
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



INFORMATION TO USERS

The most advanced technology has been used to photograph and 
reproduce this manuscript from the microfilm master. UMI films the 
text directly from the original or copy submitted. Thus, some thesis and 
dissertation copies are in typewriter face, while others may be from any 
type of computer printer.

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 
illustrations and photographs, print bleedthrough, substandard margins, 
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete 
manuscript and there are missing pages, these will be noted. Also, if 
unauthorized copyright material had to be removed, a note will indicate 
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 
sectioning the original, beginning at the upper left-hand corner and 
continuing from left to right in equal sections with small overlaps. Each 
original is also photographed in one exposure and is included in 
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6" x 9" black and white 
photographic prints are available for any photographs or illustrations 
appearing in this copy for an additional charge. Contact UMI directly 
to order.

University M icrofilms International 
A Bell & H owell Information C om p an y  

3 0 0  North Z e eb  R oad, Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6  USA  
3 1 3 /7 6 1 -4 7 0 0  8 0 0 /5 2 1 -0 6 0 0



Order Number 9108044

O n th e  p e rfo rm a n c e  o f M in im u m  R e d u n d a n c y  A rra y  fo r 
m u ltiso u rce  d ire c tio n  find ing

Lee, Byung-Seub, D.Eng.Sc.

New Jersey Institute of Technology, 1990

UMI
300 N. ZeebRd.
Ann Arbor, MI 48106



NOTE TO USERS

THE ORIGINAL DOCUMENT RECEIVED BY U.M.I. CONTAINED PAGES 
WITH SLANTED PRINT. PAGES WERE FILMED AS RECEIVED.

THIS REPRODUCTION IS THE BEST AVAILABLE COPY.



ON THE PERFORMANCE OF MINIMUM REDUNDANCY ARRAY 
FOR MULTI-SOURCE DIRECTION FINDING

BY
BYUNG SEUB LEE

Dissertation submitted to the FACULTY of the Graduate School 
of the New Jersey Institute of Technology in partial 

fulfillment of the requirement for the degree of Doctoral of
Engineering Science 

1990



Approval of Dissertation 

Title of Dissertation: On the Performance of Minimum Redundancy 

array for Multi-source Direction Finding. 

Name of Candidate: 	Byung-Seub Lee 

Doctor of Engineering Science, 1990 

Dissertation and Abstract Approved: 

Dr. Y. Bar-Ness 	 Date 

 
Dr. A. Haimovich 	 Date 

Dr. C. Lu 	 Date 

	 
Dr. J. Tavantzis 	 Date 



VITA 

Name: Byung Seub Lee 

Degree and Date to be conferred: D.Eng.Sc.,1990 

Collegiate institutions 

attented 

Dates Degree Date of 

Degree 

New Jersey Institute 

of Technology 

1/86-5/90 D.Eng.Sc. 1990 

Seoul National 3/79-1/81 M.S 1981 

University 

Civil Aviation 3/75-1/79 B.S 1979 

College 

Major: Electrical Engineering 



ABSTRACT

Title of Dissertation: On the Performance of Minimum Redundancy
array for Multi-source direction finding. 
Byung Seub Lee, D . Eng. Sc. E.E., 1990 

Dissertation directed by Dr. Bar-Ness
Director of Center for Communication and 
Signal Processing Research.

As an application of power spectrum estimation, the 
multi-source direction finding has been evolved from conventional 
FFT method to Superresolution methods such as Multiple Signal 
ClassificationMUSIC) algorithm. Uniform Regular Array(URA) was 
mainly used in all these approaches.

The Minimum Redundancy array(MRA); a non-uniform thinned 
array which results in an input signals covariance matrix with 
minimum redundancy has been shown to have certain interesting 
properties for spectrum estimation. Only recently it was suggested 
to use the MRA for spatial estimation. The purpose of this 
research was to study the performance of this array in 
multi-source direction finding estimation and compare it to the



result obtained with URA . Although the emphasis in this research 
is on using the popular MUSIC algorithm, other algorithms are also 
considered.

Among the topics related to the MRA performance studied in 
the course of this research are

1. Effect of random displacement of the array element 
location on the performance of multi-source direction finding.

2. Performance of the MRA versus the URA using MUSIC and 
Minimum-Norm algorithms.

3. Performance of the MUSIC based direction finding using 
different covariance matrix estimates for URA and MRA.

4. The error probability of estimating the number (two in 
particular) of closely located sources with MRA versus URA.
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1. INTRODUCTION.

In direction finding, one is interested in obtaining an 
estimate of the spatial structure of a random spatial field. If 
one samples in space a random field using a linear array of M 
sensors then a vector time series { x(t,0), x(t,Ax),
 ,x(t,(M-l)Ax) >, is obtained, where x(t,iAx) is the continuous
waveform at the i’th sensor; i= . The field can be
expressed as [1]

x(t,iAx) = J J  V exp[j2rc(ft - k^iAx) ] df dk^
(1)

which represents the field as the sum of an impinging plane waves
with random amplitudes y<f,kx). The temporal frequency is denoted
by f, while the spatial frequency along the x direction is denoted
by k . The wave number component k is the reciprocal of the x x
wavelength of a monochromatic plane wave along the x direction. 
Since k̂  = (f/c) sind, where 9 is the angle from the broadside, 
then E [ j vO.k^) | ] is the power at frequency f arriving from 
the 6 direction. The inverse fourier transform of (1) is

1



V( f.k^) = J] £ J x( t, iAx )exp( - j2rcf t )dt J exp( j2nkxiAx )

M-l
* E X-(iAx) ©xp( j2frk iAx) (2)

i=0 r *

Expression (2) is fourier the transform relationship between a
spatial time series X-(iAx), where Ax is the distance between theT
sensors, and its spectrum y<f,k ). If the spatial field is assumedx
homogeneous ie.

E [ x(t.iAx) x(t,jAx) ] = f(t,[i-j]Ax) (3)

then the spatial time series is a wide sense stationary and the
2estimation of EC|V<f» ) | ) for all k̂  at a given temporal 

frequency f is analogous to the one-dimensional temporal power 
spectral estimation. Finally we can get the estimation of the 
spatial autocovariance

N-l M-k-1
R ( kAx )= E E  x ( nAt ,iAx ) x( nAt,( i+k)Ax)X NI. rl— K ) .n=0 1=0

k> 0

2



where x(nAt.iAx) is assumed to be stationary over the interval 0< 

nAt Is (N-l)At. In conclusion there is a direct analogy between 

power spectrum estimation and source direction finding.

Conventional estimation of the power spectral density of 
discretely sampled deterministic and stochastic process is usually 
based on procedure employing the fast fourier transform. This 
approach to spectral analysis is computationally efficient and 
produces reasonable results for a large class of signal processes. 
In spite of these advantages, there are several inherent 
performance limitation of the FFT approach. The most prominent 
limitation is that of frequency(or direction) resolution, ie, the 
ability to distinguish between the spectral responses of two or 
more signals. A second limitation is due to the implicit windowing 
of the data that occurs when processing with FFT. Uiindowing 
manifest itself as "leakage1* in the spectral domain, ie, energy in 
the main lobe of a spectral response leaks into the sidelobes, 
obscuring and distorting other spectral responses.

These two performance limitation of FFT approach[2]-[5] are 
particularly troublesome when analyzing short data records. Short 
data records occur frequently in practice because many measured 
process are brief in duration.

3



In an attempt to alleviate the inherent limitation of the FFT 
approach, man/ alternative modern spectral estimation procedures 
have been proposed. These methods are classified as 1) Parametric 
estimation and 2) Non-parametric estimation( Eigensystem 
estimation)
1) The parametric Power Spectral Estimation.

This class includes the autoregressive method(AR)[6)-[9], and 
the autoregressive-moving average method(ARMA) [10]-[12]. The 
output of this class of estimation is totally described in terms 
of the model parameters and the variance of the white noise 
process. The motivation for parametric estimation is the ability 
to achieve better power spectral (or spatial) density estimation 
based upon the model than that produced by classical FFT spectral 
estimations.

The parametric approach to spectral(or spatial) estimation 
involves three steps. In step one, an appropriate parametric 
time-series model is selected to represent the measured data. In 
step two, an estimate of the parameters of the model is made. In 
step three, the estimated parameters are inserted into the 
theoretical power spectral density expression appropriate for that 
model.
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b) Non-parametric Power Spectral Estimation 
(Eigensystem based Method)

A class of spectral technique based on an eigensystem of an 
autocovariance matrix have been promoted in the research 
literatures as having better resolution and better frequency(or 
spatial) estimation characteristics than spectral technique,such 
as auto-regressive method or Prony’s method, especially at lower 
SNR, where these parametric methods often fail to resolve close 
frequency or direction.[13],[14]

The basis for the improved performance of the eigensystem 
technique is the division of the covariance matrix R into two 
vector subspace, one a signal subspace and the other a noise 
subspace. Function of the vectors in either the signal or noise 
subspace can be used to create frequency(spatial) estimation that 
show sharp peak at the frequency or direction of measure data. 
These are not the true power spectral density estimator because 
they do not preserve the measured process power nor can the 
autocorrelation sequence be recovered by Fourier Transforming the 
frequency estimation. Included in this class of Eigensystem based 
frequency estimations are the Pisarenco Harmonic Decomposition
[15] and multiple signal classificationCMUSIC).[16],[17]
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Most of the aforementioned algorithms were applied to uniform 
regular array(URA) which has its antenna element located at a 
distance \/2 between the adjacent element. The other type of 
array, called Minimum Redundancy Array(MRA), has the advantage of 
having a large aperture length by deploying the same number of 
array elements further away to remove redundancy in its distance 
between the array elements[18].As such, if the covariance matrix 
of the MRA is augmented to a Toeplitz matrix of a much larger 
dimension than its number of elementsCshown to be possible) then 
this array can resolve a much larger number of sources than URA. 
In the next chapter we review the material on power 
spectral-spatial estimation which is relevant to the research at 
this work. In chapter 3 we discuss the principle of the minimum 
redundancy array and its usage for multiple source direction 
finding. In the last four chapters we suggest different problems 
related to the performance of the MRA in comparison to the URA. In 
chapter 4 we discuss the effect of random displacements of the 
array elements on the performance of MRA and compare it to that of 
the URA. Different density functions are assumed for these 
displacements. Both one and two dimensional displacements are 
considered. In chapter 5 a comparison of the MRA to the URA

6



performance is made based on using two different spatial 
estimation algorithm; the Multiple Signal Classification MUSIC) 
and the Minimum-Norm algorithms. In chapter 6 the effect of using 
different estimators for the covariance matrix on the performance 
of the direction finders implementing URA and MRA is evaluated and 
compared. The knowledge of the actual number of signal impinging 
on the array used for direction finding is a crucial parameter for 
any multi-source direction finding algorithm. The error 
probability of estimating this number of sources is considered in
chapter 7 Particularly the case of estimating the number of
(actually two) closely located sources with URA and MRA is 
discussed and compared.

The material in this report is arranged in such a way that 
each chapter has its own background and references. This look 
rather unusual for a thesis, was thought to be the best for such a 
kind of work which deals with several topics, although related to
the same question of “the performance of MRA versus URA“, it is
somewhat distinct.
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2 . P o w e r  S p a t ia l - S p e c t r a l  E s t im a t io n .

1. Basic Principles of Estimation Theory.[1]

Consider a stationary random sequence x . Its ensemble meann
value, m , is defined by equation (1) below. The time average meanX
of this random process, x , is defined in equation (2) below.n
Also assume that the random sequence x is the "ergodic process",n
i.e. , a random sequence whose ensemble average is equal to time 
average .with probability one(W.P.l). That is the ensemble

average,

+00

m = E [x ] = I x p (x) dx (1)x n J x
-00

and the time average,
N

m = < x > = lim ------  r x (2)* n ... “ n2N n=-NN+00

are equal WP1. Similarly variance and autocovariance are

11



» E [ (x - m )2 ] = < (x - m )2 > x n x n x (3)

C4)

The power spectral density is given by

oo
(5)

Usually estimation of a parameter of random process is based on 
finite segment of a single sequence; i.e., we have N values x^ ,0< 
n £ N-l, from which we wish to estimate some parameter which we 
denote as "A". The estimate A of the parameter A is a function of 
the random variables x , 0 < n < N-l, denoted by

Therefore A is also a random variable. The probability density
^ a ^

function of A will be denoted p~(A). The shape of will

n

A = F( x0 »x1 , KN-l )
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0.40 - Fig 2-1

Estimator 1<<a.
0.20

Estimator 2

o.oo
0

depend on the choice of the estimator F ( ) and the
probabilitydensities of the random variable x^, as indicated Fig 
2-1. It is reasonable to characterize an estimator as being “good" 
if there is high probability that the estimate will be close to A.
Generally speaking, it is plausible that for a good estimator the
probability density function should be narrow andH
concentrated around the true value, and we might compare different 
estimators on that basis. On this basis it is clear that estimator 
1 in Fig-1 is superior to estimator 2 because the probability 
density of estimator 1 is more concentrated about the true value

13



A. In keeping this notion, two properties of estimators that are 
commonly used as a basis for comparison are the "bias" and 
"variance". The bias of an estimator is defined as the true value 
of the parameters minus the expected value of the estimate, i.e.,

Bias= A - E [A ]

An unbiased estimator is one for which the bias is 0. This is then 
means that the expected value of the estimate is the true value. 
Therefore, if the probability density P?(A) is symmetrical around 
A, then its center would be at the true value A. The variance of 
the estimator in effect measures the width of the probability 
density and is defined by

Var [ A ] = E [ ( A - E[A] )2 ] = a2

A small variance suggests that the probability density p~(A) isA
concentrated around its mean value and hence E(A) = A with a

a
higher probability. If A= A, unbiased estimator then small 
variance mean A= A with high probability.

14



2. Conventional Methods of Spectral Estimation.[l]* [2],[3],[4]

Traditional spectrum estimation, as currently implemented 
using the FFT, is characterized by many tradeoffs in an effort to 
produce statistically reliable spectral estimates. There are 
tradeoffs in windowing time-domain averaging, and frequency-domain 
averaging of the sampled data obtained from the random process in 
order to balance the needs to reduce sidelobes, to perform 
effective ensemble averaging, and to ensure adequate spectral 
resolution. Two spectral estimation techniques based on Fourier 
transform operation have evolved. The first is the Power Spectral 
Density estimate based on the indirect approach via an 
autocorrelation estimate, was popularized by Blackman and 
Turkey[3]. The other is the Power Spectral Density estimate, based 
on the direct approach via an FFT operation on the data directly 
which is typically referred to as "Periodogram".
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Time Function 

x(t)

DirectIndirect
Eq.(3)Eq.(2)

r) -►
Temporal Eq. (1) Power
Autocorrelation Spectral Density

Fig 2-2. direct and Indirect methods to obtain PSD 
(Stationary and Ergodic properties assumed)

Using the indirect approach, we first find RXX(T )

-  f2T J
R (r) = lim ----- | x(t+r) x*(t) dt (6)XX T-»oo 2T _T

then obtain the power spectral density (PSD),

16



+00

R (r ) exp(-j2nft ) dr ( 7 )xx
-00

Using the direct approach Me get the PSD by

P(f) * lim E £   | f x(t) exp( -j2rcft) dt | j
T+oo 2 T -T

(8)

When only a finite data sequence is available, only a finite 
number of discrete autocorrelation function values, or lags, can 
be estimated. An obvious autocorrelation estimate, based on (6), 

is an unbiased estimator given by

N-m-1
R (m) = ------ £ x x* (9)xx ^ n+m nN - m n=0

for m=0,l __ ,M, where M < N-l. Blackman and Turkey proposed to
obtain the spectral estimate by

M
P Cf) = At £ R (m) exp(-j2rcfmAt) (10)BT .. XXm= -M

The negative lag estimates are determined from the positive lag 
estimates as follows:

17



R (-m) = R (m) (11)xx xx

The direct method of spectrum analysis is the modern version
of periodogram. A sampled data version of expression (8), for
which measured data are available only for samples Xg.x^, — *
x., „ , is given by N— 1

1 N-l
Pp£R(f) =   | At £ xn exp( -j2rcfnAt) | (12)

N At n=0

defined for the frequency interval -l/(2At) i f 5 l/(2At). Notice 
that

ff ) = ----- I X I2 (13)PER m 1 m 1N At

where f = mAf and X is the DFT of sequence x . Use of the FFT m m  n
will permit evaluation of (12) at the discrete set of N equally
spaced frequency f = m Af Hz, for m=0,l, — , N-l and Af ism
1/NAt. P (f ) is identical to the energy spectral density exceptPER m
for the division by the time interval of NAt second,to make it 
power spectral density.

