Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen



The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.



INFORMATION TO USERS

The most advanced technology has been used to photograph and
reproduce this manuscript from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any
type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfiims internationat
A Beil & Howell Information Company
300 North Zeeb Road, Ann Arbor, M1 48106-1346 USA
313/761-4700 800/521-0600



Order Number 9034353

Computer-aided localization of neurological diseases

Parlar, Yusuf, D.Eng.Sc.

New Jersey Institute of Technology, 1990

Copyright ©1990 by Parlar, Yusuf. All rights reserved.

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106



Computer Aided Localization

of Neurological Diseases

by

Yusuf Parlar

Dissertation submitted to the Faculty of the Graduate School
of the New Jersey Institute of Technology in partial fulfillment
of the requirements for the degree of

Doctor of Engineering Science

1990



APPROVAL SHEET

Title of Thesis: Computer Aided Localization
of Neurological Diseases

Name of Candidate: Yusuf Parlar
Doctor of Engineering Science, 1990

Thesis and Abstract Approved: Date
Dr. Andrew U. Mever
Professor
Department of Electrical and Computer Engineering

Signature of other members Date

of the thesis committee. Dr. Rose A. Dios
Associate Proiessor
Deparment of Mathemartics

Date
i . .
Dr. Staniey Reisman
Proiessor
Department of Electrical and Computer Engineering

. . peDate
Dr. Peter Englér
Professor
Department of Electrical and Computer Engineering

r

————————— ——-——-—"Date-——g--
Dr. William K. weissman

Adjunct Research Professor
Devartment of Electrical & Comp. Eng.



VITA

Name: Yusuf Parlar

Degree and date to be conferred: D. Eng. Sc., 1990.

Secondary education: Bahgelievier Deneme Lisesi,
Turkey, 1974

Collegiate institutions attended: Date Degree

New Jersey Institute of Technology 9/83-5/90 D. Eng. Sc.

Polytechnic Institute of New York  9/82-5/83 M.S.E.E

Middle East Technical University 9/74-2/81 B.S.E.E

Major: Electrical Engineering.

Positions held: Teaching Fellow, New Jersey Inst. of Tech.,
Newark. NJ, 9/87-5/90

Teaching Assistant. New Jersev Inst. of Tech.,

Newark, NJ, 9/83-5/87

Date of Degree
May 1990
May 1983

May 1981

Teaching Assistant, Polytechnic Institue of New York.

Brooklyn, NY, 1/83-5/83

Research Engineer, Clarke-Hess Comm. Res. Corp.

New York, 1/83-5/83

Teaching Assistant, Middle East Technical University,

Ankara, Turkey, 9/81-5/82



ABSTRACT

Title of Thesis: Computer Aided Localization
of Neurological Diseases

Yusuf Parlar Doctor of Engineering Science. 1990
Thesis directed by: Prof. Dr. Andrew U. Meyer

Assoc. Prof. Dr. Rose A. Dios

Computers in medicine has brought new dimensions and better under-
standing of uncertainties in the field of medical sciences in the last decade.
This thesis is focused upon the localization of neurological lesions in the hu-
man nervous system. It relates clinical neurological test outcomes to path-
ways of function or malfunction. Certain methods are proposed—empirical.
stochastic. deterministic-to estimate the spatial distributions of lesion prob-
abilities.

First. a Bayesian model is presented to estimate the posterior probabil-
ity of lesion from & priori information, based on the test outcomes. Due
to unavailable data alternative methods and models are presented: Regres-
sion Analysis. Monte Carlo simulation, and finally a new model known as
Logistic Sigmoid Nonlinearity is proposed for probability estimation. This
dissertation analyzes each of these models and alternative methodologies

in detail.
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Chapter 1
INTRODUCTION

1.1 Quantifying the Clinical Neurological Exam-
ination

The human nervous system is an extremely involved structure responsible for
highly complicated functions and activities such as control and regulation of body
processes (e.g., temperature. C O, concentration.ph level), consciousness. abstract
thought. memory, and the interpretation of emotion, etc. The basic unit of the
nervous system is the individual nerve cell, or neuron. Only about 10 percent of the
cells in the nervous system are neurons, the remainder are glial cells. which sustain
the neurons metabolically, support them physically, and help regulate the ionic
concentrations in the extracellular space. Neurons occur in many different shapes
and sizes. but they can be considered as consisting of three basic parts: (1) the
dentrites and cell body, (2) the axon, and (3) the axon terminals. Regardless of their
shape, neurons can be divided into three functional classes: afferent neurons, efferent
neurons. and interneurons. Afferent neurons carry information from receptors into
the brain or spinal cord. Efferent neurons transmit the final integrated information
from the central nervous system out to the effector organs(muscle or glands). The
interneurons, which both originate and terminate within the central nervous system,
account for the 99 percent of all nerve cells [10].

This study is concerned with the localization of lesions in the human nervous



system. In medicine, the term leston is used to describe a broad number of condi-
tions involving “an alteration of structure or of functional capacity due to injury
or disease. or any structural perversion, which produces or maintains discomfort or
functional disorder, or impairs natural immunity of the body or a part” ([5]). In
this work the term lesion is used to imply functional disorder or discomfort.

In most cases, an experienced neurologist or a neurosurgeon might be able to
locate lesions in the nervous system using only “routine” clinical neurological exam-
inations. These clinical neurological examinations do not require expensive equip-
ment, such as medical imaging instrumentation including Radiography , Computer
Aided Tomography (CAT), Positron Emission Tomography (PET), etc.. which also
subject the patient to hazardous radiation. However interpretation of these clinical
examinations require a thorough knowledge of neuroanatomy and neurophysiology,
which a nonspecialist medical practitioner need not have. Clearly this is an ideal sit-
uation in which a computer equipped with an intelligent program and an adequate
database might prove to be useful.

The application of computers to medicine has increased sharply during the last
decade. This may be atiributed to the recent spectacular advances in technology
which made computers faster. more reliable and-more importantly—cheaper. The
field of neurology has also benefited from these developments as evidenced by a
sizable number of publications on the application of computers in this field. One of
the pioneering works in this area is the program developed by Meyver and Weissman
119], [20] used to locate lesions in the brainstem {1973].

In the aforementioned program the brainstem was divided into 10 sections with
each section, in turn, subdivided into 100 volume units. Each volume unit was
associated with various neural-pathways. A signal flow analysis through every
known neural-pathway due to any test outcome was then carried out. Each volume

unit was coded and used to find its involvement in pathways of malfunction (or



function), which is called the malfunction factor (or function factor), depending on
the test outcome observed. In addition to these factors the modified malfunction
and function factors were computed. These factors were then displayed in their
proper locations to identify possible lesions.

In this study, it is proposed to extend the work of Meyer and Weissman to de-
velop a variety of approaches for localization of lesions in the human nervous system
using the outcomes of clinical neurological tests. For the sake of brevity, the system
to be developed will be referred to as CALOND. ! It will be concerned with the
examination of function or malfunction of neural-pathways which. indeed. repre-
sents the essence of clinical neurology. The system will relate clinical test outcomes
to pathways of probable malfunction. as well as probable function. Then the test
outcomes will be used to find the conditional probability of a malfunctioning voxel
for a given set of test outcomes and then the findings will be shown on a map of
sections of the nervous system to indicate the regions of malfunction as well as func-
tion. The purpose of this study is to propose and enhance a variety of approaches
to be used in localization of lesions in the human nervous system through computer
analysis. The general strategy will focus upon utilizing the relation between test
outcomes (of clinical neurological tests) and neural pathways to locate sites of prob-
able leston. In addition to its clinical use, CALOND will be designed for use as a
teaching tool in the neurosciences.

The following section will cover the current research on Computer-Aided Medi-
cal Diagnosis with the emphasis in the field of neurology. Some related studies em-
phasizing other domains of medicine, will also be included, illustrating the breadth

of computer applications to this field.

1The name CALOND represents the initials of “Computer Aided Localization Of Neurological
Diseases”.



1.2 Computer-Aided Medical Diagnosis

This section presents an overview of the literature on Computer~Aided Medical
Diagnosis. with attention focused mainly on papers involving applications related
to neurological anatomy. A brief discussion of peripherally related literature is
also included because it is considered by the author as worthwhile in analyzing
programming and/or system structures.

Du Boulay [11] developed a system that used information of neuroradiologic tests
to determine intracranial tumors through the use of a simple weighting technique.
Clinically suspected tumors were divided into three groups and diagnostic methods
were appilied separately for each group. Two main programs were written: one added
information about previous patients to the main file; the other program suggested
diagnoses in decreasing order of probabilities as well as recommended subsequent.
confirmatory testing for new patients. His conclusion was that his approach was
insufficient for the analysis undertaken and his sentiment is that the computer will
in no way replace the physician {1968].

Wortman ({35] developed an information processing system that was used to
simulate the diagnostic behavior of the physician. Information about diseases and
related symptoms of the cerebellar syndrome were selected by a neurologist and the
program was tested against the clinician during an interactive session. There was
a consistency between the neurologist’s final approach and the system’s diagnosis.
For this system the disease area was limited and all testing was simulated.

Mori 21] and his associates developed a system that was used for the differential
diagnosis of brain lesions with the use of information assembled from neuroradio-
logic tests. 240 true positive brain scans were used and 86 scan parameters (density,
shape, number, location, etc.) were extracted from these scans without any refer-
ence to neurological signs and symptoms and then the maximum likelihood method

was applied with 77% accuracy {1975].



