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Abstract

T itle  of Thesis: C om puter Modeling and Analysis of Biological R hythm s

Shi Xiong Yang, D octor of Engineering Science, 1990

Thesis directed by: Dr. Stanley S. Reisman and Dr. W alter N. Tapp

Biological rhythm s are an im portant phenomenon and feature of physiologic 

systems. Indirect means have to  be employed for their description and explo

ration due to th e  unclear internal nature of the system. This study analyzed and 

developed several possible m athem atical models using single or m ultidim ensional 

nonlinear differential equations to approach the experim ental circadian data. The 

numerical solutions of the  models were obtained by com puter sim ulation and the 

sim ulated and experim ental acquired circadian da ta  were analyzed in bo th  the 

tim e and frequency domains. Phase plane plots, phase response curves and power 

spectrum  analysis were employed to  determine the  nonlinearity of the  system  and 

its relation to the  harmonic structure while bispectrum  analysis showed the  re

lation between the harmonics. Dynamic spectrum  and frequency dem odulation 

techniques were used to  explore the dynamic transient process of th e  circadian 

rhythm s when a stimulus is applied. The coherence function was exam ined to 

explore the  frequency correlation between two different circadian rhythm s: tem 

perature and activity of the  same subject. The study showed th a t a  two dimen
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sional coupled nonlinear oscillator model can be used to  describe the circadian 

rhy thm  b e tte r  and a model with relatively large nonlineaxity closely approxim ated 

th e  experim ental data. The research revealed the harmonic structure of circadian 

rhythm s. This structure related to the nonlinearity of th e  system  with th e  2nd 

harm onic of experim ental data representing bim odality in  the  tim e series. All the  

models developed in this research reflected this im portan t feature. The effects of a 

nonperiodic stimulus to  the circadian system were sim ulated in the model and an 

“overshoot” phenomenon was found during the frequency transient process. High 

values of coherence were found at the fundamental and third harmonics while no 

phase relation was found between harmonics of the  experim ental data  using the 

b ispectrum  method.
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C hapter 1

Introduction

1.1 Introduction to the M echanism  o f B iologi
cal Oscillators

Biological oscillators are the “oscillators” existing in living organisms. The 

oscillating waveform in living beings have many different features which include 

distinct shapes, am plitudes, frequencies, phases, etc. [29, pages 29-4S] Although 

the existence of biological rhythms has been well known since antiquity, the ex

istence of biological oscillators has been accepted only in the past 20 years. A 

prom inent view was th a t the rhythms were due to external periodic effects like the 

daily changes of light and dark or similar changes in tem perature, etc.

It has been very difficult to prove physically the existence of biological oscilla

tors, but recently there has been some significant progress. Scientists have for the 

first tim e altered the basic biological rhythm s of animals by transp lan ting  a. small 

area of brain tissue believed to serve as the body’s m aster “clock” . [35] The exper

iments involved transplanting brain tissue between ham sters with fundam entally 

different biological rhythm s, which confirmed the hypothesis th a t a small area of

1
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the  brain called the suprachiasm atic nucleus serves as the m aster clock. When 

anim als are kept in the dark, their sleep-vvake cycle is set by a. m aster biological 

clock, which coordinates the release of various hormones, changes in tem perature 

and other daily rhythm s. Normally a ham ster has a free-running period of about 

24 hours. T h a t is, they wake up and start running approxim ately every 24 hours, 

based on th is internal clock. It was believed th a t most anim als set their clock 

according to the  am ount of daylight and darkness.

In the  experim ents the suprachiasm atic nucleus, which is located above where 

the  two optic nerves cross in the brain, were removed from the  ham sters. These 

ham sters then ran randomly a t any time of the  day or night. Further experim ents 

were done by im planting fetal tissue believed to contain the nucleus back into the 

anim als and the  rhythm s were restored. W hen different fetal cells from ham sters 

w ith different free running periods were im planted, the free running period of the 

donor was exhibited. This experim ent gave the  idea of the existing organ with the 

function of circadian rhythm , but it was still not sure whether this organ controlled 

the  rhythm  or merely allowed the rhythm  to be ex pressed. [3-5] Whis interesting 

experim ent, along with o ther new discoveries in recent years, have pushed the 

research in biological oscillators to  a new level.

Biological oscillators, if divided into categories by their free running period, 

m ay include the  following types:

1. Short period oscillations.

These oscillators generate high frequency oscillations, such as heartbeats. 

Due to the high oscillating frequency, this type of biological oscillator shows 

more obviously endogenous nature. T he heartbeat waveform (m easured as

9
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Figure 1.1: E K G  Waveform, high frequency biological oscillator.

EKG) has an oscillation period between 0.1 seconds and 5 seconds. Nor

mally the shape and period are kept almost constant as shown in Fig.1.1. 

Much research was done to explore the mechanism of the  heartbeat. Some 

phenom ena could be possibly explained from the point of view of biological 

oscillators. For example, the  baseline drift of EKG waveforms implies cou

pling from other oscillators with lower oscillating frequency, e.g., respiration. 

The arrhythm ias observed in an EKG waveform im ply the  possibilities of 

either coupling or excitation by another abnormal oscillator w ith different 

characteristics (e.g., am plitude, frequency or shape, depending on the type 

of arrhythm ias). Fig. 1.2 shows an EKG signal with periodic arrhythm ias.

2. Long period oscillations.

These oscillations are usually on the order of 24 hours and have received 

considerable atten tion , especially in the past 20 years. It is obvious that 

they are of m ajor im portance in many biological functions: for example, the 

treatm ent of circadian sleep disorders, such as the  rapid tim e zone change 

(jet-lag) syndrom e, delayed sleep phase syndrome, shift work dyssom nia and

•3
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Figure 1.2: E K G  waveform w ith arrhythmias, a biological oscillator possibly cou
pled or excited by another oscillator.

disrupted sleep in the elderly, the daily rhythm s of susceptibility to drugs, 

etc.

Fig.1.3 shows an example of recorded circadian tem perature d a ta  from a 

“free running” Rhesus monkey, which has a  period of 24.17 hours. The 

biological mechanism responsible for the circadian rhythm s is still unclear. 

Therefore exploration in this field has some special difficulties. Our research 

on biological oscillators were concentrated mainly in the field of circadian 

rhythm s.

3. Very long period oscillations.

The biorhythm  cycle is a  very long period oscillation, w ith period around 

30 days[3]. It is believed th a t these very long period oscillations s ta rt from 

the date of b irth  and th a t these very long period oscillators have different 

periods for th ree biorhythms:

Physical cycle, about 23 days.

Emotional cycle, about 28 days.

4
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Figure 1.3: Circadian temperature tim e series recorded from a “free running” 
Rhesus monkey, x-axis: sampling points (144 points a day), y-axis: am plitude.

Intellectual cycle, about 33 days.

It was reported th a t the research results of biorhythms have been applied 

to practice in some countries. For example, in China, the assignm ent of 

workers in some positions where high levels of concentrations are needed 

(e.g., on duty  in a power plant; air plane pilots, etc) were made according to 

their biorhythm  cycles [13]. Fig.1.4 shows the  com puter predicted biorhythm  

of the au thor during one month.

1.2 Circadian Rhythm s

Circadian rhythm s are biological oscillations with a period of around 24 

hours. T he work of researchers, especially during this century, has resulted in much 

impressive evidence th a t the daily cycle of biological phenomena are controlled by 

internal oscillators ra ther than by the  alternation of light and darkness in their 

environment[29, pages 29-30],

5
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Figure 1.4: C om puter predicted biorhythm  o f the author in May, 1990. S -th e  
physical cycle, K -th e  emotional cycle, C -the intellectual cycle.

Many experim ents were performed by keeping the  subjects in carefully con

trolled environm ents (so called “free-running ” noncyclic experim ental conditions): 

the  subjects were kept in isolation, with constant tem peratu re and constant light 

(or darkness), and w ith food and water continuously available in excess. Outside 

stim uli, such as noise which might disturb the subjects, were kept to  a minimum. 

All the factors which m ight inform the subjects “about tim e of day” were elim

inated. Under such circumstances, the subjects typically show a  well organized 

wake-sleep cycle, which consists of a several-hour stage during which gross motor 

activity is concentrated, followed by a sustained block of rest or sleep. This cy

cle repeats itself, with a period on the order of 24 hour. M ost such rhythm s are 

“self-sustained” , in the sense tha t they persist, w ithout evidence of dam ping, for 

as long as the  recording is continued.[19] The experimental results exhibit a  peri

odicity in subjects’ behavior. T he periods of such rhythm s varied between 22 and 

26 hours. For example, the core tem perature, continuously m easured with a rectal

6
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therm om eter, tended to  rise during the day, and fall to a m inim um  ju s t before 

wake-up time. Some literatu re states th a t the circadian period is alm ost always 

different from 24 hours [14] which strongly suggests the existence of endogenous 

oscillators in living systems. Because the period of the rhythm s is rarely exactly 

24 hours, Halberg suggested the term  circadian (from the Latin ’"circa, diem”; i.e., 

about a  day) for such phenom ena [29, page 31].

Although the  internal mechanism of circadian rhythm s is unclear, it is obvious 

th a t this endogenous oscillator has exhibited similar dynam ics to  some nommear 

oscillators:

1. T he oscillator is self sustained. It has almost constant period, bu t it may 

vary or be m odulated depending on different, nonlinear properties, e.g., the 

oscillator w ith a  large nonlinear portion will exhibit relatively high harmonic 

com ponents which affect its constant period.

2. T he behavior of the oscillator can be made to follow periodic changes of 

light an d /o r tem perature. This is commonly referred to  as entrainm ent or 

synchronization by external stimulation. Entrainm ent is possible only if the 

period of th e  external cycle is close to the endogenous period or an integer 

m ultiple or subm ultiple of it. Fig. 1.5 is a raster plot from an experim ental 

record which shows the locomotor activity of a  cockroa.ch[36]. R aster plotting 

is a graphic form specially used in circadian research. Each horizontal line 

of this plot represents an estim ated period (a day) and different symbols 

represent the  am plitude of oscillation. If the real oscillation period is exactly 

the same as estim ated, the symbols in each line will keep the same position. 

Otherwise the  variation of oscillation can be seen directly from the raster

7
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Figure 1.5: Entrainm ent o f the locomotor activ ity  o f  a cockroach.

plot. We will discuss the detailed application of this m ethod in chapter 5. In 

fig.1.5, th e  s ta rt of the  activity has a period of less than  24 hours while at the 

twelfth day a  photo-periodic regime is applied, and its period is entrained 

to 24 hours a t 28th day. The details of the analysis of entrainm ent will be 

discussed in chapter 7.

3. T he phase of the oscillator can be shifted by nonrepetitive stimuli. It can 

be shifted by one or several stimuli bu t not by a  periodic stimulus. The 

am ount of th e  phase shift depends on both the stim ulus itself and its timing 

with respect to the  endogenous rhythm . The la tter relationship is of great 

im portance in the study of biological oscillators. [22]

4. The rhy thm  of an oscillator can be totally disrupted by applying a specially 

designed stim ulus, i.e., if a  stimulus is applied at the right tim e with proper 

am plitude and  w idth, it may possibly d isrupt the oscillation or even stop the 

oscillation. The relationship of the circadian rhj'thm s to the stimulus will

8
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also be discussed extensively in C hapter 7.

1.3 Past and Current Research Trends

Research in the  field of circadian rhythm s has received considerable a tten tion  

during the past 20 years. As we mentioned earlier, when considering biological 

oscillators, one has to deduce its structure from experimentally obtained behavior 

where the  nature of the behavior is usually unclear. Therefore effective m athem at

ical tools and other techniques were sought.

Aschoff and Wever used their specially designed, fully equipped laboratory as 

a  tim e-isolation environment to  obtain their circadian data.. This enabled them  

to acquire an early understanding of internal desychronization and the hum an 

circadian system  in general. A circadian pacemaker was assumed to  underlie the 

stable oscillation of core body tem perature. They proposed a  m athem atical model 

showing the internal desynchronization of two different circadian rhythm s: body 

tem perature and activity. [45]. They pointed out th a t these two circadian clocks 

had different properties. After desynchronization, these two rhythm s do not keep 

the same oscillation period. T he tem perature period shortens by much less than 

the  activity period lengthens -  hence the tem perature pacemaker is “stronger” (in 

addition to  being more “stable” in its period). Even though the different circadian 

rhythm s couple internally to each other, the tem perature rhythm  has relatively 

more “strength” . The tem perature pacemaker thus acts like an “internal zeitgcbcr 

(stim ulus)” . Their work has played an im portant role in clarifying many aspects 

of the circadian system in animals and humans.

Colin S. Pittendrigh did much research in this field, fie presented experim ental
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results of daily rhythm s as a coupled oscillator system and introduced the  principle 

of entrainm ent in circadian rhythm s. [30]

Theodosios Pavlidis studied the dynamic properties of biological oscillators 

and the m athem atical techniques necessary for their investigation [29]. He devel

oped a biological oscillator model from the phase characteristics of the oscillation 

responding to  the stimulus, i.e., phase response curves. He used this model to 

study the relationship between the PRC  (phase response curve) and th e  circadian 

rule. The model results showed different phase response charactertics in different 

tim e periods. We will discuss this model in chapter 4.

Richard E. Kronauer and his colleagues presented several m athem atical m od

els of the human circadian system. One of his models contains two interacting 

oscillators where tem perature and rest-activ ity  are each governed by an oscillator 

of the Van der Pol type[23]. A van der Pol type oscillator is a self-sustained nonlin

ear oscillator which has a simple m athem atical form. Therefore much investigation 

has been done on this type of oscillator.

In their model, the two oscillators, “x ” and “?/' refer to two circadian pace

makers; x  dominates the core body tem perature rhythm , and y regulates the sleep- 

wake cycle. The oscillators affect one another through “velocity” coupling. The 

periodic zeitgeber is modeled as forcing on one of the oscillators. This model was 

used to reveal the dynamics of synchronization and desynchronization between two 

coupled oscillators. Our simulation of this coupled oscillator model will be intro

duced in chapter 4. Our circadian rhythm  model is also based on the modification 

of this K ronauer’s model.

Borbely [7] has proposed a model of sleep regulation which unifies findings
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from classical sleep research with those of the more recent circadian studies. In 

Borbely’s model, sleep is regulated by two processes, S and C. T he S variable 

corresponds loosely to “fatigue", and may actually represent a  neurochem ical sleep 

prom oting factor. It builds up during waking hours and decays during ;leep. 

Borbely also postu lated  the  C process, a circadian com ponent of sleep regulation. 

C is taken to  be independent of either sleep or waking. T he Sum of S and C 

represents the to tal sleep propensity. A sleep episode ends when this sum falls 

below a certain  threshold.

Borbley’s model has intuitive and physiological appeal, and it has inspired 

the quantita tive work of Daan and Beersma. They formalized and extended this 

conceptual model. In their model, S and C regulate the sleep-wake cycle. Sleep 

onset occurs when S crosses a high threshold II and w ake-up occurs when S falls 

below a low threshold L. II and L are slightly noisy. Process C is generated by a 

single circadian pacem aker which imposes an approxim ately sinusoidal m odulation 

on the  thresholds. Hence there are circadian influences on the  sleep-wake fluctu

ations: Process C strongly synchronizes S if the threshold oscillations have large 

am plitude A; otherw ise S adopts a periodicity governed m ainly by the separation 

of the thresholds H and L.

M ary Carskadon has studied subjects on a  40 hour constan t routine. [24] 

During this sleep deprivation protocol, subjects are supposed to  stay  awake for 40 

hour in a  constant posture. She found that the subjects occasionally drop off into a 

“microsieep.” For a few seconds the brain falls asleep and the EEG pattern  changes 

suddenly. W hat Carskadon has found is th a t these unintended sleep episodes are 

most likely to  occur a t certain times of day. The histogram  of microsleeps has local 

m axim a a t the tem perature trough and nap phase, and local m inim a a t the two

1 1
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Figure 1.6: Bimodal distribution o f unintended sleep episodes during the last 22 
hour o f a 40 hour constant routine. N=278 sleep episodes, 16 subjects.

w ake-m aintenance zones. This bim odal rhythm  phenomenon is shown in figure 

1.6. The bim odal rhythm  was also found in our experiment da ta  and therefore was 

one of the im portant consideration for our model.

In 1989, Charles A. Czeisler, R. Kronauer and their colleagues, announced 

their research results from 45 human circadian rhythm  resetting trials [14]. Each 

trial consisted of an initial endogenous circadian phase assessment, a  th ree cycle 

stimulus (each cycle included 5 hours of bright light, an ordinary indoor room 

light and darkness), and a final phase assessment. The d a ta  indicate th a t  the 

sensitivity of the hum an circadian pacemaker to light is far greater than previously 

recognized. The m agnitude and direction of the phase shifts induced by the  three 

cycle light stim ulus were primarily dependent on the timing of exposure to  bright 

light, as well as the initial circadian phase at which the light exposure occurred. 

The largest phase shifts caused by exposure to the three light cycle stimuli was
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greater than 8 hours. The experiment showed th a t the light probably exerts its 

action on the human circadian pacemaker via nerves connecting the  re tin a  and the 

hypothalam us. Two types of responses have been described in their experim ent, 

type 0 and type 1. Type 1 is a weak or incremental resetting in which the maximal 

shift is only a few hours. In type 0 resetting, on the o ther hand, the biological 

clock can be reset by up to 12 hours, regardless of the initial circadian rhythm  

or sleep-wake cycle. These results have implied a therapeutic use of light in the 

m anagem ent of disorders of circadian regulation.

Dr.Czeisler and his team  did a study with a. 66-year-old woman whose bio

logical clock was phase-advanced by about 6 hours.[15] They reset the  woman’s 

circadian pacemaker by exposing her to 4 hours of bright light each evening, even 

though her sleep-wake cycle was held constant. In the first 1 to 2 days her system 

had already shifted 6 hours. This study showed the practical application for the 

light treatm ents of circadian sleep disorder and other problems.

1.4 Scope o f the Research

This research concentrates on circadian rhythm s which are biological oscilla

tions having a  period of around 24 hours. These types of biological oscillators, as 

mentioned before, play an im portant role in physiologic systems. O ur emphasis in 

this field was on modeling and analysis of the circadian rhythm s in both tim e and 

frequency domains.

It is im portant to first investigate and gather experim ental circadian data. 

O ur experimental circadian data acquisition system  was built, at the VA Medical 

Center, East Orange, New .Jersey. This system was built to continuously m onitor
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and record long term  circadian da ta  from animal subjects. The experim ental data  

we obtained include tem perature, activity and feeding frequency from monkeys 

and rats. T e m p e ra tu r e  data are of special interest for the  following reasons:

1. Tem perature has often been regarded as the most stable, and best regulated 

circadian rhythm ;

2. The phase of the tem perature cycle is an im portan t determ inant of sleep 

onset and sleep length.

3. T he phase of the tem perature cycle has been linked to circadian performance 

effects.

In chapter 2, we will introduce our d ata  acquisition system  and the general char

acteristics of the acquired circadian tem perature data which will give us the  basic 

understanding for further modeling and analysis.

Due to  the unknown internal nature of the system, indirect means ha ve to  be 

employed for the description and exploration of biological oscillators. Most of the 

biological oscillators belong to the nonlinear oscillator category, which complicates 

the analysis. C om puter modeling and simulation is one of the most effective indi

rect m ethods. In chapter 3, we will first introduce the basic m athem atical theory 

and classical m athem atical tools for linear and nonlinear oscillation analysis. Our 

sim ulation results on a linear model will be presented and the lim itation of this 

model will be discussed. Classical analytic methods are effective m ethods to solve 

some “weak” nonlinear systems but errors will be generated with an increase in 

the system  nonlinearity, and the algorithm will become very com plicated for the 

m ulti-dim ensional nonlinear system. We will discuss our result on one of model
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using the analytic m ethod and in chapter 4 we will present a comparison of the 

analytical m ethod and com puter simulation m ethod of a one-dimensional Van der 

Pol oscillator with varying degree of nonlinearity.

In chapter 4, modeling circadian rh j'thm s by single or multi -dimensional non

linear differential equations will be discussed. We will first, discuss our sim ulation 

results of two previous models which are Pavlidis's biological oscillator model and 

K ronauer’s coupled oscillator model. Then we will introduce the development and 

the analysis of our models which include a  modified Van der Pol oscillator model, 

and a  two and a three dimensional coupled oscillator model. The two dim en

sional coupled oscillator model has been presented in the literature  to describe the 

circadian system [23] while our modeling emphasized the bimodality, which is a 

prom inent feature of many circadian rhythm s. Circadian activity rhythm s in rats, 

ham sters, birds, and many other animals exhibit two prom inent peaks, with one 

peak at the  beginning of activity followed by a second peak late  in activ ity  [31]. In 

addition, hum ans exhibit a  strong bimodal distribution of daily sleep latency, an 

objective measure of sleepiness. Such observations suggest th a t the  source of the 

bim odal patterns is an eminent, characteristic of the circadian system . Therefore 

our model a ttem pts to present, this feature. This idea is also substan tiated  from 

the analysis of the frequency spectrum  which will be introduced in chapter 6.

The experimentally acquired da ta  and model d ata  are compared and analyzed 

using topological methods. In chapter 5, we will introduce the phase plane m ethod 

and phase response curve m ethod for nonlinear analysis. The phase plane results 

of our Van der Pol oscillator model with different degrees of nonlinearity will be 

presented. We have effectively determ ined the  nonlinearity of our models by this 

technique. R aster plotting is a. graphic m ethod especially useful for circadian
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rhythm  research which was used in our experimental d a ta  recording.

T he sim ulated and experimental da ta  are then further analyzed in the fre

quency domain. T he spectral function is a  powerful tool to  determ ine th e  struc

tu re of a  system. In our case, it was used in determining the general and dynamic 

characteristics of experimental and simulated circadian data . In chapter 6, we will 

first review the general principles of the Fourier transform  and spectral function. 

The d a ta  pre-processing and the spectral analysis of circadian rhythm s will then 

be discussed. The spectral functions obtained from our experim ental subjects will 

be presented in section 6.4. They have common structures while each one also 

has d istinct features. We related the spectral s tructu re of experim ental d a ta  to 

our models. Especially, we explored the relations between harm onic structu re  and 

nonlinearity of the system which will be introduced in section 6.5.

The dynam ic process of circadian rhythm  is an im portant issue which will be 

introduced in chapter 7. A biological oscillator could be stim ulated by a periodic 

or nonperiodic external force. The periodic stimulus may cause the  oscillator ei

th er to  be entrained or to  be in an “almost periodic mode” . T he entrainm ent that 

occurs a t the natural frequency of the external stimulus is near th a t of the biologi

cal oscillator, while in the “almost periodic mode” both the excited frequency and 

original frequency of the biological oscillator co-exist in the system . We applied 

periodic stimuli with different am plitude and frequency range to  our models to 

determ ine the entrainm ent range. Then, the transient process due to a nonperi

odic stimulus was examined. Under certain circumstances, the  circadian oscillator 

can be exposed to abrupt changes in the phase of the entraining stimulus. The 

most familiar example is air travel across time zones. This phase shift produced 

by traveling to a new local tim e is often accompanied by “je t lag.” Formally, the
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change to  a new environmental tim e represents a non-periodic stimulus to  the  cir

cadian system  which can lead to tem porary changes in the am plitude, frequency 

or the  phase of the  oscillator [22]. The processes during phase shifts have often 

shown complicated patterns of transient behavior. Our investigation into the tran 

sient behavior of our model following nonperiodic stimuli is discussed in sections 

7.3 and 7.4. Using the dynamic spectrum  and frequency dem odulation m ethods 

respectively, we found the  “overshot” phenomenon during the transient process. If 

the nonperiodic stimulus is applied at the proper time, with proper am plitude and 

pulse w idth, the transient process can even cause a  “tem porary stopping” of the 

oscillation. This process was also simulated using our model and will be introduced 

in section 7.5.

T he use of the bispectrum  and coherence for the  analysis of circadian rhythm s 

will be discussed in chapter 8. The bispectrum  method was applied to  determ ine 

the relations between harm onic components of the circadian rhythm s while the 

coherence function was used to examine the frequency correlations between two 

different circadian rhythm s (e.g., tem perature and activity) of the same subject. 

We applied the coherence function to our experimental da ta  and found th a t cor

relation occurred a t the fundermental and 3rd harmonic in one of our subjects.
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C hapter 2

E xperim ental Circadian D ata  
A cquisition , P re-P rocessing  and  
G eneral A ppearance

2.1 Introduction

The circadian rhythm  is a long period oscillation phenomenon. T h e  period of 

this type of rhythm  is around 24 hours. The experim ental circadian da ta , in< 'uding 

core-tem perature, and sleep-wake cycle, can be acquired from m onitoring long 

term  experiments. The “length” of recording for analysis should be a t least 240 

hours (10 cycles) and usually several “sections of d a ta” are needed. This long term  

d ata  recording results in the following special considerations for the  design of a 

d ata  acquisition system and the pre-processing of the acquired data .

1. Our experimental d a ta  are mainly acquired from monkeys and o ther animals 

which are free ranging, and any form of restrictive wired system  would be 

unsuitable. The transducers (sensors) attached to the subjects should not 

restrict their activities, or the transducer will be damaged. Therefore, special
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design of transducers of light weight and small size should be considered, and 

the transducers should be wireless.

2. T he A /D  sam pling ra te  for data  acquisition should be considered to  meet 

bo th  accuracy and storage capacity requirements. Accuracy means th a t the 

circadian d a ta  acquired should have enough inform ation to  determ ine its 

characteristics. For example, if a ra te  of 14 sam ples/24hrs is used for the  A /D  

convertor, we can, in theory, get information up to  the 7th harm onic of a 24hr 

circadian cycle. In practice, up to 10 times this rate , i.e., 140 sam ples/24 

hours is used to  enhance accuracy. On the other hand, if the  sam pling 

ra te  is too high, a  large storage capacity is required for long term  recording. 

Therefore we should select the sampling ra te  to  compromise for both accuracy 

and storage consideration. In our system, a ra te  of 144 sam ples/24hr is used;

3. The acquired raw d a ta  may be accompanied by noise, baseline drift and some 

tem porary interruption. These unwanted signals should be filtered out, or 

sm oothed (pre-processed), before doing further processing. T he preprocess

ing should be considered on both the raw analog da ta  and the  digital data.

2.2 Experim ental D ata A cquisition System

Most of our experim ental circadian rhythm  data were taken from six Rhesus 

monkeys. These monkeys were kept in cages under carefully controlled light, tem 

peratu re and noise conditions. The lights in these cages could be controlled either 

by a  tim er or com puter controlled switches which determ ined w hether the experi

m ent was under“free running'’ or entrainm ent conditions. The circadian data  we 

collected included daily tem perature data, slcep-activit.y data, and feeding data.
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Figure 2.1: Circadian temperature data acquisition system . 

Tem perature and activity  da ta  were mainly used in this research.

Fig 2.1 shows a diagram  of our monkey tem perature d a ta  acquisition system 

at the VA Medical Center, East Orange, New Jersey. We used a  telem etry system 

where th e  wireless tem perature transducer and transm itte r m odule (M ini-M itter) 

were im planted into the  monkey’s body by simple surgery. This module continu

ously transm itted  th e  pulses whose ra te was proportional to  the  tem perature. The 

modules were calibrated before being implanted to  obtain the tem perature-pulse 

rate conversion curve. T he pulse rate is usually in the range between 100/m in and 

200/m in at room tem perature. The carrier frequency of th e  tran sm itte r was se

lected between 27.0 MHz and 28.0 MHz. The module contained a  lithium  battery  

designed to last abou t 1 year.

The receivers used in the system were the SONY ICE-2010 PLL synthesized 

high sensitivity receivers. Each receiver monitored two transm itte rs  selected by a 

com puter controlled station selection switch. The received signal was then sent to
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an analog low-pass filter; with 3clB cut off a t 1 kHz for noise filtering. T he signal 

was then interfaced to the computer. T he com puter was programmed to accept 

and count the pulses from each I/O  channel for 2 minutes ou t of every 10 minutes 

for a  sampling ra te  144 sam ples/24hr. This sampling rate ensures the detection 

of several tens of harmonics of the 24 hour circadian cycle. The acquired raw 

tem perature d a ta  (144 points for each subject per day) were stored in the PDP-11 

com puter and then transferred to the VAX 11-750 computer once a day.

T he sleep-activity d a ta  was recorded by monitoring the movement within the 

cage. These cages were specially designed to be “floating” such th a t the  sensors 

m ounted on the corners of the floating cages recorded the movement of the monkey 

in the cage. The data  sampling and processing are basically the same as for the 

tem perature data.

T he monkey feeding data  were m onitored with a microswitch m ounted on the 

food pipe. The switch was triggered each tim e the subject took food.

2.3 Preprocessing of Experim ental D ata

T he long term  circadian data  is easily subject to interference and interruption, 

due to a num ber of possible causes. For example, the 27 MHz shortwave signals 

could be contam inated by noise interference generated by the com puter equipm ent. 

Occasionally this interference could be transm itted  over th e  power line from a 

rem ote location. This noise from the power line may be elim inated by a lim- filter, 

while the interference transm itted by the  electrom agnetic fields is more difficult to 

remove. In order to provide an acceptable acquisition system , we concentrated on 

optimizing:
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Figure 2.2: (a) Received data by original antenna, (b) Received data by improved  
antenna.

1. The receiver antenna design. A specially designed an tenna is installed in 

the  cage which greatly improves the S /N  ratio over previous designs.[6] This 

m ulti-functional antenna is insulated from the m etal of the cage and the 

cage is grounded to  help shield the antenna against outside R F  interference. 

Fig.2.2 shows the comparison of the reception between original and improved 

antennas.

2. Selection of the proper AM band gain and attenuation of the receiver. The 

AM band gain of the receiver is continuously adjustable. T he proper AM 

band gain occurs when the S /N  ratio is maximized.

3. Selection of a different AM band mode (wide band or narrow band) of the 

receiver. In the case of heavy noise interruption, a narrow band reception is 

selected.

T he preprocessing of the experim ental data  includes the following steps:

22

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



1. Removing very corrupted d a ta  which may be blank or seriously distorted. If 

these portions are used for further processing, the rest of th e  good d a ta  could 

be possibly affected. These portions of da ta  could be removed by carefully 

exam ining th e  entire data. Due to  the varying forms of th e  interference, it 

is difficult to  au tom ate this procedure. This procedure was therefore done 

manually. T he pre-processing program can readily handle the d a ta  if the 

interference does not exceed 10% of the record.

2. Scaling. The norm al circadian rhythm  signal should be in a  given am plitude 

range. A signal th a t in out of this range may be caused by a fault of the 

system  or by interference. The scaling procedure works like a lim iter, that 

is, it elim inates the  signal out of the normal range. For example, the  normal 

tem perature range for a  monkey should be between 36°C to 40°C. O ur scal

ing procedure elim inates signals below 34°C  and above 42°C , which ensures 

the  obtaining of a  meaningful signal.

3. Detrending. Very low frequency components contained in a  circadian signal 

(frequencies in the range 0 to 2.5~*Hz) are usually caused either by the 

instrum ents used to  acquire the signal or by such effects as the long term 

trend of monkey circadian rhythms. Those com ponents sm ear the  power 

spectrum  of th e  signal at low frequencies. They also sm ear the result of the 

processing of the low frequency components by techniques such as complex 

dem odulation. These trends can even dom inate the spectrum . Therefore, the 

very low frequency component in the signal should be removed (detrended) 

before the signal is further processed. This detrending procedure is done by 

a. robust local regression procedure. [9], The low trend is first extracted  from 

relatively long term  da ta  (e.g., 10 days) and then this trend  is subtracted
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from the  original data. The detrending work is done by a Macro subroutine 

w ritten  in S language (S is a program ming environment for d a ta  analysis 

and graphics from AT &T Bell Laboratories) using a. function Lowess. The 

function Lowess is used to smooth d ata  in ?? (user defined param eter) points 

while we use it to extract very low frequency components (periods of around 

7 days or more). This low frequency component is then subtracted  from the  

tim e series, thus accomplishing detrending. The Macro subroutine Detrend 

is listed in the  Appendix.

4. Smoothing. D ata sm oothing refers to  the measures which are introduced 

into a  d a ta  processing scheme in order to reduce the effects of observational 

errors (commonly called noise). Since da ta  smoothing generally also has 

a m utilative effect on the signal component, it presents a  need for careful 

analysis to achieve desirable results. The sm oothing of data, should exclude 

the  noise bu t the signal should not be distorted. The sm oothing algorithm s 

was tested on several data  sets. This was done by use of a Macro Lwclcan.

In summary, the preprocessing algorithm  includes removing interrupted sections, 

scaling, detrending and sm oothing the data. All the preprocessing is w ritten in S 

language which simplifies the process algorithm . All the functions and Macros as 

m entioned above are combined in a Macro Pre, which is listed in the Appendix.

2.4 General Appearance of R eal Circadian D ata

To model and analyze circadian rhythm s it. is im portant to  understand the 

general appearance of real circadian rhythm s in both the time and frequency do

mains.
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2.4.1 T im e Series o f  Circadian R h yth m s

Fig 2.3 and Fig 2.4 show the waveforms of circadian tem peratu re  tim e series 

obtained from several subjects under test. Fig.2.3(a.)-(d) siiow 7 days of tem pera

tu re  circadian rhythm  d a ta  from four different monkeys. Fig.2.4 (a) and (b) show 

7 days of tem peratu re circadian rhythm  d ata  from 2 different rats. All of these 

d a ta  were previously preprocessed.

These waveforms give us the following basic insights into practical circadian 

tim e series:

1. The waveforms are distorted cosine-like waveforms. T he highest peak of the 

waveform is a t around 11 am and the valley is around 11 pm . T he period of 

the waveforms can be detected by zero crossing detection or peak detection. 

T he results show th a t the period is around 24 hrs. T he d istortion is probably 

caused by nonlinearity, but the nonlinearity could not be found from the  time 

series directly.

2. Some of the circadian tim e series show a  second or th ird  small peak during 

one cycle. This implies th a t these waveforms contain some high harmonic 

frequency components.

3. T he waveforms are noisy and not smooth.

To address the above characteristics more directly, we m ust look a t the signals in 

the  frequency domain.
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Figure 2.3: T im e series o f m o n key’s temperature circadian rhythm , x-axis: sample 
points (144 sam ple points a day), y-axis: temperature in centigrade degree, a) 7 
days data o f M onkey 10. b) 7 days data o f M onkey 21. c) 7 days data o f M onkey  
34. d) 7 days data o f M onkey 41.
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Figure 2.4: Tim e series o f  r a t ’s tem perature circadian rhythm , x-axis: sample  
points (96 sam ple points a day), y-axis: tem perature in centigrade degree, a) 10 
days data o f  R a t 2. b) 10 days data o f R at 4.
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2.4 .2  Frequency C haracteristics o f  C ircadian D a ta

To further understand the  obtained circadian data , we need to explore the 

general aspect of their spectral functions. The spectral function shows the de

tection and m easurem ent of the frequencies, am plitudes, phases of decomposed 

sinusoids in a  tim e series which is especially helpful for exploring a  system  whose 

characteristics are unclear like the circadian rhythm s. T he principles and tech

niques of spectral analysis will be discussed in chapter 6. In section 6.4, several 

sets of spectral functions obtained from our experimental d a ta  will be presented. 

Figure 2.5 shows one of the spectra from the experim ental data, where we can see 

the  main frequency com ponent is a t F FT  point 113. Since we transform ed 16384 

points and the sam pling rate was 6 sam ples/hour, the period of point 113 is

16384 OOI
=  2 4 .3 8 W a

T he spectrum  also shows the 2nd, 3rd and higher harm onic com ponents. The 

analysis of these harmonics will be discussed out in chapter 6, where we will show 

how these harmonics relate to  the nonlinearity of the system .
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Figure 2.5: The power spectrum  from one o f the  experimenta] circadian data. The 
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C hapter 3

C lassical M athem atical Tools for 
A nalysis o f N onlinear O scillation

3.1 Introduction

Many of today’s most interesting problems in the  physical and life sciences 

concern the behavior of nonlinear systems, especially the onset of chaotic behavior 

under determ inistic conditions. Biological oscillators are basically all nonlinear. 

T he linearization commonly practiced are good for approxim ate analysis. How

ever, for certain cases the linear treatm ent may not be applicable at all. Many 

com plicated phenomena occur in the systems because of their nonlinearity which 

can not, in principle, occur in linear systems.

