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ABSTRACT

Title of Dissertation: On the Performance of Minimum Redundancy
array for Multi—source-direction finding.
Byung Seub Lee, D. Eng. Sc. E.E., 1990
Dissertation directed by Dr. Bar-Ness
Director of Center for Communication and

signal Processing Research.

As an application of pouwer spectrum estimation, the
multi-source direction finding has been evolved from conventional
FFT method to Superresolution methods such as Multiple Signal
Classification(MUSIC) algorithm. Uniform Regular Array(URA) was
mainly used in all these approaches.

The Minimum Redundancy array(MRA); a non-uniform thinned
array which results in an input signals covariance matrix with
minimum redundancy has been shown to have certain interesting
properties for spectrum estimation. Only recently it was suggested
to use the MRA for sgpatial ostimation. The purpose of this
research was to study the performance of this array in

multi-source direction finding estimation and compare it to the



result obtained with URa. Although the emphasis in this research
is on using the popular MUSIC algorithm, other algorithms are also
considered.

Among the topics related to the MRA performance studied in
the course of this research are

1. Effect of random displacement of the array element
location on the performance of multi-source direction finding.

2. Performance of the MRA versus the URA using MUSIC and
Minimum-Norm algorithms.

3. Performance of the MUSIC based direction finding using
different covariance matrix estimates for URA and MRA.

4. The error probability of estimating the number (two in

particular ) of closely located sources with MRA versus URA.
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1. INTRODUCTION.

In direction finding, one is interested in obtaining an
estimate of the spatial structure of a random spatial field. If
one samples in space a random field using a linear arvay of M
sensors then a vector time series { x(t,0), x(t,Ax),
ceusx(t,(M-1)Ax) }, is obtained, where x(t,iAx) is the continuous
waveform at the i’th sensor; i= 0,...,M-1 . The field can be

expressed as [1)

x(t,iAx) = J J ') (f.kx) exp[j2n(ft - kxiAx) ] df dkx
(1)
which represents the field as the sum of an impinging plane waves
with random amplitudes v(f,kx). The temporal frequency is denoted
by f, while the spatial frequency along the x direction is denoted
by kx' The wave number component kx is the reciprocal of the
wavelength of a monochromatic plane wave along the x direction.
Since kx = (f/¢c) sinf, where 8 is the angle from the broadside,
then E [ l v(f.kx) |2] is the power at frequency f arriving from

the @ direction. The inverse fourier transform of (1) is




Wil f,kx) =5 [ I x(t,ildx )exp(-j2nft )dt ] exp(jZﬂkxiAx)

=¥ xf(iAx) exp(janxiAx) (2)

Expression (2) is fourier the transform relationship between a
spatial time series Xf(iAx), where Ax is the distance between the
sensors, and its spectrum u(f,kx). If the spatial field is assumed

homogeneous ie.
E [ x(t,iAx) x(t,jAx) 1 = f(t,[i-jlAx) (3)

then the spatial time series is a wide sense stationary and the
estimation of E(|w(f.kx)|2) for all kx at a given temporal
frequency f is analogous to the one~dimensional temporal power
spectral estimation. Finally we can get the estimation of the

spatial autocovariance

N-1 M-k-1 =
x (nAt,idx) x(nAt,(i+k)Ax)

kzZ o



where x(nAt,iAx) is assumed to be stationary over the interval 0=
nAt € (N-1)At. In conclusion there is a direct analogy between
power spectrum estimation and source direction finding.

Conventional estimation of the power spectral density of
discretely sampled deterministic and stochastic process is usually
based on procedure employing the fast fourier transform. This
approach to spectral analysis is computationally efficient and
produces reasonable resuits for a large class of signal processes.
In spite of these advantages, there are several inherent
performance limitation of the FFT approach. The most prominent
limitation is that of frequency(or direction) resolution, ie, the
ability to distinguish between the spectral responses of two or
more signals. A second limitation is due to the implicit windowing
of the data that occurs when processing with FFT. Windowing
manifest itself as "leakage" in the spectral domain, ie, energy in
the main lobe of a spectral response leaks into the sidelobes,
obscuring and distorting other spectral responses.

These two performance limitation of FFT approach{2]-[5] are
particularly troublesome when analyzing short data records. sShort
data records occur frequently in practice because many measured

process are brief in duration.




In an attempt to alleviate the inherent limitation of the FFT
approach, many alternative modern spectral estimation procedures
have been proposed. These methods are classified as 1) Parametric
estimation and 2) Non-parametric estimatipn( Eigensystem
estimation)

1) The parametric Power Spectral Estimation.

This class includes the autoregressive method(AR)[6]-[9], and
the autoregressive~moving average method(aRMA) [10]-[12]. The
output of this class of estimation is totally described in terms
of the model parameters and the variance of the white noise
process. The motivation for parametric estimation is the ability
to achieve better power spectral (or spatial) density estimation
based upon the model than that produced by classical FFT spectral
estimations.

The parametric approach to spectral(or spatial) estimation
involves three steps. In step one, an appropriate parametric
time-series model is selected to represent the measured data. 1In
step two, an estimate of the parametefs of the model is made. 1In
step three, the estimated parameters are inserted into the
theoretical power spectral density expression appropriate for that

model .




b) Non-parametric Power Spectral Estimation

(Eigensystem based Method)

A class of spectral technique based on an eigensystem of an
autocovariance matrix have been promoted in the research
literatures as having better resolution and better. frequency(or
"spatial ) estimation characteristics than spectral technique,such
as auto-regressive method or Prony’s method, especially at lower
SNR, where these parametric methods often fail to resolve close
frequency or direction.[13],[14]

The basis for the improved performance of the eigensystem
technique is the division of the covariance matrix ; into two
vector subspace, one a signal subspace and the other a noise
subspace. Function of the vectors in either the signal or noise
subspace can be used to create frequency(spatial) estimation that
show sharp peak at the frequency or direction of measure data.
These are not the true power spectral density estimator because
they do not preserve the measured process power nor can the
autocorrelation sequence be recovered by Fourier Transforming the
frequency estimation. Included in this class of Eigensystem based

frequency estimations are the Pisarenco Harmonic Decomposition

[15] and multiple signal classification(MuUsIC).[16],[17)




Most of the aforementioned algorithms were applied to uniform
regular array(URA) which has its antenna element located at a
distance A/2 between the adjacent element. The other type of
array, called Minimum Redundancy Array(MRA), has the advantage of
having a large aperture length by deploying the same number of
array elements further away to remove redundancy in its distance
between the array elements{18] .As such, if the covariance matrix
of the MRA is augmented to a Toeplitz matrix of a much larger
dimension than its number of elements(shown to be possible) then
this array can resolve a much larger number of sources than URA.
In the next chapter we review the material on  power
spectral-spatial estimation which is relevant to the research at
this work. In chapter 3 we discuss the principle of the minimum
redundancy array and its usage for multiple source direction
finding. In the last four chapters we suggest different problems
related to the performance of the MRA in comparison to the URA. In
chapter 4 we discuss the effect of random displacements of the
arvay elements on the performance of MRA and compare it to that of
the URA. Different density functions are assumed for these
displacements. Both one and two dimensional displacements are

considered. In chapter 5 a comparison of the MRA to the URA



performance 1is made based on using two different spatial
estimation algorithm; the Multiple Signal Classification(MUSIC)
and the Minimum-Norm algorithms. In chapter 6 the effect of using
different estimators for the covariance matrix on the performance
of the direction finders implementing URA and MRA is evaluated and
compared. The knéwledge of the actual number of signal impinging
on the array used for direction finding is a crucial parameter for
any multi-source direction finding algorithm. The error
probability of estimating this number of sources is considered in
chapter 7 Particularly the case of estimating the number of
(actually two) closely located sources with URA and MRA is
discussed and compared.

The material in this report is arranged in such a way that
each chapter has its own background and references. This look
rather unusual for a thesis, was thought to be the best for such a
kind of work which deals with several topics, although related to

the same question of °"the performance of MRA versus URA", it is

somewhat distinct.
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2. POWER SPATIAL-SPECTRAL ESTIMATION.

1. Basic Principles of Estimation Theory.[1]

Consider a stationary random sequence X - Its ensemble mean
.value, m s is defined by equation (1) below. The time average mean
of this random process, X, is defined in equation (2) below.
Also assume that the random sequence X is the "ergodic process”,
i.e. , a random sequence whose ensemble average is equal to time
average ,with probability one(W.P.1). That is the ensehble

average,

+00
m, = E [xn] = J X px(x) dx (1)
-
and the time averags,
1 N
m, = < X0 ) = lim o E__N X (2)
N-+0@ -

are equal WP1. Similarly variance and autocovariance are

11




ai=E[(xn-mx)2]=((xn-mx)2> (3)

x x * x
Yxx(m) =€ { (xn-mx)(xn+m - mx) ] =« (x“-mx)(x“_'_m -m )

(4)
The power spectral density is given by

® -
= =J
Pex(W) = L 7,,(m)e
m= -

wmn

(5)

Usually estimation of a parameter of random process is based on
finite segment of a single sequence; i.e., we have N values xn ,0%
n £ N-1, from which we wish to estimate some parameter which we

denote as "A". The estimate A of the parameter A is a function of

the random variables xn s O £ n £ N-1, denoted by

Therefore A is also a random variable. The probability density

function of A will be denoted p;(h). The shape of p;(A) will

12




0.40 — Fic 2-1
{«3:: Estimotor 1
a.
0.20
B Estimator 2
0.00 T Y T T —
° A
depend on the choice of the estimator F ( ) and the

probabilitydensities of the random variable X » as indicated Fig
2-1. It is reasonable to characterize an estimator as being “"good”
if there is high probability that the estimate will be close to A.
Generally speaking, it is plausible that for a good estimator the
probability density function p;(;) should be narrow and
concentrated around the true value, and we might compare different
estimators on that basis. On this basis it is clear that estimator
1 in Fig-1 is superior to estimator 2 because the probability

density of estimator 1 is more concentrated about the true value

i3




A. In keeping this notion, two properties of estimators that are
commonly used as a basis for comparison are the "bias" and
*variance". The bias of an estimator is defined as the true value

of the parameters minus the expected value of the estimate, i.e.,
Bias= A - E [Aa ]

An unbiased estimator is one for which the bias is 0. This is then

means that the expected value of the estimate is the true value.

Therefore, if the probability density pg(;) is symmetrical around
A, then its center would be at the true value A. The variance of

the estimator in effect measures the width of the probability

density and is defined by

var [A] =E[( &-E[A])2 ] = o2

A small variance suggests that the probability density p;(A) is
concentrated around its mean value and hence E(A) = A with a
higher probability. If A= A, unbiased estimator then small

variance mean A= A with high probability.

14



2. Conventional Methods of Spectral Estimation.(1],([2],(3].,[4]

Traditional spectrum estimation, as currently implemented
using the FFT, is characterized by many tradeoffs in an effort to
produce statistically reliable spectral estimates. There are
tradeoffs in windowing time-~domain averaging, and frequency-domain
averaging of the sampled data obtained from the random process in
order to balance the needs to reduce sidelobes, to perform
effective ensemble averaging, and to ensure adequate spectral
resolution. Two spectral estimation techniques based on Fourier
transform operation have evolved. The first is the Power Spectral

Density estimate based on the indirect approach via an

autocorrelation estimate, was popularized by Blackman and
Turkey [3]. The other is the Power Spectral Density estimate, based

on the direct approach via an FFT operation on the data directly

which is typically referred to as "Periodogram".

15




Time Function

x(t)
Indirect Divrect
Eq.(2) Eq.(3)
R(T) 4 » P(F)
Temporal Eq. (1) Power
Aautocorrelation Spectral Density

Fig 2-2. direct and Indirect methods to obtain PSD

(stationary and Ergodic properties assumed)

Using the indirect approach, we first find Rxx(T)

T
I x(t+T) % (t) dt (6)
-T

1

Rxx(r) = lim
T2 2T

then obtain the power spectral density {PSD),

16




+0

P(f)

I Rxx(r) exp( -j2nfr) dt (7)
-0
Using the direct approach we get the PSD by

T

| 2
_[ x(t) exp(-j2nft) dt |
-T

1

)

P(f) = lim E [

T 27

(8)

When only a finite data sequence is available, only a finite
number of discrete autocorrelation function values, or lags, can
be estimated. An obvious autocorrelation estimate, based on (6),

is an unbiased estimator given by

1 N-m-1
- x
Rxx(m) = — X +m *n (9)
N-m n=0

for m=0,1,...,M, where M £ N~1. Blackman and Turkey proposed to

obtain the spectral estimate by

~ M

PBT(f) = AtmE -M-Rxx(m) exp(~j2nfmAt) (10)

The negative lag estimates are determined from the positive lag

estimates as follows:

i7




”~

Rxx(-m) = Rxx(m) (11)

The direct method of spectrum analysis is the modern wversion
of periodogram. A sampled data version of expression (8), for

which measured data are available only for samples xo.xl, caas

xN-1’ is given by

-~ 1 N-1 2
Pogr( ) = | A& L x_ exp(-j2nfnAt) | (12)
N At n=0

defined for the frequency interval -1/(2At) £ f £ 1/(2At). Notice

that

~ 1

(f ) =

2
Peer' Tm |

(13)

| %
N At

where fm= mAf and xm is the DFT of sequence X Use of the FFT
will permit evaluation of (12) at the discrete set of N equally
spaced frequency fm = m Af Hz, for m=0,1, ..., N-1 and Af is
1/NAt. ;PER(fm) is identical to the energy spectral density except

for the division by the time interval of NAt second,to make it

pouwer spectral density.

Many of the problems of these conventional methods of PSD

18



estimation techniques can be traced to the assumption made about
the data outside the measurement interval. The use of only those
windowed data implicitly assumes the unmeasured data to be zero,
which is usually not the case. This multiplication of the actual
time series by window function means the overall transform is the
convolution of the desired transform with the transform of the
window function. If the power of a signal is concentrated in a
narrow bandwidth, this convolution operation will spread that
power into adjacent frequency regions. This phenomena, termed
"leakage’, is a consequence of the windowing inherent in the
computation of the periodogram.

In summary, the conventional Blackman and Turkey(BT) and
Periodogram approach to spectral estimation have the following
advantage.

1) Computationally efficient if only a few lags are
needed(BT) or if the FFT is used (Peridogram).

2) Power Spectrum Density estimate directly proportional to
the power for sinusoid processes.

The disadvantage of these techniques are
1) Suppression of weak signal main-lobe responses by strong

signal sidelobes.

19




2) Frequency resolution limited by the available data record
duration independent of the characteristics of the data or its
SNR.

3) Introduction of the distortion in the spectrum due to
sidelobes leakage.

4) Need for some sort of pseudo ensemble averaging to obtain

statistically consistent periodogram spectra.

