modelers of such system in that it represents the least endothermic pathway for a hydrocarbon fragment to break the $N \# N$ triple bond. This provides for incorporation of N atom and other nitrogen containing compounds in the subsequent reaction mechanism.

Recent interest in the $\mathrm{CH}+\mathrm{N} 2$ reaction has been part of an effort to unravel the mechanism of NO formation in hydrocarbon air flames similar to the flames studied in this research. Production of NO in such flame cannot be described by the Zeldovich (1946) mechanism which successfully accounts for NO production in the postcombustion region. Fenimore (1972) proposed the reaction of carbon or hydrocarbon radical with N 2 such as:

```
CH + N2 <-------> HCNN
<------->> HCN + N
```

followed by the oxidation of the intermediaite product HCN to account for the production of $N O$ in the primary reaction zone. Blauwens et al (1977) measured absolute radical and molecule concentrations, by using molecular beam sampling with mass spectrometric detection. He found the activation energy for reaction (5.4) to be 11.1 kcal/mole. Matsui and

Nomaguchi (1978) found the amount of No produced to be proportional to the CH concentration and estimated an activation energy for the reaction (5.4) to be $13.6 \mathrm{Kcal} / \mathrm{mole}$. Miyauchi et al (1977), found that HCN formation takes place prior to NO formation supporting the above mechanistic suggestion for prompt NO formation. However they rejected reaction 3.4 for prompt No formation on the ground of spin nonpreservation and proposed the reaction :

$$
\begin{equation*}
\mathrm{CH}_{2}+\mathrm{N}_{2}<--->\mathrm{HCN}+\mathrm{NH} \tag{5.5}
\end{equation*}
$$

for prompt No formation.
Braun et al (1967) and Bosnali and Perner (1971) each measured the rate constant of reaction 5.4 by monitoring CH $\left(X^{2} \pi\right)$ loss by absorption at 314 nm , and found rate constants at room temperature which differ by a factor of 14. Butler et al. (1981) using laser induced fluoroscence (LIF) detection determined a rate constants compatible to that of Bosnali and Perner, and found that the rate of $\mathrm{CH}+\mathrm{N}_{2}$ is pressure dependent, indicating that the reaction proceeds through a long lived intermediate. More recently Wagal et al (1982) using LIF confirmed the pressure dependence of this reaction and found a rate constant factor of two smaller than rate constant determined by Butler et al.

Berman et al (1983) has recently carried out a detail study of this reaction using photolysis of $\mathrm{CH}_{3} \mathrm{Br}$ at 266 nm to generate CH radical which were detected by their LIF.

They measured rate constants for this reaction in the temperature range of $297-675 \mathrm{~K}$ at 100 torr and pressure range of 25 to 787 at 297 K . They found the second order rate to be pressure dependent, exhibiting a pronounced increase through the pressure range studied at 298 K .

Berman and Lin estimated a negative activation energy for the temperature range 297 - 675 K for the $\mathrm{CH}+\mathrm{N}_{2}$. At flame temperature Blauwens derived positive activation energy of more than $11 \mathrm{kcal} / \mathrm{mole}$. These two set of contrasting data were reconciled by QRRK analysis on the formation of the activated complex $\left(\mathrm{CHN}_{2}\right)^{\#}$:

The energy level diagram and the input parameters for the chemical activation calculation on this reaction are shown in Figure-5.4 and Table A-4 of Appendix respectively. The parameters in Table A-4 are referenced to the ground level of the complex. The recently measured value of k_{1} by Berman et. al (1984) was used for the high pressure addition channel. The A factor for dissociation of the complex back to reactants was obtained via ΔS_{300}. The well depth was calibrated to the stablization data of Berman (1984). The parameters for the dissociation to $H C N+N$ were obtained by using $8.80 \mathrm{E}+12$ for the reverse recombination and ΔS_{300}. The barrier height was adjusted to the recent experimental data

$\mathrm{CH}+\mathrm{N} 2 \stackrel{-1->}{(\mathrm{CHNN})^{\#}-2->} \mathrm{HCN}+\mathrm{N}$ $-\mathrm{k}_{\mathrm{s}} \mathrm{CHNN}$

Figure 5.4 P.E diagram for $\mathrm{CH}+\mathrm{N} 2$
of Bowman and Hanson (1990). The geometric mean of the vibrational frequencies for the complex is from Berman (1984). The Lennard Jones collisional diameter and the well depth were estimated from Kee (1988).

The V shaped non Arrhenius temperature dependence curve shown in Figure 5.5 computed from QRRK analysis accounts for the grossly contrasting data of Berman and Blauwens in their respective low and high Temperature regimes. As seen in Figure 5.6 the pressure dependent stabilization channel dominates at low temperature. The abstraction starts dominating after 1500. The result are illustrated in Figure 5.5. At low temperature the overall rate for:

$$
\begin{equation*}
\mathrm{CH}+\mathrm{N}_{2}<-->(\mathrm{HCNN})^{\#}---->\mathrm{HCN}+\mathrm{N} \tag{5.4}
\end{equation*}
$$

falls with increasing temperature resulting in an observed negative activation energy. Above 1500 K it increases with increasing temperature, yielding a positive observed activation energy.

It is interesting to note that the high pressure limit rate constant $4.0 E+12$ (A factor because of $E_{a}=0.0$ from Table A-4) is more than two order of magnitude higher than the QRRK calculated apparent rate constant of $1.8 \mathrm{E}+10$ to HCN $+N$, consistent with Bowman (1990). This result and from the fact that dissocition of the complex (HCNN) \# back to reactants has both high A factor and lower E than dissocia-

$\mathrm{CH}+\mathrm{N} 2---->$ Products

 Comparison of QRRK and Experiment:
$\mathrm{CH}+\mathrm{N} 2--->\mathrm{HCN}+\mathrm{N}$ Comparison of QRRK and Experiment:

Figure 5.5: Temperatue \& Pressure dependence comparison

QRRK ANALYSIS: k (app) vs. 10000/T @ 760. $\mathrm{CH}+\mathrm{N} 2--->$ Products

- HCN 2 - $\mathrm{HCN}+\mathrm{N}$

QRRK ANALYSIS: k (app) vs. Log P @ 1800 K $\mathrm{CH}+\mathrm{N} 2----)$ Products

Figure 5.6: Temperature \& Pressure dependence
tion to $H C N+N$ (from Table A-4 of Appendix) indicates that the complex is indeed formed at the high pressure limit rate. But most of it dissociates (bleeds out) to the reverse channel than the HCN $+N$ product. The observed low A factor to $H C N+N$ is then the result of dominant energy and entropy path being reverse reaction to $\mathrm{CH}+\mathrm{N}_{2}$ for the adduct.

The QRRK results for temperature and pressure dependence as observed in Figure 5.5 is consistent with Berman data but QRRK underestimate at high temperature in comparison to the Blauwens data. This high temperature data is consistent with the high temperature data shock tube data of Dean and Bowman (1990).

Reaction of CH with NO

The reaction of CH with NO is important to flame chemistry because, along with other CH_{x} radicals it provides a pathway for destruction of No in flames. Its contribution towards the destruction of $N O$ in comparison to other CH_{x} radical is an important question which needs to be resolved. Experimental data on the temperature and pressure dependence of this reaction are scarce. Wagal et al (1982) determined rate constant for this reaction at 300 K to be $\mathrm{k}_{\text {NO }}=$ $1.2 * 10^{14} \mathrm{~cm}^{3} / \mathrm{mole} \mathrm{sec}$. Berman (1982) studied this reaction and found the rate constant to be independent of temperature in the range of 297 to 676 K at 100 torr.

The energy level diagram and important input parameters for QRRK analysis of this system are given in Figure 5.7 and

Figure 5.7: P.E. diagram for $\mathrm{CH}+\mathrm{NO}$

Table A-6 of Appendix respectively. The recently measured high pressure value of Berman is taken for k_{1}. The A factor and barrier for dissociation of the complex back to reactants were obtained via ΔH_{300} and ΔS_{300}. The thermochemical properties for HCNO are taken from Sandia thermodynamic data base (Kee, Miller 1985). The parameters for the dissociation of the HCNO complex to HCN +0 were obtained using an estimate of $1.38 \mathrm{E}+13$ for A_{f} for the reverse recombination reaction taken from the compilation of Kerr (1981) for $0+$ $\mathrm{CH} \# \mathrm{CH}$. The geometric mean frequency was calculated from Therm (Ritter, 1989). Lennard Jones collision diameter and well depth were estimated from data for HCCO. The CH radical combines with No to form the HCNO* adduct. The reaction channels of HCNO* include dissociation back to reactants (k_ 1), stabilization to HCNO (k_{s}, well depth equal to 125 Kcal) and dissociation to products $\left(k_{2}\right) H C N+0$.

The QRRK analysis are illustrated in Figure 5-8. As illustrated in Figure 5-8A there is no temperature dependence of the apparent rate constant in the temperature range of 285-673, and is consistent with the data of Berman (1982). This is because most of the complex formed has sufficient energy to dissociate to the low energy exit channel HCN +0 before stabilization occurs. Figure 5-8 shows that stabilization is not important as compared to the low energy exit product channel even at 300 K and pressure of 1 atmp. The low energy exit channel rate starts to fall slightly at high temperature with increasing tempera-

QRRK ANALYSIS: $k(a p p)$ vs. $10000 / T$ ® 760. $\mathrm{CH}+\mathrm{NO}---->$ Products

QRRK ANALYSIS: $\mathrm{k}(\mathrm{app})$ vs. Log P © 300 K $\mathrm{CH}+\mathrm{NO}---->$ Products

Figure 5.8: Temperature \& Pressure dependence

CH + NO ------) Products

Comparison of CHEMACT and Experiment:

ture. This is because entropy now drives some of the complex HCNO* back to the reactants.

Reaction of CH with Oxygen molecule

This reaction provides a sink for the CH radical due to the relatively high O_{2} concentrations. Experimental data for the temperature and pressure dependence of the product distribution is scarce. Messing et al (1979) measured the rate of this reaction by following the LIF signal of the CH radical and by monitoring the chemiluminescence from OH . They obtained a value of $1.98 \mathrm{E}+13$ for the apparent rate constant at 298 K . The temperature dependence of this reaction was investigated by Berman et al (1984), who found no significant variation over the range 297 to 676 K . The rate constant they obtained at room temperature was $3.07 \mathrm{E}+13$ $\mathrm{cm}^{3} / \mathrm{mole} \mathrm{sec}$.

The energy level diagram and input parameters for the chemical activation calculation of this reaction are shown in Figure 5-9 and Table A-8 of Appendix respectively. The CH radical combines with O_{2} to form the chemically activated adduct HCOO *. The reaction channels of HCOO include dissociation back to reactants $\left(k_{-1}\right)$, stabilization to $\mathrm{HCOO}\left(\mathrm{k}_{\mathrm{S}}\right)$, intramolecular isomerization to $\mathrm{HC}(0) \mathrm{O}^{*}$, and dissociation to the low energy exit channel: to $\mathrm{HCO}+\mathrm{O}$. $\mathrm{HC}(\mathrm{O}) \mathrm{O}^{*}$ can then beta scission to $\mathrm{H}+\mathrm{CO}_{2}\left(\mathrm{k}_{4}\right)$, be stabilized to $\mathrm{HC}(0) \mathrm{O}$, isomerize, back to HCOO * or isomerize forward to HOCO*. The Hoco* can then beta scission to $\mathrm{H}+\mathrm{CO}_{2}\left(\mathrm{k}_{7}\right)$ or undergo

Figure 5.9 P.E. diagram for $\mathrm{CH}+\mathrm{O} 2$

simple fission to $\mathrm{OH}+\mathrm{CO}$.
A plot of "Log k vs 10000/T" for the various apparent rate constants at 760 torr are shown in Figure 5-10. The data illustrate that even at high pressures and low temperatures more of the complex HCOO^{*} dissociates to the HCO +0 products then stablize, or isomerize. This is due low barrier and high A factor of this exit channel. The temperature independence as illustrated in Figure 5-10A of this reaction in the temperature range of 127 to 676 K is completely con sistent with the Berman data.

A second way to analyze this $\mathrm{CH}+\mathrm{O}_{2}$ reaction is to consider that $\mathrm{CH}+\mathrm{O}_{2}$ inserts into O_{2} to form complex $\mathrm{H}(\mathrm{CO}) \mathrm{O}^{*}$, is shown in Figure 5-11. The $\mathrm{H}(\mathrm{CO}) \mathrm{O}^{*}$ now formed can dissociate back to reactants $\left(k_{-1}\right)$, isomerize to Hoco* $\left(k_{4}\right)$, beta scission to $\mathrm{H}+\mathrm{CO}_{2}\left(\mathrm{k}_{3}\right)$, or dissociate to $\mathrm{HCO}+\mathrm{O}$ $\left(k_{2}\right)$. The channel to form $H C O+0$ from $H(C O) O_{*}$ requires now a higher barrier relative to the stabilized $H(C O) O$ than the formation of $\mathrm{HCO}+\mathrm{O}$ from HCOO , in the previous case. Here a $c--0$ bond is breaking rather than the relatively weak 0-- O bond. The HOCO* complex can now isomerize backward $\left(k_{-4}\right)$, decompose to $\mathrm{OH}+\mathrm{CO}\left(\mathrm{k}_{6}\right)$, or it can beta scission to $\mathrm{H}+\mathrm{CO}_{2}$. Figure $5-12$ illustrates that $\mathrm{OH}+\mathrm{CO}$ becomes a dominant channel rather than $\mathrm{HCO}+\mathrm{O}$. This is because the barrier as shown in Figure 5-11 for the channel HCO +O is now higher compared to the isomerization channel (where in previous case the isomerization barrier was higher, and as a result most of the complex $H(C O) O^{*}$ now

QRRK ANALYSIS: $k(a p p)$ vs. Log $P @ 1800 \mathrm{~K}$ $\mathrm{CH}+\mathrm{O} 2---->$ Products

Flgure 5.10: Temperature \& Presure dependence

$\mathrm{CH}+\mathrm{O} 2---->$ Products
 Comparison of QRRK and Experiment:

Figure 5.10A: Temperature dependence Comparison

Figure 5.11 P.E. diagram for $\mathrm{CH}+\mathrm{O} 2$ Alternate attack
ENERGY (Kcal/mole)

242
 9
 42 -8 -58

$182 \quad \mathrm{CH}+\mathrm{O2} \leftrightarrows \mathrm{H}(\mathrm{CO}) \mathrm{O} \stackrel{4}{\leftrightarrows}$ носо

-108
Reaction Path

QRRK ANALYSIS: k (app) vs. 10000/T @ 760.
 $\mathrm{CH}+\mathrm{O} 2---->$ Products

QRRK ANALYSIS: $\mathbf{k}(\mathrm{app})$ vs. Log P @ 1800 K $\mathrm{CH}+\mathrm{O} 2---->$ Products

Figure 5.12 Temperature \& Pressure dependence
forms complex HOCO* The competition between $\mathrm{OH}+\mathrm{CO}$ and $\mathrm{H}+$ CO_{2} is dominated by the channel $\mathrm{OH}+\mathrm{CO}$ because of its low barrier and high A factor in comparison to the high barier and low A factor (tighter Transition state) for the Beta scission channel.

Experimental data on product distribution is necessary to determine the favored pathways. Experiments carried out by Messing (1979) favors the $\mathrm{OH}+\mathrm{CO}$ channel for the room temperature rate only.

Reaction of CH with Methane

In fuel rich flames the existence of excess hydrocarbons makes it important to consider $\mathrm{CH}+\mathrm{CH}_{4}$ reaction. Several groups have had studied this reaction at room temperature and the results vary widely. The more recent study of Berman (1983) produced result which is in good agreement with Butler et al (1981). However the Berman determined rate is three times larger than that reported by Bosnali and Perner (1971) and forty times larger than that of Braun (1967). Berman et al observed a negative temperature dependence in the temperature range of 167 K to 652 K and observed no pressure dependence at 297 K in the range of 25 to 200 torr.

The energy level diagram and input parameters for the chemical activation calculation of this reaction are shown in Figure 5-14 and table A-12 of the Appendix respectively. The CH radical combines with CH_{4} to form the chemically

Figure 5.14 P.E. diagram for $\mathrm{CH}+\mathrm{CH} 4$

activated adduct $\mathrm{C}_{2} \mathrm{H}_{5}{ }^{*}$. The reaction channel for this com plex include dissociation to $\mathrm{CH}_{2}+\mathrm{CH}_{3}\left(\mathrm{k}_{3}\right)$, stabilization $\left(k_{s}\right)$, or a low energy exit channel through beta scission to $\mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4}$.

Calculated QRRK apparent rate constants at 760 torr are shown in Figure 5-15. The figure illustrates the dominance of low energy exit channel even in low temperatures and high pressures range. It also illustrates no temperature dependence in the temperature range of Bermans data which is contrary to his finding. The possibility of the ambiguity being result of uncertainty in choosing the $Q R R K$ parmeter is there.

More experimental data is needed to resolve this discrepancy. The negative temperature dependence of this reaction as demonstrated by Berman data is inconsistent with the $C H$ reactions with $N O$ and O_{2} discussed earlier where low energy channels similar to $\mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{4}$ dominate and show no temperature dependence in the temperature range of 157 to 680 K.

Similar problem is faced with the QRRK result for $\mathrm{CH}+$ $\mathrm{C}_{2} \mathrm{H}_{6}$. This reaction is not included in the mechanism because of the probability of this reaction occuring is very low.

Reaction of CH radical with OH

Experimental data on the reaction $\mathrm{CH}+\mathrm{OH}$ does not exist. The input parameters and potential energy diagram for

QRRK ANALYSIS: $\mathbf{k}(\alpha p p)$ vs. $10000 / T$ @ 760. $\mathrm{CH}+\mathrm{CH} 4-\cdots-->$ Products

QRRK ANALYSIS: $\mathrm{k}(\mathrm{qpp})$ vs. Log P \& 1800 K
$\mathrm{CH}+\mathrm{CH} 4---)$ Products

- $\mathrm{C}_{2} \mathrm{H} 5$ - $\mathrm{H}+\mathrm{C} 2 \mathrm{H} 5 \quad \cdots \cdots \cdots \mathrm{CH}^{2+\mathrm{CH} 3}$

Figure 5.15: Temperature \& Pressure dependence
the chemical activation analysis of this reaction are given in Table A-16 of Appendix and Figure 5-16 respectively.

The CH radical can recombine with OH to form HCOH^{*}, as shown or $\mathrm{CH}_{2} \mathrm{O}$ via insertion. The complex CHOH^{*} can dissociate back to $\mathrm{CH}+\mathrm{OH}$ reactants $\left(\mathrm{k}_{-1}\right)$, or it can go to $\mathrm{HCO}+$ H by simple fission. The barrier for this was estimated from the data of Page (1989) for H addition $\mathrm{CH}_{2} \mathrm{O}$. QRRK analysis illustrates in Figure 5-17 that low energy exit channel Hco +H dominates even at high pressures and low temperatures. This is because the complex has an extra $89 \mathrm{Kcal} / \mathrm{mole}$ of energy above the $H+H C O$ product. The apparent rate for the product channel $H+H C O$ starts to fall at high temperature because entropy drives some of the complex backwards to reactants.

Instead of adding CH can also insert and form $\mathrm{CH}_{2} \mathrm{O}^{\text {* }}$ which has deeper well than previous complex choH*. This complex will also lead to the same low energy exit product channel which dominates at high pressures and high temperatures.

We also note that the HCO formed may have upto 89 kcal of energy in excess (depending on how much of the 89 Kcal is assigned to H) to the ground state. This is upto 71 Kcal more than the 18 Kcal it needs to dissociate by beta Scission to $C O+H$. Therefore this overall reaction while proceeding through several steps might be written as $\mathrm{CH}+\mathrm{OH}$ $\rightarrow \mathrm{CO}+\mathrm{H}+\mathrm{H}$

CH_{2} with Nitrogen molecule

This reaction was proposed as a possible important contributor for the formation of prompt NO (Miyachi, 1977). In an attempt to use the correct rate constant at the pressure and temperature of the flame system and then access the importance of this reaction a $Q R R K$ calculation was carried out.

The energy level diagram and input parameters for the chemical activation calculation are shown in Figure 5-18 and table A-18 of Appendix respectively. The CH_{2} radical adds to N_{2} to form the chemically activated adduct $\mathrm{CH}_{2} \mathrm{~N}_{2}{ }^{*}$. The major reaction channel of $\mathrm{CH}_{2} \mathrm{~N}_{2}{ }^{*}$ include dissociation back to reactant $\left(k_{-1}\right)$, stabilization to $\mathrm{CH}_{2} \mathrm{~N}_{2}\left(\mathrm{k}_{\mathrm{s}}\right)$, and a high energy exit channel to $\mathrm{HCN}+\mathrm{NH}$. The channel to $\mathrm{CH}_{2} \mathrm{~N}+\mathrm{N}$ is even high in endothermicity and is not considered.

The QRRK calculated apparent rate constant at 760 torr are shown in Figure 5-19. At the flame conditions of the present study stabilization exceeds slightly the high energy exit channel. However at higher temperatures above 1500 K and in lower pressures upto 100 torr, the high energy exit chan nel dominates. The stabilized $\mathrm{CH}_{2} \mathrm{~N}_{2}$ adduct well is relatively shallow. Dissociation out of the well, back to reactants will be rapid at flame conditions. No experimental data is available to compare and calibrate the chemical activated analysis for this system.