Although the phenomena of nonlinear oscillations have been recognized by 

m any scientists for a number of years, developments in the  theory and m ethods 

of nonlinear analysis have been stimulated in recent years by the application of 

digital computers. Among the major trends in modern developments of nonlinear 

analysis are: the study of the analytical method (including com puter application)
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for obtaining the complete solution of the system ; the topological method  of graphic 

solution and the compute!' simulation method  for numerical solution of com plicated, 

m ultidimensional nonlinear systems.

In this chapter we will first introduce the  general analysis of linear oscillators. 

This analysis helps us to understand the properties of linear oscillation which can 

also be used for approxim ate analysis of nonlinear sj-’stems. In section 3.2.1, we will 

introduce a linear model of circadian rhythm s as well as the com puter sim ulation 

results, from which we can see the differences between the linear model and th e  real 

circadian rhythm  da ta  as we presented in chapter 2. We will therefore understand 

the lim itation of the linear model and the necessity of using a  nonlinear model to 

describe the biological oscillators.

T he a n a ly t ic a l  m e th o d s  we will describe in section 3.2 include th e  asym p

to tic m ethod and the perturbation m ethod. These two methods are the trad itional 

m athem atical tools for an analytical solution of nonlinear systems. They were de

veloped to  find the periodic analytical solutions of nonlinear differential equations. 

T he advantage of the analytic m ethod is th a t it can be used to  find the  com plete 

solution of the system thereby allowing knowledge of the general aspect of the 

system  a t any time. Recently, some com puter programs were designed for ob tain

ing the analytical solutions of linear or nonlinear differential equations b u t they 

were limited to some simple typical nonlinear systems. In our applications, it was 

found th a t the traditional analytic method applied only to the “weakly'' nonlinear 

system s and the error became larger as the  nonlinearity increased.

The c o m p u te r  s im u la tio n  m e th o d  is based on m athem atical or m echani

cal models. W ith successive iteration, the com puter simulation can generate the
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numerical solution of the system for the tim e length defined. By selecting proper 

integration algorithm s, the numerical solution obtained by the com puter sim ula

tion can yield high accuracy. The disadvantage is th a t the  com puter simulation 

m ethod can not generate the complete description of the nonlinear system  simu

lated. In section 3.4, after our introduction of two analytic m ethods, the  com puter 

sim ulation results of a  single Van der Pol type model w ith different nonlinearity 

will be presented. The results will also be compared to those obtained using the  

analytical m ethod.

In this research, we formulated and tested several nonlinear m athem atical 

models to  sim ulate circadian rhythm s. The solution of these models were obtained 

through com puter simulation which turned out to  be a  very powerful m ethod, and 

in some cases, possibly th e  only m ethod. The com puter modeling and simulation 

will be discussed in chapter 4.

3.2 Analysis o f Linear Oscillation

For the simple types of nonlinear differential equations, it is possible to find 

their properties by the study of the approxim ate linear system. For example, the 

appearance of the trajectories of the given nonlinear system  near the equilibrium 

point is generally the same as for the approxim ating linear system. In order to take 

full advantage of this principle, we have to know the configurations of linear systems 

which can be used to approxim ate the nonlinear system. The m athem atical models 

of circadian rhythm s are usually nonlinear but the analysis of linear oscillators will 

help us to  understand the basic m athem atical methodology, and is also helpful to 

see why linear models can not be applied in nonlinear analysis. In this section we
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will first discuss the properties of linear oscillation systems.

Generally, a linear oscillation can be described by second order, ordinary dif

ferential equations of the form:

a(x)y"  +  b(x)y' +  c(x)y  =  f ( x )  (3.1)

The typical homogeneous differential equation of a linear oscillator w ith con

stan t coefficients is

J J L  +  k ±  +  h j =  0  ( 3.2 )

where m ,h  and k are real constants.

The characteristic equation is

m r2 +  hr + k  = 0 (3.3)

Its roots are
h V h 2 -  4b n  

T =  ~ 2 m  2m { M )

or
h V 4  k m - h 2

T =  --------- (3.5)
2 m  2 m  K 1

The solution will depend on whether h2 — 4km  is positive or negative. In the case 

of complex roots a  +  i/3 where a  <  0 the solutions is

y — eat(cicosai, +  C2s in a t)  =  Aeatsin(0f. +  <f>) (3.6)

This solution represents a dam ped oscillation as shown in fig.3.1.

If we fix m  and vary /?, then we observe the following:
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Figure 3.1: Damped linear oscillation.

For h =  0, the equation represents a simple sinusoidal oscillation (simple 

harm onic m otion).

y  =  (cicosfit +  c2sin/3t) =  A s in (0 t  +  <f>) (3.7)

In a physical system, it describes the motion of a mass-spring system  w ithout 

friction.

As h  increases from 0, the oscillation is increasingly dam ped.

For k 2 =  4km , we have a critically dam ped oscillation, and the discrim inant 

is 0. Beyond this value, we have overdamped motion.

The oscillation described above in the case w ithout friction could be used to 

approxim ately describe the circadian rhythm s as we will see in the next section.

3.3 Linear M odel for Circadian Rhythm s: Its 
sim ulation and Lim itation

A linear model “BEATS” was created by Wever [39]. This is a coupled 

oscillator model but each oscillator is based on linear oscillation. In this model,
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the type I - x  oscillator is

x  =  $irutix t

and type II - y  oscillator is

y =  sin{ojyt +  <f>)

respectively. The tem perature rhythm  is principally controlled by a  type I oscil

lator, w ith some small “m asking” contribution from the type II oscillator which 

dom inates the  activity cycle.

In practice, th e  tem perature rhy thm  is always more stable than  the other 

rhythm s. Therefore, in the model, type I oscillators are “stronger” than type II 

oscillators, and also more “stab le” .

Wever’s interesting point is th a t a mere superposition of such oscillations 

in m any ways resembles the  observed data. In other words, th e  ou tpu t of the 

oscillators are summed but do not interact dynamically. Therefore the  structure of 

this model includes two superposed oscillators as shown in Fig.3.2. The activ ity- 

rest rhy thm  A  and the tem perature rhythm  T  are then modeled as a  superposition 

of .r and y:

A  =  ay +  (1 — a)x  (3.S)

T  = bx +  (1 — b)y (3.9)

where (1 — <i) and (1 — 6) are the coupling coefficients between A and T . a and 6 

are in the range between 0 and 1, which we chose to be >  0.5 in this model. In 

the model the angular frequency of circadian rhythm  x  is selected as one unit, i.e., 

a,v =  1 while u y < 1.

The linear type equation is the first im portant feature of the model. The

author was trying to reduce the complication of the model to b e tte r understand
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Figure 3.2: B E A T S  m odel o f circadian rhythm s o f activ ity  (A ) and tem perature  
(T).

the relations in the model. Fig.3.3 shows the sim ulated activ ity  waveform. The 

variation of am plitude is caused by the T oscillator. T he am plitude decreased 

every 5 cycles periodically which is called a “beat” .

Com paring the o u tp u t tim e series with the real experim ental circadian d a ta  

(see Fig.2.4), it  can be seen th a t the linear waveform of the tim e series is very 

different from th e  real data. This is because only a single frequency com ponent 

exists in this model while “rich” harmonic components exist in the  real data. These 

harmonics generate “m u lti-p a tte rn ” complicated tim e series and th e  harmonics of 

the system  are related  to  th e  nonlinearity of the system  which we will show in the 

next section.

Therefore, as we pointed out a t the beginning of the  chapter, although the 

linear approxim ation model is easy to understand and to program  and sim ulate, it 

can not reflect the characteristics of the circadian system.
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Figure 3-3: Sim ulated tim e series waveform o f “B E A T ” model.

The angular threshold used in this model was another im portant difference 

from the o ther models. The sleep-wake period was usually determ ined by a  level 

threshold. As we can see in Fig.3.3, A  =  —0.5 is used as a  level threshold in the  

model, and the  outputs of the system above th is threshold represent the wake cycles 

while the ones below the  threshold represent the sleep cycles. Since the “beating” 

of two oscillators in this model generated relatively large changes of the am plitude, 

the  level threshold criterion, if used in this model, generates unrealistically long 

wake episodes. The angular threshold was designed to  solve this problem. T he 

angular threshold is shown on the p h a se  p la n e  by the angle as we can see in Fig 

3.4. The trajectories in the shaded region represent the  sleep region while the ones 

in the unshaded region represent the wake region. They are distinguished by the 

angle on the phase plane instead of by the level on the time series.
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Figure 3.4: Angular threshold on the phase plane for B E A T  model. Shaded region: 
sleep region. Unshaded region: wake region.
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3.4 A nalytical M ethods for N onlinear Oscilla
tor A nalysis

3.4.1 In trod u ction

There is considerable advantage in finding an analytical solution for a differ

ential equation when th a t is possible. The analytical solution may be obtained in 

algebraic form w ithout th e  necessity of introducing numerical values for param e

ters or initial conditions during the process. Once the solution is obtained, any 

desired range of possible solutions can be explored.

It should be recognized th a t explicit solutions are generally im possible to 

obtain for nonlinear systems. The practical m ethods used to solve these system s 

are topological m ethods and numerical m ethods which will be discussed in chapter 

4 and chapter 5. Only a few nonlinear equations from actual physical system s are 

simple enough to allow exact solution. There are generally no m ethods capable of 

yielding an exact solution of an arbitrarily selected nonlinear differential equation.

Let us consider a system  of n 1st order differential equations:

d x ild t = X i{t), i = 1 , 2 , • • • ,n  (3.10)

W here X i , - - , X n are analytical functions of the unknown variables .Tj, • ■ ■, 

and the tim e t. If .t,,  • • • , x n are components of an n vector x  and, A'1? • • •, X n are 

components of an n vector X ,  the above system  equations may be w ritten in the 

simpler form

dx/d t  =  X ( x , t )  (3.11)

It may happen th a t .V depends upon x  alone and not upon t. T he above equation
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then becomes

d x /d t = X (x )  (3.12)

A system  of this type is said to  be autonomous. Alternatively, the system  function 

depending on tim e t is said to  be nonautonomous. Most of the biological oscillators 

are autonom ous systems. [29, page 13]

To use analytic m ethods to  solve the nonlinear differential equation, we have to 

first understand the uncertain properties of the oscillating frequency in a  nonlinear 

system. This principle states th a t the natural frequency of a nonlinear system  is 

not a certain value for all different nonlinearity, i.e., the oscillating frequency varies 

with the nonlinearity. To understand this principle, let us consider the following 

example of a nonlinear differential equation:

^  +  .t +  //.t3 =  0 (3.13)

If we assume the  power series solution

x(t)  =  x Q{t) + / i .r ,( / )  +  p 2x  2{t) +  ••• (3.14)

and substitu te  Eq.3.14 into the  original differential Eq.3.13, the p  term s must be 

equated to  zero separately, i.e., the sums of the term s with /<, the sums of the 

term s with ft2, ■ - •, etc, should each be equal to  zero respectively. Equating these 

coefficients separately to zero gives the following sequence of linear equations:

- ^ 7  + *o =  0 (3.15)

+  .T, =  -.To (3.16)
(Px 1 3--------1- r-k =  —r*
dt2

W ith the initial conditions given, we can solve each linear differential equation 

to get ,t0, x i, x 2, etc. We find

xo(t) =  Acost (3-IT)
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* ,(« )  =  (—3/8)A3tsint — ( l /32)A3(co$t — cos3t) (3 .18)

■ • •, etc.

where A is a constant determined by the initial conditions.

A serious difficulty may often be encountered in the  form of the so-called 

“secular term s” . T he secular term s are the term s in equations which will grow 

indefinitely when t tends to infinity, and thus destroy the convergence of the  series 

solution. For example, the first term  of x ^ f )  in Eq.3.18, —3/8 • A 3ts in i , which will 

grow indefinitely as t goes to  infinity, has this property.

To solve this problem , we have to realize tha t in a nonlinear oscillator system , 

the  solution m ay not be necessarily periodic with constant period. In this example, 

since the x 0 term  above is fixed as a periodic function, the rem aining term s m ust 

account for the variation of the  period, thus resulting in the  appearance of secular 

terms. For the elim ination of secular terms, precaution must be taken so th a t 

the  unknown frequency of a free oscillation and the am plitude of a  self e.-.cited 

oscillation should n o t  b e  fixed  in a  nonlinear system. Therefore the  solution we 

assume for a nonlinear system  should not have a constant frequency and am plitude, 

and instead should be assumed to  be functions of the nonlinearity. N ext, we will 

discuss two m ethods of solving nonlinear differential equations with small nonlinear 

param eters by considering the problems mentioned above.

3.4 .2  A sy m p to tic  M ethod

T he asym ptotic method is the first analytic m ethod which we used to  solve 

the nonlinear differential equations in our circadian models. It can be used for
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oscillating systems with weakly nonlinear param eters, nam ely those where the 

nonlinear term  depends on a  “small” param eter ft, and for /t =  0, the  system 

becomes linear. One of the advantages of this method is th a t it can be used 

to solve the nonlinear systems of higher than second order. T here are several 

m ethods which could possibly be applied for second order system s with fewer 

applied to  systems of higher order. As we shall introduce in section 5.2, the phase 

plane techniques could be used for second order systems but no t for higher order 

systems.

A weakly nonlinear second order system which is likely to  present sustained 

oscillations has the following general form:

d2x /d t2 — f i f ( x ,  d x /d t)  + oj2x  =  0 (3.19)

W hen fi =  0, the system becomes a  harmonic oscillator.

It is reasonable to assume th a t when /i is sufficiently small the  solution for the 

system should be close to the solution of the original linear system . It is plausible 

[29, pages 16] th a t if self sustained oscillations exist, (tra jectory  of the limit cycle 

form) then the solution can be assumed to be a  form containing linear oscillation 

(cosfy) plus a  series of unknown /i term s,

x  = acosrf) +  /<?/.](q-, <f>) +  /r2 ?t2 (a , <j>) ------  (3.20)

d a /d t -  nA ]{a) +  ii2A 2(a) +  • • • (3.21)

d<j>/dt =  u? +  fl (o j +  (i2 B2(ct) +  • • ■ (3.22)

For (i = 0, the solution becomes x  =  cosd> with a  a constant and <j) =  v t .: +  <̂0. 

which is indeed the solution of the linear oscillator.

If we assume that,
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1 . fi is sufficiently small, the convergence of the series can be guaranteed;

2. As /r tends to  zero, the truncated forms of the series converges to  the true 

solution;

3. Only A i(a )  and B \(a )  will be significant, i.e., higher order ft term s are not 

considered;

Then

d a /d t =  /i/ij (a ) (3.23)

d<j>/dt. =  u) +  (3.24)

This result is a  sufficiently good approximation in m any practical problems. Com

puting the derivatives of x  using Eq.3.20 Eq.3.23 and Eq.3.24 while ignoring term s 

which are multiplied by powers of //, we obtain:

d x jd t  =  —aujsin<j> + fi.(AiCO$<j> — aBi$in<(>) (3.25)

d2x/d .t2 =  —aoj2cos<!> — 2u:fi(A.isind> + aBiCosfi) (3.26)

Replacing x , d x /d t  and (Px/dt .2 in the original differential equation and expanding 

[ i f  ( x ,d x /d t)  in a  Taylor series, A \ and B\ can be determ ined, where

A i(o ) =  —1 / 2 *0 : / f{acos<p,—a(jJsind))sin<j>d<{> (3.27)
Jo

t 2*
B i{a ) = —I/2iru.'a f(acos<f>,—au:siii</>)cos<j>d<j> (3.2S)

Jo

Thus A j(q) and B \{o )  are nothing more than the fundam ental term s of the Fourier 

series expansion of f{aco$<)>, —auj.sini/)).

It can be easily verified that if /  is an even function of its first argum ent, i.e., 

f(aco$<f), —owsin<f>) =  / ( — oco.s/, —aujsin.4>) (3.29)
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then B tia )  =  0 and d<j)jdt =  w. In this case, the frequency of the  system  is 

independent of p  and equal to  u.\

If /  is an even function of its second argum ent, i.e.,

f(acos(f>, —au:sin<j>) =  f  (acos<f>, a u s in  <f>) (3.30)

then A i(a )  =  0 and d a /d t  =  0. In this case, the  am plitude is independent of //. 

and equal to a  constant.

d</>/dt and d a /d t  give us the most im portan t inform ation about which we 

are concerned: the  frequency variation and am plitude variation of the  oscillation. 

In the first case, where the nonlinear portion fi is an even function of its first 

argum ent, the oscillations are approxim ately isoperiodic, i.e., the  frequency does 

not depend on n  or other param eters except through higher-order term s. T he Van 

der Pol oscillator used in our model is an exam ple where the  nonlinear term

/( . t ,  d x /d t)  =  (I — x 2)d x /d t

is an even function of x  {x = acos<f>). Therefore,

B 1(a) = 0 

d<j>/dt — w

and

/l ,(o )  =  a u / r w  f  ( 1  — a 2cos2<f>)si.n2(j)d(f> 
Jo

=  ( o / 2 ) ( l - o 2 /4 ) 

da/dt. = (fta /2 ){ l — a 2/A)

(3.31)

(3.32)
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W hen a  =  2, d a /d t — 0. T he system is expected to have a  stab le  oscillation 

if fi is sufficiently small

x ( t)  =  2  cos(wt +  <j>0) (3.33)

T he asym ptotic technique is an effective m ethod for one to  explore the am 

plitude and frequency variation information of a nonlinear system . However, this 

m ethod can be only applied in a  system with a “weak” nonlinear param eter. Since 

the  biological oscillator models usually contain large nonlinear param eters, this 

m ethod cannot be generally applied.

3.4 .3  P erturbation  M ethod

A nother powerful analytic m ethod we tried for solving nonlinear differential 

equations in our models is the perturbation m ethod. T he use of this m ethod began 

w ith astronom ical calculations. But im portant contributions of Poincare and later 

m athem aticians have extended th e  applicability of this method to include the  more 

general field of nonlinear mechanics.[32] The perturbation m ethod is also applicable 

to  equations in which a small param eter is associated with the nonlinear term s. In 

applications, the m ethod can be summarized in the following steps:

1. Assume th a t the  desired solution can be expanded in a power series of the 

small param eter multiplied by coefficients which are functions of the  inde

pendent variable. It is advantageous to  replace the independent variable t 

by t =  u.’t, where is the unknown frequency of the periodic solution.

.r(r)  =  x 0 ( t )  + /iX ](r) +  p 2 .r2 (r )  +  - • • (3.34)
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and

d x /d t — u d x /d r  (3.35)

cPx/dt2 = uj2d2x / d r 2 (3.36)

Because u: is not a  fixed constant, it is necessary to  develop the unknown

quantity  w in a  series with respect to  /i, the  coefficients in th e  series being

periodic functions of r . Therefore we have,

u  = u o 4- tiX i{r) +  /i2x 2(r) +  ■■■ (3.37)

2. Substitu te  the  assumed power series solution (bo th  x  and u;) into the differ

ential equation and determine the coefficients of the like powers of f t ,  one by 

one, usually by solving a sequence of second order linear equations in x,-(r), 

which also involve the unknown frequency quantities zt>:.

3. Since only the  periodic solution is under consideration, the  initial condition 

of r  may be chosen arbitrarily. We so choose it so th a t x ' ( t )  =  0, a t r  =  0.

As an example, we consider Van der Pol’s equation again

a x /d t2 — fi{ 1 — x 2)d x /d t + x  = 0 (3.38)

where ;i is a small positive quantity. Replacing th e  independent variable t by 

t = u t  as before:

u j 2x "  — f.ioj( 1 — x 2)x' +  x  — 0 (3.39)

Insertion of the x series (Eq.3.34) and to (Eq.3.37) series results in a sequence of 

linear equations:

/i° : k-'o-To +  -to =  0 (3,40)
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fil : ujI x 'I +  X\ =  - 2 cu'0lj1x^ + o.’o(l -  xl)x'0 (3.41)

H2 : W0 .T2 +  ,r2 =  — (2 a,’0w2 +  u!?)x%

- 2 u 0u ix " +  Wi(l -

-2tc0x0xix'o +  a.’0(l -  .rg).r'1 (3.42)

• • •, etc.

We will now look a t each power of /t separately.

For /t°:

To solve WqZq +  x 0 =  0, utilizing x ( t  +  2 x) =  . t ( t)  and :r'(0) =  vve W'H îave

•r0 =  A 0 c o $ t  (3.43)

o?o =  1 (3,14)

where the  constant /40, not yet determ ined, is fixed in the next step. T he zero-order

solution given by Eq.3.43 is the generating solution.

1.For (i

By substituting the solution of r 0 into Eq.3.41, we obtain

A 2 A 3
x " +  aq =  2u3j A 0c o s t  -f A 0( - ^ -  — l)-sm r +  (3.45)

This differential equation can be solved by superposition, i.e., solve the following 

equations:

x "  +  x  1 =  2tO\ A 0c o st

+  =  A 0( ^  -  l).shiT

„ , ^ 0  • o
•Tj +  .T | =  — S i n . i T
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The special solution from the c o s t  and s m r  term s of the above equation would 

contain term s of the  type t c o s t  and r s i m .  These term s, as we m entioned in section 

3.1, are the secular term s, which will cause problems as t approaches infinity.

The periodicity condition for .Ti(r), therefore, requires th a t the  coefficients of 

cost and sinT  be zero, th a t is,

2u.'j A qCOSt =  0

and
A 2

— l)si?iT = 0

which will require A 0 =  0 , or ^  — 1 =  0  and u-’j =  0 . We note th a t Ao =  0  

provides a  solution of zero am plitude, so the possible solution of A 0 is A 0 =  2. To 

take Ao =  — 2  gives only a  solution of opposite phase, th a t is, tt radians out of 

phase with the  solution in the equation. The general solution of X\ m ay now be 

written as:

x ] =  Aj cost +  B is in r  — ( l /4 )sn ? 3 r  (3.46)

The constant B\ is solved by the requirem ent th a t .Tj(0) =  0; thus

B\ = 3/4

T he constant A\ is determ ined in the next step.

For fi2 order,

the equations lead to

*2 +  X2 =  ( '^ ’2 +  “ )c0ST

•3 . 5+ 2 /tisn ? r  — -ro s3 r  +  ■]A]sin'.]r +  -c o s5 r  (3-47)
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The periodicity condition for x 2 { t )  yields the following relations:

u,-2 =  -1 /1 6

yl, =  0

Hence,
3 1

.T] =  - s i n r  s in 3 r  (3.48)
4 4

Using the partial results from /11 and /t2 terms, the general solution of Eq.3.47 

becomes
3 5

x 2 =  A 2 c o s t  +  B 2s in r  4— -co.s3r — — cos5r (3.49)
16 96 v '

The constant B 2 is determined by using the requirem ent th a t £2 (0 ) =  0; thereby

we obtain B 2 =  0. By proceeding analogously, we can determine the  unknown

quantities in the  righ t-hand members of the equation. After some calculation it is

found th a t the periodicity condition for .T3 ( t )  yields

A 2 =  —1/8

Hence,
1 3 5

x 2 =  — - c o s t  +  — cos3r -  — c o s 5 t  (3.50)
8  16 96

Including the term s of the second order in /«, we have

1 3 3
x  =  (2 — - f i 2)co$u}t +  - f i s in u t  +  — ft2cosZut

8  4 16
1 5

— -fis in Z u t — — fi2cosbu:i (3.51)

and, the frequency u; is given by

w =  1 -  - ^ , / 2 (3.52)
16
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It can be seen now tha t the perturbation method gives more accurate solution than 

the asym ptotic method which only gives the variation inform ation of the  am pli

tude and the  frequency as we have seen in Eq.3.32 and Eq.3.33. T he procedures 

of this m ethod are also more complicated. In th e  next chapter, we will introduce 

the  Van der Pol oscillator as a model for circadian rhythm s. T he com puter simu

lation results of the  model will be compared with the solution obtained using the 

perturbation  method.
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C hapter 4 

M athem atical M odeling and  
C om puter Sim ulation

4.1 Introduction

M odeling serves to  develop m athem atical equations for describing th e  system  

studied. In many situations the whole or part of the internal structu re  of these 

systems are unknown. The modeling process includes tests of the assurance of the 

model, to  modify the equations established and discover the  optim al param eters 

of the models. The circadian rhythm  is a complicated biological oscillator system. 

Because of its unknown internal structure, indirect means have to be developed 

for its exploration. M athem atical modeling is one of the useful m ethods. The 

following questions now arise a t this point:

1. W hat kind of m athem atical equations should be selected to describe the 

biological oscillator?

2. How can we use the model to  investigate the general and special (under some 

special conditions) properties of the system?
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3. How can we determ ine if the modeling and the sim ulation results indeed 

represent the  real biological oscillator?

4. How should the  model be improved to approach the real world?

The studies of tim e series and frequency spectrum  charactertics of biological os

cillators, first discussed in chapter 2 , tells us th a t these system s m ay be possibly 

described by nonlinear m athem atical oscillator models. The num erical solutions of 

the models, usually from nonlinear differential equations, can be obtained by com

puter sim ulation no m atte r how complicated the system . Therefore, as pointed 

out in previous chapters, it is im portant to understand and investigate various 

possible m athem atical models by using techniques such as th e  analytical m ethod, 

topological m ethod, spectral analysis, etc. Com puter sim ulation will help us to 

obtain iteration results for further exploration of the mechanism of the model and 

testing param eters of the models.

To model circadian rhythm s or other biologic oscillators, we should have the 

knowledge of existing biological oscillators and existing models. As discussed in 

chapter 2  we have obtained several long period records of circadian tem perature 

d a ta  from Rhesus monkeys and rats. The analysis already com pleted helped us to 

understand the substantial features of the system and develop the  models. The 

process of improving the model helps us to  more deeply understand  the system. 

To make the model approach the real circadian oscillator d a ta , we should compare 

the com puter sim ulation solution of the model with the experim ental circadian 

d a ta  in both the  tim e and frequency domain. We will then ad just the param eters 

repeatedly. Different initial conditions and stimuli may be applied to the model 

and the response of the model will be compared with the real d a ta  and analyzed.
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Several m athem atical models exist for circadian rhythm s. These models have 

the  following common features:

1. Self-sustainm ent is realized in most species. The biological oscillators are 

endogenous. This property will probably be lost when some special external 

stimuli are applied;

2. T he external stimulus will synchronize the  system in a certain range; i.e., the 

biological oscillators could be entrained by an external zeit.geber bu t they may 

have different internal stiffness which would cause different response range 

to  the  stimulus;

3. The oscillator is nonlinear with varying levels of nonlinearity. T he nonlin

earity  alters the oscillating frequency and harmonic structure;

4. The circadian rhythm s may be caused by one oscillator coupled to  o ther 

oscillators. The models should reflect these connections.

These common features should be included in our model. However, we place our 

m ain em phasis on building a model to approach the real experim ental circadian 

d a ta  in both tim e and frequency domains. The frequency analysis will help more 

precisely to  reveal the nature of the  system, and it should be consistent with the 

model.

In this chapter we will introduce several m athem atical models we studied and 

then  discuss the  simulation results in detail. Our development and analysis of a 

single Van der Pol oscillator model and modified Van der Pol oscillator model for 

circadian rhythm s will be first introduced. The latter helps us to explore the  possi

bility of expanding harmonic structure of the model. Then we will go to  the  area of

53

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



coupled oscillator models. This type of model gives more freedom to approach the 

real physiological phenomena of circadian rhythm s. Our simulation and analysis 

results of two existing models will be discussed. Then the detailed analysis of our 

two dimensional Van der Pol coupled oscillator models will be presented. Models 

w ith different types of nonlinearity and coupling will be explored. The analytic 

results include both tim e and frequency domains.

4.2 Application of Com puter Sim ulation Pro
gram

A fter the m athem atical model is established, com puter simulation is em 

ployed to  obtain the solutions. In the years before the development and wide ac

ceptance of the digital com puter, solutions for system sim ulations and differential 

equations were commonly programmed on the analog com puter. The problem with 

the  analog com puter was the necessity for the user to give careful consideration 

to  both  m agnitude and time scaling of the problem  variables. Complex operations 

usually required special purpose hardware and complicated panel wiring. In digital 

com puters, high level com puter languages such as C, FORTRAN, BASIC have pro

vided users with a  convenient method for sj'stem  simulation and in the solution of 

nontrivial m athem atical equations. In many cases, specialized com puter programs 

have been developed tha t are directly tailored to  a  particular class of problems. 

A notable example is in the area of modeling physical systems. Several software 

packages are available in this area. The numerical solution in these programs is 

usually com puted by the iteration method. By substitu ting the given initial values 

into the equation, the program will readily solve the differential equation whether 

it is a  linear or nonlinear equation. But if the error of the obtained solution ex-
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ceeds the threshold, the  differential equation will be solved again by reducing the 

computing tim e interval. The requirements for a simulation package generally are 

the following:

1. Simplified program  statem ents;

2. The flexibility of program  structure, i.e., no special restriction on param eters 

such as the order of the equations to be solved;

3. As most of the differential equations are solved by integration, the selection 

of integration m ethod is im portant. There are several integration m ethods 

for discrete numerical calculation. Not all the m ethods are appropriate  for 

different differential equations.

4. The speed of the program. This requirement is not only related  to  the  hard

ware, bu t also related to the language, algorithm, the library of subroutines 

and functions included.

Several simulation packages for the IBM PC were tried in this research. They 

are DMSP [17], CSMP [38] and mathCAD [1]. DMSP is w ritten  in the BASIC 

language. It is easy to  w rite the statem ents and run the program . DMSP is slow 

since it is w ritten  in an in terpreter language. CSMP includes all th e  functions of 

DMSP, bu t CSM P has more functions and graphics capability, and since CSMP 

is written in FORTRAN, it is also much faster. M athCAD is a  powerful package 

for solving general m athem atical problems. The problem is th a t its integration 

routine is very slow, and therefore it is not suitable for sim ulation purposes.
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4.3 C SM P Computer Sim ulation Program  and  
th e Effects o f Integration M ethods

T he com puter simulation work in this research is done by CSMP, (Continuous 

System  M odeling Program adapted for the IBM PC  and com patibles). CSM P is 

a scientific sim ulation program package, in which the m athem atical m odel can 

be easily program med. CSMP offers sophisticated solution possibility and flexible 

o u tp u t forms. T he output forms of CSMP which we used to analyze the sim ulation 

results include:

1 . Waveform graphic output.

2. D a ta  file numerical output.

3. D a ta  file ou tpu t with different param eters.

We will now discuss the integration m ethods used in the program, which is the m ost 

often used procedure and normally a  pivotal point for solving nonlinear differential 

equations. There are five fixed step and two variable step integration m ethods 

available in CSMP. No stric t rule is used to select the integration m ethod bu t there 

are several factors which have to be considered, and the experience of sim ulating 

practical models will be helpful in choosing the proper integration m ethod. Table 

4.1 show's the summary of five fixed step m ethods available in CSMP.

Two variable step m ethods in CSM P are the variable step  R unge-K utta  m ethod 

(CSM P nam ed RKS) and the fifth-order, predictor-corrector, Milne m ethod (CSM P 

nam ed M LINE). RKS is the m ethod autom atically  used in the CSM P. M LINE is
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S u m m a r y  o f  F f x e d - S t e p  I n t e g r a t i o n  M e t h o d s

C S M P  N am e M ethod

RKSFX Fourth-order Runge-Kutta with
fixed interval

SIMP Simpson’s Rule integration
TRAPZ Trapezoidal integration
ADAMS Adams-Second Order
RECT Rectangular integration

Table 4.1: Sum m ary o f fixed step integration methods.

sim ilar to  the RKS integration technique in th a t it uses ra ther sophisticated num er

ical algorithm s and adjusts the step-size to m eet the changing conditions. In the 

variable step m ethods, it is not necessary to specify the  integration step size. The 

absolute value of the estim ated integration error (ABSERR) and the relative mag

nitude of the estim ated error(RELERR) are compared with user-specified error 

bounds and step size is adjusted accordingly.

For certain types of problems, fixed-step integration m ethods m ust be em

ployed. In some types of problems where sudden changes or discontinuity occur, 

e.g., an impulse passes the system, the variable-step m ethods may dem and an 

integration step which is smaller than the minimum allowed. If this occurs the run 

is term inated at th a t point. The user then has to  increase the  error requirem ent 

and decrease the integration interval or, use one of the fixed-step m ethods. If the 

ou tpu t interval is very small, the maximum step size is constrained by the output 

and there is no need to  use a  sophisticated, tim e-consum ing integration technique. 

A simple fixed-step m ethod may be used.
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Figure 4.1: Comparison o f 5 integration m ethods in CSMP: average absolute error 
as a function o f step size and integration method. The step-size  ranged from  10 
to 10,000 integration steps per cycle o f the cosine function (cosine function is the 
solution o f this linear differential equation).

Fig 4.1 shows a comparison of five different fixed-step size integration m ethods 

used in solving a  linear differential equation. The results shown in fig-4.1 are only 

intended to show the relative accuracy of the various methods as a function of 

step size. The curves also illustrate that a  small integration interval does not 

necessarily give the greatest accuracy. If the frequency content of the solution 

can be estim ated, Fig.4.1 can be helpful in estim ating the appropriate step-size. 

As previously mentioned, the various integration methods are greatly different in 

complexity and consequently require different am ounts of com puting time.

T he other fact th a t should be considered in selecting the integration m ethod 

is th a t in many problems the most time-consuming portion of the sim ulation is 

not the numerical integration, bu t the calculation required at each integration
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Number o f  Times that ail 
Statements in the Dynamic 

Integration Segment are Executed for
Method Each Integration Step

RKSFX & RKS 4
SIMP 3
MILNE 2
TRAPZ 2
ADAMS 1
RECT 1

Table 4.2: Execution times o f each integration step for 7 different integration  
methods.

step. The number of times th a t all statem ents in the Dynamic segm ent are ex

ecuted for each integration step depends upon the m ethod. Table 4.2 contains 

this inform ation for all seven methods. If the problem requires a  large number 

of calculations for each integration step, a savings in com puter tim e may result 

if a smaller step-size is used in conjunction with a  less sophisticated integration 

method.

We sim ulated all of our models of circadian rhythm s using CSMP. T he main 

rule to select an integration m ethod in our simulation, as m entioned above, is the 

optimum  choice of o b ta in in g  su ffic ien t a c c u ra c y  a n d  w ith o u t  u s in g  ex ces

sive  c o m p u tin g  t im e . Therefore the simulation was usually started  by using a 

variable step m ethod. If the integration was not successful, then either the  error 

bound was reduced or a fixed step method was employed. For example, in simu

lating the stopping of an oscillator, due to the sudden change of the tim e series, 

the fixed step m ethod SIM P was used to get accurate results.
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4.4 Com puter Simulation o f Van der P o l T ype  
M odel: Comparison of Sim ulation R esults  
and A nalytic R esults

T here are extensive analyses of the Van der Pol oscillator in the  m athem at

ical literature.[42] This type of oscillator has several advantages when used as a  

circadian rhythm  model:

1. T he solution of the Van der Pol oscillator is capable of describing features of 

self sustaining oscillation which corresponds to the endogenous characteristics 

of th e  circadian tem perature or activity cycle;

2. T he nonlinearity of the  oscillator can be adjusted to reflect the  non linearity 

of the  circadian system;

3. T he harm onic structu re of the  spectrum  of the Van der Pol oscillator is 

sim ilar to  th a t of the circadian data.

T he Van der Pol oscillator was introduced into several circadian rhythm  models. 

However, the  emphasis in our research was to explore:

1 . the  effects of the nonlinear portions of the system  which include the effects 

of nonlinearity on the behavior of the system  tim e scries;

2 . the  relations between nonlinearity and the spectrum ;

3 . the  selection of the non-linear param eter in the circadian rhythm  model.

4. the  effect of various param eters on the m odel’s behavior in both the  tim e 

and frequency domains.

60

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



5. the difference and limitation of using single and m ulti-dim ensional Van der 

Pol type oscillators to  describe the circadian rhythm s and th e  possibility of 

using a  modified type.

In this chapter, we will introduce several different circadian rhy thm  models based 

on the Van der Pol oscillator. The Van der Pol type oscillator is a  sim ple represen

tation  of nonlinear oscillation which has an am plitude as well as a phase descriptor. 

We use a  normalized param eter to simplify the  basic Van der Pol oscillator equation 

as follows:

where k  is a fixed tim e param eter, which is used to  normalize the characteristic 

frequency of the system, k  is selected such th a t, for a; =  1 the system  has a period 

of 24 hours,
24

k = —  (4.2)

(jjx is the normalized frequency,

=  2 4 /7 ; (4.3)

For T  =  24hr, wx =  1 , whereas for Tx — 12.5/m (for example), u;x =  24/12.5 =  

1.92.

fi is a  param eter which represents the non-linearity of the system . If ft equals

zero, the system becomes a  linear system. The larger the value of /«, the  stronger

th e  nonlinearity.
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The analysis of our experim entally acquired circadian rhythm  d a ta  (as we 

discussed in chapter 2 ) and the comparison with the  model d a ta  (as we shall 

discuss in the following chapters) suggests th a t a  large value of ft should be used 

in the circadian model to approach the real circadian rhy thm  structure. Therefore 

the techniques for solving the Van der Pol type model with large p. should be 

considered.