Many of the problems of these conventional methods of PSD

18



estimation techniques can be traced to the assumption made about 
the data outside the measurement interval. The use of only those 
windowed data implicitly assumes the unmeasured data to be zero, 
which is usually not the case. This multiplication of the actual 
time series by window function means the overall transform is the 
convolution of the desired transform with the transform of the 
window function. If the power of a signal is concentrated in a 
narrow bandwidth, this convolution operation will spread that 
power into adjacent frequency regions. This phenomena, termed 
"leakage', is a consequence of the windowing inherent in the 
computation of the periodogram.

In summary, the conventional Blackman and Turkey(BT) and 
Periodogram approach to spectral estimation have the following 
advantage.

1) Computationally efficient if only a few lags are 
needed(BT) or if the FFT is used (Peridogram).

2) Power Spectrum Density estimate directly proportional to 
the power for sinusoid processes.
The disadvantage of these techniques are

1) Suppression of weak signal main-lobe responses by strong 
signal sidelobes.
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2) Frequency resolution limited by the available data record 
duration independent of the characteristics of the data or its 
SNR.

3) Introduction of the distortion in the spectrum due to 
sidelobes leakage.

4) Need for some sort of pseudo ensemble averaging to obtain 
statistically consistent periodogram spectra.

3. Maximum Likelihood Spectral estimation.[5]

In maximum likelihood spectral estimation (MLSE), originally 
developed for seismic array frequency-wave number analysis, one 
estimates the power spectral density by effectively measuring the 
power out of a set of narrow band filters. MLSE is sometimes 
referenced as the "Capon spectral estimate". The difference 
between MLSE and the conventional BT/Periodogram spectral 
estimation is that the shape of the narrow band filters in MLSE 
are, in general, different for each frequency whereas they are 
fixed with the BT/Periodogram procedures. The filters in MLSE 
adapt to the process for which the PSD is sought. In particular,

20



the filters are Finite Impulse Response(FIR) types with p weights;

where T stand for transpose. The coefficients are chosen so that
the frequency response of the filters at the frequency under
consideration is unity(i.e., an input sinusoid at that frequency
would be undistorted at the filter output) and the variance of the
output process is minimized. Thus the filter should adjust itself
to reject component of the spectrum not near frequency under
consideration fQ .so that the output power is due mainly to
frequency components close to fQ . To obtain this filter, one

2minimizes the output variance a , given by

2 ♦a - a' R a (15)xx

where R is the covariance matrix of x , subject to the unity xx n
frequency response constraint (so that the sinusoid of frequency
f is filtered without distortion). That is 0

E*A = 1  (16)

21



where E is the vector

E = [ 1, exp(j2rcfQAt)...... exp(j2n(p-1)fQAt) ]T

and 1* denotes the complex conjugate transpose. The solution for 
the filter weights is easily shown to be

R-1 E
A . -----^ ---- (17)
°pt t -1ET R EXX

and the minimum output variance is then

2 _  *
°min

Ef R-1 E xx

(18)

Notice that E^A . is the optimum filter response at f, whereT Opt.

Ef= C 1, exp(j2nfAt), ... , exp( j2nf(p-l )At) ]T
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1* ”1then E R E. XX
E A  = ------------ = 1

°Pt t -1e tr eXX

That is the optimum filter frequency response at f is unity. The
filter characteristics depends on the underlying autocorrealtion
- function R . Since the minimum output variance is due to xx

2frequency components near f_, then ct . can be interpreted as PSDo min
estimate. Thus, the MLSE PSD is defined as

A t
pml( V  -  -  ( l 9 )

E R E xx

To compute the spectral estimate, one only needs an estimate of 
the autocorrelation matrix.

4. Spatial Spectrum Relation

The direction estimation problem is mathematically equivalent 
to the estimation of the spatial Fourier transform of the 
radiation field. The waveform measured at the spatial position z.
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of the i'th element is denoted by
z. .k

x. (t ) = S(t + - - --- ) + n.(t) (20)i c x

where n.(t) is an additive noise at the i*th element and *.*k0 is
the dot product of the position vector z. to the i’th element and
k is the direction vector of the wave impinging on the array(here 0
assumed a single source). The spatial Fourier transform

X.(f ,kQ ) = e-j2n(f/c)(z.*k0 ) s(f j + N(f ) (21)

Using vector notation we will define

z-k
x(t) = S(t+ ------- ) + n(t) (22)c

where z*k^ is a vector whose elements are given by z.*k_, O '  i 0
i=l,2,..,M (M is the number of array elements). Correspondingly 
the spatial Fourier transform vector is given by

X( f, kQ ) = e”j27T(f/c)(2*k0 )S(f ) + N(f ) (23)
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If the array is linear then z.= where e is a unit vector inX X o o
the direction of the array line position and d^ is the distance 
from the i’th element to some reference point, and zj*^0= 
where is the angle between the direction of propagation andthe 
array broadside. For this case

X(f,k0 ) = X(f,eQ)

= S(f) a(0 ) + N(f) (24)o
where

a(0Q ) = C exp(-j2rrf/c djSin^), .. ,exp(-2rrf/c dMsin©Q ) ]T

For the case of multi signal impinging on the array from direction

Q , k=l,2,..,0 we have,K
D z*k.

x(t) = Z S.C t+ — —  ) + (26)
i=l k C

X(f.k) = Z e”j2n(f/c)(z’ki)Si(f) + N(f) 
i=l
D

= Z S (f) a(3 ) + N(f) (27)
i=l
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NOW +
R = E [ X(t) X(t)T]

= E [ X(f ,k ) X(f ,k )f ] (28)

where R is the array output covariance matrix. Using (27) we get

R = E C E S.(f) * ( 0 . )  E S.(f) a(8.)f ] + E [ N(f)N(f)t] 
i=l 1 1 j=l 1 J

= E  E [ Isi(f)!2 3 a(0i3 a(0i)f + v*1 (29)

where we assumed the signals S^(t) are uncorrelated and that the 
noise at the elements is uncorrelated zero mean and with variance 

o'2 , where

a(0, ) =   -j2rt(f/c)dMsinek ]T
K

(30)

If the array is uniform dj= i'd then

ace„) = U .  e-2nf/c dsi"ek , .. . CM-l)dsin9k }

( 3 D
where we also chose the reference point at the first element.

If the signal is narrowband centered at f the n X(f) is a 
constant, and if we also take d= then
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N r « -n sin9. -2n sin0. -(M-l)nsinB. ..a(©k> = [ 1, © k ,© k ,.. ,e k ]

(32)
Under these conditions

where

and

R * A E [ S(f) S(f)1* ) A* + O2 I (33)

A = [ 8(0^, a(©2) a(©Q ) ]

S(f)= [ s.(f ), s if ) s (f ) 3 (34)1 2  D

+From (33) it is clear that if we take X = AS then R = E [XX 3 - In 
♦fact S(f) S(f) is a diagonal matrix whose element are P^; the 

power of the different signals.
When we deal with plane wave propagations, narrowband signal 

and linear array,it is simple to obtain equation (33) directly in 
the time domain rather to obtain it as a special case of the more 
general case we discussed in this section.

5. The Bartlett spatial Estimation.

If the signals x.(t) of (20) i=l,2, .. ,M, we weigh and delay to
from



M
y(t) = £ a.x.Ct-r.) , 

i=l
(35)

then its Fourier transform is
M

Y(f,k) = J] a.exp[ -j2rt(f/c) z.*k ) X.(f) (36)
i=l 1 1

where t . is given by the dot product (z.*k)/c, whose angle
represents a beam direction with respect to
the array broadside is ©, and z.= d.e^ where eQ , as before a 
vector in the direction of the array line position, then

Y(f,k) = Y(f,©) = d T X(f,k) (37)

where a _ -j2n(f/c) d.sin© -j2rc(f/c)d sin©d = [a„e 1 ,... , a e M1 n
( 38)

From (27) we can write

X(f.k ) = A S(f) (39)

where
A = [ a(©1), a(©2)...... a(©k) ] (40)

unit

]
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The energy at the output of the weighing filter is given by 
J|Y(f,k)| df, and we must find d which will give a maximum. 
However if the signal is narrowband, centered at f then

P(0) = | Y(f ,k)|2 = E id X Xf 6 f]

« d A E [S(f) S(f)t3 A *d *

* d r a * (4i)

♦where R = A E CS(f) S (f)] A as before.
The equation

P(0) = d R d * (42)

is called the Bartlett estimate.

6. High Resolution array Processing Using the Eigensystem.[6]

New signal processing methods for passive direction finding 
have emerged recently. They are called "High Resolution" method
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because they have theoretically a better resolving power than 
conventional or adaptive beamforming, but they use a more complete 
modeling of the medium which needs knowledge on the background 
noise spatial coherence. They are based on the properties of the 
eigenvectors and eigenvalues of the cross-spectral density matrix 
of the signal received at the sensors of the array. They have 
theoretically an asymptotic( Infinite observation time) infinite 
resolving power.

The improvement in performance of the array processing, using 
eigensystem, is due to the use of a model for the medium, which is 
more complete than the one utilized for previous array processing. 
Adaptive array processing, Just as conventional beamforming, 
relies on certain assumptions about sources and the propagation in 
the medium. The source are assumed point-like, perfectly spatially 
coherent, and the shape of the wavefront received at the array 
from a source, is assumed a known function of the source position. 
The receiving element transfer functions are also assumed to be 
perfectly known. Let x(t) be the vector representing the signal 
received on the M elements of the array:

X(t) * [ x„(t),x (t), ..., x (t) ] (43)1 2 n
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where x.(t), i=l,...,M, is the signal received at the i’th
element. The space correlation matrix of the received signal is 
defined by:

is the conjugate-transpose of X(t). The cross-spectral density 
matrix T(f) is the fourier transform of C(r). Under the previous 
assumptions, the cross-spectral density matrix of a single source 
is given by

d(f) is the source position vector: it is composed of M transfer 
functions between the source and each element normalized by the 
transfer function between the source and a reference point on the 
array. y(f) is the spectral density of the signal received from 
the source at the reference point. In the case of an isotropic 
propagation with negligible attenuation between the sensors. d(f) 
is the familiar steering vector of the conventional beamforming:

C(T) = E [ X(t) X^t+T) ] (44)

where E stands for mathematical expectation and X^(t),as before,

r ( f ) = r(f )  d(f) df(f) (45)

d( f ) = [ e-j2nfT1 . e-j2rrfr2 , j2nfr (46)
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T. is the delay of the source signal between the i'th element and 
the reference point;that is d.sin£,d^ is the distance of the 
i*th element from the reference point and 6 is the direction of 
the source. The rank of this matrix is unity. which is 
characteristic of the perfect coherence assumption about sources. 
If we also assume that the sources and the background noise are 
statistically independent, then the cross-spectral density matrix 
of the signals at the element outputs is expressed by:

D tref) = r <f) + e  y.(f) d.(f) dT(f) (47) 
i=l

where T. (f) is the cross-spectral density matrix of the background D
noise and D is the number of sources. It is generally assumed that 
the background noise is partially incoherentC statistically 
independent between the sensors). Thus

rb(f) = <Kf) I . (48)

is the spatial coherence matrix of the background noise,o{ f)its
spectral density and I is the identity matrix. High resolution 
methods also assumes that the noisefield can be resolved, that is 
to say the number of sources D is less than the number of sensor 
H. therefore
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The hypothesis on the background noise is the key to the high
resolution.

- High Resolution Method Principles.

High resolution methods are based on eigenvalue-eigenvector 
decomposition of the cross-spectral density matrix T(f). It can be 
easily seen from the relation defining an eigenvector V(f) and 
related eigenvalue X(f),

D<M
r(f)v(f) = oi,f)v(f)+ z r A f) d,<f) [d*(f) v(f) ] = \(f) v(f)

i=l
(50)

That is V(f) must be either orthogonal to all d.(f) ,i=l,...,D,
with corresponding eigenvalues \(f)= o<f) or V(f) is a linear 
combination of d^Cf). i=l,2,...,D given by

D<M
v(f) = ----  2 y.(f)[d*(fMf)]d.(f) (51)

\ .(f) i=l 1 1si



The cross-spectral density matrix T(f) has:
a) D eigenvectors V.(f) are also eigenvectors of the

sources alone cross-spectral density matrix T (f)- They corresponds
to the non-zero eigenvalues X .(f) of r (f) which clearly has ranksi s
D. The related eigenvalues are,

\.(f) = X .(f) + 0<f) (52)1 si

These eigenvectors form a basis of the D dimensional subspace 
spanned by the D source position vector d.(f). This subspace will 
be named the source subspace. The following important relation is 
proved in the appendix.

D f D f
E y X f) d.(f) d.(f ) = E t *Xf) - o<f)] v.(f) v.(f)T (53)
t  „ i i i . . i i i1=1 1=1

b) (M-D) eigenvectors V^(f) which are orthogonal to the 
preceding eigenvectors have the fundamental property to be 
orthogonal to all the source position vectors: (see 50)

v!( f ) d .( f )=A J D+l < i < M ,  l < j < D (54)
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They are a basis of the so-called orthogonal subspace. The 
eigenvalues corresponding to these eigenvectors are all equal to 
o<f ), and consequently smaller than any of these source space 
eigenvalues. From these properties, high resolution methods are 
deduced;

a)From the eigenvalues, first the number of sources is 
- determined: it is the number of elements minus the number of the
smallest and equal eigenvalues.Then, the source subspace and the 
complimentary orthogonal subspace are set u p  through a 
partitioning of the eigenvectors to those that do not correspond 
and those that do correspond to the smallest eigenvalues.

b)Different methods can be used to exploit the partitioning 
into the two subspaces in order to obtain the source location. But 
clearly it is necessary for that to use the source wavefront shape 
knowledge assumption, from which a position vector model is 
deduced: d(f,£);£ stands for the source position. It is possible 
to use the orthogonal subspace or the source subspace.

c) when using the source space, basically the source 
parameter 0. and y^(f) are extracted from the identity between two 
matrices. One is a reconstruction from the source subspace, of the 
sources alone, cross-spectral density matrix;
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E i x.(f)- r t f )  3 v (f) vf(f)
i=l 1

(55)

The other is a model of the source alone cross-spectral density 

matrix using the model d(f,0)

D
E r.(f) d(f,e.) d^f.e.) (56)
i=l

In the general case this identification cannot be achieved 

directly and adjustment algorithm have to be used.
d) When the orthogonal subspace is used, the source position 

results from a projection of the position vector model onto ‘ the 

orthogonal subspace according to;

M
G(f,0) = E | vt<f > d(f,0)|2 (57)

- i=D=l

when 0 varies, G(f,0) produces a null every time 0 equals the 

position 0. of a source. The nulls of G(f,0) yield the source 

location. Knowing them, spectral densities are then at hand. Some 

authors(Schmidt) use a weighted sum of the square modulus.
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The main property of the high resolution method is that its 
resolution is no longer limited by the signal to noise ratio of 
the sources as with adaptive array processing: it increases
theoretically with the observation time up to infinity. Therefore, 
asymptotically as averaging time increases, two sources can be 
resolved no matter how close and how weak, as compared to the 
background noise.