3. Maximum Likelihood Spectral estimation.([5]

In maximum likelihood spectral estimation (MLSE), originally
developed for seismic array frequency-wave number analysis, one
estimates the power spectral density by effectively measuring the
power out of a set of narrow band filters. MLSE is sometimes
referenced as the “Capon spectral estimate”. The difference
between MLSE and the conventional BT/Periodogram spectral
estimation is that the shape of the narrow band filters in MLSE
are, in general, different for each frequency whereas they are
fixed with the BT/Periodogram procedures. The filters in MLSE

adapt to the process for which the PSD is sought. In particular,

20




the filters are Finite Impulse Response(FIR) types with p weights;

(14)

where T stand for transpose. The coefficients are chosen so that
the frequency response of the filters at the fregquency under
consideration is unity(i.e., an input sinuscid at that frequency
would be undistorted at the filter output) and the variance of the
output process is minimized. Thus the filter should adjust itself
to reject component of the spectrum not near frequency under
consideration fo,so that the output power is due mainly to
frequency components close to fo. To obtain this filter, one

. e s . 2 .
minimizes the output variance ¢ , given by
o“=A R _ A (15)
where Rxx is the covariance matrix of xn. subject to the unity

frequency response constraint (so that the sinusoid of frequency

fo is filtered without distortion). That is

EA=1 (16)

21



where E is the vector

E = [ 1, exp(j2nf At), ... . exp(j2n(p=1)f At) 17

and ¥ denotes the complex conjugate transpose. The solution for

the filter weights is easily shown to be

A = — (17)

and the minimum output variance is then

o-. = (18)

*

onpt is the optimum filter response at f, where

Notice that E

E~ [ 1, exp(j2nfAt), ... , exp(Jj2nf(p-1)At) 1’

22




then E'R _E
+ nx
E'A = =1
opt + -1
E'R _E
xX

That is the optimum filter frequency response at fo is unity. The
filter characteristics depends on the underlying autocorrealtion
- function Rxx' Ssince the minimum output variance 1is due to
frequency components near fo, then aﬁin can be interpreted as PSD

estimate. Thus, the MLSE PSD is defined as

b (f.) = (19)

To compute the spectral estimate, one only needs an estimate of

the autocorrelation matrix.
4. Spatial Spectrum Relation
The direction estimation problem is mathematically equivalent

to the estimation of the spatial Fourier transform of the

radiation field. The waveform measured at the spatial position zi

23




of the i’th element is denoted by

z..ko

xi(t) = S(t + ) + ni(t) (20)

where ni(t) is an additive noise at the i’th element and zi°k° is
the dot product of the position vector zi to the i’th element and
ko is the direction vector of the wave impinging on the array(here

assumed a single source). The spatial Fourier transform

-jZn(f/c)(zi°ko)

xi(f’ko) = @ s(f) + N(F) (21)
Using vector notation we will define
z°k°
x(t) = s(t+r — ) + n(t) (22)

where z°*k is a vector whose elements are given by zi°k

o o’

i=1,2,..,M (M is the number of array elements). Correspondingly

the spatial Fourier transform vector is given by

-jzn(f/c)(z'ko)

X(f.ko) = e S(f) + N(f) (23)



If the array is linear then zi= dieo. where eo is a unit vector in
the direction of the array line position and di is the distance
from the i’th element to some reference point, and zi'ko= disineo

where 90 is the angle between the direction of propagation andthe

array broadside. For this case

X(f.ko) X(f.eo)

s(f) a(eo) + N(F) (24)

where

. . . T
a(eo) = [ exp(-j2nf/c d181"90)’ . .,oxp(-2nf/c dMsxneo) 1

For the case of multi signal impinging on the array from direction

ek, k=1,2,..,0 we havse,
D z+ ks :
x(t) =L $.( t+ ——— ) + n(t) (26)
i=1 ¢
©  -i2n(freXNz*k.)
X(F,k) = F e 2 TCNZ s (£) + N(F)
i=1 :
D
=T S.(f) a(8,) + N(F) (27)
i=1 b &
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Now
+

2
(]

E [ X(t) x(t)']

*

E [ X(F .k ) X(F .k ) ] (28)

where R is the array output covariance matrix. Using (27) we get

e o T *
R=E [T S.(f) a(@,)F S.(f) a(€.) 1 + E [ N(FIN(F)']
Y 1 b § - b § J
i=1 J=1
° 2 t . 2
=L EL[s,(F)] ] alg;) a(8;) + oI (29)

Pt

=1

where we assumed the signals si(t) are_uncorrelated and that the

noise at the elements is uncorrelated zero mean and with variance

az,where
a(ek) = [e'JZTZ(f/C)dISJ.nek e, e—JZﬂ(f/c)dMslnek ]T
(30)
If the array is uniform di= i*d then
a(ek) = 1. e-zuf/c dsxnek o, e-an/c (M-l)dsxnak ]
(31)

where we also chose the reference point at the first element.
If the signal is narrowband centered at fo then X(f) is a

constant, and if we also take d= kolz then
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-7 sinak -2n sinf e-(M-l)nsinG

a(ek) =f[1, e . K ,.- » k ]
(32)
Under these conditions
R=AE [ s(f) s(f)f] A*+021 (33)
where
A= a(el). a(ez). cse a(GD) ]
and
s(f)= ([ si(f ), 82(f ) F sD(f )] (34)
From (33) it is clear that if we take X = aS then R = E (xx*]. In

ur

fact S(f) s(f) is a diagonal matrix whose element are P,; the

k
power of the different signals.

When we deal with plane wave propagations, narrowband signal
and linear array,it is simple to obtain equation (33) directly in

the time domain rather to obtain it as a special case of the more

general case we discussed in this section.

5. The Bartlett spatial Estimation.

If the signals xi(t) of (20) i=1,2, .. M, we weigh and delay to

from
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M
y(t) = ¢ aixi(t-?i) ’ (35)
i=1

then its Fourier transform is

Y(f.k) =

y o1

a.expl[ -jz2n(f/c) z.*k ) X.(f) (36)
& i i

where Ti is given by the dot product (zi'k)/c, whose angle
represents a beam direction with respect to

where e., as before a unit

the array broadside is &, and z,= dieo o

vector in the direction of the array line position, then

YCF.K) = Y(F,8) = 8 1 X(f,k) (37)
where . . . .

Py - [ale-JZR(f/c) d1sxn6 e vy e—JZR(f/c)dMsan ]

(38)

From (27) we can write

X(f.k ) = A S(f) (39)
where

A= °(61)’ a(ez). . .a(ek) ] (40)
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The energy at the output of the weighing filter is given by
”Y(f,_li)l2 df, and we must find & which will give a maximum.

However if the signal is narrowband, centered at fo then

P(8) = | \r(f‘o.k)|2 e xx'oh
—daets(i)s(iXrata®
= d R a"' (41)

f

where R = A E [S(f) s (f)] a as before,

The equation

f

P(B) =3 R (42)

is called the Bartlett estimate.

6. High Resolution array Processing Using the Eigensystem. (6]

New signal processing methods for passive direction finding

have emerged recently. They are called "High Resolution® method
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because they have theoretically a better resolving power than
conventional or adaptive beamforming, but they use a more complete
modeling of the medium which needs knowledge on the background
noise spatial coherence. They are based on the properties of the
eigenvectors and eigenvalues of the cross-spectral density matrix
of the signal received at the sensors of the array. They have
theoretically an asymptotic( Infinite observation time) infinite
resolving power.

The improvement in performance of the array processing, using
éigensystem. is due to the use of a model for the medium, which is
more complete than the one utilized for previous array processing.
Adaptive array processing, Jjust as conventional beamforming,
relies on certain assumptions about sources and the propagation in
the medium. The source are assumed point-like, perfectly spatially
coherent, and the shape of the wavefront received at the array
from a source, is assu@ed a known function of the source position.
The receiving element transfer functions are also assumed to be
perfectly known. Let x(t) be the vector representing the signal

received on the M elements of the array:

x(t) = [ x,(£)yx(t)y -.., x,(t)] (43)
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where xi(t), i=1,...,M, is the signal received at the i’th
element. The space correlation matrix of the received signal is

defined by:

o(r) = E [ x(t) xT(evr) ] (44)

where E stands for mathematical expectation and X*(t),as before,
is the conjugate-transpose of X(t). The cross-spectral density
matrix '(f) is the fourier transform of C(t). Under the previous
assumptions, the cross-spectral density matrix of a single source
is given by

FCE) = pCF) dOF) dTed) (45)

d(f) is the source position vector: it is composed of M transfer
functions between the source and each element normalized by the
transfer function between the source and a reference point on the
array. ¥Y(f) is the spectral density of the signal received from
the source at the reference point. In the case of an isotropic
propagation with negligible attenuation between the sensors, d(f)

is the familiar steering vector of the conventional beamforming:

d(f) = [ e I2°FT, | grdonfr, - gienfr, T (46)
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T, is the delay of the source signal between the i’th element and
the reference point;i;that is T,= disina,di is the distance of the
i’th element from the vreference point and & is the direction of
the source. The rank of this matrix is unity, which is
characteristic of the perfect coherence assumption about sources.

If we also assume that the sources and the background noise are
statistically independent, then the cross—spectral density matrix

of the signals at the element outputs is expressed by:

D
FCFY = T () + £ 7,(f) d,(F) atee) (47)
i=1 * .

where Fb(f) is the cross—-spectral density matrix of the background
noise and D is the number of sources. It is generally assumed that
the background noise is partially incoherent( statistically

independent between the sensors). Thus

() = o(F) I, (48)

is the spatial coherence matrix of the background noise,o{f)its
spectral density and I is the identity matrix. High resolution
methods also assumes that the noisefield can be resolved, that is
to say the number of sources D is less than the number of sensor

M. therefore
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D<M

P(f)= l"b(f) + T (fF)=o(F)I + F y.(f)d(Ff)d
s f=q &

Yoy

(49)

The hypothesis on the background noise is the key to the high

resolution.

- High Resolution Method Principles.

High resolution methods are based on eigenvalue-eigenvector
decomposition of the cross-spectral density matrix I'(f). It can be
easily seen from the relation defining an eigenvector W f) and

related eigenvalue A(f),

D<M
FT(FW(F) = o(FIV(F)+ § }'i(f) di(f) [d:(f) V(f) 1 = X(f) V(F)
i=1

(50)

That is VW (f) must be either orthogonal to all di(f) i=1,...,D,
with corresponding eigenvalues A(f)= o(f) or Wf) is a linear

combination of di(f). i=1,2,...,D given by

1 D<M
V() = T ri(f)[d;(f)\l(f)]di(f) (51)
Ksi(f) i=1
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The cross-spectral density matrix I'(f) has:

a) D eigenvectors vi(f) are also eigenvectors of the
sources alone cross—-spectral density matrix Fs(f). They correspond
to the non-zero eigenvalues hsi(f) of Fs(f) which clearly has rank

D. The related eigenvalues are,
Ki(f) = Asi(f) + o f) (52)

These eigenvectors form a basis of the D dimensional subspace
spanned by the D source position vector di(f). This subspace will
be named the source subspace. The following important relation is

proved in the appendix.

o D
1-
2=1?’i(f) d,(f) d,(f)'= §=1[ N (F) = o()] V. (F) Vv (f)

T (53

[ 2

b) (M-D) eigenvectors Vi(f) which are orthogonal to the
preceding eigenvectors have the fundamental property to be

orthogonal to all the source position vectors: (see 50)

VI(f)dj(f)=o DFLE i <M, 1S 5ED (54)
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They are a basis of the so-called orthogonal subspace. The
eigenvalues corresponding to these eigenvectors are all equal to
o(f), and consequently smaller than any of these source space
eigenvalues. From these properties, high resolution methods are
deduced;

a)From the eigenvalues, first the number of sources is
- determined: it is the number of elements minus the number of the
smallest and equal eigenvalues.Then, the source subspace and the
complimentary orthogonal subspace are set up through a
partitioning of the eigenvectors to those that do not correspond
and those that do correspond to the smallest eigenvalues.

b)pifferent methods can be used to exploit the partitioning
into the two subspaces in order to obtain the source location. But
clearly it is necessary for that to use the source wavefront shape
knowledge assumption, from which a position wvector model is
deduced: d(f,0);6 stands for the source position. It is possible
to use the orthogonal subspace or the source subspace.

c) when using the source space, basically the source
parameter Gi and yi(f) are extracted from the identity between two
matrices. One is a reconstruction from the source subspace, of the

sources alone, cross—spectral density matrix;
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[ A, (F)= off) ] v (f) viee) (55)
1

W19

The other is a model of the source alone cross—spectral density

matrix using the model d(f,8)

1-
Yi(f) d(f.ei) d (f.ei) (56)

Wt °

1

In the general case this identification cannot be achieved
directly and adjustment algorithm have to be used.

d) When the orthogonal subspace is used, the source position
results from a projection of the position wvector model onto ' the

orthogonal subspace according to;

M
«f.0)=f | vie) ace.o)? (57)

T i=D=1
when 6 varies, G(f,0) produces a null every time & equals the
position Gi of a source. The nulls of G(f,8) yield the source
location. Knowing them, spectral densities are then at hand. Some

authors(sSchmidt) use a weighted sum of the square modulus.
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The main property of the high resolution method is that its
resolution is no longer limited by the signal to noise ratio of
the sources as with adaptive array processing: it increases
theoretically with the observation time up to infinity. Therefore,
asymptotically as averaging time increases, two sources can be
resolved no matter how close and how weak, as compared to the

background noise.

7. MUSIC (Multiple signal Classification)([7]

1) Data Model
The waveform received at the M array elements are a linear
combination of the D incident wavefronts and noise that can be

A Y
expressed as follous

3 7 [ 1 Te T C W]
x1 Fl u1
X _ F W

2 = a(el). 3(62), .- .a(eo) 21 + 2
X
- ™ 4 - 4 L FD. L wMJ

or,
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X=AF + W (s58)
where a(ei) as in (30).

The incident signals are represented in amplitude and phase
at some arbitrary reference point by the complex quantities F1,
Fz.... FD. The noise whether sensed along the signal or generated
internally, is given by the complex vector W. The element a(i,Jj)
of the matrix A are a function of the signal arrival angles and the
array element locations. That is, a(i,j) depends on the i'th array

element, its position relative to the origin, and its response to

a signal incident from the direction of the j°th signal.
2) The Covariance Matrix R

The MxM covariance matrix of X vector is given by

*=AFF'A*+uu* (59)

or

where the overbar is used for the expectation. When the number of

incident wavefronts D is less than the number of array elements M,




-r

then APA’' is singular; it has a rank less than M. Therefore

a..
| aPa’| = | R - A . R| =0 (60)

This equation is only satisfied with A equal to one of the

eigenvalues of R in the metric of Ro. But, for a full rank and P
positive definite, APA‘r must be nonnegative definite. Therefore,

any measured R = XX? matrix can be written

_ +
R = APA  + kmimRo (61)

where Kmin is the smallest solution to |R - AR | = 0. Note that in

ol
the special case wherein the elements of the noise vector W have

2

zero mean and variance ¢, we have kminRoz 1.