Wiener's {34] system was based upon the logical relations between a disease and
its associated clinical findings . The system was used for diagnosing the comatose
patient. For each disease. related clinical findings were separated with respect to
representation of degree of diagnostic certainty, and consistency with the sequence
in which the findings became known. Then threshold logic was applied. expressing
boolean combinations of findings sufficiently to confirm a given diagnostic stage
1975,

Stewart {30] and Cala developed a mathematical method for diagnosis of site
and type of intracerebral mass lesions. Data for a new patient was coded and
entered. and the number of basic test results that were common to both the new
patient and the ‘past—patient’ were calculated, and various weightings were given for
positive results that were common to new and ‘past—patients’. Basically it was an
application of Bayesian statistics and conditional probabilities in which identifying
the diagnosis with the largest probability of occurrence was conditional upon the
observations (based upon those tests applied) [1975].

Okada 23] and his associates developed a system that was using a maximum
likelihood method for the differential diagnosis of multiple sclerosis. Their program
consisted of five parts: entering new patient data: renewing or correcting the pre-
viously recorded information; retrieval of information: computation of parameters
required for automated diagnosis: and diagnosing patient on the basis of computed
and stored parameters. The system was designed for a limited domain and thus
expansion to other domains was not possible [1977].

In his next approach Du Boulay {12} and his associates again divided the cerebral
tumors into three groups and applied different diagnosis methods to each group
separately. Rather than of using weighted scoring, by defining D;(i = 1,..k) as
diseases and S;(j = 1,..n) as symptoms, they used Bayes’ theorem to find the

conditional probabilities P(D;/S) to use in diagnosis. Assuming that symptoms



are independent within each disease one can write
P(D;/S) = P(5/D:)P(D:)/P(S);

and if
5= 5
k=1
then
P(5/D;) = P(51/D;)P(52/D;)... P(S./D;)
Thus the conditional probability P(S5;/D;) has to be estimated using prior patient

data. For this the following observed frequency was calculated:
fii = My /(M + Ny)

where Mj; is the number of cases of disease 7 in which jth sign was present and
NNji is the number of cases of disease z in which jth sign was absent. The accuracy
was compared with the original study using the weighted scoring technique and also
with just the radiologist’s diagnosis. For the first group of patients. the computer
results confirmed those of radiologists, in fact, this was possibly used for teaching
purposes. For the second group of patients, the results were more accurate than
that of the radiologist’s diagnosis. Third group patients were tested in relation
to vertebral angiography and it was concluded that the support of some clin‘ical
evidence or radiological tests was necessary {1977..

A decision guide for meningitis in children was developed by Knapp and his
associates [17]. 193 cases were reviewed and statistically analyzed to determine
optimal clinical discriminators for the disease. Numerical weights were then assigned
tc various signs and symptoms by a statistical technigue with the constraint that
the sum of the weights for all symptoms present would generate the the discriminant
equation for the diagnosis of meningitis {1977).

J. A. Reggia [25] developed a production rule system to localize central ner-

vous system lesions in unconscious patients. In general, production rule systems



constituted a programming methodology for modeling symbol-processing aspects
of recognition. The system has a database that includes a set of rules and a rule
interpreter and selector. The rule interpreter may be antecedent—driven, where the
occurrence of one or more of antecedents tfiggers the application of the rule inferring
its consequences; or the rule interpreter may be consequent-driven, where the inter-
preter selects a rule with a fact to be established as a consequent and then tries to
verify it. For neurological localization, first an examination is conducted generating
the data. then the data are analyzed to determine the site(s) of brain damage most
likely to explain the examination findings. In the case when the patient isin a coma
of unknown etiology, it is a critical situation since different disease processes that
cause coma may involve different regions of the nervous system. Reggia’s database
included dynamic knowledge about the patient and consisted of a set of attributes
possessed by the patient. These are attributes examination based and inferred.
The system applied the MY CIN like rule-based program. MYCIN will be explained
in detail in the current section. It follows the IF-THEN format to express rules.
The control structure used is consequent driven and produces a search and/or goal
tree.The program begins with the start goal. and then sets up subgoals. These in
return may set up more subgoals or result. The program was tested on simulated
patients for four different categories of unconscious patient. As a result Reggia gave

the following observations:

o Expressing neurological localization knowledge as a collection of rules is very

difficult.

e A collection of rules is not a good model of the organization of neurological

localization knowledge as used by the physician.

e The interpretation of neurological examination abnormalities is

highly context—dependent, and this may lead to combinatorial problems.



¢ One way to improve the compactness and understandability of rules is to

create and use domain-specific ‘macropredicates’{1978|.

Catanzarite [7] had developed a computer program for localization and diagnosis
in clinical neurology which was called “NEUROLOGIST”. The program consisted
of four modules. The ‘Input’ module starts with user orientation, then history and
physical examination data are entered for which findings are mapped onto ‘status’
for each of the 100 nervous system tracts represented in the system. The ‘Loc’
module is then used to localize the lesions. The lesions may be anatomical, bio-
chemical. or physiologic. For the anatomical lesions a drawing based localization
is used and for the biochemical and physiologic lesions a rule based localization is
used. After the localization, the program checks whether the findings are indeed
consistent with a lesion at this localization, and shows percentages of findings as
explained by lesions at this locus. The ‘Hgen' module selects lesions which best ex-
plain observed ‘malfunction’ and uses the location of the lesion. together with the
mode of disease onset, to retrieve a list of tentative diagnostic hypotheses from the
hypothesis generating table. The ‘Hypothesis testing’ modules database consists of
disease specific information. The final stage gives an evaluation of diagnostic hy-
potheses. and provides explanations. The network feature of hierarchical structure
is used for disease representation. In the same module the program rescores all
diagnoses. and the highest scoring diagnosis — not investigated as of vet — becomes
the active hypothesis. When all diagnostic hypotheses have been investigated. a
diagnostic summary is given [1980].

LOCALIZE is a computer program developed by M. B. First [13] and his as-
sociates to assist physicians with localization of lesions in the peripheral nervous
system. The input to the system is clinical and consists of electromyographic evi-
dence of specific muscle weaknesses. The program'’s database was constructed from

neuroanatomic references and shows the interconnections of peripheral nervous sys-
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tem components. The database was represented as a network. It has 2224 named
nervous systems structures and 9796 links among them. The program starts with
data collection, in particular with the identification of clinically weak muscles. Then
the program responds with the review of the most commonly tested muscles to check
that nothing has been omitted. After the data entry, the program enters the local-
ization of lesions phase. First the nerve segments that participate in the supply of
the affected muscles are identified, then fibers which supply each affected muscle.
proximally to the spinal cord, are traced and updated in the knowledge base. Any
set which includes at least one highlighted segment from each traced pathway will
account for all of the deficits. Solution sets that consist of lesions which anatomically
lie most distal and proximal are constructed. First taking into account most distal
lesions. the program generates alternative solution sets by replacing set elements
with more proximal lesion sites from the highlighted pathways. Then by apply-
ing a convergence algorithm the number of hypothesized lesion sites are reduced,
excluding multiple lesions. Once the proper convergence point is found. to apply
the substitution, consistency checks must be satisfied. If the consistency check fails
three times. re—examination of the muscle will be carried out. For plexus lesions a
different approach is used. In addition to the procedure described above the 'plexus
algorithm’ is used to determine the validity of a plexus solution. Eacl peripheral
nerve in the solution set is followed until either it diverges or the plexus is reached.
In the final stage, the most proximal site for the occurrence of the lesions. consistent
with the findings, are then determined. Sensory deficits and reflex changes are not
included in the system despite the fact that they could increase the accuracy of the
program 1982].

NEUREX (Neurologic Expert) is a diagnostic expert system developed by Xi-
ang and his associates [36].In this system knowledge of the spatial structure and

function of neuroanatomy is represented as a semantic network, in which every



cross section and every region represents an anatomic concept. Connectivity of seg-
ments is asserted between corresponding concepts. Each tract is represented by an
atomic node. Anatomically significant components of the Central Nervous System,
Peripheral Nervous System, and transverse nerve segments of the Peripheral Ner-
vous System are represented by unique atomic nodes and connectivity relations are
specified by nodes with proximal and distal arcs {1986].

The remainder of this discussion will focus upon works related to Computer—

Aided Medical Diagnosis in other fields of medicine.
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One of the earliest work in medical diagnosis using computers was done in the
late 1950’s by Ledley and Lusted [18]. They have illustrated the automated decision
use of computers in the diagnosis of congenital heart disease and discussed the
potential value of probabilistic models for diagnostic inference. [1959]

Warner and his associates [32] developed a computer program used for the di-
agnosis of congenital heart disease based upon Bayes’ Theorem. It is assumed that
symptoms are independent of each other within a given disease, and that diseases are
mutually exclusive. Data compiled from patients were used to generate a symptom-
disease matrix consisting of 53 symptoms and 35 disease entities. Then. based upon
the presence or absence of these symptoms in a new patient. the program’s diagnosis
was compared to that of two experienced physicians. It was found that the system’s
accuracy was equal to that of expert in that field. Also the accuracy improved with
refinements in the data matrix {1964..

Gorry and Barnett [14] suggested that Warner's program would not be feasible
for many applications since it required determination of 33 observations for every
patient to be diagnosed: therefore sequential diagnosis was proposed through the
use of a modified Bayes’ Theorem. They defined an attribute to be a sign or symp-
tom which can provide information for the diagnosis: a test as the means emploved
to detect the presence or absence of one or more attributes: and the selection of a
test or sequence of tests as the test selection function. The program’s information
base constituted the medical “experience” of the program. The inference function
was used to construct the current view of the diagnostic problem through the infor-
mation base and the attributes which have been detected to date in the study of the
patient. The inference function was based upon Bavesian model, and the current
view held by the program was a conditional distribution for various diseases. The

following schema was used for this:

P(S:/ Dy, E'YP'(Di/ E")

" [E'" =
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where P'(D/E') is the probability of D, given the total experience to date.E’, but
before the observation of the attribute S;, P(S;/D, E') is the conditional prob-
ability of attribute S; given D, and E’. and P”(D,/E") is the probability for D,
given the new, increased experience. Decisions regarding tests and termination were
made on the basis of calculations of expected costs and benefits at each step. The
performance of the system was tested in two problem areas, the diagnosis of bone
tumors and the diagnosis of congenital heart disease. They used Warner's {32} prob-
ability matrix and a priori disease probabilities. The complete diagnosis emploved
by Warner and the sequential diagnosis applied by Gorry gave the same expected
accuracy, put the latter system reached the final stage with an average of 6.9 tests
because of the test selection function implemented in the program [1968I.