7. MUSIC (Multiple Signal Classification)[7]

1) Data Model
The waveform received at the M array elements are a linear

combination of the D incident wavefronts and noise that can be
\

expressed as follows



X * A F + W (58)
where a(0.) as in (30).

The incident signals are represented in amplitude and phase 
at some arbitrary reference point by the complex quantities F , 
F2 ,.., FQ . The noise whether sensed along the signal or generated 
internally, is given by the complex vector W. The element a(i,j) 
of the matrix A are a function of the signal arrival angles and the 
array element locations. That is, a(i,j) depends on the i*th array 
element, its position relative to the origin, and its response to 
a signal incident from the direction of the j’th signal.

2) The Covariance Matrix R

The MxM covariance matrix of X vector is given by

where the overbar is used for the expectation. When the number of 
incident wavefronts D is less than the number of array elements M,

t t t •f’R = X X  = A F F A + W W (59)

or
♦r = ap a + x

*m m  0
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♦then APA is singular; it has a rank less than M. Therefore

APA*| = I R - X . R J  = 0 (60)1 1 mxn 0*

This equation is only satisfied with X equal to one of the
eigenvalues of R in the metric of RQ . But, for a full rank and P
positive definite, APA* must be nonnegative definite. Therefore,

fany measured R = XX matrix can be written

R = APA* + X . R (61)mim 0

where X . is the smallest solution to R - XR^ = 0. Note that in m m  ' 0 1
the special case wherein the elements of the noise vector U have

2zero mean and variance a , we have X . R = a I.mxn 0

3) Caculating the Solution.

The rank of APA* is D and can be determined directly from the
eigenvalues of R in the metric of RQ . That is, in the complete
set of eigenvalues of R in the metric of R., X . will not always0 mxn
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b© simple. In fact, it occurs N = M-D times. Therefore, the number 
of the incident signal estimator is

D = M- D

4) The signal and Noise Subspace.

The M eigenvectors of R in the metric of RQ must satisfy Re.=
t tX.R^e., i=l,2,...,M. Since R = APA + X . R_, we have APA e.=(X.- i 0 1 min o l i

X , )R^e.. Clearly, for each of the X. that is equal to X . ,we min 0 l i min♦ ♦must have APA e.= 0 or A e.= 0. That is the eigenvector associatedl i
with X . are orthogonal to the space spanned by the column of A; m m
the incident signal mode vectors.

5) The algorithm

If E is defined to be the MxM matrix whose column are the NN
noise eigenvectors, and the ordinary Euclidean distance from a

2 ♦ ♦vector Y to the signal subspace is d = Y ENENY then d=0 if Y is
2in the signal subspace. Ue can plot 1/d for points along the aid) 

as a function of 0. That is
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MU t ta(0)TENEj a(0)

when 0= 0^ a(0) will be in signal subspace and PMU^®) will have a 

peak.

Appendix:

From (27) we have

D ♦E V.(f) d.CfJCd.CfrVjCf)] = ) (A-i)
i=l

Multiplying by vt(f ) we have after summation



NOW
D t t
E r A f )d (f)d <f) V (f)V (f) = oi=0 1 1 1  J J

for j=D+l, ..., M

Hence
D t M .
E Y X f)d.(f)d.Cf) Z vT<f>
i=l 1 1 j=l J J

Using the fact that £ V.(f)V.(f ) = 1
j=l J J

equation (30) follows.
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3 . Mu l t ip l e  S o u r c e  Dir e c t io n  F in d in g  w ith  

Min im u m  Re d u n d a n c y  Ar r a y .

1. Introduction.
The uniform regular array, a linear array with its elements 

equally spacedCthe distance is regularly taken to be X/2) was used 
intensively in direction finding as well as other array processing 
application. Different algorithms were used to process the output 
of this array, some of which are described in the previous section.

One of the important drawback of this array is its capability 
to resolve the maximum number of sources (D < M) where M is the 
number of element. This fact is due to the dimension of the 
spatial covariance matrix at the output of the array. One 
important property of such covariance matrix is the fact of it is 
being Toeplitz Hermitian matrix. This fact plays an important role 
in using the uniform regular array in direction finding when 
implementing different algorithms.

The minimum redundancy array introduced in [1] and used in 
[2] for direction finding is to be discussed in this chapter. Its 
property is to be presented and some results of multi-source 
direction finding simulation are shown.
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2. Array geometry

For D waves impinging on a nonuniform linear array, the 
signal received at the i*th element

where M is the number of element, 0^ k=l,..D ,are the direction of 
the source with respect to broadside, complex
envelope of the k*th signal, c is the speed of light and n.(t) are 
the noise sources which are assumed independent.

The i,j*th entry of the covariance matrix will be given by

D
x.(t) = J] Fk^t  ̂°xp C” di/c  ̂sir,0|^ + n.(t)

i=l M ((1)

F. (t )expt-j2n(d./X )sin0 3

* £ F (t)exp[-j2ff(d /X)sin0 3 1m J m J

D
£ P. exp[ -j2 
k=l X )sin0js + o'2 <5(i-j) (2)
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2where P^= E [ |F^(t)j ] and the different source were assumed 
uncorrelated. Also we used \f =c.

For the non-uniform array we will use the following 
representation and notation: For example 5 element array located 
as follows

x 0 x x 0--- 0----x----0----x
1 2 3 4 5 6 7 8 9

where x signifies the location of the elements and 0 signifies 
empty location where array element would have been if the array is 
uniform. Ue call the integers that correspond to the location of 
the array elements "index of location". Let us assume that D=6, 
then we use the notation

* “ _
X1 '

F^t) n^ t)
*3 F2(t) n2(t)
*4 - [ 4(0^) aCe2 ),..,a(e6 ) ] F3(t) + n3(t)
X7 F (t ) 4 n?(t)

X9 Fs(t) "io(t)
F6(t)

(3)
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where

x r -j( 2rr/X)d.sin0. -j( 27I/X )d sin© -j( 2n/K )dsin0 a(0i) = [ e 1 1 , e 3 ,e 4
-j(2n/X)d_sin0 -j(2fi/X)d sin© -T e 7 , e v J

In such notation the covariance matrix R;

(4)

E [XX ] =

11 ____ < X1 4 X1
*

< X1 x; X1 x*9

X3
4C
X1 X3

4C
X3 X3 x: X3

*
X7 X3 x*9

X4
*

X1 X4 x; X4 < X4 X*7 X4
4c
X9

X7 X*X1 X7
4c

X3 X7
4c
X4 X7

4c
X7 X7

4c
X9

-X9
*

X1 X9 < X9 x*4 X9 x*7 X9 X*9

+ cr2I

(5)
2where overbar means expectation, I is identity matrix and a is 

the power of noise. If we choose d.= iX/2 then (2) becomes.

R( i-j)= £ pk ®xp C -jn(i-j)sin0k + <y2<5(i-j) (6)
k=l

i,j € (index of location)
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With this (5) becomes

R(0) R( 2 ) R(3) R(6) R(8) '
R( 2 )* R( 0 ) R( 1) R(4) R(6 )
R(3)* R(l)* R(O) R(3) R(5)
R(6)* R(4)* R(3)* R(O) R(2) 
R(8)* R(6)* R(5)* R<2)* R(O)

Notice that this matrix is Hermitian but not toeplitz. Hence it 
has less redundancy than Uniform Regular Array (URA). It has one 
entry with R(l) instead of four of these, in a corresponding 5x5 
Toeplitz matrix, two entries with R(2) instead of three in a 
corresponding Toeplitz. Two R(3) and one R(4) as in Toeplitz. One 
R(5),R(6) and R(8) which could not occur in URA with five 

elements.
Minimum redundancy Array is a non-uniform array whose 

covariance is Hermitian wherein the entries above the diagonal has 
no multiplicity (redundancy). Obviously if, such a case exists, we 
will have for MRA M(M-l)/2 different R(i).

If for example we distribute the element as follows,
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1 2 3 4 5 6 7 8 9  10

Then the new X vector;

X = [

and (1,2,3,7,10) is the set of index of location. The 
corresponding covariance matrix;

’ R(0) R( 1) R(2) R(6) R(9)
.R( 1) R( 0 ) R(l) R(5) R(8)
. .* R(2) &R( 1) R( 0) R(4) R(7)

4CR(6) R(5)* R(4)* R( 0) R(3)
R( 9 )* R(8)* R(7)* R*(3) R(0)

This matrix has all covariance lags R(i) i=l,...,9 repeated Just 
ones except R(l) which is repeated twice.

Now we are in a position to state the requirement on
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allocating the array elements so that we get minimum redundancy. 
From (2), if such a geometry exist then the difference in the 
index of locations (i-j) for i,j € ( set of index of location } 
i*j span the set of integers( 1,2. .. * M(M-l)/2 ). Unfortunately 
such set of index of location does not always exist. Instead for a 
given M elements array there exist an L £ M(li-1 )/2 such that the 
difference of locations (i-j) for i,j e {set of index of location) 
span the set of integer (1.2, ...,L). Notice that for any MRA the 
highest covariance lag, L with covariance matrix entry R(L) and 
the corresponding array aperture is (\/2)L (assuming minimum 
distance between any two element is X./2).

One can prove that if there exists an MRA with (\/2)L 
aperture then there is another MRA with smaller aperture that is 
(i-j) spans the integer (1,2,..,L*); L ’ < L. Obviously array with 
L*(\/2) aperture would have higher redundancy.

It is obvious that if the aperture of the MRA is 
(\/2)(M )(M—1 )/2 then it is unique. If the aperture is smaller, 
then it is possible to find different "location indices" with the 
same amount of redundancy except, possibly.different covariance 

lags are repeated.
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Table 3-1

N L MRA sequence redundancy

3 4 0 1 3 None

4 6 0 1 4 6 None

5 9 0 1 2 6 9 1(2)
0 1 4 7 9 3(2)

6 13 0 1 2 6 10 13 1,4(2)
0 1 4 5 11 13 1,4(2)
0 1 6 9 11 13 2,5(2)

7 17 0 1 2 3 8 13 17 2,5(2),1(3)
0 1 2 6 10 14 17 1,8( 2 ) ,4( 3 )
0 1 2 8 12 14 17 1,2,6,12(2)
0 1 2 8 12 15 17 1,2,7,15(2)
0 1 8 11 13 15 17 4 ,7( 2 ) ,2( 3 )

8 23 0 1 2 11 15 18 21 23 1,2,3,10
21(2)

0 1 4 10 16 18 21 23 2,3,5,6
17(2)

9 29 0 1 2 14 18 21 24 27 29 1,2,6,13
27(2),3(3)

0 1 3 6 13 20 24 28 29 1,3 ,4,5 ,7
23,28(2)

0 1 4 10 16 22 24 27 29 2,3,5,12
23,28(2)

10 36 0 1 3 6 13 20 27 31 35 36 1,3,4,5
14,30,35(2)

11 43 0 1 3 6 13 20 27 34 38 42 1,3,4,5,21
37,42(2)
14(3),7(4)
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Exhaustive computer program Mas written to find L for a given 
M element array and the corresponding indices locations of the 
MRA. The program also specify the redundancy element and their 
multiplicity. Table 3-1 presents these results for MRA with 3 to 
11 elements.

Notice that image index location with reference point at the 
higher end is principally the same array. That is {01 4 7 9 )  and 
{ 0 2 5 8 9 }  are principally the same array.

From this table we see that(except for the image) M=3 and M=4 
are unique with L= M(M-l)/2. Arrays with higher number of elements 
result in L < M(M-l)/2 and hence possibly more than one index 
location for each. Particularly when H=7 there are six different 
array location arrangements, all with L= 17.

3. The augmented matrix of MRA.

This is an (L+l)x(L+l) Toeplitz matrix generated from the 
entries of the covariance matrix of the MRA, in such a way that 
R(1) is used in the first diagonal above the main diagonal,R(2) in 
the second diagonal, etc. R(L) in the higher corner. If we are
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dealing with asymptotic caseC infinitely many samples are used to 
obtain R)

1 t 2 X(n) X( n)
N

then the covariance lags which are repeated more than ones will be 
equal with probability one and there is no difference which one 
to use in the augmented matrix. However if only a limited number 
of samples, N, are used to obtain R then these covariance lags may 
differ, so that it is advisable to take the arithmetic average of
them.

As an example the augmented matrix generated from (5) is
given by

aug

R( 0 ) R( 1) R( 2 ) 
R(l>* R(0) R( 1)

R(9)
R(8)

R(9)

where R(l) is taken as.

R(0)

(9)

N * * R(l) ■ 1/2 { 1/N £ ( X,(n)X_(n) + X_(n)X_(n) ) >
n=l

(10)
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4. Multi-Source Direction Finding using 
the augmented matrix.

The augmented matrix is an (L+l)x(L+l) and hence if it is 
used with any direction finding algorithm, it is capable to 
resolve L source direction. For this we must augment the direction 
vector to contain L+l elements that is instead

a(0) ■ C 1, exp[-jn(d -l)sin©] , ... ,exp[ -j(d -l)sin©] ]z n
(i d

where (d_, d_,   ,d_) are the location index set, we must use an2 3 n
augmented direction vector;

where in these direction vectors we used the first element of the 
array as a reference and assumed the array element located at 
integer multiples of X/2. If we define the null spectrum S(0) for 
example

aaug(0)= £ l, expC-jn sind] , —  , exp£ -jrcL sin©) ] (12)

S O )  - a* (9) t £ aug . „
L+l
i=D+l
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where e . i= D+l, .... L+l are the noise eigenvectors of the 
augmented matrix(assumed N is very large) then from the peaks of

1
p(0) = -------

S (0)

we get the direction 6. k=l,2, ... , D of the different sources.K

5. Simulation Results.

To show the maximum capability of 6 elements array with 13
o 0 o o o osources located at direction 4 *10 .16 ,26 ,32 ,42 , 

48°,58°,68°,-65°,-50°,-35°,-20° and SNR = 20 dB, we used each of 
the MRA whose location indices are (0,1,2,6,10,13), 
(0,1,4,5,11,13) and (0,1,6,9,11,13). Asymptotically P(0) is same 
for the three different formation and the results is shown in fig. 

3-1.
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4-- Ef f e c t s  o f  Ra n d o m  D is p l a c e m e n t  o f  t h e  Ar r a y  E l e m e n t s  

On  t h e  P e r f o r m a n c e  o f  D ir e c t io n  F in d in g . 

-U n if o r m  Re g u l a r  Ar r a y  v .s . Min im u m  Re d u n d a n c y  Ar r a y -

1. Introduction.

Uniform Regular Array(URA); that is an array whose M elements 
are located at an equal distances(customarily = \/2) from each
other* was intensively used in the literature for direction 
finding of multi-sources. Different algorithms were used to 
extract the directions of these sources. Some are known as 
classical power methods, like the Bartlett estimator[1], others 
are classified as superresolution methods. Among the latter are, 
the linear prediction method[2],the maximum likelihood method[3] 
and the eigenstructure methods. The most popular of the 
eigenstructure approach is the MUSIC algorithm[4].