3) caculating the Solution.

t

The rank of APA" is D and can be determined directly from the
eigenvalues of R in the metric of Ro. That is, in the complete

set of eigenvalues of R in the metric of Ro, Amin will not always
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be simple. In fact, it occurs N = M-D times. Therefore, the number

of the incident signal estimator is

4) The signal and Noise Subspace.

The M eigenvectors of R in the metric of Ro must satisfy R°i=

A.Re , i=1,2,...,M. Since R = APA*+ A . R, we have APA?e.=(k.-
ioi min O i i

)R e.. Clearly, for each of the A, that is equal to A min »We

min 0 i
T T

must have APA °i= Oor A eiz 0. That is the eigenvector associated
with Amin are orthogonal to the space spanned by the column of A;
the incident signal mode vectors.

S) The algorithm

If € is defined to be the MxM matrix whose column are the N

N
noise eigenvectors, and the ordinary Euclidean distance from a
vector Y to the signal subspace is d = Y'E E*Y then d=0 if VY is

NN

in the signal subspace. We can plot 1/d2for points along the a(8)

as a function of 6. That is
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PMU(6)= (62)

a(e)fENE: a(8)

when 6= Gk a(6) will be in signal subspace and PMU(G) will have a

peak.

Appendix:

From (27) we have

D
\ f = -
;ﬂ\li(f) di(f)[di(f) Vj(f)] = ?\sivj(f) (Aa-1)

Multiplying by V}(f) we have after summation

D + D t+
li:=1 ri(f) di(f) di(f) ( ;=1vj(f) vj(f) )
D ) 4
= §=1 Asivj(f)vj(f) (A-2)
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Now

D ¢+ +
}E:or (7, (F)d,(F) V(FIVAF) = 0
for j=bD+1, ..., M
Hence
o +t ™ . D .
§=12’ ,;( f)d i( f)d i( f) §=1vj( f) vj( f) = §=1xsjvj( f )vj( £)
u +
Using the fact that EV(FIWF) =1
=17 J

equation (30) follous.
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3. MULTIPLE SOURCE DIRECTION FINDING WITH

MINIMUM REDUNDANCY ARRAY.

1. Introduction.

The uniform regular array, a linear array with its elements
equally spaced(the distance is regularly taken to be A/2) was used
intensively in direction finding as well as other array processing
application. Different algorithms were used to process the output
of this array, some of which are described in the previous section.

One of the important drawback of this array is its capability
to resolve the maximum number of sources (D ¢ M) where M is the
number of element. This fact is due to the dimension of the
spatial covariance matrix at the output of the array. One
important property of such covariance matrix is the fact of it is
being Toeplitz Hermitian matrix. This fact plays an important role
in using the uniform regular array in direction finding when
implementing different algorithms.

The minimum redundancy array introduced in [1] and used in
{2] for direction finding is to be discussed in this chapter. Its
property is to be presented and some results of multi-source

direction finding simulation are shown.

44



2. Array geometry

For D waves impinging on a nonuniform linear array, the

signal received at the i'th element

D
xi(t) = EL1Fk(t) exp [-jznfo(di/c) sinek] + ni(t)
i=1’---’" (1)

where M is the number of element, ek k=1,..0 .are the direction of
the source with respect to broadside, Fk(t) is the complex
envelope of the k’th signal, ¢ is the speed of light and ni(t) are

the noise sources which are assumed independent.

The i,j’th entry of the covariance matrix will be given by

D
Rij = E [ ELle(t)exP[-JZn(di/K)sinek]
D
¢ L F (t)oxpl-j2n(d /A)sing ] ]
m=1
D d;-d; 2
= 7 Pk expl -Jjaa( ———xf——-)sinel + 0 8(i~j) (2)
k=1 ‘
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where Pk= E [ |Fk(t)|2] and the different source were assumed
uncorrelated. Also we used Af =c.
For the non-uniform array we will use the feollowing

representation and notation: For example 5 element array located

as followus

where x signifies the location of the elements and O signifies
empty location where array element would have been if the array is
uniform. We call the integers that correspond to the location of
the array elements "index of location". Let us assume that D=6,

then we use the notation

[, ] [ ¢ F,(t) [ () ]
Xs 2(t) 2(!:)
X, | = [a€8,) a(8,)....a(8,) ] | F ()| + | n(t)
X, 4(t.) 7(t:)

; X | 5(t) ; “1o(t)_

Fe(t)
L .

(3)
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9-5(2n/k)dlsin9i ;j(2n/h)dasin9 e-j(ZR/A)d4sin6

a(8,) = [

e-j(2n/k)d7sin9' e-j(Zn/X)dgslnG ]T

(4)
In such notation the covariance matrix R;
. x * x x x -
X1 X1 X1 X3 X1 X4 X1 X7 X1 X9
x * x x *
' X3 )(1 )(:3 X3 X3 X4 X3 X7 )(3 X9 ,
E [XX'] = + 01
X X5 ox X ox. x x. x* x x
4 1 4 3 4 4 4 7 4 9
* x x x *
X7 X1 X7 )(3 X7 X4 X7 X7 X7 X9
x * x ® x
i X9 X1 X9 )(3 X9 X4 X9 X7 X9 )(9 J
(s)

. . s . . 2
where overbar means expectation, I is identity matrix and o is

the power of noise. If we choose di= iA/2 then (2) becomes,

expl -jn(i-j)sin® + o026(i-3) (6)

k

i,j € {index of location}
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With this (5) becomes

R(0) R(2) R(3) R(6) R(8)
R(2)" R(O) R(1) R(4) R(6)

R(3)T R(1)T R(O) R(3) R(S)
(7)

p o)
L]

R(6)* rR(4)* R(3)" R(C) R(2)

R(8)* R(6)* R(5)* rR(2)* R(0)

Notice that this matrix is Hermitian but not toeplitz. Hence it
has less redundancy than Uniform Regular Array (URA). It has one
entry with R(1) instead of four of these, in a corresponding 5x5
Toeplitz matrix, two entries with R(2) instead of three in a
corresponding Toeplitz. Two R(3) and one R(4) as in Toeplitz. One
R(5),R(6) and R(8) which could not occur in URA with five
elements.

Minimum rvedundancy Array is a non-uniform array whose
covariance is Hermitian wherein the entries above the diagonal has
no multiplicity (redundancy). Obviously if, such a case exists, we
will have for MRA M(M-1)/2 different R(i).

If for example we distribute ihe element as follows,
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X

I
(o]
x
Q
o]

X

Then the new X vector;

T
X = "1"‘2"‘3"‘7”‘10]

and (1,2,3,7,10) is the set of index of location. The

corresponding covariance matrix;

R(0) R(1) R(2) R(6) R(9)
R(1)* R(O) R(1) R(5) R(8)
r. = | rR(2)* R(1)* R(O) R(4} R(7) (8)
r(6)* R(5)" R(4) R(O) R(3)

R(9)* r(8)* rR(7)* R*(3) R(O)

This matrix has all covariance lags R(i) i=1,...,9 repeated Jjust
ones except R(1) which is repeated twice.

Now we are in a position to state the requirement on
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allocating the array elements so that we get minimum redundancy.
From (2), if such a geometry exist then the difference in the
index of locations (i-j) for i,j € { set of index of location }
i#j span the set of integers( 1,2, .. , M(M-1)/2 ). Unfortunately

such set of index of location does not always exist. Instead for a
given M elements array there exist an L £ M(M-1)/2 such that the
difference of locations (i~j) for i,j € {set of index of location}
span the set of integer (1,2, ...,L). Notice that for any MRA the
highest covariance lag, L with covariance matrix entry R(L) and
the corresponding array aperture is (A/2)L (assuming minimum
distance between any two element is A/2).

One can prove that if there exists an MRA with (A/2)L
aperture then there is another MRA with smaller aperture that is
(i-j) spans the integer (1,2,..,L”); L* ¢ L. Obviously array with
L*(A/2) aperture would have higher redundancy.

It is obvious that if the aperture of the MRA is
(A72XM)(M-1)/2 then it is unique. If the aperture is smaller,
then it is possible to find different "location indices" with the

same amount of redundancy except, possibly,different covariance

lags are repeated.
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Table 3-1

MRA sequence redundancy
3 4 0O 1 3 None
4 6 O 1 4 o None
5 9 0O 1 2 6 9 1(2)
0O 1 4 7 9 3(2)
6 13 0O 1 2 6 10 13 1,4(2)
0 1 4 5 11 13 1,4(2)
0 1 6 9 11 13 2,5(2)
7 17 0O 1 2 3 8 13 17 2,5(2),1(3)
0 1 2 6 10 14 17 1,8(2),4(3)
0 1 2 8 12 14 17 1,2,6,12(2)
0 1 2 8 12 15 17 1,2,7,15(2)
0O 1 8 11 13 15 17 4,7(2),2(3)
8 23 0O 1 2 11 1518 21 23 1,2,3,10
21(2)
0O 1 4 10 16 18 21 23 2,3,5,6
17(2)
9 29 O 1 2 14 18 21 24 27 29 1,2,6,13
272(2),3(3)
0O 1 3 6 1320 24 28 29 1,3,4,5,7
23,28(2)
0O 1 4 10 16 22 24 27 29 2,3,5,12
23,28(2)
10 36 0O 1 3 6 1320 27 31 35 36 1,3,4,5
14,30,35(2)
11 a3 0O 1 3 6 1320 27 34 38 42 1,3,4,5,21
37,42(2)
14(3),7(4)
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Exhaustive computer program was written to find L for a given
M element array and the corresponding indices locations of the
MRA. The program alsc specify the redundancy element and their
multiplicity. Table 3-1 presents these results for MRA with 3 to
11 elements.

Notice that image index location with reference point at the
-higher end is principally the same array. That is {0 1 4 7 9} and
{0 2 5 8 9) are principally the same array.

From this table we see that(except for the image) M=3 and M=4
are unique with L= M(M-1)/2. Arrays with higher number of elements
result in L ¢ M(M-1)/2 and hence possibly more than one index
location for each. Particularly when M=7 there are six different

array location arrangements, all with L= 17.

3. The augmented matrix of MRA.

This is an (L+1)x(L+1) Toeplitz wmatrix generated from the
entries of the covariance matrix of the MRA, in such a way that
R(1) is used in the first diagonal above the main diagonal,R(2) in

the second diagonal, etc. R(L) in the higher corner. If we are
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dealing with asymptotic case(infinitely many samples are used to

obtain R)

1 ¢
R = —— T X(n) X(n)
N

then the covariance iags which are repeated more than ones will be
equal with probability one and there is no differenge which one
to use in the augmented matrix. However if only a limited number
of samples, N, are used to obtain R then these covariance lags may
differ, so that it is advisable to take the arithmetic average of
them.

As an example the augmented matrix generated from (5) is

given by
" R(O0) R(1) R(2) R(9) ]
R(1)* R(0) R(1) R(8)
R ==
aug : (9)
| R(9)” R(0))

where R(1) is taken as,

N
R(1) = 172 { /N ¥ ( x1(n)x2(n)*+ xz(n)xa(n)*) }
n=1
(10)
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4. Multi-Source Direction Finding using

the augmented matrix.

The augmented matrix is an (L+1)x(L+1) and hence if it is
used with any direction finding algorithm, it is capable to
resolve L source direction. For this we must augment the direction

vector to contain L+1 elements that is instead

a(8)=1[1, exp[—jﬂ(dz-nslnel s ==+ soxp[ -j(dM-l)sinel ]
(11)

where (dz, d3. «nn 'dM) are the location index set, we must usa an

augmented direction vector;
aaug(e)= [ 1, exp[~-jn sinf], ... , expl ~jnL s8ingd} )} (12)

where in these direction vectors we used the first element of the
array as a reference and assumed the array element located at
integer multiples of A/2. If we define the null spectrum S(8) for

example

t L+l
s(8) = awg(a) [i§D+1 e, e ] aaug(e)
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where ei i= D+1, ..., L+1 are the noise eigenvectors of the

augmented matrix(assumed N is very large) then from the peaks of

P(6) =
s (8)

we get the direction 8, k=1,2, ... , D of the different sources.

k

5. Simulation Results.

To show the maximum capability of 6 elements array with 13

-] [-] o (-] o ]
sources located at direction 4 ,10 ,16 ,26 ,32 .42 ,
48°,58° ,68°,-65",-50° ,~35",-20° and SNR = 20 dB, we used each of
the MRA whose location indices are (0,1,2,6,10,13),
(0,1,4,5,11,13) and (0,1,6,9,11,13). Asymptotically P(8) is same
for the three different formation and the results is shown in fig.

3-1.
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4. EFFECTS OF RANDOM DISPLACEMENT OF THE ARRAY ELEMENTS
ON THE PErRFORMANCE OF DIRECTION FINDING.

-UNIFORM REGULAR ARRAY V.S. MiNiMUM REDUNDANCY ARRAY-

1. Introduction.

Uniform Regular Array(URA);: that is an array whose M elements
are located at an equal distances(customarily = As/2) from each
other, was intensively used in the literature for direction
finding of multi-sources. Different algorithms were used to
extract the directions of these sources, Some are known as
classical power methods, like the Bartlett estimator({1], others
are classified as superresolution methods. Among the latter are,
the linear prediction method[2] ,the maximum 1likelihood method(3]
and the eigenstructure methods. The most popular of the
eigenstructﬁre approach is the MUSIC algorithm[4].

With thes Minimum Recdundancy Array(MRA), the elements are

distributed nonuniformly along a line {(linear array). [5]
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The position of these elements either for URA or MRA can’t be
accurate. This might be due to the wvariations in mechanical
structure or environmental effects. The best that one can assume
about the actual location is that it is at a certain nominal
position with some additive random variation which has some known
distribution.

Effects of such random displacement of the array elements has
been considered in the literature dealing with the interference
cancellation problem[6]. To the best of our knowledge, the effects
of such displacement on the performance of the direction finder,
particularly the one using MRA, has not yet been considered. It is
obvious that élement displacement from a nominal location will
cause perturbations of the covariance matrix elements. This
perturbation may cause an error in the estimation of the direction
of the signals, particularly if the correlation matrix is obtained
from the mean of finite number of snapshots.

The purpose of this chapter is to study the effect of these
perturbation on the entries of the covariance matrix and conclude
on the effect of these on the performance of a direction finder.
In the next sections we will derive the values of the

perturbations of the asymptotic covariance matrix entries,due to
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one dimensional random displacement uniformly distributed, two
dimensional random displacement uniformly distributed, and two
dimensional random displacement Gaussian distributed. These
results are compared to one another. The resultant perturbed
covariance matrix is found in section(5) and the conclusion about
the meaning of the difference between perturbed and nominal matrix
and their effect on direction estimation is stated. In section (6)
the definition of the statistical randomly perturbed covariance
matrix is presented and in section (7) simulation results are

shown and discussed.