Bleich and his associates {6] developed a program for estimation of acid-base
disorders and then extended that program to consider electrolyte abnormalities.
After the data collection has been performed, depending on the abnormalities of
the data branched-chain, logic was activated and only the required sections of the
decision pathways where analyzed. Questions asked during the process were either
numerical laboratory values or "ves-no” type questions. Then. depending on the
case analvzed. the program generated an evaluation note including suggestions re-
garding possible causes of the observed abnormalities and suggestions for correcting
them. For this program there was no feedback: that is, the system was not referring
to prior analysis of a patient, and every case was treated as a new one. 1969!

With the experience of their previous work, Gorry and his associates described
the use of the discipline of decision analysis as the basis for an experimental interac-
tive computer program designed to assist the physician in the clinical management
of acute oliguric renal failure [15]. Their program was divided into two parts:
phase I considered only tests with the minimal risk (e.g., historical data. chemical

tests); and phase II involved tests of more risks and inconvenience. Phase I used



a sequential test selection process based on Bayves’ Theorem, [14]. In phase II the
methodology of decision theory was applied, where at each step in the “decision
process” the program considered whether it was best to treat the patient immedi-
ately or to carry out additional diagnostic tests. The treatment with the current
highest expected value was chosen and then compared with the expected values
of the treatments that could be given if another diagnostic test were performed.
The relevant values and probabilities of outcomes of treatment were obtained as
subjective estimates from nephrologists. 18 test cases were evaluated and for 14 of
the cases. the program selected the same therapeutic plan or diagnostic test as the
expert. In three of the remaining four, the program’s choice was expert’s second
choice '1973].

MYCIN developed by E. H. Shortliffe is a symbolic reasoning program and is
considered state of the art among programs developed in this field. It determines
the site of infection, type of organism and drug sensitivities of the organism which
is used for antimicrobial therapy [27]. MYCIN has two kinds of data, the first is
the patient data (the information about the patient which is entered in response to
computer generated questions during the consultation). The other is the “dvnamic
data.” which is a data structure created during the consultation. The program
has three subcomponents: first a consultation system in which questions are asked
and through which conclusions are drawn and advice is given. The second is an
explanation system which answers questions from the user and attempts to explain
its advice. The third is the rule-acquisition system which permits experts to teach
MYCIN new decision rules and/or to alter pre—existing rules that are judged to
be inadequate or incorrect. Decision in MYCIN, not only involves the patient but
also the cultures that have grown, the organisms isolated, and drugs that have been
administered. Each of these are termed a 'context’ of the program’s reasoning. The

context—types initiated during a run of the program, are arranged hierarchically
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in a data structure termed ’context tree’ in which each node is represented as one
‘context’. Rules are subject to categorization in accordance with the context types.
Every rule in the system belongs to one and only one of these categories. A clinical
parameter i1s a characteristic of one of the contexts in the context tree..e., the
name of the patient, the site of a culture, and so on. MYCIN stores inferences and
data using the attribute—object—value concept. Object is always some context in
the context tree, and attribute is a clinical parameter appropriate for that context.
The value of every clinical parameter is stored by MYCIN along with an associated
certainty factor (CF) that reflects the system’s belief that the value is correct. In
addition each rulein MYCIN is assigned a certainty factor. The CF approach is used
because in most of the cases clinicians do not use the “information comparable to
implanted standard statistical methods”. Certainty factors allow the accumulation
of evidence and facilitate decisions concerning the identification of organisms causing
diseases in patients. MY CIN’s consultation session creates the patient context as
the top node in the context tree. MYCIN then attempts to apply the goal-rule to
the newly created patient context. The goal oriented approach to rule innovation
and question selection is automated via two interrelated procedures. one is the rule
analysis and the second is a mechanism that searches for the data needed by the
first procedure {1976].

A system that was used for multiple disorders was developed by Ben-Bassat and
his coworkers {4]. The knowledge base of the system consists of disorder patterns
in a hierarchical way that was used as a feedback for medical information required
for diagnosis. The system model consists of elements that includes 'features’ and
‘disorders’. Features were defined as bits of clinical data like age, sex, symptoms
and others. For each feature a cost was assigned and shown in five ranks, like
historical information and findings of physical examination were assigned as cost-1,

inexpensive routine procedures were assigned as cost-2, and so on. Disorder was
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defined as a feature or combination of features that describes a well-defined clinical
entity like a problem or a disease. They were defined by means of a characterizing
pattern which was composed of a set of features and conditional probabilities of
features for a given disorder being present or absent. Rank of life threatening
severity, and prior probability of appearance in the population under consideration,
were also used to describe disorders. Knowledge extraction was done from disorder
domain to the feature domain disorder characterization, disorders differentiation
and feature characterization stages were applied until a high quality of pattern was
recorded. In the diagnostic model analysis, each disorder was taken into account
along with its complement, and each was individually considered. At any level of
the program, the user mught control the operation sirategy and take the full control.
The system is capable of providing reasons for it’s decisions. The knowledge base
of the system was incomplete and inaccurate {1980].

INTERNIST is a consultation program developed for internal medicine by H.
Pople and his associates .24]. Its knowledge base is composed of disease entities and
manifestations(symptoms. physical signs, and laboratory data). Each manifestation
of a given disease is assigned two numbers: ‘evoking strength’ and ’frequency’, with
the values of 0-5 and 1-3 respectively, and ‘import’ is assigned for each manifesta-
tions across all disease with the values 1-5. There are two heuristic principles: one
is the formation of problem areas through a partitioning algorithm and the other
is the conclusion (or diagnosis) within a problem areas. During the diagnostic con-
sultation the following steps are applied. First the positive and negative findings
of the patient are entered by the user, for each positive manifestation given, the
program retrieves its complete differential diagnosis. A disease hypothesis with a
proper listing is created, and for each disease hypothesis four lists are maintained
and each hypothesis on the master list of diagnoses are given a score. After the

scoring, the master list of all hypotheses are sorted by descending score. The diag-



nosis whose score falls short of the threshold are discarded. Possible diseases for the
likeliest diagnoses are identified from the master differential list by a partitioning
rule. After selecting the most attractive diagnosis the step for a definitive diagnosis
is applied. If there is no conclusion, the program either pursues,rules out or discrim-
inates with a certain strategy. To improve the efficiency, the system asks questions
and the program reruns again to find a new differential diagnosis. The program
stops when the import value of 2 or less is observed. The program cannot analyze
the multisystem problems. the database structure limits the program’s ability to
reason anatomically and temporally, and it can not recognize the subcomponents of
an illness. On the basis of the deficiencies mentioned above. the same group devel-
oped CADUCETUS and they defined the diagnostic complex(es) from the beginning
and applied facets of disease to more than one diagnostic entity to overcome the
deficiencies. The authors believe that CADUCEUS will not be ready for release for
another five to ten years {1982].

K. P. Adlassnig and his team has developed a data-driven,rule-based expert sys-
tem for general medicine. called CADIAG [1] {2]. Using symbolic logic representa-
tion CADIAG-I was developed.then with some changes they developed CADIAG-IL
The first version of CADIAG , CADIAG-I is based on a symbolic logic representa-
tion of a medical relationship. It consists of four main structures, namely a medical
information system, a patient data interpreter, a computer assisted medical consul-
tation system, and a medical diagnostic knowledge system. Medical entities such
as; 1- symptoms, signs. laboratory findings, 2-diseases, diagnoses, 3- intermediate
combinations, and 4- symptom combinations and their relationships are defined
and represented in terms of first-order predicate calculus. Diagnostic hypotheses
are generated by precalculating unique symptom patterns. For a given symptom
pattern, a confirmed or excluded diagnosis, diagnostic hypotheses, and possible di-

agnoses are established. Diagnostic hypotheses are calculated by means of unique
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symptom patterns matching the symptoms observed on the patients. Possible di-
agnoses are made on the basis of preferential symptoms exhibited by the patient
and selected as such by the diagnostician. Extended explanations of the diagnostic
results are given to the physician. Suggestions whether to examine the patient fur-
ther in order to confirm or exclude diagnostic hypotheses or possible diagnoses are
also offered [19835].

CADIAG-II is an expansion of CADIAG-I and uses Fuzzy Set Theory to de-
termine the relations between symptoms and diseases. In the system’s knowledge
base symptoms.diseases or diagnoses and intermediate and symptom combinations
are given some fuzzy logical values. To calculate the grades of the membership of
the patient to disease, compositional rules of inference are used. The relationships
between symptoms and diseases are described either linguistically or statistically.
Symptoms are not present or absent only, but they are assigned a value between
0-1 to indicate the ‘degree of membership’. Diseases and diagnoses are treated in
a similar way. In the diagnostic process, after the symptoms are gathered, possible
intermediate combinations and symptom combinations are computed. Contradic-
tions in the present symptom pattern and the intermediate computed patterns of
svmptom combinations are checked. Then confirmed diagnoses are identified and
diagnostic hypotheses are offered {1986i.