With the Minimum Redundancy Array(MRA), the elements are 
distributed nonuniformly along a line (linear array). [5]
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The position of these elements either for URA or MRA can’t be 
accurate. This might be due to the variations in mechanical 
structure or environmental effects. The best that one can assume 
about the actual location is that it is at a certain nominal 
position with some additive random variation which has some known 
distribution.

Effects of such random displacement of the array elements has 
been considered in the literature dealing with the interference 
cancellation problem[6]. To the best of our knowledge, the effects 
of such displacement on the performance of the direction finder, 
particularly the one using MRA, has not yet been considered. It is
obvious that element displacement from a nominal location will
cause perturbations of the covariance matrix elements. This
perturbation may cause an error in the estimation of the direction 
of the signals, particularly if the correlation matrix is obtained 
from the mean of finite number of snapshots.

The purpose of this chapter is to study the effect of these 
perturbation on the entries of the covariance matrix and conclude 
on the effect of these on the performance of a direction finder. 
In the next sections we will derive the values of the
perturbations of the asymptotic covariance matrix entries,due to
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one dimensional random displacement uniformly distributed, two 
dimensional random displacement uniformly distributed, and two 
dimensional random displacement Gaussian distributed. These 
results are compared to one another. The resultant perturbed 
covariance matrix is found in section(5) and the conclusion about 
the meaning of the difference between perturbed and nominal matrix 
and their effect on direction estimation is stated. In section (6) 
the definition of the statistical randomly perturbed covariance 
matrix is presented and in section (7) simulation results are 
shown and discussed.

2. Random perturbation in one dimension, 
uniform probability distribution.

For the linear array we assume the elements are nominally 
located at the x axis at a distance d., i=l,...,M from some 
reference point, regularly taken as integer multiple of X/2 i.e 
d^= 1^ X2 , 1. are integersC see Fig 4-1). The received signal at 
the i*th location is
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X.(t) = £ F. (t ) exp[ jw (t- 
1 k=l K

0 d.
—  sin 9 ) ] + n.(t)C K 1

i= 1, (1)

when O is the number of signals impinging on the array assumed 
uncorrelated and narrowband. 9^, k=l,... ,D are the directions of 
these sources with respect to broadside. F^(t) is the complex 
envelope of the k'th signal, c is the speed of light and n^(t) are 
noise source which are assumed independent, delta correlated with 
variance a , and independent of the signals. Considering the

between -6 to +6 and its pdf is ^u(u ) = 1/26 for |u| f: 6, 6 is
i

the maximum displacement.
Defining the received signal in a vector form, then the 

covariance matrix of X; the received vector, is given by

n
perturbation of the location, we define

(2)

where u.(t) are independent random variable uniformly distributed

R' =* E C X(t) X(t)* ] (3)
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E [ ] is the expectation and

X(t> - [ XjCt), x2(t), .... xM(t) ] (4)

with x.(t) defined in (1).1
The i,j*th entry of covariance matrix R*

R! . = E [ x.( t) x .(t) ] U  i J

r D d.
= E I [  E Fk*t3 exp s i n0k ^  + ni ( t ) ] x ̂ k=l

D d . ^

[  E exp c" jw0( t  — c ^  s i n ® ^  + nj t̂3 ]  Jm=l

substituting for d^ from (2) we get after some manipulation

D D
R!. = E E E f Fk(t) Fm(t) °XP C * Ui3 sin0k(t) 3
lJ k=l m=l '■

exp [ Jk_(l.-“  + u.) sin© (t) 1 + 6(i-j)o j z J m j n
(5)
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where we used the fact that the signal sources and the additive
noise are independent also =* w /c. Rearranging (5) we get0 O

D D r -jk 1 AR! . = E E E • 0 1  2
1J k=l m=l 1 K

-jk^u.sin©. jk.u .sin© 1 + o? <5(i-j)» O i k e O j  m j  n (6)

The expected value inside the parenthesis could be obtained using 

the equation

E [ ] = E  [ E. _ u-u «) ^F.F u.u. u.u. F F 1 j. jk m x j  i j  k m

Ue are only handling the case of uncorrelated sources then the term 
in (6) becomes after performing the conditional expectation

[ x.(t) x (t)|u. ,u . 3X J • J

D A.E Pk exp Cjk^lj-l.)— sin©k3 exp[jkQCuJ-ui)sin©k3 
k=*l

+ 6(i-j) (7)n
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where p ■ E [ | Fk(t) |2 ] is the power of the k*th signal. 
Clearly from (7)

R! . = E [ E C x.(t) x .(t)| u. ,u ] ] l j  *■ l  j  1 i  J J

' Z \  «** U k o d  -liJ-l- sln9k] 
k=l

E [ exptjk^CUj-u. Isin©^] ] + c? 6( i-j) (8)

Now
E [ exp( jkgUjSin^) ]

s n k C9)

It is reasonable to assume that the perturbation at different 
location are independent, leading to:

■ J exp( jk u sin 0. ) f (u) du 
-6 J

-J
>6 J

exp( jk u sin 6. ) du
*  J-a

sin (kQ 6 sin $k)

k. 6 sin 9. 0 k
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E [ ejk0(v ui)sinek J - E [eJkoujElnSk] E Ce'Jk0ul8inSk ]
= jj? for all i*j
= 1 for i = j (10)

u. has the same distribution as u. and it is easy to show that the i J
second term in (10) leads to the same result of (9), despite the 
negative sign in the exponent.

Finally substituting (10) together with (9) in (8) we end up
with

We define an error in the elements of the covariance matrix caused 
by tK -erturbation by

D
sin0k ] 7)k for i*j

for i=j

(11)

where R. . is the i,j*th entry of the covariance matrix under » J
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unperturbed condition, i.e when the elements at their nominal 
location with 6= 0 and hence r?k = O for all k=l,...,D. Then 
obviously

for i*j

a* o for i=j

(12)
Notice that 7>k is a function of sin 9^, in a way that when 0k=o»
the source is broadside to the array, then AR. .= 0. That is noi J
error is caused by the random perturbation of the array element 
location.

3. Random Perturbation in two dimensions, uniform distribution.

Ue assume that beside the perturbation in the x axis, there 
exists another perturbation orthogonal to the x axis in a plane 
that contains the x-axis and the source( this assumption makes
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sense since we are considering direction in one plane, azimuth for 
example). Fig.4-2 depicts the second dimensional perturbation. 
From it we notice that due to the perturbation v^ the delay of the 
wave is changed from d^sin$k for the nominal location to d.sin 9^ 

+ v.eos 0 (v. consider a positive perturbation if it is toward theX K X
source in the plane previously mentioned).

Taking this fact into consideration we have for the two 
dimensional perturbation instead of (8)

Rij ■ s ,pkexp [ •’W V - r sln e k 3
. E [ exp CJk0 ( (Uj-u. )sin ©k + (v^-v.teos ©J) ]

+ 2 <5(i-j) (13)n

As before;
sin (k 6 cos 9. )

E C exp( jk v. cos0. ) 3 = -------------------- (14)
J k 6 cos 9.0 k

Mhere we assumed the second dimensional perturbation is also 
uniform (-6,6). Again if perturbation of the different element 
locations, as well as in different dimensions are independent then
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E [ oxp [ jk0 ( (uj.-ui )sin ©k + (Vj-v.)cos © k) ]]

2 2 sin (kQ6 sin ©k) sin ( kQ<5 cos ©k)
x

( kQ6 sin ( I*© 6 cos G^)2

= r?'2 i*j (15)

* 1 i=j

Mhere we also used (9).
Comparing (9) with (15) we conclude the following inequality

nj;2 s u2 * i ci6)

4. Random Perturbation with Gaussian Distribution,

The only difference in this case is the probability density 
function,

+®
E [ exp( jk_u .sin©.) ]* ------ f , .. - a x ' " 1* .O j k    I exp( jkQu sxn©k) e du

\zna  J
-oo

- k2 sin2 ©. (17)e 2 0 k
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The last step was derived in the appendix. Similarly,

O'2 ,2 2~ , „ .- ■ k cos 0. (18)E [ exp( jkQVj cos©k) ] = e 2 0 k

Also notice from the derivation in the appendix that the result, 
does not change for E [ exp( -jk^u^sin©^) ] or E [ exp( 

“jkoVjCOS^k )3 - Therefore

E £ exp [ JkQ ( (Uj-u. ) sin 9^ + (vy-v^) cos ©k)] J

- ( . ' -f- ko<sln2®k * °°s\ >  )

2 2
= e 0 ( = ) for i*j

= 1 for i=j (19)

To try to relate T)" to 1)̂ 1 we first notice from Appendix . 2 
equation (A-2) that

J2 A2k 6 1 A  A
17* a: 1 ----2--- +   6 \  ... (20)
K 6 120

2 2and from (A-3), if we take ct ** 6 /3 that
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Therefore

»k2 * « 1
(22)

5. Variation of the Covariance Matrix due to perturbation in 

the element location.

From (11) we can write for the entries of the covariance 

matrix

Ri j  -  E_ pk e *p [ Jkoa j " 1i ) '5 "  sln ®k] fk

* z pk + i=j
k=i k

(23)

where f  represents the different kinds of perturbation K

sin ( k 6 sin 9. )
1. n. « ------   —  (24)

k_ 6 sin 9.0 k

for one dimensional uniform distribution ( -6,6) as in (9)



sin (k 6 sin<?k) sin (k <5 cos0^)
2. 7)’ =   x ------------------

k_ 6 sin 9. k 6 cos 9.O k  O k
(25)

For two dimensional uniform distribution ( -6,6) as in (15)

2 2-O' k /2 f _ »3. = e 0 (26)
2for two dimensional Gaussian distribution ) as in (19).

Now let us define

a(0k)= C 1, exp(-jk0l2 sin ©R) exp(-jkQlM sin©k)3
(27)

when we took 1^= 0; that is the reference point isat the first 
element. If we are considering URA then in (24) 1.= i-1 i=l,2,..M
and the covariance matrix is MxM. For the MRA we must form the 
augmented matrix which is a Toeplitz matrix whose entries along 
the different diagonals are given by,

0 i\
E Pk ®xp C jkQ ---- sin 0k ] i=l,2, .... L

71



where L £ M(M-l)/2 and the matrix is (L+l)x(L+l).
From (23) with 1 * O and (27) we write for the perturbed

covariance matrix

where

° 2 t M 2 2R ’ = E t Z  a<0> a(®> + E pic(1“*k)x + ^n 1 (28)k=l k K k=l *

= S *+ N* + N

° 2 t
s ’ * E pk a(V  aC V  (29)k=l

D 2
N ’ = E (1 )I (30)

k=l K K

N = O'2 I (31)n

S ’,N* and N are the signal, the perturbation and the additive 
noise covariance matrices, respectively. For the unperturbed array 
the covariance matrix is given by

* S N
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where S = E P. a(0. ) a(0. )f (33)
k=l K k K

and
N = a I (34)n

R s - R = S ’ -S + N'

- e  - i n  * v  *  v f  +  ik=l k=l
(35)

2 £ 1 hence (28) means that due to perturbation the effectiveK
2powers of the different signal decrease by a factor * anc* an

extra noise N* is generated which is equivalent to an additive 
noise whose variance

°n* " (1 - 'k 5 Pk <36)

This is to say that as an effect of perturbation the resultant
signal-to-noise ratio reduced. The effect of this on errors in
direction finding depends on the algorithm used. If a
superresolution method is used for example then such perturbation 
has ho effect(see appendix 3). Ue emphasize that in calculating
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the matrices R and R* we used an expectation which is, with 
ergodic assumption, equivalent to using N ( N+ oo ) snapshots or 
what is termed asymptotic covariance matrices.

6, Statistical Randomly Perturbed Covariance Matrix.

Let the received vector at the n'th snapshot be defined by

D
X(n) * E Fk(n) a„(0k) + n(n) (37)

k=l
0k= 1,2, ... ,D

where

V  V  ‘ [ 11 eXP t_Jk0(12 + U2n} sin<V  •

..........  I -Jko(1M ~T~ * UMn) sinSk]T
(38)

Fk(n) is the sample at the n*th snapshot of the complex envelope
of the k’th signal, u. i= 1,   , M, is the sample at the n*thin
snapshot of the random perturbation. The statistical covariance 
matrix is given by

1 N tR* * — —  E X(n)T (39)
n=0
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Each entry of Ra will be the average of N snapshots of terms like 
(5). Calculating the effect of perturbation directly from this 
equation is impossible. Instead numerical simulation is the way 
used to obtain the results and draw conclusions.

7. Simulation Results

Many simulation runs were performed to examine the effects of 
the array random displacements on the direction finding
performance of the arrays. Both uniform regular array and minimum 
redundancy array structures were used. As a direction finding 
algorithm the MUSIC was implemented. The emphasis was mostly on 
statistical behavior with a finite number of snapshots. In some
cases a large number of snapshots were used, so that we learned
about the asymptotic behavior as well.

Uith 5 element URA and three sources impinging on the array 
from 10°,20° and 30° off broadside,we depict in Fig 4-3 the 
average error in direction(i.e sum of errors divided by number of 
sources) versus the number of snapshots. As expected errors are 
larger when we use two dimensional, instead of one dimensional
perturbation or when we increase the maximum value of perturbation
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6. Also it is clear from this curve as well as from others that 
errors 90 to zero asymptotically as was concluded in the text. 
Particularly worth noticing, that when we include two dimensional 
perturbation the direction finding estimator becomes very poor 
when we use a small number of snapshots. Not as bad, when only one 
dimensional perturbations are taken into account,Fig 4-4 is 
- similar to Fig 4-3 except the comparison is now done for two
dimensional uniform to two dimensional Gaussian perturbation.

In obtaining the result in Fig 4-5 we used an MRA instead of 
URA and compare the performance of the first when one dimensional 
and two dimensional uniform perturbations are used. Fig 4-6
compares the performance of MRA when the perturbations are two 
dimensional uniform versus when the perturbation are two 
dimensional Gaussian. Using 6 * 0.1\, the average error of MRA
with only one dimensional perturbation converge to almost 
asymptotic value(zero) with only 100 snapshots. It is very clear 
from these figures that despite perturbation MRA outperforms the 
URA. Direct comparison of these two arrays performances are shown 
in Fig 4-7. The superiority of the MRA on URA becomes questionable 
when we restrict ourselves to small number of snapshots,
particularly when 6= 0.25\. This fact is clearly depicted in Fig
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4-8 and Fig 4-9. The cross over point, that is the number of 
snapshots below which URA performs better than MRA are different 
in these figures. This is due to the fact that the equivalent 
noise due to perturbation depends on the direction of sources 
which are taken 25°,45° in Fig 4-9 and 30°,45°, instead, in Fig 
4-9. In Fig 4-10, on the other hand such cross-over does not 
occur. This is because in obtaining the result of this figure with 
URA we used three sources instead of two and hence the noise 
vector subspace has dimension two instead of three, a loss of 
large percentage in smoothing capability. For MRA the dimension of 
the noise vector subspace is 7 instead of 8. This is not a very 
big difference.

To show the effect of redundancy in the covariance matrix 
entries on the performance we compare in Fig 4-11 the average 
error in direction when we use the entries of the covariance 
matrix as they result from measurement(unaveraged covariance 
matrix), together with the case when all entries along any 
diagonal is first averaged and then used(averaged covariance 
matrix). Fig 4-12 is the same as Fig 4-11 except for the 
difference in direction of one of the sources. Notice that the 
larger 9. (30° instead of 25°) larger the effective noise causedIS
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by perturbation and the larger is the direction estimation error. 
This fact can be concluded from comparing the result of these two 
figures (Fig 4-12 versus Fig 4-11). In Fig 4-13 and Fig 4-14 we 
added for comparison to the result already depicted in Fig 4-11 
and Fig 4-12 the average direction estimation error obtained with 
5 element MRA.