2. Random perturbation in one dimension,

uniform probability distribution.

For the linear array we assume the elements are nominally

located at the x axis at a distance di’ i=1,...,M from some

reference point, regularly taken as integer multiple of A/2 i.e
di= 1i kz » 1i are integers( see Fig 4-1). The received signal at

the i’th location is
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D d,
X.(t) = E=1Fk(t) oxp[ jwy(t- -c—‘ sin 6,) 1 + n(¢)

i=1, ... , M (1)

when D is the number of signals impinging on the array assumed
uncorrelated and narrow-band. Gk. k=1,...,D are the directions of
these sources with respect to broadside. Fk(t) is the complex
envelope of the k’th signal, c¢ is the speed of light and ni(t) are
noise source which are assumed independent, delta correlated with
variance o:, and independent of the signals. Considering the
perturbation of the location, we define
d. = (1, 2+ u(t)) (2)
i i 2 i

where ui(t) are independent random variable uniformly distributed
between -8 to +& and its pdf is fugu) = 1/26 for |u|l £ &6, &6 is
the maximum displacement. L

Defining the received signal in a vector form, then the
covariance matrix of X; the received vector, is given by

R* =E [ x(t) x(t)" ] (3)
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E [ ] is the expectation and

T
X(t) = [ xl(t)' xz(t)l ey x"(t) ] (4)

with xi(t) defined in (1).

The i,j’th entry of covariance matrix R’

R, .
il

E [ x,(¢) xj(t) ]
D di

E [ [ )X Fk(t) exp [jwo(t - - sinek)] + ni(t)]x
k=1

D d.
[ > F;(t) exp [-juw (t - —;i sind )] + n?(t) ] ]

m=1

substituting for di from (2) we get after some manipulation

R*.=F [ E[F(t)F(t)exp[ ~Sky(12 ¥ u.) 8ing (t) ]

exp [ Jko(lj-%— + uy) sing () ] + 02 6(i-3)

(5)
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where we used the fact that the signal sources and the additive

noise are independent also ko = wolc. Rearranging (5) we get

Jk 1.—5— sin® Jk

D D - * 1 —é—sine
R2.=% L E[F(t)e 0'i2 k F(t)e 0j2 m
I k=1 m=1 k m

e

. . . . 2 . s
e-Jkouismek eJkoujsmem ] + an o(i-j)
(6)

The expected value inside the parenthesis could be obtained using

the equation

EF F u.u. u.u ( |uiuj) ]
kmiJj

We are only handling the case of uncorrelated sources then the term

in (6) becomes after performing the conditional expectation

E L x(t) x(t)|ug,u,]

D
= EL1PR exp [jko(lj-li)—%— sinek] °xp[5ko(“j'ui)91“9k3

. oi 6(i-3) (7)
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where Pk =€ [ | Fk(t) |2 ] is the power of the k°th signal.

Clearly from (7)

Ri; =€ [E Ux(e) x(t)] ugud ]
o A
=y P exp [jk (1.-1. )—— sind ]
k=1 k 0'7§ i’ 2 k
E [ explik (u.-u )sing 1 ] + 02 &(i-j) (8)
0" J i k n
Now 5

E [ exp(jkoujsinek) ] = J oxp( jkou sin ek) fuj(u) du

-6
' &
T — J exp(Jkou sin ek) du

sin (k° é sin ek)

ko 6 sin Bk

", (9)

It is reasonable to assume that the perturbation at different

location are independent, leading to:
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k (u u )JsinG Jk u sxna jkouisine

E [ o35 k] =E [e k]l € [e k ]
= n: for all i#j
=1 for i = J (10)

ui has the same distribution as uj and it is easy to show that the
second term in (10) leads to the same result of (9), despite the
negative sign in the exponent.

Finally substituting (10) together with (9) in (8) we end up

with

D

R’ _ 2 e s
ij EL1Pk oexp [ Jk (1 1 ) sinek ] N, for izj
D 2
=L P to for i=j
k=1
(11)

We define an error in the elements of the covariance matrix caused

by th¢ .erturbation by

AR .= |Ri;-R

ij ij '

where Ri’ is the i,j°th entry of the covariance matrix under

L
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unperturbed condition, i.e when the elements at their nominal

location with 6= 0 and hence N = O for all k=1,...,D. Then

obviously
D A 2
AR, = | E=1P" exp [ Jky(1,-1;)—5~sin 6, 1 (1 -nj ) |
for izj
= 0 for i=j

(12)
Notice that N is a function of sin Bk. in a way that when 6k=0=
the source is broadside to the array, then ARij= O. That is no

error is caused by the random perturbation of the array element

location.

3. Random Perturbation in two dimensions, uniform distribution.
We assume that beside the perturbation in the x axis, there

exists another perturbation orthogonal to the x axis in a plane

that contains the x—-axis and the source( this assumption makes
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gense since we are considering direction in one plane, azimuth for
example). Fig.4-2 depicte the second dimensional perturbation.

From it we notice that due to the perturbation v, the delay of the

i

wave is changed from d sinek for the nominal location to disin Bk

i
+ vieos ek(vi consider a positive perturbation if it is toward the
source in the plane previously mentioned).

Taking this fact into consideration we have for the two

dimensional perturbation instead of (8)
o A
R!j = E P, exp [ JkO(lj-li)—E_ sin Gk ]

. € [ exp Liky( C(u;mu;dsin 6, + (v -v,)cos 6,71 ]

+ oi &(i-j) (13)

As before:;
sin (ko b cos ek)
E [ exp( jko v, cosB )] = (14)
J Kk
ko & cos Bk

where we assumed the second dimensional perturbation is also
uniform (~6,5). Again if perturbation of the different element

locations, as well as in different dimensions are independent then
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E [ exp [ jko( (uj-ui)sin ek + (vj-vi)cos ek) ]]

. 2 . . 2
sin (k°6 sin Gk) § sin (k°6 cos ek)

. 2 2
( k°6 sin ak) (ko é cos Gk)
= n"‘z i=j (15)
= 1 i=J

where we also used (9).

Comparing (9) with (15) we conclude the following inequality
2 2
» < <

e S ", < 1 (16)

4. Random Perturbation with Gaussian Distribution.

The only difference in this case is the probability density

du

function,
1 +00
E ( exp(jkoujsinek) 1z —— exp( jk u sind. ) e-—u2/202
J'"z IRt BN,
2no
-
2
o 2 . 2
= e —2—-k° sin ek (17)
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The last step was derived in the appendix. Similarly,

2
-2 kz cosze

E [ exp( Jjkyv; cos6 ) ] =e 2 (18)

k

Also notice from the derivation in the appendix that the result,
does not change for E [ exp( -jkoujsinek) ] or E [ exp(

-Jkovjcosek)]. Therefore

E [ exp [ jko( (uj—ui) sin ek + (vj~vi) cos ek)] ]

2
o . 2 2 2
e 3 ko(szn ek + cos ek) )

N
~

2 2
= o ¢ ko ( n;z) for iz

It
n
[N

for (19)

n
Y

To try to relate n; to né: we first notice from Appendix . 2

equation (A-2) that

5+ ... (20)

and from (A-3), if we take 02 = 62/3 that
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M >1 - + ko 6 + ... (21)

Therefore

UM < n ¢ 1 (22)

.5. Variation of the Covariance Matrix due to perturbation in

the slement location.

From (11) we can write for the entries of the covariance

matrix
> 2 A 2
Rt R Ig(151;) == sin 6 Ly o
D
=¥ Pt O i=j
k=1
(23)
where Ek represents the different kinds of perturbation :
sin (ko é sin Gk)
1. N = (24)
ko é sin ak

for one dimensional uniform distribution ( -6,6) as in (9)
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sin (k. & sinf, ) sin (k_ & cosf, )
2. nl: = 0 k x 0 k
ko é sin Ok

ko S cos Gk

(25)

For two dimensional uniform distribution ( -6,6) as in (15)

2. 2
3. nm=e ? ko 72 (26)

for two dimensional Gaussian distribution J{o.az) as in (19).
Now let us define

sinek)]

. A . . A
a(ek)— (1, exp(-Jkolz — sin Bk).... .exp(-JkolM -

2
(27)

when we took 11= O0; that is the reference point isat the first
element. If we are considering URA then in (24) li= i-1 i=1,2,..M
and the covariance matrix is MxM. For the MRA we must form the
augmented matrix which is a Toeplitz matrix whose entries along

the different diagonals are given by,

o in -
£ p_exp [ Jjk sin @, ] i=1,2, ..., L
=y K o k
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where L £ M(M-1)/2 and the matrix is (L+1)x(L+1).
From (23) with 11 = 0 and (27) we write for the perturbed

covariance matrix

D M

R*=F t2p a@) a@f + L p1tH1+ 21 (20)
k=1 k=1
=S+ N’ +N
where
(1] > +
s*=F ¥ P, a(6) ae,) (29)
k=1
o 2
N>=F P_(1-f )1 (30)
K k
o 2
N = o I (31)

$’,N” and N are the signal, the perturbation and the additive
noise covariance matrices, respectively. For the unperturbed array

the covariance matrix is given by

i \J 2

R=Y P a6 ) a(g ) +o I (32)
k=1 k k k n
=S + N
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o t

where

s=L P a(8) a8) (33)
k=1
and
2
N = o I (34)
R° ~-R=8S°"-S +N°
D D
2 \ 4 2
=¥ (I, -1)pP a(8, )a(e, ) +F (1-{ )P I
ey K k "k k by KUK
(35)

ti € 1 hence (28) means that due to perturbation the effective
powers of the different signal decrease by a factor = ti and an
extra noise N' is generated which is equivalent to an additive
noise whose variance

2 2
o= (1 - tk ) Py (36)

This is to say that as an effect of perturbation the resultant
signal-to-noise ratio reduced. The effect of this on ervors in
direction finding depends on the algorithm used. If a
superresolution method is used for example then such perturbation

has no effect(see appendix 3). We emphasize that in calculating
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the matrices R and R* we used an expectation which is, with
ergodic assumption, equivalent to using N ( N+ @ ) snapshots or

what is termed asymptotic covariance matrices.
6. Statistical Randomly Perturbed Covariance Matrix.

Let the received vector at the n’'th snapshot be defined by

D
X(n) =} Fk(“) an(ek) + n(n) (37)
k=1

9k= 1,2, ... ,D

where
. A .
an(ek) = [ 1, exp [-.)ko(l2 - + u2n) sxnek].

T
+ unn) sinek]

< A
o --- v oxp [ —Jk (1 ——

(38)

Fk(n) is the sample at the n'th snapshot of the complex envelope

of the k°th signal, u i= 1, ... , M, is the sample at the n’th

in

snapshot of the random perturbation. The statistical covariance

matrix is given by

N
R* = —— L x(nm) x(n)'
n=0

(39)
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Each entry of R" will be the average of N snapshots of terms like
(5). Calculating the effect of perturbation directly from this
equation is impossible. Instead numerical simulation is the way

used to obtain the results and draw conclusions.

7. Simulation Results

Many simulation runs were performed to examine the effects of
the array random displacements on the direction finding
performance of the arrays. Both uniform regular array and minimum
redundancy array structures were used. As a directicn finding
algorithm the MUSIC was implemented. The emphasis was mostly on
statistical behavior with a finite number of snapshots. In some
cases a large number of snapshots were used, so that we learned
about the asymptotic behavior as well.

With 5 element URA and three sources impinging on the array
from 10°,20° and 30° off broadside,we depict in Fig 4-3 the
average ervor in direction(i.e sum of errors divided by number of
sources) versus the number of snapshots. As expected errors are
larger when we use two dimensional, instead of one dimensional

perturbation or when we increase the maximum value of perturbation
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6. Also it is clear from this curve as well as from others that
errors go to zero asymptotically as was concluded in the text.
Particularly worth noticing, that when we include two dimensional
perturbation the direction finding estimator becomes very poor
when we use a small number of snapshots. Not as bad, when only one
dimensional perturbations are taken into account,Fig 4-4 is
.similar to Fig 4-3 except the comparison is now done for two
dimensional uniform to two dimensional Gaussian perturbation.

In obtaining the result in Fig 4-5 we used an MRA instead of
URA and compare the performance of the first when one dimensional
and two dimensional uniform perturbations are used. Fig 4-6
compares the performance of MRA when the perturbations are two
dimensional uniform wversus when the perturbation are two
dimensional Gaussian. Using & = 0.1\, the average ervrror of MRA
with only one dimensional perturbation converge to almost
asymptotic value(zero) with only 100 snapshots. It is very clear
from these figures that despite perturbation MRA outperforms the
URA. Direct comparison of these two arrays performances are shown
in Fig 4-7. The superiority of the MRA on URA becomes questionable
when we restrict ourselves to small number of snapshots,

particularly when 6= 0.25\. This fact is clearly depicted in Fig
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4-8 and Fig 4-9. The cross over point, that is the number of
snapshots below which URA performs better than MRA are different
in these figures. This is due to the fact that the equivalent
noise due to perturbation depends on the direction of sources
which are taken 25°,45° in Fig 4-9 and 30 ,45°, instead, in Fig
4-9. In Fig 4-10, on the other hand such cross-over does not
occur. This is because in obtaining the result of this figure with
URA we used three sources instead of two and hence the noise
vector subspace has dimension two instead of three, a 1loss of
large percentage in smoothing capability. For MRA the dimension of
the noise vector subspace is 7 instead of 8. This is not a very
big difference.

To show the effect of redundancy in the covariance matrix
entries on the performance we compare in Fig 4~11 the average
error in direction when we use the entries of the covariance
matrix as they result from measurement(unaveraged covariance
matrix), together with the case when all entries along any
diagonal is first averaged and then used(averaged covariance
matrix). Fig 4-12 is the same as Fig 4-11 except for the
difference in direction of one of the sources. Notice that the

larger ek (30° instead of 25°) larger the effective noise caused
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by perturbation and the larger is the direction estimation error.
This fact can be concluded from comparing the result of these two
figures (Fig 4-12 versus Fig 4-11). In Fig 4-13 and Fig 4-14 we
added for comparison to the result already depicted in Fig 4-11
and Fig 4-12 the average direction estimation error obtained with

5 element MRA.

8. Conclusion.

The effect of random displacements of array location,on the
performance of direction finding was studied in this chapter.
Different probability demsity functions were usedione dimensional
uniform, two dimensional uniform and two dimensional Gaussian
distribution. It was found that in the steady state(i.e. when
number of snapshot used are infinitely large),such perturbation is
equivalent to an added white noise and a reduction in signal
power. Two dimensional perturbations caused large effect than one
dimensional. Also two dimensional uniform perturbation causes more
degradation than Gaussian distribution. In all cases degradation
depends on the direction of sources; worse when the source is

further away from broadside.



since these perturbation only reduce signal-to-noise ratio,

it is expected that superesolution methods,if used, will not
suffer degradation in the steady state (This was shown by
simulation). Nevertheless, when only limited number of snapshots
were used, simulation shows error in estimating the direction of
source worse when signal-to-noise ratio is worse. Many results of
this kind of simulation are given in this chapter.