Ohmann and his friends studied the extensions of the independent Bayes Model.
taking interactions between variables into account, together with the data set of
upper Gastrointestinal bleeding, using different measures of performance, such as
discriminant ability, sharpness of prediction and reliability of the probabilities [22].
The models used were, linear logistic regression and independence Bayes. It was
shown that there were small differences between the models if applied to data sets
with few variables. With the data sets of many variables, there were sizable differ-

ences between the models. but no model was superior in all aspects of performance
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[1988].

In his recent paper Adlassnig presented the performance evaluation of diag-
nostic accuracy of the medical expert system i3]. Taking histologically or clini-
cally confirmed diagnosis as standard he showed that the ROC-Receiver Operating
Characteristic-curves not only allow the optimal adjustment of the expert system'’s
internal and hoc decision criteria such as thresholds, weights and scores but also
provide a basis for better comparing the performance of different medical expert

systems {1989].
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Chapter 2

A BAYESIAN FORMULATION
FOR CALOND

The purpose of this chapter is to estimate posterior lesion probabilities for a
given set of neurological test outcomes using a classical statistical process: Bayes’
Theorem.

As mentioned before in Section 1.1 the system CALOND will be designed to
relate clinical test outcomes to the spatial distribution of the probability of lesions.
For this purpose the anatomical structures of interest will be divided into V' volume
units. called vozels. Each voxel will be identified by some suitable code. designated
here by the symbol v.v = 1.2....,1". A neural pathway can then be represented as
a string of voxels through which it passes.

One of the important tasks of the study will be the preparation of an elabo-
rate database. The database will contain detailed anatomical information, such
as relationships between anatomical structures of importance and voxels. a list of
clinical tests and their different possible outcomes, and statistical information such
as & priori probabilities of malfunction and function and various test outcomes.
For practical purposes CALOND’s database will be constructed from the following

complementary prime units:

¢ TESTBASE : This will be CALOND’s database unit in which the test inputs

and the resulting test outcomes will be stored. The list of the tests and
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outcomes for the CALOND is shown in Appendix D.

o PATHBASE : This will be the unit in which the pathway information will be

stored, that is, the voxels which compose the pathway.

o ANATBASE: This will be CALOND’s database unit used for storing the
anatomical information, that is the anatomical names related to pathways

is stored in this unit.

e STATBASE: This is the unit in which statistical information will be main-

tained. (A prior information and conditional & prior information).

The ultimate objective of the study is to develop and implement a method for
calculating the probability of lesion for each voxel (or pathway) based on the test

outcomes. Such a method is introduced in the following subsection.

2.1 A Statistical Method for Localization of Le-
sions

Consider the following scenario : A person with (possible) neurological complica-
tions . henceforth to be called simpiy the PATIENT walks into a general practi-
tioner's office. He:’o..r_ she, is about to be examined by a medical professional who is
using CALOND. This medical professional might be a physician, a physician’s assis-
tant. a medical technician or other qualified personnel. For the sake of conciseness,
in this study, from now on this person will be referred to as the PHYSICIAN.
After an initial interview with the patient the physician is expected to apply a
group of tests ! from CALOND’s database unit TESTBASE. If the patient has any
lesions involving the nervous system. a skilled neurologist or a neurosurgeon can

give a good estimate of the location of lesions by associating his or her experience

with the test outcomes. In this section an analytical method will be developed for

1CALOND will not require the tests to be applied in any particular order.
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the determination of the probability of malfunction of a given voxel (or pathway) for
a given set of test outcomes. In the following, some pertinent terminology will be
introduced and the problem statement and related conditional probability equations
will be presented.

Let T3 (: =1,2,..., I) denote the verbal description of an avazlable test in TEST-

BASE, T = {T;} ={T1,T5,...,T1} the set of available tests and let
O ={011.012,...,01,51);021,022,....03, 5233 -- -, 011,012, ... . Or. 5013}

denote the set of all test outcomes in TESTBASE, where O;; is the jth outcome
of test 1.

Note that these definitions imply that there are exactly J = <7 J(i)
outcomes in TESTBASE.

Let O; = {0i1,0i3,...,0; )} denote the set of possible outcomes for the ith
test T;, and let n be the test sequence applied to a specific patient where n =
1,...,N. For each test applied, the test outcome will be represented by a vector
g(n), which will include the identification number of the test applied and its test
outcome from the data base. namely TESTBASE. Note that the physicié,n need not
follow any predetermined test sequence dictated by CALOND.

Let A, represent the event that voxel v (or pathway v) is malfunctioning.

Using the definition of conditional probability, the probability of the voxel v
mal’unctioning given that the test outcome of the applied test T, is g(n) can be
determined in terms of the following & priori probabilities:?

1. P(M,) : the 4 priori probability of voxel v being malfunctioning.

o

. P(q(n)) : the & priori probability of test outcome g(n) being observed.
3. P(q(n)/M,): The conditional probability of test outcome g(n) being observed
given that voxel v is malfunctioning.

After the application of the first test, (n = 1), the malfunction probability of

*These probabilities are for a population at large, visiting general physician’s office for a medical
examination.
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voxel v for a given test outcome ¢(1) is given by

P(M,)
P(q(1))

After the second test (n=2) the probability of malfunction of voxel v, given the

P(M./q(1)) = P(q(1)/M.,) (2.1)

test outcomes ¢(1) and ¢(2) can be calculated from;

P(M,/q(2)q(1)) = P(q(z)/Q(l)M”)P(Q(l)/M”)__P(ZD((QJ‘)?&))

For the rest of this analysis the following fundamental assumption will be made:

(2.2)

Assumption 1 :

Let T, denote the set of tests designed specifically for testing the voxel v. Let
S. = {q1:¢2.....4¢.} denote the corresponding set of test outcomes for the patient
under consideration and M, denote the event that voxel v is malfunctioning. Let

S, C S, and S,; =S8, — S, . then
P{S8./S. N M,} = P{S./M,} (2.3)

Let {g(r).q(r —1),....¢(1)} € S, and let S, = {q(r)} , then Assumption I implies
that
Plg(r)/atr = 1)g(r = 2).... q(1)AL) = P(g(r)/M,) (2.4)

where {g(7),q(r — 1),q(r —2)....q(1)} is a set of outcomes corresponding to a set
of tests designed specifically for testing the voxel (or, the pathway) 2.

The above assumption simply states that in computing the conditional proba-
bility of the test outcome ¢(r), given the previous test outcomes
Src1 = {q(r = 1)g(r — 2)...9(1)} and M, (i.e.. voxel v is not functioning), the
knowledge of S,., may safely be discarded in view of the definitive knowledge of
M,.

As an example, let » = 2 and v = 10. Assume that g(l) is a test outcome
indicating that voxel 10 is malfunctioning with some probability. Clearly in the

computation of the conditional probability of the outcome of a new test, when the
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test outcome ¢(1) is given and it is known that the voxel My is malfunctioning,
q(1) may safely be dismissed in view of the more decisive knowledge M, (i.e., voxel
10 is malfunctioning). This is exactly what Assumption I implies. Note that for
r = 2, Assumption 1 yields P(q(2)/q(1)M,) =~ P(q(2)/M,) . then the Eq. (2.2) can

be written as follows;

P(M,
PIM,/a(2)a(1) ~ Pla(2)/Mu)P(g(1) /M) s

After the third test. Tys), is applied the probability of malfunction of voxel v,
given the test outcomes ¢(1) ¢(2) and ¢(3), can be calculated from the following

equation:

P(M,/q(3)q(2)q(1)) = P(q(3)/q(1)q(2)M,)P(q(2)/q(1)M,)

P(M,)
P(q(1)/M, 2.6)
) @ 2)a D) (
Hence, using Assumption I the following expression will be written:
P(M,/q(3)q(2)q(1)) = P(q(3)/M,)P(q(2)/M.)P(q(1)/M,)
| P(M,) .
P(q(3)q(2)q(1)) -

Using mathematical induction the following fundamental equation can be obtained:

P(M,/q(1)q(2)...q9(n)) = P(q(n)/M,)...P(q(2)/M,)P(q(1)/M,)
P(M,)
" P(q(1)q(2)... q(n))

The above equation allows recursive update of the malfunction probabilities after

(2.8)

the arrival of each new test outcome and therefore it will be called The Malfunction
Probability Update Equation (MPUE).

Although the MPU Equation developed above gives the malfunction probabili-
ties of voxels only, the same equation is also applicable for entire pathways. In fact,
in practical applications it might be computationally more efficient to update the

malfunction probabilities along a given pathway rather than individual voxels.
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2,2 Determination Of Subsequent Testing

After CALOND evaluates the outcome of a new test using the MPUE, it can suggest
the next test to be applied by first selecting the voxel(s) (or pathway) with the
highest malfunction probability and then searches the test(s) associated with the
same voxel(s) from its TESTBASE.

As an example, assume that the test:

“ Qbserve vocal cords during phonation” is applied and the outcome

“ Left cord weak or paralyzed” is observed.

In TESTBASE this test outcome can be found to be associated with voxel
numbers 1017, 928. ....168. Suppose that after the malfunction probabilities of
these voxels are updated using MPUE, CALOND will determine that the voxel
538 will have the highest malfunction probability. It will then suggest the tests
2,3,5,10.14.16.17,18.,20.24,49.55,57, and 59, since according to TESTBASE these
tests are listed as being associated with voxel 538.°

But there remains a problem: that is, how do we arrive at the malfunction prob-
ability values for each voxel. In the current study, only the brainstem is considered.
comprised by 1000 voxels as mentioned before. If the anatomical structure is ex-
tended beyond the brainstem. the number of voxels will increase, eventually making
the need for probability values cumbersome. In the following chapter. we propose
a method for estimating malfunction probabilities, assuming the appropriate data

acquisition is possible.