8. Conclusion.

The effect of random displacements of array location,on the 
performance of direction finding was studied in this chapter. 
Different probability density functions were used;one dimensional 
uniform, two dimensional uniform and two dimensional Gaussian 
distribution. It was found that in the steady state(i.e. when 
number of snapshot used are infinitely large),such perturbation is 
equivalent to an added white noise and a reduction in signal 
power. Two dimensional perturbations caused large effect than one 
dimensional. Also two dimensional uniform perturbation causes more 
degradation than Gaussian distribution. In all cases degradation 
depends on the direction of sources; worse when the source is 
further away from broadside.
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Since these perturbation only reduce signal-to-noise ratio, 
it is expected that superesolution methods,if used, will not 
suffer degradation in the steady state (This was shown by 
simulation). Nevertheless, when only limited number of snapshots 
were used, simulation shows error in estimating the direction of 
source worse when signal-to~noise ratio is worse. Many results of 
this kind of simulation are given in this chapter.

Simulating perturbations effect on minimum redundancy array 
elements depicts superior performance of this array in comparison 
to the regular uniform array, despite the fact that the later 
exploits redundancy in getting more precise covariance matrix. 
This is due to the fact the MRA is using more eigenvectors to 
resolve the source direction.
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Appendix 1
+00

2 2_ , jk u sin 9, -u /2.oE = ------- I e O k e du=  1
\ - 22710' -00

+00
2 O' 2 . 2^ l r 2-k. --e 0 2 S*n ^k— — — ——  f exp[-( + jkQusin0k-k2O'2sin02/2)]du

J  -  2 J  2 f fI2™ 7 —oo

when we in fact completed to a square the argument of the exp.
Rewriting the last integral we have

+00

-k2 E = e O
2 X
sin20, I ------- exp[-(u +jk/̂ sin0uo'2 )2/2o'2] du2 k J   —  o k

-oo <|2no'

The integrant of this integral is a Gaussian probability density
2 2 function with mean equals -jk.sin B.ct and variance a . thereforev K

value of this integral is unity and

, o'2 .2 . 2^ .- ( k_ s m  9, ) , A .E = e 2 O k (A-l)
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Appendix 2

let from

where

and

Now
sin X 

X

1** ... ” XY

(15)

sin X sin Y
*k =  X x

X * K-6 sin 6. 0 k

Y = k 6 cos 9. 0 k

x Y- A.   ( X - X3/3! + X5/5! - X?/7! + ...)
XY 3 5 7( Y - Y / 3 1  + Y / 5 1  - Y / 7 1  + ...)

3 5 7X Y X Y X Y
[ X Y --------  + ...

3! 51 71

3 3 3 3 5 3 7Y X X Y  X Y X Y
31 (31 )2 3151 3171

5 5 3 5 5Y X X Y  X Y
51 3151 (51 )2

7 7 3X Y X Y
71 3171
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2 2 4 4 2 2Y + X Y + X X Y

From (19)

Si 1 -

3! 51 (31 )2

k2 <52( cos2fi +̂si n2©^ ) 
— 1 -----------------------

1 , ,4-4 4a .4-2 . 4^+ ---- ( kQ6 cos 0^ + kQo sxn 9  ̂+
120

120  k. 6 sin 9. cos 9. ) +0 k k36

1?* as 1 - k2 62/6 + ----- k4 64 (A-2)k 0 , 0120

2 2 -a k_/2 T)“ = e 0
2 ,2 2. 2 n2
® o (° "o’~ 1 -   +   +
2 8

2 2taking o * 6 /3 we get

,2 .2 j-4 2o k  ko
7)1 St 1 ---------+   + (A-3)
K 6 72
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Appendix 3

If 0. i » D+l, ...> M is an eigenvector which belong to the 
noise subspaceg then from (32), using the fact thate. is 
orthogonal to a(0^) k=l ,2,...,D we get

R ’ ? A  *<ek)+ ®i + "n 1 *1k=l

= a2 e. A-4n l

as expected.
Now using (28)

R’»i “ £ <k V < V a(V V (  5 tPk(1-'k)2wn )Ieik=l k=l

" ( ? ,PkU  ' V *  * °l )**i *-5k=l
2That if e. is noise eigenvectors for R corresponds to a then it i n

is also noise eigenvector (orthogonal to signal direction) which
D 2 2 correspond to * £ P^( 1- ?^) +
k=l
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Fig 4-2
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5 . P e r f o r m a n c e  o f  t h e  Un if o r m  Re g u l a r  Ar r a y  a n d  

t h e  Min im u m  Re d u n d a n c y  Ar r a y  u s in g  MUSIC a n d  

Min im u m -N o r m  Al g o r it h m .

1. Introduction.

The minimum redundancy array(MRA) was first proposed in [1]
and implemented for direction finding using eigen system structure 
in [2] . The structure of the MRA, in fact, causes the removal of 
most, if not all the redundancy, in the correlation between the 
array elements. Such redundancy clearly exists in the 
conventional uniform regular array (URA).This redundancy in the
URA may be explored to obtain a better estimate of the 
correlation.with the same number of snapshots. Nevertheless, since 
with the MRA the same number of elements are distributed 
nonuniformly.the aperture of the first is much larger than the

a

latter, making it possible to get a larger dimension for R. Larger 
dimension of R means larger dimension for the noise subspace,given 
that the number of signal sources impinging on the array is the
same. Since in any superresolution method the null spectrum 
depends on the number of noise eigenvector used, one might expect
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the MRA to be superior. Therefore there are different properties 
of each of arrays; redundancy in the URA and larger dimension in 
the MRA, which provides either with an advantage on the other.

The purpose of this chapter is to use each of these arrays 
for direction finding and compare their performance. Two 
superresolution method would be studied; the MUSIC and the Minimum 
.Norm. Each of these algorithm may be used in defining the null 
spectrum either the noise subspace [33 » or the source subspace[4]. 
The usage of either of these two subspace has its advantages and 
drawbacks. While using the source subspace requires extra 
computations, it converges to the actual signal direction faster 
and with less sample snapshots. It is also more tractable 
analytically. Conversely when using the noise subspace, the 
convergence to the nominal value require,longer data and the 
estimated eigenvalues and their corresponding eigenvectors have 
larger variations causing statistical characterization of these 
eigenvector to be untractible analytically. In this chapter we 
will concentrate on using noise subspace only.

In the next section we will present the structure of the MRA 
for different number of elements and use a computer algorithm 
designed to generate the actual element locations for MRA with a
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given number of element M. An example of MRA will also be
presented. The section will be concluded by comparing the 
estimation error in the correlation matrices obtained with MRA and 
URA. In section 3 we will derive the basic formulae needed for 
both MUSIC and Minimum Norm algorithms. In section 4 we present
the simulation results to evaluate the performances of the two
arrays.

2. MRA array geometries and their covariance matrix R.

For any linear array with M elements the received signal at 
each element is given by

x.(t)= E e'jkOdiSin0k + n.(t) (1)
1 k=l k 1

i= 1 M
where D is the number of signals impinging on the array assumed
uncorrelated and narrow-band, 9^, k»l,...»D are the directions of 
these sources with respect to broadside, d^ represent the location 
of the i*th element with respect to a reference pointC regularly 
taking as integer multiple of X/2), Fk(t) is the complex envelope 
of the k signal. kQ represents the wave number common to all
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sources, n.(t) are noise sources which are assumed
2independent,delta correlated with variance a .

Equation (1) can be written in vector notation as

X(t) « A F(t) + n(t) 
where T

x(t) - [ x^t). x2(t),...,xM(t) ]

F(t) = [ Ft(t), F2(t) FM(t) ]T

n(t) ■ [ n1(t), n2(t).... ^
T stands for transpose

A = [ aCS^.aC^),..., a(6»D ) ] (2)
A is an MxD and is a M dimensional vectors each given by;

, - v r “jkyvd.,sin0. -jkd_sin0. -jk d sin©. ,a ( 0 . ) = [ e  O l  k ,e 2 k, —  , e  O M  kj K
k= d. are integers (3)

The correlation matrix of the received signal is given by

R = E [ XCOXCt)1] * A E [ F(t)F(t)t] A* + E nCtJnCt)*

*s»E [ F F ] is an MxM diagonal matrix whose diagonal terms, 
represents the signal power of the k source. With this
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using (3) we write

a(ek)a<ek)’

-jk.d.w. e 0 1 k
”Jk_d-W. e 0 2 k

e'JW k

t jk^d w, jkAd w, 1e 0 1 k , — , e O M k J

(5)

where for expediency we used wk = sin 9^* Substituting (5) 
in (4) we get for the i,j element of R

R. . - E P. o"Jk0(di’dj) “k + a2 <5(l-j) (6)
lJ k-1 k

i »J= 1»*»*»M

If the array is uniform then <*i+1 ” d. are the same for each i.
That is the distance between successive elements, usually taken to
be X./2, then d.-d. will be the same;l,2,3.....etc.. whenever j= • J
i-1, j= i-2, j=i-3, etc., causing the term on any diagonal to be



the same and hence Toeplitz structure. On the other hand if d. are 
chosen such that d. - d. = m (i,j = 1,2...,M),and m spans the
integer set (0.1.... L).where L < M(M-l)/2 then the terms above
the diagonal will contain exactly L different correlation lags 
r(i), i=l,... ,L and (M(M-l)/2 ) - L terms possibly equal to some 
other r(i). That is instead of (6) we have for this case

D ..
r. . - r( i-j )= r(m) *= P e J 0m W k + o6(m) (7)
1J k=l

ro— 0,1,2 L

This way of selecting the elements location make the array what we 
call Minimum Redundancy Array(MRA).

As an example we take the case of 5 elements uniform regular 

array; then

aCV  ’

1
-jk w, e 0 k
-jk^2w. e 0 k
~jk.3w. e O k
-jk4w e 0 k

(8)
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is the steering vector for the k'th signal, while for the 
case of 5 elements minimum redundancy array the steering vector 

for the k*th signal is

*<V -

1
-jk w. e 0 k
-jk_4w. e 0 k
-jk.7w. e 0 k
-jk 9w. e 0 k

Using the notation of (7) the covariance matrices 
MRA respectively are

R =

r(O) r( 1) r(2) r(3) r(4) 
r( 0 ) r( 1) r(2) r(3) 

r(0) r( 1) r(2)
conjg.
symmetric r(0 ) r(1)

r(0)

(9)

for the URA and

(10)

for URA
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and

R =

r(0) r( 1) r(4) r( 7 ) r(9)
r(0) r(3) r(6) r(8)

r(0) r(3) r(5)
conJg. r(0 ) r(2)
symmetric

r(0)

(11)

for MRA

Notice that covariance matrix for the URA is Toeplitz and the MRA 
is only Hermitian. Also the MRA has L+l different elements where

M (M - 1) M (M - 1)
L = 9 = ----------- - 1 < ----------

Table 5-1 depicts the configuration of the MRA for different 
number of elements. The number in the configuration column shows 
the distance of the different elements from their adjacent 
elements normalized to X/2. The dimension of the array shows the 
aperture size in 1X/2, 1 is given in these column, when X/2 is the 
minimum distance between any two adjacent elements.
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Number of 
Ant.Elemen

Dim. of 
the URA

Dim. of 
the MRA

Configuration

5 4 9 0.1.3.3.2
6 5 13 0.1.5.3.2.2
7 6 17 0.1.3.6.2.3.2
8 7 23 0.1.3.6.6.2.3.2
9 8 29 0.1.3.6.6.6.2.3.2
10 9 36 0.1.2.3.7.7.7.4.4.1
11 10 43 0.1.2.3.7.7.7.7.4.4

Table 5-1

For the 5 elements array ,for example, we have that the 
element are located at [0, X /2 ,  4 X /2 ,  7 X /2 ,  9 X /2  ] which
corresponds to distances ; [0, X /2 ,  3 \ / 2 ,  3 X /2 ,  2X /2] from their 
adjacent elements. This is shown in the last column of the table 
as 0,1,3,3,2. If we refer these distances to the reference 
elementC which could be at any extreme side) we get by summing all 
distance, 9 X /2 .  This is the total aperture( which is called at
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column 3 of table 5-1 dim.)- In fact such structure is not unique. 
It is only so if the dimension = [ Mx(M-l)/2] where M is the
number of the array elements. Such a unique case is possible only 
if M=4 and the dimension is six ( see [2)). The location of the 
elements of the MRA as they are presented in the configuration 
column of table 5-1 were generated by a special search computer 
program.

For processing the signals of the MRA we must first generate 
what we term Augmented Matrix. This is a Toeplitz matrix which we 
obtain from the Hermitian covariance matrix of the array by 
repeating r(m) along the different diagonals; r(0) along the main 
diagonal, r(l) along the second diagonal, and so on. Therefore the 
dimension of the augmented matrix is (L+l )x(L+l)

Raug

r(0) r( 1) r(2) ... r(L) 
r(0) r( 1 ) ... r(L-l) 

conjg. . . . . (12)
symmetric r( 1) 

r(0)
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Up to this point, in calculating the covariance matrix R, we used
the ensemble expected value. In practice this is impossible.

fInstead we collect N snapshots of X(n)X(n) , where X(n) is a 
sample of the vector at time nT (where T is the sampling period), 
and average on all these snapshots to obtain an estimate for R

1 N tR = -i-E C X(n) X(n)T) (13)N „n=l
a.

Obviously each entry of R is a random variable.
For the URA there are few entries at each diagonal which 

represents the same correlation lag. (that is, exist some
a

redundancy). We explore this redundancy by generating R from R as 
follows;
For the 5 elements we take

A* A A. A A

r(l) = 1/4 { r(2-1) + r(3-2) + r(4-3) + r(5-4) )

— A A A
r(2) = 1/3 { r(3-1) «• r(4-2) + r(5-3) >
«%► A A

r(3) = 1/2 { r(4-1) + r(5-2) )
AT A

r(4) = r( 5-1)

r(0) = 1/5 ( E elements along the diagonal)
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For the augmented MRA matrix we use all the estimated elements of 
(11) as they are without averaging except for

A A A

r(3) = 1/2 { r(4-1) + r(7-4) )

r(0) = 1/5 ( E elements along the diagonal. )

A

To observe the effect of these averaging on R for both MRA and URA
A

we find the difference AR

A R = | R(n) - R(n) || (14)

where the norm |a || of an MxM matrix is defined;

W l  - - V  E E • „M l J

A

Fig 5—1 presents AR as a function of the data length (snapshots
A

used in calculating R).
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3. Formulation of direction finding algorithm formulas.

a) MUSIC
The MUSIC algorithm[3] is a way to estimate the direction of 

signal impinging on an array. It exploits the orthogonal property 
of the noise subspace eigenvector to the source direction vectors. 
If a vector d

the direction of the signals can be found. Notice* however, that 
beside the D zeros which correspond to the signal directions, 
there are other M-D zeros termed extraneous zeros. Due to the 
orthogonality property of the noise eigenvector subspace and 
source direction vectors, mentioned before, any of the L-D noise 
eigenvector will have the property of the vector d mentioned in 
(16). This was first proposed by Pisarenko [5] for his direction 
finding approach.

d = [ d1# d2. (15)

has the property
a1* ^ )  d « 0 k = 1,2, (16)

then the polynomial
M-l

S(z) = E dk+1 Z (17)
k=0

j R wwill have zeros at zs e 0 k k= 1,2, ,D. From these zeros
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We define
M-l
k=0

_-k
,k+lS(©) = E ei,f - 2 (18)

where e^ i= D+l, D+2, __ » M are eigenvectors corresponding to
the smallest eigenvalues of the covariance matrix R; R = 
E W t M t ) 1') , (\x > X2 > - A 0 , \d+1, .. \M )- S(0) in (18) 
usually called the null spectrum. Define P(0);

P( 0 ) = ------- (19)
S(0)

will have a high peaks at 0 k=l,2,...,D; the signal directions. 
Now if the covariance matrix is only an estimate obtained from a 
finite samples X(n) as in (13), then noise eigenvectors e^, i=
D+l ___ M and so is the directions obtained will be not
sufficiently accurate unless the SNR is very high. In such case 
one might utilize not only one eigenvector as in (18) but all L-;D 
eigenvectors and define the null spectrum by

S( 0 ) = af(0)( E ) a(S) (20)
k=D+l

P(0) = — ----
S (0)
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where e. i=D+l M are the estimate of the noise eigenvectors
such an approach of using all noise eigenvectors was first used by 
Schmidt[6] who called it MUSIC. Obviously it results in some sort
of smoothing in estimating errors of the noise eigenvectors and

jk w • «causes better estimate of e O k  and the direction of the signals.
Many others followed Schmidt's approach.