Simulating perturbations effect on minimum redundancy array
elements depicts superior performance of this array in comparison
to the regular uniform array, despite the fact that the later
exploits redundancy in getting more precise covariance matrix.
This is due to the fact the MRA is using more eigenvectors to

resolve the source direction.
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Appendix 1

+00
1 . . 2 2
E = eJkou sin Gk o u /20 du
J 2n02
2 0 2 2 1 e 2
= e-ko 2 sin ek-——————— exp[-( Mo Jk _usin® -kzazsinezlz)]du
—— 2 0 k © k
l 2 20
2ne
-0

when we in fact completed to a square the argument of the exp.

Rewriting the last integral we have

+0
202 2 1 2.2 2
E = e‘ko - sin ek — axp [=(u +Jkosxn6ka Y 72071 du
2
-0 jZna

The integrant of this integral is a Gaussian probability density

function with mean equals -jkosin ekazand variance 02. therefore

value of this integral is unity and

2
o 2 . 2
o ( . ko gin ek)

E = (A-1)
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Appendix 2

let from (15)

sin X sin Y
1 ]
M = X X Y
where
X = Koé sin ek
and
Y = koé cos ak
Now
. 1
s‘"xx X 313 LAY (X = X731 + X°/81 = X770 + ...)
XY 3 5 7
(Y ~-Y /3 Y /5 =Y /77y ¢ ,..)
1 X Y3 X Ys X Y7
& e [ XY - + - + ...
XY 3! S 7!
Y x3 xav3 X3Y5 x3Y7
- + 2- + + ...
3t (3¢) 3:5!¢ 317}
Y x5 xsv3 xsvs
+ - + > ¥ e
5! 3:5! (5!)
x7Y x7v3
- + * ..
7! 317¢
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2 .2 2 2
ko & (cos 6k+sin ek)

R
=
{

6

1
+

( k364cosaek + k:6281n49k +
120

120
2 2 . 2 2
ko & sin chos ek ) + ...

36

n"< >~ 1 - k;‘; 62/6 + ko é (A-2)
120
From (19)
2.2
n; - o kolz
o kg (azkz)z
~ ] - + + cae
2 8
taking 02= 62/3 we get
62 k2 &% 2
. 0 o
nk ~x 1 - + + (A-3)
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Appendix 3

If Bi i =D+1, ..., M is an eigenvector which belong to the
noise subspace, then from (32), using the fact thatei is

orthogonal to a( ak) k=1,2,....,D we get

D t 2
Reisz Pka(ek) o, +o Ie,
k=1
=0 e, A-4
i
as expected.
Now using (28)
o + D 2 2
R'e; =L { P a6 )al8) oi-l-( L P 1% )0 )mi
k=1 k=1
D
2 2
= (E=1Pk(1 £ )+ o] )Iei A-5

That if °i is noise eigenvectors for R corresponds to 0'2‘ then it

is also noise eigenvector (orthogonal to signal direction) which
D

correspond to Ai = § Pk( 1- tk)z + 02
k=1 n
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5. PERFORMANCE OF THE UNIFORM REGULAR ARRAY AND
THE MiNiMUM REDUNDANCY ARRAY usiNg MUSIC anD

MiNtMUM-NORM ALGORITHM.

1. Introduction. .

The minimum redundancy array(MRA) was first proposed in [11
and implemented for direction finding using eigen system structure
in [2]. The structure of the MRA, in fact, causes the removal of
most, if not all the redundancy, in the correlation between the
array elements. Such redundancy clearly exists in the
conventional uniform regular array (URA).This redundancy in the
URA may be explored to obtain a better estimate of the
correlation,with the same number of snapshots. Nevertheless, since
with the MRA the same number of elements are distributed
nonuniformly,the aperture of the first is much larger than the

~

latter, making it possible to get a larger dimension for R. Larger
dimension of R means larger dimension for the noise subspace,given
that the number of signal sources impinging on the array is the

same. Since in any superresolution method the null spectrum

depends on the number of noise eigenvector used, one might expect
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the MRA to be superior. Therefore there are different properties
of each of arrays; redundancy in the URA and larger dimension in
the MRA, which provides either with an advantage on the other.

The purpose of this chapter is to use each of these arrays
for divrection finding and compare their performance. Two
superresolution method would be studied; the MUSIC and the Minimum
.Norm. Each of these algorithm may be used in defining the null
spectrum either the noise subspace [3], or the source subspacel4].
The usage of either of these two subspace has its advantages and
drawbacks. While using the source subspace requires extra
computations, it converges to the actual signal direction faster
and with less sample snapshots. It is also more tractable
analytically. Conversely when using the noise subspace, the
convergence to the nominal value require,longer data and the
estimated eigenvalues and their corresponding eigenvectors have
larger variations causing statistical characterization of these
eigenvector to be untractible analytically. In this chapter we
will concentrate on using noise subspace only.

In the next section we will present the structure of the MRA
for different number of elements and use a computer algorithm

designed to generate the actual element locations for MRA with a
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given number of element M. An example of MRA will also be
presented. The section will be concluded by comparing the
estimation error in the correlation matrices obtained with MRA and
URA. In section 3 we will derive the basic formulae needed for
both MUSIC and Minimum Norm algorithms. In section 4 we present
the simulation results to evaluate the performances of tﬁe two
arvays.

-~

2. MRA array geometries and their covariance matrix R.

For any linear array with M elements the received signal at
each element is given by
o ~Jk_d.sind
x.(t)= T F (t)e 2 0%i" Wk + n_(t) (1)
i k i
k=1
i=1,...,M
where D is the number of signals impinging on the arrvray assumed
uncorrelated and narrow-band, ek. k=1,...,D are the directions of
these sources with respect to broadside, di represent the location
of the i’th element with respect to a reference point( regularly

taking as integer multiple of A/2), Fk(t) is the complex envelope

of the k signal. ko represents the wave number common to all
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sources, ni(t) are noise sources which are assumed
independent ,delta correlated with variance 02.

Equation (1) can be written in vector notation as

X(t) = AF(t) + n(t)
where T
X(t) = [ xl(t). Xz(t).---.XM(t) ]
T
. T
n(t) = [ n1(t). nz(t),.... nM(t) ]

T stands for transpose
a=1 a(91).a(92)..... a(GD) ] (2)
A is an MxD and a(ek) is a M dimensional vectors each given by;

-Jk°d1sxn9k e-Jkdzsan

a6,)=[e , K o..., o Jkgdysing

k ]
k=1,....D, di are integers (3)

The correlation matrix of the received signal is given by

\ t

R=€ [ x(t)N =a€e [ F(eIred)TT at + & n(eInce)

\ J

E[FF ] is an MxM diagonal matrix whose diagonal terms, P

represents the signal power of the k source. With this

102




o

using (3) we uwrite

= ' 4
R=F Pk a(ek) a(ak) (4)
k=1
o %091 %k
Jk . d w
e 02k
T . Jk d.w Jk d.w
a(ek)a(ek) = . [ e 01k, ..., OMKk ]
. (5)
RS LIS
L. o

where for expediency we used “k = gin ek. substituting (5)

in {(4) we get for the i,j element of R

If the array is uniform then di+

That is

be K/Zv

“Iko(di=d ) Wy 02 sCi-§) (6)

i,j=1,...;M

1 - di are the same for each 1i.

the distance between successive elements, usually taken to

then d —dj will be the same;l1,2,3,...,etc., whenever Jj=

i

i-2, j=i-3, etc., causing the term on any diagonal to be
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the same and hence Toeplitz structure. On the other hand if di are
chosen such that di - dj =m(i,J = 1,2...,M),and m spans the
integer set {0,1,...,L},where L £ M(M-1)/2 then the terms above
the diagonal will contain exactly L different correlation lags
r(i), i=1,...,L and (M(M-1)/2 ) - L terms possibly equal to some
other r(i). That is instead of (6) we have for this case

D

rij = v(i=-j)= r(m) = ELIPK e

IkoM W o PS(m)  (7)

m= 0,1,2,...,L

This way of selecting the elements location make the array what we
call Minimum Redundancy Array(MRA).
As an example we take the case of 5 elements uniform regular

array; then

a(Bk) = e-jk°2w (8)

104




is the steering vector for

the k’th signal,

while for the

case of 5 elements minimum redundancy arvay the steering vector

for the k°th signal is

(9)

Using the notation of (7) the covariance matrices for the URA and

MRA respectively are

r(0) r(1)
v(0)

conjg.
symmetric

r(2)
r(1)

r{(0)

105

r(3) r(a) ]

v(2) r(3)

r(1) r(2)
r(0) r(1)
r(0)

for URA

(10)



and

r(0) v(1) v(4) r(7) v(9) ]
r(0) v(3) r(e) r(8)

r(0) r(3) v(S)
R = conjg (11)
: r(0) v(2)
symmetric
r(0)

for MRA.

Notice that covariance matrix for the URA is Toeplitz and the MRA

is only Hermitian. Also the MRA has L+1 different elements where

M(M-1) M(M-1)

2 2

Table 5-1 depicts the configuration of the MRA for different
number of elements. The number in the configuration column shows
the distance of the different elements from their adjacent
elements normalized to A/2. The dimension of the array shows the
aperture size in 1A/2, 1 is given in these column, when A/2 is the

minimum distance between any two adjacent slements.
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Number of Dim. of Dim. of Configuration
Ant .Elemen the URA the MRA
5 4 9 0.1.3.3.2
6 5 13 0.1.5.3.2.2
7 6 17 0.1.3.6.2.3.2
8 7 23 0.1.3.6.6.2.3.2
9 8 29 0.1.3.6.6.6.2.3.2
10 9 36 0.1.2.3.7.7.7.4.4.1
11 10 43 0.1.2.3.7.7.7.7.4.4.1
Table 5-1

For the 5 elements array ,for example, we have that the
element are located at ({0, As/2, 4A/2, 7A/2, 9A/2 ] which
corresponds to distances ; [0, Ar2, 3A\/2, 3A/2, 2\/2) from their
adjacent elements. This is shown in the last column of the table
as 0,1,3,3,2. If we refer these distances to the reference
element( which could be at any extreme side) we get by summing all

distance, 9\/2. This is the total aperture( which is called at
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column 3 of table 5-1 dim.). In fact such structure is not unique.
It is only so if the dimension = [ Mx(M-1)/2])] where M is the
number of the array elements. Such a unique case is possible only
if M=4 and the dimension is six ( see [2]). The location of the
elements of the MRA as they are presented in the configuration
column of table 5~1 were generated by a special search computer
program.

For processing the signals of the MRA we must first generate
what we term Augmented Matrix. This is a Toeplitz matrix which we
obtain from the Hermitian covariance matrix of the arrvay by
repeating r(m) along the different diagonals; r(0) along the main
diagonal, r(1) along the secoend diagonal, and so on. Therefore the

dimension of the augmented matrix is (L+1)x(L+1)

[ v(0) (1) v(2) ... v(L)]
r(0) v(1) ... v(L-1)
Raug = conjg. - e = - (12)
symmetric - r(1)
- r(o)-
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Up to this point, in calculating the covariance matrix R, we used
the ensemble expected value. In practice this is impossible.
Instead we collect N snapshots of x(n)x(n)?. where X(n) is a

sample of the vector at time nT (where T is the sampling period),

and average on all these snapshots to obtain an estimate for R

[ X(n) x(n)f] (13)

TR
1

Ft12

”~

Obviously each entry of R is a random variable.

For the URA there are few entries at each diagonal which
represents the same correlation lag. (that is, exist some
redundancy ). We explore this redundancy by generating ; from ; as

follows:

For the S5 elements we take

(1) = 174 { v(2-1) + v(3-2) + 7(4=3) + r(5-4) }

;(2) = 1/3 | ;(3-1) + ;(4-'2) + ;(5—3) }

~

H3) = 172 { r(a-1) + r(5-2) )

;(4) ;(5-1)

"

r(0) = 1/5 { } all elements along the diagonal)
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For the augmented MRA matrix we use all the estimated elements of

(11) as they are without averaging except for

172 { ;(4-1) + ;(7—4) }

(3)

r(0)

1/5 { ¥ all elements along the diagonal. }

To observe the effect of these averaging on R for both MRA and URA

we find the difference AR
AR = | R(n) -~ R(n) | (14)

where the norm HA" of an MxM matrix is defined;

- 1
ol = £ £ ey
J

4

Fig 5-1 presents AR as a function of the data length (snapshots

used in calculating R).
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3. Formulation of direction finding algorithm formulas.

a) MUsIC
The MUSIC algorithm[3] is a way to estimate the direction of
signal impinging on an array. It exploits the orthogonal property
of the noise subspace eigenvector to the source direction vectors.
If a vector d
d=([d ,d, ... , d, ] (15)

has the property

a*(ek) d=0 k=1,2, ... , D (16)
then the polynomial
M-1 —k
s(z) = § dk+1 z (17)
k=0

will have zeros at z= e-jkowk k= 1,2, ... ,D. From these zeros
the direction of the signals can be found. Notice, however, that
beside the D zeros which correspond to the signal directions,
there are other M-D zeros termed extraneous zevos. Due to the
orthogonality property of the noise eigenvector subspace and
source direction vectors, mentioned before, any of the L-D noise
eigenvector will have the property of the vector d mentioned in
(16). This was first proposed by Pisarenko [5] for his direction

finding approach.
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We define
M-1
s(8) = ¢
k=0

-k
©: kel z (18)

where °i i= D+1, D+2, ... , M are eigenvectors corresponding to

the smallest eigenvalues of the covariance matrix R; R =

1-

E{X(tx(t) )} , (hl Z A, 2 ..\ A

> D’ ee A ). §(6) in (18)

p+1’ M

usually called the null spectrum. Define P(8);

1
P(B) = — (19)
s(8)

will have a high peaks at 6, , k=1,2,...,D; the signal directions.

k
Now if the covariance matrix is only an estimate obtained from a
finite samples X(n) as in (13), then noise eigenvectors e.» i=
D+1,..., M and so is the directions obtained will be not
sufficiently accurate unless the SNR is very high. In such case

one might utilize not only one eigenvector as in (18) but all L-D

eigenvectors and define the null spectrum by

- ) M A
s(6) =a(6X § o o ) a(8) (20)
k=D+1
1
P(8) = =
s (&)

112




where ;i i=D+1,...,M are the estimate of the noise eigenvectors
such an approach of using all noise eigenvectors was first used by
Schmidt[6]) who called it MUSIC. Obwviously it results in some sort
of smoothing in estimating errors of the noise eigenvectors and
causes better estimate of ejkowk and the direction of the signals.
Many others followed Schmidt’s approach.