A chemical activated analysis for the $\mathrm{CH}_{2}+\mathrm{N}_{2}$ predicts

Figure 5.16 P.E. diagram for $\mathrm{CH}+\mathrm{OH}$

QRRK ANALYSIS: K(app) Fs. Log P • 300 K $\mathrm{CH}+\mathrm{OH} \rightarrow$ Products

QRRE ANALYSIS: $\mathbf{k}($ ODP) FS. LOg P $\bullet 1800 \mathrm{~K}$ $\mathrm{CH}+\mathrm{OH} \rightarrow$ Products

$$
\text { — } \mathrm{HCOB} \text { — } \mathrm{BCO}+\mathrm{B}
$$

QRRK ANALYSIS: k (app) vs. 10000/T @ 760. $\mathrm{CH}+\mathrm{OH}--->$ Products

Figure 5.17: Temperature \& Presure dependence

Fig: 5.18 P.E. diagram for $\mathrm{CH} 2(\mathrm{t})+\mathrm{N} 2$

QRRK ANALYSIS: k (app) vs. 10000/T @ 760. CH2 + N2-----) Products

Log k apparent:

 CH2 + N2------> Products

Figure 5-19 Temperature \& Pressure dependence
result similar to the results of $\mathrm{CH}_{2}+\mathrm{N}_{2}$ but of higher apparent rate constant values because the endothermicity is reduced by 9 Kcal/mole.

Reaction of CH_{2} with nitric oxide

Significant rates of No reduction in fuel rich acetelyne flame were observed by Taylor (1984) in his study. He attributed this reduction of NO to reaction with the CH_{2} radical and proposed a rate constant of $1.3 E+13$. In this study reduction of $N O$ is also observed. To study the relative importance of CH_{2} radical in NO destruction, a chemical activation analysis of was performed.

The energy level diagram and important input parameters are given in Figure $5-20$, and in table $A-20$ of Appendix respectively.

The CH_{2} (triplet) can combine with the NO at the Nitrogen to form $\mathrm{CH}_{2} \mathrm{NO}^{*}$. This adduct has sufficient energy over the well depth to isomerize: a hydrogen shift. The A factor for the recombination is taken from recent study of Darwin (1989). The well depth for H_{2} CNO is taken from Melius (1989). The A factor and barrier for isomerization is based on Transition state Theory and Melius respectively. The HCNOH* can Beta scission to the $\mathrm{HCN}+\mathrm{OH}$ a low energy exit channel. Figure 5-22 illustrates that this channel dominates in the flame condition of this study.

Another possible way to look at this reaction for the addition to occur on the oxygen forming the complex $\mathrm{CH}_{2} \mathrm{ON}^{*}$.

Figure 5.20 P.E. diagram for CH 2 + NO

QRRK ANALYSIS: \mathbf{r} (CDP) vs. Log $P \bullet 300 \mathbf{K}$ $\mathrm{CH} 2+\mathrm{NO} \longrightarrow->$ Products

QRRI ANALYSIS: $\mathbf{k}($ app $)$ Fs. Log P - 1800 K $\mathrm{CH} 2+\mathrm{NO}-\longrightarrow$ Products

QRRK ANALYSIS: $k(a p p)$ vs. $10000 / \mathrm{T}$ @ 760.
$\mathrm{CH} 2+$ NO $-\cdots$ Products
Log k apparent:

$\mathrm{H} 2 \mathrm{CNO}-\mathrm{HCN}+\mathrm{OH}$
Figure 5-21: Temperature \& Pressure dependence

This can stabilize or dissociate to $\mathrm{CH}_{2} \mathrm{O}+\mathrm{N}$. Due to the unfavorable thermodynamics of this pathway relative to CH_{2} addition to the nitrogen this reaction is not considered.

Discussion of Results

This study was motivated by an interest in the interaction of hydrocarbon radicals and nitrogeneous species in flames, particularly the formation and destruction of prompt NO in flames. Previous study by Miller and Bowman (1989) established that prompt NO formation involves three separate kinetic issues:
a. The $C H$ concentration and how it is established.
b. The rate of N_{2} fixation by hydrocarbon radicals.
c. The rates of interconversion among fixed nitrogen fragments.

So the approach towards understanding the above mentioned kinetic interactions between hydrocarbon and nitrogen species builds on earlier works which considers these systems separately [Warnatz 1983, Miller and Bowman, 1989, Dean and Chou, 1982]. The mechanism as outlined in Figure 6.1 consist of three reaction subsets, a C_{1} / C_{2} oxidation set, an HCN oxidation set, and an ammonia oxidation set.

The C_{1} / C_{2} oxidation model started as an adaptation of Warnatz (1983). The modifications (stated later) on the Warnatz C_{1} / C_{2} oxidation mechanism are extensive. The modified mechanism which forms the C_{1} / C_{2} oxidation set for the model along with the HCN and NH_{3} oxidation set is described in the Table $A-1$ of the Appendix.

COMPONENTS OF OVERALL MECHANISM

The modification include results of $Q R R K$ treatment of radical recombination and addition reactions, in addition to fall of for unimolecular dissociations. Additional modifications include addition and hydrogen rearrangement for allyl radical reactions with O_{2} to form olefin $+\mathrm{HO}_{2}$. Transition state theory analysis for A and T^{n} factor for hydrogen transfer reactions. Evans Polanyi plot were utilized for energy of activation for these hydrogen transfer reaction.

Further modification on C_{1} / C_{2} oxidation mechanism of Warnatz (1983) were based upon recent kinetic information in the literature (Gutman, 1988) and were oriented towards improved prediction of OH and CH radicals while retaining the good predictive capability it already had for the mainstream hydrocarbon species $\left(\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{2}\right.$ and radicals $\mathrm{CH}_{3}, \mathrm{CH}_{2}$). The rate constants for CH_{3} reactions with $\mathrm{O}_{2}, \mathrm{O}$, OH , (reaction $\mathrm{R}-20$ to $\mathrm{R}-26$ in the the mechanism described in Table A-1 of the Appendix) were based on QRRK from Dean and Westmoreland (1987), but were modified with updated species thermodynamics for the higher temperatures of flame. The rate constant for $\mathrm{C}_{2} \mathrm{H}_{5}$ reacting with molecular oxygen ($\mathrm{R}-60$ and R-61) were taken from Bozzelli and Dean (1990).

The rate constants for the reaction mainly responsible for CH generation (reverse of $\mathrm{R}-38$), and CH reaction with $\mathrm{OH}, \mathrm{O}_{2}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{5},(\mathrm{R}-44, \mathrm{R}-46, \mathrm{R}-47, \mathrm{R}-50, \mathrm{R}-51$,$) are all$ from QRRK treatment described in the previous chapter.

The rate constants for the nitrogen fixation by $\mathrm{CH}, \mathrm{CH}_{2}$ ($\mathrm{R}-94, \mathrm{R}-95, \mathrm{R}-96$), and for NO decomposition by CH , and CH_{2} (

R-99, $R-100$) are also from the QRRK analysis.
A distinction is made in the present mechanism between CH_{2}, singlet and CH_{2} triplet. The generation and decomposition rate constants for the CH_{2} are primarily from Miller and Bowman (1989).

The NH_{3} and HCN oxidation mechanism are from earlier work on ammonia by Dean and Chou (1982).

The complete listing of the models detailed elementary reaction mechanism developed for the flames studied is given in table $A-1$ of the Appendix. This elementary reaction mechanism was developed for the undoped flame 2 and doped flame 5. Experimental conditions for these two flames are given in Table 6-1.

The results obtained for flame 2 and flame 5 from the flame code (Kee, Miller, Smooke, Grcar, 1989), using the developed elementary reaction mechanism are given in Table $B-1$ and $B-2$ in the Appendix.

The $0 H$ results in Figure $6-2$ indicates very good agreement between model and experimental results. The calculated peak is little higher than observed but it is within the experimental uncertainity. The $O H$ decay is more rapid at larger distance for the calculated profile. The cause of this inconsistency is still unclear. studies by Dean and Chou (1982) for rich ammonia flame indicate similar problem. The calculation for the $O H$ profile as illustrated in Figure 6-2 in flame 2 undoped and in flame 5 doped are identical, in accordance with the observation. Inspite of the calcu-

Comparison of OH Profile

Figure 6.2 Comparison between model \& experiment
lated more rapid decay the overall behaviour is encouraging and suggests that the model does a rather good job of describing the mainstream hydrocarbon oxidation kinetics in flame.

The CH result in Figure 6-3 indicated a calculated peak of a factor of 1.8 higher than observed. Given the larger uncertainity (a factor of 2) in the CH experimental concentration assignment during measurement, the prediction is very encouraging. Since $C H$ is so strongly involved in coupling the hydrocarbon mechanism to that of nitrogen system, it is essential to have a good prediction of CH pro file.

Sensitivity analysis from figure 6-4 shows that CH comes mainly from the CH_{2} (triplet) by the reaction (reverse of $R-38$) :

$$
\begin{equation*}
{ }^{3} \mathrm{CH}_{2}+\mathrm{H}<--->\mathrm{CH}+\mathrm{H}_{2} \tag{-R-38}
\end{equation*}
$$

Methylene comes mainly from the C_{2} route rather than C_{1} route. This is evident by the large sensitivity of CH for the reactions $R-55$ and $R-60$:

$$
\begin{align*}
& \mathrm{CH}_{3}+\mathrm{CH}_{3}<--->\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H} 2 \tag{R-55}\\
& \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{O}_{2}<-\cdots \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{HO}_{2} \tag{R-60}
\end{align*}
$$

which forms ethylene and for reaction $\mathrm{R}-69$:

$$
\begin{equation*}
\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{O}<---->\mathrm{CH}_{2}+\mathrm{CO} \tag{R-69}
\end{equation*}
$$

which react $\mathrm{C}_{2} \mathrm{H}_{2}$ with 0 to yield CH_{2}.

Comparison of CH Profile

Figure 6.3 Comparison between model \& experiment

Fig 6.4 Sensitivity of CH formation

Acetylene decomposition to $^{3} \mathrm{CH}_{2}$ occurs by reaction with O ($R-$ 69), rather than with OH via $\mathrm{CH}_{2} \mathrm{CO}$:

$$
\begin{aligned}
& \mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{OH}<---->\mathrm{CH}_{2} \mathrm{CO}+\mathrm{H} \\
& \mathrm{CH}_{2} \mathrm{CO}+\mathrm{M}<----->^{3} \mathrm{CH}_{2}+\mathrm{CO}+\mathrm{M}
\end{aligned}
$$

The contribution of additional CH_{2} source involving the singelet species:

$$
\begin{align*}
& \left.\mathrm{CH}_{3}+\mathrm{H}<----\right)^{\prime} \mathrm{CH}_{2}+\mathrm{H}_{2} \tag{-R-185}\\
& { }^{\prime} \mathrm{CH}_{2}+\mathrm{M}<---->^{3} \mathrm{CH}_{2}+\mathrm{M} \tag{R-181}
\end{align*}
$$

is negligible. The $C H$ profile is not affected by the presence of singlet ${ }^{\prime} \mathrm{CH}_{2}$.
The reaction most important for $C H$ consumption in the present mechanism are :

$$
\begin{align*}
& \mathrm{CH}+\mathrm{H}_{2} \mathrm{O}<----->\mathrm{CH}_{2} \mathrm{O}+\mathrm{H} \tag{R-48}\\
& \mathrm{CH}+\mathrm{O}_{2}<----->\mathrm{HCO}+\mathrm{OH} \tag{R-47}
\end{align*}
$$

Large negative sensitivity results in for this two channel from these two reactions.

It is important to remember that the amount of nitrogen fixation by $C H$ via reaction $R-98$ is determined by the rate constant of this reaction and the CH concentration in the flame. But the CH concentration profile and CH depletion does not depend on the rate constant of this channel. The CH profile as illustrated in Figure 6-3 remains nearly unchanged for the doped flame 5. This indicates that there is no interaction between fuel nitrogen (700 ppm of NH_{3}).
conversion to NO and CH in the flame systems studied. The prediction of NO concentration from the model for undoped flame 2 is shown in Figure 6.5. The Prediction for the model is a order of magnitude less.

The model have the following reaction for N_{2} fixation reactions:

$$
\begin{array}{ll}
\mathrm{CH}+\mathrm{N}_{2}<----->\mathrm{HCN}+\mathrm{N} & (\mathrm{R}-98) \\
\mathrm{CH}_{2}+\mathrm{N}_{2}<----->\mathrm{HCN}+\mathrm{NH} & (\mathrm{R}-194) \\
\mathrm{CH}_{2}+\mathrm{N}_{2}<----->\mathrm{HCN}+\mathrm{NH} & (\mathrm{R}-195) \tag{R-195}
\end{array}
$$

and the following NO destruction path:

$$
\begin{array}{ll}
\mathrm{CH}+\mathrm{NO}<----->\mathrm{HCN}+\mathrm{O} & (\mathrm{R}-99) \\
\mathrm{CH}_{2}+\mathrm{NO}<---->\mathrm{HCN}+\mathrm{OH} & (\mathrm{R}-100) \\
\mathrm{CH}_{3}+\mathrm{NO}<---->\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O} & (\mathrm{R}-102)
\end{array}
$$

Figure 6-6 shows sensitivity co-efficients for No formation for model applied to the undoped flame. Large sensitivity coefficient for the reaction $R-98$ and for the reactions generating CH indicates that CH is mainly responsible to fix nitrogen in the flame environment. The rate coefficents, for this reaction is taken from the QRRK analysis of $\mathrm{CH}+\mathrm{N}_{2}$ system (described in earlier chapter) with a barrier of 17.3 for the abstration like channel of HCN $+N$ ($\mathrm{R}-98$). This rate coefficient is consistent with the recent Dean and Bowman (1990) high temperature shock tube data. The contribution of R-100 towards the formation of NO is neglibible in this flame because of low CH_{2} concentration.

FLAME 2: NO Conc. Undoped flame

Figure 6.5 Comparisons between models \& experimental

The rate constant used in reaction $R-100$ is order of two magnitude higher than Miller and Bowman (1989) but consistent with Sanders and Lin (1987). This value of rate constant is near an upper limit to the rate constant that reaction $\mathrm{R}-100$ can have. The reason for this differnce is the barrier used in the reaction $\mathrm{R}-100$.

The introduction of CH_{2} singlet reaction with N_{2} does not have any effect on the NO profile even though its rate constant is higher than the reaction involving triplet species.

Large sensitivity coefficients of NO for the reaction R-104, R-106 and R-160 suggest that HCN is mainly decomposed in this fuel rich flame by :

$$
\begin{align*}
& \mathrm{HCN}+\mathrm{O}\langle--->\mathrm{NCO}+\mathrm{H} \tag{R-104}\\
& \mathrm{NH}+\mathrm{O}_{2}\langle--->\mathrm{HNO}+\mathrm{O} \tag{R-160}
\end{align*}
$$

to form NCO. The sensitivity of NO to R-160 indicates that NCO is decomposed to NH by reaction with hydrogen atom (R110):

$$
\begin{equation*}
\mathrm{NCO}+\mathrm{H}<------>\mathrm{NH}+\mathrm{CO} \tag{R-110}
\end{equation*}
$$

NH can then form HNO by reaction with O_{2} ($\mathrm{R}-160$). The HNO now formed can decompose to NO unimolecular decomposition and abstraction reaction of the H.

There is a obvious recycle of HCN in the flame via R 102. This is because of a relatively large concentration of CH_{3}. The rate constant for this reaction is from flame data

Figure 6.6 NO sensitivity in undoped flame

- $\mathrm{CH} 2+\mathrm{H}=\mathrm{CH}+\mathrm{H} 2+\mathrm{CH} 3+\mathrm{CH} 3=\mathrm{C} 2 \mathrm{H}_{4}$ 米 $2 \mathrm{CH}+\mathrm{N} 2=\mathrm{HCN}+\mathrm{N} \quad \mathrm{HCN}+\mathrm{O}=\mathrm{NCO}+\mathrm{H}$
$\times \quad \mathrm{CN}+\mathrm{O}_{2}=\mathrm{NCO}+\mathrm{O} 0 \quad \mathrm{~N}+\mathrm{O}_{2}=\mathrm{NO}+\mathrm{O} \quad \triangle \quad \mathrm{NH}+\mathrm{O}_{2}=\mathrm{HNO}+\mathrm{O}^{2} \quad \mathrm{CH}+\mathrm{NO}=\mathrm{HCN}+\mathrm{H} 2 \mathrm{O}$
of J.M. Levy (1980), which is nearly two order of magnitude higher than the value recommended by Miller and Bowman (1989). Hilaire et al (1984) had proposed a higher value for R-102 from analysis of slightly fuel rich low pressure $\mathrm{CH}_{4} / \mathrm{O}_{2}$ flames. Slowing down or omitting this reaction will result in a plateau for the No profile which is contrary to the observation. The contribution of the other two HCN recycle reactions $R-99$ and $R-100$ is negligible, and their omission in the model does not affect $H C N$ and NO concentration predictions due to the low concentration of CH_{2} and CH .

Fortuitously the predicted NO profile illustrated in Figure 6-7 for the doped flame 5 by model is very good. This is not because the model is modeling the fixation of N_{2} properly in the doped flame 5, rather most of the added NH_{3} is converted to NO instead of CN . As a result the CN peak illustrated in Figure 6.8, calculated by Model is a factor of 3 less than the observed. The experimental peak of CN is observed to occurs later than the NO, peak indicating conversion of some of NO to CN . The model prediction qualitatively is very good.

The predicted NH profile shown in Figure 6-9 by the model is a factor of 1.5 higher than observed. The calculated peak is reached earlier and its decay is more rapid than experimentaly observed. The addition of the $\mathrm{NH}_{\mathrm{i}}+\mathrm{NH}_{\mathrm{i}}$ ($i=1,2$) reactions are of little importance. This is not surprising since the probability of these bimolecular reactions are very low due to the low concentrations of NH_{i}. It

Flame 5: NO Conc. doped flame

Figure 6.7 Comparison between models \& experimental

Flame 5: CN Conc.

Figure 6.8 Comparisons between model \& experimental

Flame 5: NH Conc.

Figure 6.9 Comparison between models \& experimental
is interesting to note that the model predicted a drop in the NH concentration by an order of magnitude when going to the undoped flame, which is consistent with the experiment since NH concentration was just at the detection limit in the undoped flame.

To improve the model prediction of No concentration the simple expedient was to increase the nitrogen fixation rate by reaction $\mathrm{R}-98$. When this was done by reducing the barrier from 17 Kcal to 10 Kcal for the abstraction like channel HCN $+N$ in QRRK calculation, the result is an increase in rate constant for the $\mathrm{R}-98$ reaction by nearly a magnitude. This resulted in increase in NO peak by a factor of 4.5 in undoped flame as demonstrated in Figure 6-5. But it only increases a NO concentration in doped flame by a factor of 1.2 , making for a good representation of all the experimental data as shown in Figure 6-7. The predicted CN concentration was better than earlier due to a larger amount of N_{2} fixation by $\mathrm{R}-98$.

Since the predicted concentration was still much lower than experimentally observed values in undoped flame the next step was to investigate the following reaction for N_{2} fixation in addition to the reactions $\mathrm{R}-98$ in Model :

$$
\mathrm{CH}_{3}+\mathrm{N}_{2}<--->\mathrm{HCN}+\mathrm{NH} 2
$$

This reaction is 43 Kcal endothermic. An A factor of $3.0 \mathrm{E}+13$ with an E_{a} of $55 \mathrm{Kcal} / \mathrm{mole}$ was used with the 12 Kcal being a
reasonable upper limit for barrier to addition of NH_{2} to HCN. A QRRK analysis for this was not performed due to unavailibility of the thermodynamic data for the intermediates involved. It was with the rationale that little would be achieved by doing an QRRK with estimated thermo where error could be high, a generic value was used. Even with such a high E_{a} it was found that this reaction was contributing towards the formation of NO in addition to reaction R 98. This was because of the preponderance of CH_{3} and N_{2} concentration. Using this reaction channel, the results for No concentration in undoped flame as illustrated in figure 6.5 predicted by model shows a increase of factor of 6.0 over the basic model where this above mentioned N_{2} fixation by CH_{3} was not present. The No concentration in doped flame as predicted in this case is a now factor of 1.2 higher than experimental value. The CN profile is also improved over the model where this N_{2} fixation reaction by CH_{3} is not present.

The effect of reduction of rate constant for the reaction of CH_{3} with NO (R-102) was investigated for the where reaction between $\mathrm{CH}_{3}+\mathrm{N}_{2}$ was there in the mechanism. An activation energy of 1.5 Kcal was added to the value of Levy (1980) rate constant. This increases the No profile both for undoped and doped flame as illustrated in Figure 6-5 and 6-7 respectively, in comparison to the prediction for the model where $R-102$ had a faster rate and also had $\mathrm{CH}_{3}+\mathrm{N}_{2}$ reaction. There is also a decrease of $C N$ profile due to
slower rate of NO conversion to HCN by reaction $R-102$.

CONCLUSION

A detailed reaction mechanism based upon fundamental thermochemical kinetic principles has been developed to describe the concentration profiles of $\mathrm{OH}, \mathrm{CH}, \mathrm{NH}, \mathrm{CN}$, and NO including prompt NO radicals in laminar flow, fuel rich methane flames as well as flames doped with 700 ppm ammonia. A one dimensional laminar flat flame code which incorporated diffusion, and the detailed reaction mechanism was used to predict the radical concentration profiles from the model. These calculated values are compared to experimental data of Dean (1984).

