Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen



The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.



INFORMATION TO USERS

The most advanced technology has been used to photograph and
reproduce this manuscript from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are. in typewriter face, while others may be from any
type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

UMI
University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor, M1 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Order Number 9021163

Propagation of millimeter wave signals in forests using the
equation of radiative transfer with strong forward scattering
phase functions

Cho, Nack Yang, D.Eng.Sc.
New Jersey Institute of Technology, 1990

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Propagation of Millimeter Wave Signals in Forests
Using the Equation of Radiative Transfer

with Strong Forward Scattering Phase Functions

By
Nack Y. Cho

Dissertation submitted to the Faculty of the Graduate School
of the New Jersey Institute of Technology in partial
fulfillment of the requirements for the degree of

Doctor of Engineering Science
November, 1989

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Approval of Dissertation

Title of Dissertation : Propagation of Millimeter Wave Signals in Forests

Using the Equation of Radiative Transfer

with Strong Forward Scattering Phase Functions

Name of Candidate : Nack Y. Cho

Doctor of Engineering Science, 1989

Dissertation and Abstract Approved :

Date

Dr. Gerald M. Whitman

Hor. Yanjin Kim Date
Dr. Felix Schwerﬁg Date
Dr. ﬁdip Niver Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Name: Nack Y. Cho

Degree and date to be conferred : D. Eng. Sc., 1990

Secondary education : Seoul Senior High School, Seoul, Korea ;
February, 1974

Collegiate institutions Date Degree Date of degree
attended

Seoul National Univ. 3/74 - 2/78 BS(EE) 1978
N.J.LT. 9/80 - 12/82 MS(EE) 1983
NJ.IT. 9/86 - 12/89  D.Eng.Sc.(EE) 1990

Major :  Electrical Engineering

Publications : ”Parametric Inverse Radiative Transfer Using a Strong
Forward Model,” N. Cho, Y. Kim, G. Whitman, Presented
at Benjamin Franklin Symposium, Cherry Hill, NJ, 1989.

"Verification of a Strong Forward Model Using Parametric
Inverse Radiative Transfer,” N. Cho, Y. Kim, G. Whitman
Psr)esgented at the IEEE AP-S/URSI Meeting, San Jose, Ca,
1989.

"Time-domain Inverse Scattering Using a  Nonlinear
Renormalization Technique,” Y. Kim, D. Jaggard, N. Cho, to
appear in J. of  Electromagnetic = Waves and
Applications, 1989.

"Transients in a Fractal Slab,” D. Jaggard, Y. Kim, N. Cho,
submitted for publication.

“Time-domain Approach for one-dimensional Inverse Scattering

Using a INonlinear Renormalization technique,” presented
at the IEEE AP-S/URSI Meeting, Syracuse, NY, 1988

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



"Transients in a Fractal Slab,” Y. Kim, D. Jaggard, N. Cho,
presented as Invited Paper  at the IEEE AP-S/URSI Meeting,

San Jose, Ca, 1989,

"Moment Method Solution of the Time-dependent Transport
Equation,” G. Whitman, F. Schwering, N. Cho, Proceedings of
International Symposium on Antennas and Propagation, pp.
687-690, Kyoto, Japan, 198S.

Positions Held :

Jan. 1987 - Special Instructor in Electrical Engineering, N.J.I.T.
July 1987

June 1985 - Microwave Enginecer, RCA Astro Electronics, East
June 1987 Windsor, N.J.

Jan. 1983 -  Design Engineer, Westinghouse Electric Co. Whippany,
' May 1985 N.J.

Sept. 1982 -  Special Instructor in Electrical Engineering, N.J.I.T.
Dec. 1982

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

Title of dissertation : Propagation of Millimeter Wave Signals in Forests
Using the Equation of Radiative Transfer
with Strong Forward Scattering Phase Functions

Nack Y. Cho, Doctor of Engineering Science, 1989
Dissertation directed by : Dr. Gerald M. Whitman and Dr. Yunjin Kim

A forest is a highly scattering medium at millimeter wave
frequencies. The propagation of cw millimeter wave signals in forests
has been studied previously, both theoretically and experimentally.
Published experimental data verified that continuous wave transmission
is possible over lengths of the order of a few hundred meters and that a
forest acts to strongly scatter energy in the forward direction. The cw
studies yielded the determination of the range dependence, beam
broadening effects and depolarization effects of millimeter wave signals
in a forest. However, pulse broadening effects, which are of importance
particularly in the case of digital signal transmission, remained to be
studied. The main purpose of this dissertation is to provide a theory of
these effects applicable to the millimeter wave region. A second purpose
of the dissertation is to refine the previously developed cw theory by
linking it to the experimental cw data by an optimization scheme. In
Part I of this study a periodic sequence of gaussian plane wave pulses
is assumed to impinge upon a forest half-space. The forest is taken to
be statistically homogeneous and to consist of a random distribution of
particles which scatter and absorb radiation. A theory of millimeter
wave pulse propagation in a forest is developed wusing the scalar
time-dependent equation of radiative transfer. The forest is assumed to
be described by a scatter function which consists of a strong narrow
forward lobe superimposed over an isotropic background. The power
intercepted by a receiving antenna in the forest is computed as a
function of path length and travel time. It is demonstrated through
numerical computations that the detection of a transmitted signal is
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indeed feasible and that pulse broadening occurs at large penetration
depths. In Part II a parametric inversion scheme is developed which
permits the determination of forest parameters at millimeter wave
frequencies. Using the available experimental data for the cw case, the
inversion scheme is applied to the time-independent equation of
radiative transfer. By initially choosing values for the unknown
parameters, and then judicially varying parameters using an optimization
technique similar in concept to “simulated annealing” and requiring
that the difference between the experimentally and theoretically
determined values of received power be minimal, the desired unknown
forest parameters are found. The method appears to provide meaningful
parameter characterization of the forest despite the limited available
experimental data.

o
——
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I. Pulsed Millimeter Wave Propagation in Forests using the
Time-Dependent Transport Equation with Strong Forward
Scatter Profiles

1.1 Introduction

The US Army is currently developing millimeter wave radio systems
for tactical communication and data transmission purposes. Under
battlefield conditions, millimeter wave radios may have to transmit
through a forest environment. Transmitters as well as receivers might
even have to be placed in a wooded area for camouflage purposes. Recent
experimental and theoretical studies [1,2,3] have confirmed the
feasibility of millimeter wave communication through such a medium.
These studies, however, treated only the time-independent case. Since
digital signals most likely will be wused, information on pulse
broadening and permissible data transmission rate, are needed. To obtain
this information and to provide further understanding, this analytical
study was undertaken. As a result, a theory of millimeter wave pulse
propagation in forests wusing the scalar time-dependent equation of
radiative transfer (transport equation) evolved. The theory takes
multiple scattering phenomena into account but ignores the consequences
of interference, which is justified by the experimental results provided
one is not interested in very local effects.

A periodic sequence of gaussian plane wave pulses is assumed to be
incident from free-space into a forest. The forest is characterized as a
random distribution of particles which scatter and absorb radiation. To
a first approximation, the forest is assumed to be statistically

homogeneous, i.e., spatially independent, and to be characterized by

Evoimey
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four parameters, two of which are the absorption and scatter cross
sections per unit volume, o A and g, respectively, whose dimensions are
m’,

On entering the forest, emergy gets scattered in all directions. In
the millimeter wave region all scatter objects in the forest, be they
tree trunks or twigs, have dimensions which are large compared to
wavelength. Consequently, the forest can be described by a scatter or
phase function that consists of a strong narrow forward lobe
superimposed over an isotropic background ; the latter portion accounts
for the scattering of energy in all directions. Such a scatter profile
was experimentally reported in [2] at the millimeter wave frequency of
57.6 GHz. It is assumed that the scatter function depends only on the
angle y, measured between the incident direction and the scattered
direction. The phase function 1is characterized by two additional
parameters, namely, Ay, the beamwidth of the forward scatter lobe and o,
the probability of intensity being scattered in the forward direction.
Note that a forest physically consists of a great variety of large and
small objects with innumerable random orientations. As such, its true
scatter profile is extremely complicated and spatially dependent.
Therefore, characterizing the forest by the four constant parameters o,,
o, Ay and o implies a certain averaging process which is assumed
without proof.

In transport theory, the basic equation is called the "equation of
radiative transfer” or the “transport equation” [4,5,6]. It is an
integro-differential equation which is derived from the principle of
conservation of energy ; see Appendix A. This equation’s dependent
variable is called specific intensity I(r,t;s), which is defined at

position r at time t as the power per unit area, crossing a surface da
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normal to the direction of travel s, per unit solid angle dQ, i.e.,
I(r,t;s) = dP(r,t;s) / dad® in units of watts per square meter per
steradian; s is a unit vector; see Fig. 1.

In Section 12, the general scalar time-dependent tramsport
equation is presented. Specific intensity is decomposed into three
components, namely, the coherent intensity I and two components of
incoherent or diffuse intensity Il and L. Appropriate  boundary
conditions are also specified. Equations for L and I2 are solved in
Sections 1.3 and 1.4, respectively. Section 1.5 discusses the power
received by a highly directive antenna placed in the forest. Section 1.6
presents numerical results. Of particular importance is the depiction of
pulse broadening at relatively large penetration depths in the forest.
Lastly, Section 17 gives conclusions and suggestions for further

inquiries.
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1.2 General Formulation

A plane wave pulse train is assumed to be obliquely incident! in
the umit vector direction s, onto a planar interface separating
free-space from a statistically homogeneous, strongly forward scattering
medium (a forest); see Fig. 2. At the origin sp = 0, the incident signal
is taken to be a periodic sequence of gaussian plane wave pulses having

an instantaneous Poynting vector magnitude

S(0,t) = 28 F( 0, t )c03227rfct, (1-1)
where
2
FO.1) = /2 e tn<t<TR (1-1a)

and SP is essentially the time-averaged power per unit area which flows
in the s, direction in a time period of T seconds. The millimeter wave
carrier frequency f‘= has a time period T«T. The gaussian envelope
function in (1) is normalized such that

/2
1M ro,0dat = 1 . (1-2)
T— /2

The constant "e¢” is chosen sufficiently large so that the F(0,t) goes to
zero as t approaches +T/2. The limits of integration in (2) can then be
replaced by o and the integral evaluated. This is done in Section I.6.

Since the incident plane wave pulse train is an even periodic

Itwo theories will be presented. A zero order solution for oblique
incidence and a first order solution for normal incidence. To permit
both developments, oblique incidence is initially considered.