Let Es be the MxD matrix constructed from the signal subspace
eigenvectors,i.e eigenvectors which correspond to the largest

eigenvalues ki i=1,2, ..., D. That is

» ©_5 --- s 1] (21)

] (22)
i=1,2,...,D

and let EN be the Mx(M-D) matrix consisting of the noise subspace

eigenvectors; i.e. eigenvectors which correspond to the smallest

eigenvalues A, i= D+1,...,M. That is ;

i

E, =1L

N ®5+1°%42" ""°* Oy ] (23)
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Because these subspace are orthogonal then

- ; ; t _
[EngN][Es!EN] =1 (24)
Hence ¥
L] ; Es
a(e)[gs;EN][ ......... T] a(@) =M
E
N
or
a'e) [ €l + e €] ae) = m
Using both (21) and (23) we end up with
Tooy(w o ot Yorv(o o oty .t
a'(8)(L e, e Ja@®)=n-a(e) L e o  )al(s)
i=D+1 i=1
(25)

Therefore using (20) we can also have for the null spectrum,

: t R
() =M=-a(6) (L e e ] ac®) (26)
i=D+1

i.e.s(8) is defined by the signal subspace instead of, by the
noise subspace (20). Clearly for the noise subspace we have to

find only one eigenvalue (the smallest) which must have
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multiplicity M-D. This is simpler than finding all the different D
eigenvalues and their corresponding eigenvector when using signal
subspace. Nevertheless, the estimates of these eigenvectors are
better than the estimates of the eigenvector which belong to noise
subspace. This in turn results in much better direction estimates
when using signal subspace.Notice from (20) and (26) that whenever
a(8) is in the direction of the signal direction vector a(ek) the

”~

estimate of the null space S(Gk) vanishes.

B) Minimum Norm Algorithm

Instead of choosing d as noise eigenvectors or signal
eigenvectors to generate the null spectrum for the MUSIC
algorithm, Kumaresan and Tufts [7] proposed to choose d as follows

1. Its first element to be unity

2. Its Euclidian Length to be minimum
The second requirement is the reason for the name Minimum Norm

algorithm.
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Let us first partition the subspaces of (21) and (23) as

follouws
T
g
[ E— (27)
Es = E’-
s
and
T
c
........................... (28)
E = . .
N EN

where g and ¢ are in fact composed of the first elements of the
signal and noise subspace eigenvectors, respectively. Then Eéand
E':'are (M-1)xD and (M-1)x(M~D) matrices respectively obtained from

Es and EN by deleting their first rows:

g = [01’1 » Oy g0 mem 205 ] (29)
c=le; 1,1 "%+2,1" """ "%, (30)
d = [dl' d2- .ee 'dM] (31)
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since d has to be in the range of EN(see 16) it will be orthogonal

to the column of Es, i.e.

eV d=o0 (32)
S

or equivalently

[g* | Es'f] [:] =0 (33)

. T
where we took dl- 1 and d°’= [ d2,d3. .. .dM ] . From (32) we can

write

gtd =-g* (34)

*

ES is an DX(M-1) matrix and we in fact have D equations with M-1

*

unknown, which can be solved for d’ by using pseudo inverse of Eé .

By the requirement of the minimum norm of d’

M 2
fdi=E I|d] is minimum,
i=2

the pseudo inverse matvrix can be obtained by the singular wvalue

f

decomposition of E; . Such a solution give
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1
- (35)
d = [ E. o/ 1 - 9’9 ]

Combining the two matrices Es and EN from (27) and (28) and
multiply by their transpose conjugate we get the identity matrix.
This is because these two matrices contain all the eigenvectors of

R which is Hermitian. Therefore

[ T [ 1
GT i OT 9* i E’*
=1 (36)
’E ] x ! s*
ES i EN [~ H EN
L J L i J
which lead to
*
g g +¢c ¢ =1
, X * % -
Es g + EN c 0 (37)
by using (37) in (35) we have
i
d = (38)
% F,t
EN ¢ /¢ ¢

Equations (35) and (38) depicts the fact that the required vector d
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can be obtained by using either the eigenvectors of the noise or
the signal spaces.

Finally we must vemark on the fact that the minimum norm
algorithm has advantage of leading tol7]

1. More accurate estimate of W, even with relatively low SNR

2. The M-D, extraneous zeros of S(8) tends to have less

effect for causing false sources.

4. Simulation Results

A number of simulation runs were performed to examine the
behavior of the URA and the MRA and compare them. In these
experiments different level of signal-~to-noise ratio (SNR) were
used.The effect of number of samples on the performance of the
array was also examined. Two different noise sources were
considered; additive random noise independent of the signal
source,and noise caused by small random perturbations of the
element locations.

In Fig 5-2 we present the case of a five element URA or MRA.
Four sources of SNR were located at S5, 20, 45, 75 degree.This

figure depicts, the average of the absolute errorse in estimating
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the directions of these four signals as a function of data length(

-~

Number of samples used in calculating R ). Due to the dimension of
; only one noise vector was used in defining the null spectrum for
the URA. For the sake of comparison only one noise vector was used
for the MRA even though many more noise eigenvectors are obviously
available. It is observed that MRA outperforms the URA down to a
very small data length. The point of error with more than 4 degree
depicted for the URA indicates a "false peak”

The effect of perturbation noise is examined in Fig 5-3
(Maximum perturbation of 0.25\ was considered),Five element array
were used with only one signal source and employing one noise
eigenvector. The direction of the source was varied and for each
direction the absolute value of error was found. Fig 5-4 presents
the Cramer-Rao bound due to aperture length. That is for 5 element
and 10 element (The aperture size of 5 element MRA). Comparing Fig
5-3 and Fig 5-4 we notice that the MRA .performance presented in
Fig 5-3 close to the bound for 10 element as it was shown Fig 5-4.
Hence we might conjecture that the 5 element MRA performs almost
like 10 element URA and that the larger aperture of the MRA is the

dominant factor in achieving the improved performance.

The effect of the higher dimension of the augmented
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covariance matrix for MRA and the rvesulted larger number of
eigenvectors that could be used in MUSIC we show in Figure 5-5,
5-6 and 5-7 the effect of using one two or three noise eigenvector
in defining the null spectrum of equation (20). notice how P(8) =
1/5(8) of (20) become sharper and sharper at 6k= 5,20,45 and 75
(degree) the actual direction of the signal source as we use more
and more eigenvector. Important to emphasis that such possibility
of using more noise vector does not exist for the 5 element URA
with 4 signal sources.

The effect of adding extra noise eigenvector in defining s(&)
is compared again in Fig‘5.8 as a function of data length. Notice
that with small data length( Less than approximately 50 samples)
there appear a false peak(indicated by average error greater than
4 degree), when only one noise eigenvector was used. This false
peak readily disappear when another eigenvector was added in
defining S(8). In fact with two eigenvectors no such false peak
was found even with at little as 10 samples. Figures 5-9 and 5-10
depict the false peak in P(8) in the first figure and its
disappearance in the second when two noise eigenvectors were used
in defining S(8). Using the minimum norm algorithm we compare in

Fig 5-11 the performance of the URA and the MRA as a function of
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data length. From the procedure of this algorithm only one wvector
d is used to define the null spectrum. Notice how the MRA
outperforms the URA particularly for small data length. Also
notice the smoothness of the curve for URA imn this figure in
comparison to the fluctuation in errors as a function of data
length when the MUSIC is used. This fact is due to the way the
vector d is chosen among all wvector which are orthogonal the

signal space it has the minimum novrm.

5. Conclusion

The MRA was shown to outperform the URA, when using either of
MUSIC or Minimum—-Norm algorithms. Two reason could cause these
results; Larger aperture length and the fact that the MRA
covariance matrix when augmeﬁted. has larger dimension and hence
larger number of noise eigenvector to be used in superresolution
algorithm. The effect of increasing the number of eigenvectors on
the performance of both arrays was studied and shown to support
this conjecture. The effect of different aperture length on the
performance was examined by using perturbation noise and comparing

performance with Cramer-Rao bound.

122




Important to emphasize that the MRA outperforms the URA
despite the facts the latter contains redundancy in its covariance
matrix entries which regularity exploited to smooth the data and

cause reduction in the number of snapshot required for processing.
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6. PERFORMANCE OF THE MUSIC BAseD DIRECTION FINDING
UsiNng DIFFERENT COVARIANCE MATRIX ESTIMATES FOR THE
UNIFORM REGULAR ARRAY(URA) AND THE MINIMUM REDUNDANCY
ARRAV(MRA)

1. Introduction

In the direction finding problem when any of the
superresolution methods, such as the MUSIC for example, is used,
the knowledge of the covariance matrix of the signal at the arvrray
element is a must. In real applications there is no way to get the

+

exact expected value E[X X'] (=R the covariance matrix),where X is
the received wave form vector at the M array elements. If one

assumes X is ergodic then R might be obtained from an infinite

average sum of the samples of X ;

. +
R= lim X Xn xn
N0 n=1
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However to obtain such an average is impractical.Therefore R can

be only estimated from the finite sum;
N
R—R—-——E- xnxn (1)

Obviously R1 is the random matrix as its elements are a finite sum
of random variables. Other possible structures for estimating R
have been suggested in ([1],[2]. Different estimates of the
covariance matrix will result in different accuracies when used in
direction finding.

In this chapter we will present four different such
estimates; namely, the random sample, the doubly symmetric, the
averaged Toeplitz and the optimized Toeplitz, forms. Using these
estimates of the covariance matrix in the MUSIC algorithm, we
estimate the direction of signals impinging on a uniform regular
array (URA) with M elements, and compare their estimation errvor.

We will then conclude on the best method to use for direction

finding with MUSIC algorithm.
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With the minimum redundancy array(MRA) instead of the URA, we

discuss the possibilities of getting covariance matrix

estimates.

Using these estimates we again use the MUSIC algorithm and obtain

the resulting estimation error in the direction finding process.

2. Estimates of the Covariance Matrix

for the Uniform Regular Arvay.

Four different estimates are proposed;

a) The Random Sampled

Using N sample we

Covariance matrix

define R of 4 element array

~

11 12
*
xzxz x
conjugate x
symmetric

137

(2)




where the overbar here is used for the N sample average rather

than the expected value. That is

1 N
Ry =— L X, xn"
N n=1
and
1 N *
Xy X ¥ = — T %in %jn (3)
N n=1

where xn is the n’th sample of the vector X and xin is the n’th
sample of the output of the i’th element.

since N is finite the elements of R1 are random variable, and

hence xlxz* is not necessarily equal ¢to or to x3 x4*,

*
X2 %3
contrary to the case when N goes to infinite. Therefore R1 is

Hermitian but not necessarily Toeplitz.
b) Doubly Symmetric Covariance Matrix
Doubly symmetric matrix is both Hermitian about the principal

diagonal and symmetric aebout the cross diagonal (the diagonal

from bottom left to top right). We invoke the matrix theorem
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concerning transpose about the cross diagonal, ie., flipping the
matrix about the diagonal that runs upward to the right at 45
degree. If the transpose about the cross diagonal is denoted by
prescript T(TR ), then the doubly symmetric covariance matrix R2
can be obtainedfrom R1 as follows:;

R=(R+TR)/2

2 1 1

For the 4-element URA we have

(a)

where,

vr.= x + *
( xlx1 x4x4 Y 2

oy
ro ( xzxz* + x3x3* Y 2

x + *
1 X x2 x3x4 Y 2

X3

-t
"
~

%
~

-

-
n

”~
X

= x *
r2 ( xlx + x2x4 /s 2

*®
x4 )

W

-
L]
”~
X
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c) The Average Toeplitz Covariance Matrix.

The average Toeplitz covariance matrix R3

is obtained from R, by

simple averaging along the different diagonals, That is

Where

r(0)
r(l)*
r(2)*

r(3)*

r(0)=( X_x, x
v(1)= ( X, X ¥
r(2)= ( x_x_x*

v(3)= ( x x4*)

(1) v(2) ~r

r(0) v(1) r
(1) v(o) r

r(2) v(1)* r
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d) Optimized Toeplitz Covariance Matrix using Maximum

Likelihood Algorithm. (Burg’s Algorithm)

The procedure of finding this estimate for the covariance
matrix is given in [1]. For a matter of completeness we summarize
the idea from that paper:

The task is " One wish to select a covariance matrix of

specified structure that corresponds in a reasonable way to a

given set of vector samples.” The author of [1] assumes that the

vector random process at the array elements is zero—-mean
multivariate Gaussian, and that different samples of this vector
are independent. The idea is then to choose the covariance matrix
of this multivariated Gaussian so that to maximize the Jjoint
probability of occurrence of the vector samples.

In fact, the information in the vector sample is neatly
contained in the sample covariance matrix Rl' so we end up with a
performance index function p(Rl, R) in the two matrices R1. and R.
R, which is to be founded,is constrained to be a Toeplitz
covariance matrix ,while R, is a random sample covariance matrix

1

that was shown to be Hermitian.
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Let a vector X be M-dimensional Gaussian vector with zero
mean and covariance matrix R. Then its probability density
function is given by

p(X)= (2n) exp( X' R~ X /7 2) (e)

-M/2 -1/ -1

M IRI12 +

where |R| stands for the determinant of R.

Now instead of a single vector sample suppose that we have N
independent vector samples, xn n=1, ..., N. then the probability
density for this set of vectors will be =

N

exp(- } X
n=

*

n

1

n

p(xl’ X ces 39 XN) = (2”)

>°
(7)
We consider the situation where R is unknown except that it is a
member of a certair family R of feasible covariances. For example ,
an important case is when R is the collection of the positive
definite Hermitian Toeplitz matrices. Notice that given the set of
the vector samples xn n=1, ..., N, then R € & which maximizes (7)
is the Maximum-Likelihood Estimation of the covariance matrix.

Taking a Logarithm of (7) we get:
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log P(X,s X50 =m0 5 X ) =
N .
-(NM/2) log(2r) - (N/2) log |R| - (1/2) E X ' R = X_
n=1

(8)
Dropping the leading constant term and dividing through by N/2, we

define objective function P(Rl’ R) to be

N + -1
P(R, ,R)= ~log |R| - (1/N) §L1 X' R X (9)

Obviously maximizing P(Ri, R) is equivalent to maximizing (8).

Using matrix relation,

+ 1 1, ¥

X' R X =tr (R XX,
in (9) we get;
.-1 N *
P(R,.R)= -log|R| - tr(R "(1/N) EL1X“ X ) (10)

With the definition of the sample covariance matrix R1 ,

N
Ry, = 1/NE X X
n=1

f

143




We arrive at the equation for P(RI,R )

P(RI,R) = - log |R| - t’.r(R“1 Rl) (11)

Our objective is then to find the R which belongs to the class of
positive definite Hermitian and Toeplitz matrices R, and which
would maximize P(RI.R). where R1 is a given sample covariance
matrix obtained from the measurement.