3Refer to the Appendix E for test outcome designation
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Chapter 3

A REGRESSION ANALYSIS
MODEL

3.1 Introduction

Our goal. once again, is to estimate posterior probabilities of lesion based upon &
priori knowledge and the results of neurological tests. This estimation will now take
the following direction:

Bayes’ Theorem identifies a classical statistical relationship between priori knowl-
edge and the attainment of more conclusive lesion probability statements based
upon neurological test outcomes. Since we may consider the posterior probability
of lesion to be a function of the & priori probability of certain neurological test
outcomes. we may estimate this function through a polynomial (which corresponds
to a Taylor series expansion of this function)-at first, a first order one which is
essentially a linear approximation.

Linear Regression Analysis introduced in this chapter is a plausible method.
since 1t exhibits the linearity between posterior and 4 priori probabilities in Bayes’
Theorem. By modelling this linear relation between the a priori and posterior
probabilities via statistical predictor techniques it is then possible to obtain some

of the necessary probability estimates. A concise definition of Regression Analysis
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is elucidated in Appendix B.
In the previous chapter, the following equation was derived by modifying Bayes’
theorem:
P(M.)

P(M,/q(n)) = P(Q(n)/Mv)m (3.1)

where: g(n) is the test outcome vector chosen for the nth test applied, M, is
the event that voxel v is malfunctioning (or there is a lesion at that voxel). The
probabilities are defined as follows: P(g(n)/M,) is the conditional probability of
choosing test outcome g(n) given that voxel v is malfunctioning. P(M,) is the &
priori probability of voxel v being malfunctioning. P(g(n)) is the & priori probability
of observing that specific test outcome for the nth test applied. P(M,/q(n)) is
the probability of having a lesion at voxel v given the test outcome g(n) for the
nth test applied. The universe. in the context of this work. does not cover the
population at large but only those people who are seeking a neurological evaluation.
It is also assumed that some or all of the & priori probabilities for the CALOND
data file called STATBASE are provided by a designated team of neurologists and

radiologists. After the first test is applied, the Eq. 3.1 will be as follows:

P(M,)

P(M,/q(1)) = P(Q(l)/Mu)P(q(l)) (3.2)

which. in turn sets up a table such as that shown in the example given in Table 3.1..
where 1062..... 326 indicate the malfunctioning voxels involved for the observed test

outcome ¢(1).

3.2 Regression Analysis

Using regression analysis one can estimate a linear or nonlinear relationship between
the variables. Of course, alternative models yielding similar estimates are possible.
By imposing the regression analysis criterion to the designated model, it is possible

to obtain the estimated regression coefficients; the model will then provide prob-
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'Vbxelzy} 19(A4;)! P(g(1)) | P(q(1)/M,) J’(ﬂdg/q(l))i
I |

1062 | 10-° | 102 10-° 10-°

326 | 10°°¢

|
: M : |
10-3 10-8 10-7 |

Table 3.1: Example of probability assignments for malfunctioning voxels based on
a single test.

ability of lesion estimates which may be compared to the numbers generated by
participating physicians.

The notations used in the following will replicate the notations used in "Applied
Regression Analysis” by N. R. Draper and H. Smith [9].

A linear, first order model with two predictor variables can be given as follows:
y =30+ 5z + P2z (3.3)

and similarly,

where Jg,31,92,35,3; and J5 are the unknown parameters of the model to be
estimated. and = is an “experience factor”.e.g., taken to be, for the moment. the
vears of experience of the physician who is estimating the & priori probabilities.
Using the data available. the estimates of these parameters will be calculated. The
estimates of y and z, which are, ¥ and £, respectively, for the given values of z,.z3

and -z will be denoted as follows:
y=C+ Bz + Az,
To=C"+B*z+ A"z,

where 7,2, are the predicted values of y and z, respectively (for a given input

value). C,B,A,C*,B* and A" are the estimates of the parameters, 3;,3 given
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above. To estimate the parameters in the model, the Least Squares method will be

applied. hence -See Fig. 3.1-the Residual Sum of Squares-S—, that is:

M|
"4

I (.13 = by — blfc)

I X

Figure 3.1: The vertical deviations whose sum of squares is minimized for the least
squares procedure

S= N (yi— %)= (y: — C = Bz — Azy;)? (3.5)
i=1

-
-

will be minimized. The least squares estimates of the parameters C'. B. 4 in the
model. found by minimizing the residual sum of the squares, are the solution to the

following simultaneous system:

oS "

— =9 - C - Bz =
e Z(y, C — Bz — Azy;) =0
S E"

8B ~ —2:=1(yi = C =Bz — Azy)z =0



as

31 =2 :( —C — Bz — Azy)zy = 0

These equations can be written as shown; they are referred to as the Normal Equa-

tions:

NC+(D_ z:)B~+ (Y zu)d = Y u
(Z:JC-J—(Z:?)B—'-(ZII,-:,-)A = Zyi:z'

(Z zy;)C + (Z z1;5)B = (>_z3)A = Z YiT1

or in matrix form as follows:

N (=) S(zyi) o Yu
(=) T(2) ‘ S(zyiz) B | =| Cuyxz
Tzu) Slzwzm) T(zf) 4 S yizi

Applying Cramer’s Rule. one can find the values of C, B and 4. We may further

observe that the system matrix

N : <~ S L1i

2
hD-7 A < ADR- 294
ST iz Lz

is guaranteed to possess an inverse since its determinant is strictly positive (this is
a theorem from Regression Analysis: see {9} pp. 78-83)

Thus. our solution may be expressed as

b d
A N ADE-% Sy Yy
ie]
B|=|Zs Tz STz S yiz
o
C Sy Sz Trg S YTy
And in fact.
-1
JV ::: Zzli
2
San T Sy
2
Yoy Srn Loy

is known. in the literature. to be V(b)/s?, where V(b) is the variance. covariance
matrix for the regression coefficient vector b; and s? is S SResiduat/f Residuai- 10 fact,
the system matrix may be written in terms of variance and covariance. Since this

matrix represents the first partial derivative of S, all of which are then known to be
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positive, it assures us that the values of regression coefficients generated by Normal
Equations do indeed identify a local minimum for §.
Now the fundamental partition equation is used to generate additional quantities

in the ANOVA (ANalysis Of VAriance) table. Recall that (9]
Dy =8 =25 =9 =2y — &) (3.6)

is the fundamental partition equation, where; S (y; — 7)? is called sum of squares
total corrected which is related to the variance of y, (¢2). T(g — §)? is called
sum of squares due to regression, which shows how well data is regressed to y and
S(yi — 9)% is sum of squares due to error (residuals) which serves as a measure
of the inadequacy of the model. From this information it is possible to appraise
whether the regression line will serve as a good predictor by observing how the Sum
of Squares (SS) about the mean value of y has separated into the error SS or an
explained (regressed) SS.

Next form the ANOVA (ANalysis Of VAriance) table as shown on the next
page. In this table [ is the sample size and k is the number of predictor variables.
T.C is called Total Corrected and it is equal to sum of the degrees of freedom due
regression and the degrees of freedom due residual. The term M S is used to define
the mean square error and it is equal to the ratio of 55 and the degrees of freedom
for a given category (source). The degrees of freedom can be found by subtracting
the number of parameters in the model from the number of cases in the model. The

term F-Ratio = xMSreg/JWSres possesses an F' distribution in this case.

Thus a test of the hypothesis Hy: B=0o0r 4 = 0 versus H, : B# 0and 4 =0
can be conducted by examining the magnitude of the F-Ratio. If a certain level of

significance («) is defined, then we:
Reject Hy, : if F > Fpe
Accept Hy : if F < Fpe
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Source Degrees of SS MS F Ratio
Freedom |
Regression | k(=2) | (7 -9)* (g -9)/k
Residual -3 Sy-9) | Ty —9)?2/(1=3) | F = MSreg/M Sres
| T.C -1 | Sw=-9?|Sy—g?/0-1)

Table 3.2: The ANOVA Table (Used for SSE)

as shown:

} Density Function = f(F)

—i . - I

Accept Hg IL Reject Hy
RC

Figure 3.2: F-Distribution for a=significance level

The same method is applied for the estimation of z,. The following matrix is

derived to find the estimates of C*, B*, 4",

N (=) :(wai) O hDF 2¥
(=) S(:f) S(zaizi) B* | = | Yz
C(za) S(zaiz)  S(z3;) A 3 ToiTa;

A similar ANOVA table will also be formed for this case.

3.3 Linear Hypothesis Testing
As an alternative to the model y = 8o + 1z + 3221, consider the following model:

y = By + B2,
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which discards the experience factor. In this case the regression model hypothesis
will be Hp : 3 = 0 and the alternative H; : §; # 0.
For the reduced model. as before. least squares analysis is applied and the fol-

lowing matrix is obtained.

| Source idf | SS I MS F Ratio
“Regression | k(= 2) | <G -9 | G - 0)°/F

' Residual =2 | S(y-9)0? ! S(y—-9)?*/(1-2)| F = MSreg,MSres
_T.C -1 [Sy-g)? 'Sy —g)P/-1)

Table 3.3: ANOVA Table for Reduced Model (Used for SSW)

If the term S Sres is computed for both models. the following analysis is possible

(see Tables 3.1 and 3.2 respectively):

Sy —9)°
SSres = =5 = SSE for the expanded model
SSres = =9 _ 56w for the reduced model
res——l_—i——— or the reauced mode

It is expected that SSW > SSE since there are fewer parameters in the reduced
model. Define SSW — SSE as sum of squares due to errors incurred by the revision
hypothesis Hy : C = 0, which claims that the reduced model is superior: with only
one degree of freedom: {(I — 2) — (I — 3)| = 1. Then. the validity of the revision

hypothesis test will be tested by considering the following ratio of mean squares:

SSW-_SSE
1
F= SSE
(1-38)

and then referring to the F distribution table with a given significance level for

acceptance or rejection of Ho. Draper/Smith, pp. 102-107 [9].