4
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function of time t with pulse repetition rate T seconds, it can be

represented at s, = 0 by the even Fourier series

(= o

FO) = -+ b, + [ b cos vat = & [ ] FO o vt ] (1-3)
V=1 V=0
where
TR
w = 2.7{.— R bv = %‘[ F(0,t) cos vt dt , (1-3a)
R )

"Re" stands for " the real part of ", F; is a real constant and  is
angular frequency. By choosing < sufficiently large so that the gaussian
function in (la) goes to zero as t approaches + T/2, the limits of

integration in (3a) can be replaced by + o to yield

(1-3b)

cc
1
oo

-

Considering only that portion of the signal in the baseband, the
intensity of the incident plane wave pulse train, in unit of watts per
square meter per steradian, which travels in free-space at the speed of

light ¢ in the unit vector direction s, is given by the expression

IP =SpF(t-s~rlc)5(s-sp), (1-4)
where
w .
F(t-s-rlc) =R ] F0@(t-sT/0) (1-4a)
v=o0
5(S-SP) = 6(0-0p)5(¢-¢p)lsin9 = 50‘-ﬂp)5(¢-¢l,) (1-4b)
and
5
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U = cosé, H,= cosop . (1-4¢c)

Note that z = s cosf§ for planar geometry. In (4), J(x) is a Dirac delta
function and angles ( 6, ¢ ) represent an arbitrary direction in a
spherical coordinate system while ( 0p, ¢p ) are used to designate the
direction of the incident radiation.

Specific intensity is governed by the equation of radiative
transfer, which for planar geometries takes the form

14l dl o .

;— 5; + cosG‘—a; + ol = 1% L(p(s,s’)l(z,t;a',¢’)sm0'd0’d¢' . (1-5)
In the derivation of (5) in Appendix A, the medium is assumed to be free
of dispersion. Since at millimeter wave frequencies all forest
parameters are assumed to be independent of frequency, (5) applies. The
parameter 0= o, + 0 is the total or extinction cross-section per unit
volume and p(s,s’) is the scatter or phase function. It is assumed to

depend only on y and to be given by

p(») =p,(» +p, , (1-52)

where
-1 - =« (2% @), 4 1-5b
P, = l-a,p) = aq(t) = a (z5)7%e "4y’ , 4y << m,(1-5h)
with normalization

z}t—IJ;p(s,s’)dQ’ =1, d9' = sin’de’de’ . (1-5¢)

The angle y is measured between the incident direction s’ or
equivalently ( 6’, ¢’ ) and the scatter direction s or ( 0, ¢ ). It is

specified by the relation
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cosy = s * 8’ = cos(¢p-¢’)sinfsinfd’ + cosfcosf’ . (1-5d)

The differential solid angle df about the scatter direction s is
depicted in Fig 1. The phase function in (5a,b) consists of a mnarrow
gaussian shaped lobe ( P, ) superimposed on a uniform omnidirection
background ( p, ). The parameter Ay is the beamwidth of the forward lobe
and o« is the ratio of the probability of intensity being scattered in
the forward direction to the probability of intensity being scattered in
all directions ( which is unity ).

Introducing normalized variables

z' = 6,2, t/ = o, ¢ t (1-6a)
and the parameter albedo

W=o0/l9 |, (1-6b)
allows us to rewrite (5), using 4 = cosf, as

a1 a1

o+ U= g [[ a0 dg, 2120, (1)
Z

The intensity I has two components, namely, the coherent intensity

Ic and the incoherent or diffuse intensity I 5"

I =1 + I. (1-8)

Substituting (8) into (7) and defining the coherent component to satisfy

the equation

a1 ol
C+u—+1=0 (1-9)
at’ oz’ ¢

yield for the incoherent component the equation

7
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)| ol
Pru—tt L = g [ D e . a0

at’ oz’ d

To solve (9) and (10) it is convenient to introduce Fourier series

representations for the incident, coherent and diffuse intensities

- -}
Letud) = & | Lewsd®t), i=pca, @
U=0
where

T’ = atcT, w = 2n/T'. (1-11a)

Note that because equation (5) is linear, the frequency parameter in

(11) is the normalized version of the angular frequency encountered in

(4a). Observe also that (9) dictates that Ic depends only on z’, t’ and u.
Substituting (11) into (9) and (10) yields the two equations

d1
o'l + u 50 + I, = 0 |, (1-12a)

ey de w 13
o'l +u ¥+ L = = L[ P A+ 1 )du’de’ . (1-12b)

Solving (12a) by direct integration yields
1@ = A ed+iveNz'ln (1-13)

To determine the unknown constant Aw, recognize that the incoherent
intensity I . is a comsequence of multiple scattering effects in the
forest. Since the scatter radiation is generated inside the forest and,
therefore, can only leave the forest at z’ = 0, the only intensity which
flows in the same direction as the incident radiation at s = 0 or z’ = 0

is Ic. Hence, the boundary conditions which must be satisfied are

8
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1 =1 ,I =0 at z’ =0 for 0 s us=<s1l1. (1-14a)

In addition, since the medium ( the forest ) is lossy ( o A F 0 ), the

intensity must vanish at infinity, i.e.,

Ic->0,Id->0 as z’ > o . (1-14b)

From (4),(11),(13),(14a) and using the normalized coordinates introduced

in (6a), it follows that
Ay=SFo(u-u)d(d-9) . (1-15)

Hence, the time-dependent coherent intensity becomes

L' tm) = SFE2'lu)e™ My suu)o@-4) (1-16)
where
g eivco't’
F(t’'-z /ﬂ,,) = %Dzopv(z In) (1-16a)
with
, — wo.jvw’z’lu }
F(z'lu) = Fye P . (1-16b)

Physically, the coherent intensity describes the attenuation of the
intensity in the forest due to absorption and outscattering along the
direction of the entering signal.

After using the coherent intensity IcD found above in (13) and
(15), the equation for the diffuse intensity (12b) is solved by first

separating the diffuse intensity into two parts [3]
LpG@me) =1 @ u¢) + 1L 250 , (1-17)

such that the “”strong forward” diffuse intensity I, » which depends on
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z’, u and ¢, satisfies

) S We S Wa -z’ lu
g+ (100", =7 [ [0, 6" +gZ—F @ e o )(1-18)

and the "omnidirectional” diffuse intensity Izv’ which does not have a

preference direction in the scattering process, satisfies

dI
ugg+ (1+jvo ) L= g2 [[ a0, du'de:

) S W(1-a) -z’

where
cosy = cos(¢-¢ M(1-u)(1-u' ] +up’ (1-192)
cosy = cos(¢-¢ (A-1")(1-u N +up (1-19b)

For convenience, I and its transform I =~ are designated “strong
forward” diffuse intensities while L and its transform Izv are called
"omnidirectional” diffuse intensities. Their designations are inferred
from the defining equations which determine the significant nature of
the scattering process. As can be seen from (18), Iw is genmerated by
scattering into the strong forward lobe q(y) of the phase function.
Meanwhile, Izo’ as defined by (19), is primarily generated by scattering
into the isotropic background portion of the scatter function, namely,

p,= l-a. To satisfy (14), I and Izv are taken to obey the boundary

1
conditions
Iw = 0, Izv =0 for z/ =0, 0 s u=s1 (1-20a)
I w? 0, Iw-> 0 as z’ » o . (1-20b)

10
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1.3 Strong Forward Diffuse Intensity

To determine the strong forward diffuse intensity I, the solution
to (18) for I, is nmeeded. To simplify the analysis without loss of
physical understanding, the normal incidence case is considered, i.e.,
H, = cos()p = 1. Since scattering in the forest takes place

symmetrically about the forward direction § = 0°, I~ is independent of

10
¢. Furthermore, because the scatter profile is characterized by a strong
forward lobe q(y), scattering takes place essemtially in a small angular
domain about the 6 equal to zero direction ; hence, a perturbation
solution to (18) for I w will be developed which remains valid only for
small values of @ different from 2zero and limited penetration depths;
the § = 0" or zero order solution will be shown to agree with results
derived by an alternative method which involves setting # = 1 in (18);
see Appendix C.
Let

) o " (1+jvw’)z’ ,

Substitution of (21) into (18) and (20) yields

: dg,(z";u)
(A+jvw’)(1-4)g,2"4) + b—gzm—

2Tt

= %'%1[ Iq(r)g,,(Z';u’)du’d¢’+ %"—;’,‘— Q) , (1-22)
-1

where y = 6 and ¥, = 0p, subject to boundary conditions

-7/

gv(O;u) =0 and gv(z';u)e >0 forz' » . (1-23)

11
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Assume the series expansion

M
g,zM) = T a, ()z'", M large . (1-24)

m=]

This ansatz satisfies both boundary conditions in (23). Substituting
(24) into (22) and setting the coefficients of all powers z‘™ to zero
yield the following explicit equations for the coefficients a, @)

which can be solved in sequence.

2’ Ba, = —4q0)

(1-25)
(m : ’ — Wa ’ ’ ’
2 (o) Uy @t Dasy = g ([0, s

m = 1,2,...,M-1

By adding and subtracting appropriate factors, the above equations can

be rewritten as

B, = 4 a0 + (wa,

(1-26)

(m+Da, = W& [a03, ") 46" + (1wl + Doy, (1 +00"08, ]

m = 1,2,...,M-1
Note that (1-4) is a small parameter.

In Appendix B, two recursion relations are derived; for y = @ these

are

12
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T~ [[ a0, @sin0 a0a9" = g, (@ (1-27a)

and

I “; q(r)q,(0°)0"*sin6d6'd¢’ == (47" + T+ F)g_ (6). (1-27b)

Making use of (27) and setting 4 = 1 permits the system of equations

(26) to be written for the zero order approximation as

- % e , m=12..M , (1-28)

where q(y) = q () , v = 0, and

- _4 =
q(?) 27 e > 9. N

(1-29)

A first order solution, assuming (1 - g) is small, is obtained by
inserting the above zero order solution into the right hand side of

(26). This yields

B, = 4% a0 + (14) W2 q0) = V& ) g )
(1-30)

1

= 1 Wa ; ’ 0 1 : "0
e ™ T AT [[I008; 00"d0 +am(ay - mbp+ve g
=1, 2,....M-1.
Integrals in (30) are evaluated by approximating (1-u4) by 612 since 6

is small and by using the recursion relations (27). Hence,

13
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= A @w) qm) (1-31a)

£
II

2
%o = gm 2T taw [[A0[8,6)+-30",6)]sing"a0" 4}

+ L el 0) - - W (1o )1wa,6)
~a2 G [1rJar+ Fan)a,® - 1z Yea+ivo) 1w ®)

(1-31b)

s = Im (W“)< in L[q(r)[HTAr +3-6'"] q,(6") sin0"d6’dg"}

- g W (1 jp g Q;q(r)—‘f 6% (6")sing"d6"dg’ }

+ 7 D100, 0) - L FD1 i) 1-w)q,6)
3
= {We) 114247+ 1] a,0) - W) (1+jv) Ly + 301 0,®)
(1-31¢)
From (31), the (m) and (m+1) terms are inferred to be
al ={Wa)'ria 4y*+B (1w)]q @SN (1+JD(D')[C 4y*+D_(1-1)]q_(6)
(1-32a)

14
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and

a:),m+1= %)'{TQQ()’)[I*‘A 4y +— P 6%] q,_(6')sing’dg’de’ }

m D
2) !(1+jvw’){z%uq(y)[cmm2+—§ 6'*1q_(0")sing’d6"de" }

+ gV (ma, (O - FWa) Sy (+vw")(1u)a,(6) (1-32b)

where 1 - 4 = 6%/2 is used in the integrands and A , B, C_ and D_
remain to be determined. Evaluating the integrals in (32a) wusing the

recursion relations (27) yields

m+1
3y o= Treayy [1+(A_+7 557 B4’ +(1+(—T)2B Y1-)]a_, (@

- zﬂ(g_g_}y,uﬂm')[(c +1 Bolp yay+ 1+ EZHD ) (1-w)]q,(6) -
(1-33)
Comparing (32a) with (33), it follows that
_ 1 m
A=Atz @+ B (1-34a)
m2
B, =1+—2__3 (1-34b)
cC =¢ +1m-!' (1-34¢)
m+1 m 2- m m
_ (m-1)* o . )
D=1+ m—sz X (1-34d)