T he analytic solution of Van der Pol type oscillators, as we discussed in the 

previous sections, can be used to  explore the complete behavior of the Van der Pol 

type equation but, as we will see here, this solution is restricted to  small values of

p.

Com puter simulation was used to obtain the numerical solution. Equation 4.1 

was rew ritten as the system

dx
M =  » <4-4>

LC
§  =  f ( l  -  (4.5)

Using the integration tools in the CSMP com puter simulation package, Eq.4.4 

and 4.5 can be solved for y  and x. In general cases, if the nonlinear param eter //. 

is not too large (less than 10), Eq.4.4 and 4.5 can be solved by using a  variable 

step integration m ethod. The advantage of this m ethod is th a t it saves simulation 

tim e and it is easy to  obtain relatively accurate results. Fig.4.2 shows the plots of 

the tim e series obtained from the simulation with different p. These plots give us 

the following information about the characteristics of Van der Pol type model in 

the tim e domain:
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Figure 4.2: Tim e series o f Van der Pol oscillator model with different [is. (a) 
[i=0.2. (b) fi=0.8. (c) [i=1.6 (d)fi=3.2.
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1. The ou tpu t waveforms of Van der Pol oscillators w ith small ft are cosine-like 

waveforms.

2. The waveforms are distorted from cosine-like waveforms as //. increases.

3. The zero-crossing detection results show that, the period of the  oscillation is 

very close to  the period param eter we defined in Eq.4.3 (u>T = 24/T x ) when 

there exists a small ft in the system.

4. The period becomes longer as ft increases, which differs from the defined 

period in the equation.

T he tim e series da ta  were then transformed to the frequency domain using the  

FFT . Details about the F F T  will be introduced in chapter 6 . F F T  results give us 

additional details of the Van der Pol oscillator model. Fig.4.3 shows the  am plitude 

spectrum  of the model corresponding to the same values of ft represented in fig 4.2. 

The spectral function also gives us the am plitude information of each frequency 

com ponent which can be used to compare the com puter simulation and analytic 

results.

The analysis of the spectral function yields the following results:

1. The spectra of Van der Pol oscillators consist of only the fundam ental and 

odd harmonic frequency components.

This is consistent w ith the result from the analytic solution which we obtained 

in the previous section using the perturbation method. The analytic solution 

of the Van der Pol type model is repeated in Eq.4.6. We can see from Eq.4.6 

th a t only the cu. 3cu, 5cu, 7ce, • • • frequency components are included.
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x  =  ( 2  — - y 2)cosut +  f  rac34 ysimuit 
8

3 1 5
+ — y 2cosZut — -u s in Z u t  — — y 2cosbwt +  • • • (4.6)

16 4 96

2. T he m ain frequency components (including the fundam ental, th ird  and fifth 

harmonics) were extracted from the spectral function of the com puter simu

lation results using our program Fextract (see the program in the A ppendix). 

T he ex tracted  components were then normalized and com pared w ith the  

analytic results.

We will first examine the frequency of the  fundamental and harmonics in the 

case of different degree of nonlinearity of the system. The frequencies are 

decreased (the periods are increased) with the increase of the param eter y. 

In our analytic solutions, we have

w =  w^=o[l -  ^ r / '2] (4.7)

T his result is consistent with our simulation results, when y  is less than

1.6. B ut the error becomes larger as y  is increased. Figure 4.4 shows this

comparison.

3. The amplitudes of the harmonic components become larger with increase of 

y . This reveals the essentials of the nonlinearity in the  Van der Pol models. 

Harmonic components in the spectrum  correspond to  the nonlinearity in the 

system . Due to the unnormalized m agnitude of the power spectrum , the 

simulation d a ta  can only be compared with the analytic solution by the 

ratio  of the am plitude of fundamental with harmonic component. The ratios 

in both the simulation and analytic results are very close for small y . The
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Figure 4.4: Comparison of simulation resuits and analytic solution: on frequencies 
o f Van der Pol type mode! with different nonlinearity, a) On the frequency o f fun 
dam ental frequency component, b) On the frequency o f 3rd frequency component.
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errors become large with the increase of /t. Figure 4.5 shows the  am plitude 

comparison. These results show tha t the analytic m ethod is not applicable 

for large (i (fi >  1 .6 ).

T he analysis of the basic Van der Pol oscillator model gave us the understand

ing of the essentials of nonlinear oscillation -  its tim e and frequency characteristics. 

The comparison of the numerical method and analytic m ethod shows the la tte r 

develops larger errors w ith the increase of nonlinearity.

4.5 M odified Van der Pol Oscillator M odel

T he single Van der Pol type model in some way reflects the characteristics 

of real circadian rhythm s b u t there are some m ajor differences in both tim e and 

frequency domains. In this section, we will try  to modify the  single Van der Pol 

type model to  approach th e  real d a ta  structure.

As shown in chapter 2, the frequency spectra of real circadian data, consist of 

“rich” harmonic com ponents. Therefore the time series show bim odal and other 

com plicated waveforms. T he one dimensional Van der Pol oscillator model how

ever, shows small levels of harmonics.

To increase the “level” of harmonic terms which are lacking in this model, we 

modified the Van der Pol oscillator model by adding more nonlinear term s into the 

equation.

Consider the Pendvlum-type Oscillator equation:

+  A sin ?  =  0 (4.8)
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Figure 4.5: Comparison o f simulation results and analytic results: on am plitudes 
o f Van der Pol type m odel with different nonlinearity, a) The am plitude o f three  
main frequency com ponents o f analytic solution, b) The am plitude o f three main 
frequency components o f com puter simulation results.
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Using Taylor series to expand the A sin x  term , taking only the first two term s 

of the expanded series, and substitu ting them  into the Van der Pol oscillator model, 

we obtain w hat we call the “ modified Van der Pol oscillator model’'. The system  

equation now becomes

In Eq.4.9, A  is th e  am plitude coefficient of the .-r3 term ; all the  o ther param eters 

are the  sam e as defined in the previous chapter.

To test the influence of the x 3  term  in the model, we sim ulated this model by 

first selecting different values of A  . Figure 4.6 shows the tim e series and spectra 

of the model (n  =  0.02) for A  =  0.0001,0.001,0.01 and 0.1. W hen A  is sm all, the 

general s tructu re  of the spectrum  is basically the same as the single Van der Pol 

type model. Increasing the level of the .r3  term  causes the fundam ental period to 

decrease (frequency to  increase) rapidly. Fig.4.7 and fig.4.8 show respectively the 

frequency and am plitude of the two main (highest peak) frequency com ponents 

extracted from the  spectrum  w ith different levels of the x 3 term . As we can see in 

Fig.4.7, th e  fundam ental period of the model varies from 26.26 hr to 11.01 hr as 

A  changes from 0.0001 to 0.1. However, the m agnitude of the harm onic did not 

change much with the  increase of A as we can see in fig.4.8. Therefore increasing 

the x 3 term  cannot increase the harmonic levels as we expected.

We also tested the effects of interaction between the /t portion and the :r3 term  

in the system. These two nonlinear terms in the system have opposite effects on the 

fundam ental frequency. As we discussed in the previous chapter, the  characteristic 

frequency of a  Van der Pol type oscillator decreases as fi increases. We have found 

th a t the frequency increases as A (the x 3 term ) increases. In our sim ulation, the  x 3
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Figure 4.7: The frequency o f two main frequency components in modified Van der 
Pol oscillator as A changes.
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Figure 4.9: The interaction  of two nonlinear item s in modified Van der Pol oscil
lator: the fundam ental frequency and the first two harmonics o f the system  with  
A  =  0.01, ^  =  0 . 2  to fi =  3.0.

term  was first kept a t a  relatively small value of A  =  0.01, which does not strongly 

affect the fundam ental frequency. Then we increased the  nonlinear param eter fi. 

This result is in Fig.4.9. It can be seen th a t th e  fundam ental period increases as 

H increases. Basically, this is very sim ilar to the basic Van der Pol type model. 

Therefore, in the case of a relatively small x 3 term , A  approxim ately 0.01, the  final 

direction of the characteristic frequency shift is determ ined mainly by the fi term .

If the coefficient of the x 3 term , A, was m aintained a t 0.1, then it would 

strongly affect the fundam ental frequency of the  system. In this case, as we in

creased the value of (i to  3.0, the characteristic frequency changed very slightly. 

Thus the  x 3 term  dominates the system  oscillating frequency. The fundam ental 

period of the system  remains at approxim ately 1 1  hr, and increases a  small am ount 

as fibecomesequalto3.0. This test result is shown in figure 4.10.
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Figure 4.10: 77ie interaction o f two nonlinear item s in modified  Van der Pol oscilla
tor: the fundam ental frequency and the first harmonic o f  the system  with A =  0 . 1, 
// =  0.2 to fi =  3.0.

4.6 Sim ulation and Analysis o f C oupled Oscil
lator M odels

T he  one dimensional oscillator model has the lim itations for the approxim a

tion of the real d a ta  th a t we discussed in the previous section. Using a coupled 

oscillator model will give us more degrees of freedom in the modeling. Therefore 

we have examined and compared several existing coupled oscillator models. These 

models use either linear or nonlinear m athem atical equations to  describe circadian 

rhythm s. T he study of these models helped us to understand the  basic rules of 

modeling circadian rhythm s. We include in our simulation results of two of these 

models. These are K ronaucr’s coupled Van der Pol oscillator model and Pavlidis’s 

biological oscillator model.
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4.6.1 K ronauer C oupled O scillator M odel

The Van der Pol oscillator model was introduced in section 4.4 for modeling 

circadian rhythm s. A coupled oscillator model of the Van der Pol type equation 

was developed by Kronauer, e t al( 19S2,1983) [23]. In his model, “ar” and “y” refer 

to  two circadian pacemakers. T h e“y” oscillator governed the tim ing of sleep and 

wakefulness and “x" oscillator dominated the  tem perature rhythm . These two 

oscillators affected one another by velocity coupling. Therefore the  y  oscillator is 

actually a sum of two components: the intrinsic y component and a  significant 

circadian component due to coupling with the x  oscillator. The explanation of 

spontaneous desynchronization was based on a. hypothesized spontaneous length

ening of the original y oscillator frequency f y. As the disparity between the original 

x  oscillator frequency f x and f y increased, the x  oscillator exerted less and less in

fluence on the ou tpu t of y. As Kronauer et al. explained, there was a dram atic 

change in the timing  of sleep when desynchronization occurred, yet there  was only 

a very small change in the y  waveform. This was the crucial lesson learned from 

the model. In m athem atical term s the distinction between phase trapping and 

desynchronization is th a t in phase-trapping the ux  component of y” is larger than 

the  “intrinsic component of y” , while in desynchronization it is the  intrinsic com

ponent which is larger. In other words, desynchrony is viewed by Kronauer e t al. 

as a  beat phenomenon, based on the summation of two waveforms to  generate an 

adm ixture.

We simulated this model of the human circadian system with two interacting 

oscillators where,

x  — Body tem perature.
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y =  Rest-activit.y, sleep-wake cycle.

T he x  and y oscillator are coupled to each o ther through the derivative. In 

the  solution,

x  <  0  corresponds to the tem perature below average tem perature.

y < 0  corresponds to  sleep.

T he m athem atical equations of this model are as follows:

* » §  +  /< ,% 2 -  i)^ jr +  u ly  +  (4 -10)

~  ^ vx~dt = FzxZ^  (4 -H )

here,

k  =  |£ ,  which is the normalized time constant as we defined in the single Van 

der Pol type model;

f-ix is the  nonlinear param eter of the x  oscillator. In practice, it also represents 

the stiffness for the phase adjustm ent. In this model, fix =  0.1.

Hy is the  nonlinear param eter of the y  oscillator. \iy was designed to  charac

terize the transient property of the y  oscillator.

The coupling coefficient, Fyx is the coupling from y  to x  and Fxy is the  coupling 

from x  to  y. These two coupling coefficients are not necessarily equal. The ra tio  in 

this model R  — Fxy/F yx, was selected as 4; Fyx =  —0.04 and Fxy =  —0.16, which 

shows th a t the  y oscillator had less influence on the x  oscillator. In o ther words, 

the x  oscillator is quite insulated from the y oscillator.

The frequency adopted for the oscillators in th is model was norm alized fre-
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quency, i.e., the angular frequency w =  1 for the oscillator period is equal to  24 

hours. Both oscillators represent different circadian rhythm s; therefore u)x and 

wy were in the  range near 1. However, this model was m ainly designed to simu

late th e  synchronization and desynchronization process of two circadian rhythm s. 

Therefore th e  natu ra l frequencies of the two oscillators were selected as follows:

u>x =  0.99,

ojy =  0.92 for day 1-5. (The external stimuli were acting on the system  in day 

1-5.). Then ujy decreases linearly from 0.92 to 0.78 between day 5 and day 100.

ojx —u>y, the frequency difference, often term ed “detuning” between 2  oscilla

tors, determ ined the absolute strength of the coupling at which the  desynchronized 

stage “NS” occurs.

T he ’’zeitgeber” ~{t) is the  external stimulus acting on th e  “y” oscillator which 

sim ulates the light stimulus applied to  the subject. The angular frequency of the 

stim ulus is uj~ =  1 ( the period is 24 hour). A sinusoid is the  sim plest form of 

periodic stimulus. Due to  the  low internal stiffness of each oscillator, the  oscillator 

responds strongly to  a  stimulus near the intrinsic period and much less to o ther 

periods (i.e. they are resonant). In this model, the zeitgeber was applied to the 

y oscillator from day 1 to  5 only. T he effect of the zeitgeber drive on the two 

oscillators, F .x and F:y. is quite different. Fzx is taken to be zero and F .y is m ade 

sufficiently strong (here F~y =  1 ) to  entrain the y  oscillator to  a 24hr period. 

The x  oscillator was affected through the coupling. Therefore the  y oscillator 

was driving the x  oscillator. After day 5, since the natural frequency of oscillator 

y decreased, it finally caused the desynchronzation. Fig.4.11 to  4.13 show the 

simulation results. Fig.4.11 (a) shows the designed stimulus z (t)  and (b) shows

77

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Kicro-CSKP -  Copgrljht 1585,1386 C ilifo rn ii S cientific  S o ftn re  
S.E5E-82  — -— -- - - - - - - - - - - - - - - - - - - - - - - - - - - -

3.43E-B2 . . . .

.88HM

--3.43E-B2 -

-5.85E-82 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
TIKE _....8B89 J ; 8E{82, 1.2E*83 1,8E(B3 2 .© 8 3

time (hours)
(a)

licro-CKP -  Ccfgriglit 1385,1386 C ilifo rn ii Scientific  Scftnaw

time(hours) 
( b )

Figure 4.11: (a) S tim ulus z ( t ) in the model. (b)Designed characteristic frequency
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Figure 4.12: Tim e series o f (a) y oscillator, (b) x  oscillator.

the  characteristic frequency u>y. z(t)  was applied to the system for only 5  days 

and ioy linearly decreased after day 5. These are two im portan t facts causing the 

system  desynchronization.

Fig.4.12 shows the  tim e series of the x  and y oscillations. T he tim e series 

are recorded for 1 0 0  days while the zeitgeber is applied only during the  first 5  

days. Fig.4.13 shows the oscillation period of the x  and y  rhythm s measured by 

the zero crossing detection method which shows the desychronization of these two 

circadian oscillators and which is the main feature of this model. The results of 

fig.4.13 show th a t in day 1 to 5 the system was synchronized by the zeitgeber. From 

day 5 to day 40, the two oscillators were almost synchronized which was the stage 

the author called the S stage. There were some significant quasirhythm ic shifts 

of phase between the two oscillators starting  from day 40. The author proposed 

the description “phase trapping” for this stage ( P stage ). After day 75 the two 

oscillators becam e totally  desynchronized which was called the  “NS” stage.
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Figure 4.13: (a) D etected period o f the y oscillator, (b) D etected period o f the  x  
oscillator.

T he significance of this model is th a t it reveals the internal relations of desy- 

chronization. From the model described before vve can see th a t three facts caused 

this deschronization:

1. The characteristic frequency of the y oscillator was designed to reduce linearly 

after day 5 in the model. As the frequency difference of the x  and y  oscillators 

becam e significantly large, they lose synchronization. Comparing fig.4.11 (b) 

with Fig.4.13 (a) we can see the deschronization started  to  occur at u y =  0.84.

2. The nonlinearity of the  y  oscillator in the model decreased w ith the  time, 

p y =  1/(2ttjD). Therefore the y oscillator stuck more strongly to  its charac

teristic  frequency as the tim e increases.

3. The external stim ulus which synchronized the two oscillators was applied to 

the y  oscillator only from day 1 to day 5.

SO

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4.6 .2  P av lid is’s B iological O scillator M odel.

Pavlidis presented a biological oscillator model in 1973.[29, pages 1 0 2  -  107] 

T he oscillator in his model has one degree of freedom described by the following 

(generic) pair of nonlinear differential equations.

dr/dt. = f { r ,s )  (4-12)

d s /d t= g ( r ,s )  (4-13)

where r  and s are the two s ta te  variables and /  and g are to  be chosen so th a t the

system  of Eq.4.12 and Eq.4.13 exhibits a limit cycle. For a  physical system  it is

reasonable to assume th a t the ranges of values taken by r  and s  are not unbounded 

, bu t between certain limits. The purpose here is to  build a  model having a  phase 

response curve (PRC) similar to  the real circadian system . We will discuss in 

more detail in chapter 5 the  PRC which represents the  system  phase response 

characteristics w ith an external stimulus acting on it. Fig.4.14 is an experim ental 

phase response curve, which shows th a t the circadian system  has different phase 

shifts verse the phase of the stimulus applied. The phase may be advanced, delayed, 

or not changed. This model attem pts to reflect these characteristics.

We sim ulated this model. The system equations of the model are the following:

d r/d t = r — cs -  ds2 +  b — x , r  >  0 (4.14)

dsjd t =  r — as (4.15)

where r  and s are two s ta te  variables and the system is designed to  have a  

limit cycle, r is set to >  0 which presents some im portant features. F irst, it causes 

r  to  be satu ra ted  at zero for part, of cycle which corresponds to  the PRC zone where

81

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



2 4 6 8 10 12 14 15 18 20 22
(hrs)

Figure 4.14: Phase response curve o f a circadian system .

the  phase response is near zero. ( Circadian tim e 4-12 hour in fig.4.14). The phase 

response of th e  circadian system  to the stimulus in o ther zones illustrates different 

effects. Also, the  lim it cycle includes a segment o f the axis r  =  0 as p art of its 

trajectory. The system  is designed in such a way so th a t the critical point is an 

unstable focus.[29, pages 103 -  107] All trajectories passing through the critical 

point eventually intersect the axis r  =  0. Figure 4.15 shows the trajectories of the 

system.

The constants c and a determ ine the systems linear characteristics while d 

determ ine the systems nonlinear characteristics, h is a constant bias and x  repre

sents the stimuli. These param eters were tested in the sim ulation of this model. 

Following are some results.

a)Effects of h on a piecewise linear system.

(Note th a t d, the  nonlinear param eter of the model was set to  be zero which
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Figure 4.15: Phase plane plot o f trajectories o f the  biological oscillator model.

m ade the  system  be a  piecewise linear system .) For a =  0.5, c =  0.6, d =  0, x  =  0, 

b, the constant bias on the system, was varied between 0.5 and 4.0. It was found 

th a t the oscillation period remained unchanged, which showed th a t the constant 

bias on the  linear (d  =  0 ) system will not change the oscillation period.

b)Effects of c on a piecewise linear system.

Again, the nonlinear param eter d was kept a t zero. For a =  0.5, b =  0.5, 

d =  0, x =  0; c was varied from 0.6 to  0.8. It was found that c mainly determ ined 

the  system  period. The system  period was reduced when c increased.

c)Effects of nonlinear portion.

Changing d, the param eter of the nonlinearity in the system equation, caused 

a change of am plitude and frequency of oscillation. In particular, b, the constant 

bias, had effects on the system period when d was not equal to  0. Table 4.3 shows 

this simulation result.
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P e r i o d s  o f  O s c i l l a t i o n  f o r  V a r i o u s  V a l u e s  o f  b a n d  d

d b = 0.5 b = 4.0 Ratio of periods

0.00 16.80 16.80 1.000
0.01 13.85 10.00 1.385
0.10 9.57 5.95 1.610
0.50 6.70 3.95 1.695

Table 4.3: T he period o f biological oscillator model with different d and b.

d)Effects of different initial conditions. Using the same param eters bu t with 

different initial conditions, we could set the starting  point either inside or outside 

of the limit cycle. In both cases it finally approached the limit cycle. T he modeled 

system  is stable.

e)Effects of some specially designed stimuli on the system. T here exists a 

value of the light intensity I ’ which, if applied for tim e interval T ’ a t a point of the 

limit cycle C’, will bring the s ta te  at or close to  the singularity. T he oscillation 

will then be completely dam ped out after the application of such an input. This 

issue will be further discussed in chapter 7.

4.7 Our Two Dim ensional Coupled Van der Pol 
Oscillator Model: Simulation and A nalysis

The simulation of the one dimensional nonlinear oscillator model gave us 

an understanding of the essentials of simple nonlinear oscillation. Due to  the 

insufficiency of these one dimensional models, it seems th a t two or more interacting 

oscillators are needed to model the circadian rhythm s for the following reasons:
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1. T he com plicated tim e waveforms of the  nonlinear circadian system  suggest 

the  possibility of the existence of two or more oscillators. For exam ple, many 

circadian rhythm s exhibit two peaks, i.e, “bim odality” . T hese bimodal peaks 

w ith the secondary peak moving progressively through th e  m ain peak, and 

the low frequency trend, which causes very long period fluctuations, give 

evidence of th e  existing m ulti-oscillators in a circadian rhythm . Circadian 

activ ity  rhythm s in rats, ham sters, birds, and m any o th er anim als exhibit 

two prom inent peaks, with one peak a t the  beginning of activ ity  followed by a 

second peak late in activity. In human sleep-wake cycles, in addition to  their 

nightly sleep, people have a  second daily episode where sleepiness peaks in the 

early afternoon. Careful research has shown th a t th is second dip in arousal is 

not due to  a  large lunch. Instead, both the nightly and th e  afternoon dips in 

arousal correspond to dips in body tem perature. This bim odal substructure 

of our daily arousal and activities has practical everyday effects in areas such 

as perform ance and accident ra tes.[1 1 ] Fig.4.16 shows th e  sta tistics of the 

accidents from 60-52 samples during a  24 hour interval. It shows two peaks 

of such accidents during a  day, shortly after m idnight and again shortly after 

noon.

To exam ine th e  bimodal substructure of our biological d a ta  further, we a t

tem pted to develop a model of circadian tem perature rhythm s th a t would 

also account for the bimodal behavior tem perature. In th e  one dimensional 

model sim ulation, we tried to enhance this phenomenon by changing the pa

ram eters or modifying the model as we did in section 4.5, bu t it was not 

successful. Therefore a two dimensional oscillator model should be devel

oped. T he bim odal pattern  can be modeled by two coupled oscillators with 

a period ratio  near 2:1. It should be emphasized th a t two oscillators in the
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Figure 4.16: The statistics o f car accidents from 6052 samples.

coupled oscillator m odel serve for one circadian rhy thm  w ith bim odality  as 

shown in Fig.4.17.

2. T he spectral analysis of the experim ental circadian tem peratu re and activity 

d a ta  showed th a t m ajor frequency components of these d a ta  include funda

m ental, 2nd, 3rd and higher harmonics which are not in phase. T he spectrum  

of the one dimensional Van der Pol type oscillator illustrates th a t this type of 

oscillator consists of only a fundam ental and odd harm onics. Therefore the 

2nd harm onic frequency can not be generated by a  single Van der Pol oscil

lator model. From the  viewpoint of spectral analysis, the coupled oscillator 

model is needed to account for the  2 nd harmonic frequency com ponent.

3. Different coupling modes and coupling intensities between the  coupled os

cillators m ay cause different spectral and tim e series structu re . Therefore 

coupled oscillators give more degrees of freedom in the models.

86

in te rna tiona l D a ta N.60S2

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



External
.StiBUlUS J

t t x - 1 2 . 5  
hr3 ,

Figure 4.17: Our coupled oscillator model: two oscillators serve for one circadian 
rhythm .

It is difficult to obtain an analytic solution for coupled nonlinear oscillators. 

Therefore all the analysis presented here on coupled oscillators is based on results 

from numerical solution obtained from com puter simulation.

T hree different linear coupling m ethods were used to explore the coupling 

effects:

1. Direct coupling;

2. Derivative coupling;

3. Combination coupling.

“Linear” here means that the coupling term s are determined by the  first power of 

x  or y  (m ethod 1 ), or of their tim e derivatives, d x jd t  and d y /d t (m ethod 2 ), or 

bo th  (m ethod 3). Linear coupling has the property th a t no frequency components
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are introduced into one oscillator from the o ther which are not already present in 

th a t o ther oscillator. These three coupling m ethods were sim ulated based on our 

two dim ensional Van der Pol oscillator models.

4.7.1 D irect C oupling System

T he direct coupling model use two oscillators which are coupled to  each other 

directly through their ou tput. This type of coupling has strong coupling effects 

between two oscillators. The direct coupling system  was applied to  a two dimen

sional Van der Pol oscillator model. As we m entioned before, to  represent the 

bim odality of circadian rhythm s, the characteristic frequencies of two coupled os

cillators were selected as the fundamental and the second harm onic frequency in all 

of our two dim ensional coupled oscillator models. T he in teracting coupling of these 

two oscillators was caused by direct coupling, i.e., position coupling. Wc defined 

the  oscillator w ith the system fundamental frequency as the  y  oscillator and the 

one with th e  system  second harmonic frequency as th e  x  oscillator. T he coupling 

of the y  oscillator directly from the x  oscillator is denoted by Fxy and vise versa. 

T he coupling intensity  determined by Fxy and Fyx between the  two oscillators may 

not necessarily be equal. The selection of the rem aining param eters is basically 

the same as we defined in the first order system. T he direct coupling system  is 

described by the following two dimensional nonlinear differential equations:

kl~ [ ^  + ih H y 2 - 1 +  s 2.v +  F*v* =  0  (4- ^ )

+  PrM * 2 ~ 1^ + U l x  + FV*y =  ° (4-17)

To represent the bimodality, the frequency of each oscillator should represent the 

frequency of a fundam ental or 2nd harmonic respectively. W hen the nonlinearity
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in either system  is varied, the characteristic frequency in bo th  oscillators of the 

system  may change, which is also the case when the coupling coefficient varies. 

Therefore th e  fundam ental frequency should be adjusted to  m eet different fi and 

Fry (Fyx) selection in the system. To do this adjustm ent, we should first understand 

the mechanism of the  frequency shift.

T he effect of nonlinearity in the coupling system  could be considered as the 

weighted sum of both oscillators in the system. For example, th e  nonlinear influ

ence in the y  oscillator should be considered not only from y y bu t also partially 

from fix . Recalling th a t increasing the strength of the nonlinearity in the single 

Van der Pol oscillator model caused the decrease of the system  fundam ental fre

quency and increase of the  am plitude of the 3rd and 5th (and higher) harmonics, 

we would expect sim ilar bu t stronger effects in the coupled system .

T he sim ulation model is based on Eq.4.16 and Eq.4.17. T he frequency param 

eters of the system  were selected as: Ty = 26/?r and Tx =  12.5/?r. T he first trial 

examined the  relations between the system frequency (real detected  not defined) 

and the nonlinearity of both oscillators. Fig.4.18 shows the sim ulation results 

of the  tim e series of a two dimensional model w ith equal coupling coefficients 

Fry = Fyx =  0.2, and the  nonlinear param eter fi varied from 0.2 to  3.0. Fig.4.19 

shows the  spectral functions. Comparing the result with th e  single Van der Pol 

oscillator model, we can see the second harmonic frequency com ponent is inserted. 

The results also show th a t the effect of the nonlinearity on the  system  fundam ental 

frequency in the coupled system is stronger than in the single system , because this 

effect is not only from the nonlinearity of one oscillator bu t also from the coupled 

oscillator.

89

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Direct coupled Van der Pol oscillator
93

JJ
t

09

0

-09

-z

I Si Ti oo

D irect coupled Van d er Pot oscillator

VTOZ
(a)

ZS

z

I
09

o
-09

-f

(b)

D ire c t coupled  Van d e r  Pol o sc illa tor
__________ 7** frkictr

9

13

t
OS

0
-09

D ire c t coup led  Van d e r  Pol o sc illa to r

( C )

I
03

O
-03

I £4 49 7? 00  ISO h i  J00 102 ZtO Z-G

( d )

x-axis: time (hours)

Figure 4.18: Tim e series o f direct coupling model with different ps.a) p=0.2. 
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FREQUENCY COM PONENTS ANALYSIS
DIRECT COUPLING SYSTEM
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Figure 4.20: Main frequency components o f direct coupling m odel with different 
Its. a)  ft =  0 .2 . b)p =  0 .8 , cj/z =  1 .6 , d)p = 3 .2 .
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Fig.4.20 shows the main frequency components extracted  from the  spectral 

function. Carefully analyzing the  varying trend of fig.4.20, we find there  is a  fre

quency transition process caused by fty and fix . We divide th is frequency transition 

into 2  stages.

Stage one: \iy and fix are in the range from 0.2 to 0.8. T he fundam ental 

period of the system  varies from 29.68 hr. to 31.03 hr. This period deviates 

from its defined period (the characteristic frequency of y  oscillator, 26 hour) by 

about 17%. T he frequency of coupled oscillator x  does not change significantly. 

The frequency of the 3rd, 5th and higher harmonics in the y  oscillator follows the 

fundam ental frequency changes, and the m agnitude of the 3rd harm onic increases 

along with the increase of fiy and y T.

Stage two: /iy and /tr  are in the range equal to and g reater than  1.6. The 

fundam ental frequency of the y oscillator has a  jum p in th is range. In stage one, 

the fundam ental frequency was gradually pulled in the low frequency direction 

due to the nonlinearity, while this frequency jum p is caused by the  subharmonic 

entrainm ent. As we mentioned earlier, if the frequency of an oscillator is near an 

integer or sub-integer m ultiple of the forced oscillator, harm onic or subharm onic 

entrainm ent will occur. Here when the y  oscillator is pulled near 1/3 of the fre

quency of the x  oscillator, the y oscillator jum ped to 1/3 of the  frequency of the 

coupled oscillator x. As we can see in fig.4.20, the row 3 shows y  — 1 .6 , the period 

of main frequency component is 37.93 hour which is about three tim es of th a t 

of the second frequency component (12.88 hour). This jum p changes the whole 

structure of the spectral function. The three main frequency com ponents after 

the jum p become the fundamental, 3rd harmonic and 5th harm onic. T he second 

harmonic inserted by the x  oscillator no longer exists. The deviation of the real
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frequency of oscillator y  from its frequency defined in u:y is now about

37-93 -  26.0
2 6 l  - 53%-

Examining the spectrum  of y when fi =  0 . 8  in fig.4.19, it can be seen th a t there are 

m any small frequency components emerging up. These components were caused 

by the nonlinear portion of both y  and x  and they usually appear in the case that 

th e  system frequency is near entrainm ent. We will discuss this phenomenon in 

more detail in chapter 7. From the spectral function shown in fig.4.19 we can see 

the  period of the y  oscillator increases with the  increase of fiy and  ]ix . As soon 

as the  period of the y  oscillator is near 3 times the period of the x  oscillator, i.e., 

near the 1/3 entrainm ent range of the oscillator x, 1/3 subharm onic entrainm ent 

occurs. In what we called stage two, the  “growing” frequency com ponents were 

converted into pure harmonics and the spectrum  becomes clear again.

Further exploration was done to explore various conditions which may cause 

1/3 subharmonic entrainm ent. First we examined the effect of the  coupling Fxy 

to  y. The coupling coefficient Fxy was reduced from 0.2 to 0.0-5 which decreased 

th e  coupling from x  to y  about 75%. All the  o ther param eters were kept the same 

values as above. The simulation was done by varying fix and fiy. Fig 4.21 shows 

three main frequency components extracted from the spectral function. It was 

found th a t 1/3 harmonic entrainm ent occurred here when fiy =  fix =  1.6 instead 

of 0.8 when Fxy — 0.2. It also can be seen th a t the fundam ental period is shorter 

than  when the coupling coefficient was 0.2 as in fig.4.20. For example, the period 

of main frequency component when /t =  0.2 is 29.6S hr as Fxy =  0.2 while it is 

27.31 hr as Fxy =  0.05. The explanation for this case is th a t the nonlinear portion 

is weak due to  the reduced coupling.
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FREQUENCY COMPONENTS ANALYSIS
DIRECT COUPLING SYSTEM (F x y 0 .0 5 )
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U-3.2 40.157 13.653 8.127
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Figure 4.21: 3 main frequency components o f  coupled system  with Fxy =  0.05, and 
p. =  0.2 to p. =  3.2.

Second, we would like to  see separately the  influence of the  nonlinearity of 

the x  and y  oscillators on this 1/3 entrainm ent. Instead of varying px and py 

simultaneously, we varied p y only while px , the nonlinearity of th e  x  oscillator, 

was kept a t 0.1. Both the coupling coefficient Fxy and Fyx were set equal to 0.2 as 

in the previous model.

Fig 4.22 shows the result of this simulation where py was varied from 0.2 

to  3.2. The figure shows three main frequency components ex tracted  from the 

spectral function. This result was compared with the result in Fig.4.20 where both 

p y and p x were varying from 0.2 to  3.2. We found the following:

1. W hen 1/3 subharm onic entrainm ent occurred, the fundam ental frequency of 

the  y  oscillator was relatively higher (the period is shorter) than  the case 

when p z and p y bo th  increased.
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FREQUENCY COMPONENTS ANALYSIS
DIRECT COUPLING SYSTEM(Ux-O.I)
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Figure 4.22: 3 main frequency components o f coupled system  with p x =  0.1, and 
p y =  0.2 to p y =  3.2.

2. The nonlinearity in both oscillators were acting on the  system. However, the 

nonlinearity in the  y  oscillator had much more effect th an  the  nonlinearity 

in the x  oscillator.

3. The m agnitude of the fundamental and harmonics of the x  oscillator were 

relatively smaller than the case when p x and p y both increased.

4.7 .2  V elocity  C oupling S ystem

T he m athem atical model of a  velocity coupling system  is based on the work by 

Kronauer.[23] In Kronauer et al’s model, the two oscillators x  and y drive two 

different activity rhythm s -  tem perature and sleep wake. However, in our model, 

we assumed th a t bo th  oscillators contributed to the same rhy thm  (e.g. tem per

ature) bu t with different natural frequencies. Therefore two 2nd order Van der
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Pol oscillators were used in our model to  build an interacting system  rela ted  by 

velocity-coupling as in the equations below:

+  fc (y2 -1 ) f r  +  w^  +  Fr^  =  0 (4-18)
»•> ̂  2- j . *> . cfa? _ cfo/
Tl ^  + tlx‘ (a? ~  ^ l i  + UJxX+ uxd t = (4 J9 )

Eq.4.18, Eq.4.19 differ from Eq.4.16 and 4.17 only in the coupling mode. Ty, the

natural period of oscillator y, is equal to  24/u;y, and is in the range between 22 to

24 hours while Tx (equals to 24/wx), the period of oscillator x , is approxim ately 

1 2  hours. Two velocity-coupled oscillators could become m utually synchronized 

if their initial period difference {Ty — Tx) is sufficiently small, typically in a  range 

less than  4 hours. As expected under this condition, the simulation results showed 

th a t the synchronized pair adopts a period interm ediate between Tx and Ty. One 

example of this is the simulation results of K ronauer’s model as we introduced 

in section 4.6. Similarly, the two oscillators could also achieve subharm onic en

trainm ent if the frequency of one oscillator was near an integer subm ultiple of the 

o ther oscillator’s frequency (Ty =  nTx ). In the subharmonic entra inm ent case, 

the synchronized pair adopts a period interm ediate between Ty and nTx . Because 

the  velocity coupling is weaker than the direct coupling mode, the  effect of sub

harmonic entrainm ent is not so obvious as in the direct coupling case. Also high 

subharm onic (higher than 2 ) entrainm ent is relatively difficult, while in the direct 

coupling system , we see th a t 1/3 entrainm ent is not difficult to a tta in .