Consider the modified Bayes® Equation that was derived for the system.

P(M,)
(9(1)q(2) - g(n))

P(M,/q(1)g(2)---g(n)) = P(g(n)/P(q(1)g(2)--- q(n)Mu)P
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After the application of the first test the above equation has the form:

P(M,)
P(q(1))

Let. P(q(1)/M,) = z, P(M,) = z,, P(q(1)) = z3, and P(M,/q(1)) = y. Then the

P(M,/q(1)) = P(q(1)/M,)

equation above will become

or, in ratio form
Y T
— =—=a
T L3
where a is a probability ratio (proportionality) constant. It is possible. then. to

formulate a pair of linear. first order regression models as shown below:

—

y = b+az (3.7)

Ty = c+azs (3.8)

which share this common probability ratio, a. After the application of the second
test, the modified Bayes’ Equation will be:

P(M,) .

P(M,/q(1)q(2)) = P(q(2)/q(1)AL,)P(q(1)/ M, ) ——— 3.9)
(M,/q(1)q(2)) = P(q(2)/q(1)M,)P(q(1), )P(q(l)q('.?)) \
and with the use of Assumption 1. the Eq. 3.9 can be simplified to:
P(M,)
P(M,/q(1)q(2)) = P(q(2)/M,)P(q¢(1)/ M,)=——— 3.10)
(Mo/q(1)q(2)) = P(q(2)/M,)P(q(1)/ )P(q(l)q(2)) (

Now. let P(M,/q(1)q(2)) = y1, P(q(2)/M,) = z5,P(q(1)g(2)) = z4; thus Eq. 3.10

can be written as:

L2
N = 1Ts—
T4
let
n_ .12,
s L4
then;

Yy =b"+a'zs
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and

If we define = = z4/z;. then

Here the estimates of a*,b",¢" will be calculated, which in turn will allow us to

extrapolate z, using;

In this fashion, it is possible to find the joint probabilities of observed test out-
comes. Indeed this can be extended to estimate the general joint probability
P(g(1)g(2)---q(n)) for n observed test outcomes. This technique makes it pos-
sible to find many joint probability values, but requires a large database of & priori

probabilities, currently unavailable. We then turn to available simulation strategies.

3.4 Conclusions

This chapter’s primary focus is to use linear approximation techniques in order to
estimate the posterior lesion probability for some anatomical region. The principal
approach is to apply the classical statistics process of regression analysis. If all
of the necessary a priori information is available. one can develop a storehouse of
posterior lesion probabilities associated with a variety of neurological testoutcomes
and general demographic statements (including epidemiological statements of in-
cidence) for a host of neurological diseases. The physician would have access to
this storehouse of information and then be able to use posterior lesion probability
estimates to assist him in judgements as to how to proceed in the completion of the

neurological examination and render his diagnosis and/or conclusions.
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Chapter 4

AN ALTERNATIVE: MONTE
CARLO SIMULATION

4.1 Definitions and Analysis

In most of the cases when the empirical data is not available. a randomized simu-
lation may be applied to extract estimates for the values one seeks.

In Chapter 2. Bayes' theorem was introduced to find the probability of a mal-
functioning voxel for a given set of test outcomes. In Chapter 3, it was discussed
that & priori probabilities are needed to estimate the conditional probabilities of
lesion. In this chapter. Monte Carlo Simulations are introduced in order 1o provide
some information relating underlying probability-of-lesion—distributions of patients
seeking neurological examinations and their subsequent test outcomes. The Monte
Carlo Simulation is a commonly used technique for analyzing complex, statistical
problems. A brief definition and relevant terminology about simulations is given in
Appendix B.

As a first step, a portion of the anatomical structure of the nervous system, the
brainstem, is subdivided into 20 subsections (left and right sides for 10 perpendicular
to the long axis of the brainstem). This gives a total of 50 voxels for each subsection.

The elementary part of the structure is the volume element, or voxel, v. For each
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voxel v, some relevant factors will be introduced, mainly the Malfunction Factor
M = M(v) as the number of involvements of voxel v in pathways of probable
malfunction and the Function Factor F' = F(v) as the number of involvements of
voxel v in pathways of probable function. each pathway being associated with an
observed test outcome. The Net—Malfunction Factor, NMF = NM F(v) is defined
as the difference between the Malfunction Factor (M) and Function Factor (F), i.e..
NMF = M — F for a given voxel or pa.thwziy, etc.. Therefore the Net-Malfunction
Factor will appropriately include both the Malfunction and Function Factors in its
structure and it is possible 1o say that the positive factors will indicate the locations
of probable malfunction whereas the negative factors will indicate the locations of
probable function. In this respect the Net-Malfunction Factor will have the following
values.
>0 ifM>F

NMF=( =0 i{M=F
<0 #HM<F

On the basis of these intervals. it is possible to assign the following parameters to

a set of Net-Malfunction Factors in a given region s.

1,and M, = [: positive NMF in s|.
r

F,= I S negative N MF in s
!

Then it is possible to visualize a relation between F, and .1/, as shown: F| is the

horizontal coordinate: M1, is the vertical coordinate in a standard Cartesian plane.

- . ) ) M
We then pose a function for comparison of M, and I, magnitudes as: tanf = F’
s

and 0 < tanf < oo, or 0 £ 8 < 7/2. There are some regions of interest. named as

follows:

08«8, Function Region
0. <8 <6 Ambiguous Region

6, <0< /2 Malfunction Region
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Figure 4.1: F, and M, to generate 6

The relation M, = (tan §)F, can be shown explicitly as follows:
(my+my s ~mp) = (tanb)(fy = fo+ - — ff)

(where the m;’s are the positive Net-Malfunction Factors in the current subsection.
and the f;’s are negative Net-Malfunction Factors in the current subsection). If
only the i2th voxel is taken into account, then the relation between this voxel and

the Malfunction Factors and Function Factors is as follows;

m; = (tan8)i(f, + f r—""‘ff)l —(my —my+ - —mpy) (4.1)
except m;
that is
m; = (tan8)F, — M, (4.2)
where Af,; = (m; +my + .-+ +my,). From Fig. 4.1 above it can be seen that the
except m;

relation between M,, and F, will be given as,
M, = (tané,)F,
therefore the Eq. 4.2 will be written as follows;

m; = (tan §)F, — (tan6,)F,



or

m; = (ta,n # — tan €1>F,

and using trigonometric identities the equation can be written as follows;

sin(8 — 6,)
= F 4.3)
cos @ cos 6, (43,
To see the behavior of this function, the first and the second derivatives of m; will
be taken with respect to 6: and 4, will be taken as a parameter. The result of the

first derivative will yield the following;

dmi _ F,sec*§

dé
which shows that it is positive and thus m; is a monotone increasing function. The
second derivative will be equal to

d®m; sin 8

dé? =2 *cos? §

which will be greater then zero as long as 8 is in the first quadrant. It shows that the
graph of m; is concave up for 0 < 6 < 90° and is concave down for 90° < 4 < 180°
and 90° will be the point of inflection for the graph of m; as a function of §. From

Eq. 4.3 the following is derived.

., my; )
sin{6 — 4,) = 7 cos ¢ cos 8,
s

and

_ 1
cosf = V1= (F +tan)’

The graph of Eq. 4.3 is shown in Figure 4.2

Referring to Fig. 4.1. it is also possible to write;

M,

T, = siné,
and,

F,

T, = cosf
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Figure 4.2: Relation between m; versus 6. (Eq. 4.3)

thus.
i) _E
@l T7,17 T,
which can be written as.
M, E,
d[ I, ] M, dé

or

a8

Assume that df =~ 6 — §,, then there is an alternative approach to estimate the
change in M, for a small change in 8 and it is also possible to observe the relation
between ¢ and 6; for the given values of m; and F,. For example. if m; = 0, then
cosf = cosf;, the 45° diagonal on the # versus 6, graph. Overall the relation
between # and 6, is used to map out the regions shown in Fig. 4.3. In this figure,
M= Malfunction. A= Ambiguous and F= Function, are the regions that are defined
above.
The Involvement Factor will be defined as I, = \/_A}ETF? . Since the Involvement
Factor is a measure of confidence in the estimates of § and 6, it is expected that
larger values of I, should yield smaller values of (6 — 8,), which is indeed the case.
Representation of boundaries between ranges of malfunction, ambiguity and

function, may be chosen in accordance with the magnitude of “Involvement” to
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Figure 4.3: Regions of Function, Ambiguity, and Malfunction

reduce premature interpretations.

4.2 Simulation
For the actual simulation the following probability model is conjectured
(4.4)

where ¢, is a calibration factor, T, is the total number of the tests applied in the
subsection. 1/, is the total number of voxels in the subsection. 1, is defined as
the total number of positive Net—Malfunction factors and I, is the Involvement
factor, defined as I, = \/.Mf + F?, where F), is the total number of negative Net—
Malfunction factors. The variable P, denotes the probability of malfunction for
the subsection. This model is chosen since it encapsulates the linear relationship
between P, and M,. Furthermore. it allows the constant of proportionality to
incorporate important attributes, such as the number of tests applied, the number of
implicated voxels, and a measure of involvement. For each subsection the calibration

factor will differ, always computed to generate a P, function which satisfies all of the
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axioms of probability. Thus it depends upon the & priori definition of the probability
sample space and the density function. Knowing the probability distribution of
the subsection it will then be possible to find the probabilities of malfunction for

individual voxels.