Comparing (34a) to (34c) and (34b) to (34d) result in

15
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I
-]

C .  =A and D (1-35)

m+1 m m+1 m

Making use of (34) in the comparison of (32a) to the first equation in
(31a) gives Al =0, Bl =1, Cl = 0 and Dl = 0. Recursion formulas (34)

then show that

A = %kzl(k-%)--r% = p(ot-1) (1-36a)
and

B = 2 =13+l onigy (1-36b)

m m2kzl 6 m

Hence, (32a) becomes

azl),m= Wg’%}mfl + T_lg (m’ - Ay’ + l m+1 Qm+1)(1-4)] q_(6)
m-1
- 1—1(‘;‘,'“},. (l+jvw')[1%((m-l)’-1)Ayz+ % =2 @m-1)(1-w)]q_©) .
(1-37)

To first approximation, (24) thus can be expressed as
8, = g7 Z—#“—f—l q (O {1+E O[1 - =21 (+jvw)]} (1-38)

denoting

2
EO) = & [(m’- 1 -4y 4 ntl (2m+l)(l-u)] . (1-38a)

Because of the factor z’™/m!, it is anticipated that the series in (38)

exhibits a maximum value at z’ =~ M; hence, to ensure convergence M ought

16
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to be chosen larger than z’.
By substituting (21) and (38) into (11), the strong forward diffuse

intensity L(z',t";p) is finally obtained as
o

L@ t'm) = Re [ 1, v@’t’ ] (1-39a)
V=0

W
- [vzo P v JV@’(t"-2) -z’ Z az ) a0

1+E O] 1 - =21 (1+joe”)] }] (1-39b)

Rewriting this expression using (4a) gives

S ;M
LGt = g2 Ferz) e2 | We2D™ g gy (1 4+ ¢ 6))
m=1
Sp -z’ (Waz )
" am [FE2)+F 2] yg Z qm(e):m(m ,

(1-40)
where F(t’-z’) is the undistorted normally incident plane wave gaussian
pulse (see (4)) and F’(t’-z’) is its first derivative with respect to
time t’. Because of the appearance of the derivative term, pulse
broadening occurs, which is observable when the term (Waz’) is large.
Hence, an input signal which sharply rises and falls will exhibit
stronger pulse broadening.

An alternative analytic method based on [3] was used to find the
zero order solution for the diffuse intensity I. This solution agrees

with (39) when gm(a) is set to zero; see Appendix C for details.

17
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e

I.4 Omnidirectional Diffuse Intensity

The diffuse intensity L, defined in (19) is primarily determined
by the isotropic background portion of the scatter function, namely, P,
= 1 - «a. This becomes more evident once the first integral on the right
hand side of (19) is evaluated by approximating the narrow peaking
function q(y) by a delta function in obtaining the following simpler

equation for Izv ( see Appendix D for details )

dI w_ ! SF°W . /u
pger—+ L, o= [ + B2 B (1)
)] -1
where
= (1+jo’-Wayz’, W, = W (I-a)/(1+jvw’ - Wa) , (1-41a)

and boundary conditions (20) become

Izv=0 at rv=0, Osu=<1 (1-42a)
Izv > 0 as 7, > ® . (1-42b)

Note that (41) has the same form as the time-independent transport

equation for isotropic scattering except that Wv and 7, are now complex.

)]

Hence, I = is expected to have a broad directional angular spectrum.

20

To solve (41) subject to boundary conditions (42), a number of
solution  methods are available in the  literature for  the
time-independent  isotropic  tramsport equation in planar geometries

[3-7]. The method of moments is used here [3,7].

18
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Let Izv be represented by the following trumcated series expansion
with unknown expansion coefficients I(z) and overlapping triangular

bases functions fn(y)

L, (Tyith) =nioln(r,,)fn(n) , (1-43)
where

[ 0 , ~lsusup ) (1-43a)

f @) = (”'”n-l)/(”n'”n-l) s B, SHSH + , n#0,N,

Gp DWB,) - B SHBSB,,

L 0 » B Sus1 |

while boundary values, fo(x) and fN(x) have the shape of half-triangles

f={ GG Isusut g=0 (1-43b)
0 » WS U S +1
fw = 0 » "l suspy ,n =N

Wbt /(Ao ) * Ha™ B = F1
and

u_ = cos(l - -ﬁ-)n = - cos ({5— n), n=0,1,.N . (1-43c)

The functions f ) are shown in Fig. 4 for N assumed to be odd. With
fn(,u) defined as above, the diffuse intensity Iw(tv;y) is given by the
expansion coefficient at u = B o€, Iw('tv;yn) = In(rv)fn(yn) =
In('cv) and at a value of u in the interval B S K S p by Izv(Tv;'“) =
In(TD) fn(”) + In+1(Tv) fn+l(u)'

Substituting (43) into (41) and restricting scatter angles to those

specified by the relationships 4 = b, n = 0,...,N, give the following

19
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system of (N+1) equations for (N+1) unknown expansion coefficients In

dI w, w,S F; -T M,
B—gr + 1 = ZI P +—ﬁ;——e P n =0,12,..N,
)
(1-44)
where
+1
u -u )2, m = 1,..,N-1
= If (I‘)d” = m +1 m-l .
Sha a +y1)12 = (l-pN_l)IZ, m=0N . (1-44a)
Using (43), boundary conditions (42) become
N
ZIH(O) fw =0, 0Osus1 , (1-45a)
n=0
and N
lim) I ( ) f = 0. (1-45b)
Jim LD 10
)
At values of y = B such that 0 < B = 1, (45a) reduces to
In(O) =0, n = (N+1)/2, (N+3)/2,...,.N (1-46a)
and (45b) becomes
N
lim Z I (1 ) = 0. (1-46b)
T.>00 n=0

)

To solve (44) subject to boundary conditions (46) requires homogeneous

and particular solutions.

20
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A. Homogeneous Solution

The homogeneous solution to (44) is derived from the equation

a Wy oo
H, Kow + I o= mzo LP . (1-47)
Assume
-7, /s
Pa)=4y ¢’ Y, (1-48)

where A;n is a complex constant which depends on n and v. Using (48),

(47) becomes

7 v, o
h n - )] h
4, [- 5, +1] = — .,,ZOA”"‘ P . (1-49)

Setting the right hand side of (49) equal to Qv’ a quantity which is not

a function of n, gives

Q
h )
Ay, = 1-wuTs, (1-502)
with
w N
_ h
Q, =—3 | 4P, - (1-50t)

Substituting (50a) into (50b) and canceling Qv yield the eigenvalue

equation

wl) o Pm
1-— mZo oy 0. (1-51)

21
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Since (51) is a polynomial in 5, of order (N+1), there are (N+1) complex

roots or eigenvalues s k = 0,1,.,N, for each value of v. Using

Uk ?
Byn= = B and PN-m = Pm, (51) can be shown to reduce to the simpler
eigenvalue equation
N
1- Wv z T_—(l7—s—)2 = 0. (1'52)
(N+1) m v
m= =0

This is a polynomial in s; of order (N+1)/2 and hence has (N+1)/2
complex roots or eigenvalues (s;k). Combining (43) with (48) and (50)
and knowing that there are (N+1) eigenvalues Sk give (N+1) possible
eigen solutions. The homogeneous solution is then a linear combination
of these eigen solutions which can be written as

N N
-7, /s Q -t /s
L) =745 eV %= 2 —e VU (1-53)
k=0

k-ol'”nlsvk

Finally, from (43) the homogeneous solution is found to be
N
b ) _ h
Lueyt) = [ RE)tw (1-54)

where I: (‘Cv) is given by (53).

22
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B. Particular Solution

The particular solution is obtained by substituting an assumed

solution of the form

-t /u
P = P V'p
In (rv) = an e (1-55)

into (44). As a consequence,

W, N W, S Fp
- p lu+1) BD = —5 ) B P + 220  n=01,.,N,(1-56)
=0

where P is defined by (44a) with m replaced by k.

Assume that the subscript p on H, is an integer j lying in the
range 0,1,...,N. When n = j, the left hand side of (56) is zero.
Therefore, the right hand side of (56), which does not depend on n, must
always be zero, i.e., even when n * j. Thus, for n+#j, since the factor

Cu ! H, + 1) # 0 then B;n must be zero. Hence,

BP =0 ,an%j, (1-57)
and
b o VoS, Fy .
0 = —2—ij PJ + —3an s, =73. (1'58)

Combining (55), (57) and (58) gives the particular solution

S F? -7, /u.
- PV e v n= ]
Ii (rv) = { 27 I’j ’ . (1-59)
0 , D % j
23
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C. Total Solution

The total solution is the sum of the homogeneous and particular

solutions

N N
Ly = By + B = LLE)LW = ] LE)LWHEE)W § = p.

20
(1-60)
This can be rewritten using (53) and (59) as
N N o
-7, /s S F -t lu
= - p ¥ V% n -
L@yl = | [kZOAv b T e s Jew . a6y
where
Q O,n=j
h = 2 - 1-61a
and By, re the eigenvalues found from (52).
To satisfy the boundary condition (46b), it is necessary that
= = . - R 1-62
Q, = 0, k=01 .. 0D2 (1-62)

because e [suk] is taken to be negative for these value of k whereas
He [svk] is positive when k = (N+1)/2,(N+3)/2,...,N. Thus, (61) becomes

L (ry) = Z‘,[ ; A -t 5, . ;%f%_ e-‘tv/ﬂnanj]fn(ﬂ) ’ (1-63)

where In(z'v) is given by the term in the bracket.
Substituting (61a) and In(tn) from (63) into boundary condition
(468) yields the linear system of equations for (N-+1)/2 unknowns Q-

24
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S F° o
Z—i——/— %lrﬂ’“-gglﬁ;é SN (-64)

N+l
T2

This can be written in matrix form as

[ avnk ] : [ Qm: ] = [ cl)k ] ’ (1'65)

where [al)nk ] is an (N+1)/2 X (N+1)/2 square matrix whose elements are

-1
., = (1- B, / svk) , (1-65a)

while [Q '] and [c, ] are 1 X (N+1)/2 column matrices whose elements are

’ -— o - 1
ka = Q /(S F /27!), C = T; 0

ok K (1-65b)

and ékj is the Kroneker delta function defined in (61b).

The omnidirectional background diffuse intemsity is therefore

given by

L) = ae [ Z L@t 9°9 ) (1-662)

[;_Tg[ [ gﬂ Qvé S /s,,k_%e-rv/unanj]fnw)eiow't']]
2

(1-66b)

in which (11) and (63) have been used; note that in (11) p is replaced
by 1 and 2 because of (17).