In contrast, if the frequency difference is outside the range of m utual en tra in 

m ent frequency ratios, a velocity coupled oscillator can not achieve subharm onic 

entrainm ent. We examined the behavior of a  coupled system where the free run

ning period of the x  oscillator was m aintained at 12.5 hr. and the  free running 

period of y  was varied from 23 to 29 hr., with coupling from y  to .r, Fyx =  0.1 and
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Figure 4.23: Subharmonic entrainment in velocity coupled system

coupling from x  to y, Fxy =  0.4. Under these conditions, the two oscillators could 

achieve synchronization. The x  oscillator pulled the period of y  oscillator T y ,  to

wards to 2Ts , but the period of this coupled system  was not very stable. Instead, 

the period fluctuated with complicated patterns. Fig.4.23 shows an exam ple of 

these complicated fluctuations in period. Generally, subharm onic entrainm ent is

much weaker than regular entrainm ent and velocity coupling is weaker than  di

rect coupling. These two properties cause the instability here. However, the  main 

purpose for us to build this coupled oscillator model is to insert th e  2 nd harmonic 

frequency component.

The y  oscillator also shows weak influence on the frequency of the x oscillator. 

Fig.4.24 shows the period of the x  oscillator (natural period =  12.5 hr.) in the 

velocity coupled system model where it is coupled with a y oscillator having a  28 

hr period. The raster plotting scale is 12.5 hr. It can can be seen th a t the p^nod 

of the  x  oscillator is increasing.
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Figure 4.24: Raster p lo tting  o f x  period, (a) with y period o f  28 hr., Fxy =  0 and
(b) w ith y period o f 28 hr., Fxy =  0.2.

Velocity coupling has similar effects on the system as direct coupling, bu t it 

is much weaker. T he selection of the frequency of the oscillators x  and y in the 

velocity coupling system are basically the same as in the d irect coupling system. wy 

and u x are the inherent normalized frequencies of oscillator x  and y which represent 

the fundam ental and 2nd harmonic frequency of the system . T he fundam ental 

frequency and harmonics of both the oscillators in the d irect coupling system  are 

easily influenced by the nonlinear portion in each oscillator. Therefore the  natural 

frequency of both  oscillators in the model should always be adjusted  to m atch 

the frequency defined. In the velocity coupling system , the  natu ral frequency is 

relatively stable.

Different velocity coupling coefficients were tested in our model to  approach 

the experim ental data. As we mentioned earlier, the coupling in th e  two dim en

sional system introduced the 2 nd harmonic and higher harmonics as well as the
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nonlinearity. Therefore the spectral function can help us to  estim ate the  coupling 

coefficient. We compared the spectral function of our model w ith the experim ental 

data , and found th a t in most cases strong coupling ( Fxy >  0.1) in th e  velocity 

coupling model generated the required level of 2nd and higher harmonics. T here

fore strong coupling should be applied in this model to  approach the experim ental 

data . Symm etric (Fxy =  Fyx) and non-sym m etric {Fxyy£Fyx ) coefficients were 

tested  in th e  model and did not generate significant differences in th e  structu re  

of the  spectrum  of the system, but symmetric coupling generates sm aller high 

harm onic frequency components which is more like the  real data.

The nonlinear param eter is also an im portant param eter being considered 

in the velocity coupling system. The main frequency com ponents were extracted  

from the  spectrum  of the  model with different p y and fix . T he increase of p x and 

fiy in the  direct coupling system  causes a frequency transition as we found and 

discussed in the  previous section. This phenomenon did not appear in the  velocity 

coupling system  which shows th a t the direct coupling mode is much stronger than 

the  velocity coupling mode. Fig.4.26 shows a comparison of our simulation results 

of the velocity coupling model with free running experim ental d a ta  sets, ft can be 

seen th a t the output of this model is very similar to the  practical data , both in 

the tim e domain and in the the frequency domain.

4.8 Three Dim ensional Coupled O scillator M odel

P ractical circadian rhythm s show varying and distinct features in both tim e 

and frequency domains. One im portant feature is the  appearance of harmonics. 

According to  the spectral analysis on the experim ental d a ta  which is introduced
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Figure 4.25: Comparison o f velocity coupling system  with the  experimental data, 
(a) Experim ental results from one o f the m onkey subject, (b) Coupled oscillator 
model results.
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in chapters 2  and 6 , the d a ta  of a  free running circadian rhy thm  mainly consists of 

th ree distinct harmonic frequency components, i.e., fundam ental, second and third 

harmonics. Usually, these three frequency components have different am plitudes 

and frequencies on different subjects under different conditions. In the  tim e do

main, these harmonics show “troughs” or “shoulders” as we have seen in chapter

2. To make our model approach the real d a ta  precisely, independent oscillators 

controlling these three harmonics separately should be considered in the model.

In section 4.7.1, we did a  spectral analysis on the Van der Pol type oscillator. 

Fig.4.5 showed th a t a  Van der Pol oscillator consisted of 3rd, 5th, - - •, (odd) har

monic components. In our two dimensional coupled Van der Pol oscillator model 

discussed above, the  fundam ental and  th ird  harmonic frequency component were 

introduced by the m ain oscillator while the second harm onic was introduced by 

the  coupled oscillator. The problem here is th a t the th ird  harmonic com ponent 

depends on the oscillator with the  fundam ental frequency and therefore, the level 

of this frequency component is not adjustable.

The experim ental da ta  always shows different harmonic structu re for different 

species and subjects. Fig 4.26 (a) shows the spectrum  from th e  tem perature circa

dian d ata  of a ra t and (b) is from the tem perature circadian d a ta  of a monkey. It 

can be seen th a t both spectral functions have similar s truc tu re  but with different 

harmonic levels. It is difficult to  use the same model to  describe both circadian 

rhythm s.

We designed a three dimensional model which consisted of three Van der Pol 

oscillators to sim ulate this com plicated case. The three oscillators in the  model 

were velocity-coupled to each other. Fig.4.27 shows the  coupling structure diagram
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Figure 4.26: a)Spectrum  o f  a rat tem perature data, b) Spectrum  o f a m onkey  
tem perature data.

of this model. T he three dimensional system  is described by the following nonlinear 

differential equations:

- 1) ^  +  +  F^  +  f J t* =  0dt dt dt
, ,  (Px , . 2 _ dx ,  _  dy _  dz
^x~u2 "b Pxk(x  — 1)~~r~ +  wxx  +  Fyx—-  +  Fzx—  — 0

dt2 ' ~’ dt ' ~ x“ 1 ~ yxdt
_ 2 (P z , ,  ,  , dz ,  „  dx dy
z ~di2 + fiz  (y _ 1 ^  + U}- y +  xz^  +  f *2~» = 0dt dt

’ dt 
dy_ 
dt

(4.20)

(4.21)

(4.22)

T he basic param eters used in this model are sim ilar to  the two dimensional 

velocity coupling system. u y, cox , w. were defined as th ree main frequencies in the 

model. T he coupling can be adjusted to sim ulate different experim ental data. Fig 

4.28 shows the  spectra of two three-dimensional coupled oscillator models with 

different coupling. The idea of this model is to  increase the degrees of freedom of 

the model. Fig 4.28 shows this flexibility. By adjusting the coupling coefficient 

among the th ree oscillators, we can get any desired harm onic structure. However,
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Figure 4.27: 3 dimensional coupled oscillator model.
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(a) (b)

Figure 4.28: The  spectra of 3 dimensional coupled oscillator model, a) Coupling 
coefficient Fzy = 0.1. b). Coupling coefficient F~y = 0.4
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this model also increases the complexity of the process. This model will be used to 

sim ulate the experim ental d a ta  with unusual harm onic structures which the two 

dimensional oscillator model cannot generate.
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C hapter 5

A nalysis o f Circadian R hythm s  
U sing Topological M ethods

5.1 Introduction

T he topological analysis method is applicable to the  study of autonom ous(see 

section 3.4.1) systems and is widely utilized to investigate various phenom ena of 

nonlinear oscillations. W ith this technique, the  solutions of non-linear differential 

equations are obtained not as explicit functions of tim e b u t as solution curves in 

a phase plane, or, more generally, in a s ta te  space. In the  study  of biological 

oscillators, th e  topological method has its special im portance.[20, pages 33-34]

T he graphical solutions obtained for the biological system  include phase re

sponse curves and raster plots which are very productive for the exploration of the 

system . T he phase response curve method is based on the  study of the represen

tation of solutions of differential equations in the phase plane or phase space, i.e., 

phase response features. The raster plot is based on the  periodic solution present 

in the nonlinear system. It can be used for long term  d a ta  recording and trend
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observation.

T he study of biological oscillators presents a  situation different from th a t in 

engineering and the  physical sciences. There, oscillators could often be described 

by existing m athem atical equations. T he s ta te  variables are usually well defined 

and measurable. T he study of most biological oscillators is subject to the following 

constraints:

1. T he sta te  variables are not known.

2. Even if they are known, they are not measurable.

3. The m athem atical equations describing the dynamics are not availab le

Therefore, the regular techniques in engineering can not be used in this case. O ther 

techniques have to be considered for exploration of the properties of biological os

cillators. For example, from the recorded circadian rhythm  data, we could possibly 

find its tim e derivative. Then the  phase plane curve could be possibly draw n with 

these two variables. The type of oscillation and stability could be further explored 

from the phase plane.

The other exam ple is the  application of the  PRC  -  phase response curve. Even 

though the internal s tructu re of the biological oscillator is unknown, we could apply 

some level of stim ulus a t different phases of the oscillation to observe the  reaction of 

the system . The information obtained is called the Phase Response C urve(PR C ), 

which will help our understanding of the system.
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5.2 Phase Space and Phase Plane M ethod

The dynam ic behavior of many physical systems can be described by a 

second-order differential equation or a  system  of two first-order differential equa

tions. Such descriptions involve two variables which characterize the  behavior of

the system  and are usually called the sta te  of the system. They can be repre

sented as coordinates in a  plane. In this way the  behavior of the  system  can be 

described in term s of plane curves. The general form of the m athem atical equa

tions describing a system  which can be studied on the phase plane is ,[2 1 , pages 

367]

d y /d t = f { x , y )  (5.1)

d x /d t  =  g{x , y )  (5.2)

We can elim inate t to obtain a  first order equation in x  and y:

d y / d z  = f { x , y ) / g { x , y )  (5.3)

The variable t can be interpreted as a reference param eter. Each solution curve

with different t is a  trajectory.

For example, the position and velocity of a mass m  suspended from a spring

with constant k  has its motion determ ined by the equation

m d 2y /d t2 + ky  = 0 (5-4)

The solution of the above equation is

y(t)  =  A co s{(k lm )l l2t -(- <p\ (5.5)
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Figure 5.1: Phase plane p lot o f spring system .

T he derivative of y(t)  is:

x (i) =  y'(t)  =  —{k/  m ) 1/ 2 A sin [(k / m ) l ^ t  +  <f>) (5.6)

If the tim e dependence is eliminated in x(t )  and y[t),  we have

y2 +  ( m / k ) x 2 = A 2 (5.7)

which represents ellipses in the  xy  plane. In the case where m / k  =  1 , the  curves 

become circles as shown in fig.5.1, the figure shows a group of circles drawn by 

assuming different A  values.

The points (xe,y e) for which the derivative o f y and x  both take the value 

zero are called points of equilibrium, singularities, or critical points of the  system  

[21, pages 378-388]. The singularity of the system  shown in fig.5.1 is the origin 

[x = y — 0). If the initial point is exactly equal to  such a  point, it will remain 

unchanged since both the velocity (dy f d t ) and the acceleration(dx/df) are zero. If 

the initial point is close but not exactly equal to  the critical point, there will be 

three possibilities:
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Figure 5.2: Phase plane portraits o f different equilibrium points, (a) and (b): the 
trajectories m ove toward the equilibrium o f the system , they are stable, (c), (d) 
and (e): the trajectories move away from the equilibrium o f the system , they  are 
unstable, (f) the trajectories share the equilibrium o f the system  and remain there, 
they are stable.

1. T he distance between (x( t ) ,y( t ) )  and ( xe, y e) converges to  zero w ith increas

ing t if (x(t),  y(t)) are sufficiently close to  (xe, ye) initially. In this case (xe, ye) 

is said to  be asym ptotically stable.

2. The distance between (x( t ) ,y( t ) )  and ( xe, ye) does not converge to  zero, but 

it remains small if (x ( t ) , y ( t )) and [xe, y e) are close enough to  begin with. 

We say in this case that (xe, ye) neutrally stable.

3. If the distance between (x (t),y (f)) and (x e,y e) eventually exceeds some pos

itive value no m atter how small it is initially, (xe, ye) is said to  be unstable.

The analysis allows us to plot the  trajectories of the system  in the neighborhood of 

an equilibrium point. Fig.5.2 shows several phase plane portraits in the neighbor

hood of various types of critical points. Table 5.1 lists the configurations of these
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N a m e  Stability Real roots ' In-Fig.5.2 .

Stable node Y Y a
Stable focus y jj b
Unstable node N Y c
Unstable focus N ^ d
Saddle point N Y e
Center y - f

Table 5.1: Configuration o f equilibrium points.

points. We are interested in the set of closed cycles which correspond to  periodic 

biological oscillatory motion in our circadian rhythm  system . These trajectories 

can be called periodic trajectories. They have the property th a t once the s ta te  

of the system  is in the closed cycle it will remain there for all times. Periodic 

trajectories which are asym ptotically stable from both sides of the  trajecto ry  are 

called stable lim it cycles or simply limit cycles. Those which are unstable from 

both sides are called unstable limit cycles or antilim it cycles.

Poincare studied various properties of periodic trajectories. T he following is 

a sum m ary of his results: [3 3 ]

1. A periodic trajectory  m ust surround at least one point of equilibrium .

2. If it surrounds exactly one point, then this can not be a saddle point; i.e., it 

is necessary th a t both roots have the same sign (stable).

3. If a surrounds more than one point, then there should be exactly  one more 

focus, node, or center than saddle points.

The singularity of a linear oscillation is a center. The situation becomes more
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com plicated in th e  nonlinear oscillation case. T he problem of establishing the 

existence of a  limit cycle is generally very difficult. The m ethod of contact curves 

introduced by Poincare is sometimes useful in locating possible limit cycles. For 

this purpose we first consider a family of concentric circles w ith centers a t the 

singular point and then determ ine on the x y  plane the locus of the points where 

these circles are tangent to the integral curves. This locus is the contact curve. 

We assume th a t the  contact loci lie in a bounded region of the xy  plane. If a  limit 

cycle occurs a t all, it m ust of necessity lie in a ring domain with center a t the 

singular point whose boundaries are the innerm ost and outerm ost circles of radii 

Tmax and r min respectively, which touch the contact curve.

M ost of the solutions of our models are obtained through com puter simulation, 

and therefore the phase plane plots could also be obtained from the  numerical 

solution. The sim ulation tim e interval should be long enough to  draw the complete 

motion of the system . In chapter 4, we introduced several models for circadian 

rhythm s. We will now analyze their phase plane results.

Fig.5.3 shows th e  limit cycles of a single Van der Pol oscillator model with 

different values of fi. In section 4.4, we introduced and analyzed our simulation 

results of a single Van der Pol type model with different nonlinearity. Their time 

series and spectra were shown in Fig.4.4 and 4.5. T he phase plane results shown 

here are based on the  numerical solution of the  sam e model, i.e., both th e  tim e se

ries and the  derivative of the time series were obtained from a. long tim e simulation. 

In fig.5.3, we notice the following:

1. The lim it cycle of this model are closed curves. Therefore the solution for 

y(t) ,  the tim e series of the system must be a periodic function of t , since ?/(/)
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Figure 5.3: Phase plan plots o f a Van der Pol oscillator with different values o f p.
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m ust retrace the  same pattern  over and over again as we follow increasing t 

around the trajectory;

2. The equilibrium  point is a t the origin and is unstable for g > 0. More pre

cisely if a small initial deviation from the equilibrium point is not corrected, 

then it leads to  motion th a t converges to  the limit cycle as t increases indef

initely. The trajectory of this type of model is a stable lim it cycle. If the  

initial point is not a t the origin, it will move toward the limit cycle;

3. In the  case of g =  0, the model becomes a  linear oscillator, and  all th e  tra 

jectories are circles with center a t the origin. As g increases, the  nonlinearity 

causes a profound change in the  trajectories.

More complex cases are the quasiperiodic or almost periodic m otions. A quasiperi- 

odic function f(t) is one which can be written as

f { t )  = g { v i i , . . . ,u mt) (5.8)

where g is a continuous and periodic function with respect to each one of its 

argum ents (with frequency w,- ). For example,

$inu}\t +  sinu.'2t

is a quasiperiodic function. It will be periodic only if and w2 are in rational 

ratio. Fig.5.4 shows a  phase plane plot of a  quasiperiodic oscillator which was 

obtained from one of our simulation results. We simulated a single Van der Pol 

oscillator model twice with all the same param eters as in section 4.4 except //. =  0.1 

and g =  0.2 respectively. The tim e series from two simulation results were then 

subtracted . Fig.5.4 is the phase plane plot of this difference which shows th a t the
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Figure 5.4: Phase plane plot o f a quasiperiodic osciJJator.

oscillator is in a  “quasiperiodic” mode. It should be noticed that this quasiperiodic 

oscillation has very small am plitude according to the scale of the phase plane. 

Our understanding is th a t different nonlinearity cause the difference of oscillating 

frequency, therefore the difference of these two tim e series includes two different 

frequency oscillations as we can see in the phase plane. Points A — A  and B  — B  

on the  phase plane dem onstrate the two frequencies.

T he phase plane technique for the analysis of quasiperiodic oscillators is very 

useful. T he trajectory  for this type of oscillator is a combination of two lim it cycles. 

The movement will cross between these two cycles. In the biological oscillator case, 

due to different types of nonlinearity, different oscillation features will occur under 

different conditions. For example, an oscillator coupled with another oscillator 

having unequal frequency will either change its period and become “en tra ined” to 

a  new period, or if it becomes “unentrained” , and the two frequencies of oscillation 

will coexist in the system. The phase plane will show the  quasiperiodicity in this
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K

case.

Fig.5.5 shows the phase plane plot from a  velocity coupled Van der Pol oscilla

to r model for different degrees of nonlinearity. In this case, the  situation becomes 

more com plicated than the single Van der Pol type model. Com paring with the 

phase plane of the  single Van der Pol type model in fig.5.3, we can see the  basic 

shapes of these phase plane plots are similar to the single oscillator model case. 

B ut the  im portan t difference here is th a t the  trajectory  of a coupled oscillator is 

“m ulti-frequency mode” which is caused by the  coupling of two oscillators with 

different natura l frequencies. In chapter 4, we used o ther techniques to  explore 

the coupled oscillator while the phase plane portra its  give us m ore visible results 

abou t the natu re  of the  system (oscillation or other type movem ent), its nonlin

earity, coupling with another oscillator,etc. These are the im portan t features of 

biological rhy thm s in our study. As we m entioned earlier, all of the  ou tpu ts  from 

our models were obtained through com puter sim ulation. Therefore it was easy to 

get th e  phase plane plots by using the ou tpu t variables from th e  sim ulation. In 

the sim ulation we use CSMP to ou tpu t the variables and their derivatives to a 

d a ta  file. T he program  RWTP (listed in the Appendix) was w ritten  to  convert the 

CSM P ou tp u t to  regular ASCII files. The phase plane plots were p lotted by using 

LOTUS 123 graphic functions.

5.3 P hase R esponse Curve M ethod and its A p
plication

The phase response curve (PR C ) is defined as a  plot of th e  phase shift of 

the  oscillator verses the  phase of the oscillator when a. stim ulus is applied. [2 ]
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Figure 5.5: Phase plane plot o f the coupled oscillator model.
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Generally, nonlinear system s have dissimilar phase responses characteristics which 

is a  very helpful feature in the  study of biological oscillators. The phase response 

characteristics, including phase shift directions and am plitudes, to  the  stimulus 

applied a t different tim ing positions reflect the system “entrainm ent” a ttribu tes. 

In practice, the  phase response curve is usually obtained by a  series of experim ents, 

e.g., by applying a light stim ulus to the subjects at different times during subjective 

day and night (subjective day is the await period for th a t subject, e.g., the  tim e 

when the  tem perature rhythm  is above the average). This type of experim ent 

will give us the response inform ation of a  unknown biological oscillator, which is 

different for various subjects and species under different conditions.

T hirty  years ago, a  phase response curve of circadian rhythm s to light stimuli 

was first described, revealing the  mechanism by which pacemakers driving circadian 

rhythm s are synchronized (entrained) to the 24 hour day. It was believed tha t 

social contacts, ra ther than  the  light dark cycle, synchronized the  hum an circadian 

system  to the 24 hour day. Subsequent studies dem onstrated th a t the circadian 

clock of normal subjects could be entrained by a 24 hour cycle. It was found from 

the PRC th a t evening exposure to bright light rapidly shifted the phase of the 

endogenous com ponent of the  body tem perature and cortisol cycles, even when 

the tim ing of the sleep-wake cycle was held constant.

Fig.5.6 shows an experim entally acquired phase response curve of circadian 

rhythm s.[15] T he figure shows three tim e zones A, B and C representing subjective 

day or night. In zone A, light exposure has no effect during the subjective daytim e 

while the tim ing of behavior is delayed in zone B during the early hours of the 

subjective night and advanced in zone C late in the subjective night It can be 

seen tha t light exposure may advance, delay or have no effect on the phase of the
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Figure 5.6: Phase response curve of circadian pacemaker by light stim ulus.

circadian pacemaker. Some generalizations about the  shape of the  phase response 

curves can be stated.

1. Because of the  continuity of dynamic systems they are expected to  be con

tinuous curves, except for jum ps of size T  (usually 2ir).

2 . T here will be possible isolated zeros, or zero intervals on the PRC. The zero 

intervals have an infinite number of zeros in a region as in zone A of fig.5.6. 

If one plots a  PR C  then both its end points m ust have the  same value. 

Therefore the to ta l number of isolated zeros, zero intervals, and jum ps of 

size T  of a phase response curve must be even.

The PRC shows directly the system responses to a  stim ulus applied a t dif

ferent phases which is especially helpful in the design of experim ents to explore 

the properties of unknown biological oscillators. PRCs to  light exposure have re

cently been reported in some practical applications.[14]. Dr. Czeisler and his team
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dem onstrated th a t they could reset the circadian pacemaker of a  sleep-disorder 

patien t by exposing her to  4 hours of bright light each evening. T he system  had 

shifted 6  hours even though the period of the  sleep-wake cycle was held constant. 

In their experim ents, Dr. Czeisler and his team  found th a t the  tim ing of the light 

exposure was more critical than other factors

Fig.5.7 shows such stimuli applied in our single Van der Pol type model. We 

applied th e  light pulse stim ulus by “velocity coupling” to the  system , i.e., th e  first 

tim e derivative of the  light pulse is applied to the model, which corresponds to  

the  light pulse in real situation . Fig.5.7 a  shows the tim e derivative of a  light 

pulse which causes the  phase of the model to be delay shifted and b shows the  

tim e derivative of a  light pulse which causes the phase to be advance shifted. The 

am plitude of both light pulses are the same, the pulse durations of both are 1 1 hours 

wide while the tim ing at which the pulses are applied are different. T he tim ing 

difference is 5 hours in our simulation program which is listed in the  A ppendix.

Therefore the tim ing of the stimulus applied either to the model or to  the  real 

subject has to be precisely controlled to  get the expected phase shift direction and 

am plitude. Phase response curves give the complete phase response characteristics 

of the  system . According to the PRC, we can design the experim ent for phase 

delay-shift or advance-shift. It is also a good tool to design and tes t the  models 

as in the case of the biological oscillator model we introduced in section 4.6.2.

5.4 R aster P lotting  and Its Application

R aster plo tting  is a typical data  record format in circadian rhy thm  research. 

This type of record shows the oscillation period of a  circadian rhy thm  and its
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varying trend directly. The full scale of the x  axis of this plot is the estim ated 

oscillation period. For example, vve use 24 hours as the full scale of the x  axis for 

circadian tem perature rhythm  da ta  recording. Each horizontal line in the record is 

for a 24 hour interval, beginning from the topmost line and progressing down. The 

y axis of each line plots the intensity of the measured signal by different symbols, 

usually the darker symbol being used for higher intensity. If the  same symbols 

in each horizontal line stay at the  same horizontal position, the  system  is ju st 

oscillating at the assumed period. Otherwise we can find out the  variation from 

th e  plot. Fig.5 . 8  shows two examples of raster plotting. T he x  scales on both  a 

and b are 24 hours. Here (a) is the  da ta  from a model whose period is exactly at 

24 hours while (b) is the d a ta  whose period is 25 hours. R aster p lo tting  shows th e  

difference clearly.

As m entioned in the  first chapter, the researchers in the biological oscillator 

field have realized th e  existence of endogenous oscillators in living systems. One 

argum ent to support this theory is that if organisms are kept in carefully controlled 

environments, where the tem perature and light intensity are kept constant, they 

still exhibit periodicities in their behavior. The experim ents show such rhythm s 

always being different from 24 hours -  in general, varying between 22 and 24 hours. 

T he raster p lotting shows this trend very clearly in these experim ents.

Raster plotting is used in recording almost all the circadian rhythm  data. 

Another advantage of this type of plotting is that several m onths of d a ta  can be 

easily packed on to  a single sheet, which is very convenient for long term  d a ta  

viewing. We used raster plotting mainly for two purposes:

1. It was used for our experimental data, plotting. As introduced in chapter
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Figure 5.8: Exam ples o f raster plots (x axis is scaled at 24 hours), a )T he system  
is oscillating at the period o f 24 hr. b )T he system  is oscillating at the period  
higher than 24 hr. The period in (b) could be found by finding the tim e  difference 
between each horizontal line. This difference in (b) is 1 hour toward the delay 
(right) direction therefore the period is 25 hour.
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2, we have built our data  acquisition system for circadian rhy thm  data . It 

is very convenient to  use raster plotting to view the trend and the  possible 

interruption of the data . In the  case of the  phase shift experim ent, this plot 

is very convenient for showing the experimental results. Figure 5.9 shows 

raster plots of our experim ental activity, feeding and tem perature data.

2. The raster plotting is used to explore the characteristics of our model. In 

chapter 4, we introduced its application in our coupled oscillator model where 

we would like to  see if the period of one oscillator changed when the  nonlin- 

earity or coupling was changed due to the other oscillator. We will now show 

another interesting result using raster plotting. We addressed the  question 

as to  w hat would happen to the  coupled oscillator model if we apply a peri

odic stimulus to it? T he principles and detailed experim ental results will be 

shown in chapter 7, bu t here arc some results using raster plotting. Fig.5.10 

(a) shows a coupled oscillator (Fry = Fyi — 0.2) with 22 hr period entrained 

to 24 hr by a  stim ulus applied on day 10. and (b) shows a coupled oscillator 

(FTy = Fyr =  0.2) with 28 hr period entrained to 24 hr also by a  stim ulus 

applied on day 10. The raster plot dem onstrates th a t the “en tra inm cn t” is 

stable.

Fig.5.11 is the same system  except for a different coupling coefficient, {Fzy =

0.6, Fyz =  0.2). The raster plot shows the oscillator can not be stably 

“entrained” because the  oscillation periods fluctuates.
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ACTIVITY FEEDING TEMPERATURE

Figure 5.9: R aster plot o f circadian rhythm  data obtained from  experiment.
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Figure 5.10: Raster p lo tting  o f periods o f the coupled oscillator model, (a) The 28 
hr oscillator is entrained to  24 hr. (b) The 22 hr oscillator is entrained to 24 hr.
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Figure 5.11: Raster p lo tting  o f periods o f the coupled (Fxy =  0.6} oscillator model, 
(a) The 28 hr oscillator is entrained to 24 hr unstably, (b) T he 22 hr oscillator is 
entrained to 24 hr unstably.
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C hapter 6 

Spectral A nalysis o f C ircadian  
R hythm s

6.1 Introduction

The estim ation of the spectral characteristics of a tim e series is of fundam ental 

im portance in the analysis of the natural properties of a  system . It is widely 

employed in communication engineering, economics, physiology and many o ther 

areas. The spectral function is especially helpful for exploring the  system  whose 

characteristics are unclear. For example, the internal relationships of a  circadian 

oscillator are very complicated. The oscillator ma.y be coupled w ith, or afFected 

by, another internal oscillator. Therefore the observed circadian d a ta  may be a 

combination of several tim e series. Spectral analysis will help us to  discrim inate 

different tim e series by identifying different frequency components, and to  detect 

the  characteristics of each of them.

Fourier analysis is a method for detection and m easurem ent of the frequencies, 

am plitudes, phases and decay rates of decomposed sinusoids in a tim e series. Find-
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ing the discrete sinusoidal components of a time series is a  task in the  province of 

harmonic analysis, a  subfield of spectral estim ation. In this research, the tim e se

ries were either obtained from the model simulation or the experim entally collected 

data . The power spectral densities of both simulated and experim ental d a ta  were 

com puted, analyzed and compared. For example, it  was found through spectral 

analysis th a t the circadian rhythm s have harmonic and sub-harm onic structures. 

Experim ental d ata  from one “free running” monkey shows the  power spectrum  of 

circadian tem perature has a main frequency peak a t 24.17 hours as well as 2nd and 

3rd harmonic peaks. O ther experim ental d a ta  obtained from a ra t tem peratu re  

record shows similar frequency peaks but with different intensity  of the  harm on

ics. Fig.6.1 shows the spectral function of two circadian rhythm s, where (a) is 

the spectral function of monkey tem perature da ta  and (b) is th e  spectral function 

of ra t tem perature data . We can see clearly the difference in harm onic s tructu re  

of these two spectra  as we mentioned above; this information cannot be obtained 

from either the tim e series or o ther outputs directly from the  system .

The following topics were studied in the frequency domain:

1. The frequency and am plitude as well as the ratio  (to  the m ain frequency 

component) of the harmonics and sub-harm onics were ex tracted  from the 

processed experim ental data. The underlying causes of these harm onics and 

subharmonics were explored.

2. The harmonic and subharmonic structure of different m athem atical models 

were studied and compared with the results of step 1. Different m odeling 

m ethods were used to obtain close agreement with the frequency structures 

found in the experim ental data.
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(b)

Figure 6.1: Spectral function o f real circadian rhythm s.a) Spectral function o f a 
m onkey tem perature data, b) spectral function o f a rat tem perature data.
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3. T he relationships among different harmonics were studied using the  bispec

trum  m ethod. The bispectrum  is a  high order spectrum  (the Fourier trans

form of the  third order cum ulant (TO C) sequence), and is generally used:

a) To ex tract information in the signal of interest pertaining to deviations 

from Gaussianity;

b) To detect the presence of nonlinear properties and quadratic phase cou

pling. The second application was examined in this research.

4. T he cross correlation between two different circadian rhythm s (e.g. tem per

a tu re  and activity) of the same experim ental subject was explored in the 

frequency domain. The coherence function was com puted using segmented 

and sm oothed F FT  data.

5. The dynam ic spectrum  (the spectrum  of the system im mediately following 

th e  application of a  stimulus) was explored. The exam ination of this spec

tru m  shows the transient dynamics of the system.

We are going to  discuss topics 1 and 2  in this chapter while topics 3 and 4 will be 

discussed in chapter 8  and topic 5 will be discussed in chapter 7.

6.2 Fourier Analysis: Principles and Techniques

Fourier analysis can be treated as a decomposition of the tim e series in a 

sum  of sinusoidal components (the coefficients of which are the discrete Fourier 

transform  of the time series). It is the  representation of a  set of data  in term s of 

sinusoidal functions. Here we will review some basic principles of Fourier analysis.
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1. A periodic function can be expanded into a Fourier series.

T he m athem atical details of the derivations of th e  Fourier equations and 

additional properties can be found in various m athem atical and engineer

ing textbooks. [40, pages 80-84] It can be shown th a t a periodic function 

satisfying certain restrictions (usually causing no great lim itations in engi

neering applications) can be expanded into the sum of an infinite num ber of 

harmonically related sine and cosine term s of the form,

Go 150
x (0  =  17 +  T .  (dm cosnwit +  bm sinm uit) (6.1)

2  m = l

W here

and,

2  f l72
am — m l  x{t)cosm ujitdt I J-T/2

2  [T/2
bm — ™ l x{t)sinm w \td.t 

1 J-T/2

Here, T  =  period of the  waveform, =  fundam ental radian frequency 

=  27t^. T he development of many analytical and theoretical concepts can

be simplified by use of the  exponential Fourier series:

00

* ( 0 =  E  (6.2)
m = —oo

where

Cm = ^  r  (6-3)1 J - 00

T he coefficients of these two forms can be related by

Cm =  (6.4)

am =  2R c[Cm] = Cm +  C ’m (6.-5)

bm =  - 2  Im[Cm] = j (C m - C 'm) (6 .6 )
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Cm, in general, is a complex number. C ’n represents the complex conjugate. 

Therefore Cm can be rew ritten as

Cm =  \Cm\ej^  (6.7)

and
I J_ }p~

\cm\ = (6-8)

For a  given periodic signal, the complex set Cm is called the  frequency spec

trum  of the signal. The set \Cm\ specifies the am plitude spectrum  and the 

set <f>m specifies the  phase spectrum .

2. A non periodic signal can be w ritten as a Fourier Transform.

In th e  case of non-periodic signals, we may think of them  as arising from a 

periodic signal in which the period is allowed to  increase w ithout limit. The 

difference between successive frequency com ponents decreases as the period 

increases. In th e  limit the frequency difference approaches zero, and the

curve becomes a continuous function of frequency. T he Fourier transform

pair is defined as
1 r00

x{t) = —  /  X ^ e ^ d t o  (6.9)
2 7T J—oo

and

A'(oj) =  /  x ( t ) e ~ ^ tdt. (6 .1 0 )
J  — CO

where X(u?) is defined as the Fourier transform  of ar(i). As in the case of a 

discrete spectrum  (periodic case), the Fourier transform  is a complex function 

and may also be expressed as:

X{ta) =  (6.11)

where |A"(w)| is the am plitude spectrum  and <f>(u:) is the phase spectrum .
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3. It should be noted th a t the spectrum  is discrete for a  periodic signal and is 

continuous for non-periodic signals.

4. T he Fourier transform  is periodic for a  discrete tim e series.

T he discrete signal is sampled from a continuous signal. The spectrum  of a 

sampled d a ta  signal consists of the  original spectrum  plus an infinite number 

of translated  versions of the  original spectrum . These various translated  

functions are shifted in frequency by am ounts equal to  the sampling frequency 

and its harmonics, i.e., the spectrum  consists of the  components located at 

0 , ± / s, ± 2 / s , ± 3 /„ , • • •, etc., and is thus periodic in th e  frequency domain.

According to  Shannon’s sampling theorem , f s , the sampling frequency, m ust 

be greater or equal to 2 //,, the  highest signal frequency, otherwise the spec

trum  will be aliased. In practice, we usually use f s much greater than 2//, 

(e.g., 10 times of fh )  to  ensure recovery of the original signal. In the  study of 

biological oscillators, we should try  to choose the  sam pling frequency as high 

as possible to  avoid distortion of the  unknown high frequency components by 

the  sam pling scheme employed. For example, in our d a ta  acquisition system , 

th e  basic circadian frequency is about 0.0000116 Ilz but the da ta  is sampled 

a t 0.00167Hz. Therefore harmonics as high as 10th order can be acquired 

and not distorted.

5. T he Fast Fourier Transform (FFT ).

The F F T  is neither a variant of, nor an alternative to, the Discrete Fourier 

transform  described above. It is an algorithm  (or ra ther a related class of 

algorithm s) for computing the  discrete Fourier transform  of a d a ta  s<. • ies a t 

all of the Fourier frequencies, using relatively few arithm etic operations. The 

background of the Fast Fourier Transform  and its com putational advantage
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can be found in m any books[40]. In the appendix we describe the algorithm  

used in this research to  carry out harmonic analysis.

T he Fourier analysis method, as discussed above, is basically used to  decom

pose an arb itra ry  set of d a ta  points into periodic components w hether or not the 

d a ta  appear periodic.

6.3 D ata  Pre-Processing: Zero Padding, W in
dowing and Segm entation

Experim ental data , although they m ay appear to be non-periodic or alm ost 

periodic, do in fact contain interesting periodic components. T he Fourier analysis 

m ethod is the most practical method for detecting such components.