4.2.1 Example

In this subsection, for given data-the information obtained from a variety of med-
ical textbooks [16],[8]-about the distribution of lesions in the brainstem area for
Friedreich’s Atazia will be presented and used to compute a theoretical calibration
factor which will then serve for comparison with the results of a Monte Carlo sim-
ulation that focuses upon a typical neurological examination for a patient suffering
from Friedreich’s Ataxia. The distribution of lesions for Motor Decussation of the
brainstem is shown in Fig. 4.4.

In the simulation process, the random numbers are generated to correspond to
a normal density function. since in this case the population at large consists of
patients with neurological diseases. specifically Friedreich’'s Ataxia.

Recalling the rule of “three sigmas™. one can assert that for a normal density

p(z):
/M” p(z)dz = 0.997 (4.5)

-3

In Eq. 4.5, a is the mean and ¢ is the standard deviation of the normal density

p(z). Let (a',b') be an arbitrary interval contained in [a,b] (that is @ < d'. " < b).

The probability that a random variable X lies in the interval (a’.b') is equal to the
integral

P(a' <X < b') = /b p(z)dz (4.6)

Using this relation together with equation 4.5, one can say that

P((a _30)< X < (a+ 30)) — 0.997 (4.7)
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Figure 4.4: Distribution of positive net-malfunction factors in brainstem section
through motor decussation Ior Friedreich's Ataxia

almost unity 29!. In the simulation. the mean of the normal density is zero and it
is desired to capture an interval of length 6o for a random number range of —1 to
1.

The normal density distribution with the corresponding random number inter-
vals for the incrementation factors of Malfunctioning and Functioning are shown in
Fig. 4.5.

For each random number generated, depending on which target of A. B, C, the

random number hits. the malfunction factor of the voxels assumed to be malfunc-
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Figure 4.5: Normal Density Distribution witha =0 and ¢ = 1

tioning are incremented by (0.67.0.95.0.97) and the function factor of the voxels
assumed to be functioning are incremented by {0.33.0.05,0.03) respectively. This
1s done for the entire section for all the voxels implicated by test outcomes. Then it
is possible to calculate the positive Net-Malfunction factor (1f,) and the negative
Net-Malfunction factor ( F,). and the Involvement factor (I,). With a given & priori
probability for this specific section to malfunction. it will then be possible to find
the calibration factor for the section. Fig. 4.6 is plotted from the results of the
simuiation for the Motor Decussation section of the brain stem.

These figures are generated by using the real and simulated calibration fac-
tors which are generated in the simulation. I: is also possible to consider small
subsections of the section under study. and to then estimate the probabilities of
malfunction for these subsections. This will be discussed in the next chapter. Fi-
nally. the following table is presented to illustratively compare the calibration factor
estimates for the real data and for the simulated data. It is possible to say that. if
the brainstem section under consideration possesses a rather dense lesion distribu-
tion. then the values of the theoretical and simuiated calibration factors will hardly
differ: but if the lesion is diffused. this lack of geometrical connectivity creates a

sometimes sizable gap in calibration factor estimation.
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Figure 4.6: Simulated distribution of positive net—-malfunction factors in brainstem
section through motor decussation for Friedreich’s Ataxia
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| Sec. | Real Data-C, | Simulation-C, | % Error :

1 | 3.3391582 3.39130 % 1.534
2 | 2.9230769 2.92307 %00 |
3 | 1.6969697 1.69697 %00
4 | 2.0121212 2.01212 | % 0.0

5 | 1.6727272 1.67272 % 0.0

6 | 1.7043333 1.50000 % 11.98

T |0.9272727 0.92727 %00
8 | 1.4716008 1.47027 % 0.09

9 | 1.7396416 1.62285 % 6.71

10 | 3.4244444 1.47368 % 56.96

Table 4.1: Comparison of Real and Simulated Calibration Factors

The level of accuracy in this simulation is measured by computing a percent
error. The extend to which the underlying probability distribution is disceretly
approximated will effect the precision of the simulation. For increased accuracy,
we may approximate the underlying continuos probability density by a discrete
histogram with fragment intervals which are smaller. This in conjunction with an
increase in the number of trials for the simulation would generate a desired level of
accuracy.

Details of the simulation are available in the next chapter and the flowchart for

the simulation is presented on the following pages.
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The Monte Carlo
Simulation

r

Choose the section
to be analyzed

}

For each voxel
of the section
do following

y

For each test outcome
involved for the voxel
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Generate the first

random number
I =171+1, RND(I)

-0.33 < RND(I)< 0.33

]

Is

M(v) = M(v) - 0.68
F(v) = F(v)-0.32

no

-0.67 < RND(I) < -0.33
or

3< RND(I)< 0,

~1.0 < RND(I) < ~0.67
or

0.6 < RND(I)< 1.0
?

get the next
test outcome
I=1I-1, RND(I)

get the next
voxel N




For each voxel find
NMF, M,, F,
and

I, =\/M? + F}

Find the total number of
tests and voxels involved
in the section

Calculate:
_ Ps ° Va * Is

© =M, T,
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4.3 Conclusions

This chapter focuses upon simulation strategies to associate posterior probabili-
ties of lesion. for a given anatomical region. with an underlying patient population
possessing demographic and epidemiological attributes in conjunction with a predis-
position to certain neurological test outcomes. This simulation lays the groundwork
for the development of a library of posterior lesion probability statements which may
be associated to populations which possess certain neurological diseases. In order to
create this library, one must expand upon the neurological information base as well
as develop techniques for lesion localization for diseases' which are characterized by

a diffused and disconnected set of lesions.
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Chapter 5

DESCRIPTIVE STATISTICS
FOR THE SIMULATION

Descriptive measures which indicate where the center or most tvpical value of
a data set lies are called Measures of Central Tendency, often most simply referred
to as averages [33]. In the following discussion. some measures of central tendency,
(the mode, the median and the mean) and variation will be discussed in relation
to the probability models posed for implementing CALOND system data in lesion
probability estimation.

Our goal: Devise a method for “zeroing in” on troublesome subregions (i.e..
locate regions with high probability of lesion-and focus upon the centers of such

regions as crucial voxels for lesion localization).
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5.1 Modal discussion of a linear probability den-
sity model

The mode of a data set is defined to be the data value or values that occur most
frequently. A data set can have more than one mode. In our model. the mode is
defined as the maximum of the sum of the positive net malfunction factors. The

related calculations are shown below.

Consider the probability model of Eq. 4.4:

P_, == C,E,__—‘f.\_l-—i__— (51)
Vo /M2~ F2

where P, = P{Lesion in R,/Q,} is the probability of having a lesion in region R,
for a given set of test outcomes-@Q,, c, is the calibration factor, M, is the sum of all
the positive net malfunction factors in region R,, F, is the absolute sum of the all
negative net malfunction factors involved in R,. The Involvement factor is defined
as I, = /M2 + F?. T, is defined as the total number of test outcomes involved
in the region and V, is the total number of voxels involved in the region. As an
example. a section (R,) with related net malfunction factors. is shown in Fig. 5.1.

P, the initial probability of lesion, for R,, is obtained as an estimate from a '
physician. Knowing P,, it is possible to obtain the corresponding calibration factor:

that is
_ BV, -1,

= 0
T, - M, (5-2)

Cs

The discrete probability of malfunction for any subset of a fundamental set of voxels
can be modeled as follows:

f(M)=kM (5.3)
for that subset (which could be a voxel or a set of voxels). For the initial region the
probability of Malfunction is f,(M) = k,M where 0 < M < M,; and with the initial

condition f,(M,) = k,M,, where k, is defined as the inverse malfunction constant.
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In this model f, = P, therefore k, = P,/M,. A linear probability function model
is plausible because of the direct proportionality relation which exists between the
sum of the positive Net-Malfunction Factors and the overall probability of lesion

for a given subset of voxels under consideration.

-

Y
10
9 1 1 2
g |2 2 31 2
- | 3 3|
6 I l
5 | il
4 l |
3 l |
2 [ P
1 X

Figure 5.1: An example of a section R, with a distribution of net malfunction
factors. Enclosed with dashed lines is a subregion R,, also shown in Fig. 5.2

Consider the subregion R, that is R; C R,. The probability of having a lesion

in R, given the same set of test outcomes as in R, will be defined as.
P{Lesion in R;/Q,} = P, = ky M, (5.4)

or

T; M,

P]_ =TT
Vi\/M? + F?
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Assuming, the same sequence of random numbers, but excluding tests that do

not impact upon R;, one can make the following conditional probability statement;
P{Lesion in R)/Q,} = P{Lesion in R,/Q; in R;} (5.6)

What this will mean is that P, = k,M;, hence, k, = k; = --- = k,,. Therefore as
new subregions are taken into account the new calibration factor may be calculated

as follows;
_ka Vo I

= (5.7)

Cn

where n is the current identification number of the subregion under study. In
general. it is possible to say that the slope of the linear density function remains
constant and what changes is the calibration factor for each subregion under anal-
ysis.

Let us display the computer simulated results for the above process—in the figures
shown, the Net Malfunction Factors with 0 values are not indicated even though
they were counted as entities for the voxels taken into account-. Assuming that
the initial probability of lesion within the whole space is P, = 1, and identifying
the simulation results as: M, = 23,F, = 0,1, = 23.V, = 16,7, = 41; then the

calibration factor, c,, and inverse malfunction factor k&, are calculated as follows:

_P,'I/,'I,

Cy = T I = 0.3902439,

and
k, = P,/M, =1/23 = 0.0434783.
The first subregion is chosen such that its center will be located at the voxel
exhibiting the maxdimum net malfunction factor, as shown in Fig 5.2.
For the subregion, the number of voxels and the number of tests will change

and they are calculated as follows, V) = 7,T} = 29. Since the inverse malfunction

constant is a fixed value. i.e., k, = k1, the probability of lesion for the new subregion
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Figure 3.2: Sub-region R, of region R, of Fig. 5.1. Enclosed with dashed lines is a
sub-region R,, also displayved in Fig. 5.3

can be calculated as follows:
1
P1 = k1 . 1‘/.[1 = k, . ]lll = 2_317 = 0.7391304.