25
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L5 Power Received by Highly Directive Antenna

For the normal incidence case (yp= uj=l), the total intensity is

determined from (16), (39) and (66) using (41b) and (61a) as

]

[« -]
: I 4 IS F ’
I, =1 +1 +1 = 99.[ J o't e v [e"’vz S(u-1)

tot

N,z 7
+ L z‘w‘" e OU+EON - 27 1)

IRAC) M 18y, & £, (8)
+ e + T, )Y, 0
te j k-(g+ !:)?gke Z # ]}]] ( )

where
=(1+ jvw’') , Ny = (1 + v’ - Wa), j=p. (1-67a)

The above relation is based on the assumption that a plane wave is
incident onto the forest from the air half-space; this plane wave can
be physically generated by locating a transmitting antenna at a
sufficiently large distance from the edge of the forest.

Assume that a highly directive receiving antenna of narrow
beamwidth is located inside the forest. The receiving antenna is
characterized by an effective aperture A® where Py i the angle
included between the direction of observation (f, ¢) and the pointing
direction of the antenna axis, i.e., the main beam direction (0M,¢M);

see Fig. §. Evidently,

cosy, = cos(¢-¢M) sinf sin8M + cosé cos0M (1-68a)
= cos(¢-d )W) " Aup)'™ + ppy, (1-68b)
26
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with

By = cos0M . (1-68c)

The power received by the antenna is the sum of the intensity
contributions coming from all directions multiplied by the effective
aperture of the antenna, i.e.,

27T 1
Pt ith9y) = [ [A 0 (2.4:0,0)dudd . (1-69)

0 -1
Since in (69) the receiving antenna is taken to be polarization
matched, impedance matched and lossless, the effective aperture is
expressed in terms of the directive gain of the antenna by the general
relationship

. 2
Ay = 7 Dy (1-70)

where A  is the free-space wavelength. The directive gain is assumed to

be gaussian, i.e.,

2 J’M )2
D () = [Zﬁ—k] e A7 Ay, << m, (1-71)
which is normalized such that
[ Dty duds = an (1-71a)

and A4y, is the beamwidth of the receiving antenna.
Using (67) in (69), the total received power is found to be
expressed in terms of three normalized power quantities, namely, the

coherent power &, the narrow lobe diffuse power Z, and the

27
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omnidirectional background diffuse power .?dz( see Appendix E ):

P (z',t 0, ¢,

— MY _
P = P =P+ P+, (1-72)
norm
where
Y 2
o] PM
inen't’ - ( ) - n,2’
? = & [ E gue’t [F; e A7 v ] ] , (1-72a)
=0

’

- e““‘)-[l ; %%; ]

*® - re? Fo'ﬂ z (w )
P ='%e[§ejuwt[ v. "y az [
dl z hmAy

=0

[ 1 (m?-1) 1 (c-4h_1)+ m+1 2m+1 —;2@"T4h+1)-1)]]]](1-72b)

3 m h mszz 3
... AYF° f.(,) M2 sy, o £ ()
_ jow’t R D vk
.?a—.%e[gzo [T_( —p——" +§ {Q 2'177—}]]]
= ( N+1) /2
(1-72¢)
with
— — —_ 2
po=1,7, =06,h=1ly + 1/mA4y* (1-72d)
and the normalization used is
2
_ 0
worm = a7 RO S, (1-73)

which is proportional to the time-averaged power rececived by the antenna

placed at z’ = 0.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.6 Numerical Results for normal incidence
From (72), the normalized received powers in dB,

.?;’db =10lg[&] ,i==r,¢dl,4d2, (1-74)
are obtained numerically and are plotted versus normalized time t’ in
Figs. 1-6 to 1-30. While the first and second terms of (72), which
correspond to the contributions of Ic and I1 have explicit forms, the
third term as seen in (72¢) contains eigenvalues Spx and amplitudes Qv;
of I which have to be determined numerically by solving (52) and (65),
respectively. This is accomplished by using the commercially available
library of mathematical routines known as “IMSL”. Complete computer
programs are included in Appendix G.

For numerical evaluation of (74), the incident gaussian signal
envelope F(0,t) defined in (1a) is normalized so that it decreases from
a maximum value at t’ = 0 to a value at t'= +T’/4 of e times the
maximum value. This corresponds to a decrease of approximately 20 dB
and, as a result, « in (la) and (3b) equals 4v 5. This pulse shape
simulates a digital signal which is essentially "on” over half the pulse
period and "off” over the remaining portion of the period. The receiving
antenna is assumed to be aligned to accept maximum power from the
normally incident radiation, i.e., y

M
assumed to have a 3 dB beamwidth of 1.2°, i.e., in (71) 4y, is 0.7°,

= 0. The receiving antenna is also

which ensures a high directive gain. Furthermore, 4y is taken to be 3.5°
so that the scatter profile in (5b) has a strong narrow forward lobe.

Table 1 summarizes the range of parameter values used. The parameters
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are the normalized pulse repetition rate T’, albedo W = asl(as+a A), the
ratio of the probability of intensity being scattered in the forward
direction to the probability of intensity being scattered in all

directions «, and the normalized penetration depth z’.

Table 1. Summary of parameters for Fig. 1-6 through Fig. 1-30

Set A : First order approximation

T’ w a z’
2. 0.75, 0.95 0.2, 0.8 1.,10.,20.,30.
10. 0.95 0.8 30.

Set B : Zero order approximation

TI w a zl
2. 0.75 0.2 1.,10.,20.,30.
2. 0.95 0.8 1.,10.,20.,30.

In Figs. 1-6 to 19, powers are plotted over a time interval of
twice the period T’ = 2 for W = 0.75, « = 0.2 and z’ = 1, 10, 20 and 30,
respectively. At small penetration depths, the coherent power 3: is seen
to dominate significantly over the “on” portion of the period ; only
over a small time interval does the omnidirectional diffuse power g:!z
take over. This interval of time corresponds to the "off” segment of the
signal. As the depth of penetration increases, the total signal level
decreases as expected; but at sufficiently large z’, the effects of

pulse broadening are seen to occur, i.e., #,, gets distorted as shown in

30
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Fig. 199 at z’ = 30. This result is evident from (72b) due to the
appearance of the term nveith'=(l+jow')ei°wt’, which gives rise to a
time derivative of the input signal and therefore indicates pulse signal
distortion.

It was just observed that as 2z’ increases and for small «, the
coherent power z became the strongest portion of the power received in
the "on” time interval. In Figs. 1-10 through 1-13, «a is set equal to
0.8, which characterizes the forest with a stronger forward scattering
phase function. Comparing Fig. 1-10 to Fig. 1-6, it is evident that
for larger «, the narrow-lobe diffuse power Z, is stronger during the

n

“on” portion of the period, while the omnidirectional power 9‘& is
weaker. Note that the signal drawn in Fig. 1-10 is easier to detect than
that of Fig. 1-6. Thus, a medium with a larger « permits better
detection of transmitted data. Also, the signal depicted in Fig. 1-10
has a lower power level in the "off” time segment than that in Fig. 1-6.
Hence, the signal of Fig. 1-10 has better noise immunity. In Fig. 1-11
it is seen that at z’ = 10, the power & remains stronger than & in
contrast to that drawn in Fig. 1-7. This is a consequence of « being
larger. Distortion is also now seen to occur at smaller penetration
depths; compare Figs. 1-11 and 1-12 to Figs.1-7 and 1-8, respectively,
and observe the shift of &, Note in Figs. 1-12 and 1-13 that the total
received power .?R in the "on” time segment is non-symmetric. Observe,
furthermore, that there appear to be two minima in each time period in
the plot of 9; e In the time interval between these two minimum values,
P, was found to be negative. The corresponding portion of the curve in
Fig. 1-12 is a plot of 10 log (-P,), which is positive. This
non-physical segment of the .9;‘“ curve results because the approximation

used in the derivation of Il (needed for P dl) breaks down when -either
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the incident pulse has a fast rising slope or the product (Waz’) is very
large; hence, the term after the minus sign in (40) then dominates and
I is negative. On the other hand, in the time interval where the signal
has a fast falling slope, the narrow-lobe diffuse power remains positive
and the corresponding portion of the total power curve & displays the
development of a “tail”. In Fig. 1-13, the signal is lower and the
distortion is more pronounced than was found in Fig. 1-12. Note that in
the time interval where P, is negative, the total power & is
calculated without the contribution from I. Therefore, the fact that
the total power appears to fall below (-P " in Fig. 1-13 is of no
concern. The appearance of negative power, unless extremely small,
indicates that the first order solution is no longer valid; curves
nonetheless were drawn to gain further insight.

In Figs. 1-14 through 1-21, the albedo is taken to be 0.95, which
characterizes a highly scattering medium. In Figs. 1-14 through 1-17, «
is small ( « = 0.2 ) while in Figs. 1-18 through 1-21, « is large ( o =
0.8 ). Observe that the signal is lost at z' = 20 in Fig. 1-16 for a =
0.2, while it is detectable in Fig. 1-20 when a« = 0.8. Also, the
background power Z, in Figs. 1-14 to 1-19 are larger than that in
Figs. 1-6 to 1-9. This is to be expected because the albedo W is now
large. Note that in Fig. 1-16, =~ Z, which is not the case in Fig.
1-8.  Finally, observe that distortion of .?R occurs in Fig 1-17, but not
in Fig. 1-9. This is due to large values of the product of W, « and z’,
as was previously explained. More distortion is seen in Fig. 1-13 as
compared to Fig. 1-17 because the product of W, « and z’ is larger.

Comparisons of Figs. 1-20 and 1-21 to Figs. 1-16 and 1-17,

respectively, demonstrate that a medium which not only is highly

scattering ( W large ) but also is characterized by a stronger forward
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lobe in its scattering profile ( « large ) will permit signal detection
at large penetration depths.

Increasing the normalized period from T’ = 2.0 in Fig. 1-21 to T’ =
10.0 in Fig. 1-22 shows that a larger T’ eliminates pulse distortion in
the total power when W and « remain fixed. This is due to the fact that
a constant < fixes the input gaussian signal amplitude while a smaller
T’ produces a sharper pulse shape. Hence, the dgrivative in (40) is
larger when T’ is smaller and the pulse is then more distorted.

Figs. 1-23 to 1-30 are included to show that the zero order
solution given in Appendix C agrees with the first order solution in
(72), which is depicted by Figs. 1-6 to 1-9 and Figs. 1-18 to 1-21 when
the product of F’(t’-z’) and Waz’ is sufficiently small, where the prime
means differentiation with respect to normalized time t’(see (40).
Hence, when W and o are large, the agreement is limited to a smaller

penetration range.
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1.7 Conclusions and Suggestions

A forest is a highly scattering medium ( W large ) at millimeter
wave frequencies. Experimental data [2] verified that cw transmission is
indeed possible over lengths of the order of a few hundred meters and
that a forest acts to strongly scatter emergy in the forward direction (
a large ). A theory of millimeter wave pulse propagation in vegetation
was undertaken using the scalar time-dependent equation of radiative
transfer to verify and explain these observations and in particular to
show pulse broadening effects. A periodic sequence of gaussian plane
wave pulse was taken to impinge upon a forest half-space. The forest was
assumed to be statistically homogeneous and to comsist of a random
distribution of particles which scatter and absorb radiation. Four
parameters o,, 0, 4y, and a were used to characterize this scatter
medium.