T here are several im portant factors which have to be considered for performing 

Fourier analysis on practical data. First is the finite length of the d a ta  records. 

No estim ation can be m ade for lags longer than the  record. T he finite length 

m ay not exactly fit the  transform ing length desired, and the short length of the 

transform ation will cause the Fourier transform to produce unsm ooth, imprecise 

d a ta  and frequency com ponent leakage. The leakage effect is a  spreading of the 

spectral com ponents away from the correct frequency, resulting in an undesirable 

modification of the  to tal spectrum .[40, pages 284-285]

6.3.1 Zero padding

T he transform ation length will determ ine the precision of the  transform ed 

frequency. For example, the sampling ra te in collecting circadian tem perature
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d a ta  in our experim ental system  is 0.00167 Hz ( 6  sam ples/hour), so the trans

formed frequency is from 0 to  0.000833 Hz. If we use 1024 points for the Fourier 

transform , the  frequency interval is 0.0000008134 Hz, bu t it  will be reduced to

0.00000000509Hz if 16384 points are used. Usually the  length of the da ta  is less 

than  th e  num ber of points required by the FFT . To meet the  transform ation length 

requirem ent, we can zero pad the data  record, i.e., build an n  (n= transform ation 

point) dimensional d a ta  set with the first m  points equal to  th e  d a ta  and the 

rem ainder equal to zero. This procedure is called zero padding. [8 ]

6.3 .2  W indow ing

Before we transform  the tim e series to  the frequency dom ain, we have to first 

term inate the finite tim e series by multiplying it by a finite w idth “window” . The 

selection of a  proper window can result in the Fourier transform  being smooth and 

having reduced leakage.

In the  tim e domain, windowing is accomplished by m ultiplying the infinite 

tim e series C0(<) by a  finite window function w(t)

c(t) =  tu(<)C0(0  (6 . 1 2 )

We may regard w(t)  as a window of variable transmission which modifies the value 

of th e  infinite tim e series Co(<) differently for different lags. It is therefore natural 

to call w(t)  a  lag window.

For any lag window which meets the conditions sla ted  above, c(t) is calculable 

from the data . Further, it is clear that c(t) =  0  for the d a ta  points outside of C0 (f). 

Because c(t)  is defined for all values of it has a perfectly defined Fourier transform
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P { f ) .  As pointed out before, we should pad zeros in the real da ta  record to m eet 

the  requirem ent of transform  length.

Different windows have different effects on the transform . However, all of the 

window functions are even functions of tim e when they are centered a t th e  origin. 

We will now consider some common window functions.

1. R e c ta n g u la r  W in d o w . The rectangular window is considered prim arily as 

a  basis for reference in studying other functions. T he rectangular function is 

simply

w(t)  =  1 , f o r \ t \ < r / 2

w(t)  =  0 , elsewhere. (6.13)

The Fourier transform  is

_  r j i n ^ I r )
T T j T

The window function here has a  rectangular shape, r  is the window w idth, 

and W( f )  is the Fourier transform  which is a sine function. The rectangular 

window converges at a  ra te  of 1 / /  for large / .  This window has a sim 

ple form and realization in computing, bu t it has difficulties in leakage and 

convergence control which cause some large distortions of correct spectral 

function.

Since the problem mentioned above is caused by the ab rup t term ination of 

the tim e series, other windows with modified shapes have been developed.

2. H a n n in g  W in d o w . The Hanning, or cosine-squared window function is 

defined as

w(t)  =  cos2— =  0.5(1 +  cos- — ) , |f| <  t / 2
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Figure 6 .2 : Decibel am plitude responses of four different windows.

w[t)  =  0 , elsewhere. (6.15)

and its Fourier transform  is

r  S7.Ti.7T F t  1
(6.16)

2  tv/ t  1 -  ( f r ) 2

3. H a m m in g  W in d o w . T he Hamming window function is a  modification of 

the Hanning window which is defined as

2 tt£
w(t)  — 0.54 +  0.46cos—  , \ t \ ^ Tl 2

T

w(t) =  0  

and has Fourier transform:

, elsewhere.

Ts i n x f T  0.54 -  0 .0S (/t)2 
U)  * f r  1 l - ( / r ) 2

(6.17)

(6.18)

Practically, Hanning and Hamm ing windows are two very widely used window 

functions, which round the da ta  at the two ends using a cosine function. Fig.6.2
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shows th e  am plitude responses in db of four different windows where we can see 

the effects of different windows on the main lobes and side lobes of the  frequency 

responses. In general the  spectrum  of a window function should have a  main 

lobe which is as narrow as possible and side lobes as small as possible relative 

to  the  main lobe. Fig.6.2 shows th a t the Hanning and Hamm ing windows have 

much b e tte r performance than  the other two windows. In our Fourier analysis, the 

Hamming window is the most often used window for our experim ental and model 

da ta  transform ation. This type of window gives satisfactory sm oothing results as 

well as easy program ming and acceptable computing time.

6.3.3 D ata  S egm en tation

One of the techniques repeatedly suggested is to divide the tim e series x( t )  into 

segments, either overlapping or contiguous, and estim ate features of the  spectrum  

from the average spec tra  of the  individual segments. Blackm an and Tukey [41] 

suggested th a t the d a ta  be divided into several segments, and th a t  d irect spectral 

estim ates be m ade using each of the short time series. A sm oothed estim ate can 

then be formed by averaging the individual spectral estim ates. Davis [16] describes 

a commonly used m ethod known as secondary analysis of th e  periodogram  for 

improving the accuracy of frequency estim ates of harmonics. T h e  tim e series x(t )  

is broken into M  segments of equal length T  = ( N  — 1 ) / M  such th a t for each 

nonoverlapped segm entation X j { t )

x j ( t )Lo  = x ( ( j  - l ) T  + t ) l 0 , j  =  1,2, • • •, M  (6.19)

Each segm entation consists of M  points of the original d a ta  set x( t ) .  T he discrete 

Fourier transform s Xj(iu)  of the segments Xj(t)J=0 are com puted at the estim ated
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frequency cu0 of some harmonics in the data.

AJ-(wb) =  ^ c - ,'WBtarj (<) (6 .2 0 )
<=o

If the d a ta  x( t )  consists of a complex sinusoid of frequency W7- plus noise n(t) ,

then

x{t) = AeilJTt + n{t)  (6.21)

and

T  T

Xjiuio) =  AciwT(̂ T^  e’( ^ - Wo)(] +  [ £  e,w n(t)], 3 =  1,2, - • •, M (6.22) 
! =  0  < = 0

A least squares fit of a straight line to the phase of Aj(u.’o) as a  function of j  should 

have slope T ljt, allowing u)j to  be more accurately estim ated. The average of M  

spectra  will enhance the signal part in Eq.6.21 because they are correlated and 

reduce the noise part because they are uncorrelated.

We applied the segm entation method to spectral analyses as well as bispec

trum  analysis which will be discussed in chapter S. This method indeed sm ooths 

and increases the  degrees of freedom of the data . We will illustrate these effects in 

chapter 8 .

6.4 Spectra of the Experim ental D ata

In chapter 2, we introduced the general aspects of circadian rhythm  d a ta  in

the tim e and frequency domains, which gave us information about experim ental

circadian data. In chapter 4, we introduced our models of circadian rhythm s which 

were based on the  understanding of these experimental data. In this section, we will 

further analyze the experimental da ta  emphasizing their frequency characteristics.
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As indicated in previous sections, the spectra! function is a  helpful tool for 

exploring the details of the  circadian system and provides fundam ental inform a

tion from which to build the models. The Fourier transform  of a  signal can be 

expanded into the sum of an infinite num ber of harmonically related sine and co

sine term s which enables us to  see directly the frequency com ponents present in 

circadian signals. The Fast Fourier transform used in this research im plem ents the 

Sande-Turky radix-2  F FT  algorithm . The com puter program can be found in  the  

Appendix. As we m entioned earlier, the spectra of circadian rhythm s from differ

ent subjects or species, or from the same subject under different conditions, may 

have different structures. Therefore we need to individually exam ine the spectra 

of each subject or species carefully. A 16,384 point FFT  was used in our Fourier 

transform  program to yield the best smoothing results. The sam pling frequency 

used in our d a ta  acquisition system  is 6 /hou r. Therefore the frequency range of the 

resulting spectra is from 0 to 8.33 * 10~AI i z  (The maximum frequency equals 1/2 

of the sam pling frequency.) which corresponds to a minimum detectable harm onic 

period of 2 0  minutes.

Fig.6 .3 to Fig.6 . 6  show the spectra transformed from circadian tem perature 

rhythm s of 4 monkeys under a free running condition. The results of each subject 

includes spectra from four different time episodes.

Fig.6.3 shows the  spectra from Monkey 10 in a  free running condition. All 

four sections show th a t the fundam ental period is

c iT T T T i) =  24-S2' “ “’'-''

However the harmonic structu re in these four time episodes are different. Fig.6.3(a) 

shows a relatively high 2 nd harmonic, whose am plitude is about 31 percent of th a t
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Figure 6.3: Spectral functions o f  monkey 10.
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Figure 6.4: Spectral functions o f m onkey 21.

of the fundam ental, while the 3rd harmonic is spread. T he 2nd harmonic in (c) 

and (d) is not obvious, bu t the 3rd harmonic is quite evident.

Fig.6.4 shows the spectrum  from Monkey 2 1 , also in a free running condition. 

T he fundam ental period of Monkey 2 1  is a t about

16384
5 ( T i F r i j  =  2« 2 W -’ -

(a) and (c) show almost the same am plitude level of 2nd and 3rd harmonics, while

(b) and (d) shows a relatively clear 3rd harmonic.
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Figure 6.5: Spectral functions o f m onkey 50.
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Figure 6 .6 : Spectral functions o f  m onkey 41.

Fig.6.5 shows the spectrum  from Monkey 50 who is in a free running condition. 

The fundam ental period is 24.32 hours. All four sections show clear 2nd and 3rd 

harmonic structures. In da ta  mk 50.3 and mk 50.4, the 2nd and 3rd harmonics 

have alm ost the same am plitude level. Also, low frequency components app- ared 

in fig.6.5 (a) and (c). These frequency components show the low frequency trend 

included in the data.

Fig.6 . 6  shows the spectral function from Monkey 41 who is free running. The 

2nd and 3rd harmonic structure of this data  set is not clear as in the other data
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Figure 6.7: Spectral functions o f ra ti.

sets. Except for fig.6 . 6  (d), the other 3 spectra seem spread, and also show low 

frequency components with a  relatively high level.

Fig.6 .7 and 6 . 8  shows the spectra from the tem perature records of two rats. 

The sampling frequency of these da ta  is 4 /hour. 16,384 points were used for the 

Fourier transform . In fig.6.7, the peak of the fundamental frequency is

16384
5 (1 6 6 ^ 1 )  =  24' 8 2 W -'

T hree vertical lines were drawn a t exactly the  estim ated fundam ental, 2nd and 

3rd harmonic positions. All four sections of fig.6.7 show a very clear 2nd harmonic
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Figure 6 .8 : Spectral functions o f rat2.

structure. Particularly, in (c) and (d) the level of 2nd harmonic is very high, about 

2 /3 th a t of the fundamental. The 3rd harmonics are not clear except for (c). These 

four figures also dem onstrate the low frequency components.

Fig.6 . 8  shows 4 spectra from ra t2 . The fundam ental frequency of (a) and (b)

is at
16384

while (c) and (d) is at

4 ( 1 6 6 - 1 )

16384 
4 (1 7 0 -  1)

=  24.82hours

= 24.23 hours
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T he 2 nd harmonic of this data set is not as high as vvc see in ra ti  (fig.6.7). Only 

(a) shows relatively clear 2nd and 3rd harmonics. In this d a ta  set, the  frequency 

of the low frequency components was calculated. T heir periods are respectively at

(b): 16384/(55 — l) /4  =  75 hours;

(c): 16384/(60 -  l ) /4  =  69.42 hours;

(d): 16384/(65 — l) /4  =  64 hours.

From examination of these experimental spectra under free running condi

tions, we can conclude:

1. T he free running period of the circadian tem perature rhythm  is very near 24 

hours. This is the dom inant fundamental frequency in the system.

2. T he 2nd, 3rd and even higher harmonics exist in the circadian rhythm . The 

am plitude of these harmonics vary in different subjects or at different tim e 

periods in the same subject.

3. Some low frequency components exist in the free-running spectra..

6.5 Spectral Approach in M odeling

As we mentioned at the beginning of this chapter and we have seen from the experi

m ental data , spectral analysis is one of the im portan t characterizations of circadian 

rhythm s, and is also a. powerful tool for comparing the model with measured data- 

in chapter 4, we introduced several models. If we review the frequency character

istics of these models, we can see how the models fit the experim ental data, in the
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Figure 6.9: The spectrum  o f single Van der Pol oscillator model. 

frequency domain.

1. The single Van der Pol oscillator model is the first model we used to  sim ulate 

the circadian rhythms. Fig.6.9 shows the spectrum  of this model. As we 

discussed in chapter 4, this model has odd harmonic frequency components,

i.e., fundamental, 3rd harmonic, 5th harmonic, • • -, etc. T he am plitudes of 

the harmonics are related to the nonlinearity of the  model. Therefore the 

level of harmonics can be adjusted by changing the degree of nonlinearity. 

From the spectral point of view, we can see th a t this sim ple model can be 

used to  simulate those circadian rhythm s with a  small or zero level of 2 nd 

harmonic. For subjects having high 2nd harm onic levels, this model will 

generate substantial errors.

2. To reflect the presence of the 2nd harmonic, we introduced the coupled Van 

der Pol oscillator model. The 2nd harmonic frequency com ponent represents 

the bimodality of the circadian rhythm  which is a very im portan t feature
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Figure 6.10: Spectra o f  velocity coupled oscillator model with different coupling  
coefficient, a) Fxy =  0.04, b) Fxy =  0.4.

of the system . In th e  spectral analysis of the experim ental data , we have 

seen this frequency component in a series of spectra. We also noticed that 

the level of the  2nd harmonic varied with different subjects. Therefore we 

concluded th a t the 2 nd harmonic component has to be inserted in the model, 

bu t its level also should be adjustable. T he velocity coupled oscillator model 

basically m eets this requirem ent. The coupling coefficient in the model can 

be adjusted to  get the  proper level of the 2nd harmonic. The spectrum  of the 

velocity coupled Van der Pol oscillator model includes fundam ental, 2nd, 3rd 

and higher harm onic frequency components. The level of the 2nd harmonic 

in this model can be adjusted to correspond to different experim ental data. 

Fig.6.10 shows two spectra of velocity coupled oscillators w ith two different 

coupling coefficients.

3. The three dimensional coupled oscillator model was designed to  more closely 

m atch frequency characteristics of the experimental data. T he two dimen-
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Figure 6.11: The spectrum  of a 3 dimensional coupled oscillator model.

sional coupled oscillator model basically has a spectral s tructu re sim ilar to 

the experim ental data, bu t the 3rd harmonic component is controlled by the 

nonlinearity of the fundam ental oscillator and can therefore not be indepen

dently varied. In the  experimental data , we have seen th a t the 3rd harm onic 

level is sometimes even higher than  the  2nd harmonic. A three coupled os

cillator model will solve this problem. The level of the  three main frequency 

components can be adjusted independently. The frequency structu re  of this 

model introduced more higher harmonics which seemed to better approxi

m ate the  real “expanded” spectrum . Fig.6 . 1 1  shows the spectrum  of this 

model. T he problem with this model is its complexity. Six coupling coeffi

cients between the three oscillators need to be adjusted, com pared to  only two 

existing in the two dimensional coupled oscillator model. The physiological 

significance of this model also needs to be further explored.

149

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The exam in alien of spectra of other models, including the modified Van der 

Pol oscillator model, Kronauer et.nl's coupled oscillator model and Pavlidis’s bi

ological oscillator model dem onstrate differences in I,heir frequency spectra. For 

example, the spectral analysis of Kronauer ct a l’s model dem onstrates that the 

frequency components of this model include no 2 nd harmonic which we think is 

necessary to represent the bimodality of the system. Therefore, a m athem atical 

model used to approxim ate the circadian rhythm s should correspond fo both tim e 

series and frequency spectrum  characteristics. Speclral analysis should be one of 

the most im portant criteria used to build a model for circadian rhythm s.
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C hapter 7

Effects o f Stim ulus on Circadian  
R hythm s

7.1 Introduction

Circadian rhythm s provide a  daily “program ” for physiological and behavioral 

processes such as sleep-wake, body tem perature, and hormonal secretion. The 

circadian oscillator continues to  oscillate in the absence of environmental input, 

bu t can be entrained by periodic inputs, especially light, a t periods near the natural 

period (near 24 hr.) of th e  endogenous oscillator. Generally, two possible external 

stimuli, periodic and non-periodic, could be applied to a circadian rhythm .

In previous chapters, we have shown th a t a circadian system can be modeled 

as a self-exciting nonlinear oscillator, e.g., a Van der Pol type oscillator. \\\:  shall 

show here th a t this type of oscillator can be entrained by a  driving stimulus a t the 

appropriate frequency. During entrainm ent, the self-exciting oscillator adopts the 

period of the driving periodic stimulus and maintains a particular phase relation 

w ith the entraining cycle. In natural conditions, the circadian oscillator is entrained
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to  the  24 hr day-night cycle so th a t the individual’s internal, biological tim e is set 

appropriately  to  the local time.

T h e  periodic stimulus applied may cause the oscillator either to be entrained 

or to  be in an “alm ost periodic” mode. T he phenomenon of frequency entrainm ent 

occurs when a periodic force is applied to  a  system  whose free oscillation is of the 

self-excited type. A typical and im portan t case is the system  governed by Van 

der P ol’s equation with an additional “forcing” term  for periodic excitation. The 

frequency of the  self-excited oscillation falls into synchronism with th e  driving 

frequency, provided the two frequencies are not too different. If their difference is 

large enough, one may expect the occurrence of an alm ost periodic oscillation; in 

this m ode, a beat oscillation may result. However, the  entrainm ent of frequency 

still occurs when the ratio between the natural frequency of the self-excited oscilla

tion and th e  driving frequency is in the neighborhood of an integer (different, from 

unity) or a  fraction of an integer. Under this condition, th e  natural frequency of 

the system  is entrained by a frequency which is an integral multiple or subm ultiple 

of th e  driving frequency. We call such entrainm ents higher-harmonic and sub

harm onic entrainm ents respectively. In contrast with these types of entrainm ent, 

the phenom enon of synchronization, as m entioned earlier, will be referred to  as 

harm onic entrainm ent.

A nonperiodic stimulus will cause a  dynam ic process. This type of stimulus 

acts on th e  oscillator transiently; therefore it will lead to a tem porary change in 

the am plitude, frequency or the phase of the oscillator. Under certain circum 

stances, th e  circadian oscillator can be exposed to  abrupt changes in the phase of 

the  entraining stimulus. The most familiar practical example is air travel across 

tim e zones. This phase shift produced by traveling to a new local tim e is often
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accom panied by “je t lag.” Formally, the change to  a new environm ental tim e repre

sents a  nonperiodic stim ulus to the circadian system, which can lead to  tem porary 

changes in th e  am plitude, frequency or the phase of the  oscillator. Studies of bi

ological processes during phase shifts have often shown com plicated patterns of 

transien t behavior. One group has suggested th a t these com plicated patterns are 

indicative of the  interaction of two competing pro cesses [25], O ur study  shows this 

is substantially  a  frequency transient process which we will discuss in section 7.3.

In practice, the non-periodic stimulus has already been applied to  hum an 

circadian rhythm s adjustm ent. As we introduced in chapter 1 , Dr.Czeisler and his 

team  a t Harvard Medical School have some successful p ractical examples of using 

light pulses to  trea t sleep disorders. Scientists even speculate w hether long distance 

travelers should receive light treatm ents before leaving home in preparation  for 

arrival in a  new tim e zone. It may also be possible to  equip airplanes w ith special 

lights so passengers’ biological clock are reset to new tim e zones while they fly.[1-5]

We investigated the entrainm ent effect as well as the  transien t behavior of 

our model following various periodic and nonperiodic stim uli in order to  explore 

th e  dynam ics following various stimuli. In this chapter we will first discuss the 

effects of various types of periodic stimuli on a  Van der Pol type model. Then the 

process of phase shift will be modeled and the  mechanism of frequency transition 

will be explored by applying an experimentally designed nonperiodic stimulus to 

the  model.

As we introduced in chapter 6 , the spectral function is a very helpful tool 

in determ ining th e  characteristics of a  circadian system. T his is also tru e  in the 

dynam ic case. We used the spectral function as one of the  main tools to  deter-
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mine the entrainm ent characteristics. Spectral analysis is also developed for the 

purpose of dynam ic analysis and is combined with zero-crossing detection and fre

quency dem odulation techniques to explore th e  dynamic transition process. R aster 

plotting, as we m entioned in chapter 5, is another useful tool for determ ining the 

entrainm ent quality.

7.2 Frequency Entrainment Analysis

When a  linear oscillatory system is driven by an external periodic input, its 

response contains both frequency components. This is also, in general, tru e  of 

nonlinear oscillators. However, if the external frequency is close to  the character

istic frequency of the oscillator, then it is possible for the oscillator to  oscillate 

a t the external frequency only. This phenomenon is known as en trainm ent or 

synchronization.

To understand the  phenomenon of entrainm ent, we use our single Van der Pol 

type circadian rhythm  model as an example. With an external force acting on the 

system, this model is described by the following nonlinear differential equation:

k ^  +  f i ( X 2 -  l ) ~ -  + u ? X  =  E(t )  (7.1)

Here fi is a param eter denoting the degree of nonlinearity of th e  system, k  and 

w are the fixed tim e param eter and normalized frequency param eter respectively, 

as we defined in C hapter A. E( t )  is the external periodic stimulus or “forcing

function” applied to  the system which has th e  following form,

E(t )  = Ecosujet (7.2)
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In Eq.7.2, E  is the am plitude of the stimulus. It is assumed th a t the frequency 

difference between the natural frequency of the system  and the  external frequency 

Aw, i.e., w0 — we, is considered to  be relatively small.

If the  nonlinear param eter /« is small, we can approxim ate it by th e  solution 

for fi «  0 :

g
x(t)  = Asivuj0t +  Bcosuot d— =------ -cosojet (7.3)

wo ~  wf

where A  and B  are constants depending on the initial conditions. We can see th a t 

the  solution x (t) will be dominated by the coswet te rm  if

E, the  am plitude of the external stimulus is relatively high,

and /  or, the  frequency difference, Aw is relatively small.

In th e  case of the nonlinear system, i.e., is not zero, there exists a range 

of E  and a  range of the absolute difference in frequencies |Aw| =  |w0 — we| such 

th a t th e  o u tp u t of the system contains only the frequency we. Figure 7.1 shows a 

typical exam ple of this range. Entrainm ent occurs in the  shaded part of the plane.

If th e  values of E  and Aw are not in the entrainm ent range but close to  th a t 

range, then there will be a variety of possible responses, usually characterized by 

the  fact th a t  both frequencies are present.

If we is close to an integral multiple of w0, then it is possible to have subhar

monic entrainm ent a t the corresponding fraction of we. The subharm onic en tra in

m ent is much weaker than the direct entrainm ent. One example of subharmonic
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Figure 7.1: Entrainm ent range in a Van der Pol oscillator (w ith fi =  0.1)

entrainm ent is shown in section 4.7 where we discussed the subharm onic en tra in

m ent effect in the  two dimensional coupled oscillator model.

In the case th a t /i =  0 and E  is very small, i.e., the case of a  linear system  with 

small stimulus (Eq.7.3), the  cosuet term  is small and therefore, the phase of the 

oscillation is minimally influenced by the external input. In the nonlinear system, 

the larger the nonlinearity, the easier the system can be entrained. Therefore the 

nonlinearity of the system  is sometimes called the  “stiffness” of the system .

The quality of the entrainm ent is mainly determ ined by three interacting 

properties:

1. The frequency of th e  periodic stimulus;

2. The am plitude of the  periodic stimulus;

3. T he nonlinearity of th e  system.
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Figure 7.2: Fundamental frequency o f the system  with the stim ulus o f  two different 
amplitude.

The oscillating frequencies following a periodic stim ulus for different, applied 

frequencies and am plitudes were measured on our single Van der Pol type model for 

different nonlinearity. Figure 7.2 shows the fundam ental frequency of the system 

for different p  following th e  application of a  stimulus with two different am plitudes. 

T he results of Fig.7.2 were obtained from a  series of spectra. T he external force 

applied has the form of Ecosuit t where =  2 r /T ’, whose Te is 24hr.

In this trial, the original system period is set a t Tx =  30hr. E, the am plitude of 

the applied stimulus was varied from 0.5 to  1.5. It can be seen from this result th a t 

the system is never completely entrained when E  =  0.5. Completely as defined 

here means th a t the period difference between the stim ulus and system  is less than 

one hour.

However, when E  is kept a t 0.5, there are some differences for different ps. 

T he difference between the  period of external stimulus and the  period of the system
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Figure 7.3: T he period difference o f the  Van der Pol type m odel with the stim ulus 
o f varying frequency.

has dropped from 5.5 hr for p =  0.1 down to  2 h r for p > 1.6;

The period of the system  is entrained to  24.3 hr when E  =  1.5 and // >  0.1. 

W hen p  <  0.01, the system is unentrained and the  period is 29.5 hr th e  sam e as 

the case of E  =  0.5.

This result reveals there is a  lower stimulus am plitude threshold level for 

entrainm ent. However, this threshold level varies with values of p  and Ato as we 

shall show next.
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In the second trial, we designed the  model with free-running period of 25 hr., 

and th e  period of the  stimulus varying from 33 hr to  20 hr, for a range of Aw from 

Awj =  33 — 25 =  + 8 ^ r  to Aw2 =  20 — 25 =  —5hr. Fig 7.3 shows the  period 

difference between the stimulus period and the natural period. The figure shows 

the  cases with f t  =  0.2, f t  = 0.8, f t  =  1.6 and (i  = 2.4.

In Fig7.3 (a)-(c), with E  =  1.0 and f t  >  0.1, we can see that the  period 

difference is less than 1 hr and therefore the system is entrained in the stim ulus 

period range from 21.82 hr to 33.33 hr.

Also In Fig7.3 (a)-(c), W ith E  — 0.5, the  entrainm ent occurs in the range of 

stim ulus period between 21.82 hr and 28.23 hr for f i  =  0.2 to 1.6. Therefore in the 

case of E  — 0.5, the |Aw| is approxim ately equal to  3.2 hr for entrainm ent.

Again, we can see the effect of the nonlinearity param eter //.. In the  case of 

stim ulus period =  33.33 hr, the period difference is 8  h r when f i  =  0 . 2  and becomes 

6 hr when fi =  2.4. Generally, the  system  will become easier to  be entrained as f t  

increases. However, as we discussed in chapter 4, the  system  period increases as 

th e  nonlinearity factor f t  increases. This increase should be taken in account for 

com puting the entrainm ent range, e.g., fig.7.3(d) dem onstrates th a t when //, =  2.4 

the  entrainm ent range is decreased toward the low period direction. The reason is 

th a t the  original system  period has already changed with the  increase of f t .

T he effect of nonlinearity on entrainm ent should be always taken into account. 

As we discussed in chapter 4, the Van der Pol oscillator w ith small ft is stiff to  its 

natu ra l frequency, like a. linear system. For large /r, the natural frequency is shifted 

toward the lower direction which makes the entrainm ent more complicated.
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Spectral analysis is prim arily used here to  determ ine the entrainm ent quality. 

In the single Van der Pol type model case, the spectrum  of an  entrained oscillator 

generally has the same structu re as the free-running oscillator except for the  differ

ent position of the  fundam ental, third harmonic, etc. T he spectrum  becomes much 

different in the unentrained case, where both the natural frequency of the system 

and external frequency co-exist. In this case the spectrum  becomes “richer” in 

harmonics and more complicated.

To understand the influence of nonlinearity on entrainm ent from the  spectra, 

Fig.7.4 shows four spectra from the same system under the sam e stim ulus except 

for different values of nonlinearity param eter fi. T he system  period =  30 hr, the 

stim ulus E  =  0.5 and period, Te =  24hr.

1. W hen fi =  0.01, the system  is unentrained. Both frequency com ponents exist 

in the  system. This can be seen from fig.7.4(a). T he two peaks are at. about 

30 hr and 24 hr.

2. In fig.7.4(b), when /< =  0.1, the system is still unentrained bu t the structu re 

undergoes some changes. T he relative am plitude of the system  and entraining 

period peaks become reversed from f i  =  0 .0 1  which reveals th a t the system 

period changes toward the  entraining period.

3. In fig.7.4(c), W hen /t =  0.8, the system is basically entrained, bu t the  main 

frequency component has moved to about 28 hr. T he 24 hr com ponent is 

still present.

4. In fig.7.4(d), when //. =  1.6, the system is entrained, the main frequency 

peak adopts the period of 26 hr, interm ediate between the original system 

frequency and the stim ulus frequency.
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Figure 7.4: Spectra o f Van der Pol type model with different p under external
stimulus, a) p  =  0 .0 1 . b) p = 0 .1 . c)p =  0 .8 . d)p =  1 .6 .

The phenomenon here is similar to  the  phenomenon we discussed in the cou

pled oscillator case. In chapter 4, we discussed th e  spec tra  of direct coupled sys

tems. In the case of 1/3 entrainm ent between two oscillators in the system , the  

spectrum  becomes “clear” (only the fundam ental and harm onic frequency compo

nents are present in the spectrum ), while in the unentrained case, the spectrum  

exhibits complicated patterns as we see here in the case where a stimulus is applied 

bu t the system  is not completely entrained.
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7.3 Phase Shift by N onperiodic Stim ulus

Non-periodic stimuli will cause a tem porary change in the  am plitude, fre

quency or phase of the system. Light pulses are often applied to the  circadian 

system  as a  effective tool for circadian phase shift. This m ethod, which we in

troduced in previous chapters, has already been applied to  trea t sleep-disorder 

patients. A single light pulse can be shown to phase shift circadian rhythms; 

therefore we modeled the effects of a  light pulse by representing a  light pulse E(t) 

as the  first tim e derivative of light intensity, so-called “velocity coupling.” Each 

E (t) consisted of a positive impulse representing the change in illum ination a t the 

beginning of the light pulse and a negative impulse representing the end of the 

light pulse. The phase of the oscillation could be delayed or advanced depending 

on the  am plitude, width and the timing of the pulses. The E (t) is usually deter

m ined by experim ents, but there are some general rules which should be followed. 

According to our experience, the direction of the phase shift (w hether the  phase is 

delay shifted or advance shifted) is mainly determined by the tim ing of the applied 

pulse, while the degree of phase shift is mainly determined by the am plitude of the 

pulse. Usually the applied pulse is a single pulse, so we don’t have to  consider the 

frequency.

Fig.7.5 shows the tim e series of the single Van der Pol type models discussed 

previously where (a) is phase delay-shifted by E (t) in which the  period is increased 

for one cycle following the applied pulse and (b) is phase advance-shifted by E(t) in 

which the period is decreased for one cycle following the  applied pulse. The zero- 

crossing detection m ethod was used to find the period of the  above tim e series. 

Fig.7.6 shows the period of each day during 20 days detected by this method.
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Figure 7.5: T im e series o f Van der Pol type model, a) Phase delay-shifted by the  
stimulus, b) Phase advance-shifted by the stimulus.

Fig.7.6(a) shows the  periods with a phase delay shift and (b) shows the periods 

with a  phase advance shift. In both cases, the phase shifts occur between day 5 

and day 6 . Before and following the stimulus, the period of the system  is kept at 

very nearly 24 hours. The zero crossing detection m ethod can not display more 

information due to  the rapidity and complexity of the phase shift process.

Generally, the response of a system to  a stimulus consists of two parts, the 

quasi-steady-state  response and the transient response. The concept of quasi- 

stationary behavior of a  system  implies th a t, as long as the instantaneous fre

quency of the m odulated signal varies slowly enough with time, th e  instantaneous 

am plitude and frequency a t the outpu t car. be derived from the multiplication of 

instantaneous am plitude and frequency of the input by the value of the transfer 

function applicable to  th a t frequency. In a quasi-stationary  manner, the in stan ta

neous frequency of the  system  response will be close to the instantaneous frequency
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Figure 7.6: Periods o f Van der Pol type model, a) Phase delay-shifted b y  the  
stim ulus, b) Phase advance-shifted by the stimulus.

of the excitation. However, when the instantaneous frequency of th e  m odulating 

signal changes abrup tly  so th a t quasi-stationary conditions are violated, as in the 

circadian rhy thm  case, the  sudden tem porary change in frequency corresponds to 

the phase shift produced by a change in tim e zone or a light pulse. In this case, the  

instantaneous input and output frequencies of the system may difFer significantly. 

The problem of finding the transient response then becomes of considerable im 

portance. In this case, the  resultant ou tpu t signal was shown to be composed of 

a transient component having a  frequency equal to  the  natural frequency of the 

system  and a steady-state component produced by the applied signal. These two 

components can be added vectorally to yield a  resultant [4]. To explore this pro

cess, we can try  to  obtain the dynamic frequency information directly or by finding 

the tim e derivative of its phase angle indirectly. This is considered further below.
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7.4 A nalysis o f D ynam ic Process w ith  N onpe
riodic Stimulus

T he transient behavior of the system  with a  non-periodic stim ulus applied, 

as we discussed before, is very complicated. The zero-crossing m ethod can be 

used to  detect gross information of frequency variation. We analyzed this transient 

behavior of our model using dynamic spectral analysis and frequency demodulation.

7.4.1 D ynam ic Spectra l A nalysis

This m ethod uses the F F T  to find the sequential spectral functions  following the 

application of the excitation. The procedure is as follows:

1 . Divide the tim e series into several segments. The first one or two segments of 

the  tim e series occur ju s t before the excitation is applied. T he last segment 

occurs after the return  of the spectrum  to its original. Each segm ent is 

m ade to be one day (144 sam ple points) different from the previous segment. 

Therefore the tim e series of adjacent segments are overlapped. For example, 

if the  first segment consists of the da ta  from day 1 to  day 5, then the  second 

segment consists of the d a ta  from day 2 to  day 6 , etc. The length of the 

segment is mainly determined by the following consideration:

(a) T he segment should not lose the dynamic properties. In the  model the 

stim ulus is applied ju st in one day, and long segments will average the  stim 

ulus effect. Therefore the segment should not be too long;

(b) The segment length should not lose the relatively low frequency com

ponents and the Fourier transform  should have enough transform  points.
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Therefore the  segment should not be too short either. In our research, the 

length of the segment was tested and finally determ ined by the experim ental 

results. Five days (720 points) of data  were used as a segment.

2. Pre-processing of each segment. This procedure is the same as we introduced 

for the F F T  processing in chapter 6 . We apply the pre-processing procedure 

which includes detrending, smoothing and zero padding to  each segment.

3. Com pute the F F T  of each segment (4096 to 16384 points). Fig.7.7 shows 

the  dynam ic spectrum  of a Van der Pol type model with phase shift, where

(a) corresponds to  the  phase delay shifted case while (b) corresponds to  the 

phase advance shifted case.

4. Analyze the sequential spectra and search for peaks of frequency com ponents 

in different phases. For a short pulse stimulus, according to  the zero-crossing 

detection results, the  spectrum  is expected to vary from the  original to  the 

transient process and then back to  the original spectrum  again. T he dynam ic 

spectrum  gives us some details about this transient process.

Exam ining the frequency peaks in these spectra, we can see the sequential spectra 

s ta rt w ith basically one main peak and finally return to this spectrum . The o ther 

phenomenon noted was “overshoot” in the frequency components. In the phase 

delay-shifted case (fig.7.7(a)), it was found th a t the spectrum  first appeared to 

have frequency components lower than the fundamental frequency which caused 

the phase delay; then it merged to have frequency components higher than the 

fundam ental before the oscillator finally resumed its original frequency. It seems 

th a t the higher frequency component here is due to  “overshoot” . In the  case of 

phase advances, the phenomenon we observed is just opposite as the case of phase
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delay shift as we can see in fig.7.7(b). These additional frequency com ponents and 

the  “overshoot” give the  transient response a  complicated, nonmonotonic behavior.

7.4.2 Frequency D em odu lation  A nalysis

T he dynam ic process of a  nonlinear system following a stimulus is very com

plicated. We therefore used additional m ethods to explore its mechanism. The 

other m ethod used for this purpose is frequency demodulation. Both m ethods 

reveal the  dynamic transform ation when a  stimulus is applied.

T he transient response of linear networks to FM signals, assuming an instan

taneous ju m p  in the signal frequency, has been investigated by several workers. 