The model consist of two reaction subsets, hydrocarbon oxidation set and an ammonia oxidation set. The reactions most important for coupling the two subset are :

$$
\begin{align*}
& \mathrm{CH}+\mathrm{N}_{2}\langle--->\mathrm{HCN}+\mathrm{N} \tag{1}\\
& \mathrm{CH}_{2}+\mathrm{N}_{2}<--->\mathrm{HCN}+\mathrm{NH} \tag{2}\\
& \mathrm{CH}_{3}+\mathrm{NO}\left\langle--->\mathrm{HCN}+\mathrm{H}_{2} \mathrm{O}\right. \tag{3}
\end{align*}
$$

The mechanism shows good agreement (within experimental error) with experimental concentration as function of distance above the burner, except for NO. The mechanism predicts that reaction (1) is mainly responsible for nitrogen fixation in the fuel rich flame studied. The contribution to the nitrogen fixation by reaction (2) and the Zeldovich (1948) mechanism are negligible.

A rate constant for reaction (1) (from $Q R R K$) consistent with the shock tube data of Bowman (1990) results in under prediction of the $N O$ concentration by a order of magnitude.

A higher value corresponding to a barrier of 10 Kcal for reaction (1) increases the NO peak by a factor of 4.5 . Inclusion of the following reaction :

$$
\begin{equation*}
\mathrm{CH}_{3}+\mathrm{N}_{2}<---->\mathrm{HCN}+\mathrm{NH}_{2} \tag{4}
\end{equation*}
$$

improves the NO profile by a factor of six.
NO decomposition in the flames studied takes place mainly through reaction (3).

A higher value for rate constant for reaction 2 relative to the shock tube data of Bowman and Dean (1990) and an nitrogen fixation reaction in the form of (4) is needed to properly account for the observed nitrogen fixation.

Table A－1 Reactions in Mochaniam

1.	$\mathrm{B+O2}=0+\mathrm{OH}$	（Warnatz．Ref 75 ）
2.		（ Warnatz．Ref 75 ）
3.	OR＋ $\mathrm{H} 2 \mathrm{~m}=\mathrm{B2O}+\mathrm{B}$	（ Warnatz．Ref 75）
4.	OB＋O日 $-0+\mathrm{B} 20$	（ Warnatz．Rof 75）
5.	$\mathrm{B}+\mathrm{B}+\mathrm{M}=\mathrm{B} 2+\mathrm{M}$	（ Warnntz．Ref 75）
	820	ENHANCED EY 6．500E＋00
	CO2	ENBANCED BY 1．500e＋00
	CO	ENBANCED BY 7．500E－01
	02	Enhanced by 4．000e－01
	N2	Embanced by 4．000E－01
6.	$\mathrm{B}+\mathrm{OR}+\mathrm{M}=\mathrm{R2O}+\mathrm{M}$	（Harnatz，Rof 75 ）
	H20 $\mathrm{CO2}$	ENHANCED ENHANCED BY
	co	ENHANCED bY 7．500E－01
	02	Enhanced by 1．000e－01
	N2	ENBANCED BY $4.000 \mathrm{E}-01$
7.	$\mathrm{H}+\mathrm{O} 2+\mathrm{M}-\mathrm{BO} 2+\mathrm{M}$	（ Narnatz．Rof 75 ）
	120	ENHANCED BY 6．500E＋00
	CO2	ENHANCED BY 1．500e＋00
	co	Enhanced by 7．500E－01
	02	ENHANCED BY $4.000 \mathrm{E}-01$
	N2	ENHANCED BY 1．000e－01
8.	$\mathrm{HO} 2+\mathrm{HmOH}+\mathrm{OH}$	（ Warnatz．Ref 75）
9.	$802+\mathrm{H}=\mathrm{H} 2+02$	（Warnatz．Rof 75）
11.	$\mathrm{HO2}+\mathrm{O}=\mathrm{OL}+\mathrm{OL}$ $\mathrm{HO2}+\mathrm{OH}=\mathrm{H2O}+\mathrm{O}$	（Warnatz．Rof 75 （Warnatz．Rof 75 ）
12.	CO＋OH－CO2＋H	（ Warnatz．Ref 75）
13.	CH3 3 H－CE 4	（ Narnatz．Ref 75 ）
14.	CA4＋R＝Ca3＋R2	（TSANG ¢ WARNATZ）
15.	C84 $+\mathrm{O}=\mathrm{CH} 3+\mathrm{OB}$	（TSANG 6 WARNATZ）
16.	CB4＋O日－CH3＋ 220	（Miller，Ref 57）
17.	CH4＋O2mCB3＋ BO 2	（Miller，Ref 57）
18.	$\mathrm{CB} 3+\mathrm{OmCH} 2 \mathrm{O}+\mathrm{B}$	（CHEMACT）
19.	CH3＋ $\mathrm{HO} 2=-\mathrm{CH} 30+\mathrm{OH}$	（MILLER，Rof 57）
20.	CH3＋02－CH3O2	（CHEMACT）
21.	CH3＋02 $=0+\mathrm{CH} 30$	（CHEMACT）
22.	C83＋O2 $=0 \mathrm{CH}+\mathrm{CH} 20$	（CHEMACT）
23.	$\mathrm{CH} 3+\mathrm{OH}=\mathrm{CH} 30 \mathrm{O}$	（CAEMACT）
24.	CF3＋O日－CH2OB＋	（ Wernatz．ReE 75 ）
25.	CH3＋OR－CH2＋ 220	（MILLER，Rof 57）
26.	CB302 $=0 \mathrm{OH}+\mathrm{CB} 2 \mathrm{O}$	（DISSOC）
27.	$\mathrm{CH} 2 \mathrm{OB}+\mathrm{M}=\mathrm{CB} 2 \mathrm{O}+\mathrm{B}+\mathrm{M}$	（Miller，Rof 57）
28.	Ca $30+\mathrm{MOCB2O}+\mathrm{H}+\mathrm{M}$	（MILLER，Ref 57）
29.	$\mathrm{CH2O}+\mathrm{H}=\mathrm{BCO}+\mathrm{B} 2$	（DEAN）
30.		（TSANG）
31.	$\mathrm{CH} 2 \mathrm{O}+\mathrm{OR=8CO}+\mathrm{B} 20$	（ Warnatz，Ref 75）
32.	$\mathrm{HCO}+\mathrm{B=CO}+\mathrm{B} 2$	（ Warnatz．Ref 75）
33.	$\mathrm{BCO}+\mathrm{O}-\mathrm{CO}+\mathrm{OH}$	（Warnatz，Rof 75 ）
34.	$\mathrm{BCO}+0-\mathrm{CO} 2+\mathrm{H}$	（ Warnatz．Ref 75 ）
35.	HCO4OR－CO＋ $\mathrm{H}^{2} \mathrm{O}$	（ Warnatz．Rof 75）
36.	BCO＋02－CO＋${ }^{\text {O }}$ O	（ Warnatz．Ref 75）
37.	$\mathrm{BCO}+\mathrm{M}=\mathrm{H}+\mathrm{CO}+\mathrm{M}$	（ Warnatz．Ref 75）
	H2O	ENHANCED BY 6．500E＋00
	CO 2	ENHANCED BY 1．500E＋00
	co	ENHANCED BY 7．500e－01
	02	enhanced by 1．000e－01
	N2	ENHANCED BY 4．000E－01
$\begin{aligned} & 38 . \\ & 3 . \end{aligned}$	$\underset{\mathrm{CH}+\mathrm{B2}=\mathrm{CB} 2+\mathrm{B}}{\mathrm{CO}+\mathrm{B}+\mathrm{B}}$（CBEMACT）	（ Warnatz．Ref 75 ）

(cbemact)
(Bozzol11)
(MICBAEL)
(760.200-1900 N2) (BOZZELLI, Ref 14)
 (1.00A 300.-2100. N2) (BO22ELLI, Ref 14
$(160.200-1800$ N2 (BOZZELLI, Rof 14) (760.200-1800 N2) (BOZZELLI, Rof
$(760.200-1800)$ (BOZ2ELLI, Ref 14)

```
(3NELL CHEMACT 1.2->1.8)
```

(3NELL CAEMACT)
(3NELL CEEMACT)
(760. 300.-2500×10) (BOZZELLI, Ref 14)

0.00000 E
1.8700
1.8700
$0.000008+00$
0.00000 E
0.70000
$0.00000 \mathrm{E}+00$
0.50000
0.50000
0.50000
0.50000
$0.00000 \mathrm{E}+$
0.00000 E
0.50000
0.50000
0.50000
-2.3600
$0.00000 \mathrm{E}+00$
$0.00000 E+00$
0.50000
0.50000
$0.00000 \mathrm{E}+$
1.0000
0.50000
$0.00000 \mathrm{E}+00$
$0.00000 \mathrm{E}+00$ $.00000 \mathrm{E}+00$
$0.00000 \mathrm{E}+00$ $0.00000 \mathrm{E}+00$
$0.00000 \mathrm{E}+00$ $0.00000 \mathrm{E}+00$ $0.00000 \mathrm{E}+00$ $0.00000 \mathrm{E}+00$
$0.00000 \mathrm{E}+00$ $0.00000 \mathrm{E}+00$ 0.35600
0.
-0.48900 0.35600
-0.48900
-0.59600 -0.59600
-1.3680 -1.3680
-1.0520 -1.0520
-1.3300 -1.3300
-5.8000 -5.7200
-8.1100 6.1100 0.00000 E
-1.3750 -1.3750
0.23000 E $0.23000 \mathrm{E}-01$
$0.00000 \mathrm{e}+00$ $0.00000 \mathrm{E}+00$
$0.00000 \mathrm{E}+00$ $0.00000 \mathrm{E}+00$
$0.00000 \mathrm{E}+00$.00000E+00 $0.00000 E+00$
$0.00000 \mathrm{E}+00$ D. $000000 \mathrm{E}+00$ $0.00000 \mathrm{E}+00$ $.00000 \mathrm{E}+00$ 0.00000 E
-0.94300 $0.00000 \mathrm{E}+00$ $0.00000 \mathrm{E}+00$
$0.00000 \mathrm{E}+00$ $0.00000 \mathrm{E}+00$
$0.00000 \mathrm{E}+00$ $0.00000 \mathrm{E}+00$ $.00000 \mathrm{E}+00$ D. $00000 \mathrm{E}+00$
$0.00000 \mathrm{E}+00$ $0.00000 \mathrm{E}+00$
0.0000 0.00000E+00
9000.0 6800.0
14823. 14823.
$0.00000 \mathrm{E}+00$ 1885.0 $0.00000 \mathrm{E}+00$ $0.00000 \mathrm{E}+00$
0 $0.00000 \mathrm{E}+00$ $0.00000 \mathrm{E}+00$
$0.00000 \mathrm{E}+00$ $0.00000 \mathrm{E}+00$
$0.00000 \mathrm{E}+00$ $.00000 \mathrm{E}+00$
$.00000 \mathrm{E}+00$. $00000 \mathrm{E}+00$ 2000.0
2000.0 $0.00000 \mathrm{E}+00$ 800000 E
820.0
820.00

34500.
$0.00000 \mathrm{E}+$

$0.00000 \mathrm{E}+00$
$0.03000 \mathrm{E}+00$
6300.0
$0.00000 \mathrm{E}+00$
54100.
15100.
15100.
28020.
28020.
-260.00
260.00
93790.
16030.
8883.0
8883.0
8058.0
$0.00000 \mathrm{E}+00$
-0.20100
-0.2000
326.00
15100.
15100.
4901.0
1901.0
27500.
33600.
33600.
6970.0
3410.0
3410.0
7580.0
$0.00000 \mathrm{E}+00$
4253.0
$0.00000 \mathrm{E}+00$
7
19870.
3020.0
3020.0
48690.
$0.00000 \mathrm{E}+00$
1800.0
3000.0
1500.0
1500.0
777.00
10000.
$0.00000 \mathrm{E}+00$

1500.0
12418

62418.
62419.
62420.

1350.0
1300.0
49600.
4500.0

169.	HONO+OR=82O+NO2	
170.	$\mathrm{BONO}+\mathrm{NH} 2=\mathrm{NH} 3+\mathrm{NO} 2$	
171.	$\mathrm{NO2+R}=\mathrm{NO}+\mathrm{OH}$	
172.	$\mathrm{NO2}+\mathrm{M}=\mathrm{NO}+\mathrm{O}+\mathrm{M}$	(M=n2)
173.	$\mathrm{NO2+O}=\mathrm{NO}+\mathrm{O} 2$	
174.	HO2+NO2 $=\mathrm{HONO}+\mathrm{O} 2$	
175.	$\mathrm{O}+\mathrm{O}+\mathrm{M}=02+\mathrm{M}$	($\mathrm{M}-\mathrm{n} 2)$
176.	802+802-8202+02	(HARNATZ)
177.	[202+MwOB+OH+M	(WARNATZ)
178.	[202+OR=R204802	(WARNAT2)
179.	$\mathrm{NB} 2+\mathrm{NO}=\mathrm{NNB}+\mathrm{OB}$	(3WELL CHEMACT)
180.	B+ $\mathrm{BCCO}-\mathrm{CB2S+CO}$	(MILLER, Ref 37
181.	CB2S+M-CB2+M	(miller, Ref 57) ENHANCED BY 0.000E+00
182.	CB2S+CE4-2CB3	(MILLER, Rof 57)
183.	$\mathrm{CB} 2 \mathrm{~S}+\mathrm{C} 2 \mathrm{~B} 6=\mathrm{CB} 3+\mathrm{C2B5}$	(MILLER, Rof 57)
184.	CH2S+02-COtOR+日	(MILLER, Rof 57)
105.	CH2S+82 $=$ Cli $3+\mathrm{B}$	(Miller, Rof 57)
186.	CH2S+H-CH2+ ${ }^{\text {+ }}$	(MILLER, Ref 57)
187.	$\mathrm{CB+日-C+H2}$	(MILLER, Ref 57)
188.	$\mathrm{C}+\mathrm{O}=\mathrm{CO}+\mathrm{O}$	(miller, Ref 57)
189.	$\mathrm{C}+\mathrm{OB}=\mathrm{CO}+\mathrm{B}$	(miler, Ref 57)
190.	$\mathrm{C}+\mathrm{CH3}=\mathrm{C} 2 \mathrm{~A} 2+\mathrm{B}$	miller, Ref 571
191.	$\mathrm{C}+\mathrm{CH} 2-\mathrm{C} 2 \mathrm{~A}+\mathrm{B}$	(MILLER, Ref 37)
192.	CR $3+\mathrm{OH}=\mathrm{CH} 2 \mathrm{~S}+\mathrm{H} 20$	(CaEmact)
193.	$\mathrm{CB2+N2}=\mathrm{BCN}+\mathrm{NB}$	(CaEmact)
194.	$\mathrm{CB} 2 \mathrm{~S}+\mathrm{N} 2=\mathrm{BCN}+\mathrm{NB}$	(CaEmact)
195.	C $3+\mathrm{N}=\mathrm{CH} 2 \mathrm{~N}+\mathrm{B}$	(GANSON)
196.	$\mathrm{CB} 3+\mathrm{NO}=\mathrm{CB} 2 \mathrm{~N}+\mathrm{OH}$	(MILLER, Ref 57)
197.	CB2 $2 \mathrm{~N}+\mathrm{M}=\mathrm{BCN}+\mathrm{B}+\mathrm{M}$	(MILLER, Ref 57)
198.	$\mathrm{CB} 2 \mathrm{~N}+\mathrm{N}=\mathrm{N} 2+\mathrm{CB} 2$	(MILLER, Raf 37)

$0.00000 \mathrm{E}+00$	3500.0
$0.00000 \mathrm{E}+00$	1000.0
$0.00000 \mathrm{E}+00$	1470.0
$0.00000 \mathrm{E}+00$	65580.
$0.00000 \mathrm{E}+00$	600.00
$0.00000 \mathrm{E}+00$	5000.0
-1.0000	$0.00000 \mathrm{E}+00$
$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$
$0.00000 \mathrm{E}+00$	15400
$0.00000 \mathrm{E}+00$	1430.0
0.30000	
$0.00000 \mathrm{E}+00$	$0.000000 \mathrm{E}+00$
$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$
-2.4000	9580.0
-0.54000	33620.
-1.3200	27100.
$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$
$0.00000 \mathrm{E}+00$	15000.
$0.00000 \mathrm{E}+00$	22000.
$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$

Experimental Conditions

Flow Rates (slpm)

Flame	CH_{4}	Air	O_{2}	NH_{3}	Equiv. Ratio
\#2	2.32	8.66	0.92	--	1.7
\#5	2.32	8.66	0.92	0.0083	1.7

Dist. above burner (mm)
1.0
2.0
3.0
4.0
5.0
6.0

T(K)
1833
1831
1823
1812
1801
1792

Input Parameters for QRRK Analysis:

$$
\mathrm{CH}+\mathrm{H}_{2}-->\text { Products }
$$

k	A	Ea	source
1	$3.0 \mathrm{E}+14$	3.0	a
-1	$4.50 \mathrm{E}+14$	107.9	b
2	$2.8 \mathrm{E}+15$	109.77	C
<v> $=1497.0 / \mathrm{cm}$			d
IJ PARAMETERS :			e
$0^{-}=3.8 \mathrm{~A}$		$k=144$	

a. Estimated from Bernan and Lin [10].
b. This study, Ea from Microscopic Reversibility.
c. Estimated from $A_{-2}=1.2$ E+14 from RRKM calculation of Bernan and Lin [10].
d. $\langle v$.$\rangle estimated by the method of Benson for \mathrm{CH}_{3}$ transition state [4].
g. Kee et. al [46]

UNITS: cc/mol sec and sec ${ }^{-1}$, Ea in Kcal/mol

TABLE A-3

Results from CHEMACT calculation

Apparent Rate Constants for $\mathrm{CH}+\mathrm{H} 2$---> Products

Products	A	n	Ea	$*$	$\mathrm{~N}_{2}$ Bath Gas
CH_{3}	1.04 E 26	-4.56	2650.	76 Torr	
	1.25 E 27	-4.57	2800.	760 Torr	
	5.92 E 28	-4.46	3300.	7600 Torr	
	3.13 E 16	-0.64	4780.	76 Torr	
	4.58 E 16	-0.65	4810.	760 Torr	
		-0.68	5050.	7600 Torr	

Valid from 1000 - 1400. K
Best Fit Equation $A T^{n} \exp (-E a / R T) \mathrm{cm}^{3} /$ mole-sec Units Ea in Cal/mole. Modified Arrhenius Form of the rate constants, k, incorporate changes in conc [M] with Temp. [M] should not be included in rate expressions.

TABLE A-4

Input Parameters for QRRK Analysis

k	A	Ea	source
1	4.0 E+12	0.0	a
-1	$1.16 \mathrm{E}+14$	20.0	b
2	$8.80 \mathrm{E}+12$	15.0	c
	68/cm		d
	RS :		e
-	$e / k=150 . \mathrm{cal}$		

a. High pressure limit Berman [9].
b. This study, Ea from Microscopic Reversibility.
c. Estimated from $\mathrm{OH}+\mathrm{CH} \mathrm{\# CH} \approx 10^{12.5} \mathrm{E}_{\mathrm{a}}$ from discussion between Benson and Blauwens.
e. Calculated $\left.{ }^{16}<\mathrm{V}\right\rangle$ for $\mathrm{HCNN}=857.68 \mathrm{~cm}^{-1}$; from C_{p} data. C_{p} data generated from average of HCCO.
g. Lennard Jones Parameter estimated from HCCO.
$0^{\sim}=2.5 \mathrm{~A}, \quad e / k \quad 150{ }^{\circ} \mathrm{K}$.

TABLE A-5

Results from CHEMACT calculation

Apparent Rate Constants for $\mathrm{CH}+\mathrm{N}_{2}-\cdots$ Products

Products	A	n	Ea	N_{2} Ba	th Gas
HCNN	4.11 E 44	-9.15	17920.	7.6	Torr
	4.51E30	-5.02	10630.	760	Torr
	3.16E19	-1.77	4260.	7600	Torr
$\mathrm{HCN}+\mathrm{N}$	6.8 E41	-7.62	31290.	7.6	Torr
	4.91 E 36	-6.0	33070.	760	Torr
	5.04 E 20	-1.35	27610.	7600	Torr

Best Fit Equation $A T^{n} \exp (-E a / R T) \mathrm{cm}^{3} /$ mole-sec Units Ea in Cal/mole. Modified Arrhenius Form of the rate constants, k, incorporate changes in conc [M] with Temp. [M] should not be included in rate expressions.

TABLE A-6

Input Parameters for QRRK Analysis $\mathrm{CH}+\mathrm{NO}--->$ Products

a. Estimated from Berman et al [7].
b. This study, Ea from Microscopic Reversibility.
c. Estimated from $O+\mathrm{CH} \# \mathrm{CH} \approx 10^{13.14}$ [47]. Ea from Melius.
e. Calculated ${ }^{16}\langle\mathrm{~V}\rangle$ for $\mathrm{HCNO}=935.35 \mathrm{~cm}^{-1}$; from C_{p} data.
g. Lennard Jones Parameter estimated from HCCO [45] .
$0^{2}=3.82 \mathrm{~A}, \quad e / k 232.4{ }^{\circ} \mathrm{K}$.