The power received by a highly directive antenna placed in the
forest was calculated numerically. It was ascertained that pulse
broadening occurred significantly at large penmetration depths in a
forest characterized by a large albedo and a large « for fast rising
pulses. Data transmission with these pulses through such a forest with
large W and « was shown to be feasible. To obtain meaningful results at
even deeper penetration depths, higher order approximate solutions are
needed. Preliminary considerations show the amalysis to be complicated.

It remains necessary to determine more accurately the values of the
above four parameters. Part II discusses a method involving extracting

these parameters from experimental data.
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II. Determination of Forest Parameters using the Capturing Technique
and the Time-Independent Transport Equation

II.1 Introduction

In Part I a model of pulse millimeter wave propagation in a forest
using the time-dependent transport equation was presented. For a
normally incident gaussian plane wave pulse train, curves were drawn of
instantaneous powers received by a highly directive gain antenna placed
in the forest for different values of the parameters W, a and z’. Recall
that the albedo W equals o /(o ,1t0), where ¢ and o, are the scatter and
absorption cross-sections per unit volume of the forest, the parameter
o is the probability of intensity I(r,t;s) being scattered in the
forward direction and 2z’ is the normalized penetration depth. To
estimate these parameters, a parametric inversion scheme is performed
which uses the zero order solution to the transport equation. Since
experimental data of scattered intensity is available for the problem of
a uniform plane wave incident from free-space striking a forest, the
parametric inversion scheme is applied to the time-independent transport
equation.

From experimental results [2], the power received by an antenna in
a pecan grove (the forest) is known over a symmetric range of angles
measured in a horizontal plane. At particular angles in this range, the
transport equation is solved by initially choosing values for W, o« and
z’. This choice of initial parameters will not normally give values of
intensity which agree with the experimentally determined ones. By
judicially varying parameters using an optimization technique similar in

concept to “simulated annealing” and by requiring that the difference
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between experimental and determined values of received power be
minimal, the desired unknown parameters W, « and z’ are found.

In Section II.2 expressions are given for the zero order power
received by a highly directive gain antenna placed in a forest which is
illuminated from free-space by a plane wave with time-invariant
intensity. Curves of zero order rececived power versus scan angle 0M are
drawn ; these show the effect of varying one of the parameters W, o or
z’. Section II.3 discusses how experimental data was taken and how a
previous theoretical study curve-fit the data [3,8]. The optimization
scheme used in the present investigation is discussed in Section II.4
along with a sample case which uses synthetic data to justify the
validity of the method. In Section IL.5 actual experimental data is
used in the optimization scheme to find W and « at various penetration
depths z’. To characterize the forest correctly, an ensemble average of
these values is obtained. A physical explanation of these values is
presented in Section II.6. Therein suggestions are made on how to obtain
more complete data so that better estimates of parameters could be

obtained from the optimization scheme.
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0.2 Power Calculation

The solution to the time-independent transport equation for
specific intensity follows directly from the theory of Part I by setting
v = 0. Hence, the total relative power received by a highly directive
gain antenna placed in the forest at location z’ (see Fig. 1-5) is
specified to zero order by (1-72) when v is set to zero and the narrow
lobe relative power portion is given by .7”;1 which is derived in Appendix

C. Hence, to zero order and for normal incidence
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# = Pep)P = & + 931 + 2, , @

# = PP = e , (2-1a)
[ C norm
yz M
— 0 — R -Z' 2\ 1
gfll Pdl / P orm = =z° mZI(Waz ) m! qm(pr)
(2-1b)
2 N ’
Yz  f(u) -nz’ls
—_ — - -nz i M ’ 0k
'?dz - sz / Pnorm -2 e P +Z (QOke
i (E+D
2
L @19
. -1c
n=0 N ”n sOk
withyj =up= 1 ,pr = 0Mand
37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4 - P @y +mdy’)
Ay:+ mAy2

= (1-Wa) .(2-1¢)

o

L7 =

Quantities b fn, Pj, Sox and Qo; are obtained from (1-43), (1-44a),
(1-52) and (1-64), respectively, Parameters which remain constant
throughout this study are 4y, = 0.7° and 4y = 3.5°; the former value
insures a highly directive gain antenna while the latter restricts
consideration to a forest which can be characterized by a scatter
(phase) function that possesses a very mnarrow gaussian lobe in the
forward direction. This restriction 1is physical because experimental
results for the power angular spectrum show a very narrow forward lobe
at high millimeter wave frequencies; see Fig. 2-5, particularly at the
frequency of 57.6 GHz. The scan angle 0M is taken to vary from -0.3 to
+0.3 radians.

In Figs. 2-1, the total received power .?l’;(z';y) using (2-1) is
plotted versus scan angle OM for the normal incidence case. Scan angle
range is chosen to vary from -0.3 to +0.3 radians and plots are drawn
for W = 0.5, « = 0.2 and z’ = 0.1, 1.0 and 10.0. Observe that the
received power has a strong narrow lobe centered around the OM = 0
direction and decreases quickly to a low uniform power level near
0M=:]:0.3. As 2z’ increases from a value of 0.1 to 10., the maximum power
decreases in the GM = 0 direction, although in the background region the
constant low power level first increases and then decreases. It was
shown previously in the isotropic scattering case [7] that the diffuse
intensity when plotted versus z’ first increases rapidly to a maximum
level at z’ equal to unity and then decreases more gradually as z’ is
increased further, This is substantiated in Fig. 2-1 in the background

region where the level first increases when z’ is increased to unmity and
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then decreases when 2z’ is increased to 10. Note the relatively smaller
dB change in power in the background region as compared to the region
near 6 =0, although the overall shape of the curve remains similar. The
strong contribution in the forward direction 6, = 0 is predominantly
determined by the coherent intensity because of the strong decay which
occurs at the largest penetration depth. In the region 16,1 <0.05
occupied by the forward lobe, the strong forward portion of the diffuse
intensity Il plays a major role while in the background regime, the I

portion of the diffuse intensity controls the power flow. The values of

’

z’, i.e., the point in the forest where the power is measured, will

shortly be shown to be the most significant parameter which determines
the shape of the angular power spectrum.

In Fig. 2-2, the received power is plotted using three different
values for albedo W while z’ and « are fixed at 1.0 and 0.2,
respectively. Note that for larger values of albedo, the level of the
background power is higher than for smaller albedo values, while the
peak power at OM = 0 remains unchanged. This was to be expected because
for large values of W, the diffuse intensity is stronger at a given z’.
Thkis enhances the background power level. A larger W means that less

power is lost due to absorption and hence more incoherent power reaches

~ 4 470 l-,}s| Gc2 V‘%l &( 39 Eh
K

K

P+ ~Z’R}&MZ&*PDPGF vFrgxg/,F}'vlﬁg_ 2 _ 3, ¢ h
parameter « ( 0.2, 0.5 and 0.8 ) while z° and W are fixed at 1.0 and
0.5, respectively. Observe that as « increases, the background levels in
the ranges 0, < -0.2 and 0, > 0.2 decrease while the power level of the
forward lobe in the range of -0.2 < 6, < 0.2 increases. In other words,

more energy gets channeled in the forward direction at higher values of
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o. This means that the narrow lobe diffuse intensity I - becomes
stronger while the omnidirectional diffuse intensity becomes weaker,
which results in a reduction of the background level.

Based on Figs. 2-1 to 2-3, the following observations on the effect

of varying one of the parameters z’, W or a can be made.

(1) Changes in z’ alter the overall power level of the total
received power more significantly than changes in W or a.

(2) Changes in « strongly affect the values of the received
power in the angular range outside of the very narrow portion
of the forward lobe.

(3) Changes in W strongly affect the power level outside the

narrow lobe region.
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I1.3 Experimental Results

Experiments were conducted at the three different frequencies 9.6,
28.8 and 57.6 GHz [2]. All transmitting antennas had a comparatively
broad beamwidth of 10° and provided wide angle illumination of the
forest. The receiving antennas had narrow beamwidths, i.e., 4° at X-band
and 1.2°at the two millimeter wave frequencies. In the numerical
evaluation of the theory, the 1.2° beamwidth was assumed.

The antennas were linearly polarized. Experiments showed that at
millimeter wave frequencies, the propagation conditions in vegetation
are practically the same for both vertical and horizontal polarizations.
This means that polarization effects are mnot important. This supports
the use of the scalar theory of radiative transfer. The received power
includes conmtributions from both the co-polarized and cross-polarized
field components. In the experiments only the co-polarized component is
measured. Cross-polarization experiments, on the other hand, have shown
that for the distances involved millimeter waves do not meaningfully
become depolarized in vegetation and that the cross-polarized component
remains several dB below the co-polarized component. Hence, the
cross-polarization contribution to the received power is mnegligible and
theoretical and experimental results can be compared.

To simplify the random environment in a forest, the experiments
were performed in a regularly planted, well-groomed orchard of pecan
trees which roughly approximates a statistically homogeneous medium. The
trees in this orchard were equally spaced, separated about I3 m apart
one from another and  approximately 10 m tall. Maximum vegetation

density occurred in the leaf region between 4 and 6 m above ground.
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Measurements were taken both when trees were bare as well as when they
were fully in leaf.

The experimental configuration is shown in Fig. 2-4. The
transmitting antenna was located in free-space at a distance of ~ 300
m from the first row of trees in order to produce an incident plane wave
carrying comstant power. The receiving antenna was situated within the
orchard and was moved to different locations as indicated in the figure
by circles. In each case, the receiving antenna was placed at the same
height as the transmitting antenna so that the line-of-sight followed a
path of maximum vegetation density through ome column of trees.
Measurements were taken at different heights above the ground; omly data
measured at a height of 6 m is used here. The receiving antenna then
performed scans in azimuth and in elevation. Measured values of the
received power versus azimuthal scan angle are given in Fig. 2-5 for
trees without leaves. Lighter trace in the figures show the power
received at the forest-air interface, which is the radiation pattern of
the receiving antenna in free-space. Note that good qualitative
agreement between the measured results in Fig. 2-5 and the theoretical
values in Figs. 2-1 to 2-3 is obtained. At the highest frequency of 57.6
GHz, the plots in Fig. 2-5 show the best correlation with the strong
forward scattering model. This results because at the highest frequency,
wavelength is the smallest compared to scatter objects in the forest as
required for strong forward scattering. At vegetation depths of one or
three trees, the presence of the coherent component is evident in Fig.
2-5 at 57.6 GHz by the narrow peak in the scan pattern. At larger
vegetation depth, corresponding to a propagation path through eight
trees, the coherent component has been severely attenuated so that the

incoherent component now dominates.
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Fluctuations of the received power in the experimental data comes
from interference effects ( fading ). By taking multiple measurements at
different antenna positions, these fluctuations may disappear in a plot
of averaged values. Since transport theory nmeglects interference
effects, the corresponding theorctical curves of Figs. 2-1 to 2-3  are
without fluctuations.