This is a variational problem. That is, we must first derive
the variation of the functional P in terms of the variation of R.
The variation of R is defined as follows
[ 6R(1,1) 6R(1,2) ... O6R(1,M) ]

6R(2,1) O6R(2,2) ... O6R(2,M)

SR

| 6R(M,1) 6R(M,2) ... OR(M,M)

where S6R(i,j) is the variation of i,j"th element of R. Now taking

the variation of both sides of (11) we have
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6 (P(R_,R)I= - & log|R| - & er(R'R )

After some simple derivation detailed in the appendix, we get

& P(R ,R)}= tr [(R—lRlR—l- R 1) 6R ] (12)

For an extremum of the functional P(RI,R), it is necessary that

its variation equals zero for any variation 6R that belongs to R.

That is

1

tr [(R-lR R - R—1) R} =0 (13)

1
for every R € R.
In particular it must be true for 6R= R. In which case we
have

1

tr K RWRRY-rRRI=0

1

or tr R} R, =M (14)

substituting in (11) we get as a necessary condition for P(RI,R)

to be maximum, that is

P(R,,R)= -log |R| - M (15)
From the form for P(RI,R) in (14) and from(15) we can restate our

variational problem as follows instead of maximizing P(Rl.R)z
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minimize the determinant of R under the constraints that

1)Re R

2) tr [R—1R1] = M where M is the number of the array

elements

In fact this constrained minimization problem can be solved using

Lagrange multiplier A. That is

6 [ -log |R| - A tr(R'IRI) 1 = -tr( (R-1~AR—1R1R-1)6R 1
(16)
where we again used equation (A-2) and (A-3) of the appendix.

Again using 8R= R we get

tr [ I - xn_lnl] =0
or A tr[R-lRll =M

That is A\=1 and we are back to the problem of setting the
variation of (11) to zero. This shows that the constrained
minimization stated above is equivalent to maximizing the

functional in (11)
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- The Inverse lIteration Algorithm
Using the fact that the variational problem in (12) is linear in

R1 the author in [1] proposes to use what he termed the Inverse

Iteration Algorithm. That is ; at any stage, he begins with an

approximation Rk and finds a new approximation Rk+1 as follows:

1) Find D, which belong to X so that P(Rl-Dk . Rk)

k

satisfy

equation (13) such as

1 -1 _
(R —D)Rk }cSRk]—O (17)

tr LR 1 k

Where & Rk is the variation of Rk' This equation means inside of

{ .. } is orthogonal to the change 6Rk in R space.
2) Put Rk+1 = Rk + Dk

To find Dke R, let us first assume that om m=1,2, ..., M , form a

basis for R then we can write

and (17) can be rewritten as
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M
-1 -
tr [ ( Rk (R1 - EL1bm°m) Rk

1 =
} Oj] o (18)

for every Q. j=1,...,M. After rearrangement of (18) we get

J
M -1 -1 -1 -1
= » . 9
E=1tr [ Rk QMRk Qj] bm tr [ Rk R1 Rk QJ] (19)
j=1!---’M

This is a system of M equation in M unknowns:; bm’ m=1,...,M. The
solution of these equations yield Dk and hence the next

approximation R . In fact from (19) if we define

k+1
-1 -1
Aij = tr [Rk QiRk oj]
and
-1 t §
cj = tr | Rk Rle Oj]

then the aforementioned linear equation is given by the set of
linear equation

= = T
Ab=c¢c b [bl'b e bM]

2’
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3. Covariance Matrix for Minimum Redundancy Array.

For a 4-element Minimum Redundancy Array,the location of the

elements are (0, 2\/2, S5A/2, 6A/2). In a notation consistent to

the notation of Uniform Regular Array we can write

T
x x* X x* b ¢ x*
1 1 1 3 1 6
X x* X x*
3 6

R= X Xf = 3 3
conjugate X x*
. 6 6

symmetric
I

Defining r(0) by,

*
v(0)= 174 [ Xy x1 5 %, s s

r(j-i)= x, x

ute
e W
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+ X_ X+ X_x_ +t X
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the matrix (20) can be written as,

" v(0) v(2) r(5) v(6) |
r(0) v(3) r(4a) (21)

conjugate v(0) r(1)
symmetric

\'(0) i

In the matrix of (21) we notice the existence of all delay lags
r(0) to v(6). The number of lags(=6) = M(M-1)/2. This is in fact
the property of the Minimum Redundancy Array wherein the element
locations are chosen so that many delay lags rather than only ™
lags (as in the case of URA) is generated. For other values of M
it is possible to generate only N < M(M-1)/2 different
lags,nevertheless N » M (see [3])
The different entries in the Hermitian covariance matrix (21)

can be augmented to the following Toeplitz,Hermitian matvix.
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r(0)
()"
r(2)*
R, = r(3)*
r(a)*
r(S)*

r(6)*

r(1)
r(0)
r(1)”
r(2)*
r(3)"
r(a)’

r(S)*

r(2)
r(1)
r(0)
r(1)"
r(2)*
r(3)

r(4)*

r(3)
r(2)
(1)
r(o)
r(1)*
r(2)

(3

r(4)
r(3)
v(2)
r(1)
r(0)
r(1)

r(2)*

r(s)
r(4)
v(3)
r(2)
r(1)
r(0)

r(1)

v(6) ]
r(5)
r(4)
(1 (22)
r(2)
r(1)

r(0)

Notice that in Toeplitz matrix except for r(0) the other elements

are forced to be the same rather than obtained from the average of

the elements in a diagonal as

in the Uniform Regular Array.

Because of this fact we cannot choose an optimum covariance matrix

by using burg’s algorithm. Such an approach is possible only when

there is redundancy in the covariance element.
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Different augmentation might lead to:

r(0)

r(2)
r(3)
r(1)*
r(s)*
r(a)*

re)

r(2)
r(0)
r(1)*
r(1)
r(3)"
r(2)"

r(a)*

r(3)
r(1)
r(0)
v(2)
r(2)*
r(1)"

r(3)*

This is a Hermitian but not Toeplitz.

(1)
r(1)"
r(2)*
r(o)
v(a)*
r(3)"

r(S)*

v(5)
r(3)
r(2)
r(4)
r(0)
r(1)

r(1)*

r(4)
r(2)
v(1)
r(3)
r(1)*
r(0)

r(2)*

r(6)
r(4)
r(3)
r(s)
r(1)
r(2)

r(0)

The matrix R, can be obtained from R_ by considering the

H

T

transformation between the corresponding random vector XH

respectively. That is

and in detail:;
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linear

and XT



- - - - - -
x1 i1 0 0 0 0 0 O x1
xa o 0 1 0 0 O O xz
x4 ) O 0 01 0 0 O x3
xz o 1 0 0 0 0 O x4 . (24)
x6 0O 0 0 0 0 1 O xs
x5 O 0 0 0 1 0 O x6
x7 O 0 0 0 0 0 1 x7
b .! - J b o
Notice that;
_ +
RT = XT XT
R \
RH=><|_| xH= ch(ch)
_ * T T
= C XT XT cC =¢ RT C

The Eigenvector and Eigenvalue of RT' RH ,are defined as follows;

and , (25)
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T T
— RTC g = )\HC VH (26)

where we used the fact that C CT= I.(Identity Matrix)

From (25) and (26) we conclude that for every eigenvector vT of RT

and its corresponding eigenvalue XT there exists another

. T . .
eigenvector C v, and a corresponding eigenvalue AH for RT’ where

H

vH and AH are an eigenvector and a corresponding eigenvalue of

RH' Hence the set of eigenvectors{ vTi; i=D+1,...,M} which

corresponds eigenvectors { CTvHi 3 i= D+1,...,M}), where vHi i=

p+1,...,M , are the eigenvector of RH'

The direction finding formula of the MUSIC algorithm of Toeplitz

covariance matrix is given by

P(8) = (27)

a@)y(y v, v ) a(é)
=D+1 Tk Tk

where D is the number of sources and M is the dimension of R.
When using the Hermitian matrix of (24), we must first transform

. T .
each eigenvector by C to get ch i Then the corresponding MUSIC

H

formula is given by
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P(8)= (28)

(X (cv_, Xcv

)"'
k=D+1 Tk Tk

t

a(8) ) a(8)

4. Simulation Results

The different methods of obtaining estimates for the
covariance matrix were evaluated in a simulation of a MUSIC
algorithm for finding the direction of 3 sources located at 10,25,
and 45 degrees from broadside. The angle of arrival estimation
were compared to the actual direction, and the average estimated
error was calculated. Figure 6-1 compares the average of estimated
error when using the random sampled covariance matrix with that
when using the doubly symmetric covariance matrix. Notice that the
first case outperforms the second. Figure 6-2 compares the average
of the estimated error when using the average Toeplitz covariance
matrix with that when using the random sampled covariance matrix.
Again the method of the two outperforms the second. Figure 6-3
depicts the same comparison between using the optimized Toeplitz

covariance and using the average Toeplitz covariance. The second
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method only slightly outperform the first. In figure 6-4 on the
comparison is done between two different structure of arrays; the
uniform regular array and the minimum redundancy array. For the
first we used the optimized Toeplitz method which gave the best
result for the uniform regular array. Notice that the MRA gave

much better results. Figure 6~5 shows all the result_in one graph.

S. Conclusion.

The effect of different estimates for the covariance matrix
on the performance of multi-source direction finding |was
considered in this chapter. The estimates considered are random
sample, the doubly symmetric, the averaged Toeplitz and the
optimized Toeplitz when using MUSIC algorithm for direction
finding. Simulation results shows that the optimized Toeplitz
method give the best results. When the array is of the MRA type
little redundancy exist and only the random sample method can be
used as an eostimate for the covariance matrix. Nevertheless
simulation shows that this array outperforms the URA even when the

best estimate for the covariance matrix is used.
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Appendix

Few matvrix equation will be first generated and then be use
to derive (110 of the text
1.
-1
6|R| = |R| tr[ R~ 6R ] (a-1)
can be obtained directly from the definition of a determinant of a
matrix |R| and its inverse R-1 in terms of the cofactors of R.

We will demonstrate this through a 2x2 matrix example. Let

c

1
R-léR d -b ba 6b
| R | -c a Sc &d

a b
R = [ d ] , then 6|R|= add+dba-bdc-cbb

1
tri R 16R] = ( dsa-bSc-cSb+adb)
| R |
Hence
1 -1
§|R| = tr[R ~ 4R]
| R |
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6|r|

= tr[ R 16R ]

2. & log|R|=
IR}

3. RR =1

-1 -1

5R R + R 6R =61 =0
Hence 5 R-l= R-16R R-l
Now From (10),
60 P(R ,R) 1 = - & log|R| - & tr( R 'R]

But from (A-2)
6 log |R| = tr [ R 18R]

and from (A-3)

S rRYy)=-rIsrr?
also & tr{a'lall =tr [ R 1) R, ]
Then 60 P(R .R)I= —trl R 1sR] + tr R 16R R-1R1]
But tri R VSR R'1R1] = tr ( R—1R1R-16R ]
Therefore 1 i

& P(R,,R) = tr [ (R RR
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(A-3)

(A-4)
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7- THE ERROR PROBABILITY OF ESTIMATING THE NUMBER

OF TWO CLOSELY LOCATED SOURCES.

1. Introduction

The problem of estimating the number of signals impinging on
an array is very important. Its value is a crucial parameter by
itself, but also required in some approaches of finding the
direction of these signals. The eigenspace method for direction
finding relies heavily on the knowledge of the actual number of
sources.

Every estimation problem has errors associated with it.The
probability of these errors are of interest. Such probability of
errors obviously depends on the method used as well as on the
parameters of the process implemented. In the estimation of number
of sources,of interest is, both underestimation (that is when our
estimation is smaller than the actual number) or overestimation
(that is when the estimated number is larger than the actual
number ). Particularly when the actual number of sources is only
two and when these sources are wvery close to one another the

question of underestimating is rather interesting.
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In some old methods of estimating the number of signal
subjective approaches were used [1].That is,equal eigenvalues with
certain tolerance,are taken to correspond to noise eigenvalues.
The number of sources is then taken to be the dimension of the
array minus the number of these equal eigenvalues. Errors will
occur particularly when some of the eigenvalues,which correspond
to signal sources are close,to the noise eigenvalues.

Recently researchers have been using information theoretical
criteria instead of these subjective approaches. Akaike[2] used
the so called Akaike Information Criterion (AIC),while Schwartz
and Riessanen [3] used the so called Minimum Description Length
(MDL) to determine the order of polynomial by which dynamic system
might be approximated. Later Wax and Kailath [4] used both methods
in estimating the number of sources impinging on an array. They
show that MDL results in smaller estimation errors than AIC and
that these errors diminish when the length of data used becomes
infinitely large. They did not,however, explicitly present the
values of these errors. Wang and Kaveh [S5] gave an analytical form
for the probability of error for both wunderestimating and
overestimating the number of sources. Applying Taylor series

approximation of a logarithmic function they could present the
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probability of error as an erf (error function),and hence, could
use existing numerical tables. As they admit their approximation
are valid only when the number of sensors M is very large.

In this chapter we study the validity of Wang and Kaveh’s
approximation for the particular case of two sources close to each
other. We show that such approximations are not only very
sensitive to M but also to SNR. In fact they are valid only at
very low SNR and very close sources, a situation which is unlikely
to be occur in practice. The probability of error in such
situations turns out to be one. Using analytical expression
without the aforementioned approximation leads to a more
pessimistic result,that is,to a higher probability of error than
what Wang and Gaveh predicted. Direct simulation gave very close
results to those obtained when using the analytical expression
with no approximation. Therefore one might question whether the
whole method of estimating the number of sources using MDL is of
any value.

Before going into the main topic we first briefly review the
basic concept of direction finding of narrow band signals. The
waveform received at the M element arvay is a linear combination
of the D incident wave fronts and noise. Thus the waveform wvector

X can be expressed as follows:
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r b - b B - - -
X1 F1 Ul
X F W
X
L M J L - L FD- L NM.
or,
X=AF + W (1)

The incident signals are represented in amplitude and phase
at some arbitrary reference point by the complex quantities F1,
F2,... FD. The noise,whether sensed along with the signal or
generated internally, is given by the complex wvector W. The
element a(i,j) of the matrix A is a function of the signals’
arrival angles and the array element locations. That is, a(i,Jj)
depends on the i’th array element, its position relative to the

origin, and its response to a signal incident from the direction

of the j°th signal. The covariance matrix R is given by

R= X v AF Ff Af + W u* (2)

where the overbar is used for the expectation and ¢ is the
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transpose conjugate. Under the basic assumption that the incident

* '

signal and noise are uncorrelated the matrix F F and W W are
diagonal.

Let Ai and e i= 1, 2, ... M, be the eigenvalues and
corresponding eigenvectors of R with li in descending order, that
is kl > Kz ) KM .