Results from CHEMACT calculation

Apparent Rate Constants for $\mathrm{CH}+\mathrm{NO}--->$ Products

Input Parameters for QRRK Analysis

$$
\mathrm{CH}+\mathrm{O}_{2}-->\text { Products }
$$

k	A	Ea	source
1	3.1E+13	0.0	a
-1	$4.64 \mathrm{E}+15$	45.2	b
2	$9.58 \mathrm{E}+15$	4.0	c
3	1. $00 \mathrm{E}+13$	9.0	d
-3	7.20E+12	144.0	e
4	1. $36 \mathrm{E}+12$	12.8	f
5	$5.90 \mathrm{E}+14$	33.0	9
-5	$7.27 \mathrm{E}+13$	41.05	h
6	$8.4 \mathrm{E}+14$	29.31	i
7	$1.36 \mathrm{E}+12$	39.1	j
	/cm		k
	ERS :		1
0 -	$e / k=436 \mathrm{cal}$		

a. Bernan and Lin [7].
b. This study, Ea from Microscopic Reversibility. Hf estimated.
c. Estimated from $A_{-2}=10^{13.16}$ for $\mathrm{OH}+\mathrm{CO}$ from Kerr and Moss [47]. Barrier estimated from OH addition to $\mathrm{CH}_{2} \mathrm{O}$ by Page [59].
d. Estimated from transition state of 1 rotor lost. E_{a} from vinylidene radical.
e. Estimated from thermo and Microscopic reversibility.
f. Estimated from $E_{-5}=10^{13.3}$ for $O H+C O$ from Kerr and Moss [47]. E_{5} from Schatz [68].
g. Estimated from transition state of 1 rotor gain. E_{a} from
h. Estimated from thermo and Microscopic reversibility.
i. Estimated from $A_{-6}=10^{13.16}$ from Kerr and Moss. E_{6} from Schatz [68].
j. Estimated from $E_{-7}=0.5 * 10^{13.3}$ for $\mathrm{OH}+\mathrm{CO}$ from Kerr and Moss. E_{7} from Schatz [68].
k. <v.> estimated from CPFIT by THERM . C_{p} estimated from HCOO 1. Estimated from $\mathrm{CH}_{2} \mathrm{CO}$.

TABLE A-9

Results from CHEMACT calculation

$$
\text { Apparent Rate Constants for } \mathrm{CH}+\mathrm{O}_{2}--->\text { Products }
$$

Products
$\mathrm{HCO}+\mathrm{O}$

A

3.26 E 13	-0.01	10.
3.26 E 13	-0.01	10.

7.89 E 09	.13	-100
7.89 E 09	.13	-100
7.89 E 09	.13	-100

$\mathrm{H}+\mathrm{CO}_{2}$

$5.30 E 07$.07	-50	76
$5.30 E 07$.07	-50	760 Torr.
$5.30 E 07$.07	-50	7600 Torr.

Valid from 300 - 2000. K
Best Fit Equation $A T^{n} \exp (-E a / R T) \quad \mathrm{cm}^{3} /$ mole-sec Units Ea in Cal/mole. Modified Arrhenius Form of the rate constants, k, incorporate changes in conc [M] with Temp. [M] should not be included in rate expressions.

Input Parameters for QRRK Analysis

$$
\mathrm{CH}+\mathrm{O}_{2}--->\text { Products }
$$

a. Bernan and Lin [7].
b. Ea from Microscopic Reversibility. H_{f} estimated.
c. From $A_{-2}=10^{13.16}$ for $\mathrm{OH}+\mathrm{CO}$ from Kerr and Moss [47]. Barrier from OH addition to $\mathrm{CH}_{2} \mathrm{O}$ by Page [59].
d. From $E_{-5}=10^{13.3}$ for $\mathrm{H}+\mathrm{C}_{2 \mathrm{P}_{4}}$ from Kerr and Moss.
E_{5} from Schatz [68].
e. Estimated using transition state Theory of 1 rotor gain. $\mathrm{E}_{\mathbf{a}}$ from Schatz [68].
f. From thermodynamics and Microscopic reversibility.
g. From $A_{-5}=10^{13.3}$ from Kerr and Moss [47]. E_{5} from Schatz [68] 13.3
h. From $A_{-7}=0.5 * 10^{13.3}$ for $H+C_{2} 2 \mathrm{H}_{4}$ from Kerr and Moss. Ey from Schatz.
i. <v.> estimated from CPFIT by THERM . C_{p} estimated from $\mathrm{H}(\mathrm{CO}) \mathrm{O}$ from Benson [].
j. Estimated from $\mathrm{CH}_{2} \mathrm{CO}$.

UNITS: $\quad \mathrm{cc} / \mathrm{mol} \mathrm{sec}^{2}$ and sec^{-1}, Ea in Kcal/mol

TABLE A-11
Results from CHEMACT calculation

Apparent Rate Constants for $\mathrm{CH}+\mathrm{O}_{2}-->$ Products

Valid from 300-2000. K
Best Fit Equation $A T^{n} \exp (-E a / R T) \quad \mathrm{cm}^{3} /$ mole-sec Units Ea in Cal/mole. Modified Arrhenius Form of the rate constants, k, incorporate changes in conc [M] with Temp. [M] should not be included in rate expressions.

TABLE A-12

Input Parameters for QRRK Analysis

$$
\mathrm{CH}+\mathrm{CH}_{4} \quad-->\text { Products }
$$

\mathbf{k}	A	Ea	source
1	$1.0 \mathrm{E}+14$	0.0	a
-1	$3.95 \mathrm{E}+15$	95.98	b
2	$9.38 \mathrm{E}+12$	39.82	c
3	$2.41 \mathrm{E}+15$	99.28	d
<V> $=1547$	$/ \mathrm{cm}$	$\mathrm{e} / \mathrm{k}=232.3 \mathrm{cal}$	f
LJ PARAMETERS $:$			
$0^{-}=4.3 \mathrm{~A}$			

a. Bernan and Lin. [8]
b. This study, Ea from Microscopic Reversibility.
c. $A_{-2}=10^{13} \cdot 3$ from Allara and Shaw [80].
$E_{-2}=3.2[80]$.
d. $\mathrm{A}_{-3}=$ Average A of $\mathrm{CH}_{3}+\mathrm{CH}_{3}$ and $\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{5}$ addition [80].
$E_{-2}=3.3$ [80].
e. <v.> Kee et. al [46].
f. Kee. et al [46].

UNITS: $\quad \mathrm{cc} / \mathrm{mol} \mathrm{sec}$ and sec^{-1}, Ea in Kcal/mol

TABLE A-13

Results from CHEMACT calculation

Apparent Rate Constants for $\mathrm{CH}+\mathrm{CH}_{4}-->$ Products

Products	A	n	Ea	$*$	$\mathrm{~N}_{2}$ Bath Gas
$\mathrm{CH}_{2}+\mathrm{CH}_{3}$	2.88 E 00	3.81	170.	76 Torr	
	$1.4 \mathrm{E}-06$	5.59	290.	760 Torr	
	$2.7 \mathrm{E}-06$	5.41	760.	7600 Torr	
$\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}$	3.32 E 14	-0.16	170.	76	Torr
	3.92 E 14	-0.18	290.	760 Torr	
	2.65 E 14	-0.12	760.	7600 Torr	

Valid from 300-2000. K
Best Fit Equation $A T^{n} \exp (-E a / R T) \quad \mathrm{cm}^{3} /$ mole-sec Units Ea in Cal/mole. Modified Arrhenius Form of the rate constants, k, incorporate changes in conc [M] with Temp. [M] should not be included in rate expressions.

TABLE A-14

Input Parameters for QRRK Analysis

$$
\mathrm{CH}+\mathrm{C}_{2} \mathrm{H}_{6}--->\text { Products }
$$

k	A	Ea	source
1	$2.7 \mathrm{E}+14$	0.0	a
-1	$3.05 \mathrm{E}+16$	101.27	b
2	$1.4 \mathrm{E}+13$	38.33	c
3	$1.36 \mathrm{E}+14$	33.69	d
LV> $=1221 / \mathrm{cm}$	$\mathrm{e} / \mathrm{k}=266.8 \mathrm{cal}$	e	
$\mathrm{LJ}^{\sim}=4.98 \mathrm{~A}$		f	

a. Bernan and Lin [8].
b. This study, Ea from Microscopic Reversibility.
c. $A_{-2}=6.2 \mathrm{E}+12$ for H addition to $\mathrm{CH}_{3} \mathrm{CHCH}_{2}$ from Kerr [47].
$\mathrm{E}_{-2}=2.0$ [47].
d. $\mathrm{A}_{-3}=1.12 \mathrm{E}+12$ for CH_{3} addition to $\mathrm{C}_{2} \mathrm{H}_{4}$ from Kerr [47]. $E_{-2}=31.76$
e. $\left\langle\bar{V}_{\cdot}\right\rangle$ estimated from CPFIT by THERM [63]. f. Kee [46]. et al

UNITS: $\quad \mathrm{cc} / \mathrm{mol} \sec$ and sec^{-1}, Ea in Kcal/mol

Results from CHEMACT calculation

Apparent Rate Constants for $\mathrm{CH}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow-->$ Products

Best Fit Equation $A T^{n} \exp (-E a / R T) \mathrm{cm}^{3} /$ mole-sec Units Ea in Cal/mole. Modified Arrhenius Form of the rate constants, k, incorporate changes in conc [M] with Temp. [M] should not be included in rate expressions.

TABLE A-16

Input Parameters for QRRK Analysis

$$
\mathrm{CH}+\mathrm{OH}--->\text { Products }
$$

a. Estimated from $3 *\left[\mathrm{OH}+\mathrm{CH}_{3} 3\right]$.
b. This study, Ea from Microscopic Reversibility.
c. Estimated from $A_{-2} \approx H+C 2 H 4=2.7 E+13$ from Kerr and Moss [47]. $E_{r e v}$ estimated from the barrier of H addition to $\mathrm{CH}_{2} \mathrm{O}$ Page [59].
d. <v.> estimated from CPFIT by THERM [63] from C_{p} data of HNOH. g. Estimated from $\mathrm{CH}_{2} \mathrm{O}$

UNITS: $\quad \mathrm{cc} / \mathrm{mol} \mathrm{sec}^{2}$ and $\mathrm{sec}^{-1}, \quad \mathrm{Ea}$ in Kcal/mol

TABLE A-17

Results from CHEMACT calculation

Apparent Rate Constants for $\mathrm{CH}+\mathrm{OH}--->$ Products

Products	A	n	Ea	$\mathrm{N}_{2} \mathrm{~B}$	th Gas
CHOH	4.94 E 20	-3.58	1860.	76	Torr
	4.97 E 21	-3.582	1860.	760	Torr
	5.29 E 22	-3.59	1900.	7600	Torr
$\mathrm{HCO}+\mathrm{H}$	$1.36 \mathrm{E19}$	-1.75	1510.	76	Torr
	$1.37 \mathrm{E19}$	-1.75	1510.	760	Torr
	$1.46 \mathrm{E19}$	-1.75	1550.	7600	Torr

Best Fit Equation $A T^{n} \exp (-E a / R T) \mathrm{cm}^{3} /$ mole-sec Units Ea in Cal/mole. Modified Arrhenius Form of the rate constants, k, incorporate changes in conc [M] with Temp. [M] should not be included in rate expressions.

TABLE A-18

Input Parameters for $Q R R K$ Analysis

$$
\mathrm{CH}_{2}+\mathrm{N}_{2}--->\text { Products }
$$

a. Estimated this study.from 1/2 $\left(\mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{4}\right)$.
b. This study, Ea from Microscopic Reversibility. $\mathrm{H}_{f} \mathrm{CH}_{2} \mathrm{~N}_{2}$ from average of Berman [81] and Melius [82]. S_{f} from S_{f} of $\mathrm{CH}_{2} \mathrm{CO}+2 * \mathrm{R} * \ln 2$ to account for two unpaired electron.
c. Transition State Theory (This Study).
loss of: 1 rotors, degeneracy 2.
Ea $=8$ Kcal barrier for the addition of $\mathrm{NH}+\mathrm{HCN}$
d. <v. $>$ estimated from CPFIT by THERM . C_{p} estimated from $\mathrm{CH}_{2} \mathrm{CO}$ e. Estimated from $\mathrm{CH}_{2} \mathrm{CO}$. UNITS: $\quad \mathrm{cc} / \mathrm{mol} \mathrm{sec}^{2}$ and sec^{-1}, Ea in Kcal/mol

Results from CHEMACT calculation

$$
\text { Apparent Rate Constants for } \mathrm{CH}_{2}+\mathrm{N}_{2}--->\text { Products }
$$

Products	A	n	Ea	$\mathrm{N}_{2} \mathrm{Ba}$	ath Gas
$\mathrm{CH}_{2} \mathrm{~N}_{2}$	1.68 E 29	-6.18	10660.		Torr
	2.50 E 30	-6.22	11090.	760	Torr
	5.84E29	-5.72	11530.	7600	Torr
$\mathrm{HCN}+\mathrm{NH}$	$4.02 \mathrm{El3}$	-0.54	33610.	76	Torr
	$4.04 \mathrm{El3}$	-0.54	33620.	760	Torr
	$4.28 \mathrm{El3}$	-0.54	33650.	7600	Torr

Valid from 300 - 2000. K
Best Fit Equation $A T^{n} \exp (-E a / R T) \mathrm{cm}^{3} / \mathrm{mole}-\mathrm{sec}$ Units Ea in Cal/mole. Modified Arrhenius Form of the rate constants, k, incorporate changes in Conc [M] with Temp. [M] should not be included in rate expressions.

Input Parameters for QRRK Analysis

$$
\mathrm{CH}_{2}+\mathrm{N}_{2}--->\text { Products }
$$

k	A	Ea	source
1	$4.0 \mathrm{E}+12$	0.0	a
-1	$1.2 \mathrm{E}+14$	29.5	b
2	$2.7 \mathrm{E}+13$	52.55	c
LV> $=1151 / \mathrm{cm}$	$\mathrm{e} k=436 . \mathrm{cal}$	d	
LJ PARAMETERS :			
$0^{-}=3.97 \mathrm{~A}$			

a. Estimated this study. from $2 *\left({ }^{3} \mathrm{CH}_{2}+\mathrm{N}_{2}\right)$
b. This study, Ea from Microscopic Reversibility. $\mathrm{H}_{\mathrm{f}} \mathrm{CH}_{2} \mathrm{~N}_{2}$
from average of Berman [81] and Melius [82]. S_{f} from S_{f} of $\mathrm{CH}_{2} \mathrm{CO}+2 * \mathrm{R} * \ln 2$ to account for two unpaired electron.
c. Transition State Theory (This Study).
loss of: 1 rotors, degeneracy 2.
Ea $=8$ Kcal barrier for the addition of NH + HCN
d. <v.> estimated from CPFIT by THERM . C_{p} estimated from $\mathrm{CH}_{2} \mathrm{CO}$ e. Estimated from $\mathrm{CH}_{2} \mathrm{CO}$. UNITS: $\quad \mathrm{cc} / \mathrm{mol} \mathrm{sec}^{2}$ and sec^{-1}, Ea in Kcal/mol

TABLE A-21

Results from CHEMACT calculation

Apparent Rate Constants for $\mathrm{CH}_{2}+\mathrm{N}_{2}--->$ Products

Best Fit Equation $A T^{n} \exp (-E a / R T) \mathrm{cm}^{3} /$ mole-sec Units Ea in Cal/mole. Modified Arrhenius Form of the rate constants, k, incorporate changes in Conc [M] with Temp. [M] should not be included in rate expressions.

TABLE B. 1 : RESULT EROM THE NODEL FOR ONDORED FLAME

PREMIX: ONE-DIMENSIONAL BTEADY PREMIXED LAMINAR FLAME CODE RRODOCTION VERSION 2.4, NOVEMBER 1985
BINGLE PRECIBION
MORRING SPACE REOUIREMENTS

PROVIDED	REOOIRED
160	50
25000	9011

LOGICAL INTEGER reale 2470700 $\quad 9011$

KEYWORD IMPOT

fing flame configuration, burner stabilized with specified temperature
BURA
TGIV
${ }^{\text {TGIV }}$ in the event of . Newton fallure, take 100 timesteps of $1 . E-6$
$\begin{array}{ll}\text { TIME } \\ 100 & 6.00 \mathrm{E}-6\end{array}$
${ }_{\text {WPTS }}{ }^{\prime}$ begin on ${ }_{6}$ uniform mesh of 6 points
f definition of the computational interval
$\begin{array}{ll}\text { XEND } & 1.20 \\ \text { XCEN } & 0.062\end{array}$
$\begin{array}{ll}\text { XCEN } & 0.0625 \\ \text { MMIX } 0.1815\end{array}$
ppespresure and inlot mase flow rate
PRES 1.00 (atmoapheren)
FLRT A.00E-03 (g/cm**2-zec)
$\begin{array}{ll}\text { GRAD } & 0.25 \\ \text { CURV } & 0.7\end{array}$
CURV 0.7
unreacted mole fractions
REAC 020.23
$\begin{array}{lll}\text { REAC } & 02 & 0.23 \\ \text { REAC } & \text { N2 } & .5749 \\ \text { REAC } & \text { CH4 } & \mathbf{0 . 1 9 4 9 6}\end{array}$
REAC CH4 $\quad \mathbf{0 . 1 9 4 9 6}$
/ entimated product:
$\begin{array}{lll} \\ \text { PROD } & \text { N2 } & 0.50 \\ \text { CO } & 0.12\end{array}$
$\begin{array}{lll}\text { PROD } & \text { CO } & 0.12 \\ \text { PROD } & \mathbf{0 2 0} & 0.20\end{array}$
PROD CO2 0.04
$\begin{array}{lll}\text { PROD } & \text { 日2 } & 0.14\end{array}$
IWTM Cotimated intormediate mole fractiona
$\begin{array}{lll}\text { INTM } & \text { OH } \\ \text { INTM } & \text { 1.0E-08 } \\ \text { I.03 }\end{array}$
INTM B 5.0E-03
INTH 0 1.0E
INTM HO2 1.0E
INTM NO 1.0E-04
INTM

dondinioiniouinioiodode	
googogogogogogogogogogogog	かぁ
 	 क
 óógododododododododododododot	

00

 $3.737 \mathrm{E}-0$
$\mathrm{CB2CO}$
CazCO CB3CBO Cr3cao
 $5.252 \mathrm{E}-06$
$7.018 \mathrm{E}-06$ 1.031E-05
$1.290 \mathrm{E}-05$ $2.903 \mathrm{E}-0$
$3.627 \mathrm{E}-0$ 1.290E-05 $7.018 \mathrm{E}-06$
$0.964 \mathrm{E}-08$ $1.399 \mathrm{E}-051.5$
$5.223 \mathrm{E}-05 \mathrm{I}$ 3.03
2.69
2.12
1.65
1.29
1.01
6.3
1.1
2.7
1.9
1.3
7.3
3.0
1.3
3.7
1.0
2.5
5.7
1.2
3.1

 $5.137 \mathrm{E}-$
5.136 E
$5.132 \mathrm{E}-$
S .130 E
$\mathrm{S} .127 \mathrm{E}-$
$5.126 \mathrm{E}-$
5.123 E
$\mathrm{S} .122 \mathrm{E}-$
5.120 E
5.120 E
5.119 E
5.118 E
S $36 \mathrm{E}-01$
$32 \mathrm{E}-01$
$30 \mathrm{E}-01$
$27 \mathrm{E}-01$
$26 \mathrm{E}-01$
$23 \mathrm{E}-01$
$22 \mathrm{E}-01$
$20 \mathrm{E}-01$
$20 \mathrm{E}-01$
$19 \mathrm{E}-01$
$18 \mathrm{E}-01$
$15 \mathrm{E}-01$
$14 \mathrm{E}-01$
$11 \mathrm{E}-01$
$10 \mathrm{E}-01$
$108 \mathrm{E}-01$
$106 \mathrm{E}-01$
$105 \mathrm{E}-01$
$104 \mathrm{E}-01$ 2.0
2.0
2.1
2.1
2.1
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.2
2.1
2.1
2.1
2.1
2.1 $2.037 \mathrm{E}-01$
$2.066 \mathrm{E}-01$
$2.116 \mathrm{E}-01$
$2.155 \mathrm{E}-01$
$2.184 \mathrm{E}-01$
$2.206 \mathrm{E}-01$
$2.232 \mathrm{E}-01$
$2.244 \mathrm{E}-01$
$2.250 \mathrm{E}-01$
$2.252 \mathrm{E}-01$
$2.254 \mathrm{E}-01$
$2.247 \mathrm{E}-01$
$2.236 \mathrm{E}-01$
$2.272-01$
$2.211 \mathrm{E}-01$
$2.198 \mathrm{E}-01$
$2.187 \mathrm{E}-01$
$2.177 \mathrm{E}-01$
$2.170 \mathrm{E}-01$
$2.165 \mathrm{E}-01$
$2.165 \mathrm{E}-01$ $1.713 \mathrm{E}-07$
$1.506 \mathrm{E}-0$
$1.160 \mathrm{E}-0$
$9.029 \mathrm{E}-0$
$7.140 \mathrm{E}-0$
$5.733 \mathrm{E}-0$
$3.996 \mathrm{E}-0$
$2.962 \mathrm{E}-0$
$2.326 \mathrm{E}-0$
$1.916 \mathrm{E}-0$
$1.641 \mathrm{E}-0$
$1.330 \mathrm{E}-0$
$1.095 \mathrm{E}-0$
$9.953 \mathrm{E}-0$
$9.282 \mathrm{E}-0$
$8.977 \mathrm{E}-09$
$8.865 \mathrm{E}-0$
$8.853 \mathrm{E}-0$
$8.876 \mathrm{E}-0$
$8.896 \mathrm{E}-$
$8.896 \mathrm{E}-$ 7
7
8
8
8
8
8
8
8
8
8
8
9
9 \qquad $.996 \mathrm{E}-02$
$.125 \mathrm{E}-02$
$.355 \mathrm{E}-02$
$.546 \mathrm{E}-02$
$.703 \mathrm{E}-02$
$.0008 \mathrm{E}-02$
$124 \mathrm{E}-02$
$.201 \mathrm{E}-02$
$.254 \mathrm{E}-02$
$.292 \mathrm{E}-02$
$.342 \mathrm{E}-02$
$.394 \mathrm{E}-02$
$.429 \mathrm{E}-02$
$.578 \mathrm{E}-02$
$.563 \mathrm{E}-02$
$.605 \mathrm{E}-02$
$.645 \mathrm{E}-02$
$.673 \mathrm{E}-02$
$673 \mathrm{E}-02$