Let E be the MxD matrix constructed from the signal subspace s
eigenvectors,!.e eigenvectors which correspond to the largest 
eigenvalues X.. i-1,2, ___   D. That is

V  C V  °2...... ®D 3 (21)

where are the eigenvector given by

0i = [ °li’ °2i....... °Mi ]T (22)
i= 1,2 *■•. ,D

and let E.. be the Mx(M-D) matrix consisting of the noise subspace N
eigenvectors; i.e. eigenvectors which correspond to the smallest 
eigenvalues X^ i= D+1,...,M. That is ;

EN = C *D+l’®D+2...... °M 3 (23>
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Because these subspace are orthogonal then

[ Es t EN ] [ E8 i EN ] = 1 (24)

Hence E t
«t(e) [ Es i EN ] [ ” f" ] ®(e) = M

em

or
f E E* + Ek1 E* ] a(0) = M I- s s N N J

Using both (21) and (23) we end up with

M [)
at(0)f £ e. e.* ) a(0) = M - af(0)( E

i=D+l1 1 i=l
(25)

Therefore using (20) we can also have for the null spectrum,

♦ M - ♦S(0) = M - a ( 0 ) ( E e. eT ) a(0) (26)
i=D+l 1 1

i.e.S(0) is defined by the signal subspace instead of, by the 
noise subspace (20). Clearly for the noise subspace we have to 
find only one eigenvalue (the smallest) which must have
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multiplicity M-D. This is simpler than finding all the different D 
eigenvalues and their corresponding eigenvector when using signal 
subspace. Nevertheless, the estimates of these eigenvectors are 
better than the estimates of the eigenvector which belong to noise 
subspace. This in turn results in much better direction estimates 
when using signal subspace.Notice from (20) and (26) that whenever 
a(0) is in the direction of the signal direction vector a(0^) the 
estimate of the null space s(^^) vanishes.

B) Minimum Norm Algorithm

Instead of choosing d as noise eigenvectors or signal 
eigenvectors to generate the null spectrum for the MUSIC 
algorithm, Kumaresan and Tufts [7] proposed to choose d as follows

1. Its first element to be unity
2. Its Euclidian Length to be minimum

The second requirement is the reason for the name Minimum Norm 
algorithm.
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Let us first partition the subspaces of (21) and (23) as 
follows

E = s
g
E ’.s

(27)

and

en
(28)

where g and c are in fact composed of the first elements of the
signal and noise subspace eigenvectors, respectively. Then E ’and
E'are (M-l)xD and (M-l)x(M-D) matrices respectively obtained from N
E and E_ by deleting their first rows: s N

9 " 1 *1.1 • * 2 , 1  *0.1 1 (29)

C " 1 *0+1,1 ’ *D+2, 1 ...... *M,1 1 (30)

d = [ d , d , —  * dM ] (31)i ^ n
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Since d has to be in the range of E..(see 16) it will be orthogonalN
to the column of E , i.e.s

E* d = 0s (32)

or equivalently

[  • *  i * s ' 1, ]

1
d ’ = 0 (33)

where we took d = 1 and d ’= [ d_,d , ... ,d ] . From (32) we canl z 3 n
write

(34)

E ^is an Dx(M-l) matrix and we in fact have D equations with M-ls
unknown, which can be solved for d* by using pseudo inverse of E* .

w

By the requirement of the minimum norm of d’

M
1 d I = E |ds| is minimum.

i=2

the pseudo inverse matrix can be obtained by the singular value
♦decomposition of E* . Such a solution gives
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Combining the two matrices E and E._ from (27) and (28) ands N
multiply by their transpose conjugate we get the identity matrix. 
This is because these two matrices contain all the eigenvectors of 
R which is Hermitian. Therefore

E i E ’S • N

9 s
r.t'N

= I (36)

which lead to
T * T *g g + c c = 1

*  * *E* g + Ekl c = 0 S N (37)

by using (37) in (35) we have

d =
Eĵ  c*/c^c

(38)

Equations (35) and (38) depicts the fact that the required vector d



can be obtained by using either the eigenvectors of the noise or 
the signal spaces.

Finally we must remark on the fact that the minimum norm 
algorithm has advantage of leading to[7]

1. More accurate estimate of w. even with relatively low SNRk
2. The M-D, extraneous zeros of S(0) tends to have less 

effect for causing false sources.

4. Simulation Results

A number of simulation runs were performed to examine the 
behavior of the URA and the MRA and compare them. In these 
experiments different level of signal-to-noise ratio (SNR) were 
used.The effect of number of samples on the performance of the 
array was also examined. Two different noise sources were 
considered; additive random noise independent of the signal 
source,and noise caused by small random perturbations of the 
element locations.

In Fig 5-2 we present the case of a five element URA or MRA. 
Four sources of SNR were located at 5, 20, 45, 75 degree.This
figure depicts, the average of the absolute errors in estimating
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the directions of these four signals as a function of data length( 
Number of samples used in calculating R ). Due to the dimension of
a

R only one noise vector was used in defining the null spectrum for 
the URA. For the sake of comparison only one noise vector was used 
for the MRA even though many more noise eigenvectors are obviously 
available. It is observed that MRA outperforms the URA down to a 
very small data length. The point of error with more than 4 degree 
depicted for the URA indicates a "false peak"

The effect of perturbation noise is examined in Fig 5-3 
(Maximum perturbation of 0.25\ was considered),Five element array 
were used with only one signal source and employing one noise 
eigenvector. The direction of the source was varied and for each 
direction the absolute value of error was found. Fig 5-4 presents 
the Cramei— Rao bound due to aperture length. That is for 5 element 
and 10 element (The aperture size of 5 element MRA). Comparing Fig 
5-3 and Fig 5-4 we notice that the MRA performance presented in 
Fig 5-3 close to the bound for 10 element as it was shown Fig 5-4. 
Hence we might conjecture that the 5 element MRA performs almost 
like 10 element URA and that the larger aperture of the MRA is the 
dominant factor in achieving the improved performance.

The effect of the higher dimension of the augmented
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covariance matrix for MRA and the resulted larger number of 
eigenvectors that could be used in MUSIC we show in Figure 5-5, 
5-6 and 5-7 the effect of using one two or three noise eigenvector 
in defining the null spectrum of equation (20). notice how P(0) =
1/S(0) of (20) become sharper and sharper at 5,20,45 and 75
(degree) the actual direction of the signal source as we use more 
and more eigenvector. Important to emphasis that such possibility 
of using more noise vector does not exist for the 5 element URA 
with 4 signal sources.

The effect of adding extra noise eigenvector in defining s(0) 
is compared again in Fig 5.8 as a function of data length. Notice 
that with small data length( Less than approximately 50 samples) 
there appear a false peak(indicated by average error greater than 
4 degree), when only one noise eigenvector was used. This false 
peak readily disappear when another eigenvector was added in 
defining S(0). In fact with two eigenvectors no such false peak 
was found even with at little as 10 samples. Figures 5-9 and 5-10 
depict the false peak in P(0) in the first figure and its 
disappearance in the second when two noise eigenvectors were used 
in defining S(0). Using the minimum norm algorithm we compare in 
Fig 5-11 the performance of the URA and the MRA as a function of
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data length. From the procedure of this algorithm only one vector 
d is used to define the null spectrum. Notice how the MRA 
outperforms the URA particularly for small data length. Also 
notice the smoothness of the curve for URA in this figure in 
comparison to the fluctuation in errors as a function of data 
length when the MUSIC is used. This fact is due to the way the 
vector d is chosen among all vector which are orthogonal the 
signal space it has the minimum norm.

5. Conclusion

The MRA was shown to outperform the URA, when using either of 
MUSIC or Minimum-Norm algorithms. Two reason could cause these 
results; Larger aperture length and the fact that the MRA 
covariance matrix when augmented, has larger dimension and hence 
larger number of noise eigenvector to be used in superresolution 
algorithm. The effect of increasing the number of eigenvectors on 
the performance of both arrays was studied and shown to support 
this conjecture. The effect of different aperture length on the 
performance was examined by using perturbation noise and comparing 
performance with Cramer-Rao bound.
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Important to emphasize that the MRA outperforms the URA 
despite the facts the latter contains redundancy in its covariance 
matrix entries which regularity exploited to smooth the data and 
cause reduction in the number of snapshot required for processing.
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6. P e r f o r m a n c e  o f  t h e  MUSIC b a s e d  D i r e c t io n  F in d in g  

U sin g  D i f f e r e n t  C o v a r i a n c e  M a tr ix  E s t i m a t e s  f o r  t h e  

U n ifo rm  R e g u l a r  A rrav C U R A ) a n d  t h e  Minimum R e d u n d a n c y  

A rrayC M R A )

1. Introduction

In the direction finding problem when any of the
superresolution methods, such as the MUSIC for example, is used,
the knowledge of the covariance matrix of the signal at the array
element is a must. In real applications there is no way to get the

♦exact expected value E[X X ] (=R the covariance matrix),where X is 
the received wave form vector at the M array elements. If one 
assumes X is ergodic then R might be obtained from an infinite 
average sum of the samples of X ;

N tR= lim Z X X *  n nN+oo n=l
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However to obtain such an average is impractical.Therefore R can 
be only estimated from the finite sum;

R = R = 1
1 N t—  r x xT
N n=l

(1)

Obviously is the random matrix as its elements are a finite sum 
of random variables. Other possible structures for estimating R 
have been suggested in [1],[2]. Different estimates of the 
covariance matrix will result in different accuracies when used in 
direction finding.

In this chapter we will present four different such 
estimates; namely, the random sample, the doubly symmetric, the 
averaged Toeplitz and the optimized Toeplitz, forms. Using these 
estimates of the covariance matrix in the MUSIC algorithm, we 
estimate the direction of signals impinging on a uniform regular 
array (URA) with M elements, and compare their estimation error. 
Ue will then conclude on the best method to use for direction 
finding with MUSIC algorithm.
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With the minimum redundancy array(MRA) instead of the URA, we 
discuss the possibilities of getting covariance matrix estimates. 
Using these estimates we again use the MUSIC algorithm and obtain 
the resulting estimation error in the direction finding process.

2. Estimates of the Covariance Matrix 
for the Uniform Regular Array.
Four different estimates are proposed;

a) The Random Sampled Covariance matrix

Using N sample we define R of 4 element array

R Rx = X Xt

(2)
conjugate
symmetric

137



where the overbar here is used for the N sample average rather 
than the expected value. That is

1 N  1 R = ---  E X X1 ... .. n n N n=l

and

N
N
En=l

*
x.  x . in jn (3)

where X is the n’th sample of the vector X and x. is the n*th n in
sample of the output of the i’th element.

Since N is finite the elements of are random variable, and
hence x x * is not necessarily equal to x x * or to x *.,*» X 2 2 3 3
contrary to the case when N goes to infinite. Therefore is
Hermitian but not necessarily Toeplitz.

b) Doubly Symmetric Covariance Matrix

Doubly symmetric matrix is both Hermitian about the principal 
diagonal and symmetric about the cross diagonal (the diagonal 
from bottom left to top right). Ue invoke the matrix theorem
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concerning transpose about the cross diagonal, ie., flipping the 
matrix about the diagonal that runs upward to the right at 45 
degree. If the transpose about the cross diagonal is denoted by 
prescript T(TR ), then the doubly symmetric covariance matrix R^ 

can be obtainedfrom as follows;
R2 = ( R1 + V  / 2

For the 4-element URA we have

where,

ro = ( V i * + *4*4* )/ 2
= c w + w )/ 2

T1
s ( xi V + *3*4* )/ 2

r; = ( w )

r2 s c *1*3*
+ ) / 2

r3 = c w )
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c) The Average Toeplitz Covariance Matrix.

The average Toeplitz covariance matrix R3 is obtained from R^ by 
simple averaging along the different diagonals. That is

r( 0 ) r( 1) r(2) r(3)

r (1)* r(0) r( 1) r(2)
r( 2 )* r( 1 )* r( 0 ) rCl)
r(3)* r( 2 )* r( 1 )* r(0)

Where

r(0)= ( + *^*2* + *3*3* + *4*4* )/4

r( 1 )= ( x^x2* + x“ x3* + 3

r( 2 )= ( xTx * + xlx * ) /2 1 3  2 4
r( 3 )= ( x^x4*)
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d) Optimized Toeplitz Covariance Matrix using Maximum 
Likelihood Algorithm. (Burg’s Algorithm)

The procedure of finding this estimate for the covariance 
matrix is given in [1]. For a matter of completeness we summarize 
the idea from that paper:

The task is “ One wish to select a covariance matrix of 

specified structure that corresponds in a reasonable may to a 
given set of vector samples. * The author of [1] assumes that the 
vector random process at the array elements is zero-mean
multivariate Gaussian, and that different samples of this vector 
are independent. The idea is then to choose the covariance matrix 
of this multivariated Gaussian so that to maximize the Joint 
probability of occurrence of the vector samples.

In fact, the information in the vector sample is neatly 
contained in the sample covariance matrix , so we end up with a 
performance index function pCR^ R) in the two matrices R^, and R. 
R, which is to be founded,is constrained to be a Toeplitz 
covariance matrix .while R^ is a random sample covariance matrix 
that was shown to be Hermitian.
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Let a vector X be M-dimensional Gaussian vector with zero 
mean and covariance matrix R. Then its probability density 
function is given by

p(X)= (2*)-M/2 | R | "1/2 exp( -Xf R”1 X / 2 ) (6)

where |r | stands for the determinant of R.
Now instead of a single vector sample suppose that we have N
independent vector samples, X n=l, N. then the probabilityn
density for this set of vectors will be :

N
P(X . X2 , ... , XN ) = (2fl)"NM/2|R|"N/2 exp(- £ X* R_1Xn /2 )

n=l

(7)

Ue consider the situation where R is unknown except that it is a
member of a certain family of feasible covariances. For example ,
an important case is when Si is the collection of the positive
definite Hermitian Toeplitz matrices. Notice that given the set of
the vector samples X n=l, __   N, then R € X  which maximizes (7)n
is the Maximum-Likeli hood Estimation of the covariance matrix. 
Taking a Logarithm of (7) we get:
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log P( , x2 » ... , xN > *

N t -1—(NM/2) log( 2n) - (N/2) log |r | - (1/2) E X ^  R Xp
n=l

(8)
Dropping the leading constant term and dividing through by N/2, we 
define objective function P(R^, R) to be

N t -1 P(R_ ,R)= -log |r| - (1/N) E R *1 I '  . n nn=l

Obviously maximizing P(R , R) is equivalent to maximizing (8),

Using matrix relation,
1* -1 -i fx 1 R X = tr (R X x' ) ,

in (9) we get;

-i N *P(R, ,R)= -log|RI - tr(R (1/N) E X X ’) (10)1 1 ' “ n nn=l

With the definition of the sample covariance matrix R^ ,

N tR = 1/N E Xn X j
n=l
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We arrive at the equation for P(R ,R )

PCR^R) = - log |R| - tr(R_1 R ^  (11)

Our objective is then to find the R which belongs to the class of 

positive definite Hermitian and Toeplitz matrices 5t, and which 

would maximize P(R^,R), where R,̂  is a given sample covariance 

matrix obtained from the measurement.