Even though theoretical and experimental results show the same
trends and are in good qualitative agreement, one has to wse caution to
extract the parameters z’, W and «. Schwering et al [8] tried to
establish limited quantitative agreement between theory and experiments
by determining numerical values for 6, W and « from measured z’
dependent curves (see Fig. 11 in [8]). Specifically, the authors
collected maximum' values of the received power in the OM = (O direction
at various physical distances z in the forest. Using measured data at
small and large distances z, values for g, W and a were found by curve
fitting the measured values to theoretical determined ones using (2-1).
In [8], o, was found first by curve fitting the measured values of the
received power to the exponential expression exp ( - oz ) for the
normalized coherent power, which approximately equals the received power
at short penetration distances. It was found that o, = 025 m™ for
trees without leaves. Consideration of large penetration depths lead to

a reduction of the values to ax 02 m’

. Using this value for o, and
plotting the 9:; for various values of W and «, it was ascertained that
both W and o should have values between 0.9 and 0.95 at large
penetration depths. Results of this approach are inconclusive because
the curve fitting did not agree with experimental results over the
entire range from small to large penetration depths.

To find more accurate parameter values, a different approach is
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used. This approach uses the available measured values in Fig. 2-5 and
the theoretical calculated omes presented in Figs. 2-1 to 2-3, both of
which depict the received power as a function of scan angle at different
depths. The procedure involves optimizing the three unknown parameters
z’, W and « to get a more accurate curve fit between the theoretically
calculated values of received power .91’; from (2-1) and the measured

values given in Fig. 2-5. This method is explained in the next section.
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I1.4 Parametric Inversion ( Capturing Technique )

From the experimental values for power in Fig. 2-5, a method is
described which permits the determination of the forest parameters o, W
and o« ; note z’ = G, 2z where z is known from the experimental setup.
Such a process can be referred to as parametric inverse radiative
transfer [9,10], since the dependent variable intensity "I" of the
transport equation is known while parameters in the equation of
radiative transfer remain to be found. The parameters are selected
according to an optimization technique which will be called the
"Capturing Technique”, abbreviated CT. To explain the procedure, it will
be applied first to data generated by using (2-1).

Let parameters of a fictitious forest have values z;, w 0 and « o
From (2-1), the power rececived at scan angle 0,- is found to be .?(’;j,
i=1,2,...,N. These values shall be designated the “synthetic” data. The

CT will now be wused to estimate the parameter values using the

“synthetic” data. The following constraints are imposed on unknown

parameters.
M 0< 2/z < 10, (2-2a)
where z is a reasonable upper bound
2 0<W«<10 (2-2b)
B 0<acx<l0 (2-2¢)

For each parameter, a uniform distribution of M numbers, M an integer,
is obtained by using a random number generator. From these M numbers a
gaussian distribution of a new group of M random numbers is generated by
choosing both a median and a standard deviation of 0.5. These randomly

generated numbers are tagged sequentially and grouped together in sets
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of three, i.e., to form parameter sets (zi,Wi,ai), i=1,2,..M. For each
set of parameters (z,W,a), i=12,.M, the received power .?‘i’j is
calculated using (2-1) at scan angles Gj, i=1,2,...,N. The difference in
magnitudes between the CT generated powers .?fj and "synthetic” power 5“2},
is given by

e =|#-#| >0 ,=12,..M and j=1.2,.N (2-3)

ij ij oj
and a total error criterion is defined to be

E = Y} &, , i=1,2,...,M . 2-4)

The parameter set (zi,Wi,ai) which gives the smallest value of g, is
chosen as the optimal solution. Each parameter in this optimal set is
taken as a new median value for the corresponding gaussian distribution
of the parameter. After picking new standard deviations, a new group of
M different randomly distributed numbers for each parameter is
generated. Because of the manner in which each parameter was seen to
affect the received power versus scan angle as shown in Figs. 2-1 to
2-3, it was ascertain that z’ has a stronger effect than either W or a.
Hence, the standard deviation for z’ is taken to be relatively smaller
than that chosen for W and «; the latter two are assumed to be
identical. The above procedure is then repeated K times.

To illustrate the above approach, the following hypothetical data
is taken : za = 3.45, W0= 0.456 and o = 0.123. These parameters are used
in (2-1) at values of 6, in the range of -15° to 15° to generate 41

values for the total received power. Assuming that these 41 values of

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



power are known, i.e., treating them as "synthetic” data, the Capturing
Technique is used to determine the unknown parameters z’, W and «.

As can be seem in Figs. 2-6 to 2-8, after 27 iterations the CT
scheme is able to gemerate values for the three parameters which agree
excellently with the values initially used ; initially, z; = 345, W0=
0.456 and « = 0.123 while the CT scheme generated z’ = 3.45, W = 0.43
and « = 0.13. These values were obtained for M = 50. Increasing the
generated numbers for M from 50 to 100 yields better results, mamely, z’
= 3.45, W = 0.458 and = 0.122, though cpu time increased by about 50
%. This result is for 27 iterations and the pattern of convergence is
shown in Fig. 2-9.

Biasing the parameter z’ by specifying a smaller relative standard
deviation is convenient, but not mnecessary. If all standard deviation
were chosen to be identical, the CT will work, but will take more
iteration to converge. Hence, the general procedure is very powerful.
Also, it should be mnoted that the initial values for medians and
standard deviations are not significant in reaching the final solution.
Again, making the method very useful. To check further on the accuracy
of the CT, several sets of synthetic power data were used for this
inverse scheme and were shown to yield excellent results. The CT appears
to provide a very general systematic approach which yields very accurate
results relative to  nonsequential factorial searches which  uses
permissible grid points [11]. The CT is conceptually similar to
“simulated annealing”, which is a stochastic computational viewpoint
derived from statistical mechanics for finding near globally minimum
cost solutions to large optimization problems. A discussion of simulated

annealing is given in Appendix F and its analogy to CT is explained.
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II.5 Optimization Results

To run the CT with the measured data presented in Fig. 2-5 for the
57.6 GHz case, it was first mecessary to conmvert this data to a linear
scale in order to properly use the error criterion in the algorithm.
Recall that the available measurement data involves three configuration,
namely, 1,3 and 8 trees without leaves. The measured data was sampled at
intervals of one degree in the range 5° =< |6, | = 15° ( the background )

and at intervals of one-half degree in the remaining portion ( extended

lobe region )
Case # 1 : 3 tree data

For this case, the three parameters are chosen to exist in the
ranges 0 < z’ < 10.0,0 s W < 1.0and 0 < a < 1.0. The 41 sampled data
points taken from the measured values in Fig. 2-5 are plotted in Fig.
2-10. Application of the CT yields optimized values for z’, W and o of
4.36, 0.82 and 0.155, respectively. These are used in (2-1) to calculate
the theoretical ( optimized ) received power 5]’;, which is plotted in
Fig. 2-10. Observe that good agreement between theoretical and
experimental values resulted, particularly in the center lobe region.
From the optimized value z’ = 4.364, the total or extinction cross
section per unit volume o, is found to be 0.12 m’ since the physical

penetration depth is 39 m; recall that each tree is separated by

approximately 13 meters. Note that W = 0.820 signifies a relatively
strong scattering medium whereas o = 0.155 indicates weak forward
scattering,.
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Case # 2 ; 8 tree data

Because z’ is located at a sizable depth inside the forest, the
range of values for z’ is chosen to be 0 < z’ < 15. Range of values for
W and o« remain fixed between zero and unity. Applying the optimization
scheme CT yields the parameter values of z’ = 104, W = 0.760 and o =
0.766. The value o = 0.766 indicates that strong forward scattering is
significant; the value W = 0.76 states that the medium scatters more
energy than it absorbs. In Fig. 2-11 are plotted theoretically optimized
and experimentally determined received power. The overall shape of the
curves agree, however, it is suspected that the measured data is
insufficient for adequate comparison because only one data set was
taken. What is needed is am average of several data sets to secure a

meaningful comparison between theory and experiment.

Case # 3 ; 1 tree data.

Observe in Fig. 2-12 that the experimental data displays a
distortion in the peak region. This might be due to a peculiarity in the
forest geometry such as the shape of a particular limb in the one tree
consideration. To compensate for this distortion. two situations are
used; one with the central region included (set A) and ome in which only
data in the background region is used (set B), namely, 14 points in the
angular range 9° < | 0M| < 12°. The results of applying the CT to the

above two sets of data are:
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z’ W o
Set A 4.46 0.77 0.427
Set B 3.28 0.92 0.026

Table 2-1 Optimized parameter values for two
angular ranges in the one tree case

Observe in set A that z’ is larger than was found previously in the
3 tree case. Hence, the parameters of set A are rejected and only
parameters of set B are included for discussion. Fig. 2-12 displays the
comparison between experimental and theoretical values of received power
using set B. In the central lobe region, the experimental and
theoretical values agree to some extent. This result together with the
rejection of data set A indicate that information was missing in the
experimentally measured data which, as previously noted, could have been
caused by some non-uniformity in the scatter geometry ( the tree ).
Another explanation might be that the receiving antenna may have been
placed in a shadow region behind either a twig or a tree branch.

From the values of set B, the value o, was found to be 0.24.
Because W is large, the medium is found to be highly scattering and
since « is small, the energy scatters most likely isotropically. Since
extracted parameter values for the forest are inhomogeneous in contrast
to the mathematical model, it is appropriate to calculate ensemble
parameter averages to be used in the theory. These average values are

summarized in the following table.
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trees

’

z

w

Q

o

g

t A
1 3.28 0.92 | 0.026 | 0.24 0.2;1 0.019

3 4.36 0.82 | 0.155| 0.11 | 0.090 | 0.02
8 10.4 0.76 | 0.766 | 0.1 | 0.076 | 0.023
Average Yot 0.833 | 0.316 | 0.15 | 0.125 | 0.021

Appl i cable

Table 2-2. The optimized parameter values and their averages
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approximately constant while o decreases as z’ increases

Also included in Table 2-2 are associated values for the scatter and

absorption cross-section & ad o,, respectively. Note that o, remains
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I1.6 Conclusions and Suggestions

In this second part, the parametric inversion scheme called the
"Capturing technique” was developed which determined the parameters W,
a and o, of a forest. These parameters appear in the time independent
transport equation which is used to describe millimeter wave propagation
in vegetation. Before using the available experimental data, the CT was
tested by using synthetic data gemerated from the solution to the
time-independent transport equation for arbitrarily chosen parameters.

The inversion scheme was more semsitive to values of pemetration depth

’

z’ than to the parameters W and «. Next, three sets of experimentally
measured data were used to find the unknown optimal values for the
forest parameters; these parameters produced the minimum error when used
in comparison with the experimental values. Using these parameters,
curves for power were generated theoretically and plotted with
experimental results in the three cases. In addition, average optimal
parameter values for the forest were determined (see Table 2-2) and
found to be W = 0.833, a« = 0.316 and o, = 0.15.