 09
 03
03
04
04
-04
-04
-04
-04
-04
-04
-04
-05
-05
-05
-05
-05
-05
-05
-05
-05 $1.177 \mathrm{E}-02$
$1.234 \mathrm{E}-02$
$1.330 \mathrm{E}-02$
$1.400 \mathrm{E}-02$
$1.448 \mathrm{E}-02$
$1.478 \mathrm{E}-02$
$1.502 \mathrm{E}-02$
$1.505 \mathrm{E}-02$
$1.498 \mathrm{E}-02$
$1.488 \mathrm{E}-02$
$1.471 \mathrm{E}-02$
$1.456 \mathrm{E}-02$
$1.419 \mathrm{E}-02$
$1.389 \mathrm{E}-0$
$1.341 \mathrm{E}-0$
$1.300 \mathrm{E}-0$
$1.263 \mathrm{E}-02$
$1.230 \mathrm{E}-0$
$1.201 \mathrm{E}-02$
$1.181 \mathrm{E}-0$ Ca302
CB30
CB30
CE208
C4B2
C482

 $1.399 \mathrm{E}-05$
1.806E-05
9.544E-05
182 E
$1.395 \mathrm{E}-0$
$1.070 \mathrm{E}-06$
$1.507 \mathrm{E}-06$ $1.500 \mathrm{E}-04$
$1.827 \mathrm{E}-04$
$2.167 \mathrm{E}-04$
$2.523 \mathrm{E}-04$
$2.707 \mathrm{E}-04$
$2.800 \mathrm{E}-04$
$2.895 \mathrm{E}-04$
$3.087 \mathrm{E}-04$
$3.284 \mathrm{E}-04$
$3.384 \mathrm{E}-04$
$3.484 \mathrm{E}-04$
$3.586 \mathrm{E}-04$
$3.687 \mathrm{E}-04$
$3.789 \mathrm{E}-04$
$3.890 \mathrm{E}-04$
$4.090 \mathrm{E}-04$
$4.281 \mathrm{E}-04$
$4.457 \mathrm{E}-04$
$4.752 \mathrm{E}-04$
4.848 C

1
7
7
6
6
6
6
6
6
6
6
6
6
6

0.0487
0.0506
0.0525
0.0544
0.0362
0.0600
0.0637
0.0675
0.0750
0.0787
0.0825
0.0862
0.0900
0.0937
0.0975
0.1012
0.1050
0.1125
0.1200
0.1275
0.1350
0.1500
0.1650
0.1800
0.1950
0.2100
0.2400
0.3000
0.3600
0.4800
0.6000
0.7200
0.8400
0.9600
1.0800
1.2000

x

 $1.792 \mathrm{E}-10$
$2.226 \mathrm{E}-10$
$2.745 \mathrm{E}-10$
$3.364 \mathrm{E}-10$
$4.102 \mathrm{E}-10$
$6.016 \mathrm{E}-10$
$8.776 \mathrm{E}-10$
$1.271 \mathrm{E}-09$
$2.494 \mathrm{E}-09$
$3.353 \mathrm{E}-09$
$1.324 \mathrm{E}-09$
$5.309 \mathrm{E}-09$
$6.176 \mathrm{E}-09$
$6.800 \mathrm{E}-09$
$7.135 \mathrm{E}-09$
$7.327 \mathrm{E}-09$
$7.569 \mathrm{E}-09$
$7.706 \mathrm{E}-09$
$7.305 \mathrm{E}-09$
$6.568 \mathrm{E}-09$
$5.692 \mathrm{E}-09$
$3.990 \mathrm{E}-09$
$2.705 \mathrm{E}-09$
$1.826 \mathrm{E}-09$
$1.253 \mathrm{E}-09$
$8.859 \mathrm{E}-10$
$5.057 \mathrm{E}-10$
$2.472 \mathrm{E}-10$
$1.610 \mathrm{E}-10$
$1.091 \mathrm{E}-10$
$8.915 \mathrm{E}-1$
$7.649 \mathrm{E}-1$
$6.868 \mathrm{E}-1$ 8.06
1.03
1.31
1.64
2.02
2.93
1.03
5.35
8.88
1.14
1.45
1.83
2.26
2.75
3.25
3.73
4.15
1.83
5.33
5.66
5.83
5.77
5.39
1.87
1.32
3.81
2.97
2.04
1.953
1.13
9.73
9.37
9.36

9.4 | $.069 \mathrm{E}-10$ |
| :--- |
| $.036 \mathrm{E}-09$ |
| $.314 \mathrm{E}-09$ |
| $.642 \mathrm{E}-09$ |
| $.022 \mathrm{E}-09$ |
| $2.931 \mathrm{E}-09$ |
| $.031 \mathrm{E}-09$ |
| $.355 \mathrm{E}-09$ |
| $.889 \mathrm{E}-09$ |
| $.141 \mathrm{E}-08$ |
| $.453 \mathrm{E}-08$ |
| $.830 \mathrm{E}-08$ |
| $.269 \mathrm{E}-08$ |
| $.754 \mathrm{E}-08$ |
| $.258 \mathrm{E}-08$ |
| $.737 \mathrm{E}-08$ |
| $.157 \mathrm{E}-08$ |
| .839 E |
| $.339 \mathrm{E}-08$ |
| $.667 \mathrm{E}-08$ |
| $.839 \mathrm{E}-08$ |
| $.779 \mathrm{E}-08$ |
| $.394 \mathrm{E}-08$ |
| $.873 \mathrm{E}-08$ |
| $.326 \mathrm{E}-08$ |
| $3.811 \mathrm{E}-08$ |
| $.971 \mathrm{E}-08$ |
| $2.044 \mathrm{E}-08$ |
| $.535 \mathrm{E}-08$ |
| .136 E |

 $1.637 \mathrm{E}-13$
.081E-13
$1.353 \mathrm{E}-12$
$2.172 \mathrm{E}-12$
$3.343 \mathrm{E}-12$
$6.965 \mathrm{E}-12$
$1.283 \mathrm{E}-11$
$2.200 \mathrm{E}-11$
$5.750 \mathrm{E}-11$
$9.730 \mathrm{E}-11$
$1.663 \mathrm{E}-10$
$2.873 \mathrm{E}-10$
$4.945 \mathrm{E}-10$
$8.300 \mathrm{E}-10$
$1.324 \mathrm{E}-09$
$1.932 \mathrm{E}-09$
$2.352 \mathrm{E}-09$
$3.868 \mathrm{E}-09$
$5.186 \mathrm{E}-09$
$6.342 \mathrm{E}-09$
$7.197 \mathrm{E}-09$
$7.704 \mathrm{E}-09$
$7.043 \mathrm{E}-09$
$5.860 \mathrm{E}-09$
$1.612 \mathrm{E}-09$
$3.517 \mathrm{E}-09$
$2.003 \mathrm{E}-09$
$8.008 \mathrm{E}-10$
$3.832 \mathrm{E}-10$
$1.731 \mathrm{E}-10$
$1.146 \mathrm{E}-10$
$1.004 \mathrm{E}-10$
$9.726 \mathrm{E}-11$
$9.713 \mathrm{E}-11$
$9.756 \mathrm{E}-11$ 3.229 E
3.318 E
3.407 E
3.496 E
3.585 E
3.760 E
3.929 E
4.088 E
4.365 E
4.469 E
4.547 E
4.592 E
4.604 E
1.579 E
1.520 E
1.432 E
1.321 E
3.027 E
3.378 E
2.945 E
2.289 E
1.768 E
1.371 E
1.074 E
8.497 E
5.619 E
2.992 E
1.737 E
8.436 E
s .024 E
3.688 E
3.156 E
2.936 E
2.846 E
2.846 E

$$
\begin{array}{r}
5.15 \\
9.79 \\
1.75 \\
2.97 \\
1.78 \\
1.05 \\
2.00 \\
3.39 \\
7.97 \\
1.16 \\
1.65 \\
2.29 \\
3.07 \\
3.98 \\
1.97 \\
5.90 \\
6.611 \\
7.77 \\
8.63 \\
9.203 \\
9.49 \\
8.54 \\
7.59 \\
6.69 \\
5.78 \\
1.430 \\
3.00 \\
2.233 \\
1.63 \\
1.38 \\
1.33 \\
1.32 \\
1.32 \\
1.32 \\
1.32 \\
0
\end{array}
$$

C2B5O BNNOH $\quad \mathrm{BZO2}$ $1.030 \mathrm{E}-06$
$1.385 \mathrm{E}-06$ 4.484E-15
$5.249 E-15$ $7.406 \mathrm{E}-05$
$8.925 \mathrm{E}-05$
\qquad CR2S

C
-2.584 E

$2.548 \mathrm{E}-14$
$3.125 \mathrm{E}-14$
$3.655 \mathrm{E}-14$
$4.715 \mathrm{E}-24$ $2.584 \mathrm{E}-1$
$3.452 \mathrm{E}-2$
1.852 E
9.764 E
4.875 E
$-16 \quad \mathrm{CH} 2 \mathrm{~N}$
$\begin{array}{ll}1.935 \mathrm{E}-24 & -3.452 \mathrm{E}-20 \\ \mathbf{2} & 2.519 \mathrm{E}-12 \\ \mathbf{3 . 0 1 3 E - 1 2}\end{array}$ $3.655 \mathrm{E}-14$
$4.079 \mathrm{E}-14$ 2.350E-1
$3.504 \mathrm{E}-10$ ~
\qquad 1.933 E
2.033 E
2.140 E
2.253 E
2.374 E
2.642 E
2.951 E
3.308 E
1.179 E
F .710 E
5.311 E
E .786 E
7.533 E
B .369 E
9.215 E
1.005 E
1.158 E
1.283 E
1.376 E
1.441 E
1.501 E
1.511 E
1.499 E
1.479 E
1.155 E
1.407 E
1.335 E
$6 \quad 9.152 \mathrm{E}-10$

CA2N $2.519 E-12$
$3.013 E-12$
$3.509-12$ $6.766 \mathrm{E}-15$
$5.821 \mathrm{E}-14$
$1.334 \mathrm{E}-13$
$3.508 E-22$
$4.016 \mathrm{E}-12$
$\mathrm{f} .635 \mathrm{E}-12$

1. $635 \mathrm{E}-12$
$5.154 \mathrm{E}-12$
$5.154 \mathrm{E}-12$
$5.507 \mathrm{E}-12$
$5.941 \mathrm{E}-12$ $4.236 \mathrm{E}-1$
$4.241 \mathrm{E}-1$ $4.241 \mathrm{E}-14$
$4.159 \mathrm{E}-14$ 3. $857 \mathrm{E}-1$
$4.085 \mathrm{E}-1$ $\begin{array}{ll}3.930 \mathrm{E}-14 & 4.352 \mathrm{E}-10 \\ 3.755 \mathrm{E}-14 & 5.82 \mathrm{E}-1\end{array}$ $3.755 \mathrm{E}-14$
$3.540 \mathrm{E}-14$
$3.287 \mathrm{E}-14$ $3.287 \mathrm{E}-14$
$3.004 \mathrm{E}-14$ $3.004 \mathrm{E}-14$
$2.698 \mathrm{E}-14$. $698 \mathrm{E}-14$
$2.380 \mathrm{E}-14$ $.748 E-14$
$.207 E-14$. $0.057 E-15$ $8.057 \mathrm{E}-15$
$3.810 \mathrm{E}-15$ $3.820 \mathrm{E}-15$
$2.776 \mathrm{E}-15$
$2.125 \mathrm{E}-15$ $2.125 E-15$
$1.682 E-15$ 4.802 E
5.199 E . $726 \mathrm{E}-06$
373E-06 $3.873 \mathrm{E}-06$
$4.024 \mathrm{E}-06$
 $548 \mathrm{E}-15$ 1.119E-04 $1.181 \mathrm{E}-04$
$1.189 \mathrm{E}-04$. $084 \mathrm{E}-15$ $.542 \mathrm{E}-15$
$.815 \mathrm{E}-15$ 1.175E-04 $412 \mathrm{E}-15$ 1.33
2.76
9.97
3.62 $9.97 \mathrm{EE}-13$
$3.624 \mathrm{E}-12$ $3.624 E-12$
$7.225 E-12$
$1.444 E-11$ $1.144 \mathrm{E}-11$
$2.865 \mathrm{E}-11$
$5.572 \mathrm{E}-11$ 4. $340 \mathrm{E}-06$
$4.505 \mathrm{E}-06$
$\mathbf{3} .076 \mathrm{E}$ 4.676E-06
$5.036 \mathrm{E}-06$ $5.036 \mathrm{E}-06$
$5.120 \mathrm{E}-06$
$5.824 \mathrm{E}-06$ 5.824E-06
2. $653 \mathrm{E}-06$ 7. $548 \mathrm{E}-\mathrm{O}$ $\begin{array}{ll}06 & 2.7 \\ 06 & 2 .\end{array}$ $2.789 E-15$
$2.431 E-15$
$1.812 E-15$ $.812 E-15$
$.331 E-15$ $9.780 \mathrm{E}-1$
$5.647 \mathrm{E}-1$ S. $647 \mathrm{E}-16$
$1.510 \mathrm{E}-1$ $.32 \mathrm{EE-1}$
$.148 \mathrm{E}-1$ $\begin{array}{ll}6 & 1.678 \mathrm{E} \\ 5 \\ 5.108\end{array}$ $5.109 \mathrm{E}-07$
$1.311 \mathrm{E}-07$ $\begin{array}{ll}2.701 \mathrm{E}-16 & 3.231 \mathrm{E}-08 \\ 2.334 \mathrm{E}-16 & 1.093 \mathrm{E}-08 \\ 2.030 \mathrm{E}-16 & 5.32 \mathrm{E}\end{array}$ $\begin{array}{ccc}7.752 \mathrm{E}-06 & 2.334 \mathrm{E}-16 & 1.093 \mathrm{E}-08 \\ 7.734 \mathrm{E}-06 & 2.030 \mathrm{E}-16 & 6.322 \mathrm{E}-09 \\ 7.654 \mathrm{E}-06 & 1.939 \mathrm{E}-16 & 5.036 \mathrm{E}-0\end{array}$
$\begin{array}{lll}7.654 \mathrm{E}-06 & 1.939 \mathrm{E}-16 & 5.036 \mathrm{E}-09 \\ 7.536 \mathrm{E}-06 & 2.181 \mathrm{E}-16 & 4.678 \mathrm{E}-09\end{array}$
\qquad
$8.459 \mathrm{E}-16$
$9.543 \mathrm{E}-16$
$2.664 \mathrm{E}-1$
$3.044 \mathrm{E}-1$
$3.306 \mathrm{E}-16$
$3.448 \mathrm{E}-1$
$3.406 \mathrm{E}-1$
$3.154 \mathrm{E}-16$
$2.797 \mathrm{E}-1$
$2.428 \mathrm{E}-16$
$2.096 \mathrm{E}-$
$1.581 \mathrm{E}-1$
$9.902 \mathrm{E}-1$
$7.102 \mathrm{E}-1$
$4.968 \mathrm{E}-17$
$3.043 \mathrm{E}-1$
3.1785 E
2.869 E
$2.705 \mathrm{E}-1$
$2.705 \mathrm{E}-1$
$64 \mathrm{E}-16$
$14 \mathrm{E}-16$
$06 \mathrm{E}-16$
$48 \mathrm{E}-16$
$06 \mathrm{E}-16$
$54 \mathrm{E}-16$
$97 \mathrm{E}-16$
$28 \mathrm{E}-16$
$96 \mathrm{E}-16$
$81 \mathrm{E}-16$
$02 \mathrm{E}-17$
$02 \mathrm{E}-17$
$68 \mathrm{E}-17$
$43 \mathrm{E}-17$
$785 \mathrm{E}-17$
$125 \mathrm{E}-17$
$705 \mathrm{E}-17$
$105 \mathrm{E}-17$4.232E-09
$3.775 \mathrm{E}-09$
$3.307 \mathrm{E}-09$
$2.852 \mathrm{E}-09$
$2.065 \mathrm{E}-09$
$1.471 \mathrm{E}-09$
$1.042 \mathrm{E}-09$
$7.412 \mathrm{E}-10$
$5.329 \mathrm{E}-10$
$2.965 \mathrm{E}-10$
$1.229 \mathrm{E}-10$
$6.051 \mathrm{E}-11$
$2.632 \mathrm{E}-11$
$1.616 \mathrm{E}-11$
$1.320 \mathrm{E}-11$
$1.238 \mathrm{E}-11$
$1.216 \mathrm{E}-11$
$1.209 \mathrm{E}-11$
$1.209 \mathrm{E}-11$
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1

$166 \mathrm{E}-15$	1.433E-09
332E-15	1.317E-09
446E-13	1.184E-09
1.507E-15	1.050E-09
1.488E-15	0.186E-10
$1.379 \mathrm{E}-15$	6.427E-10
1.225E-15	5.120E-10
1.064E-15	4.150E-10
207E-16	25E-10
6.970E-16	2.478E-10
4.372E-16	1.577E-10
3.154E-16	1.151E-10
2.232E-16	8.379E-11
1.834E-16	7.127E-11
1.578E-16	6.638E-11
1.410E-16	6.435E-11
1.302E-16	$6.331 \mathrm{E}-11$
$1.227 E-16$	6.277E-11
.227E-16	6.277E-11

$5.188 \mathrm{E}-07$	$1.050 \mathrm{E}-08$
$5.341 \mathrm{E}-07$	$1.629 \mathrm{E}-08$
$5.154 \mathrm{E}-07$	$2.167 \mathrm{E}-0 \mathrm{~B}$
$4.744 \mathrm{E}-07$	$2.546 \mathrm{E}-08$
$3.663 \mathrm{E}-07$	$2.595 \mathrm{E}-08$
$2.645 \mathrm{E}-07$	$2.071 \mathrm{E}-08$
$1.871 \mathrm{E}-07$	$1.434 \mathrm{E}-08$
$1.324 \mathrm{E}-07$	$9.195 \mathrm{E}-09$
$9.460 \mathrm{E}-08$	$5.691 \mathrm{E}-09$
$5.176 \mathrm{E}-08$	$2.205 \mathrm{E}-09$
$2.216 \mathrm{E}-08$	$5.053 \mathrm{E}-10$
$1.173 \mathrm{E}-08$	$1.644 \mathrm{E}-10$
$5.943 \mathrm{E}-09$	$5.099 \mathrm{E}-11$
$4.112 \mathrm{E}-09$	$2.804 \mathrm{E}-11$
$3.640 \mathrm{O}-09$	$2.303 \mathrm{E}-11$
$3.480 \mathrm{E}-09$	$2.183 \mathrm{E}-11$
$3.414 \mathrm{E}-09$	$2.359 \mathrm{E}-11$
$3.383 \mathrm{E}-09$	$2.158 \mathrm{E}-11$
$3.383 \mathrm{E}-09$	$2.158 \mathrm{E}-11$

$8.569 \mathrm{E}-10$
$1.032 \mathrm{E}-09$
$1.115 \mathrm{E}-09$
$1.108 \mathrm{E}-09$
$9.120 \mathrm{E}-10$
$6.548 \mathrm{E}-10$
$4.382 \mathrm{E}-10$
$2.847 \mathrm{E}-10$
$1.845 \mathrm{E}-10$
$8.335 \mathrm{E}-11$
$2.768 \mathrm{E}-11$
$1.408 \mathrm{E}-11$
$8.331 \mathrm{E}-12$
$6.854 \mathrm{E}-12$
$6.419 \mathrm{E}-12$
$6.341 \mathrm{E}-12$
$6.355 \mathrm{E}-12$
$6.381 \mathrm{E}-12$
$6.381 \mathrm{E}-12$
TMOPNT: TOTAL CPD TIME.
6:07.6 MINUTES : SECONDS . FRACTION
TMOPNT: PERCENT OF TOTAL CPU TXME.