Their work has been summarized by Weiner[44], who has carried out extensive 

experim ental work to verify the analytical results. His results agree with the  the

oretical trea tm ent and are accounted for by a  simple theoretical model, originally 

developed by Baghdady, which explains the mechanism of the generation of FM 

transients in terms of the normal modes of the  network.

We tried the frequency dem odulation m ethod for extracting the  inform ation 

in the system  following an applied stimulus. The stimulated tim e series can be 

treated as a frequency m odulated signal. However, there are some differences 

between it and a  frequency m odulated signal in communication systems.

1. The m odulating signal for circadian phase shift is not periodic, while in 

communication systems, the application of the m odulating signal is usually 

periodic or can be treated as periodic. The time interval during which the 

circadian m odulating signal is applied is very short while it is relatively longer
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in the communication system  application;

2. The m odulating frequency is much lower than  the carrier frequency in the 

communication system  application, while the frequency of the  m odulation 

signal applied to the circadian oscillator can be com parable with the  carrier 

frequency.

The first m ethod we tried was phase dem odulation. If we simplify our cir

cadian rhythm s to be represented as a  linear oscillation plus a  phase m odulation 

caused by the stimulus then,

f { t )  =  Acos[bjct +  ^(f)]. (7.4)

<f>(t) here can be any form of phase shift caused by the stimulus. Then

/ ( f )  = A[cosuictcos<j>t — sinw ctsin<f>(t)\ (7.5)

If / ( f )  is then multiplied by the carrier frequency, we obtain,

/ ( f )  * cosu>ct =  A\co$2u ctco$<j)(t) — c o s o jc t..?inojcf,sin4)(t)}

— A [- (1  +  cos2ijjct)co$<f>{t) — ^ ( si7i2ujct)sin<f>(t)\

=  A/2[cos<f>(t) -f cos2cjctcos(f>(t) — sf7r2 u;ctsz?nji(t)]

=  A/2[cos<j>(t) +  cos[2u;ct +  <j){t)]] (7.6)

If we then use a lowpass filter to filter out the frequency com ponent cos[2u}ct + <f>(t)] 

we will have,

y =  A/2co$<j>(t) (7.7)

and,

(j>{t) = cos~'l { j y )  (7.8)
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T he problem here is cos[<p(f)] =  cos[— therefore the  correct sign of <p(t) can 

not be determ ined.

Fig.7.8 shows the  flowchart of the frequency dem odulation procedure we used 

in this research.

The phase m odulated signal / ( f )  is defined as

/ ( f )  =  Acos[wct +  4>(t)] (7.9)

T he derivative of f(t) is

/ '( f )  = Asi.n\uct +  /(f)](w c +  ~ ^ jr )

=  [uc + u m(tj\Asin[u;ct +  ('T O )

where

(7.11)

This changes the  phase m odulation signal into an am plitude m odulation signal.

Recall th a t uic is the carrier frequency, which is a  constant while u>m(t) is the 

variable modulation frequency.

T he techniques for AM signal demodulation can be then applied. We let the 

signal then pass a  “detector” which functions as a  rectifier. T he o u tp u t signal from 

the detector f 2{t) is,

f2(t)  = f ' ( t ) S ( t )  (7.12)

S(f) is the switching function. By expanding 5 ( f ) into its Fourier series, it can be 

shown th a t the  outpu t contains a  component proportional to tom {t) plus higher fre

quency terms (sum  and difference frequencies of carrier and m odulating signal).[37]
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If the signal is then passed through a  low-pass filter, we can get the ou tpu t signal 

which is proportional to u m(t).

Fig.7.9 show's the dem odulation result of the  phase delay shift case. The 

signal of fig. 7.5(a) was first passed through the  lim iter to elim inate any am plitude 

changes (fig.7.9(a)). Then it was differentiated and low pass filtered (fig.7.9(b)). 

The dem odulated signal is shown in Fig.7.9(d). This is the system  frequency 

following phase delay shifting. We can see from fig.7.9(d) th a t the system  frequency
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is first reduced , th en  ju m p s  to  a  h igher a  frequency  and  finally  it  resum es its  o rig inal 

frequency. T h is  re su lt is consisten t w ith  th e  re su lt from  d y n am ic  sp ec tra l analysis.

N onperiod ic stim u li ap p lied  to  circad ian  rh y th m s p ro d u ce  p h ase  sh ifts . T h is  

ty p e  o f s tim u lu s  p ro d u ced  p h ase  advances and  delays th a t  a re  acco m p an ied  by t r a n 

sien ts. T h e  tran s ie n ts  e it co m p lica ted , nonm ono ton ic  p a t te rn s  such  as those  

described  by M onk e t al [25] for hum an  biological > ms following a  p h ase-sh ift. 

He p o in ted  o u t th a t  a  z ig -zag  recovery function  for th e  p h ase  sh ift is im p o rta n t 

in suggesting  a  co m p etitio n  betw een  two circad ian  processes. H ow ever, o u r re 

su lts  from  b o th  th e  d y n am ic  sp e c tru m  an d  frequency d em o d u la tio n  m e th o d s  on 

o u r m odel show  th e  “o vershoo t"  process d u rin g  th e  phase  recovery  w hich  is very 

sim ilar to  th e  zig-zag phenom enon  observed in p rac tice . O u r m odel re su lts  suggest 

th a t  an  n o n lin ear o sc illa to r will ex h ib it a  tra n s ie n t b ehav io r w hen a  n o n p erio d ic  

stim u lu s  is app lied . T h is  tra n s ie n t process is rap id  and  co m p lica ted  . W e con

cluded , there fo re , th a t  th is  tra n s ie n t process is sufficiently  com plex  to  a c co u n t for 

th e  d a ta  and  no co m p etin g  processes need to  be invoked.

7.5 S to p p in g  th e  O sc illa tio n  in  V an d er  P o l o s
c illa tor

A biological o sc illa to r is very sensitive to  changes in its  en v iro n m e n t. T h e  

effect of pu lse stim u lu s on a  biological system  is generally  m o d est b u t  it  can  be 

enh an ced  by  p resen ting  b rig h tn ess changes cyclically  in reso n an ce  w ith  th e  o scilla

to r ’s n a tu ra l period . Large p h ase  sh ifts arc  m ore quickly  a tta in e d  by red u c in g  th e  

oscilla tion  am p litu d e  to  zero. M ore precisely, th e re  ex ists a  value of th e  s tim u lu s  

in ten sity  I w hich, if app lied  for leng th  of tim e  T  at. a  po in t of th e  lim it cycle 0 ,
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will cause the state to move to or close to the singularity. In such an event, the 

oscillator can be stopped.

We simulated this process on different models. The stimuli applied are differ

ent for different models, but the basic idea is always to move the state toward the 

singularity. Following are the test results on several models:

1. Stopping the oscillation of the single Van der Pol type model.

The Van der Pol type model is the same as we used for phase shifting research. 

The stimulus for stopping the oscillation should finally bring the trajectory of 

the system  just to the singularity. Therefore the timing and amplitude of the 

applied pulse needs to be more precise than in the phase shift case. It is also 

noticed that more than one pulse should be used in this complicated case, 

because it is impossible to control the trajectory precisely to the singularity 

in one cycle (only one pulse is applied in one cycle).[22]

E(t) was chosen to stop the oscillation by comparing the phase plane and 

time series results. It was noticed that a stimulus with 1^ cycle protocol(1.5 

pulses applied) when carefully designed for amplitude and phase, can bring 

the amplitude to zero and maintain it there, i.e., the circadian clock can be 

said to have been “stopped”. Fig.7.10 shows the stopped time series of the 

oscillation in this model.

The trigger time, amplitude and duration are three important parameters in 

this model which were mainly determined by experiments and which are now 

listed:

The correct trigger time: 81.84851382535 hr to 81.84851382539 hr;

The correct amplitude of the trigger pulse: 0.467954 to 0.467958;
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Figure 7.10: The time series o f stopped oscillation in Van der Pol oscillator model.

The correct duration of the trigger pulse: 12 hr. (Due to the velocity cou

pling, a positive and a  negative impulses with interval equal to  1 2  hr are 

applied to  the model.)

The correct cycles to apply the stimulus: Total l |  cycles.

Fig-7.11 shows the phase plane trajectory of the stopped oscillation.

2 . Stopping the oscillation of the biological oscillator model.

This model, which we introduced in chapter 4, is designed based on the 

practical phase response curve. Its phase plane trajectory  is shown in fig 5.5, 

where we can see th a t there is a section on the x-axis, where the derivative 

is equal to  zero. Therefore a  “strong” pulse applied will bring th e  trajectory 

to  this zero axis and cause the oscillation to be stopped. This result is very 

similar to  the real situation. Winfree[46] found th a t the system  saturated 

very quickly to the level of light intensity, and he used the duration of the light 

pulse as the controlling variable. He found th a t exposing a rhythm ic culture
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of pupae to a 50 sec strong light stimulus rapidly resulted in a complete loss 

of the sleep-wake rhythm. We found similar results in the simulation of this 

process on the biological oscillator model. Figure 7.12 shows the simulation 

results.

3. Stopping the oscillation of the coupled oscillator model.

We did not succeed in stopping the coupled oscillator model. The coupled 

oscillator model is based on two dimensional Van der Pol oscillator equation. 

In the single oscillator case, the pulse series to cause the oscillator to stop 

has to be carefully designed. In the coupled oscillator case, if we apply the 

same pulse series to one of the oscillator or even to both of the oscillators, the 

small interference coupling from the other oscillator will cause the oscillation 

to resume. We tried to design several different pulse series and all of them  

failed. This topic has to be reconsidered from basic principles.
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Figure 7.12: S to p p ed  the oscillation o f  the biological o scilla tor m odel.

Stopping the biological oscillation in practice may have serious consequences. 

It is very difficult to simulate this in real experiments. But the knowledge of this 

process is very important for the physiologists. Modeling and simulation facilitates 

an in depth study of these potential phenomena.
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C hapter 8

H igh Order Spectral A nalysis on  
Circadian R hythm s

In this chapter, we will discuss the prelim inary results of two high order 

spectrum  analysis m ethods and their applications for further exploration of our 

experim ental and model data. The coherence m ethod and bispectrum  m ethod will 

be discussed.

8.1 Theory of Coherence Function

8.1.1 In trod uction

In previous chapters we treated the concepts of Fourier analysis and the 

spectral functions obtained from our experimental and model data. All of them 

are the Fourier transform  of a single channel tim e series. In this chapter, we are 

going to  explore a  method of analysis for two correlated tim e series in the  frequency 

domain. The function obtained from this m ethod is the c o h e re n c e  function.

In our circadian rhythm  data  acquisition system , as introduced in chapter 2,
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the  tem perature and activity d a ta  were acquired simultaneously. It is interesting 

to  find the relation between these two circadian rhythm s. T he relation between 

these two signals may possibly be explored directly from the tim e series or from 

in the  frequency domain. T he relation between these two tim e series is difficult 

to  explore directly in the tim e domain, because the  da ta  acquired from either 

source is easily interrupted (as we mentioned in chapter 2 , the interruption may 

be caused by noise, specious subject conditions, computers or o ther equipm ent, 

e tc.), and this will destroy the synchronization between the signals. The frequency 

characteristics, on the  other hand, are usually not affected by interruptions in the 

tim e domain.

Therefore, it is possible to  use the coherence spectrum  to explore the relations 

between circadian tem perature and activity  da ta  in the  frequency dom ain. Gener

ally, the coherence spectrum  is a m athem atical quantity  which provides a m easure 

of correlation between circadian tem perature and activity for each frequency  and 

atta in s a  very high value (i.e. near unity) a t a  given frequency if the phase rela

tionship between the two channels is nearly constant over the tim e interval used 

to  measure the coherence.

As we mentioned earlier, the power spectral density function of a  single chan

nel tim e series is the Fourier transform  of the autocorrelation function. The spec

tra l density estim ate Gx( f )  and Gy( f ) of tim e series x{t)  and y[i) could be com

puted from the Fourier transform s X ( f , T )  and Y { f , T )  as follows:

G x ( f )  = | | . Y ( / , 7 ’)| (8 .1 )

G y( f )  =  l \ Y ( f , T ) \  ( 8 .2 )

T he cross spectral density function of a  pair of tim e series is the Fourier transform
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of the  cross correlation function. Because a  cross correlation function is not an 

even function, the  cross spectral density function of two tim e series x{t )  and y(t)  

is generally a  complex, function given by

Gr»(f )  =  Cxy( f ) - j Q xy( f )  (8.3)

where the real p a rt Cxy( f ) is called the coincident spectral density function (cospec

trum ) and the im aginary part Qry( f ) is called the quadrature spectral density 

function (quadrature spectrum ). [10] The coincident spectral density function can 

be thought of as the  average product of x(t)  and y(t)  within a  narrow frequency 

interval between /  and /  +  Sf ,  divided by the frequency interval. T he quadra

ture spectral density is the  same except that either x{t ) or y(t )  is shifted in tim e 

sufficiently to produce a 90 degree phase shift a t frequency / .  In m any practical 

applications, the  cross spectral function may be used in normalized form, which is 

defined by

\ G i m
9xy[f) Gx( f ) Gy{f )  {8A)

This normalized fo rm  o f the cross spectral density function  is also called the 

c o h e re n c e  fu n c tio n .

W hen gxy{ f )  =  0 a t a particular frequency, x( t )  and y(t)  are said to  be 

incoherent, i.e., uncorrelated, a t th a t particular frequency. If x( t )  and y(t)  are 

statistically  independent, then gxy( f )  =  0  at all frequencies. If gxy{ f )  =  1 for all 

frequencies then x( t )  and y( t )  are said to be fully coherent.

There are two m ethods used to obtain the coherence function from tim e series 

records a:(<) and y (t). One m ethod involves the calculation of autocorrelation and 

cross-correlation functions in the  tim e domain to  obtain the cross spectrum . The
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second m ethod involves a calculation directly from the Fourier transform  to obtain 

the  cross spectrum.

Since it is more convenient to calculate Fourier transform s with the  help of the 

F F T  algorithm , the  second method has been used extensively, although variations 

in the  technique used for smoothing (for increasing the degrees of freedom) differ 

depending upon processing tim e and memory availability.

8.1 .2  Im p ortan ce o f  Sm oothing in C ross S p ectru m  E sti
m ation

Smoothing is of special im portance in estimation of the cross spectrum .[5 ] If the 

coherence estim ate is obtained by using the unsm oothed estim ate of the  power 

spectral density function, i.e., using only two degrees of freedom, then, for the 

tim e series of length T,

Gxy(J) =  | [ X * ( / ,T ) y ( / ,T ) ]  (8 .5 )

Gx( f )  = ^ [ X ( f , T ) 7\ = l [ X - { f , T ) X ( f , T ) ]  (8 .6 )

Gv( f )  =  | [ F ( / , r ) 2] =  ^ [ Y a{ f , T ) Y ( f , T ) ]  (8.7)

where X ( f , T )  and Y { f , T )  are the finite Fourier transform s of x{t)  and y( t )  over 

the  record length T. According to the definition give in Eq.8.2,

f n  _  |Ĝ (/)I _  X ( f , T r Y ( f , T ) X ( f , T ) Y ( f , T Y  _
9xyU> Gx( f ) G y( f )  X ( f , T ) - X ( f , T ) Y ( f , T ) ‘ Y ( f , T )  ^

Thus with only two degrees of freedom, the coherence function estim ate for the 

com plete frequency range becomes unity even for the case of completely incoherent 

data . The problem here is th a t the coherence has an inherent bias error with only 

2  degrees of freedom.
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T he only way to solve this problem is to  increase the  degrees of freedom in the 

spectral density estim ate itself and thereby increase the reliability of the results. 

We can use either the segment averaging approach or the frequency sm oothing 

approach in the calculation of auto and cross spectra. Smoothing over frequencies is 

performed by smoothing over a  fixed number of contiguous frequency com ponents.

Smoothing by segment averaging is performed by first computing individual 

estim ates from a  number of records x j(f) , X2 {t), ■ ■ •, x„(f), etc. Therefore n

independent histories have been computed. The next step is to sm ooth n  records 

a t each frequency, i.e.,

<?*(/) =  £[(?i(/) + G2( f )  +  ■■■ +  Gn( f )] (8.9)

This procedure is employed in this research by using overlapped or non-overlapped 

tim e records depending on the length of the to tal tim e series.

8.2 Com puting of Coherence and Experim ental 
R esults

The algorithm  we used to calculate the coherence is based on the direct m ethod,

i.e., all the calculation are in the frequency domain. The experimentally acquired 

tem perature and activity data  are first transformed into a  frequency series by 

an overlapped fast Fourier transform technique. [12J The auto and cross power 

spectral density function together with the coherence are then com puted. T he 

procedure is as follows:

1 . At a sampling rate of 6 /hour, the tem perature and activity signals are col

lected and 8192 points (about 2 months) were taken from each channel.
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2. The 8192 da ta  points were segmented into 8  overlapped segments w ith 2048 

points in each.

3. T he F F T  was performed on each segment, using F F T  procedures introduced 

in chapter 6 .

4. The auto  spectrum  and the inphase and quadrature com ponents of the  cross 

spectrum  of each segment i were calculated point by point as follows:

=  A XikAXtk +  B XjkBXtk (8 .1 0 )

= Ay'kAy'k +  By^ByJf  (8 -H )

Cxy.fc =  AX'kAy'k +  B X'kBy'k (8-12)

Qgjfc =  A yJcBxJe -  A XtkB y,k (8.13)

k is a  point between 1 and 2048 in each segm entation.

5. The results from each segmentation were then averaged.

= ! £ ; < &  (8.i4)
71 := 1

=  ~  Y^CyJ'k (8-15)
n  ;=i

=  (8.16)
n i=i

Qry.fc =  ~~ ^  QLI.C- (8.17)
77 i=l

6 . Coherence was finally computed by normalization.

=  > ,- +  f 1’*  (8.18)

As we m entioned in the beginning of the section, the coherence function will be used 

to  find the relationship between two different circadian rhythm s. We calculated
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Figure 8.1: Coherence o f circadian temperature and activ ity  o f subject41. a) The  
coherence function between points 1 and 2048. b) The coherence function between 
points 1 and 200.

the coherence function on our circadian tem perature and circadian activity d ata  of 

monkey 41. The algorithm was designed according to the procedures introduced 

above. All the computing work was implemented by two Macros Cohhl and Cohh2 

w ritten in S  language, which are listed in the Appendix.

Fig 8.1 show the results of the calculation. T he sample rate was 6  sam 

ples/hour and a 4096 point F FT  com putation was applied. Fig.8 .1 (a) shows the 

full range of coherence from spectrum  point 1 to 2048 while (b) shows the range 

from spectrum  point 1 to 200. F ig.S .l(b) shows three main peaks in the range of 

points 1 to  200. T he first high and wide peak at point 30 represents the highest
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coherence near period
4096

=  23.54/?r
6 ( 3 0 - 1 )

and the adjacent range. The second peak is near point 83, and represents the 

period 8.03h. This frequency is the 3rd harmonic of the fundam ental frequency. 

We see a relatively high coherence a t this frequency. We can also see there is a  

peak in the range lower than the fundamental frequency which tells us th a t the 

two circadian rhythm s have some common low frequency coherence.

Two problems arise here for further exploration:

1. W hat is the  coherence about the  second harmonic? The results from sub

ject 41 d idn’t  show any coherence. More experiments have to  be done to  

determ ine whether this is normal. Due to the insufficient activ ity  data , this 

exploration is left for further development.

2. Fig 8 . 1 (a) shows a  complete plot of the above coherence function, from point 

1 to 2048. From th e  plot we can see there are many small peaks in the higher 

frequency range above point 200. It is not clear whether this is caused by 

the algorithm  itself(e.g.,not enough smoothing) or whether there exists some 

inform ation in th a t range which needs further analysis.

The coherence m ethod is a useful tool for the exploration of two channel sig

nal correlation in the  frequency domain. It is especially helpful in th e  analysis of 

m ulti-circadian rhythm  data. The tes t results of subject 41 show th a t high coher

ence occurs a t the fundamental frequency, which does not surprise us. However, 

high coherence a t the 3rd harmonic rather than at the 2nd harm onic is a. new 

observation. We can not directly find this information from the spec tra  of either
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data . As we have shown in th e  spectral analysis in chapter 6 , th e  level of th e  2 nd 

harmonic varies between subjects, and even a t different tim e episodes of the  same 

subject, which illustrates the variation of bimodality of the  subject under different 

conditions. This may be the reason for the low coherence at this frequency.

The coherence com putation is based on the averaged FFT  results. Therefore 

more segments of d ata  will be helpful in smoothing the result and yield a  more 

accurate result. Long term  circadian rhythm  da ta  of other physiological variables, 

such as feeding, is needed for this purpose while the synchronization of these d a ta  is 

not strictly  required, because th e  coherence is computed in the frequency domain.

8.3 The Bispectrum

8.3.1 In troduction

One of the most fundam ental and useful tools in circadian research, as in

troduced in chapter 6 , is the estim ation of the power spectrum . In recent years, 

the utilization of the high order spectra has increased in the digital signal pro

cessing field.[26] Of particular im portance is the bispectrum , which is the Fourier 

transform  of the third order cum ulant (TO C) sequence defined as follows:

oo CO
B(u>u «*) =  £  £  R ( r n , n ) c ^ m+^  (8.19)

m =  — oo n = - o o

where f?(m ,n) is the th ird  order cum ulant defined as the expected value of the 

triple product,

R (m , n) =  E[x(k)x (k  +  m) x ( k  -f ??.)] (8.20)

In power spectrum  estim ation, the process under consideration is treated  as
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a superposition of statistically uncorrelated harmonic com ponents and the distri

bution of power among these frequency components is then estim ated. As such, 

only linear mechanisms governing the process are investigated since phase relations 

between frequency components are suppressed.[34] However, there exist some prac

tical situations where the information concerning phase relations is very im portant 

for exploring the essentials of the system. High order spectra such as the bispec

trum ,, defined in term s of high order cumulants of th e  process, do contain such 

inform ation. [26]

The general m otivation behind the use of high order spectra in signal process

ing is:

1 . To ex tract information resulting from a  deviation from G aussianity (normal

ity). This is based on the property that all high order spectra  (order greater 

th an  two) are identically zero for Gaussian processes. T hus a  nonzero higher 

order spectrum  indicates deviation from normality. In a  more practical sense, 

in those signal processing settings where the signal is a non-G aussian sta 

tionary  process and the additive noise process is stationary  Gaussian, there 

m ight be certain advantages in estim ating signal param eters in higher order 

spectral domains. The non-Gaussian condition is satisfied in many practical 

applications, since any periodic or quasi-periodic signal can be regarded as 

a non-Gaussian signal.

2. To estim ate the phase of non-Gaussian param etric signals. The high order 

spec tra  preserve the phase information of non- Gaussian param etric signals.

3. To detect and characterize the nonlinear properties of mechanisms which 

generate time series via p h a se  re la tio n s  of their harmonic components. In
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the  study of circadian rhythms, we found th a t 2nd, 3rd and  possibly higher 

harmonics did exist in the power spectrum  with different am plitude and 

phase. From the viewpoint of biological oscillators, it is very im portant to 

know the details of these harmonics, especially the 2nd and 3rd harmonics.

M otivation 3 is the main purpose for us to use the  b ispectrum  in this research. 

As we mentioned earlier, because of the interaction between two harm onic com

ponents of a process, there is a contribution to  th e  power a t their sum  an d /o r 

difference frequencies. Such a  phenomenon, which could be due to  quadratic  non- 

linearity, gives rise to  certain phase relations called quadratic phase coupling. In 

our study of circadian rhythm s, the 2nd, 3rd and higher harmonics are nonlinear 

frequency components. Their relation is an essential topic to  be explored.

It is im portan t for us to  know:

• 1. W hether the harmonics in a circadian rhythm  come from th e  sam e pacemaker 

or, is the  3rd harmonic generated because of the interaction of the  funda

m ental and the  2nd harmonic? This information (if correctly obtained) will 

be very helpful for us to understand the essentials of the  circadian oscillator 

and will be th e  basis for us to build our model for circadian rhythm s.

2. Are their phases correlated, especially, is the phase of th ird  harm onic corre

lated  with th e  first two frequency components?

3. If th e  phases are correlated, to what degree is this correlation ?

It is impossible for us to  extract this information from the regular power spectrum . 

The bispectrum , however, is capable of detecting and quantifying phase coupling

[43], and will therefore be a  very helpful tool in this case.
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To explore the principle of the  application of the bispectrum , le t us consider 

two stationary processes,

Z i{k ) = cos(u>ik +  fa )  +  cos(ui2k +  fa) 4- cos(u>3k  +  fa )  (8.21)

and

Z 2(k) =  cos[uiik +  <j>i) +  cos (u?2 k +  fa )  +  cos(tv3k  +  (<f>i +  fa ))  (8 .2 2 )

where fa , fa  and fa  are  randomly distributed in [0 , 27t] and,

ui3 = u>i U>2

i.e., are harmonically related.

In Z i(k ), it  is apparent th a t w3 is an independent harmonic com ponent because 

fa  is an independent random  phase variable. In Z2{k), fa  =  fa  +  fa , so the 

frequency o>3  is due to a  quadratic phase coupling between W] and u.'2.

In the bispectrum  analysis, if lo3 is indeed generated by the  phase coupling 

between u>i and w2, a peak will appear in the bispectrum  B {uji, w2) a t the  location 

(ujt =  uii, u y =  u;2). Otherwise, no peak will appear in the b ispectrum .

To quantify the degree of a quadratic phase coupling, the  b ic o h e re n c e  index

[26] m ust also be com puted. This index is a function of the  bispectrum  B(u>i,cu2) 

and the power spectrum  P(u>) defined as follows:

f e c ( w , , « 2 )  =  p ( w i ) p ^ p ( W l + W 2 )  (8 -2 3 )

It is im portant to note, however, th a t the power spectrum  of both Z \(k )  and Z 2(k) 

will display three peaks at frequencies w\, to2, and u;3 respectively, w hether or not 

u>3 is due to  the quadratic phase coupling between and u>2, and consequently 

the power spectrum  can not be used to  detect the presence of phase coupling.
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8.3 .2  B isp ectru m  C om putation and Sm ooth in g

The bispectrum , by definition, is the Fourier transform  of the th ird  order 

cum ulant sequence. Let us note that the power spectrum  is, in fact, the spectrum  

of the second order cumulant. [26] There are two chief approaches th a t have been 

used to  estim ate the bispectrum, namely, the conventional and the param etric 

approach. We are going to  discuss only the conventional m ethod here which can 

be classified into two classes, indirect and direct.

For the  indirect class m ethod, the computing procedure is basically th e  fol

lowing:

1. Segment the  d a ta  into K  records of M  samples each.

2. Subtract the average value of each record.

3. O btain the 3rd moment sequence ri(m , u). of each segment.

4. Average r,(m , u) over all the segments.

5. Generate the bispectrum  estim ate.

For the  direct class m ethod, the procedure is as follows:

1. The same as indirect class method.

2. The same as indirect ciass method.

3. G enerate the  F F T  coefficients F, of each segment, F F T  points =  No.

4. G enerate the  bispectrum  in 2 steps:
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a) Com pute the bispectrum in each segmentation:

b;(vx,v 2) =  ^ 2 ^i(u i) • /^ (u2) • F{(vi +  v2) (8.24)

where Ao — f , / N 0, (/,-sam pling  frequency, A o-FFT  points). The com puta

tion for each segment is over the triangular region (by using the  symmetry 

property): 0  <  v2 < vx, v x +  v2 < f j 2 ,

b) Average the results of K  segmentations:

1 K
B (u)U u 2) = ■J7'52bi(u 1,u 2) (8.25)

*=i

T he problem encountered in practice is th a t usually a  finite set of observation 

m easurem ents is given. Therefore the da ta  m ust be first segmented and the DC 

com ponent subtracted  in both the indirect and direct m ethods to  increase the  de

grees of freedom and smooth the process. In the indirect m ethod, the 3rd moment

sequence of each segment is first computed and averaged. Finally th e  bispectrum

is com puted by transformation of the averaged 3rd moment sequence into the two 

dimensional spectrum . In the direct method the one dimensional spectrum  is first 

com puted for each segment and then the bispectrum  is com puted by computing 

the correlation of three frequency components: tq, v2 and rq +  v2. The phase 

relation a t these three frequencies over the whole region of each segment should 

be continuously evaluated. Finally the results from each segment are summed and 

averaged. An algorithm using the direct method is employed in this research. The 

Macro Bis  is listed in the Appendix.
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Figure 8.2: Power spectrum  o f  the model with 3 harmonic-related frequencies.

8.4 Phase Coupling D etection  U sing B ispectrum  
M ethod

In our research, the bispectrum  is used for phase coupling detection of circadian 

rhythm  data. We first tried this calculation on a linear model including three 

frequency components. These th ree frequency components, / i , / 2  and f z  were 

harmonically related, and the phase related and phase unrelated cases were tested 

separately. In both cases, the power spectrum  is the same as shown in F ig.8 .2.

Fig.8.3 shows the  three dimensional plots of the bispectrum  and bicoherence 

functions of the phase related model. In this type of plot, the  x  axis represents 

the  frequency f x while the  y axis represents the frequency f y and th e  2  axis rep

resents the bispectrum  or bicoherence values at the corresponding frequency f x 

and f y. There are two peaks existing in Fig.8.3(a) a t ( f x =  / i , / y =  fz )  and 

(f x = f z , f y =  / 1 ). Fig.8.4 shows the bispectrum  and bicoherence results of the
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(a )

(b)

Figure 8.3: The bispectrum and bicoherence function results o f the m odel with 
related phase, a) Bispectrum. b) Bicoherence.

model with unrelated phase.

The test result is based on 40 segmentations. The phase of three frequency 

components is uniformly distributed in (0 ,2 rr). Fig.8.3 shows the results of the 

model with <f>3 =  fa +  fa  while in Fig.8.4 <j>3 is independent of <f>i and <j>2- The 

bispectrum  test applied to  this phase model dem onstrated conclusions as follows:

1. The bispectrum  computation must use a large number of segments to  sm ooth 

the da ta  in order to achieve the true results. This is because only the average
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“ fx

(b)

Figure 8.4: The bispectrum and bicoherence function results o f the model with 
unrelated phase, a) Bispectrum. b) Bicoherence.
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of a  large num ber of segmental d a ta  can reveal the difference in th e  phase 

relations.

2 . Biocoherence m ust accompany the bispectrum result to deduce the  degree 

of a quadratic phase coupling. We can see the results from Fig.8.3(b) and 

Fig.8.4(b). In fig.8.3(a), there are two large peaks a t the same position 

in both the bispectrum  and the bicoherence function. In fig.8.4, we see two 

small peaks in the bispectrum  but no peaks show in the bicoherence function. 

Therefore we can conclude th a t the frequency component / 3 ( / 3 = f i  +  / 2) is 

phase correlated with f i  and / 2  only if both the bispectrum  and bicoherence 

functions show peaks at the frequency f x =  f i  and f y =  / 2.

The bispectrum  m ethod was also tested on our experimental data. F ig.8 .5 shows 

the spectrum , bispectrum  and bicoherence functions from one of th e  circadian 

tem perature da ta  sets th a t we tested. The spectrum  shows three m ain frequency 

components a t f i  — 0.042, (23.43/ir), / 2 =  0.085(11.71 hr), and / 3 =  0.127(7.87/ir). 

T h irty-one segmentations were used to obtain the smooth results. T he bispec

trum  shows a  peak a t f x =  f y =  0.042, (23.43/rr) and small peaks a t f x =

0.085(11.7 l k r ) , f y = 0.042(23.43/ir). If the bicoherence function also shows high 

values a t these locations, then we could say that the frequency com ponents f x + f y 

are phase related with f x and f y. However, the bicoherence function a t these 

points shows very low values. Our test results with other circadian tem perature 

d ata  show similar findings. Therefore we can not say that the three m ain frequency 

components of a circadian rhythm  are phase related. In other words, they seem 

to be derived from three independent oscillators. This conjecture needs further 

investigation.
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Figure 8.5: (a)Sm oothed spectrum  o f a experimental data, (b) B ispectrum  result, 
(c) Bicoherence result.
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C hapter 9

C onclusions

9.1 Sum m ary o f the Research

M athem atical modeling and analysis of circadian rhythm s have developed in 

the  past 20 years. However, many existing models have not utilized both  time 

and frequency characteristics of the circadian rhythm s. In this research, we exam

ined both  tim e and frequency characteristics by com puter modeling and explored 

several advanced techniques in the frequency domain. O ur results revealed the re

lation between the bim odality observed in the tim e series and harm onic structure, 

the relation between nonlinearity and harmonic structure, the  dynam ic frequency 

process with the application of an external stimulus and th e  frequency coherence 

between two different circadian rhythms.

In this research, a  reliable d ata  acquisition system  has been built to  acquire 

high quality raw experim ental circadian data. Among the  circadian d a ta  we ob

tained, th e  tem perature d a ta  has proved to be the most stable, best regulated cir

cadian rhythm . This is because the tem perature d a ta  is continuously m onitorable 

and not greatly influenced by noise. For example, external high level sound may
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change the activity rhythm  but not the tem perature rhythm  of th e  subject. We 

have also developed a preprocessing procedure for raw experim ental d a ta  which 

includes segmentation, detrending and smoothing of the  data.

Based on the  understanding of the experimental circadian d a ta  and the anal

ysis of several existing models, we have developed our m athem atical models for 

circadian rhythm s. O ur emphasis in modeling was to make the m odel approach 

th e  real circadian rhythm s in b o th  the tim e and frequency domains. T he analysis 

of circadian rhythm s in the  frequency domain was rarely used in previous research.

Through frequency spectral analysis, we not only confirmed th a t the m ain 

frequency peak of the circadian rhythm  was at approxim ately 24 hours but also 

found the existence of other frequency components which were harm onically related 

to the fundam ental frequency.

From the physiological viewpoint the second harmonic in the spectrum  of the 

circadian rhythm  represents bimodality characteristics. B im odality is a  prom inent 

feature of m any circadian rhythms. We studied this phenomenon and considered 

it as one of the  basic characteristics on which to build our model. In the  spectral 

analysis of experimental circadian rhythm  data, we found th a t the bim odality 

existed in alm ost all the subjects while the level of this harm onic varied in different 

subjects.

From the m athem atical viewpoint, the harmonic frequency com ponents in a 

system  could possibly come from another coupled oscillator or, from the nonlin

earity  of the system. The circadian rhythm  is a  complicated nonlinear oscillation 

process, and it is not possible to be simulated simply by the combination of three 

harmonically related linear oscillators. To prove this, we sim ulated a  linear model
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w ith  3 harmonically related frequency components. Its frequency spectrum  could 

be adjusted  to  be similar to the experim ental d a ta  while the time response was far 

from the experim ental tim e series. Therefore, in our model, we generated these 

th ree  harmonically related frequency components by two or three coupled nonlinear 

oscillators which approach the experim ental d a ta  well in both tim e and frequency 

dom ains. Following are our considerations in development of the models:

1. In th e  two dimensional coupled oscillator model, the frequency and am plitude 

of the  second harmonic frequency com ponent could be adjusted by adjusting 

th e  frequency and coupling coefficient of the coupled oscillator, and the 3rd 

harmonic could be adjusted by adjusting the nonlinearity of the  system.

2. T he mode of coupling has a direct effect on the system frequency and the 

structu re  of the spectrum. Direct coupling and velocity coupling are the 

two coupling methods we tested. Direct coupling has a  strong effect on the 

system. In the case of large nonlinearity, the inserted 2nd harm onic compo

nent in the direct coupled system causes 1/3 harmonic entrainm ent which 

will cause the system frequency to jum p to 1/3 of the original 2nd harmonic 

frequency. This is an undesirable effect, although we could exam ine the fre

quency spectrum  in the transition toward the entrainm ent. The spectrum  

became “rich” and “expanded” in harmonics ju s t before the entrainm ent 

occurred. It became “clear” again after the entrainm ent. T he spectrum  

structu re  and tim e series waveform of the velocity coupled system appears 

closer to  the experimental data. The coupling coefficient in the  system  could 

be adjusted to achieve optimum results.

3. The 3rd harmonic could be generated by the nonlinearity of the system  or by

199

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



using a  three dimensional coupled oscillator model. There are six coupling 

coefficient param eters to be adjusted in the 3 dim ensional coupled oscillator 

model which makes the modeling complicated. In the two dimensional model, 

there are only two coupling coefficients to  be adjusted. T he two dimensional 

model simulates the experimental data  well in most observed cases. How

ever, in some cases, such as the harmonic structu re of the  ra ts ’ tem perature, 

th e  three dimensional coupled oscillator model is needed to  sim ulate the ex

perim ental da ta  because this model gives more freedom to approxim ate the 

complex harmonic structure.