According to the parametric description of the forest presented in
Table 2-2, as peneiration depth increases, W decreases, « increases, o,
decrease and g, remains relatively comstant. With regard to the decrease
of W, it should be noted that the theoretical model assumes an infinite
half-space while the real forest is finite. Hence, energy is lost
through the forest-air interfaces and the forest-ground interface. As a
result, the W obtained by the CT using the experimental data for

intensity must be underestimated. In actuality, the forest is expected

to exhibit a larger albedo value at each depth than appears in Table
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2-2. This can be understood further by noting that if the forest were
larger, i.e., approximating a half-space region, more enmergy would be
back scattered into the direction of observation which here is taken as
6,, = 0. Hence, measured intensity would be greater and then the CT would
calculate a larger optimal value for W. Since W = 1/(1+¢c J/o), this
means & Alas also would be smaller at larger penmetration depths. From our
calculated  values of o, Which remains approximately comstant at 0.021,
it follows that o, must also be underestimated in our optimal scheme
since we use the half-space model in the theory. The fact that o A
remains constant is physically reasomable because as energy flows in
direction OM through the medium which is statistically homogeneous, it
simply gets attenuated. The fact that the parameter o gets larger as
penetration depth increases indicates that the forest acts to scatter
millimeter wave energy more into the forward direction, the further the
energy enters into the forest. It is expected that « would increase to a
constant value where the forest no longer appears to vary from point to
point. Clearly, one trees scattering is significantly different due to
scattering from eight tree. Though the data used and the parameter
values for o obtained remain inconclusive, o« is getting larger which
indicates that strong forward scattering is dominant deep inside the
forest.

The results found by F. Schwering et al [8] are that g, is 0.25 for
short penetration depths and 0.2 for larger depths and W and « are
values close to unity. As seen in Table 2-2, the o, values at the
shortest distance agrees well; the other values are different; however,
in both approaches, o, get smaller. These different results from the two
approaches can be explained by noting that their curve fitting was

performed mostly at values of z° > 30, while the optimization for the CT
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utilizes data for values of z’ which are different and much smaller.
Furthermore, since W 1is underestimated in the CT approach deep inside
the forest but near the interface remains more accurate in its
determination of W, the expectation that W remains large is feasible. A
better comparison with the result in [8] that W lies between 0.9 and
0.95 requires more data so that the CT method could be applied more
effectively. A meaningful comparison is not possible using the current
measured data.

Even though the CT is able to find optimized parameters when the
available data is limited, it is strongly recommended that as complete a
data set as possible be obtained over the entire angular spectrum of
interest. This can be achieved by taking measurements at several
locations along a transverse direction and averaging them. The data
collected will then better approximate the mathematical model which is
based on a forest being statistically homogeneous. In other words, any
power measurement performed in a forest must be repeated several times

to ensure that a measured quantity is an averaged onme.
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Fig. 1-4 Overlapping triangular basis functions for interval -1 s u s 1
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Appendix A. Time-Dependent Transport Equation

The time-dependent transport equation is an integro-differential
equation for specific imtensity I(r,;s), which is defined at a position
r and time t as the flow of power per unit area and per unit solid angle

which crosses a surface mormal to the direction of travel s [5,12], i.e.,

I(r,t;s) = %{Jﬁ , Wattslnf'(rad2 , (A-1)

where AP(r,t;s) is an incremental power; see Fig. 1.

To derive the transport equation, comsider a medium characterized
by absorption and scattering cross-sections o , and Oy respectively. A
beam of radiation is assumed to flow in the direction s along an
arbitrary path L as shown in Fig. Al. In this figure, a cylindrical
volume element of cross-sectionai area da and length Ar surrounding a
segment of the path is conmstructed. Let the specific intensity at r and
t be I(r,t;s) and at r+A4r and t+4t be given by

Ir+4r, t+4t; s) = I(r,t;s) + 41 , (A-2)
where AI represents the change in intensity which occurs between
position r at time t and r+Ar at time t+4t.

The difference in radiant emergy AW between that which entered the
volume element at r and that which leaves at r+A4r through the cross

sectional area da in a time interval At is given by

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



AW = A1 Aa AQ At , joules . (A-3)

The net gain in energy per unmit volume, in the differential volume

element A4V = Aadr, per unit time about time t and per unit solid angle

about the direction s is therefore

W, = gyamar = dr s watsim’(ad)”. (A-4)

Since the specific intensity in the forest propagates at the speed of

light, the distance traveled in time At is Ar=cA4t; hence,

_ 1 41
We__th’

or, in differential form,

(A-5)

From (A-2), the total or substantial derivative of intensity is given by

[13,14]
dI _ 3l L 3l dx , dldy , aldz _ oI , dr, ]
G- taxdr tayar Taar —a T (4-6)
where
dr = xodx + yody + zodz (A-6a)
o1 oL, . ol (A-6b)

VI = xo_a_x+ yo_a-y+ zo_a_z

and X,y .z are unit vectors. Since dr = dr s = ¢ dt s, (A-5) and (A-6)

yield
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_ 1dI _ 1 dI . -
we—m—s—a-t—- + s Vi . (A7)

The net gain in radiative energy W, is given by

VW = -W - W + W s (A-8)

e abs scat in-scat

where the loss of energy due to absorption is given by

abs

W, =0 Irys), (A-8a)
the loss due to scattering by

WV o= o I(r,t;s) (A-8b)

scat

and the gain due to in-scattering from all directions is

g
= g [] pes) Tas) a7, (A-80)

—
with normalized scatter (phase) function p(s,s’); see (1-5¢) for
normalization. Implicit in writing (A-8a), (A-8b) and (A-8c) is the
assumption that the medium is free of dispersion. Hence, all parameter
which characterize the medium are independent of frequency. Combining
(A-7) and (A-8) yields the time-dependent transport equation

10l L cv=uo + o) + —3[[pEs)rtsH L .  (A9)
c 3t =-,+0) ﬁIJ;p SOOIt :
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Introducing a total or extinction cross-section per umit volume,
o= o,+ o, and restricting consideration to planar geometry and plane

wave incidence cases (3/dx = 0,d/8y = 0) reduce (A-9) to

) G i Yi(z,t;0’ ,¢")sing’d0’dgp’.  (A-10
¢ gt + o080 5z + of =gz[plesNz0', ¢ )sing d0"dg’.  (A-10)
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Appendix B. Recursion Relations.

The recursion relation (1-27a) which is used to derive the first
order approximation is given by

7 [[ 90,90,0,) w00’ =g ) B-1)

where q(y) and qm(r) are specified in (1-29) and the three angles .
Y, and yz' are defined by

cos y,, = cos(¢l-¢2) sinelsine2 + cosolcosé?2 (B-1a)
cos yl' = cos(¢l-¢’) sinalsina' + cosalcos()’ (B-1b)
cos yz' = cos(¢2-¢’) sin02sin0’ + cos02c0s0’ (B-1¢)

To evaluate the above integral, a local coordinate system (u,v) is
introduced as was done in [8] and is depicted in Figs. B1 and B2. These

coordinates are related to the three angles defined in (B-1) by the
expressions

4
p = (2 +u) +¢ (B-2a)

= (%3 -u)? + VA

N
]

(B-2b)

By letting sin6’df’d¢’ = dudv, expressing q(yl') and q(yz’) in terms of
u and v via (B-2a,b) and extending the limits of the integration to + oo,
it can be shown that the left-hand side of (B-1) becomes
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-(v ¥4 +1)/4
4 . (v 5/4Y")(m+1)/4m “ef(“)du I°°eg(v) av (B-3)
mzndy - " ®

where f(u) and g(v) are defined below in (B-5a) and (B-5b),
respectively. Using integral evaluations in (B-6a) and (B-6b), (B-1)
is obtained.

The second recursion relation in (1-27b) is given by

1 ’ ’ ’ 2 14 ’ 4 2
ﬁ[ .Lq(yz )qm(?l )rizsmo dg*de =qm+1(y12)[(ﬁ) yl§+ﬁ,1—%4y2]. (B-4)

4

Using (B-la,b and c¢) and (B-2a,b), the left-hand side of (B-4) reduces

to

o e ey r
—e & 4 4 ILdudv fWe8) [u2+y12u+(—53)2+v2] ,

(B-5)
where

fu) =-v’@+1)/@m4y") + um-1)y /(may)) = -au® + bu (B-52)

and

gv) = V(m+1)/(m4y?) = -av® . (B-5b)

An evaluation of (B-5) yields

Y1220 1 1 2
4 Vg3 + g2 D 7y,
mnA J’4‘3 [Tallz] +IL + oy L+ Izls]

(B-6)
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where

(=]
I = _[eg(v)dv = (7tla)"2
200
9,
I = J ef®ay = (n/a)meb 14a
o0
oo
I = Iuef(u)du = (7:/:1)"2(b/2a)eb 142
oo
% f(u) 12 2 b74a
I, = [ve™du = (n/a)"’[(1+b"120) 23]
-0
(-]
I = _[vzeg(v)dv = (n/a)m/2a
=00
Hence, (B-6) becomes
o) G2 72+ gy 47
912 m + ) Y m+

and the recursion relation (B-4) is proven.
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Appendix C. Narrow Lobe Diffuse Intensity and Power in the Zero Order

Approximation

In the zero order approximation, it is assumed that the narrow lobe
diffuse intemsity scatters into very small angular regions in the
neighborhood of the incident direction. Hence, (1-18) with u = H, can be

written as

de Wla Slea o -‘t'l/,up
Brar *+ Ly =z [Ja0,du de’ + —r-Fre Ta0).(C-)

where

7= (1 +jow’ )z, W=W/(1+ joa’) (C-1a)

The boundary conditions in (1-20) are then reformulated by replacing
z’ with the new complex variable T

The equation (C-1) can be solved by using the method of
undetermined coefficients. Let I take the form

-t lu
. 3 . . . l -
L, #,8) = (b7 + b7 + b7 + ye 1P, (C-2)

where the b, i=1,2,..., are unknown coefficients which are functions of
u and ¢. Note that the representation in (C-2) already satisfies the
boundary conditions (1-20) in that Iw vanishes at T, = 0 and as T > .

To find a recursion relation for the coefficients bi, i = 1,2,..,

the expression (C-2) is used in (C-1) to yield
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14
S W a =D’

o 2 a
b ¢) = —2 ;,p Fy ()% e 77 (C-3)

Wla ’ ’ ’ ’
bW $) = g lq(r)bl(u $")du’d¢

wla ’ 4 4 4
b #) = mamg [[| 9, @ #"duas

Since each coefficient b_ appears in subsequent integrals, it is

assumed to take the genmeral form

4
(75
be#) =Bz e a (4

m
with Aym «nw, m=12,..
Substituting (C-4) into the last expression in (C-3) gives

r ’

2 2
B (22—)2e'(2?_:)2= Paa % 1o 4y [[e @) oy
Ay 4rn K m Ay 4y _° du’de’,
(C-5)
where
cosyp’ = cos(¢p-¢')sin09sin0’+cos0pcos0' (C-5a)
cos ¥ = cos(¢p -¢’)sinf sin@’ +cos@ cosf’ . (C-5b)

Using the recursion relation (B-1), it camn be shown that the

double integral in (C-5) reduces to
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T
1/4y * + llAym

2 exp(-ypzl {4 Y+4 T’n:l}) . (C-6)
-1

From (C-5) and (C-6),

LI 1 B = % (€-7)
4y? 4y? +4y? T om ml MU

Using the first equation in (C-3) and (C-4), it follows that

SpF;Wla
A}‘l = A}’ s Bl = W— . (C"8)

Hence, it can be inferred from (C-7) and (C-8) that in general
(]
S Fv 1 Wla

ay, = @4y . B -2 G (C-9)
p

From (C-9), (C-4) then becomes

S F

o
b = gt i1 s
m*? 4r up m! mAyz

SPF; Woa
= 47 ) @ 1,0) : (C-10)
4

The functions q_  are gaussian as is the forward lobe q of the phase
function, but the beamwidth Aym is broadened to (m)4y.