This is a variational problem. That is, we must first derive 

the variation of the functional P in terms of the variation of R. 

The variation of R is defined as follows

6r =

<5R(1,1) <5R( 1,2)
<5R( 2,1) <5R( 2,2)

6R(1 ,M) 

<5R(2,M)

6R(M,1) 6R(M,2) <5r (m ,M)

where 6R(i,j) is the variation of i,j*th element of R. Now taking 

the variation of both sides of (11) we have
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6 [P(R1 ,R))= - <5 log|R| - <5 trCR”^ )
After some simple derivation detailed in the appendix, we get

6 [P(R ,R)]« tr C(R*’1R1R~1- R_1) <5R ] (12)

For an extremum of the functional P(R ,R), it is necessary that 

its variation equals zero for any variation 6r that belongs to R. 

That is

tr [ ( R - y 1" R_1> = 0 (13)
for every 6R e R.
In particular it must be true for 6r= R. In which case we 

have
tr [( R-1R R~l - R 1 )R ]= 0 

or tr [R-1 R ^  = M (14)

Substituting in (11) we get as a necessary condition for P(R1»R) 
to be maximum, that is

P(R1,R)= -log |R| - M (15)
From the form for P(R1»R) in (14) and from(15) we can restate our 
variational problem as follows instead of maximizing P(Rl(R);
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minimize the determinant of R under the constraints that
1) R g R
2) tr [R~1R1] = M where M is the number of the array 

elements
In fact this constrained minimization problem can be solved using 
Lagrange multiplier \. That is

6 [ -log |R| - X tr(R~1R1) ] = -tr[ (R*"1-XR_1R1R_1 )6R ]
(16)

where we again used equation (A-2) and (A-3) of the appendix. 
Again using <5R= R we get

tr [ I - \R_1R1) ** 0 

or \ trCR”1̂ ]  = M

That is \=1 and we are back to the problem of setting the 
variation of (11) to zero. This shows that the constrained 
minimization stated above is equivalent to maximizing the 
functional in (11)
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- The Inverse Iteration Algorithm
Using the fact that the variational problem in (12) is linear in
R the author in [1] proposes to use what he termed the Inverse 1
Iteration Algorithm. That is ; at any stage, he begins with an 
approximation R^ and finds a new approximation R ĵ j as follows:

1) Find Dk which belong to 51 so that R^Ri-0  ̂ *
satisfy
equation (13) such as

tr C ( Rk_1 (Rx - Dk) R ^ 1) 6 Rk ] = 0  (17)

Where 6 R. is the variation of R.. This equation means inside of k k
{ .. ) is orthogonal to the change 6Rk in .ft space.
2) Put R - Rk ♦ Dk

To find D, € ft, let us first assume that Q m=l,2, — , M , form a k m
basis for R then we can write

M
D = r b Q k “ „ m m  m=l

and (17) can be rewritten as
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for every Q. j=l,... ,M. After rearrangement of (18) we get

E tr C “k'V'kS1 bm ■ tr 1 CvCVm=l

j=l, —  ,M

This is a system of M equation in M unknowns; b , m=l,...m
solution of these equations yield and hence the
approximation R, „. In fact from (19) if we definek+1

A. . = tr [R^Q.R^Q .] xj k l k j
and

c. = tr [ R”1 R„r"1Q.] j k 1 k j

(19)

. The 
next

then the aforementioned linear equation is given by the set of 
linear equation



3. Covariance Matrix for Minimum Redundancy Array.

For a 4-element Minimum Redundancy Array,the location of the 
elements are (0, 2X/2, 5X/2, 6X/2). In a notation consistent to 
the notation of Uniform Regular Array we can write

X = [Xj, x3 . *6 . x7 J T

R « X X

*
X1 X1

*
X1 X3

*
X1 X6

*
X1 X7

* * X. X_ X X 3 3 3 6
*

X3 X7
conjugate
symmetric

*X X 6 6
*

X6 X7 (20)
*

X7 X7

Defining r(0) by.

r(0 )= 1/4 [ x± X* + x2 x* + x5 x5 + x7 x7 3

r( j-i )= 4cX. X . 1 J
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the matrix (20) can be written as.

R =

r(0) r(2) r(5) r(6)
r(0) r( 3) r(4)

conjugate r(0) r(1) 
symmetr ic

r(0)

(21)

In the matrix of (21) we notice the existence of all delay lags 
r(0) to r(6). The number of lags(:=6) = M(M-l)/2. This is in fact 
the property of the Minimum Redundancy Array wherein the element 
locations are chosen so that many delay lags rather than only M 
lags (as in the case of URA) is generated. For other values of M 
it is possible to generate only N < M(M-l)/2 different 
lags,nevertheless N » M (see [3])

The different entries in the Hermitian covariance matrix (21) 
can be augmented to the following Toeplitz,Hermitian matrix.
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r( 0) r( 1) r(2) r(3) r( 4 ) r( 5) r(6)

r( 1 )* r( 0 ) r(l) r(2) r(3) r(4) r(5)

r(2)* r(l)* r(0) r(l) r(2) r( 3 ) r(4)

r(3)* r(2)* r(l)* r(0 ) r( 1) r(2) r(3)
r( 4 )* r( 3 )* r( 2 )* r( 1) r(0) r( 1) r(2)

r( 5 )* r(4)* r( 3 )* r( 2 )* r( 1) r(0) r(1)
r( 6 )* r( 5 )* r(4)* r( 3 )* r( 2 )* r(l) r(0)

Notice that in Toeplitz matrix except for r(0) the other elements 
are forced to be the same rather than obtained from the average of 
the elements in a diagonal as in the Uniform Regular Array. 
Because of this fact we cannot choose an optimum covariance matrix 
by using burg*s algorithm. Such an approach is possible only when 
there is redundancy in the covariance element.
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Different augmentation might lead to;

r( 0 ) r(2) r( 3) r( 1) r( 5 ) r( 4 ) r(6

r(2) r(0 ) r( 1) r( 1 )* r(3) r(2) r( 4

r(3)* r( 1 )* r(0 ) r(2)* r(2) r( 1) r( 3

r( 1 )* r( 1) r(2) r(0) r( 4 ) r( 3 ) r( 5

r(5)* r(3)* r(2 )* r(4)* r(0 ) r d f r( 1

r(4)* r( 2 )* r( 1 )* r(3)* r( 1) r(0) r( 2

r(6>* r( 4 )* r(3)* r( 5 )* *r( 1) r(2) r( 0

This is a Hermitian but not Toeplitz.
The matrix R can be obtained from R by considering the H T
transformation between the corresponding random vector Xn
respectively. That is

XH ” C *T

and in detail;

(23)

linear 
and XT
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(24)

Notice that;

r t = xt xt

r h = xh *h “ C XT ( C X T )

t T T- c Xy XT C ■ C Ry C

The Eigenvector and Eigenvalue of R , R ,are defined as follows;T rl

and ,
RT VT = XT VT

R V = C R C v H H T H

(25)

~ XH VH
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— > R c"̂ v = X C^v (26)T H H H

where we used the fact that C CT= I.(Identity Matrix)

From (25) and (26) we conclude that for every eigenvector vT of R^
and its corresponding eigenvalue XT there exists another
eigenvector CTvH anc* a corresponding eigenvalue X^ for R^, where
v and X are an eigenvector and a corresponding eigenvalue of H H
R... Hence the set of eigenvectors{ v » i=D+l,—  ,M) which H T1
corresponds eigenvectors { CTv,.. ; i- D+1,...,M), where v . i=Hi nl
D+l.....M , are the eigenvector of R .ri
The direction finding formula of the MUSIC algorithm of Toeplitz 
covariance matrix is given by

PiO) = --------   (27)
a(e)fc E V v * ) a(S)

k=D+l

where D is the number of sources and M is the dimension of R.
When using the Hermitian matrix of (24), we must first transform

T Teach eigenvector by C to get C V .. Then the corresponding MUSICHi
formula is given by
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P(6)= (28)

t M ta(0) ( E (Cv . )(Cv . ) ) a(0)
k=D+l TK TK

4. Simulation Results

The different methods of obtaining estimates for the
covariance matrix were evaluated in a simulation of a MUSIC 
algorithm for finding the direction of 3 sources located at 10,25, 
and 45 degrees from broadside. The angle of arrival estimation
were compared to the actual direction, and the average estimated 
error was calculated. Figure 6-1 compares the average of estimated 
error when using the random sampled covariance matrix with that
when using the doubly symmetric covariance matrix. Notice that the 
first case outperforms the second. Figure 6-2 compares the average
of the estimated error when using the average Toeplitz covariance
matrix with that when using the random sampled covariance matrix. 
Again the method of the two outperforms the second. Figure 6-3 
depicts the same comparison between using the optimized Toeplitz 
covariance and using the average Toeplitz covariance. The second
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method only slightly outperform the first. In figure 6-4 on the 
comparison is done between two different structure of arrays; the 
uniform regular array and the minimum redundancy array. For the 
first we used the optimized Toeplitz method which gave the best 
result for the uniform regular array. Notice that the MRA gave 
much better results. Figure 6-5 shows all the result in one graph.

5. Conclusion.

The effect of different estimates for the covariance matrix 
on the performance of multi-source direction finding was 
considered in this chapter. The estimates considered are random 
sample, the doubly symmetric, the averaged Toeplitz and the 
optimized Toeplitz when using MUSIC algorithm for direction 
finding. Simulation results shows that the optimized Toeplitz 
method give the best results. When the array is of the MRA type 
little redundancy exist and only the random sample method can be 
used as an estimate for the covariance matrix. Nevertheless 
simulation shows that this array outperforms the URA even when the 
best estimate for the covariance matrix is used.
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Appendix

Few matrix equation will be first generated and then be use 

to derive (110 of the text 

1.
<5 | R | = | R | tr [ R_ 1 6R ] (A-l)

can be obtained directly from the definition of a determinant of a 

matrix |r | and its inverse R * in terms of the cofactors of R.

We will demonstrate this through a 2x2 matrix example. Let

a
c

b
d , then <51RI = a<5d+d<5a-b<5c-c<5b

R 1<5R » -----

11■oi 6a

i--Si«o

1 «  1 -c a 6c

--1
■0«0

Hence

tr [ R_1<5R] =

6|r | =

R I

( d6a-b6c-c6b+a6b)

I R I

tr [R 1 <5R]
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6 IR I -12. 6 log|R|=   = tr [ R 6R 3 (A-2)
1*1

3. R R_1 = I
6R R_1 + R 6R_1 = <5l = O

HenCe 6 R"^ R^dR r"1 (A-3)
Now From C10),

6[ PCRj^.R) ] = - 6 log|R| - <5 tr[ R 1R]
But from (A-2)

6 log | R | = tr [ R *<5R]
and from (A-3)

6( R-1) = - R_16R R_1 
also 6 tr[R_1R13 = tr [ 6(R~1) R ^

Then 61 P(R1,R)]= -tr [ R_16R) + tr[ R_1<5R r” ^ ]

But tr [ r”*<5r r’S  ] = tr [ r ' ^ R -1^  3

Therefor© * «
6 P(R ,R) » tr [ (R~ R R -R ) «5R3 (A-4)
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7 - The error probability of estimating the number

OF TWO CLOSELY LOCATED SOURCES.

1. Introduction

The problem of estimating the number of signals impinging on 
an array is very important. Its value is a crucial parameter by 
itself, but also required in some approaches of finding the 
direction of these signals. The eigenspace method for direction 
finding relies heavily on the knowledge of the actual number of 
sources.

Every estimation problem has errors associated with it.The 
probability of these errors are of interest. Such probability of 
errors obviously depends on the method used as well as on the
parameters of the process implemented. In the estimation of number 
of sources,of interest is, both underestimation (that is when our 
estimation is smaller than the actual number) or overestimation 
(that is when the estimated number is larger than the actual
number). Particularly when the actual number of sources is only
two and when these sources are very close to one another the
question of underestimating is rather interesting.
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In some old methods of estimating the number of signal 
subjective approaches were used Cl].That is,equal eigenvalues with 
certain tolerance,are taken to correspond to noise eigenvalues. 
The number of sources is then taken to be the dimension of the 
array minus the number of these equal eigenvalues. Errors will 
occur particularly when some of the eigenvalues,which correspond 
to signal sources are close,to the noise eigenvalues.

Recently researchers have been using information theoretical 
criteria instead of these subjective approaches. Akaike[2] used 
the so called Akaike Information Criterion (AIC),while Schwartz 
and Riessanen [3] used the so called Minimum Description Length 
(MDL) to determine the order of polynomial by which dynamic system 
might be approximated. Later Max and Kailath [4] used both methods 
in estimating the number of sources impinging on an array. They 
show that MDL results in smaller estimation errors than AIC and 
that these errors diminish when the length of data used becomes 
infinitely large. They did not,however, explicitly present the 
values of these errors. Wang and Kaveh [5] gave an analytical form 
for the probability of error for both underestimating and 
overestimating the number of sources. Applying Taylor series 
approximation of a logarithmic function they could present the
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probability of error as an erf (error function),and hence, could 
use existing numerical tables. As they admit their approximation 
are valid only when the number of sensors M is very large.

In this chapter we study the validity of Wang and Kaveh’s 
approximation for the particular case of two sources close to each 
other. Me show that such approximations are not only very
sensitive to M but also to SNR. In fact they are valid only at
very low SNR and very close sources, a situation which is unlikely 
to be occur in practice. The probability of error in such
situations turns out to be one. Using analytical expression 
without the aforementioned approximation leads to a more
pessimistic result.that is,to a higher probability of error than 
what Ulang and Gaveh predicted. Direct simulation gave very close 
results to those obtained when using the analytical expression 
with no approximation. Therefore one might question whether the 
whole method of estimating the number of sources using MDL is of 
any value.

Before going into the main topic we first briefly review the 
basic concept of direction finding of narrow band signals. The 
waveform received at the M element array is a linear combination 
of the D incident wave fronts and noise. Thus the waveform vector 
X can be expressed as follows:
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x.1
2

KM

aC^). a(02 ). .. .a(©D )

' F ' w ‘1 1
F_ 142 + 2

FL qJ L mJ

or,

X = A F «■ U (1)

The incident signals are represented in amplitude and phase 
at some arbitrary reference point by the complex quantities F , 
F2 »*-» noise.whether sensed along with the signal or
generated internally, is given by the complex vector U. The 
element a(i,J) of the matrix A is a function of the signals' 
arrival angles and the array element locations. That is, a(i,J) 
depends on the i'th array element, its position relative to the 
origin, and its response to a signal incident from the direction 
of the j'th signal. The covariance matrix R is given by

♦ f f f
r  = X X  = A F F A + W W (2)

where the overbar is used for the expectation and t is the
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transpose conjugate. Under the basic assumption that the incident
1* tsignal and noise are uncorrelated the matrix F F and U W are 

diagonal.
Let X. and e. , i= 1, 2, ... M , be the eigenvalues and

corresponding eigenvectors of R with X. in descending order, that 
is \± > X2 > ... > XM .