4. Dynam ic spectrum  analysis revealed the dynam ics of frequency transition 

as a  transien t stimulus was applied. The dynam ic process of the circadian 

rhythm  is an im portant issue which we explored. Frequency analysis was 

performed on the model with:

(a) Periodic stimulus applied. The system was e ither entrained or unen

trained. T he spectrum  for the la tter was com plicated. Both original and 

external frequency components existed in the system  and some new harmon

ics were generated. This was the case especially when the  system was nearh- 

“en tra ined” . The spectrum  of the entrained system  has basically the same 

“clear” s tructu re as its original except for a shift in frequencies.

(b) Nonperiodic stimulus applied. Dynamic spectrum  analysis showed the 

transition  process in the case of a phase delay shift or phase advance shift. 

“O vershoot” frequency components were found by this m ethod which was 

consistent with the results using a. frequency dem odulation m ethod.

5. We com puted a coherence function using the frequency inform ation from 2  

channel circadian rhythm s, tem perature and activity, to  obtain their nor-
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malized correlation. The result from one of the monkey subjects under free 

running conditions shows high coherence occurring a t the  fundam ental and 

3rd harm onic frequencies of cifcadian tem perature and activity  rhythms. 

This conclusion needs to be further proved through coherence com putation 

on more experim ental data. sets. This result, however, supports our assump

tions in developing a  two dimensional coupled oscillator model:

(a) Two coupled oscillators contribute to  one circadian rhythm ;

(b) The characteristic frequency of the m ain oscillator is th e  fundam ental 

frequency of the system while the frequency of the coupled oscillator 

is a t th e  second harmonic. Therefore the second harm onic frequency 

component in our model is independent of the fundam ental, and could 

be adjusted;

(c) the 3rd harmonic is generated by the nonlinearity of the oscillator. 

Therefore this frequency is determined by the selection of the funda

mental frequency and the am plitude of this com ponent is determ ined 

by the selection of the degree of nonlinearity.

If the  tem perature and activity rhythms are each controlled by such an os

cillator model, then the fundamental frequencies of these two rhythm s are 

synchronized while the second harmonic frequency com ponents of both os

cillators are desynchronized (In the model we can sim ulate this by adjusting 

the frequency of the coupled oscillator.). Coherence results sim ilar to these 

experim ental results could be obtained from our two dimensional coupled 

oscillator model.

6 . We used bispectrum  analysis in this research to  find the phase relation be-
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tween harmonics of a circadian rhythm . This helped us to  understand the 

essentials of harmonic structure, i.e., whether the third harmonic was gener

ated  by the fundamental and second harmonic? We tested the bispectrum  

m ethod first on a model of three frequency components with related and 

unrelated phases. The result of bispectrum  analysis on experim ental tem 

perature da ta  did not show a  phase relation of the 3rd harmonic w ith the 

fundam ental and 2nd harmonic. More analysis is needed to  verify this result.

Both the coherence and bispectrum  computation need large numbers of seg

m entations of experimental data , either overlapped or non-overlapped, from 

one channel (bispectrum m ethod) or two channels (coherence m ethod).

9.2 Summary of Nonlinearity Analysis on the  
M odels

Nonlinearity is an important, feature of circadian rhythms. We have varied 

the nonlinear param eters in our models. The results have given us a picture of the 

effects on nonlinearity of the models in both time and frequency domains.

1. In the  time series, the nonlinearity affects the distortion of the linear os

cillation waveform. The waveform of a  pure linear oscillator is a  sinusoid 

while the  nonlinear oscillator produce a distorted sinusoid. In the stud}' of a 

one dimensional Van der Pol oscillator model we simulated the  system  with 

different values of the nonlinear param eter fi. The simulation results show 

th a t the  shapes of the time series become more and more different from a 

pure sinusoid as fi increases.
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2. T he period of the Van der Pol oscillator model increased w ith increase of the 

nonlinearity. Experimental results showed the period increased rapidly when

p >  0 .8 .

3- In the frequency domain, the nonlinearity affected the  harm onic structure. 

Spectral results showed tha t the am plitude of the harmonics increased as the 

nonlinearity was increased. For the single Van der Pol type model, its spec

trum  only includes odd harmonics, and the increase of nonlinearity causes the 

levels of all these odd harmonics “to  increase” . In our two dimensional cou

pled oscillator model, the increase of nonlinearity in e ither oscillator causes 

the increase of am plitude of the harmonics in the main oscillator with differ

ent effect due to the manner of coupling.

In the two dimensional direct coupling oscillator model, as we saw in section 

4.7.1, the effect of the nonlinearity became stronger during direct coupling. 

T he increase of nonlinearity in both oscillators caused an increase in the har

monic am plitude and finally caused 1/3 harmonic en trainm ent. This result 

is the combined effect of (2) and (3).

4. In the  phase plane, the nonlinearity of the system can be observed in the 

unsym m etrical shapes of the closed orbits of the oscillation.

5. In the  case of application of an external stimulus, th e  system  with larger 

nonlinearity is easier to be entrained. The m athem atical background and 

simulation results of this phenomenon can be found in section 7.2 . In the 

casetrf a  linear system (nonlinear param eter =  0 ) both the  original frequency 

of the system  and the frequency of the external stim ulus co exist, in the 

system while in the nonlinear system the system frequency can be totally 

entrained to the applied frequency.
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9.3 Conclusions

A nonlinear m athem atical model can be used to describe the  circadian rhythm  

system . T he model should be built to  approach the  experim ental d a ta  in both 

tim e and frequency domains, in both stable states and dynam ic processes. Our 

two dimensional coupled Van der Pol oscillator model approaches the experim ental 

d a ta  well. T he difference between this model and previously existing models is th a t 

this model is the first tim e th a t two coupled oscillators are used to represent one 

circadian rhythm  in both time and frequency domains.

T he analytical m ethod is the traditional m athem atical m ethod to  obtain the 

solution of nonlinear systems but two reasons prevented its application in this 

research:

1. This m ethod generates large errors in the case of large nonlinearity;

2. It is very difficult to use this method in the  case of coupled nonlinear oscillator 

systems.

We used com puter simulation to solve the nonlinear differential equations in our 

model. We could easily get outputs of all the variables in the  model as well as the 

first or higher derivatives of all the variables. This allowed us to  easily obtain the 

phase plane plot.

The m odel da ta  and experimental da ta  were analyzed in both the  tim e and 

frequency domains. The analysis included the following m ajor topics:

The appearance of the time series and frequency spectrum ;
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The effects of nonlinearity on the tim e and frequency characteristics;

T he effects of application of periodic and nonperiodic stim uli on the system 

tim e series, spectrum , and the possibility of changing the basic properties of the 

system, e.g., stopping the oscillation;

T he correlations in the frequency domain between circadian tem perature da ta  

and activity  data , especially, the  frequency correlations at the  fundam ental fre

quency and low order harmonics;

The phase relations between frequency components, especially, the phase cou

pling between the three main frequency components of circadian rhythm s.

These analyses helped us to develop and modify our models thus to  further 

understand the essentials of circadian rhythm s as follows:

F irst, the circadian rhythm  is a complex nonlinear oscillation. The tim e series 

and frequency spectrum  are similar to  those derived from a  nonlinear oscillator 

model. A one dimensional model is convenient to be used to  explore the  dynam ic 

properties while two and three dimensional coupled oscillators reveal better the 

features of circadian rhythms. Different nonlinear param eter values could be used 

to reflect various type of experimental data. The analysis results showed th a t the 

tim e series and spectrum  of the model with relatively large nonlinearity is more 

similar to  the experimental data.

Secondly, the frequency characteristics is an im portant aspect of circadian 

rhythm s. Our experimental data, showed the bimodality phenom enon and our 

model results revealed th a t this phenomenon was related to  the harm onic struc

ture. We computed the coherence, i.e., the frequency correlation between two
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different circadian rhythm s. High values of coherence were found in the  funda

m ental and third harmonic of the experimental data. This also indicated that the 

two dimensional coupled oscillator model should be used for circadian rhythms. 

T he 3 main frequency components in the spectrum  of the experim ental da ta  were 

harmonically related but no phase-coupling evidence was found using bispectrum  

analysis. The coupling mode, the range of coupling coefficients and the  non-linear 

param eter in the two or three dimensional coupled oscillator model could be care

fully selected to represent the frequency characteristics of circadian rhythm s.

Investigation of circadian rhythm s under different stimuli indicated th a t they 

could be entrained or phase shifted. This is another evidence of the nonlinearity of 

the  oscillator. The entrainm ent of such an oscillator under periodic stim ulus mainly 

depends on the intensity of the stimulus and the frequency difference between the 

stimulus and the  natural frequency of the oscillator. The phase shift occurring 

under nonperiodic stimulus already has some clinical applications. T he modeling 

and simulation will greatly help the practical applications.

9.4 Further Developm ent of the Study

T he study of circadian rhythm s opens a totally new area in bioengineering. Al

though scientists have made many effects to explore the essentials of circadian 

rhythm s during the past 2 0  years, there are still a lot. of unknown mysteries in 

this field, especially in human beings. The human circadian pacemaker, which 

regulates the body sleep-wake, tem perature and other biological cycles, if it be 

completely understood, could be possibly reset much like an alarm  clock. This will 

be not only used for treatm ent of circadian disorder, but. could also be possibly
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used for controlling the human beings’ moods, health and m ental activities. Our 

further work would design new experiments and develop analysis techniques to 

approach this direction.

High quality experimental data is the basis for us to  do further exploration, 

and therefore the improvement of the acquisition process should be the first consid

eration for further development. Tem perature circadian da ta  was mainly used in 

this research. Long term  uninterrupted d ata  is needed for spectral, bispectral and 

other analyses. For example, If we want to use 40 segmentations w ith 10 cycles of 

non-overlapped d ata  in each segmentation for computing the bispectrum , then it 

means th a t 400 days of uninterrupted d a ta  should be acquired. This requires the 

modification of the current data acquisition system to improve reliability. A utom a

tion for experim ental d a ta  monitoring and segmentation should be considered. To 

get more reliable coherence results, synchronized activity' and tem perature da ta  

should be acquired. We currently count the activity of the subjects by counting 

their physical movement. Digital video image acquisition and processing m ay be 

considered for b etter activity data  acquisition.

The experim ental subjects should include not only7 animals bu t also hum an 

beings. Therefore a d a ta  base including long term  records of hum an circadian 

rhythm s under different conditions m ust be built. Small portable devices which 

include transducers and recorders for circadian d a ta  acquisition should be built 

and tested on human subjects.

T he responses of the circadian system to different types of stimuli not only 

help us to understand the system but also create real physiological applications 

on human beings. As we discussed in the previous chapters, this has already been
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employed for sleep-disorder treatm ent. Possible applications include trea tm en t of 

other circadian clock disorders such as “je t-lag ” . All these applications should be 

performed very carefully to avoid any possible harmful effects on subjects. The 

development of a  precise model for an individual subject may be needed to  assist 

in this application.

T he relation of circadian rhythm s with a  hum an mood and health conditions 

is a  very interesting issue. The exploration of this issue needs the cooperation 

of physiologists. A reliable da ta  base and advanced analysis techniques are also 

necessary conditions.

T he further exploration of coherence and bispectrum  based on long term  re

liable experim ental da ta  should be contem plated. T he direct m ethod used now 

for coherence and bispectrum  computing has certain advantages bu t needs large 

num bers of segments to  get smooth results. Indirect m ethods, such as com puting 

the  bispectrum  from complex dem odulation, should be tried and com pared with 

the direct method.

The selection of models and the param eters in the model to  approach the 

experim ental d ata  is a complex process. As we have shown here, we ha ve employed 

several techniques in both tim e and frequency domains to get the  desired results. 

In recent years, AI (artificial intelligence) and neural network application have 

become possible with the development of advanced com puter techniques. The 

most im portant feature of a neural network application is th a t it can “learn"' the 

unknown system. Its possible application in the  field of circadian rhythm  research 

will open a  completely new direction. This will make the model selection and 

param eter selection autom ated.
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A ppend ix  A

C SM P Sim ulation Program s

'fi'k'kieie'kit'k'k'kic'k'k'k'k'k'k^kie'k'fe'kieieieis'k’k 'k 'k 'k ic’k 'k 'k ii'k 'k 'k ’kit'k 'k 'k'k'k'kic'kie^c'k'k'k'k'k'k
* THE FOLLOWING CSMP PROGRAM IS TO SIMULATE SINGLE VAN DER
* POL TYPE OSCILLATOR MODEL WITH DIFFERENT NONLINEARITY.
*

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INITIAL
PARAMETER UY=( . 2 , . 8 , 1 . 6 , 3 . 2 )
K = 2 4 /2 /3 .1416  
WY=1.0 

DYNAMIC
Y2=UY/K*(1—Y*Y)*Y1-WY*WY/K/K*Y 
Y1=INTGRL( 0 . 2 , Y2)
Y=INTGRL( 0 . 6 , Yl)

TERMINAL 
PRINT Y
TITLE SIMULATION OF THE VAN DER POL
TIMER FINTIM = 2 5 0 .0 ,  OUTDEL=.1667, PRDEL=.1667
LABEL VAN DER POL OSCILLATORS
END
STOP
ENDJOB
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* THE FOLLOWING CSMP PROGRAM IS TO SIMULATE THE MODIFIED
* VAN DER POL TYPE OSCILLATOR MODEL.
*

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INITIAL
A=0.001  
UY=0.1
K = 2 4 /2 /3 .1416  
WY=.9231  

DYNAMIC
Y2=0. 1 /K *(1—Y*Y)*Y1-WY*WY/K/K*Y-UY*Y*Y*Y 
Y1=INTGRL( 0 . 2 , Y2)
Y=INTGRL(A,Yl)

TERMINAL 
PRTPLT Y
TIMER FINTIM = 4 8 0 .0 ,  OUTDEL=0.16667 ,

PRDEL=0.1 6 6 6 7 ,DELMIN=0. IE-12 
LABEL VAN DER POL OSCILLATORS 
END 
STOP 
ENDJOB
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* THE FOLLOWING CSMP PROGRAM IS TO SIMULATE THE TWO
* DIMENSIONAL COUPLED VAN DER POL TYPE OSCILLATOR MODEL
* WITH DIFFERENT NONLINEARITY.
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INITIAL
PARAMETER UY=( 0 . 2 , 0 . 8 , 1 . 6 , 3 . 2 )
UX=UY
K = 2 4 /2 /3 .1 4 1 6  
WX=1.92  
WY=.923 
FYX=-0.4  
FXY=-0.4  

DYNAMIC
X2=UX/K*( 1-X*X)*X1-WX*WX/K/K*X-FYX*Y1/K 
X1=INTGRL( 0 . 2 , X2)
X=INTGRL( 0 . 6 , XI)
Y2=UY/K*(1—Y*Y)*Y1-WY*WY/K/K*Y-FXY*X1/K 
Y1=INTGRL(0.2,Y2)
Y=INTGRL( 0 . 6 , Yl}

TERMINAL 
PRINT Y, Yl
TIMER FINTIM = 7 2 0 .0 ,  OUTDEL=.1667, PRDEL=.1667
LABEL VAN DER POL OSCILLATORS
END
STOP
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ENDJOB
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* THE FOLLOWING CSMP PROGRAM IS TO SIMULATE TWO VAN DER
* POL TYPE OSCILLATOR MODEL WITH DIFFERENT NONLINEARITY
* AND FIND THE DIFFERENCE.
*

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INITIAL
UX=0.1  
UY=0.8
K = 2 4 /2 /3 .1 4 1 6  
WX=.923 
WY=.961 
DYNAMIC
X2=UX/K* (1—X*X) *X1-WX*WX/K/K*X 
X1=INTGRL(0.2,X2)
X=INTGRL(0. 6 , XI)
Y2=UY/K*(1-Y*Y)*Y1-WY*WY/K/K*Y 
Y1=INTGRL( 0 . 2 , Y2)
Y=INTGRL(0.6,Y1)
Z=Y—X
U=DERIV( 0 . 0 , Z)

TERMINAL 
PRINT Y ,X ,Z ,U
TIMER FINTIM = 7 2 0 .0 ,  OUTDEL=.1667, PRDEL=.1667
LABEL VAN DER POL OSCILLATORS
END
STOP
ENDJOB
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* THE FOLLOWING CSMP PROGRAM IS TO SIMULATE THE PROCESS
* OF DELAY ADVANCE SHIFT IN THE VAN DER POL TYPE
* OSCILLATOR MODEL. 
*********************************************************  
INITIAL

K X =24/2/3 .1416  
UX=0.1  
WX=.9 9 

DYNAMIC
T = l . 0 * (STEP( 1 0 0 .0 ) -STEP(1 1 6 .0 )  )
Z1=IMPULS( 1 0 3 .0 ,2 4 .0 )
Z2=TMPULS( 1 1 5 .0 ,2 4 .0 )
Z=T*(PULSE( 0 . 2 , Z l)-PU L SE (0.2 ,Z 2))
X2=UX/KX*X1*(1—4*X*X)—1 / KX/ KX*WX*X+Z 
X1=INTGRL( 0 . 2 , X2)
X=INTGRL( 0 . 6 , XI)

TERMINAL 
PRINT X
TIMER FINTIM = 5 0 0 .0 ,  OUTDEL=.1667, PRDEL=.1667
LABEL VAN DER POL OSCILLATORS
END
STOP
ENDJOB
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* THE FOLLOWING CSMP PROGRAM IS TO SIMULATE THE PROCESS
* OF PHASE ADVANCE SHIFT IN THE VAN DER POL TYPE
* OSCILLATOR MODEL.
*

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INITIAL
K X =24/2/3 .1416  
UX=0.4  
WX=.99 

DYNAMIC
T=0. 8 * (STEP( 1 0 6 .0 ) —STEP(1 2 1 .0 )  )
Z1=IMPULS( 1 0 8 .0 ,2 4 .0 )
Z2=IMPULS( 1 2 0 .0 ,2 4 .0 )
Z=T*(PULSE( 0 . 2 , Zl)-PULSE( 0 . 2 , Z2))
X2=UX/KX*X1*( 1-4*X*X)-1/KX/KX*WX*X+Z 
X1=INTGRL( 0 . 2 , X2)
X=INTGRL( 0 . 6 , XI)

TERMINAL 
PRINT X
TIMER FINTIM = 5 0 0 .0 ,  OUTDEL=.1667, PRDEL=.1667
LABEL VAN DER POL OSCILLATORS
END
STOP
ENDJOB
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* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* THE FOLLOWING CSMP PROGRAM IS TO SIMULATE TO STOP
* THE VAN DER POL TYPE OSCILLATOR MODEL.
*

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

INITIAL
KX=24/ 2 / 3 .1 4 1 6  
UX=0.1  
WX=.99 

DYNAMIC
T=1.0*(STEP( 3 4 0 .0 ) -STEP(3 5 6 .0 ) )
Z1=IMPULS( 3 4 3 .0 ,2 4 .0 )
Z2=IMPULS(3 5 5 .0 ,2 4 .0 )
Z=T*(PULSE( 0 . 2 , Zl)-PULSE( 0 . 2 , Z2))
X2=UX/KX*X1*( 1-4*X*X)-1/KX/KX*WX*X+Z 
X1=INTGRL( 0 . 2 , X2)
X=INTGRL( 0 . 6 , XI)

TERMINAL 
PRINT X
TIMER FINTIM = 8 0 0 .0 ,  OUTDEL=.1667, PRDEL=.1667
LABEL VAN DER POL OSCILLATORS
END
STOP
ENDJOB
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A ppendix B 

F F T  and other programs

PROGRAM LOW.FOR

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
c
C THIS PROGRAM IS USED FOR 16 ORDER BUTTERWORTH 
C LOW PASS FILTER COMPLEMENTATION. THE COEFFICIENT 
C WAS GENERATED BY FILTER DESIGN PROGRAM.
C
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

r e a l  f y y ( 4 0 0 0 ) , mf(4000)  
in t e g e r  i , j  
a0=8102.36  
b0= -4040 .70  
c0= 4065 .66  
a l= 8 1 0 2 .36  
b l= -4 0 1 6 .223  
C l=4090.137  
a2=8102.36  
b 2= -3993 .165  
c2= 4113 .195  
a3=8102.36  
b 3= -3972 .412
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30
40

50

60

70

80

90

100

110

1 2 0

130

c3= 4133 .9 5  
a4=8102.3 6  
b 4 = -3 9 5 4 .77  
c4= 4151 .595  
a5=8102.3 6  
b 5 = -3 9 4 0 .89  
c5= 4165 .462  
a6=8102.3 6  
b6=-3931 .354  
c6= 4175 .016  
a7=8102.3 6  
b7=—3926 .48  
c7= 4179 .88  
open ( 3 , f i l e = ' d a t a ' ) 
do 30 j = l ,3000  
r e a d (3 ,* )  m f( j )  
f y y ( l ) = m f ( 1 ) / c 0
fy y (2 )  = (m f( 2 ) +2*mf( 1 ) +aO*fyy(1 ) )  /cO 
do 50 i=  3 ,3 0 0 0
f y y ( i ) = ( m f ( i ) + 2 * m f ( i - l ) + m f ( i - 2 ) + a 0 * f y y ( i - 1 ) + \  

b 0 * f y y ( i - 2 ) ) / c 0  
do 60 i = l , 3000  
m f ( i ) = f y y ( i )  
f y y ( l ) = m f ( l ) / c l
f y y ( 2 ) = ( m f ( 2 ) +2*m f( 1 ) + a l* f y y ( 1 ) ) / c l  
do 70 i=  3 ,3 0 0 0
f y y ( i ) = ( m f ( i ) + 2 * m f ( i - l ) + m f ( i - 2 ) + a l * f y y ( i - 1 ) + \  

b l * f y y ( i - 2 ) ) / c l  
do 80 i = l , 3000 

mf ( i ) = f y y ( i )
f y y ( l ) = m f ( l ) / c 2  

f y y ( 2 ) = ( m f ( 2 ) + 2 * m f ( l ) + a 2 * f y y ( l ) ) /c 2  
do 90 i=  3 ,3 0 0 0  

f y y ( i ) = ( m f ( i ) + 2 * m f ( i - l ) + m f ( i - 2 ) + a 2 * f y y ( i - l ) + \  
b 2 * f y y ( i - 2 ) ) / c 2  

do 100 i = l , 3000 
m f ( i ) = f y y ( i )

f y y ( l ) = m f ( l ) / c 3  
fy y ( 2 )= (m f (2 )+ 2 * m f( l )+ a 3 * fy y ( 1 ) ) / c3 
do 110 i  = 3 ,3000
f y y ( i ) - ( r a f ( i ) + 2 * m f ( i - l ) + m f ( i - 2 ) + a 3 * f y y ( i - 1 ) + \  

b 3 * f y y ( i - 2 ) ) /c 3  
do 120 i = l , 3000 
m f ( i ) = f y y ( i )

f y y ( i ) = m f ( i ) / c4 
f y y ( 2 ) = ( m f ( 2 ) +2*m f( 1 ) + a 4 * fy y ( 1 ) ) / c4 

do 130 i = 3 ,3000  
f y y ( i ) = ( mf ( i ) + 2 * m f ( i - 1 ) + m f ( i - 2 ) + a 4 * f y y ( i - 1 ) + \  

b 4 * f y y ( i - 2 ) ) /c 4  
do 140 i = l ,3000
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140 m f ( i ) = f y y ( i )
f y y ( i ) = m f ( i ) / c 5  

f y y ( 2 ) = ( m f ( 2 ) +2*mf( 1 ) + a 5 * fy y ( 1 ) ) / c 5  
do 150 i = 3 ,3000  

150 f y y ( i ) = ( m f ( i )  +2*mf ( i - 1 )  +mf ( i - 2 )  +a5*fyy  ( i - 1 )  + \
b 5 * f y y ( i - 2 ) ) / c 5  

do 160 i = l , 3000 
160 m f ( i ) = f y y ( i )

f y y ( l ) = m f ( l ) / c 6  
f y y (2) = (m f(2)+2 *mf( 1 ) + a 6 * fy y ( 1 ) ) / c 6  
do 170 j.=3 , 3000 

170 f y y ( i ) = ( m f ( i ) + 2 * m f ( i - 1 ) + m f ( i - 2 ) + a 6 * f y y ( i - 1 ) + \
b 6 * f y y ( i - 2 ) ) /c 6  

do 180 i = l , 3000 
180 m f ( i ) = f y y ( i )

f y y ( l ) = m f ( l ) / c 7  
f y y ( 2 ) = ( m f ( 2 ) + 2 * m f ( l ) + a 7 * f y y ( l ) ) / c 7  
do 190 i = 3 ,3000  

190 f y y ( i ) = ( m f ( i ) + 2 * m f ( i - 1 ) + m f ( i - 2 ) + a 7 * f y y ( i - 1 ) + \
b 7 * f y y ( i - 2 ) ) /c 7  

o p e n ( 4 , f  i l e = ' r e s u l t ') 
do 200 i= l , 3 0 0 0  

200 w r i t e ( 4 , * ) f y y ( i )
s to p  
end
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R a ster .C  
* /
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

T his  program i s  used  fo r  ROAST PLOTTING. 
************************************************************  
For each  d ay, 147 in t e g e r  v a lu e s  a r e  read  in  from DATAFILE. 
The f i r s t  3 a r e  m onth , day and y e a r .  Y ear c a n  be  2 o r  4 
d i g i t s .
The r e s t  144 a re  10-m inute  d a ta  v a lu e s .
Every 2 c o n s e c u t iv e  10-m inute  v a lu e s  a re  added t o  y i e l d  72 
20-m in u te  v a lu e s .
On e a c h  l i n e ,  we h a v e  t h e  p l o t  f o r  t h e  c u r r e n t  day on t h e  
r i g h t
and t h e  p l o t  f o r  th e  p r e v io u s  day on th e  l e f t .
The l i m i t s  and th e  corresp on d in g  sym bols a r e  read  in  from th e  
LIMITSFILE. The d e f a u l t  LIMITSFILE i s  "l i m i t s . d e f a u l t ".
The p l o t  i s  r e d i r e c t e d  t o  th e  OUTPUTFILE.
T h is  f i l e  i s  p r in te d  on a hardcopy t e r m in a l .
The h o r i z a n t a l  p i t c h  i s  s e t  t o  1 3 .2  c h a r / in c h  ( ESC[3w ) .
The v e r t i c a l  p i t c h  i s  s e t  t o  6 l i n e s / i n c h  ( ESC[lz ) .
The h o r i z a n t a l  p i t c h  i s  r e s e t  t o  10 c h a r / in c h  ( ESC[lw ) .

MAXDAYS d e te r m in e  t h e  max. number o f  l i n e s  in  t h e  f i l e  OUT
PUT.
I t  i s  c u r r e n t l y  s e t  t o  750 l i n e s  ( a l i t t l e  more than  2 y e a r s  
o f  d a t a ) .

* /

# in c lu d e  < s t d io .h >
# d e f in e  MARK1 "010203040506070809101112131415161718”
# d e f in e  MARK2 "19202122232425262728293031323334355"
# d e f in e  MARK3 " | »
# d e f in e  MARK4 " "
/ d e f i n e  NO_INTERVALS 71 
/ d e f i n e  TRUE 1 
/ d e f i n e  MAXDAYS 750

m a in (a r g c ,a r g v )  
i n t  argc  ; 
char  * a r g v [] ;
{
i f  (a rg c  == 5)

t t y 20( a r g v [ l ] , a r g v [ 2 ] , a r g v [ 3 ] , a r g v [ 4 ]  ) ; 
e l s e  i f  (a rg c  == 4)

t t y 2 0 (  a r g v [ l ] , a r g v [ 2 ] , a r g v [ 3 ] , " l i m i t s . d e f a u l t " )  ; 
e l s e  

{
u s a g e () ;
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e x i t ( l )  ;
}

>

u s a g e ()
{
p r in t f ( " u s a g e :  t ty w  d a ta f i le n a m e  d a t a f i l e

o u t p u t f i l e  [ l i m i t s f i l e ] \ n " )  ;
}

t t y 2  0 ( f  i le n a m e , d a ta f  i l e , o u t p u t f i l e , 1 im i t s  f i l e )
ch ar  * f i le n a m e ,  * d a t a f i i e ,  * o u t p u t f i l e ,  * l i m i t s f i l e  ;

FILE * f p l ,  * fp 2 , *fp3 ; 
char ch j
i n t  v a l u e l ,  v a lu e2  ; 
i n t  i ,  j ,  temp, l im i t c o u n t  = 0 ; 
i n t  a c t i v i t y ,  day, month, yea r  ; 
i n t  daycount = 0 ;
i n t  l i m i t [20] , / *  v a lu e s  o f  l i m i t s  * /

raw data[2 *NO_INTERVALS] ,  / *  144 v a lu e s  o f  raw d a ta  * /
data[NO_INTERVALS] ; / *  72 v a lu e s  o f  d a ta  * /

ch ar  s y m b o l[2 0 ] ,  / *  symbols co rr esp o n d in g  t o  l i m i t s  * /  
plotl[NO_INTERVALS], / *  p r e v io u s -d a y  p l o t  * /
plot2[NO_INTERVALS] ; f *  c u r r e n t -d a y  p l o t  * /

/ *  open l i m i t s  f i l e .  * /
i f  ( ( f p l  = f o p e n ( l i m i t s f i l e , " r " ) ) == NULL )

{
printf("ERROR %s: c a n ' t  open f o r  r e a d in g .

\n " , l i m i t s f i l e )  ; 
e x i t ( l )  ;
}

/ *  rea d  l i m i t s  & sym bols from l i m i t s  f i l e .  * /  
w h i le  (TRUE)

{
i f  ( f e o f ( f p l )  ) break ; /*  EOF i s  en co u n tered  * /
f s c a n f ( fp l ," % d  %c\n", &temp, &ch) ; 
l i m i t [ l i m i t c o u n t ]  = temp ; 
sy m b o l[ l im itc o u n t+ + ]  = ch ;
}

f c l o s e ( f p l )  ; /*  c l o s e  l i m i t s  f i l e .  * /

/ *  open d a ta  f i l e .  * /
i f  ( (fp2  = f o p e n ( d a t a f i l e , " r " ) ) == NULL )

{
printf("ERROR %s: c a n ' t  open f o r  r e a d i n g . \ n " , d a t a f i l e )  
e x i t ( l )  ;
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}

/ *  open o u tp u t f i l e .  * /
i f  ( (fp3  = f o p e n ( o u t p u t f i l e ," w " ) ) == NULL )

{
printf("ERROR %s: c a n ’t  open f o r  
w r i t i n g . \ n " , o u t p u t f i l e )  ; 
e x i t ( l )  ;
}

/ *  s e t  v e r t i c a l  p i t c h  = 6 l i n e s / i n c h  ( ESC[lz ) * /
/ *  f p r i n t f ( f p 3 ," \3 3 \ 1 3 3 \6 1 \1 7 2 " ) ;  * /

/ *  form le n g th  = 60 l i n e s  (11 in c h e s  * 6 l i n e s / i n c h  ) * /  
s k i p l i n e s ( f p 3 , 1 0 )  ;

/ *  s e t  h o r i z a n t a l  p i t c h  = 8 .2 5  c h a r / in c h  ( ESC[8w ) * /
/ *  f p r i n t f ( f p 3 , " \3 3 \1 3 3 \7 0 \1 6 7 " ) ;  * /

/ *  p r i n t  name o f  d a ta  f i l e  a t  th e  to p .  * /
f p r i n t f ( f p 3 , " \n  %40c f i len a m e  : %s\n\n", 1 f i le n a m e )  ;

/ *  s e t  h o r i z a n t a l  p i t c h  = 13 .2  c h a r / in c h  ( ESC[3w ) * /
/ *  f p r i n t f ( f p 3 ," \3 3 \ 1 3 3 \6 3 \1 6 7 " ) ;  * /

/*  i n i t i a l i z e  c u r r e n t -d a y  p l o t  t o  b la n k s .  * /  
f o r  ( i= 0  ; i  < NO_INTERVALS ; i++ )

* ( p lo t 2 + i )  = ' 1 ;

w h i le  (TRUE)
{
i f  ( f e o f ( f p 2 )  ) break ; /*  EOF i s  en cou n tered  * /

i f  ( daycount == MAXDAYS ) break ; /*
Output f i l e  i s  g e t t i n g  to o  f a t  * /  

daycount++ ;

/*  read  month, day and y e a r .  * /
f s c a n f ( f p 2 , "%d %d %d", Smonth, &day, &year ) ;

/ *  read  144 v a lu e s  o f  raw d a ta .  * /
f o r  ( i  = o ; i  < 2 * n o _ in te rv a ls  ; i++) 

f s c a n f ( fp 2 ," % d \n " ,(r a w d a ta + i) ) ;

/*  add e v e r y  two c o n s e c u t iv e  v a lu e s  o f  raw d ata  
t o  y i e l d  72 v a lu e s  o f  d a ta .
NA's a r e  tak en  c a r e  o f .  * /

f o r  ( i = 0 ,  j = 0  ; i <  N0_INTERVALS ; i+ + , j  +=2 )
{
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v a l u e l  = * (raw data+j) ; 
v a lu e2  = * (rawdata+j+1) ; 
i f  ( v a l u e l  < 0 )

* (d a ta + i)  = va lu e2  ; 
e l s e  i f  ( v a lu e2  < 0 )

* (d a ta + i)  = v a l u e l  ; 
e l s e

* (d a ta + i)  = v a l u e l  + va lu e2  ;
}

/*  copy c u r r e n t -d a y  p l o t  i n t o  p r e v io u s -d a y  p l o t .  * /  
f o r  ( i= 0  ; i  < NO_INTERVALS ; i++ )

* ( p l o t l + i )  = * ( p lo t 2 + i )  ;

a c t i v i t y  = 0 ;

/*  d eterm ine th e  symbol co rresp o n d in g  t o  each  
d ata  v a lu e .  * /  

f o r  ( i  = 0 ; i  < NO_INTERVALS ; i++ )
{
* ( p lo t 2 + i )  = 1 ' ; 
temp = * (d a ta + i)  ;
i f  (temp > 0 )  / *  add o n ly  i f  v a lu e  i s  n o t  an NA * /

a c t i v i t y  += temp ; 
f o r  ( j = l im i t c o u n t  -  1 ; j >= 0 ; j —  ) 

i f (  temp >= * ( l i m i t + j )  )
{
* ( p lo t 2 + i )  = * (sym bol+j) ; 

break ;
}

}

/ *  p r i n t  d a te  in  th e  format dd/mm/yy * /  
fprintf(fp3,"\n%d%d/%d%d/%2d

, m onth/10, month% 10, day / 10 , day % 10,year% 100);

f o r  ( i  = 0 ; i  < NO_INTERVALS ; i++ ) /*
p r i n t  p r e v io u s -d a y  p l o t  * /  
f p r i n t f ( f p 3 , " % c " , * ( p l o t l + i ) ) ;

f o r  ( i  = 0 ; i  < NO_INTERVALS ; i++  ) /*
p r i n t  c u r r e n t-d a y  p l o t  * /  

f p r i n t f ( f p 3 ," % c " , * ( p l o t 2 + i ) ) ;

f p r i n t f ( f p 3 , " %5d", a c t i v i t y )  ; /*
p r i n t  t o t a l  a c t i v i t y  * /

} /*  w h i le  * /

f c l o s e ( f p 2 )  ; /*  c l o s e  d a ta  f i l e .  * /
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f p r i n t f ( f p 3 , " \ n \ n  
%s%s%s%s\n",MARK3,MARK4,MARK3, MARK4) ;

f p r i n t f ( f p 3 ,"
%s%s%s%s\n\n\n",MARK1,MARK2, MARK1, MARK2) ; 

f p r i n t f ( f p 3 , " ") ;
f o r  ( i  = 0 ; i  < l im i t c o u n t  ; i++ )

f p r i n t f ( f p 3 , "%15c " , * (sy m b o l+ i) ) ; / *
p r in t  symbols f o r  r e f e r e n c e  * /  

f p r i n t f ( f p 3 , "\n  ") ;
f o r  ( i  = 0 } i  < l im i t c o u n t  ; i++ )

f p r i n t f  ( fp 3 ,  "%15d ' ' , * ( l i m i t + i ) ) ; /*
p r i n t  l i m i t s  fo r  r e f e r e n c e  * /

/ *  r e s e t  h o r iz a n t a l  p i t c h  t o  10 c h a r / in c h  ( ESC[lw ) * /  
/ *  f p r i n t f ( f p 3 , " \n \3 3 \1 3 3 \6 1 \1 6 7 " ) ;  * /