Combining (C-2) and (C-10) gives the solution for the zero order

approximation as
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(o] o

F' W «a
. _ [} 1
LyTme) = § 4

2
iy ap m! m472 1
S F° g/u ™ ’
“dwte T LEEOT g 40) (€11
m= P

where M is chosen as an upper bound. Substituting (C-11) into (1-39a)

yields I‘l’ with the superscript denoting the zero order approximation.

Using the expression for the narrow lobe zero order normalized
diffuse power

0 ’.
70 — Pz tu .9)
d1

norm

(C-12)
where

Pl 2 t50,,8,) = L[ A U’ ' 51,9)dudé

with P
norm

(C-12a)

defined in (1-73) and Ae(yM) in (1-70) and (1-71), it can
be shown that

. ,,SF gziu™
O s 4o, - o't ) Waz! 1 4
9;11(2 ot ’”M’¢M) - %[Dzoe] 1:: ¢ ’ Z( 7} )m m! mzly2
= m=] P
2
?pz « ?M)2
. u e MAY" AV, d,,dd,] (C-13)
where Py is given in (1-68a) and Ny in (1-67a).
The integral in (C-13) is evaluated by introducing local
coordinates (u,v) as was done in Appendix B. Hence,
110
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i ltlA }’RZFJ -nvz’lu
—3— ¢

M
9= e[ ] ngl(—i‘!f—,‘-:-i“‘ A1 4,0,)) C14)

V=0
where
2
- rpM
2 2
.,y = 4 e Avy + mdy (C-14a)
P 4y.” + mdy
and
_ 2 2\11/2 _
cosy y = €0s(@ - A )A-u D" +p pyy (C-14b)
1
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Appendix D. Isotropic Background Diffuse Intensity

To obtain (1-41), it is mnecessary to evaluate the integral in
(1-19) which involves I . This is done by integrating (1-18). For

convenience, (1-18) is repeated below

dI S Wa ’
g + (1o, =Y o] [0, d +—F (@ a6 Mo a0,
©-1)
Let
U,@) = 4= [[ Lot ) duds (D-2)

which by definition is the average power density. Integrating (D-1)

gives
1 dI 10 Wa
= [ (e @ + Qi 1, = 2 W [[ao uae’
S Wa -z’'lu
+ S R@ii)e P a)]duds . (-3)

The integrals on the right-hand side are evaluated by approximating q(¥)
and q(yp) as delta functions. Evaluating the remaining integrals in

(D-3) yields the new differential equation

dU . -(1_'*'..;"&52'
p '—d——r + ( 1+JDCD -Wa ) U = SvaWa € P . (D-4)
112
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Solving for U, gives
U@ = spF:) [ (1 +jve’ -Wayz'lu e—(1+jvw’)2’/ﬂp] . (D-5)

Substituting (D-5) into (1-19) yields

dI,

)] : 4 — w ’ ’ W 1‘ ’ ’
ug+ (oo, = Y2 [[aoa, oo+ Y1, aurag

o % + W(la SF: [ & (1+jv0’ W)zl _ e-(l+jvw’)z'/up]
W(1- o _~ jow’)z’
+ (7z @) SFo e (1+jvw)z’ln , (D-6)
where
cosy = cos(¢-¢")(1-47)(1-u' D) * +uu’ (D-6a)
cosy, = cos(¢-¢ J(1-u")(1-u )" +uu . (D-6b)

The boundary conditions obeyed are

Izv=0 for 22 =0,0su=<s1, (D-6¢)
Izv > 0 as z’ 5 o (D-64d)

The first term on the right-hand side of (D-6) can be further

approximated by replacing q(y) by a delta function. It then follows that
(D-6) becomes

dI w ! SF°W. -t./u
20 _ v ’ D)) v D-7
”'3?; + Izv "T,[llzvd" +%—n—_° P ol

where
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7, = (1+jvw’-Wa)z’, W, = W (1-a)/(1+jve’-Wa) .(D-Ta)

Recognize that (D-7) is identical to the time-independent equation of
radiative transfer for the case of isotropic scattering except that 7,
and Wv are complex.
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Appendix E. Total Received Power in The First Order Approximation

From (1-67), (1-69), (1-70), (1-71) and (1-72) the coherent power,
narrow lobe diffuse power and omnidirectional diffuse power received by

a highly directive antenna are obtained for the normal incidence case
(,up=uj=l) as follows

Yy
X o F° -n,2’ - )2
': 7, = [[ e O e dwn)) o A7n |aucs (E-12)
K ™ =0
#,=[[#[ zeww vE Mo Z(W“z) N+EOUI— Ly 1
1 7[7[ V=0 an 1L $
ce AV ]dyd¢ : (E-1b)
7= [[aufd g0 (" Ty /z 0 0
@ ‘L[ In E(;N+1) I'” Is
. Yum %
e A7y ]dyd¢ , (E-1c)
where
n, = (1 +jw’) , n,,=(1+je’-Wa),j=p (Eld
and
Yy =0 6, =0. (E-1¢)

Because of the delta functions, (E-1a) readily simplifies to
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[+ (y plsz ’

4. = jow 't’ zo ) y ) ”vz -
T it = R [ Ee AT Y E2)
where

Yt = Gj = OP . (E-2a)

Following the procedure in [3], the omnidirectional diffuse power

becomes

RS

© °

" o (A FS on 2 f (4 )

’gr. - vw'’t RV 20 M
d2(z ot ’”M’¢M) - %LZ oe] [—2— {—e ._P_J

i

nyz'ls, ~ £ (4,)
[st 20 bk Z_ITI_ ]}]]

-(N+l)

(E-3)

after approximating the term exp(-(yMIAyR)z) in (E-1c), properly
normalized, by a delta function.

To determine the narrow lobe diffuse power, (E-1b) is separated

into two terms,

? 7. - 0 .
.?;il(z ot ’”M’¢M) = ‘?;" + '?;il ’ (E 4)

where

g : ItIF N -n.Z (W (;__ )2
= L{%[”Zoévw '4% eV z qm(y) e ]d,udtb (E-4a)
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and

Y
a_ eww’t’F; My %’ M(Waz )= ) ] 9%)2 g
%‘ﬂ%‘[vzo I © mzl a9, (ML ——-[ e “'r ]dy o,
(E-4b)

where £m(0) is defined in (1-38a). Recall that for the normal incidence
case, the variable Yy equals @ ; hence (E-4a) reduces to

@ . e 2F) - n -G (14 +1/4%)
0_ vo’t!_" v, az
S Sama et ——!—2‘[ sindt)
= y?
*® : 11 F ° -n,2Z
= [ ] 0O L T Z(W‘” iae™), @9
v=o 49* me1
where
ho=—L + L (E-5a)
AyR mdy

and use is made of (1-29). Similarly, (E-4b) can be shown to reduce to

(-]

7/ 1
I] z’ -

® . ,,2F° qz' M p My
t W
- af [ T e Lol 0
- b[ 1-11]5 (e""’(4h+1)-1)]]] , (E-6)
where
= 1y @ -4y (E-62)
117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



¥l

and

b = (m+lt)31§12m+l) (E-6b)

Hence, from (E-4), (E-5) and (E-6), the narrow lobe diffuse power is
found to be

[ -] o M
: ’ IF -n z’ sy n z’
9=%[ Jue’t’"v o (Waz)[ 4 (1_e4h_[1_ ) ]
d1 vz-:o '3 mzl m! h 1),z ) m+1

(1 (@m-1)1 - +1 2m+1 1 -
S RE D —5 € @] | @
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Appendix F. A Discussion of Simulated Annealing

The CT is conceptually similar to “”simulated annealing”, which is a
stochastic computational viewpoint derived from statistical mechanics
for finding mnear globally-minimum-cost solutions to large optimization
problems. Kirkpatrick et al [15] were the first to propose and
demonstrate the application of simulation techniques from statistical
physics to problems of combinatorial optimization, specifically to
problems of wire routing and component placement in VLSI designs.

Simulated annealing has been applied successfully to problems in
computer design [16], image restoration and segmentation [17],
combinatorial optimization such as the travelling salesman problem [15],
phased-array antenna synthesis [18], neural networks [19,20] as well as
IC layouts [21].

In general, finding the global minimum value of a cost function
involves many possible choices, subject to conﬂicting constraints [22],
because the cost function will tend to have many local minima. A
procedure for solving this type of optimization problem should involve a
high probability of finding a near-optimal solution and should also lend
itself to efficient implementation. Over the past few years simulated
annealing has emerged as a viable technique which meets these
requirements. The following paragraphs summarize the concept of
simulated annealing.

Simulated annealing originated from statistical mechanics which is
the study of the behavior of very large systems of interacting

particles. An example of one such system is atoms in a fluid in thermal
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equilibrium at a finite temperature. Suppose that the configuration of
the system is identified by a set of spatial positions of the particles.
If the system is in thermal equilibrium at a given temperature T then
the probability IIs that the system is in a given state s depends upon
the energy Es of the state, which for some systems is given by the

Boltzmann distribution,

e KT (F-1)

where k is the Boltzmann constant and the summation extends over all
possible energy states.

One can simulate the behavior of a system of particles in thermal

equilibrium at temperature T by using a stochastic relaxation technique
developed by Metropolis et al [23]. Suppose that at time t, the system
is in state r. A candidate s for the state at time t + At is generated
randomly. The criterion for selecting or rejecting state configuration s
depends on the difference between the energies of state r and s.
Specifically, one computes the ratio R of the. probability of being in
state s and the probability of being in state r,
- (E, - E)
R = _.H’_ =e ¥ (F-2)
Depending upon the selection of a value for R as a criterion, one either
accepts or rejects the new configuration state s.

In studying such systems of particles, one often seeks to determine

the nature of the low—energj states, for example, whether slow freezing
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produces crystalline or glassy solids. Very low energy configurations
are not common when considering the set of all configurations. However,
at low temperatures they predominate because of the mnature of the
Boltzmann distribution. To achieve low-energy configurations, it is not
sufficient to simply lower the temperature. Onme must use an annealing
process where the temperature of the system is determined, and then
gradually lowered, spending enough time at each temperature to reach
thermal equilibrium. If insufficient time is spent at each temperature,
especially near the freezing point, then the probability of attaining a
very low energy configuration is greatly reduced. For example, defects
in a crystalline structure might occur if the process of lowering the
temperature is not done properly. As a result, the lower emergy state
would not be obtained.

The simulation of annealing as applied to optimization problems
involves the following preparatory steps. First, one must identify
analogies to the statis.tical physics concepts in the optimization
procedure, i.e., the energy function is chosen as the cost function, the
configuration of particles becomes the configuration of the parameter
values, finding a low-energy configuration becomes seeking a
near-optimal solution, and temperature becomes the control parameter of
the process. Second, ome must select an annealing schedule consisting of
a decreasing set of temperatures together with the amount of time to
spend at each temperature. Third, one must have a way of generating and
selecting new configuration states.

In CT, the cost function is taken to be the total error between
experimental and numerical data which is minimized, and the schedule of

lowering temperature is the allocation of standard deviations for the
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parameters. For the allowable configuration state, a set of gaussian

distributed random numbers is generated for minimizing the error.

‘/
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