The MDL criterion which estimates the number of source by 
finding k that minimizes the function A(k,N) .where;

a( k)
A( k,N)= N(M-k) log( -7—  ) + 1/2 k(2M-k) log N (3)giK)

N is the data length,

i M .

a( k)= -------- E (4)
M - k . . .i=k+l

and
M ^ 1/CM-k)

9(k)= ( n > <5 >i=k+l

: estimated value
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2. Detection Performance

Let H. denote the hypothesis that the number of actualK
sources is k . We can derive the probability of underestimating 
the number of sources given , by

P (k )= P { (k < k) I H. } (6)U K

where ~ means estimated value.The probability of 
overestimating the number of sources given is

P Ck) = P { (k > k H. } (7)O 1 K

It is reasonable to assume that the probability of overestimation 
or underestimation as a function of deference between k and k is 
decreasing fast. That is,

P{ (k= k-l)| Hr > »P{ Ck < k-2) | Hk } (8)
and

P{ (k= k+1 )| H2 } » P{ (k > k+2 ) | H2 > (9)
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so that
Pu(k) & P{ (k = k-1) | Hk >

= P{ A( k-1 ,N) < A(k,N) | Hk > (10)

and
Pq( k) * P{ ( k = k+1) | Hk )

= P{ A( k+1 ,N) < A( k ,N ) | Hk ) (11)

Not© that the probability of incorrectly estimating the number of 
sources given Hk is

PE = P { (k * k) | Hk )
* P (k) + P (k) (12)u o

By definition of a(k) and g(k) we can easily get,

a( k-1 )= -------  \ +   a(k) (13)
M -(k-1) M -(k-1)

[g(k-l)]M"(k’1) = Ak [g( k)) M”k (14)
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Now,
(M-(k-1)) log [ a( k-1)/g(k-1) ]

= log
[a( k-1 )]M_( k_1) 
[g( k-l)]M_( k_1)

and by using (13) and (14) we get,

M - k , M-(k-1)
1) kk * M -(k-1) a(k)

= log ---------------------------
M—k

\  [g(k)]

and after simple evaluation.

M-k \ tH-( k-1)
M-k [ II IN

M-(k-][ a(k)]- | M-(k-l) (M-(k-l)) a(k)
= log ----

C9(k)]M_k C V a ( k ) ]

aC k)
= (M-k) log ----- —  + log Q (X /a(k) )

g(k) u k (15)
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where

Qu(Xk /a(k))
M -k M—(k-1)

[ M -(k-1) + M -(k-1) (\R/a(k))
(16)

[ Xk /a(k) ]

Notice also that (15) can be written in the form

r a(k-l) M "(k_1) a( k) M“k109 [  9( k - i r  J  =  109 [  " s T k T  J  +109 W a ( k ) )
(1 6 .a)

Similarly we have

a(k+1) a(k)
(M-( k+1) ) log jjypyj = (M-k) log -^y- + log V Xk+l/a(k))

(17)

Wh6re M -k 1
O (X. /a( k))=f------------------- ( X /a(k))|
° k+1 1 M—(k+1) M-< k+1) k+l J

[ Xfc+1 / a( k) ) (18)
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Define the penalty function of MDL by; 

p(k,N)= 1/2 k(2M-k) log N (19)

then we can rewrite P (k) and P (k) in terms of Q . Q .u o u o
(see appendix A)

p( k.N)- p( k-1 ,N)
I H»

(20)

, ^ p( k.N)- p( k-1 ,N) .
>u(k) SiP ^ log Qu(Xk/a(k)) < -------------------  | Hk J

and
,p( k+l,N)- p( k.N)

P (k) o
- ^ KVWtiw \

* P [ - log 0o(Xk+1/a(k)) > -------    I Hk J

(21)

3. Probability of error for the case of two close sources

Analytical development of eigenvalue and eigenvector of 
covariance matrix R that is constructed from a signal received 
two close sources is done in Ch. 2.7 of[63 pp 52-55. From [6] we



find that the eigenvalues for two uncorrelated sources are given

by:

1 , 2  2

* •

M (P!+P2 ) +1
<

i 2(Px + P2 ) d

+ an (22)

where PA ( i-1,2) are the power of two sources and <p is given by:

4> =
sin ( 1/2 M k d 0)

M sin( 1/2 k d 0)
(24)

where k= 2n/\ , d = \/2 and 9 is the difference of source 
bearings.

For the condition P = P » P2 equation (22) can be simplified 
to give;

(24)
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Using the result of previous section we can get from (16) and (18)
Q , Q for the two sources case u o

[ M -2 1
 * ------
M -1 M - 1

°uCX2/a(2))=   +   (X-2/a(2)) X2 / a(2)

(25)

r M -2 1 -.M-3 r ^ 1
0oCX3/a(2))=| — —  - CX3/a(2)) I V a < 2 )  J

t M —3 M -3

(26)

For the case of two source signals, (20) and (21) give the 
probability of underestimating and overestimating the actual 
number of sources (being=2) by one or three, respectively. That is

Pu(2) = p£ log Qu(X2/a(2)
P( 2 ,N )— p( 1 ,N )

N H* l

(27)

P (2) o £ p £ -log 0 ( X /a( 2 ) )O 3
p(3,N)-P(2,N)

N Ha ]

(28)
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with Qu(\2/a(2) ) and QQ(\3/a(2) ) are given by (25) and
(26), respectively.

Again for the case of two close sources, it is reasonable to 
assume that we will have k=3 with very small probability, p^(2) ss 
0. Hence the error in the detection of the number of sources will 
be mainly due to k=l; the underestimated case, and hence the total 
error probability P^ = P^(2). For M relatively large. Log Q^and 
log Q^can be approximated by the following expression [5] (See 
appendix B)

log Qu(x) 2 1/2 (x-1)2 (29)

log Q (x) = - 1/2 (x-1)2 (30)

Also notice from (4) that, for large M and a given k, a(k) can be
2 2approximated by a . In particular for k=2 , a(2) == a . Thereforen n

together with (29) and (30),(27) and (28) become,
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P (2) P f ( — 2 -1 ) < J  (2/N)[ p(2,N)-p(l,N) ) | h J
u a *

" (31)

P (2) * P f ( — | -1 ) > J  2/N [p(3,N)~ p(2 ,N)) | h J
°  ̂ a *n

(32)

According to Brillinger[7].the asymptotic distribution (that is
with large data length) of X.is normal with E{ X.) = Xi and

~ 2 var(X.)= X./N .i.e.

X. ~ N (X. , X?/N ) (33)X I X

Hence P (2) and P (2) became (see appendix C) u o

f er \ 2 [p(2 ,N)-P( 1 ,N)] - -Jn (X -a ) .
P (2)* erf — -------------------------------- -—  (34.a)
U L X *

P (2)= 1 - erf ( 1 2 [p(3 ,N)- p(2.N) ] ) (34.b)o
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4. Adequacy of the approximation for log G^(x)

For the case of two close sources, it is reasonable to assume
that we will have k=3 with a very small probability; P^C2)= 0.
Hence the error in the detection of the number of sources will be
due to having k=l; the underestimation case. Therefore the total 
error probability P^= Pu(2). P^(2) can be obtained from the (34a) 
provided the approximation of log Qu(x) by (29) is satisfactory. 
To examine the adequacy of this approximation we define a 
normalized error by

| log Q^C x)- { l/2(x-l)2} |
Error (35)

where x is
(36)

2The value of this error as a function of x= o is given in2 n

179



figure 7-1. From this figure we notice that in order to have a 
sufficiently small error ( = 5  X ), x must be close to one. 
Increasing the number of array element from 15 to 30 reduces the 
error by only a small amount. Figure 7-2 and 7-3 show the meaning
of the requirement (that is x should be close to one),in terms of
signal to noise ratio. From these figures we conclude that, an SNR 
as low as -15 dB, and an angle separation between the two
sources,less than 1.5 degrees,are required to obtain an adequate 
approximation.

From Brillinger [7] we know that \2 has normal distribution 
2and so is x = X ✓ a . Using this distribution we calculated and2 n

depict in figure 7-4, the expected value of log anc*
2(x-1) /2 while in figure 7-5, we depict the variance of these

random variables. For the abscissa of these figure we used the
_ 2expected value of the normal random variable x = \./ a , and for2 n

2 —2the variance of x we chose a = x /25.x
From these two figures we notice that

E [ log Q (x) ] < E [ 1/2 (x-1)2) (37)
and

Var [ log Qu<*)] < Var t 1/2 (x-1)2 ] (38)
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2Using either log Qu(x) or 1/2 (x-1) , we calculate the
»

underestimating probability pu(2 ) anc*

Pu( 2 )  =

| log Q i
I u

(x) <
P(2,N)-P(l,N)

N ”2 )

( 3 9 )

P ( 2 )  = u

P 1/2 (x-1) <
P(2,N)-P(l,N)

N H2 )
(40)

The random variable in (39) has both average and variance
smaller than the average and variance of the random variable in
(40). The relation of the distribution of these random variable is

2sketched in figure 7-6, where y= log Qu(*) and 7 ’“ 1/2 (x-1) .
From this figure it is easy to conclude that

Pu ( 2 ) Pu ( 2 ) ( 4 1 )
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for every value of the constant in the right side of the
inequality in (39) and (40). That is for every data length N and
every array size M (see equation(19)). Equation (41) shows that
the probability of error in estimating the number of sources when

2using the approximating function 1/2 (x-1) is optimistic. In
reality (i.e. by using the function log Qu(x)) the probability of
error is much higher. The error in the value of probability of
error is larger when SNR is larger, since then both the expected

2values and the variance of log anc* 1/2 (X~ D  becoming
further apart (see figure 7-4,7-5 and 7-3).

5. Results

Figure 7-7 and 7-8 present the error probability in
estimating the number of sources (actual numbers2 ) as a function
of angle separation, when approximating and actual functions are 
used, respectively. From these figures it is clear that the P^

9decreases when the angle of separation increases. Also P^(2) «
Pg(2).The error probability as a function of data length is shown 
in figure 7-9 when the approximation function is used and in
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figure 7-10 when the actual function is used. Again it is very
Pclear that P_(2) « P_(2) for a large range of data length.The E E

error probability as a function of SNR is depicted in figure 7-11 
when using the approximation function and in figure 7-12 when 
using the actual function. These errors become smaller Mhen SNR is

ihigher, nevertheless, as before P (2)< P (2) for every SNR. Figurec t
7-13and 7-14 are the same as figure 7-11 and 7-12 except for the 
angle separation; here d©9ree instead of 1.5 degree

Pbefore. Notice that the error probabilities P^(2) and Py(2) become 
closer Mhen the angle separation is smaller and the accuracy of 
using the approximating function becomes better.

6. Conclusion

The use of MDL in estimating the number of sources impinging 
on an array was considered in this chapter. Logarithmic function 
of a normal random variable is involved in calculating the error 
probability of underestimating (that is when the estimated number 
is smaller than the actual number) or overestimating (that is Mhen 
the estimated number is larger than the actual number) of the
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number of sources. Approximation function to this logarithmic 
function is sometimes used to obtain analytical form for the error 
probability. Ue show in this chapter that such approximation is 
very poor and usually provides an optimistic results regarding the 
error probability. That is, it predicts a lower probability of 
error in estimating the number of sources than obtained when using 
the actual function. Only when SNR is very low and the angle of 
separation is very small the approximation might have some value. 
Such difference in error probability when using the approximation 
versus the actual function, which sometimes turns out to be very 
large, was discovered in many simulation runs with different SNR, 
different angle separation, different number of array 
element,different data length, etc. Although these simulations 
wereperformed with only two signal sourcesF it is believed that 
the same conclusion is in effect with a large number of sources. 
In conclusion, one might question whether the whole method of 
estimating the number of sources using MDL is of any value.
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Appendix A

From (10) together with (3) we have

a(k-1)
P ( k) = P I N(M -(k-1) ) log   + p( k-1 ,N)
u g(k-l)

a(k)
< N (M-k) log ------ + p( k,N) | H

g(k)

where we also used (19).Equivalently

. a( k-1) M-( k-1) a( k)
P (k)= P I log f -------- ] - log [------
u I g(k-l) g(k)

•p( k,N)-p( k-1 ,N)
<

N H* ]

Finally by using (16.a) we get



. ^ ,p( k,N)- p( k-1 ,N)
P (k)= P I log Q (\./a(k) ) <  —u I u k N

Similarly from (11) and (3) we have

a(k+1)
Po(k)= P I N( M-( k+1) ) log + P(k+1.N)

a( k) 
g( k )< N(M-k) log , ■ + p(k,N) | Hk J

where we also again used (19). Equivalently

. a( k+1) M-( k+1) a( k) M
Po(K) = P [log [ g( 3 -l o 8 C - 5 f k T ]

iP(k.N)- p(k+l,N) .
' — ; 1 )

Finally by using (17)

iP( k,N) - p( k+l,N)
P (k)= P ( 108 W l  / «k) <



or

Po(k)= P [ -log Qoa k+1 /ak) >
p( k+1 ,N)- p( k,N)

N \ )

(A-3)

Appendix B

For the case of two sources, we write from (25),

log Qy(x)= log

Using Taylor expansion we get

(B-l)

log x = (x-1) - 1/2 (x-1) ,

log (l + x) = x -  x / 2

0 < x < 2 

0 < x < 2
Now

M - 2
M - 1 M - 1

x = 1 +
x - 1
M - 1

( B—2 ) 

(B-3 )

( B-4 )

187



For large M the second term on the right of B-4 satisfies the 
condition of B-3, so that

( M - 2 1 ~ M—1  ̂ x - 1 ~
------- +   x l  = C M-l) log I 1 + ------- I
M — 1 M - 1 J 1 M - l * '

x - 1  ( X - 1)2
SUM-1) [   2 )<* M - l  2( M — 1) J

( x - 1 ) 2
_ x -1 —

2 (M - 1)

£  X -1 (B—5 )

for large M, from (B-l) together with B-5, we have

log Q^(x) = x-1 - log x

= (x -1) - [ x-1 - 1/2 (x-1)2 ]
= 1/2 (x-1)2 (B-6)

By similar step we show that

log Q (x) £ - 1/2 (x-1)2 (B-7)o
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Appendix C

From the result of Appendix B

log G (X / a( 2) ) = i ( — %- - 1 )2u z z
n

log Q (X /a(2) ) £ - \ - 1 )2° 3  2 a2.
n

1 M 2
where a(2)= -------- E = an

M - 2 i=3 1

So
P ( 2 ) S P  f < X v o 2 - 1) < /(2/N) [ p(2,N)-p(lu  ̂ 2 n r

P (2) £ P f  ( X_/02 - 1) > /  (2/N) [ P(3,N)-P(2,N)o  ̂ 3 n t

From the Brillinger the asymptotic distribution of X
■̂*1 ^  2  

with E [X.] = X. , and Var [X.] = X^ /N so

N) ] | H2 ] 

(c-1)

J I HZ )

(C-2) 

are normal
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P (2) s P f X < O'2 / ( 2 / N ) [ p( 2 ,N)- p( 1 ,N)] + O'2u  ̂ 2 n T n

*2 J 2. [p( 2 ,N )-p( 1 ,N )] - \(X -O'2 ) ̂ n V y 2 n ^
= erf ̂ ^

(C-3)

P (2) £ P f > O'2 /(2/N)[p(3 ,N)-p(2,N) + O'2 ]o  ̂ 3 n V n j

2 ^  2 Since X^ is same as o' and Var[ X_] - a /N , so 3 n 3 n

Pq(2) = 1 - erf £ J  2 [ p(3,N)-p(2,N) j  (C-4)
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