/ *  form le n g th  = 66 l i n e s  (11 in c h e s  * 6 l i n e s / i n c h  ) * /  
s k i p l i n e s ( f p 3 ,1 )  ;

f c l o s e ( f p 3 )  ; /*  c l o s e  ou tp u t f i l e .  * /
}

s k i p l i n e s ( f p , n )
FILE * fp  ; 
i n t  n ;
{
i n t  i  = 0 ;
f o r  ( ; i  < n ; i++ )

p u t c ( ' \ n \ f p )  ;
}

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
*

* Symbol f i l e :  LIM
*

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
0 .
8 -

16 +
24 *
32 #
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PROGRAM PERIOD.FOR

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c
C THIS PROGRAM IS DESIGNED TO DETECT THE PERIOD 
C OF A TIME SERIES BY ZERO MEANING DETECTION 
C METHOD.
C
ccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
c

CHARACTER* 6 4 FNAME, RNAMEX, RNAMEY
INTEGER I , J , NX, NY, NU
REAL LX, LY, LTX, LTY, TX( 3 0 0 ) ,TY(100)
DATA N X /0 / ,N Y /0 / , LX/0 . 1 / ,  LY/0. 1 / , LTX/0. 0 / ,  LTY /0.0/ 
WRITE(* ,3 )

3 FORMAT(' PLEASE INPUT THE NU OF DATA F IL E -' \ )
READ(* r 4 ) NU

4 FORMAT(15)
WRITE(* ,5 )

5 FORMAT('  PLEASE INPUT THE NAME OF THE DATA FILE-' \  )
READ( * , 8 ) FNAME

8 FORMAT(A)
C OPEN THE DATA FILE TO READ THE DATA.
C

25

1
15

2 0

50
60

40

70
80

OPEN( 3 , FILE=FNAME)
DO 6 0 , J=1,NU 
READ( 3 , 1 5 )TIME,X,Y 
FORMAT( IX,3 F10 .4 )
I F ( (X .G E .0 .0  ) .AND. (L X .L T .0 .0 ))  GOTO 20 
GOTO 25
TX(NX)=TIME-LTX 
LTX=TIME 
NX=NX+1 
LX = X
IF ((Y .G E .0 .0  ) .AND. (L Y .L T .0 .0))  GOTO 40 
GOTO 50
TY(NY)=TIME-LTY
LTY=TIME
NY=NY+1
LY=Y
CONTINUE 
CLOSE ( 3 )
OPEN ( 4 , FILE=’TX. DAT1)
DO 80 1 = 6 ,NX 
WRITE(4,7 0 ) 1 - 5 , TX(I)
FORMAT( 1 3 , F 1 0 .4)
CONTINUE 
CLOSE (4)
OPEN ( 5 , FILE=' TY. DAT')
DO 90 1 = 6 , NY
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WRITE( 5 ,7 0 ) 1 - 5 ,TY(I) 
90 CONTINUE

CLOSE(5) 
END

PROGRAM FEXTRACT.FOR

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C
c
C THIS PROGRAM READ THE SIMULATION RESULTS FROM CSMP OUTPUT 
C SEPERATE THEM (FOR DIFFERENT PARAMETER SIMULATION), AND 
C THEN COMPUTE THE SPECTRUM AND EXTRACT THE PEAKS FROM 
C THE SPECTRUM.
C
C
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

DIMENSION POD( 4 0 , 4 0 ) , YD(4 0 ,4 0 )
INTEGER I , NY, NU
REAL Y(1 6 3 8 4 ) ,W (16384),P SE (16384), YMAX,YSK 
COMPLEX YY(16384)
CHARACTER*25 FILENAME, PSFILE 
DATA POD/1 6 0 0 * 0 .0 / ,YD/1600*0. 0 /
P I = 3 .1415926 
NU=0

OPEN( 3 , FILE='MODEL. OUT')
1 YMAX=1.0

DO 4 1=1,1440
2 READ( 3 , 1 5 , ERR=3, END=905)TIME,YSK,Y1SKP 

GOTO 4
3 GOTO 2
4 CONTINUE

DO 30 J = l , 3000
5 READ( 3 , 1 5 , ERR=17, END=905)TIME,Y(J),Y1SKP
15 FORMAT(3E12.4)
16 GOTO 18
17 GOTO 5
18 I F ( (TIME .EQ. 0 .000 )  .AND. (Y(J) .EQ. 0 . 0 0 0 ) ) GOTO 5

IF (Y (J ) . GT. YMAX) YMAX=Y(J)
I F (J .LE. 100) GOTO 30
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2 0
3 0
4 0

C

C
C. .
C

C

500
C

600

C

602
603

604

605

IF (TIME .GE. 7 1 9 .8 )  GOTO 40 
CONTINUE 
NU=NU+1 

WRITE(* ,* )
WRITE(* ,* )
WRITE(* ,* )  'THIS PROGRAM COMPUTES THE SPECTRUM 
WRITE(* ,* )
WRITE(*,*)

• i
• i i i i i i m  i i i i i i i i  i i i i  i i i i t  ?

f  ! I I I I I  I I I I  I I I I I I I t  I I I I  I I I I

M=12
NPTS=2048
NFFT=2**M
CALL WINDOW(W,NPTS,4)

.REMOVE MEAN AND ZERO PADDING 

SCALE=1.0
CALL ZOMEAN(Y,NPTS,AVE,SCALE)

DO 500 K=1, NPTS
YY(K)=CMPLX(Y(K)*W(K), 0 . )

CONTINUE

DO 600 I=NPTS+1, NFFT 
YY(I ) =CMPLX( 0 . , 0 . )

CONTINUE
CALL NINFFT(YY,M,1)
NY=1
DO 610 1=1,NFFT/2+l 
PSE( I ) =CABS(YY(I ))

I F ( ( I . LT.4) .OR. (I  . GT.200 ))  GOTO 610 
IF (NY.GT.6) GOTO 602 
THRE=100. O/FLOAT(NY*NY)

GOTO 603 
THRE=10

IF(PSE(1 -2 )  .LT. THRE) GOTO 610 
D l= P S E (I-2 )-P SE (I—3)
D2=PSE( 1 - 2 ) -PSE(I —1)
D3=PSE(I-1)-PSE(I)
D D 3=PSE (I-3)/8 .0  
D D l= P S E (I - l ) /8 .0  
DD0=PSE(I)/8.0
IF ( (D l .  GT. DD3) .AND. (D2 .GT. DD1)) GOTO 604 
IF ( (D l  .GT. DD3) .AND. (D3 .GT. DDC)) GOTO 605 
GOTO 610
POD(NUf NY)=NFFT/FLOAT(I-3)/6.0  
YD(NU,NY)=PSE(1 -2 )
GOTO 608
IF(PSE( 1 - 2 ) .G T .P S E (I - l ) ) GOTO 604
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I F (NU • EQ. 1)
I F (NU • EQ. 2)
I F (NU .E Q . 3)
I F (NU .E Q . 4 )
I F (NU • EQ. 5)
I F (NU • EQ. 6)
I F (NU • EQ. 7)

POD(NU, NY) =NFFT/FLOAT( I - 2 ) / 6 . 0  
YD(NU,NY)=PSE(1-1 )

608 IF(POD(NU,NY) .EQ. POD(NU,NY-1)) THEN
POD(NU,NY)= 0 .0  
YD(NU,NY)= 0 .0  
GOTO 610 
END IF
WRITE( * , * ) NU, NY
WRITE( * , * ) POD(NU,NY), YD(NU,NY)
NY=NY+1 

610 CONTINUE
cccccccccccccccccccccccccccccccccccccc  
c

FILENAME=' SYP1. WK1' 
FILENAME=' SYP2. WK1' 
FILENAME=1SYP3. WK1' 
FILENAME=' SYP4. WK11 
FILENAME=' SYP5. WK1' 
FILENAME=' SYP6. WK11 
FILENAME=' SYP7. WK1'

OPEN(UNIT=10, FILE=FILENAME)
DO 900 1=1, NFFT/2+1 

WRITE(1 0 ,* )  PSE(I)
900 CONTINUE

CLOSE(UNIT=10, STATUS='KEEP1)
GOTO 1

905 OPEN (UNIT=12 , FILE='ANA1. WK1')
DO 910 1 = 1 ,NU

WRITE( 1 2 , * ) POD( 1 , 1 ) , YD(I,1 )
910 CONTINUE

CLOSE(UNIT=12, STATUS='KEEP')
OPEN(UNIT=12, FILE='ANA2. WK1')
DO 920 1 = 1 ,NU

WRITE( 1 2 ,* ) POD(I,2 ) ,Y D (I,2)
920 CONTINUE

CLOSE(UNIT=12, STATUS='KEEP')
OPEN(UNIT=12, FILE='ANA3. WK1')
DO 930 1 = 1 ,NU

WRITE(1 2 ,* )  POD( 1 , 3 ) , YD(1 ,3 )
93 0 CONTINUE

CLOSE(UNIT=12,STATUS='KEEP')
OPEN(UNIT=11, FILE='ANA4. WK1')
DO 940 1 = 1 ,NU

WRITE(1 1 ,* )  POD( 1 , 4 ) , YD(1 ,4 )  
940 CONTINUE

CLOSE(UNIT=11,STATUS='KEEP')
OPEN(UNIT=11, FILE='ANA5. WK1')
DO 945 1 = 1 ,NU

WRITE(1 1 ,* )  POD( 1 , 5 ) , YD(1 ,5 )  
945 CONTINUE
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CLOSE(UNIT=11,STATUS=' KEEP *)
OPEN(UNIT=11, FILE='ANA6. WK1•)
DO 948 1=1fNU

WRITE(1 1 ,* )  POD( 1 , 6 ) , YD( I ,6 )
948 CONTINUE

CLOSE(UNIT=11, STATUS=»KEEP')
950 STOP

END

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
c
C SUBROUTINE . . .  WINDOW.. .  GENERATES DIFFERENT WINDOWS
C
C USAGE: CALL WINDOW(W,N,IDGT)
C
C W- OUTPUT VECTOR OF DIMENSION N, WINDOW FUNCTION
C N- WINDOW LENGTH
C IDGT- TYPE OF WINDOWING FUNCTION
C 1: RECTANGULAR
C 2: BARTLETT
C 3: HANNING
C 4: HAMMING
C 5: BLACKMAN
C
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

SUBROUTINE WINDOW(W,N,IDGT)
REAL W(N)
P I = 3 .1415926  
NHAF=N/2

C
WRITE(*,*) 1 1
IF (IDGT.EQ.1) THEN 

DO 10 1=1, N 
W (I)=1 .0  

10 CONTINUE
GOTO 99

C
ELSEIF (IDGT.EQ.2) THEN 

DO 20 1=1, NHAF
W (I)= 2 . *FLOAT(I-l)/FLOAT(N-l)

20 CONTINUE
DO 30 I=NHAF+1, N

W(I) = 2 . —2 . *FLOAT(I—1 ) /FLOAT(N-l)
30 CONTINUE

GOTO 99
C

ELSEIF (IDGT.EQ.3) THEN 
DO 40 1=1, N

ANG=2. *PI*FL0AT(I-1)/FLOAT(N-l)
W (I)= 0 . 5 * ( 1 . -COS(ANG))
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40 CONTINUE
GOTO 99

C
ELSEIF (IDGT.EQ.4) THEN 

DO 50 1=1, N
ANG=2.*PI*FLOAT(I-l)/FLOAT(N-l)
W(I)= 0 .5 4 -0  - 46*COS(ANG)

50 CONTINUE
GOTO 99

C
ELSEIF (IDGT.EQ.5) THEN 

DO 60 1=1, N
ANG=2.*PI*FLOAT(I-l)/FLOAT(N-l)
W (I)= 0 .4 2 —0 . 5*COS(ANG)+ 0 . 08*C0S( 2 . *ANG) 

60 CONTINUE
GOTO 99

C
ELSE
ENDIF

99 WRITE( * ,* )  ' '
RETURN
END
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ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
cc
CC SUBROUTINE ZOMEAN (2 /2 3 /8 8 )
CC
CC USAGE: CALL ZOMEAN(X,NPTS,AVE,SCALE)
CC
CC X- INPUT ARRAY
CC AVE- AVERAGE OF THE INPUT ARRAY
CC SCALE- SCALING FOR THE OUTPUT
CC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

SUBROUTINE ZOMEAN(X,NPTS,AVE,SCALE)
REAL X ( l ) ,  AVE, SCALE 
INTEGER NPTS

C
SUM=0.0
DO 10 1=1, NPTS 

SUM=SUM+X( I )
10 CONTINUE

C
AVE=SUM/FLOAT(NPTS)
DO 20 1=1, NPTS

X( I ) =SCALE*(X(I ) -AVE)
20 CONTINUE

C
RETURN
END

CC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
c
C SUBROUTINE . . .  NINFFT . . .
c
c CALCULATES THE DISCRETE FAST FOURIAR TRANSFORM OR
C THE INVERSE DISCRETE FAST FOURIAR TRANSFORM
C USING DECIMATION-IN-FREQUENCY ALGORITHM
C
C USAGE: CALL NINFFT(X,M,SIGN)
C
C ARGUMENTS:
C X-COMPLEX ARRAY OF DIMENSION N
C M-INTEGER (N=2**M)
C SIGN=1 PERFORM FAST FOURIAR TRANSFORM
C SIGN=-1 PERFORM INVERSE FAST FOURIAR TRANS
FORM 
C
C REMARKS: X(N-I+1) = C.C. OF X(I+1) FOR 1 : 1 — > N /2 - l
C i . e . ,  X ( l ) — >X(N/2+1) CORREEPONDS 0— >PI
C
C SUBROUTINE REQUIRED : NONE
C
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o o
ccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE NINFFT(X,M,SIGN)
COMPLEX X ( l ) ,  U, W, T 
INTEGER LEI,LE,SIGN 
N=2**M
P I= 3 .14159265358979  

C. . . CHECK IF PERFORMING INVERSE FFT 
IF (SIGN. EQ.1) GO TO 5 
DO 1 1=1,N

X(I)=X(I)/FLOAT(N)
1 CONTINUE

C
5 DO 20 L=1,M

LE=2**(M+l—L)
LEl=LE/2 
U=CMPLX(1.0 ,0 .0 )

W =CM PLX(COS(PI/FLOAT(LEI) ) , -  
SIGN*SIN(PI/FLOAT(LEI)))

DO 20 J = l ,  LEI 
DO 10 I= J , N, LE 

IP=I+LE1 
T=X(I)+X( IP)
X (I P )= (X (I ) -X (I P ) ) *U 
X(I ) =T 

CONTINUE 
U=U*W 

CONTINUE 
NV2=N/2 
NM1=N—1 
J=1
DO 30 1 = 1 ,NM1

IF (I .G E .J )  GO TO 25 
T=X(J)
X(J )= X (I)
X ( I ) =T 
K=NV2
IF(K.GE.J) GO TO 30 
J=J-K 
K=K/2 
GO TO 26 

J=J+K

WRITE(* ,* )  ' •
WRITE(* ,* )  ' ! ! !  RETURN FROM SUBROUTINE NINFFT i l l '
RETURN 
END
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Program COH.FOR

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
c
C THIS PROGRAM IS TO COMPUTE THE COHERENCE.
c 
cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

SUBROUTINE COH1(XR,XI, YR,YI,NSEG,NT,CXY, COH)
C
C

DOUBLE TCXX(NSEG, NT) , TCYY(NSEG, NT)
DOUBLE TCXY(NSEG,NT), TQXY(NSEG,NT)

DOUBLE CXX(NT), CYY(NT),CXY(NT),QXY(NT),NUM(NT)
DOUBLE DEN(NT) , COH(NT)
DATA CXX(NT)/ 0 . 0 , CYY(NT)/ 0 . 0 , CXY(NT)/0. 0 , QXY(NT)/ 0 . 0

C
C

DO 10 J=1,NSEG 
DO 10 1=1, NT
TCXX(J ,I )= X R (J ,I )* * 2 + X I (J , I ) **2 
TC Y Y (J,I)=Y R (J.I)**2+Y I(J , I ) **2 
TCXY(J ,I )= X R (J ,I )* Y R (I , J )+ X I (J , I ) * Y I (J , I)
TQXY(J , I ) = X I (J , I ) * Y R ( I , J ) —XR(J, I ) * Y I (J , I )

10 CONTINUE
C

DO 20 J=1,NSEG 
DO 20 1 = 1 ,NT
CXX(I)=CXX(I)+TCXX(J,I)/3.0  
CYY(I)=CYY(I)+TCYY(J , I ) / 3 . 0  
CXY(I)=CXY(I)+TCXY(J,I)/3.0  
QXY(I ) =QXY(I ) +TQXY(J , I ) / 3 . 0 

20 CONTINUE
C
C

DO 30 1 = 1 ,NT
NUM(I)=CXY(I)**2+QXY(I)**2 
DEN(I)=CXX(I) *CXY(I)
IF(DEN.EQ.0 .0 )  THEN COH(I)=NUM(I)

ELSE
COH(I)=NUM(I)/DEN(I)

30 CONTINUE 
RETURN 
END
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Program BIS.FOR

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
cc
CC THIS PROGRAM IS FOR BISPECTRUM COMPUTING.
CC
CC ESTIMATES POWER SPECTRUM, BISPECTRUM AND
CC BICOHERENCE INDEX
CC VIA THE CONVENTIONAL APPROACH (DIRECT METHOD)
CC
CC SUBROUTINES REQUIRED: WINDOW, NINFFT, ZOMEAN
CC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC 

REAL Y (1024),W (1024),PSE (513)
COMPLEX YY(1 024),  B IS P (1 2 9 ,1 2 9 ) ,  BIJ 
INTEGER OST
CHARACTER*1 AVG, PSEYN
CHARACTER*25 FILENAME, INFILE, BISFILE, BICFILE,

PSFILE
P I = 3 .1415926

i i

• i i i i i i i i i i i i  i i i i i t i i i t i i
WRITE(* ,* )
WRITE(* ,* )
WRITE(* ,* )  'THIS PROGRAM COMPUTES THE BISPECTRUM ' 
WRITE(* ,* )  ' BICOHERENCE AND POWER SPECTRUM '
WRITE(* ,* )  ' (VIA THE DIRECT APPROACH) 1
WRITE(* ,* )  ' ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !  1
WRITE(* ,* )  ' '

WRITE (* , *) ' » >  DATA FILE [A25] ?'
READ(* ,1 0 )  FILENAME 

10 FORMAT(A25)
WRITE (* ,* )  ' » >  # OF SEGMENTS OF INPUT ?'
READ(*,*) NSEG
WRITE (* ,* )  ' » >  # OF SAMPLES IN EACH SEG [MAX=1024] ? 

READ(* ,* )  NPTS
WRITE (* , *) ' » >  SAMPLING FREQUENCY ? [H z]: '
READ(* ,* )  FSAMP
WRITE (* ,* )  ' » >  SCALING FACTOR ? *
WRITE( * , * j ' (TO SCALE THE SAMPLE VALUE) '
WRITE(* ,* )  ' '
READ(* ,* )  SCALE

WRITE(* ,  *) ' » >  NFFT=2**M [ENTER M, MAX=10] : '
READ(* ,* )  M 
NFFT=2**M
FDIV=FSAMP/ FLOAT(NFFT)
WRITE(* ,* )  ' DEFAULT FREQ RESOLUTION IS ' ,  FDIV
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o o 
o

WRITE(* ,* )  ' '
WRITE(* ,  *) ' » >  DESIRED FREQ RESOLUTION [HZ] ?'
WRITE(* ,* )  'NOTE:MUST BE GREATER OR EQUAL TO DEFAULT' 
WRITE( * , *) ' '
READ(* ,* )  DIFF 
NSK=INT(DIFF*NFFT/FSAMP)
WRITE(* ,* )  ' . . .  SKIP # — > ' , NSK
WRITE(* ,* )  ' '

C
WRITE(* ,* )  ' » >  FREQ RANGE IN X-AXIS [HZ] ?'
READ(* , *) FXO, FX1 
NFX=INT((FX1-FX0)/DIFF)+1 
INX=INT(FXO *NFFT/ FSAMP)
WRITE(* ,* )  ' . . .  # OF FREQ SAMPLES — > ',NFX

CC WRITE(* ,* )  ' . . .  STARTING INDEX — > ',INX
WRITE(* ,* )  ' '

C
WRITE(* ,* )  ' » >  FREQ RANGE IN Y-AXIS [HZ] ?'
READ(* ,* )  FYO, FY1 
NFY=INT( (FY1-FYO)/DIFF)+1 
INY=INT(FYO*NFFT/FSAMP)
WRITE(* , *) ' . . .  # OF FREQ SAMPLES — > ' ,NFY

CC WRITE(* ,* )  ' . . .  STARTING INDEX — > ',INY
WRITE(* ,* )  ' '
NFSUM=INT((FX1+FY1)*FLOAT(NFFT)/FSAMP)
INC=MINO(INX,INY)
NFEND=(NFSUM-INC)/NSK+1

C
WRITE(* , *) ' » >  EXTRA AVERAGE [Y/N: RET IF NO] ?'
READ(* ,1 1 )  AVG 

11 FORMAT(Al)
WRITE(* ,* )  ' » >  WINDOW FUNCTION ? '
WRITE(* ,* )  ' 1: RECTANGULAR '
WRITE(* ,* )  ' 2: BARTLETT '
WRITE(* ,* )  ' 3: HANNING *
WRITE(* , *) ' 4: HAMMING '
WRITE(*,*) ' 5: BLACKMAN '
READ( * ,* )  IWINDOW
CALL WINDOW(W,NPTS, IWINDOW)

WRITE(* ,* )  ' '
WRITE(* ,  *) ' » >  GIVE FILENAME OF BISPECTRUM [A25]
READ(* ,1 0 )  BISFILE

WRITE(* ,* )  ’ '
WRITE (* ,  *) ' » >  GIVE FILENAME OF BICOHERENCE [A251 : '  
READ(* ,1 0 )  BICFILE
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WRITE( * ,* )  ' '
WRITE(* ,* )  ' » >  CREATE POWER SPECTRUM

\  [Y/N: RET IF YES]
READ(* ,1 1 )  PSEYN 

IF (PSEYN.EQ.'Y'.OR.PSEYN.EQ.'y*.OR.
\  PSEYN.EQ.' ')  THEN

WRITE( * ,* )  ' » >  FILENAME OF POWER
\ SPECTRUM [A25] ?*

READ(* ,1 0 )  PSFILE 
ENDIF

C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
n
C COMPUTE PERIODOGRAM AND TRIPLE PRODUCT 
C
ccccccccccccccccccccccccccccccccccccccccccccccccc  
c

OPEN(UNIT=4, FILE=FILENAME,STATUS=' OLD1)
DO 700 NS=1, NSEG 
READ(4 ,1 0 )  INFILE 
WRITE( * ,* )  ' '
WRITE( * ,* )  ' . . .  READING . . . ' ,  INFILE
OPEN(UNIT=3, FILE=INFILE,STATUS= *OLD')
READ( 3 ,* )  ( Y ( I ) , 1 = 1 ,NPTS)
CLOSE(UNIT=3, STATUS='KEEP')
WRITE( * ,* )  ' . . .  COMPUTING . . . '

C
C . . .REMOVE MEAN AND ZERO PADDING 
C

CALL ZOMEAN(Y,NPTS,AVE,SCALE)
C

DO 500 K=1, NPTS
YY(K)=CMPLX(Y(K)*W(K), 0 . )

500 CONTINUE
C

DO 600 I=NPTS+1, NFFT 
YY(I)=CMPLX(0., 0 . )

600 CONTINUE
CALL NINFFT(YY,M,1)

C
C...COMPUTE PERIODOGRAM 
C

DO 610 I = i .  NFEND
KI=INC+(I-1)*NSK+1
PSE(I)=PSE(I)+CABS(YY(KI)) /FLOAT(NSEG) 

610 CONTINUE
C
C...COMPUTE TRIPLE PRODUCT 
C

DO 700 1=1, NFX
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DO 700 J = l ,  NFY

K1=INX+(I-1)*NSK+1 
K2=INY+(J-l)*NSK+1  
BIJ=CMPLX( 0 . , 0 . )

IF (AVG. EQ. 1Y' . OR. AVG. EQ. ' y ') THEN 
N0=INT(FSAMP/DIFF)
M1=NFFT/N0 
LSIZE=(Ml-1)/2  
NAVG=0
DO 620 L1=-LSIZE, LSIZE 
DO 620 L2=-LSIZE, LSIZE

I F ( (K l+L l).G E .l.A N D .(K 2+L 2).G E .l)  THEN 
NAVG=NAVG+1

BIJ=BIJ+YY(Kl+Ll)*YY(K2+L2)*C0NJG(YY(K1+L1+K2+L2-1)) 
ENDIF 

620 CONTINUE
BIJ=BIJ/ CMPLX(FLOAT(NAVG))

ELSE
BIJ=YY(Kl)*YY(K2) *CONJG(YY(K1+K2-1)) 

ENDIF

BISP(I , J)=B ISP(I , J)+BIJ/CMPLX(FLOAT(NSEG)) 
700 CONTINUE

CLOSE(UNIT=4, STATUS=1KEEP')

. . . CREATE POWER SPECTRUM FILE

IF (PSEYN.EQ.'Y'.OR.PSEYN.EQ.'y'.OR.
PSEYN.EQ.' ')  THEN

OPEN(UNIT=10, FILE=PSFILE, STATUS='NEW')
DO 900 1=1, NFEND 

KI=INC+(I-1)*NSK 
FQ=FLOAT(KI)*FDIV 
PSEDB=20.*ALOG10(PSE(I))
WRITE(1 0 ,* )  FQ, PSEDB 

900 CONTINUE
CLOSE(UNIT=10, STATUS=' KEEP')
NSAMP=NFEND
WRITE(*,*) NSAMP,' SAMPLES 
OF PSE (DB) — > ' ,PSFILE 

ENDIF

...CREATE BISPECTRUM AND/OR BICOHERENCE FILES

OPEN(UNIT=9, FILE=BISFILE, STATUS=' NEW1)
OPEN(UNIT=8, FILE=BICFILE,STATUS='NEW')
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DO 1000 1=1, NFX 
KI=INX+(I-1)*NSK 
Fl=FLOAT(KI)*FDIV 
IX=(INX-INC)/NSK+I 

DO 1000 J = l ,  NFY 
KJ=INY+(J-1)*NSK 
F2=FLOAT(KJ)*FDIV 
IY=(INY—INC)/NSK+J 
IXY=(INX+INY—INC)/NSK+I+J-1

C
BISMG=CABS(BISP(I , J ) )
BISPA=ATAN2(AIMAG(BISP(I, J ) ) , R EAL(BISP(I,J)) )* 1 8 0 .  
WRITE(9 ,* )  F I ,  F2, BISMG, BISPA

C
BICMG=BISMG/(PSE(IX)*PSE(IY)*PSE(IXY))
WRITE(8 ,* )  F I ,  F2, BICMG, BISPA 

1000 CONTINUE 
C 
C

CLOSE(UNIT=8, STATUS='KEEP1)
CLOSE(UNIT=9, STATUS=1KEEP')
NSAMP=NFX*NFY 
WRITE( * ,* )  1 1
WRITE( * ,* )  NSAMP,' SAMPLES OF BISPECTRUM — > ' , B I S -

FILE
WRITE(* ,* )  ' '
WRITE(* ,* )  NSAMP,' SAMPLES OF 

\  BICOHERENCE — > ' ,  BICFILE
C
C. . .
C

STOP
END
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A ppendix  C 

M ACRO  Program s

MACRO: THE MACRO PROGRAM WRITTEN IN S LANGUAGE 
AND IT CAN RUN IN S (UNDER UNIX).

CSMP PROGRAM: THE SIMULATION PROGRAM WRITTEN IN
CSMP LANGUAGE AND IT CAN BE COMPLIED 
BY CSMP.

*.FOR: THE PROGRAM WRITTEN IN FORTRAN LANGUAGE.

*.C: THE PROGRAM WRITTEN IN C LANGUAGE.

MACRO: PRE

#####################################
# THIS MACRO IS FOR PRE-PROCESSING OF
# EXPERIMENTAL DATA. (MK21)
#
#####################################

MACRO pre  
##########
# m k 2 l . l  
# # # # # # # # # #
a t t a c h (  ' /u sr /n a te0 0 1 6 /m o n k ey /m k 2 1 /p d p l l/sw o rk ' ,p o s = l)  
tm p 2 1 .1 _ a r r a y ( t (o p . t e m p .2 1 [ 4 : 1 1 r4 : 1 4 7 ] ) )  
tmp2 1 . 1 [na(tm p2 1 . 1 ) ]_ 0
tmp21 . l_ tw eak  (tmp21 . 1 , l i m i t s = c (3 3 0 ,4 2 0 ) )  
tmp21 . I_tmp21 . 1 [ tmp21 .1 != 0 ]
t m p 2 l . l l _ l o w e s s ( l : l e n ( t m p 2 1 . 1 ) ,tm p 2 1 .1 , f = 0 . 6 , i t e r = 2 ,d e l t a = 1 4 4 ) $ y
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tmp21 . I_tmp21 . l- tm p 2 1 .1 1  
tmp21 . 1 _ ? lw c le a n (tmp21 .1 )
sptmp21. l_ sp e c tr u m (tmp21 . 1 , n t= l6 3 8 4 , nsmooth=0) 
tm p 2 1 .2 _ a r r a y ( t (o p . t e m p .2 1 [3 7 :4 4 ,4 :1 4 7 ] ))  
tm p 2 1 .2 [n a (tm p 2 1 .2 )]_ 0
tmp21 . 2_tw eak(tmp21 . 2 , l i m i t s = c (3 3 0 ,4 2 0 ) )  
tmp21 . 2_tmp21 . 2 [ tmp21 .2 != 0 ]
t m p 2 1 .2 1 _ lo w e s s ( l : l e n ( tm p 2 1 .2 ) , tm p 21 .2 , f = 0 . 6 , i t e r = 2 ,d e l t a = 1 4 4 ) $ y  
tmp21 . 2_tmp21 . 2 -tmp21 .2 1  
tmp21 . 2 _ ? lw c le a n (tmp21 .2 )
sptmp21. 2_spectrum (tm p21. 2 , n t= 16384 , nsmooth=0) 
tmp21 . 3 _ a r r a y (t (o p . temp. 2 1 ( 4 4 : 5 1 ,4 : 1 4 7 ] ) )  
tm p 2 1 .3 [n a ( tm p 2 l .3 ) ] _ 0
tm p 2 1 .3 _ tw e a k ( tm p 2 1 .3 , l im it s = c (3 3 0 ,4 2 0 ) ) 
tmp21 . 3_tmp21 . 3 [ tmp21 .3 != 0 ]
t m p 2 1 .3 1 _ lo w e s s ( l : l e n ( tm p 2 1 .3 ) , tm p21.3 , f = 0 . 6 , i t e r = 2 ,d e l t a = 1 4 4 ) $ y  
tmp21 . 3_tmp21 . 3 -tmp21 .31  
tmp21 . 3 _ ? lw c le a n (tmp21 .3 )
sptmp21 . 3_spectru m (tmp21 . 3 , n t= 1 6 3 8 4 ,nsmooth=0) 
tmp21 . 4 _ a r r a y (t (o p . temp. 2 1 ( 8 0 : 8 7 ,4 : 1 4 7 ] ) )  
tm p 2 1 .4 [n a (tm p 2 1 .4 ) ]_ 0
t m p 2 1 .4 _ tw e a k ( tm p 2 1 .4 , l im it s = c (3 3 0 ,4 2 0 ) ) 
tm p21.4_tm p21.4[tm p 21.4!= 0]
tmp21. 4 l _ l o w e s s ( 1 : l e n (tmp21 . 4 ) , tmp21 . 4 , f = 0 . 6 , i t e r = 2 , d e l t a = 1 4 4 ) $y 
tmp21 . 4_tmp21 . 4 -tmp21 .4 1  
tmp21 . 4 _ ? lw c le a n (tmp21 .4 )
sptmp21 . 4_spectrum (tm p21. 4 , n t= 16384 , nsmooth=0) 
tm p 2 1 .5 _ a rr a y (t ( o p . temp. 2 1 ( 9 0 : 9 7 ,4 : 1 4 7 ] ) )  
tm p 2 1 .5 [n a (tm p 2 1 .5 ) ]_ 0
tmp21 . 5_tw eak (tmp21 . 5 , 1 i m i t s = c (3 3 0 ,4 2 0 ) )  
tmp21 . 5_tmp21 . 5 [ tmp21 .5 != 0 ]
tm p 2 1 .5 1 _ lo w e s s ( 1 : le n ( tm p 2 1 .5 ) , tm p21.5 , f = 0 . 6 , i t e r = 2 , d e lta = 1 4 4 )$ y  
tmp21 . 5_tmp21 . 5-tm p21.51  
tmp21 . 5 _ ? lw c le a n (tmp21 .5 )
sptmp21 . 5_spectrum (tm p21. 5 , n t= 16384 , nsmooth=0) 
tmp21. 6 _ a r r a y ( t (o p . t e m p .2 1 [ 9 6 : 1 0 3 ,4 : 1 4 7 ] ) )  
tm p 2 l .6 [n a ( tm p 2 l .6 )  ]_o
tm p21.6_tw eak(tm p21.6 , l i m i t s = c ( 3 3 0 , 4 2 0 ) ) 
tm p21.6_tm p 21.6[tm p21.6!= 0]
tm p 2 1 .6 1 _ lo w e s s ( 1 : le n ( tm p 2 1 .6 ) , tm p21.6 , f = 0 . 6 , i t e r = 2 ,d e l t a = 1 4 4 ) $ y  
tm p21 .6_tm p 21 .6 -tm p21 .61 
tm p 2 1 .6 _ ? lw c lea n (tm p 2 1 .6)
sptmp21 . 6_spectrum (tm p21. 6 , n t= 1 6 3 8 4 , nsmooth=0) 
tm p 2 1 .7 _ a r r a y ( t (o p .te m p .2 1 ( 1 3 8 : 1 4 5 ,4 : 1 4 7 ] ) )  
tm p 2 1 .7 [n a ( tm p 2 l .7 ) ]_ o
t m p 2 1 .7 _ tw e a k ( tm p 2 1 .7 , l im it s = c (3 3 0 ,4 2 0 ) ) 
tmp21 . 7_tmp21 . 7 [ tmp21 .7 != 0 ]
t m p 2 1 .7 1 _ lo w e s s ( l : l e n ( t m p 2 1 .7 ) , tm p21.7 , f = 0 . 6 , i t e r = 2 ,d e l t a = 1 4 4 ) $ y  
tmp21 . 7_tmp21 . 7 -tmp21 .7 1  
tmp21 . 7 _ ? lw c le a n (tmp21 .7 )
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sptmp21 . 7_sp ectru m (tmp21 . 7 , n t = l 6 3 8 4 ,nsmooth=0) 
d e ta c h (p o s= l)
END

MACRO Program B i s t e s t

#######################################################
#
# THE FOLLOWING MACRO PROGRAMS ARE TO GENERATE
# PHASE RELATED DATA FOR BISPECTRUM TEST.
#
########################################################  

MACRO pO
h l _ r u n i f ( 5 0 , 0 , 2*pi)  
h 2 _ r u n i f ( 5 0 , 0 ,2 * p i )  
h 3 _ r u n i f ( 5 0 , o , 2*p i)

########################################################  
MACRO p l c ( y , n )  
u _ h l[n ]+ h 2 [n ]
y _ c o s ( 2 * p i / 2 6 . 0 * t x + h l [ n ] ) + \

c o s ( 2 * p i / 1 3 . 0 * tx + h 2 [n ] ) + c o s ( 2 * p i / 8 . 67*tx+u)  
w r i t e ( y , " y " , 1)
END

##########################################################
MACRO p2
? p l ( y l , l )
? p l ( y 2 ,2 )
? p i ( y 3 ,3 )
? p l ( y 4 ,4 )
? p i ( y s ,5 )
? p l ( y 6 ,6 )
? p l ( y 7 ,7 )
? p l ( y 8 ,8 )
? p l ( y 9 ,9 )
? p i ( y i o , 1 0 )
? p i ( y l i , i l )
? p i ( y i 2 , 1 2 )
? p i ( y i 3 , 1 3 )
• p i ( y i 4 ,14 )
? p l ( y l 5 , 1 5 )
• p i ( y i e , i s )
? p l ( y l 7 , 1 7 )
? p l ( y i 8 ,18)
? p l ( y l 9 , 1 9 )
? p l (y 2 0 ,2 0 )
END
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