The MDL criterion which estimates the number of source by

finding k that minimizes the function A(k,N) ,where;

a(k)
ACk,N)= N(M-k) log( --(—6 ) + 172 k(2M-k) log N (3)
N is the data length,
1 M >
a(k)= T A (4)
M-k i=k+1
and
M - 1/(M-k)
o(k)=( 1 A ) ()

i=k+1

-

: estimated value
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2. Detection Performance

Let Hk denote the hypothesis that the number of actual

sources is k . We can derive the probability of underestimating

the number of sources given H, , by

k
Pu(k)= P { (k ¢ k) | Hk }

"~

where means estimated value.The probability

overestimating the number of sources given Hk is

P(k)=P ( (k> k [H )}

(6)

of

(7)

It is reasonable to assume that the probability of overestimation

-~

or underestimation as a function of deference between k and k is

decreasing fast. That is,

PC (k= k=1)| H_} » P{ (k = k-2) | H_}

and

P{ (k= k+1)| H, } »PU (k 2 k+#2 ) | 0, )
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so that
P (K) =P (k=k-1) | H )
= P{ ACk-1,N) ¢ ACK,N) | H_} (10)
and

P (k) = P{ (k = k+t1) | H )

P{ ACk#1,N) < ACK,N) | H_ ) (11)

Note that the probability of incorrectly estimating the number of

sources given Hk is

P. =P {(k#k)|H )}

R

Pu(k) + Po(k) (12)

By definition of a(k) and g( k) we can easily get,

1 - M-k
a( k-1)= ——— J\k + a(k) (13)
M -(k-1) M -(k-1)
(k-1 ™) o X peior M (14)
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Now,

(M=(k-1)) log [ a(k-1)/g(k-1) 1]
[a k-1 )" C(k"1)

= log —
[s(k-1)1" (k1)

and by using (13) and (14) we get,

M-k ] "-(k-].)

1 ~
[ M —(k-1) Ak . -(k=1) a(k)

= log
A, [ak)] M-k

and after simple evaluation,

”~

M-k hk M-(k-1)
[ aCkn™¥ [‘Te-'(' k1) * (M(k-10) a(K) ]
= log
M-k ~
a(k) -~
= (M-k) log ——;E:;— + log @, (A sa(k) ) (15)
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where

ou()\k za(k))
M -k 1
[ M-(k-1)+ M -(k-1)

M—-( k-1)

(hk/a(k)) ]

(16)

~

LA sa(k) 1]

k

Notice also that (15) can be written in the form

a(k-1) o M (k1) a(k) K -
log [ —;FE:TS— ] = log [ ) + log Qu(Kk/a(k))
(16.a)
Similarly we have
a( k+1) a(k) -~
(M=(k+1)) log (ks 1) = (M~k) log oK) + log Qo(Kk+1/a(k))
(17)
where
R M -k 1 R M-(k+1)
Q (A /a(k))=[ - (DN /a(k))]
okt M-Ck+1)  MCk#1) R
T LA, 7 atk)] (18)
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Define the penalty function of MDL by;

P(k,N)= 1/72 k(2M-k) log N (19)

then we can rewrite Pu(k) and Po(k) in terms of Q y Q .

(see appendix A)

~ pP(k,N)~ p(k-1,N)
P K) & P [ los @ (X /a(k)) ¢ - | b ]

(20)
and

~ lp(k+1sN)- p(k,N)
po(k) ~ P [ - log oo(xk+1/a(k)) b . | H, ]

3. Probability of error feor the case of two close sources
Analytical development of eigenvalue and eigenvector of

covariance matrix R that is constructed from a signal received

two close sources is done in Ch. 2.7 of[é6] pp 52-55. From [6] we
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find that the eigenvalues for two uncorrelated sources arve given

by:

2
49192(1-|¢| )

2
(P1 + Pz)

+ o (22)

where Pi ( i=1,2) are the power of two sources and ¢ is given by:

sin ( 172 M k d 8)
¢ = (24)
M sin( 1/2 k d 8)

where k= 2rn/\ , d = A\/2 and @ 1is the difference of source
bearings.
For the condition P = P1= P2 equation (22) can be simplified
to give:;
= ¥ 2
A1’ , =PM(1 [#] ) + o (24)
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Using the result of previous section we can get from (16) and (18)

u

Q , Oo for the two sources case

Q (\ /a(2))=[ + (A_za(2)) ] [ ) V4 a(Z)]
u 2 M -1 M- 1 2 2
(25)
~ M -2 1 -~ M-3 ~
Q (A /a(2))=[ - (A_rza(2)) ] [ A_sa(2) ]
o 3 M -3 M -3 3 3

For the case of two

(26)

source signals, (20) and (21) give the

probability of underestimating and overestimating the actual

number of sources (being=2) by one or three, respectively. That is

~ P(zvN)- P(l,N)
P (2) = p[ log 0 (X /a(2) < - l H, ]
(27)
~ p(3'N)-P(20N)
P°(2) b [ -log oo(xa/a(z)) ) " ' H2 ]
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with Qu(izla(z) ) and Qo(zala(z) ) are given by (25) and
(26), respectively.

Again for the case of two close sources, it is reasonable to
assume that we will have ;=3 with very small probability, p°(2) o

0. Hence the error in the detection of the number of sources will

”~

be mainly due to k=1; the underestimated case, and hence the total

error probability P_ = Pu(z). For M relatively large, Log Quand

E

log roan be approximated by the following expression [5] (See

appendix B)

log Q (x) = 1/2 (x-1)° (29)

- 172 (x-1 )2 (30)

R

log @ (x)

Also notice from (4) that, for large M and a given k, a(k) can be
approximated by dﬁ. In particular for k=2 , a(2) = ai. Therefore

together with (29) and (30),(27) and (28) become,
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A2

p2)=p [ (= 1) « / 2mUezs1n 1 | 1))

2|

(31)

”~

A
3
Po(2) 2P [ —-)> J 2 maa- sz | w)
n
(32)
According to Brillinger{7].the asymptotic distribution (that is
with large data length) of kiis normal with E{ Ki} = Ai and

. 2 .
var{li}— Ai/N ,i.e.

T 2
)\i N(?\.i ’ ki/N ) (33)

Hence Pu(z) and po(z) became (see appendix C)

o {ZZNIA(LNT - AN (A, =02 )
Pu(z)z erf [ ] (34.a)
)\2
P (2)=1 - erf ( 4 2Ip(3,N)- p(2.N) 1 ) (34.b)
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4. Adequacy of the approximation for log Qu(x)

For the case of two close sources, it is reasonable to assume
that we will have ;=3 with a very small probability; Pu(z)g 0.
Hence the error in the detection of the number of sources will be
due to having ;=1; the underestimation case. Therefore the total

error probability P_= Pu(z). Pu(z) can be obtained from the (34a)

E
provided the approximation of log Qu(x) by (29) is satisfactory.
To examine the adequacy of this approximation we define a

normalized error by

| 1os @ (x)- { 1/2(x-1)) |

Error = (35)
| log Q,(x) |
where x is
2
X = KZ/ oy (36)
2 .

The value of this error as a function of x= Kzl an is given in
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figure 7-1. From this figure we notice that in order to have a
sufficiently small error (X5 % ), x must be close to one.
Increasing the number of array element from 15 to 30 reduces the
error by only a small amount. Figure 7-2 and 7-3 show the meaning
of the requirement (that is x should be close to one),in terms of
signal to noise ratio. From these figures we conclude that, an SNR
as low as -15 dB, and an angle separation between the two
sources,less than 1.5 degrees,are required to obtain an adequate
approximation.

From Brillinger [7] we know that iz has normal distribution
and so is x = Xz/ oi. Using this distribution we calculated and
depict in figure 7-4, the expected value of log Qu(x) and
(x-1)2/2 while in figure 7-5, we depict the variance of these
random variables. For the abscissa of these figure we used the
expected value of the normal random variable x = le onz. and for
the variance of x we chose ai= ;2/25.

From these two figures we notice that
E [loga(x)] <E[1/2 (x-1)2] (37)

and

var [ log Qu(x)] < var [ 1r2 (x-l)z ] (38)
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. 2
Using either log Ou(x) or 172 (x-1), we

underestimating probability Pu(z) and Pu(z)

P (2) =

P(2,N)~P(1,N)

P [ log @ (x) <«
u N

Pu (2) =

P(2,N)-P(1,N)

P [ 172 (x-l)2 <
N

calculate the

S

(39)

|+

(40)

The random variable in (39) has both average and wvariance

smaller than the average and variance of the random wvariable in

(40). The relation of the distribution of these random variable is

sketched in figure 7-6, where y= log ou(x) and

From this figure it is easy to conclude that

pu(z) < Pu(2)
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for every value of the constant in the right side of the
inequality in (39) and (40). That is for every data length N and
every arrvay size M (see equation(19)). Equation (41) shows that
the probability of error in estimating the number of sources when
using the approximating function 1/2 (x--1)2 is optimistic. 1In
reality (i.e. by using the function log Ou(x)) the probability of
error is much higher. The error in the value of probability of
error is larger when SNR is larger, since then both the expected
values and the variance of log ou(x) and 1/2 (x-l)2 becoming

further apart (see figure 7—-4,7-5 and 7-3).

5. Results

Figure 7-7 and 7-8 present the error probability in
estimating the number of sources (actual number=2 ) as a function
of angle separation, when approximating and actual functions are
used, respectively. From these figures it is clear that the PE
decreases when the angle of separation increases. Also Pé(z) «

PE(Z).The error probability as a function of data length is shown

in figure 7-9 when the approximation function is used and in
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figure 7-10 when the actual function is used. Again it is very
clear that p;(z) « PE(Z) for a large range of data length.The
error probability as a function of SNR is depicted in figure 7-11
when using the approximation function and in figure 7-12 when
using the actual function. These errors become smaller when SNR is
higher, nevertheless, as before p;(2)< PE(Z) for every SNR. Figure
7-13and 7-14 are the same as figure 7-11 and 7-12 except for the
angle separation; here 61-62= 1.0 degree instead of 1.5 degree
before. Notice that the error probabilities P;(z) and Pu(z) become
closer when the angle separation is smaller and the accuracy of

using the approximating function becomes better.

6. Conclusion

The use of MDL in estimating the number of sources impinging
on an array was considered in this chapter. togarithmic function
of a normal random variable is involved in calculating the errvror
probability of underestimating (that is when the estimated number
is smaller than the actual number) or overestimating (that is when

the estimated number is larger than the actual number) of the
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number of sources. Approximation function to this logarithmic
function is sometimes used to obtain analytical form for the error
probability. We show in this chapter that such approximation is
very poor and usually provides an optimistic results regarding the
error probability. That is, it predicts a lower probability of
error in estimating the number of sources than obtained when using
the actual function. Only when SNR is very low and the angle of
separation is very small the approximation might have some value.
such difference in error probability when using the approximation
versus the actual function, which sometimes turns out to be very
large, was discovered in many simulation runs with different SNR,
different angle separation, different number of array
element ,different data length, etc. Although these simulatiomns
wereperformed with only two signal sources; it is believed that
the same conclusion is in effect with a large number of sources.
In conclusion, one might question whether the whole method of

estimating the number of sources using MDL is of any value.
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appendix A

From (10) together with (3) we have

a( k-1)
Pu(k) =P [ N(M -(k-1) ) log ————— + p(k-1,N)
g( k-1)

a( k)

{ N (M-k) log + p(k,N) ' Hk ]

g( k)

where we also used (19).Equivalently

a( k-1) M—( k-1) [ a(k) ] M-k
P (k)="P [ log — - log
“ [ o( k-1) ] a(k)
'p(k,N)-pP( k-1,N)
< | H ]
N k

Finally by using (16.a) we get
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~ 'F(k'N)— p(k-llN)
P (K)=P [ log @ (X, sa(k) ) ¢ - | W, ]

Similarly from (11) and (3) we have

a(k+1)

(k) * Pl

Po(k)= P [N( M-(k+1) ) log
a(k)

4 N(M"k) 109 -5-(—?—)—-

+ PCKN) | H ]

where we also again used (19). Equivalently

a(k+1) M-(k+1) a(k) M-k
P> = © [ 109 [ —rery ] “tos [ iy
|PCk.N)= p(k+1,N)
< | H, ]

N

Finally by using (1i7)

~ |P(ka) - P(k+1lN)
Po(k)= P [ log °o“k+1 / ak) < - | Hk ]
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or

- |P(k+1,N)- p(k,N)
Po(k)= P [ -log Qo(hk+1 7a ) > N l H ]

Appendix B

For the case of two sources, we write from (25),

M-2 1 M-1
log Ou(x)= log [ [ + x] X ]
M-1 M-1
(B-1)
Using Taylor expansion we get
~ 2
log x 2 (x-1) - 172 (x-1)", 0 ¢ x <2 (B-2)
log (1 + x) X x - x2 /7 2 0¢x<2 (B-3)
Now
M-2 1 Xx -1
+ X = 1 + (B-4)
M-1 M-1 M-1
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For large M the second term on the rvight of B-4 satisfies the

condition of B-3, so that

M-2 p | M-1 x -1

log [ + ® ]
M-1 M-1

x - 1 ( x - 1)°
E(M—l)[ - - ]
M- 1 2(M - 1)
( x - 1)
= x -1 -
2(M-1)
> x -1 (B-5)
for large M, from (B-1) together with B-5, we have
log Qu(x) = x -1 - log x
2
=(x -1) - [ x-1 - 172 (x-1)" 1]
=172 (x-1)° (B-6)
By similar step we show that
~ 2
log Qo(x) 2~ 172 (x-1) (B-7)
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Appendix C

From the result of Appendix B

A
, - ~ 1 2 2
log Qu(Azl a(2) ) = 5 ( 2 1)
n
< 1 A3 2
&~ = -
log @ (A sa(2) ) = - 5 ( > 1)
n
1 M - 2
where a(2)= PN Xi = o
M-2 i=3

So

~ T2
P(2) =P [ C Ao = 1)« f/ (2/N) [ P(2,N)-pP(1,N) ] | H, ]

(c-1)

p(2) =P [ ( Xs/oi -1)> V/F(Z/N) [ P(3,N)-P(2,N) ] | H, ]
(c-2)

From the Brillinger the asymptotic distribution of Aiare normal

with € [\.]1 = A. , and var [A.] = A° /N so
b § b § 1 b §
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~p (3 2 _ 2
Pu(2) =P [7\2 < O'n /(Z/N) [ p(2,N)- p(1,N)] + O'n ]

ai v/;[p(z,N)-p(l,N)] - /hl(hz-ai ) ]

A

= erf[
2 (c-3)

P°(2) =p [ i3 ’ ai 1/22/N)[p(3,N)-P(2.N) + oi ]

. 2 <
since A_ is same as o and var[ A_.]l = ale » SO
3 n 3 n

PO(Z) =1 - erf [ v/ 2 [ p(3,N)-pP(2,N) ] (c-4)
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