$\begin{gathered} \text { GRID } \\ \text { POINTS } \end{gathered}$	GRID	activity			EVENT	
		TIMESTEP	NEWTOM	REFINE	FUNCTION	JACOBIAN
6	15.8	10.7	5.1	0.0	7.5	8.1
11	9.0	0.0	9.0	0.0	0.9	8.0
14	8.7	0.0	8.6	0.0	0.6	8.0
18	13.4	0.0	13.3	0.0	2.6	10.7
25	16.8	0.0	16.7	0.0	1.4	15.4
34	16.0	0.0	15.8	0.0	2.6	14.3
43	9.9	0.0	9.7	0.0	0.7	9.2
41	10.3	0.0	10.3	0.0	0.5	10.0
rotal		10.7	08.5	0.0	15.7	83.6
twopnt: average cpu time.						
GRID AvERAGE SECONDS				NOMBER OF EVENTS		
$\begin{aligned} & \text { GRID } \\ & \text { poINTS } \end{aligned}$	FUNCTION	Jacobian	solve	Fowction	gacobian	solve
6	0.034	3.293	0.001	817	9	720
11	0.072	7.385	0.003	47	1	48
14	0.094	9.835	0.003	24	3	24
18	0.125	13.107	0.005	76	3	76
25	0.178	18.825	0.006	28	3	28
34	0.248	26.231	0.009	24	2	23
43	0.315	33.658	0.011	8	1	6
47	0.346	36.918	0.013	5	1	3

APPERDIX

TABLE B. 2 : RESULE FROM THE MODEL FOR DOPED FLAM

PREMIX: ONE-DIMENSTONAS STEADY PREMIXED LAMINAR FLAME CODE PRODOCTION VERSION 2.4, HOVEMBER 198.

singte prectston

	WORKING SPACE	REOUIREMENTS
	PROVIDED	REOOIRED
LOGICAL	160	58
INTEGER	25000	9011
REAL	2470700	1075107

KEYMORD INPUT
fORN flame configuration, burner atabilized with epecified temperatuxe
TGIV
1 in thSovent of a Newton failure, take 100 timesteps of 1.E-6
Time $150 \quad 6.0 \mathrm{E}-6$
f
begin on a
uniform mesh of 6 pointa
NPTS definition of the computational intervel
XEND 1.20
WHIX 0.1875
/ pressare and inlet mase flow rate
PRES 1.00 (atmospheroa)
FLRT B.00E-03 (g/cm
FLRT B.00E-03 (g/cm**2-sec)
$/$
adaptive mesh critorla
GRAD 0.25
corv 0.7
PEAC 020.22997
$\begin{array}{lll}\text { REAC } & 02 & 0.22997 \\ \text { REAC } & \text { N2 } & .57450\end{array}$
$\begin{array}{lll}\text { REAC } & \text { N2 } & \text { CH4 } \\ \text { PEAC } & \text { 0.1948 } \\ & \text { REM } & 6.9699 E-04\end{array}$
REAC NH3 $6.9699 \mathrm{E}-04$
lontimated producte
$\begin{array}{lll}\text { PROD } & \text { N2 } & 0.50 \\ \text { PROD } & \text { CO } & 0.12\end{array}$
$\begin{array}{lll}\text { PROD } & \text { CO } & 0.12 \\ \text { PROD } & \text { H2O } & 0.20\end{array}$
PROD CO2 0.04
PROD $\mathrm{L2} \quad 0.1$
ontimated intermediate mole fractions
$\begin{array}{lll}\text { INTM } & \begin{array}{l}\text { OH } \\ \text { INTM } \\ \text { B }\end{array} \frac{1.0 E-03}{5.0 E-03}\end{array}$
INTM \quad B \quad.0E-03
INTM 0 1.0E-0
$\begin{array}{lll}\text { INTM HO2 } & \text { 1.0E-O4 } \\ \text { INTM } \\ \text { NOE }\end{array}$
INTM
INTM
INTM
INTM
INTM
INTM
INTM
INTM
INTM

INTM NO $\quad 2.0 \mathrm{E}-06$

INTM ENO ${ }^{2.0 \mathrm{E}-04}$

1.20 $\begin{array}{ccc}\mathrm{X} & \mathrm{CB4} & 02 \\ 0.0000 & 1.420 \mathrm{E}-01 & 1.757 \mathrm{E}-01 \\ 0.0075 & 1.328 \mathrm{E}-01 & 1.645 \mathrm{E}-01 \\ 0.0150 & 1.238 \mathrm{E}-01 & 1.535 \mathrm{E}-01 \\ 0.0225 & 1.150 \mathrm{E}-01 & 1.423 \mathrm{E}-01 \\ 0.0300 & 1.061 \mathrm{E}-01 & 1.311 \mathrm{E}-01 \\ 0.0319 & 1.039 \mathrm{E}-01 & 1.282 \mathrm{E}-01 \\ 0.0337 & 1.017 \mathrm{E}-01 & 1.254 \mathrm{E}-01 \\ 0.0356 & 9.946 \mathrm{E}-02 & 1.225 \mathrm{E}-01 \\ 0.0375 & 9.723 \mathrm{E}-02 & 1.196 \mathrm{E}-01 \\ 0.0412 & 9.275 \mathrm{E}-02 & 1.138 \mathrm{E}-01 \\ 0.0450 & 8.824 \mathrm{E}-02 & 1.080 \mathrm{E}-01 \\ 0.0469 & 8.597 \mathrm{E}-02 & 1.051 \mathrm{E}-01 \\ 0.0487 & 8.370 \mathrm{E}-02 & 1.022 \mathrm{E}-01 \\ 0.0506 & 8.142 \mathrm{E}-02 & 9.923 \mathrm{E}-02 \\ 0.0525 & 7.913 \mathrm{E}-02 & 9.631 \mathrm{E}-02 \\ 0.0544 & 7.684 \mathrm{E}-02 & 9.340 \mathrm{E}-02 \\ 0.0562 & 7.454 \mathrm{E}-02 & 9.051 \mathrm{E}-02 \\ 0.0600 & 6.995 \mathrm{E}-02 & 8.479 \mathrm{E}-02 \\ 0.0637 & 5.539 \mathrm{E}\end{array}$
$3.823 \mathrm{E}-04$
$3.58 \mathrm{BE}-04$ $\begin{array}{ll}04 & 3 \\ 04 & 1 \\ 04 & 6 \\ 04 & 2 \\ 04 & 2 \\ 04 & 2 \\ 04 & 9 \\ 04 & 2 \\ 04 & 8 \\ 04 & 2 \\ 04 & 6 \\ 04 & 1 \\ 04 & \\ 04 & \\ 04 & 7 \\ 04 & 1 \\ 04 & 1 \\ 04 & 2 \\ 04 & 5 \\ 04 & 1 \\ 04 & 3 \\ 04 & 1 \\ 04 & 5 \\ 04 & \\ 04 & \\ 04 & \\ 04 & \\ 04 & \\ 04 & 5 \\ 04 & 3 \\ 04 & 2 \\ 04 & 1 \\ 04 & 3 \\ 04 & 1\end{array}$

11
11
11
10
-10
-10
09
09
09
09
09
09
-08
08
08
08
07
07
07
07
07
07
-07
-07
07
07
-06
-06
06
06
07
07
07
07
07
07
07
07
07
08
08
08
08
08
08
08
-08

 13
13
13
13
12
12
12
11
11
11
11
11
10
10
10
09
09
09
09
09
09
08
08
08
08
08
08
08
08
08
08
08
08
08
08
08
08
08
09
09
09
09
 -02
-02
02
-02
-02
-02
-02
-02
-02
-02
-02
-02
-02
-02
-02
-02
-02
-02
-02
-02
-02
-02
-02
-02
-02
-02
-02
-02
-02
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
 -04
-04
-04
-04
-04
-04
-04
-04
-04
-04
-04
-04
-04
-04
-04
-04
-04
-04
-04
\qquad
N2
507E $\begin{array}{ll}3.507 \mathrm{E}-01 & 6.848 \mathrm{E}-02 \\ 5.464 \mathrm{E}-01\end{array}$ $6.848 \mathrm{E}-02$
$8.058 \mathrm{EE}-0$
3.203 E $8.058 \mathrm{E}-02$
$9.203 \mathrm{E}-02$
$1.031 \mathrm{E}-01$ 5.426 E
5.392 E
5.359 E
$5.359 \mathrm{E}-0$
$5.351 \mathrm{E}-01$ $5.351 E-01$
$5.344 \mathrm{E}-01$ $344 \mathrm{E}-01$
$.336 \mathrm{E}-01$ $.336 \mathrm{E}-01$
$.329 \mathrm{E}-01$ $5.315 \mathrm{E}-0$
$5.301 \mathrm{E}-0$ $1.574 \mathrm{E}-08$
$1.989 \mathrm{E}-08$
$1.748 \mathrm{E}-07$
\qquad
CO
$2.204 \mathrm{E}-0$
2.657E-0
$2.204 \mathrm{E}-02$
$2.657 \mathrm{E}-02$
$3.114 \mathrm{E}-\mathrm{O}$
C02
6.100 E
$6.100 \mathrm{E}-03$
$7.727 \mathrm{E}-03$
C2 26 \qquad 4.522E-04
$5.801 E-04$ C284
2.676 E C2 22
1.233 E $1.23 \mathrm{E}-03$
$1.54 \mathrm{EE-03}$
$1.86 \mathrm{E}-03$ $3.372 \mathrm{E}-04$
$4.093 \mathrm{E}-04$ 3.801 E
7.155 E
$8.594 \mathrm{E}-0$ $3.514 \mathrm{E}-02$
$4.061 \mathrm{E}-02$ 1.
1.

1. $1.307 \mathrm{E}-0$
$1.355 \mathrm{E}-02$
$1.404 \mathrm{E}-0$ $\begin{array}{ll}1.146 \mathrm{E}-01 & 1.078 \mathrm{E}-06 \\ 1.166 \mathrm{E}-01 & 1.302 \mathrm{E}-06\end{array}$ $1.220 \mathrm{E}-01$
1.247 E $1.224 \mathrm{E}-01$
$1.240 \mathrm{E}-01$ $1.247 \mathrm{E}-01$
$1.300 \mathrm{E}-01$
$1.353 \mathrm{E}-01$ 5.294
5.287 E
5.281 1.564 E
1.854 E $\begin{array}{ll}1.353 \mathrm{E}-01 & 2.718 \mathrm{E} \\ \mathbf{1 . 3 0} \\ 1.40 \mathrm{E}\end{array}$
 $\begin{array}{ll}406 \mathrm{E}-01 & 2.893 \mathrm{E}-06 \\ 433 \mathrm{E}-01 & 2.712\end{array}$ 1.1
$1.305 \mathrm{E}-02$
$4.429 \mathrm{E}-02$
$4.554 \mathrm{E}-02$ $\begin{array}{ll}4.554 \mathrm{E}-02 & 1.454 \mathrm{E}-0 \\ 4.805 \mathrm{E}-02\end{array}$ 1. $806 E-02$
$5.060 \mathrm{E}-02$
$5.107 E-02$ $5.060 \mathrm{E}-02$
$5.187 \mathrm{E}-02$
$5.314 \mathrm{E}-02$ $2.893 \mathrm{E}-06$
$2.711 \mathrm{E}-06$ $5.274 \mathrm{E}-0$
$5.268 \mathrm{E}-\mathrm{t}$
$5.261 \mathrm{E}-\mathrm{O}$ $1.459 \mathrm{E}-01$
$1.485 \mathrm{E}-01$
1 $1.485 \mathrm{E}-01$
$1.511 \mathrm{E}-01$
1.563 E $2.462 \mathrm{E}-06$
$2.172 \mathrm{E}-06$
1.869 E $2.872 \mathrm{E}=06$
$1.839 \mathrm{E}-06$
1.3850 $5.440 \mathrm{E}-02$
$5.564 \mathrm{E}-22$
$5.687 \mathrm{E}-02$ $5.687 \mathrm{E}-02$
$5.806 \mathrm{E}-02$
$6.038 \mathrm{E}-02$ $1 \begin{aligned} & 1.0 \\ & 1 .\end{aligned}$ $1.0132 \mathrm{E}-03$
$1.099 \mathrm{E}-03$
$1.134 \mathrm{E}-03$ $454 E-02$
$505 \mathrm{E}-02$
608 E $1.608 \mathrm{E}-0$
$1.714 \mathrm{E}-0$
$1.769 \mathrm{E}-0$ $1.769 \mathrm{E}-0$
$1.824 \mathrm{E}-02$
$1.824 \mathrm{E}-02$
$1.879 \mathrm{E}-02$ $1.879 \mathrm{E}-02$
$.936 \mathrm{E}-02$
$993 \mathrm{E}-02$ $1.176 \mathrm{E}-03$
$1.261 \mathrm{E}-03$
$1.34 \mathrm{EE-03}$
$1.390 \mathrm{E}-03$
$1.390 \mathrm{E}-03$
$1.433 \mathrm{E}-03$ $.475 \mathrm{E}-0$
$.516 \mathrm{E}-03$ $1.516 \mathrm{E}-03$
$1.556 \mathrm{E}-03$
$1.593 \mathrm{E}-03$
$1.656 \mathrm{E}-03$ $1.846 \mathrm{E}-04$
$5.633 \mathrm{E}-04$ $5.633 \mathrm{E}-0$
$5.035 \mathrm{E}-0$ $5.833 \mathrm{E}-0$
$6.035 \mathrm{E}-0$ $6.238 \mathrm{E}-0$
$6.442 \mathrm{E}-0$ $6.142 \mathrm{E}-0$
$6.846 \mathrm{E}-0$
$7.240 \mathrm{E}-\mathrm{O}$ $7.240 \mathrm{E}-04$
$7.427 \mathrm{E}-04$
$7.605 \mathrm{E}-04$ $.605 E-04$
$.773 E-04$ $.773 \mathrm{E}-04$
$.928 \mathrm{E}-04$
$.067 \mathrm{E}-04$ 8.928 E
$8.067 \mathrm{E}-04$
$8.139 \mathrm{E}=04$
$8.378 \mathrm{E}-04$
$2.202 \mathrm{E}-03$
$2.554 \mathrm{E}-03$
$2.554 \mathrm{E}-0$
$2.645 \mathrm{E}-0$
\qquad
$2.832 \mathrm{E}-0$
$2.928 \mathrm{E}-0$
$2.928 E-03$
$3.125 E-03$
$3.335 E-03$
$3.335 \mathrm{E}-03$
$3.440 \mathrm{E}-03$
$3.570 \mathrm{E}-03$
$3.570 E-03$
$3.702 E-03$
$3.847 E-03$
$4.010 \mathrm{E}-03$
$4.102 \mathrm{E}=03$
. $1922 \mathrm{E}-03$
$\mathrm{H} .618 \mathrm{E}-03$
$1.128 \mathrm{E}-03$
$5.122 \mathrm{E}-03$
133
\qquad

 $1.664 \mathrm{E}-$
$1.762 \mathrm{E}-0$
$1.808 \mathrm{E}-0$
$1.85 \mathrm{E}-0$
$1.896 \mathrm{E}-0$
$1.936 \mathrm{E}-0$
$1.973 \mathrm{E}-0$
$2.007 \mathrm{E}-0$
$2.039 \mathrm{E}-\mathrm{0}$
$2.068 \mathrm{E}-0$
$2.118 \mathrm{E}-0$
$2.156 \mathrm{E}-0$
$2.186 \mathrm{E}-0$
$2.208 \mathrm{E}-0$
$2.234 \mathrm{E}-0$
$2.247 \mathrm{E}-0$
$2.252 \mathrm{E}-0$
$2.254 \mathrm{E}-0$
$2.253 \mathrm{E}-0$
$2.249 \mathrm{E}-0$
$2.244 \mathrm{E}-0$
$2.239 \mathrm{E}-0$
$2.229 \mathrm{E}-0$
$2.213 \mathrm{E}-0$
$2.201 \mathrm{E}-0$
$2.189 \mathrm{E}-0$
$2.180 \mathrm{E}-0$
$2.172 \mathrm{E}-0$
$2.168 \mathrm{E}-0$ -01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
-01
 07
07
07
07
07
07
07
07
07
08
08
08
08
08
08
08
08
08
08
08
09
09
09
09
09
09
09
09

\qquad

 ${ }_{0}^{x}$ 0
0
8
0
0
0
 0.015 0.0225
0.0300 0.0313
0.0337
0.035 19^{9}

 0
1.595E-0 $1.595 \mathrm{E}-05$
$2.058 \mathrm{E}-05$
$\begin{array}{r}\text { C830 } \\ \hline 576 \mathrm{E}\end{array}$ $1.214 \mathrm{E}-04$
$1.17 \mathrm{E}-04$
$1.754 \mathrm{E}-04$
$\underset{1.181 \mathrm{E}-04}{\text { CR30 }}$
$\begin{array}{cc}\text { CB2OH } & \text { C482 } \\ 1.407 \mathrm{E}-07 & 1.046 \mathrm{E}-06\end{array}$

${ }^{\text {CR3 }}$

	0.1650	9.924E-05	9.925E-08	6.	2.542E-09	1.282E-07	1.8608	06		6.34	04
36	0.1800	8.655E-	4.6188-	6.5218	1.350E	2.276E-07	1.400	1.329E	5	. 63	4
37	0.1950	7.685E	2.339 E	6.523 E	7.5338-10	$1.263 \mathrm{E}^{-07}$	1.044E-04	9.310E-07	1.892E-05	3.375E-06	5.698E-04
30	0.2100	6.944E-05	1.258E-08	6.517E-05	4.399E-10	7.297E-08	7.771E-05	6.659E-07	4.808E-05	2.472E-06	4.673E-04
39	0.2400	5.994E-05	4.717E-09	6.495E-05	1.817E-10	2.942E-08	4.503E-0	3.714E-0	4.645E-05	1.419	3.359E-04
40	0.2700	5.373E-05	2.064E-09	6.471E-05	8.308E-11	1.315E-08	$2.670 \mathrm{e}-05$	2.254E-07	4.511E-05	8.785E-07	$2.5568-04$
41	0.3000	4.934E-05	9.888E-10	6.449E-03	4.074E-11	6.313E-09	1.631E-05	1.476E-07	4.399E-05	5.837E-07	2.036E-04
42	0.3600	4.426E-05	3,60日E-10	6.414E-05	1.343E-11	1.996E-09	8.150E-0	8.007E-	$4.193 \mathrm{E}-05$	3.198E	1.469E-04
43	4800	3.924E-05	1.421E-10	6.361E-03	2.860E-12	4.026E-10	4.296E-06	4.237E-00	3.857E-05	1.703E-0	045E-04
44	0.6000	3.579E-05	9.7598-11	6.317E-05	6.699E-13	9.122E-11	3.245E-06	3.021E-00	3.584z-05	1.222E-07	8.691E-05
45	. 7200	3.314E-05	-.596E-11	6.273 E	1.3268-13	$2.073 \mathrm{E}-11$	2.7998	2.660E-00	3.384E-05	$1.096 \mathrm{E}-0$	8.077E-05
46	. 84	3.142E-05	8.179E-11	6.231E-05	3.375E-14	4.617E-12	2.627 E	2.525 E	3.213E-05	1.057E-0	05
47	0.96	3.029E-05	7.973E-11	6.193E-05	7.354E-15	1.033E-12	2.549E-06	$2.461 \mathrm{E}-08$	3.069E-05	1.042E-07	7.649E-05
48	1.0800	2.962E-05	$7.865 E-11$	6.166E-05	1.812E-15	2.793E-13	2.513	2.429E-08	$2.971 \mathrm{E}-0$	1.0362	363E-05
49	1.2000	2.952E-05	7.865E-11	6.166E-05	1.812E-15	2.793E-13	$2.513 \mathrm{E}-06$	2.429E-08	2.971E-05	$1.036 \mathrm{E}-0$	$7.563 \mathrm{E}-05$
	0.0000	1.046E-10	2.997E-05	2.140E-08	$7.438 \mathrm{E}-09$	8.309E-12	5.399E-16	2.0508-17	7.0868-15	5.672E-08	$1.158 \mathrm{EE}-11$
2	0.0075	1.320E-10	3.7978-05	2.7062-08	9.526E-09	1.042E-11	$6.746 \mathrm{E}-16$	2.390E-17	9.460E-15	7.580E-08	1.315E-11
	0.0150	2.920E-10	1.618E-05	3.450E-08	$2.3708-08$	2.BB2E-11	8. 662 E	2.100E-15	1.300E-14	9.684 E	2.175E-11
4	0.0225	1.571E-09	5.468E-05	4.387E-08	1.168E-07	1.938E-10	$9.036 \mathrm{E}-14$	9.668E-14	3.308E-14	1.200E	3.162E-10
5	0.0300	1,904E-08	6.352E-05	5.562E-08	6.258E-07	3.458E-09	1.793E-12	2.880E-12	2.582E-13	1.455E-07	7.935E-09
6	0.0319	3.538E-08	$6.579 \mathrm{E}-05$	5.906E-08	1.026E-06	7.107E-09	3.637E-12	8.154E-12	1.406E-13	1.522E-0	1.679E-08
7	0.0337	6.093E-08	6.808E-05	6.271E-08	1.595E-06	1.343E-09	6.776E-12	2.012E-11	7.061E-13	1.592E-07	3.230E-08
8	0.035	$1.003 \mathrm{E}-0$	0408-05	6.660E-08	2.401E	2.425E-08	1.179E-11	4.743E-11	1.082E-12	1.662E-07	5.930E-08
,	375	1.608E	.275E-03	.074E	3.534E-06	4.284E-08	1.953E-11	1.098E-10	1.616E-12	$1.735 \mathrm{E}-07$.064E-07
10	0.0412	3.706E-07	. 752E-05	7.984 E	7.096E-	1.224E-07	4.861E-11	4.943E-10	3.521E-12	$1.884 \mathrm{E}-0$	3.154E-07
11	04	7.856 E	0.239E-05	9.020E-00	$1.347 \mathrm{E}-05$	3.399E-07	1.181E-10	2.091E-0	0.465E-12	2.037E-07	9.330E-07
12	69	1.108 E	6.486E	9.596E-08	1.826E-05	5.597E-07	$1.852 \mathrm{E}-10$	1.300E-09	1.412E-11	2.114E-07	1.618E-06
13	0.0487	1.474E-0	8.736E-05	1.022E-07	2.430E-05	8.697E-07	2.8768	-365E-09	$2.413 \mathrm{E}-11$	2.192E-0	2.699E-06
14	0.0506	1.840 E	8.989E-05	1.088 E	3.175E-05	1.267E-06	4.387E-1	1.554E-0	4.202E-11	2.269 E	4.321E-06
15	0.0525	2.148E-06	9.244E-05	1.160E-07	4.074E-05	1.718E-06	$6.530 \mathrm{E}-10$	2.760E-08	$7.380 \mathrm{E}-11$	2.345E-07	6.613E-06
16	0.0544	2.339E-06	9.501E-05	1.238E-07	5.129E-05	2.162E-06	9.438E-10	4.683E-08	1.296E-10	$2.419 \mathrm{E}-0$	9.656E-06
17	0.0562	2.3908	9.761E-05	1.322E-07	6.335E-05	2.529E-06	1.322E-09	7.615E-08	2.270E-10	2.489 E	$1.346 \mathrm{E}-05$
18	0.0600	2.1438	1.029E-04	1.509E-07	9.152E-05	2.882E-06	2.380E-09	1.771E-07	6.517E-10	2.612E-07	2.310E-05
19	0.0637	1.703E-06	1.092E-04	1.722E-07	$1.229 \mathrm{E}-04$	2.759E-06	3.974E-0	3.609E-07	1.784E-09	2.682 E	3.518E-05
20	0.0675	1.315E-06	1.136E-04	1.955E-07	$1.545 \mathrm{E}-04$	2.423E-06	6.444	6.695E-07	4.761E-09	2.653E-07	4.957E-05
21	50	8.635	1.246E-04	2.456E-07	2.077E-04	1.753E-06	1.677E-08	1.878E-06	2.754E-08	2.126E-07	8.834E-05
22	0.0787	7.649E-07	1.301E-04	2.695E-07	2.209E-04	1.524E-06	2.727E	2.966E-06	6.312E-08	1.623E-07	1.164E-04
23	0.0825	7.126E-07	1.356E-04	2.915E-07	2.229E-04	1.346E-06	4.400E-08	4.473E-06	1.334E-07	1.092E-07	1.517E-04
24	0.0862	6.842E-07	1.411E-04	3.104E-07	2.133E-04	1.201E-06	6.982E-08	6.433E-06	2.637E-07	$6.843 \mathrm{E}-08$	1.947E-04
25	0.0900	6.625E-07	1.466E-04	3.253E-07	1.938E-04	1.075E-06	1.079E-07	8.791E-06	4.908E-07	4.391 E	$2.452 \mathrm{E}-04$
26	0.0937	6.3562-07	1.520E-04	3.350E-07	1.680E-04	9.594E-07	1.614E-07	1.138E-05	8.553E-07	$3.014 \mathrm{E}-08$	3.011E-04
27	0.0975	$5.973{ }^{\text {c }}$	1.574E	3.380 E	1.406E-04	0.461E-07	2.310E-07	1.392E-05	1.378E-06	2.168E-08	3.592E-04
20	0.1012	5.629E-07	1.628E-04	3.315E-07	1.156E-04	8.154E-07	3.010E-07	1.582E-05	2.021E-06	1.942E-08	1.141E-04
29	0.1050	5.172E-07	1.683E-0	3.1518-07	9.475E-05	9.426E-07	3.379E-07	1.671E-05	2.724E-06	2.596E-08	4.613E-04
30	0.1125	4.865E-0	1.795E-0	2.703E-07	6.653E-05	1.159E-06	3.951E-07	$1.696 \mathrm{E}-05$	4.355E-06	4.271E-08	5.3918-04
31	0.1200	4.141E-07	1.902E-0	2.271E-07	4.812E-05	1.320E-06	$4.332 \mathrm{E}-07$	1.602E-05	6.226E-06	6.312E-08	5.9638-04
32	0.1275	3.442E-07	2.002E-04	1.894E-07	3.538E-05	1.423E-06	4.530E-07	1.444E-05	8.185E-06	- $4.466 \mathrm{E}-00$	$6.32 \mathrm{eg}-04$
33	0.1350	2.826E-07	2.092E-04	1.575E-07	2.634E-05	1.471E-06	4.571E-07	1.262E-05	1.007E-05	1.043E-07	6.499E-04
34	0.1500	1.889 E	2.242 E	1.105E-07	1.566E-05	1.430E-06	4.297E-07	9.260E-06	1.304E-05	1.2808-07	$6.343 \mathrm{E}-04$
35	0.1650	1.278E-07	2.353E-04	7.818E-08	1.001E-05	1.317E-06	3.786E-07	6.679E-06	1.497E-05	1.366E-07	3.824E-04
36	0.1800	8.885E-08	2.433E-04	5.623E-08	6.817E-06	1.171E-06	$3.249 \mathrm{E}-07$	4.874E-06	1.612E-05	1.3298-07	5.178E-04
37	0.1950	6.398E-08	2.491E-04	4.122E-08	4.885E-06	1.026E-06	2.762E-07	3.633E-06	1.677E-05	1.233E-07	4.537E-04
38	0.2100	4.782E-08	2.534 E	3.074E-08	3.640E-06	8.994E-07	2.343E-07	2.711E-06	1.713E-05	1.129E-07	3.959E-04
39	0.2400	3.018E-08	2.588E-04	1.885E-08	2.264E-06	7.053E-07	1.725E-07	1.790E-06	1.720E-05	9.326E-08	3.061E-04
40	0.2700	2.106E-08	2.624E-04	$1.234 \mathrm{E}-08$	1.504E-06	5.598E-07	1.334E-07	1.257E-06	1.750E-05	$7.726 \mathrm{E}-08$	2.441E-04
41	0.3000	1.583E-08	649E-04	8.476E-09	1.052E-06	4.551E-07	1.076E-07	9.415E-07	1.831E-05	6.652E-08	$2.010 \mathrm{E}-04$
42	0.3600	1.092E-08	2.684E-04	4.718E-09	6.280E-07	3.491E-07	$7.640 \mathrm{E}-08$	6.268E-07	2.110E-05	6.274E-08	1.510E-04
43	0.4800	7.742E-09	2.730E-04	2.348E-09	$3.619 \mathrm{E}-07$	2.737E-07	5.158E-08	4.098E-07	3.091E-05	8.147E-08	1.125E-04
44	0.6000	6.550E-09	2.764E-04	$1.566 \mathrm{E}-09$	2.690E-07	2.458E-07	4.081E-08	3.203E-07	4.495E-05	1.184E-07	9.676E-05
45	0.7200	6.154E-09	$2.793 \mathrm{E}-04$	1.372E-09	$2.326 \mathrm{E}-07$	2.291E-07	3.771E-08	2.847E-07	5.933E-05	1.498E-07	9.286E-05
46	0.8400	6.061E-09	2.817E-04	1.326E-09	$2.164 \mathrm{E}-07$	2.216E-07	3.632E-08	2.671E-07	7.078E-05	1.775E-07	9.226E-05
47	0.9600	6.059 E	2.836E-04	1.321E-09	2.072E-07	2.170E-07	$3.542 \mathrm{E}-08$	$2.571 \mathrm{E}-07$	7.872E-05	1.978E-07	9.250E-05
48	1.0800	6.073E	2.850E-04	1.324E-09	2.022E-07	2.140E-07	$3.487 \mathrm{E}-08$	2.515E-07	8.333E-05	2.100E-07	9.279E-05
49	1.20	6.073E-	2.850E-04	. 3	2.022E-07	$2.140 \mathrm{E}-07$	3.487E-08	2.515E-07	8.333E-05	2.100E-07	9.279E-05

			802	NO2	ano				NNB		
1	0.0000	$7.763 \mathrm{E}-12$	1.6908-05	6.783E-06	4.448E-11	7.827E-10	3.0608-16	1.260E-07	3.0588-15	$3.561 \mathrm{E}-07$	1.183E-07
2	0.0075	0.782E-12	2.0358-05	1.089E-05	3.361E-11	8.827E-10	3.509E-16	1.596E-07	3.692E-15	3.083E-07	1.500E-07
3	0.0150	4.3985-11	2.988E-03	1.2398-05	1.1858-10	2.2611-09	7.8635-16	1.932E-07	2.580\%-14	6.864E-07	$1.816 \mathrm{E}-07$
1	0.0225	2.927E-10	4.322E-05	1.385z-05	3.233E-10	6.2065-09	3.323E-13	2.270E-07	1.554E-13	8.921E-07	2.126E-07
5	0.0300	2.0618-09	6.541E-05	1.4508-05	8.8178-10	1.703x-08	2.0905-14	2.608E-07	7.9588-13	1.130E-06	2.430E-07
6	0.0319	1.163E-09	$7.276 \mathrm{E}-05$	1.450E-05	1.1362-09	2.247E-08	4.614E-14	2.692E-07	1.226E-12	1.194E-06	2.46BE-07
7	0.0337	7.593E-09	\%.090E-05	1.444E-03	1.450E-09	$2.926 \mathrm{E}^{-08}$	$9.065 \mathrm{E}-14$	2.775E-07	1.839E-12	1.262E-06	2.518E-07
-	0.0356	1.3408-08	8.984E-05	1.430E-05	1.839E-09	3.774E-08	1.744E-13	2.857E-07	2.712E-12	1.332E-06	2.557E-07
9	0.0375	2.329E-0日	9.953E-05	1.407E-05	2.319E-09	4.8368-08	3.355E-13	2.939E-07	3.952E-12	1.405E-0	$2.584 \mathrm{E}-07$
10	0.0412	6.350E-08	1.207E-04	1.331E-05	3.608E-09	7.776E-08	1.105E-12	3.099E-07	7.978E-12	1.560E-06	2.586E-07
11	0.0450	1.708E-07	1.416E-04	1.200E-05	5.5148-09	1.252E-07	3.798E-12	3.253E-07	1.557E-11	1.728E-06	2.484E-07
12	0.0469	2.804E-07	1.497E-04	1.128E-05	6.789 E	1.594E-07	7.413E-12	3.327E-07	2.151E-11	$1.819 \mathrm{E}-0$	2.381E-07
13	0.0487	4.424E-07	1.353E-04	1.036E-05	8.320E-09	2.017E-07	1.375E-11	3.399E-07	2.919E-11	1.913E-06	2.241E-07
14	0.0506	6.718E-07	$1.573 \mathrm{E}-04$	9.344E-06	1.016E-08	2.530E-07	2.460E-11	3.467E-07	3.8818-11	2.014E-06	2.069E-07
15	0.0525	9.798E-07	1.550e-04	8.264E-06	1.238E-08	3.135E-07	4.239E-11	3.533E-07	5.041E-11	2.120E-06	1.870E-07
16	0.0514	1.370E-06	1.4862-04	7.160E-06	1.507E-08	3.829E-07	$7.016 \mathrm{E}-11$	3.595E-07	6.385E-11	2.233E-06	1.654E-01
17	0.0562	1.836 E	1.384z-04	6.0768-06	1.838E-08	4.604E-07	1.114E-10	3.653E-07	7.880E-11	2.354E-06	1.435E-07
18	0.0600	2.950E-06	1.105E-04	4.089E-06	2.728E-08	$6.359 \mathrm{E}-07$	2.456E-10	3.755E-07	1.116E-10	2.622E-06	1.017E-07
19	0.0637	4.173E-06	8.210E-05	2.552E-06	4.082E-08	8.322E-07	1.757E-10	3.837E-07	1.451E-10	2.931E-06	6.874E-08
20	0.0675	5.425E-06	5.901E-05	1.487E-06	6.094E-08	1.051E-06	0.435E-10	3.894E-07	1.785E-10	3.287E-06	4.549E-08
21	0.0750	7.988E-06	3.167E-05	4.805E-07	1.252E-07	1.598E-06	2.225E-09	3.929E-07	2.514E-10	4.156E-06	2.194E-08
22	0.0787	9.440E-06	2.393E-05	2.535E-07	1.709E-07	1.943E-06	3. 603E-09	3.903E-07	3.008E-10	4.685E-06	1.6118-08
23	0.0825	1.0965-03	1.869E-05	1.346E-07	$2.224 \mathrm{E}-07$	2.364E-06	5.709E-09	3.848E-07	3.616E-10	5.284E-06	1.267E-08
24	0.0862	1.249E-05	1.502E-05	7.406E-08	$2.735 \mathrm{E}-07$	$2.846 \mathrm{E}-06$	6.849E-09	3.766E-07	4.349E-10	5.955E-06	1.0612-08
25	0.0900	1.389E-05	1.236E-05	4.343E-08	3.164E-07	3.375E-06	1.334E-08	3.659E-07	5.194E-10	6.696E-06	9.305E-09
26	. 0937	1.504E-05	1.037E-05	2.7358-08	3.447E-07	3.923E-06	1.943E-08	3.533E-07	6.121E-10	7.495E-06	8.372E-09
27	0.0973	1.577E-05	-.866E-06	1.897E-08	$3.573 \mathrm{E}-07$	4.449E-06	$2.726 \mathrm{E}-08$	3.394E-07	7.078E-10	0.327E-06	7.590E-09
28	0.1012	1.599E-05	7.803E-06	1.4208-08	3.6408-07	4.902E-06	3.703E-08	3.251E-07	8.034E-10	9.168E-06	6.955z-09
29	0.1050	1.573E-05	7.106E-06	1.147E-08	3.764E-07	5.2518-06	4.889E-08	$3.111 \mathrm{E}-07$	8.951E-10	9.999E-06	6.563E-09
30	0.1125	1.436E-05	5.992E-06	8.482E-09	3.893E-07	3.699E-06	7.721E-08	2.832E-07	1.045E-09	1.152E-05	5.830E-09
31	0.1200	1.245E-03	4.988E-06	6.561E-09	3.7468-07	3.915E-06	1.084E-07	2.564E-07	1.149E-09	1.276E-05	5.077E-09
32	0.1275	1.040E-05	4.093E-06	5.1732-09	3.4018-07	5.953E-06	1.386E-07	2.317E-07	1.209E-09	1.369E-05	4.351z-09
33	0.1350	8.4322	3.325 E	4.133E-09	$2.9608-07$	5.857E-06	1.641E-07	2.092E-07	1.230E-09	1.433E-05	3.687E-09
34	0.1500	5.361E-06	2.195E-06	2.7872-09	2.060E-07	$3.381 \mathrm{E}-06$	1.892E-07	1.716E-07	1.177E-09	1.492E-05	2.611E-09
35	0.1650	3.302E-06	1.461E-06	1.977E-09	1.375E-07	4.757E-06	1.845E-07	1.420E-07	1.063E-09	1.5028-05	1.848E-09
36	18	2.031 E	9.873E-07	1.459E-09	9.077E-08	4.130E-06	1.617E-07	1.187E-07	9.321E-10	1.489E-05	1.325E-09
37	0.1950	1.268E-06	6.803E-01	1.1118-09	6.071E-08	3.563E-06	1.326E-07	1.001E-07	8.075E-10	1.468E-05	9.676E-10
38	0.2100	6.068E-07	4.774E-07	- $.658 \mathrm{E}-10$	4.177E-08	3.074E-06	$1.048 \mathrm{E}-07$	8.512E-08	6.979E-10	1.444E-05	7.220E-10
39	0.2400	3.724E-07	2.635E-07	5.823E-10	2.281E-08	$2.343 \mathrm{E}-06$	6.326E-08	6.364E-08	5.316E-10	1.397E-05	4.401E-10
40	0.2700	1.092E-07	1.528E-07	4.041E-10	1.401E-08	1.849E-06	3.844E-08	4.853E-08	4.188E-10	1.357E-05	2.884E-10
41	0.3000	1.039E-07	9.108E-08	2.831E-10	9.516E-09	1.510E-06	2.922E-08	3.762E-08	3.415E-10	1.323E-05	2.007E-10
42	0.3600	4.173E-08	3.879 E	1.545E-10	5.960E-09	1.118E-06	1.206E-08	2.453E-08	2.526E-10	1.262E-05	1.193E-10
43	0.4800	1.447E-08	1.058E-08	5.835E-12	3.906E-09	8.145E-07	5.771E-09	1.348E-08	1.838E-10	1.161E-05	6.971E-11
44	0.6000	7.057E-09	2.813E-09	2.430E-11	3.139E-09	6.880E-07	3.959E-09	0.650E-09	1.550E-10	1.079E-05	5.287E-11
45	0.7200	6.341E-09	6.866E-10	1.371E-12	2.671E-09	6.525E-07	3.476E-09	6.294E-09	1.467E-10	1.018E-05	4.744E-11
46	0.8400	5.978E-09	1.590E-10	1.032E-11	2.384E-09	6.422E-07	3.365E-09	5.065E-09	1.440E-10	9.666E-06	4.551E-11
47	0.9600	5.9118-09	3.693E-11	8.852E-12	2.178E-09	$6.394 \mathrm{E}-07$	3.356E-09	4.359E-09	1.431E-10	9.233E-06	4.467E-11
48	1.0800	5.911E-09	1.065E-31	- $108 \mathrm{E}-12$	2.048E-09	$6.388 \mathrm{E}-07$	3.367E-09	3.971E-09	1.427E-10	0.934E-06	4.428E-11
49	1.2000	5.911E-09	1.065E-11	8.108E-12	2.048 E	6.388	3.367E-09	3.971E-09	E-10	8.	428 E
		HONO	C2850	annor	H202	NB2NO	Cr3co	CH2S		CH2N	
1	0.0000	1.8512-07	1.029E-06	5.2108-11	7.038E-05	2.197E-10	3.795E-10	2.856E-21	7.642E-17	4.4712-11	
2	0.0075	2.264E-07	1.383E-06	6.093E-11	-.482E-05	2.880E-10	4.9608-10	3.591E-21	1.026E-20	3.350E-11	
3	0.0150	2.623E-07	1.712E-06	6.024E-11	9.694E-05	3.508E-10	7.906E-11	1.574E-19	2.644E-24	6.207E-11	
	0.0225	2.831E-07	2.197E-06	7.319E-11	1.065E-04	4.056E-10	5.743E-11	4.06BE-17	2.344E-25	7.078E-11	
5	0.0300	2.707E-07	2.661E-06	7.398E-11	1.125E-04	4.456E-10	2.551E-10	8.963E-15	5.073E-22	8.109E-11	
6	0.0319	2.579E-07	2.783E-06	7.303E-11	1.131E-04	4.509E-10	3.220E-10	2.742E-14	1.624E-24	8.508E-11	
7	0.0337	2.4068-07	2.909E-06	7.155E-11	1.133E-04	4.540E-10	3.738E-10	7.023E-14	3.516E-24	-.982E-11	
8	0.0356	2.186E-07	3.037E-06	$6.949 \mathrm{E}-11$	1.130E-04	4.544E-10	4. 082E-10	1.561E-13	2.651E-23	9.561E-11	
	0.0375	1.920E-07	3.169E-06	6.681E-11	1.121E-04	4.516E-10	4.285E-10	3.146E-13	1.9768-22	1.028E-10	
10	0.0412	1.271E-07	3.441E-06	5.961E-11	1.085E-04	4.356E-10	4.491E-10	1.089E-12	6.342E-21	1.227E-10	
11	0.0450	6.257E-08	3.725E-06	5.041E-11	1.020E-04	$4.033 \mathrm{E}-10$	4.893E-10	3.927E-12	1.917E-19	1.553E-10	
12	0.0469	3.891E-08	3.873E-06	4.546E-11	9.734E-05	3.800E-10	5.271E-10	7.520E-12	1.192E-18	1.788E-10	
13	0.	2.	$4.024 \mathrm{E}^{-06}$	1.043E-11	9.283E-05	3.543E-10	8E-	45E-	-	$2.074 \mathrm{E}-1$	

	0.0506	1.245E-08	4.180E-06	3.549 E	46E-05		6.322E-10	2.918E-11	3.212E-17	2.410E-10
15	0.05	7.182 E	4.340E	61	7.833E-05	$2.916 \mathrm{E}-10$	6.979E-10	$5.634 \mathrm{EE}-11$	1.406E-16	2.797E-10
16	0.05	4.514E-09	4.505E	2.637E-11	7.0598-05	$2.573 \mathrm{E}-10$	7.702E-10	1.057E-10	5.429E-16	3.231E-10
17	0.0562	3.065E-09	4.671E	2.239E-11	6.246E-05	2.226E-10	8.167E	1.916 E	1.887 E	3.714E-10
18	0.06	1.615	. 0	. 578	4.575 E	1.560 E	1.003E-09	5.603 E	1.485E-14	4.840E-10
19	0.0637	9.148 E	5.422E	1.093E-11	3.046 E	1.020 E	1.1518	1.428E	8.306E	6.294E-10
20	0.0675	5.542E-10	5.826E-06	7.566E-12	1.812E-05	6.382E-1	1.286 E	3.288 E	3.817E-13	8.295E-10
21	0.0750	2	6.655 E	3.942 E	369E	2.690	513	1.409	4.942E	1.471E-09
22	0.078	1.858E	7.017 E	2.98	1.613E-06	1.849E-11	1.606E	2.733 E	1.710E-11	052E-09
23	O8	1.4511	3212	2.3	.924E-07	1.343E-11	1.677E-0	5.050 E	5.451E-11	838E-09
24	. 0862	1.173 E	7.550E		1.273 E	1.012E	1.715E	8.840 E	598	3.852E-09
25	0.0900	9.680E	.695E-06	1.549 E	3.197E-08	7.798E-1	1.711E-09	1.455E-0	4.224E-10	5.058E-09
26	0.0937	6.068E	54E-06	2712	1.112 E	6.083 E	6618	2.236	.903	09
27	0.0975	6.718E-11	7.736E-06	1.060E-12	6.506E-09	4.769E-12	1.568E-09	3.196	2.026 E	06E-09
28	0.1012	6.165E-11	7.656E-06	$9.688 \mathrm{E}-13$	5.175E-09	4.226E-12	1.496E-0	4.089	3.566	97
29	0.1050	6.838E-11	7.537E-06	E	4.804E-09	4.571E-12	1.498E-09	.5922	5.498E-09	08
30	0.1125	7.855E-11	7.222 E	$1.181 \mathrm{E}-12$	4.3408-09	S.171E	1.428E-09	5.179 E	1.044 E	712E-08
31	0.1200	-. 506E-11	6.903 E	1.262E-12	3.860E-0	5.523 E	1.312E-0	5.331 E	. 621	$2.151 \mathrm{E}-08$
32	0.1275	-. $800 \mathrm{E}-11$.618E-06	292E-12	3.3708-09	5.651 E	1.179E-09	5.143E-07	2.155E-08	42
33	0.1350	8.781E-11	6.379E-06	1.280E-12	2.898E-09	5.595 E	1.046E-09	4.734E-07	2.533 E	2.510E-08
34	0.1500	0.030E-11	6.036E-06	1.163E-12	2.087E-09	5.077 E	8.149E-10	$3.655 \mathrm{E}-07$	$2.583 \mathrm{E}-08$	2.214E-08
35	0.1630	.975E	. $818 \mathrm{EE}-06$.011E-12	1.482E	4.420E	6.397E-10	640 E	064E	1.687E-08
36	0.1600	3.8758-11	S. 678E-06	8.555E-13	1.049E-09	3.745E-12	5.097E-10	1.870E-07	1.432E-08	1.179E-08
37	0.1950	4.895E-11	5.587E-06	7.169E-13	7.464E-10	3.142E-12	4.135z-10	1.326E-07	9.223 E	7.908E-09
38	0.2100	4.093E-11	5.526E-06	$6.029 \mathrm{E}-13$	5.384E-10	2.647E-12	3.419E-10	9.508E-08	5.746E-09	5.242E-09
39	0.2400	2.959E-11	5.459E-06	4.401E-13	3.05 6E-10	1.941E-12	2.494E-10	5.283E-08	2.286E-09	2.418E-09
40	0.2	2.199 E	3.422E	291E-13	1.831E-10	1.453E-12	1.911E-10	3.207E-08	9.782E-10	1.206E-09
4	0.3000	1.692E-11	5.399E-06	.542E-13	1.1528-10	1.122E-12	1.526E-10	2.105E-00	4.619E-10	6.675E-10
42	0.3600	1.178E-11	3.376E-06	1.782E-13	5.733E-11	7.915E-13	1.120E-10	1.127E-08	1.535E-10	3.098E-10
43	0. 4800	7.927E-12	5.356E-06	1.211E-13	2.546E-11	3.442E-13	8.222E-11	5.808E-09	4.914E-11	1.636E-10
44	0.6000	$6.234 \mathrm{E}-1$	5.343E-08	9.604E-14	1.594E-11	1.357E-13	7.026E-11	4.057E-09	2.753E-11	1.272E-10
45	0.7200	5.21	5.332E-06	0.046 E	1.317E-11	3.650E-13	6.559E-11	3.608E-09	2.2808-11	1.165E-10
46	0.8400	4.556E-12	5.321E-06	7.045E-14	1.240E-11	3.196E-13	6.364E-11	3.455E-09	2.168E-11	1.1408-10
47	0.9600	1.083E-12	5.312E-06	6.321E-14	1.219E-11	$2.860 \mathrm{E}^{-13}$	6.264E-11	392E-09	$2.146 \mathrm{E}-11$	1.137E-10
48	. 0600	3.785E-12	3. 305E-06	5.665E-14	1.213E-11	$2.661 \mathrm{E}-13$	6.212E-11	363E-09	2.146E-11	136E-10
	3.2000	3.785E-12	5.305E-06	5.865E-14	1.213E-11	2.6618-13	6.212E-11	3.363E-0	2.146E-1	.130E-1

tMORNT: tOTAL CPO time
6:59.8 MINOTES : SECONDS . FRACTION
thopnt: percent of total ced time.

		activity			EVENT		
$\begin{aligned} & \text { GRID } \\ & \text { POINTS } \end{aligned}$	$\begin{aligned} & \text { GRID } \\ & \text { TOTAL } \end{aligned}$	TIMESTEP	NEWTON	REFINE	FUNCTION	JACOAIAN	solve
6	17.0	13.5	3.5	0.0	9.6	7.0	0.3
11	7.9	0.0	7.9	0.0	0.8	7.1	0.0
14	7.6	0.0	7.5	0.0	0.5	7.0	0.0
19	11.5	-. 0	11.4	0.0	1.4	9.9	0.1
26	21.1	0.0	21.0	0.0	2.3	18.7	0.1
35	7.3	0.0	1.2	0.0	0.8	6.4	0.0
44	8.7	0.0	0.6	0.0	0.5	8.2	0.0
48	9.4	0.0	9.2	0.0	0.4	9.0	0.0
49	9.5	0.0	9.3	0.0	0.3	9.2	0.0
total		13.5	85.6	0.0	16.8	82.5	0.6

TMOPNT: AVERAGE CPO tIME
$\frac{\text { average seconds }}{\text { FUNCTION Jacobian }}$
NUMBER OE EVENTB
FUNCTION JACOBIAN SOLVE

Reference

1. Bartok W., Crawford A. R. and Piegari G. J., " Systematic field study of NO_{x} emission control methods for Utility Boilers ", Esso Research and Engineering Co. Report No. GRU 4GNOS. 71 to the Office of Air Programs, Research Triangle Park, North Carolina (1971).
2. Bachmaier, F., Eberius K. H. and Just Th.," the formation of nitric oxide and the detection of HCN in Premixed hydrocarbon-air flames at 1 atmosphere," Combustion Science and Technology, 7, 77, 1973.
3. Bartok W., Crawford A. R. and A. Skopp, " Control of NO_{x} Emissions from Stationary Sources ", Chem Engg Prog., 67, 64 (1971).
4. Benson S. W., " Thermochemical Kinetics", 2nd Ed., Wiley, NY., 1976.
5. Blauwens J., Smets B., and Peeters, J.," Mechanism of Prompt Nitrogen Oxide Formation of Hydrocarbon Flames", Sixteenth symposium (International) on Combustion, The Combustion Institute, The Combustion Institute, Pittsburgh, Pa, 1977, 1055.
6. Burcat A. "Combustion Chemistry", W.C. Gardiner, Jr., Ed., Springer-Verlag, New York 1984 p 173.
7. Berman, M. R., Fleming, J. W., Harvey, A. B., and Lin, M. C., " Temperature dependence of CH radical
reactions with oxygen, nitric oxide, carbon monox ide, and carbon dioxide", in Nineteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburg, Pa., 1982, 73.
8. Berman M. C. and Lin M. C.," Kinetics and Mecha nisms of the reactions of CH with $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$, and $\mathrm{n}-\mathrm{C}_{4} \mathrm{H}_{10}$ ", Chemical Physics., 82, 435, 1983.
9. Berman M. R. and Lin M. C., " Kinetics and Mechanism of the $\mathrm{CH}+\mathrm{N}_{2}$. Temperature and Pressure dependence Studies and Transition State Theory Analysis.", J. Phys. Chem. 87, 3933, 1983.
10. Berman M. R. and Lin M. C., " Kinetics and mecha nisms of the reaction of CH and CD with H_{2}, and D_{2} ", J. Chem. Phys. 81, 5743, 1984.
11. Bowman C. T., "Kinetics of Pollutants Formation and Destruction in Combustion", Tenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 503, 1965.
12. Bowman C. T., Dean A. J., and Hanson R. K., "High temperature shock tube study of reaction of CH and C- atoms with N_{2} ", Twenty third Symposium (International) on Combustion, Orleans, France.
13. Bozzelli J. W. and Dean A. M., " Chemical Activa tion analysis of the Reaction of $\mathrm{C}_{2} \mathrm{H}_{5}$ with O_{2}. ", Jou. Phy. Chem. 3313, 90, 1990.
14. Bozzelli J. W. and Dean A. M., " Energized Complex

Quantum Rice-Ramsperger-Kassel Analysis on reac tions of NH_{2}, with $\mathrm{HO}_{2}, \mathrm{O}_{2}$, and O atoms", Jou. Phys. Chem., 1058, 23, 1989.
15. Brooks B., R. and Schaefer H. F., " Reactions of carbynes. Potential energy surfaces for the doublet and quartet methylidyne (CH) reactions with molecular hydrogen.", J. Chem. Phys., 67, 5146, 1977.
17. Bosnali M., W. and Perner D., Z., " Reaction of pulse radiolytically generated methylidyne radical with methane and other substances", Naturforscher, 26a, 1768, 1971.
18. Braun W., Mcnesby, J. R., and Bass, A., M., " Flash photolysis of methane in the vacuum ultraviolet. II. Absolute rate constant for reactions of CH with methane, hydrogen, and nitrogen ", J. Chem. Phys., 46, 2071, 1967.
19. Butler J., E., Fleming J., W., Harvey A., B., Lin M., C., " Kinetics of CH radical with selected molecule at room temperature ", Chem. Phys., 56, 335, 1981.
20. Chapman S. and Cowling T. G.,(1970), " The Mathe matical Theory of Non Uniform Gases ", Third Edition, Cambridge University Press, Cambridge.
21. Coffee T. P. and Heimerl J. M. (1981), " A Trans
port Algorithym for Premixed Laminar Steady State Flames", Combust and Flame, 43, p. 273.
22. Cobos C. J. Hippler, H., Luther K. and Ravishanka ra A. R., J. Phys. Chem. 89, 4332 (1985)
23. Curtiss C. F. and Hirschfelder J. O., " Transport Properties of Multicomponent Gas mixtures.," Jou. Chem. Phys., 17, 550, 1949.
24. Darwin D. C., Young A. T., Johnston H. S. and Moore B.," Rate constants for CH_{2} removal by O_{2}, No, and $\mathrm{C}_{2} \mathrm{H}_{2}$ fron Infrared Diode Laser flash Kinetic Spectroscopy.", American Chemical Society, 93, 1076, 1989.
25. Dean A. M., Chou M. S., Stern D., Int. J. Chem. Kinetics (1984).
26. Dean A. M., Chou M. S., "Absolute Concentration Measurements of NO, $\mathrm{NH}, \mathrm{CN}, \mathrm{CH}$, and OH in Rich CH_{4} Flames", Personal Communication.
27. Dean A. M., " Prediction of Temperature and pres sure effect upon radical addition and recombination reactions. ", J. of Phys. Chem. 89, 4600, 1985.
28. Dean A. M. and Westmoreland P. R., " Bimolecular QRRK Analysis of Methyl Reactions ", Int. Jou. of Chem. Kinetics, 19, 207, 1987.
29. de Soete, G. G., "An overall mechanism for No formation from ammonia and ammines added to pre-
mixed flames ", Combustion Institute European Symposium, Academic Press, 439, 1973.
30. de Soete, G. G., "Overall reaction rates of NO and N_{2} formation from fuel nitrogen ", Fifteenth Symposium International on Combustion, The combustion Institute, Pittsburg, 10931975.
31. Fenimore C. P., "Destruction of Methane in Water gas by reaction of CH_{3} with OH radical, " Twelve Symposium (International) on Combsution, The Combustion Institute, Pittsburgh, 373, 1969.
32. Fenimore C. P. " Formation of Nitric Oxide in Premixed flames", 13th Symposium (International) on Combustion, The Combustion Institute Pitts burgh, PA, 373, 1971.
33. Fenimore C. P., " Formation of Nitric oxide from fuel nitrogen in Ethylene flames", Combustion and Flame, 19, 289, 1972.
34. Fenimore C. P., " Reaction of fuel -nitrogen in rich flame gases," Combustion and Flame, 26, 249, 1976.
35. Fenimore C. P.," Studies of fuel nitrogen species in rich flame gases", Seventeenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, 661, 1979.
36. Forst ${ }^{\prime}$ ' " Theory of Unimolecular reactions. ",

Academic Press: New York, p 184, 1973.
37. Gutman, D., Slagle I. R., J. Am. Chem. Soc. 106 4356, 1986.
38. Hatakeyama S., Bandow H., Okuda M. and Akimoto H., J. Phys. Chem., 84, 3394, 1980.
39. Haynes, B. S., " The formation and behaviour of nitrogen species in fuel rich hydrcarbon flames", Ph. D. Thesis, University of New Soth Wales 1975.
40. Haynes B. S., " Reactions of Ammonia and Nitric Oxide in the burnt gases of fuel rich hydrocarbon air flames", Combustion and flame, 28, 1131977.
41. Haynes B. S., "The oxidation of Hydrogen Cyanide in fuel rich flames", Combustion and Flames, 28, 1131977.
42. Haynes B. S., "kinetics of nitric oxide formation in combustion", Alternative hydrocarbon fuels: Combustion and Chemical Kinetics. Progress in Astronautics and Aeronautics, 62, American Insti tute of Astronautics and Aeronautics, 3591978.
43. Hilaire C., Puechberty D. and Cottereau M. J., Poster PS35, presented at the Twentieth Symposium (International) on Combustion, Ann Arbor, Michigan, August 1984.
44. Hinshelwood C.N., Proc. Roy. Soc. (A). 113230 1927.

45 Hirschfelder, J. O., Curtiss C. F., and Bird R. B.,

> " Molecular theory of Gases and Liquuids", Wiley, New York, 1954 .
46. Hirschfelder J. O., Curtiss C. F. and Campbell D. E., " The Theory of Flames and Detonations," Nine teenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, 1953.
47. Kassel L. S., J. Phys. Chem., 32, 225, 1928.
48. Kassel L. S., J. Phys. Chem., 32, 1065, 1928.
49. Kee R. J., Miller J. A. and Jefferson T. H., " A general-purpose Problem Independent, Transportable, Fortran chemical Kinetics Code Package." Sandia Lab., ReportSand 80-8003, Livermore, CA, 1980.
50. Kee R. J., Grcar J. F., Smooke M. D. and Miller J. A., " A Fortran program for Modeling steady Laminar One Dimensional Premixed flames." Sandia report SAND85-8240, Livermore, CA, 1987.
51. Kee R. J., Warnatz R., and Miller J. A., "A Fortran Computer Code Package for the Evaluation of Gas-Phase Viscosities, Conductivities, and Diffusion Coeficients,"Sandia laboratories Report SAND83-8209 1983.
52. Kerr J. A. and Moss S. J., " CRC Handbook of Bimolecular and Termolecular Gas Reactions ", Volume I and II, Florida, CRC Press, 1981.
53. Kistiakowsky G. B. and Michael J. V., " Mechanism of chemi-ionization in hydrocarbon oxidations ", J. Chem. Phys., 40, 1447, 1964
54. Laufer A. H. and Bass A. M., " Rate constants of the combination of Methyl radicals with Nitric oxide and oxygen.", Int. Jou. of Chem. Kinetics VII 6391975.
55. Levy J. M. " Modeling of Fuel-Nitrogen Chemistry in Combustion: The Influence of Hydrocarbons", presented at Fifth E.P.A. Fundamental Combustion Research Workshop, Newport Beach, California 1980.
56. Lichtin D. A., Berman M. R., and Lin M. C.,"Immi dogen (NH) ($A^{3} \pi--->X^{3} \Sigma^{-}$) chemiluminescence from the methylidyne $(\mathrm{CH})\left(\mathrm{X}^{2} \pi\right)+$ nitric oxide reaction $"$, Chem. Phys. Lett., 108, 18, 1984.
57. Marcus R. A., J. Chem. Phy., 20, 359, 1952.
58. Marcus R. A., and Rice 0. K., J. Phys. and Colloid Chem., 558941951.
59. Mathur, S., Tondon, P. K., and Saxena S. C., (1967) " Thermal Conductivity of Binary Ternary and Quaternary Mixtures of Rare Gases", Mol. Phys., 12, p. 569.
60. Matsui Y. and T. Nomaguchi, Combustion Flame, 32, 205 (1978).

61 Melius C., " BAC-MP4 Heats of Formation and Free", 1989, A personal communication.
62. Messing, I., Sadowski, C. M., and Filseth, S. V., " Absolute rate constant for the reaction of methylidyne radical with molecular oxygen ", Chem. Phys. Lett., 66, 95, 1979.
63. Miller J. A. and Bowman C. T., " Mechanism and Modeling of Nitrogen Chemistry in Combustion ", Journal of Progress in Combustion and Flame, 1989.

64 Miyauchi T., Mori Y. and Imamura A " 16th Symposi um (International) on Combustion", The Combustion Institute, Pittsburgh, PA, 1977, p 1073.
65. Page M., " Fragmentation Versus Isomerization: A theoretical Study o the Methoxy Radical"; Chemical and Physical Processes in Combustion, 9-1 all Technical Meeting of Eastern Section of Combustion Institute 1989.
66. Perry, R. A. and Melius C. F., " The rate and mechanism of the reaction of HCN with O atoms over the temperature range $540-900 \mathrm{~K}$ ", 20 th sympo sium (International) on Combustion. The Combustion Institute 1073, 1984.
67. Piling J., Robertson J. A. and Rogers G. J., " The flash photolysis of Azomethane. Minor Products from the photolysis of methyl radicals and a rate constant for $\mathrm{CH}_{3}+\mathrm{NO}$ ", Jou. of Chem. kinetics,

VIII, 883 (1976).
68. Reid R. C., Prausnitz J. M and Sherwood T. K., " The Properties of Gases and Liquids ", Mcgraw Hill Company, 3rd Edition 1979.
69. Ritter E. Ph.D Thesis NJIT. 1989.
70. Robinson P. J., and Holbrook K. A., " Unimolecular Reaction Theory ", Wiley -Interscience, London 1975.

71 Sanders, W. A., Lin, C. Y. and Lin, M.C., Com bustion Science Techno. 51, 1031987.
71. Sarofim A. F., comments, Eighteenth Symposium (International) on combustion, The Combustion Institute, Pittsburgh, 1431981.
72. Sarofim A. F. and Flagan R. C., " NO_{x} Control for Stationary combustion Sources ", Progress in Energy and Combustion Sciences, 211976.
73. Sarofim A. F. and Pohl J. H., " Kinetics of Nitric oxide formation in Premixed Laminar flames", Four teenth Symposium (International) on combustion, the Combustion Institute, Pittsburgh, 739, 1973.
74. Schatz G. C., Fitzcharles, M. S. and Harding, L. B., " State-to-state chemistry fast Hydrogen Atoms." Faraday Discuss. Chem. Soc. 84, 359, 1987.
75. Semmes D. H., Ravishankara A. R., Gump-Perkins C. A. and Wine P. H., Int. Jou. Chem. Kinetics, 17, 3031985.
76. Strobel D. F., " Chemistry and evolution of Ti tan's atmosphere ", Plant, Space Sci., 30. 839, 1982.
77. Taylor B. R., "Ph.D Thesis", M.I.T. 1984.
78. Troe, J., J. Chem. Phys, 4745 and 47581977.
79. Wagal S. S., Carrington T., Filseth S. V. and Sadowski C. M., Absolute rate constants of CH with NO, $\mathrm{N}_{2} \mathrm{O}, \mathrm{NO}_{2}$, and N_{2} at room temperature, Chem. Phys., 69, 61, 1982.
80. Wagner H. Gg. and Wolff, " An investigation of the reaction betwen CH_{3} radicals and NO at High Tem peratures", Ber. Bunsenges. Phys. Chem. 92, 678, 1988.
81. Warnatz J, "Mechanism of High Temperature Combus tion of Propane and Butane", Comb. Sci. and Tech. 34, 177, 1983.
82. Westmoreland P. R.," Ph.D Thesis", M.I.T., 1986
83. Washida N. and Bayes K. D., Int. J. Chem. Kinet., 8, 7771976.
84. Zabarnick, S., Fleming, J. W. and Lin., M. C., " Kinetic study of reaction $\mathrm{CH}+\mathrm{H}_{2}<---->\mathrm{CH}_{2}+$ H in the temperature range 372 to $675 \mathrm{~K}, \mathrm{~J}$. Chem. Phys. 85, 1984.
85. Zeldovich Y. B., Acta physicochimica U.S.S.R., 21, 5771946.