As seen above, the total net malfunction factor for this subregion is calculated as
.Ml = 17
The calibration factor. ¢, for the subregion is calculated as

ka'v'l'Il
I

c, =

l.e.,
(1/23)-7-17
= — = (.17841
C1 29 0 [ 8 08
The dimension of the new subregion will be half of the previous subregion and,
again, the voxel with the maximum net malfunction factor is chosen as the center

of the new subregion. The Fig. 5.3 will show this new subregion.

With the same approach as before, the probability of lesion and the calibration
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Figure 5.3: Sub-region R, of sub-region R, of Fig. 5.2. Enclosed with dashed lines
is a sub~region Rz, which in turn, conatins a voxel {Region R,) with M = 4.

factor for this smaller subregion are found to be

Py=k, M, = 2i310 = 0.4347826

and

ko VoL
=

c2 = 0.1242236

where Vo = 4,7, =14 and I, = 10.

A third subregion contains a total of 2 voxels and 11 tests. Therefore, the

calculation is

1
=]c . = —4 = {). T
P, s My 234 0.173913
and

23 "<

11

= (0.0316206

Finally, the voxel with the maximum net malfunction factor is defined as the

new subregion, with V; = 1,7, = 8 and M, = 4. The following values are obtained
for P, and c4,
1

P, =—4=10.17391
s = o 0.173913,
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and
L.1.4

23 '

= 0.0217391

Cq =

Table 5.1 displays all the slope and calibration factors determined for the se-

quence of subregions outlined in the preceding discussion.

Pn Mn kn Cn ?
Py =1.0 Mo =23 ko=1/23 co=0.3902439 |
P, =0.7391304 M; =17 k =1/23 ¢, =0.1784108 |
P, =0.4347826 M, =10 ko =1/23 ¢, =0.1242236 |
P, =0.173913 My;=4 ks=1/23 c4=0.0217391 |

Table 5.1: Lesion Probabilities and Calibration Factors for region and sub-regions
of Figures 5.1-3.
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5.2 The Mean as the “Center of Lesion”

The mean of a data set is defined as the sum of the data elements divided by the
number of pieces of data.

In the following example the mean and the variance of the whole region is cal-
culated by using the relative malfunction frequency in the region.

The region used is shown in Fig. 5.1. In this case, the total positive net mal-
function factor is, M, = 23, as it was calculated before.

First the mean of the z and y distances are calculated as follows;

p,={2-1—2—3-1—5-2-%—2-2-%—----1,-3'4}-é%=3.4782609%3,

1

Ly = {8-2-%—9-1+5-4+7-3+---+9-2} "33 = 7.3913044 = 7,

To find the variance, the following definition is used,

n n

Var(z) = Y (X - p2)2f(z) and Var(y) = (¥ ~ py)* ()

=1

-
-

where u, and p, are the means of the locations X and Y as calculated above,
and f(z) = f(y) = M,/M, is the relative frequency of occurrence for each voxel
involved.

Defining;

RMF =Relative Malfunction Frequency = M, /M, = f(z) = f(y)
y= the Y distance of a voxel from the origin
ty = Mean of the distance in the y-direction

V(y) = Variance of the distance in the y-direction.

Table 5.2 shows the results of the calculations.

From Table 5.2, the Variances of y and z are calculated as Var(y) = 37.478262/23
= 1.6294896, Var(z) = 19.739131/23 = 0.8582231, and the standard deviations
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Voxel RMF (X —pg) (¥ —p,) (X —us)?RMF (Y — )’ RMF
XY

2 8 2/23 -1.4782609 0.6086957 4.3705104 0.0322183
2 9 1/23 -1.4782609 1.6086957 2.1852552 0.1125175
3 5 4/23 -0.4782609 -2.3913044 0.9149338 0.9944933
3 7 3/23 -0.4782609 -0.3913044 0.6862005 0.0199721
3 8 2/23 -0.4782609 0.6086957 0.4574467 0.0322183
3 9 1/23 -0.4782609 1.6086957 0.2287335 0.1125175
4 7 3/23 0.5217391 -0.3913044 0.8166352 0.0199721
4 8 3/23 0.5217391 0.6086957 0.8166352 0.0483275
5 8 2/23 1.5217391 0.6086957 4.63133799 0.0322183
5 9 52/23 1.5217391 1.6086957 4.63133799 0.2250349

Table 5.2: Computation of Variance for Example of Sub—Regions of Figure 5.1.

will be, s.d, = 1.2765146 and s.d, = 0.9264033 respectively.

The center voxel is chosen with X = 3 and ¥ = 7 and the similar calculations
are done as before. Figure 5.4 shows the subregion. the voxels involved in the region,
and the table displaying the results of the calculations done for this subregion. In

this case, the means of y and = are found to be p,, = 2.8125 and u,, = 2.125.

L}/’
5
4] 1 2
s 2| 3] 2
5| 3] 3
1 X
1 2 3

Figure 5.4: The sub-region of region shown in Fig. 5.1.

The variances are Var(y) = 0.5273438, Var(z) = 0.671875 and the standard
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Voxel BMF (X —p.) (Y —py) (X —p)?RMF (Y —pu,)?RMF
XY

1 2 3/16 -1.125  -0.8125 0.2373047 0.1237793
2 3 2/16 -0.125  0.1875 0.0029297 0.0043945
1 4 1/16 -1.125  1.1875 0.1582031 0.0881348
2 2 3/16 0.125  -0.8125 0.0029297 0.1237793
3 3 3/16 0.875  0.1875 0.0957031 0.0065918
1 3 2/16 -1.125  0.1875 0.0791016 0.0043945
3 4 2/16 0.875  1.1875 0.0957031 0.1762695

Table 5.3: Computation of Variance for sub-region of Fig. 5.4.

deviations are s.dy = 0.7261844 and s.d; = 0.8196798. For the subregion the sum

of the positive net malfunction factors is M; = 16. Thus, we converge to the center

of lesion at X = 2 and ¥ = 2 with M = 3.

59




5.3 Discussion on the median of a linear proba-
bility density model

The median of a data set is defined as the data value exactly in the middle of
its ordered list if the number of pieces of data is odd, or it is the average of the
two middle items if the number of pieces of data is even. The region used in this
discussion is shown in Fig. 5.1.

To find the median, the X and ¥ distances are ranked in an increasing order

with their respective relative malfunction frequencies.

X 12 % 35 3, 3s 3 4, 44 58 59
Y 8 9, 5 T 8, 9, Ta 84 8s 9s
RMF | 2/23 1/23 4/23 3/23 3/23 1/23 3/23 3/23 2/23 2/23

where 25 is X =2 and ¥ = 8, that is the location of a voxel. From the frequency
distribution above, the median of X will be X = 3 and the median for Y will be
Y = 8. This voxel would be used as the center for any subsequent subregions to be
chosen in the upcoming steps. In the following tables, the results of the calculations

will be summarized, which is the appropriate compactification of previous RMF

distribution.
Voxel RMF (X¥-X) (Y-Y) |(X-X)|f(z) (Y -Y)f(y)
Xy
2 5 3/23 -1 -3 0.1304348 0.5217391
3 7 10/23 0 -1 0 0.2608696
4 8 6/23 1 0 0.2608696 0
5 9 4/23 2 1 0.3478261 0.173913

Table 5.4: Computation of the average deviations for region of Fig. 5.1.

The sum of the entries in the last columns are the average deviations for ¢ and
y, which are 17/23 = 0.739 and 22/23 = 0.9565, respectively. What this means is
that, the boundaries of the new subregion can be defined with its center located at

X=2and¥ = 2, which is shown below.
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Figure 5.5: The subregion R; with Net Malfunction Factors

With the same approach as before, the X and ¥ distances are ranked as

Y 02 |3 1, [2 |3 13 |2 'medly)=
RMF  2/15 | 1/15|3/15 | 2/15| 1/15 | 3/15 | 3/15 |

_f l' 12 ' 13 | 21 l 22 23_ ! 31 ’ 32 ’ med(:c) =2
v )

which gives the median of X as 2, and the median of ¥ as 2. Thus, we converge

to the center of lesion: (X,¥) = (2,2) for which the net-malfunction factor is

M(2,2) = 2.

5.4 Conclusions

This chapter focuses upon a variety of centralization techniques in order to “zero
in” on regions with high probabilities of lesion. This hints at the possible exis-
tence of what will be referred to as a “center of lesion”, a concept here explored
from a simulation perspective which will be carefully pursued from a deterministic
standpoint in Chapter 6.

It is known that:

a) if z,, is the mode of the data set {z,,---,zx} then £ = z,, minimizes

N

S| freats) - freq(d)]
i=1

b) if Z,, is the arithmetic mean of the data set {z;,---,zy} then ¢ = Z,, mini-
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mizes

\El-%

=1

c) if £,, is the median of the data set {z,,---,zx} then Z = Z,, minimizes
N
Z T; — z fj

i=1

For these reasons, one selects a measure of central tendency appropriate to
the needs of the problem. We have considered all of these three measures in our
discussion and chose to use the arithmetic mean in the simulation because a major
concern for us was to weigh all large Net—Malfunction Factors heavily in the process

of subregion determination.
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Chapter 6
A LOGISTIC MODEL

6.1 Introduction

We now pursue a deterministic approach to the problem of lesion localization. This
deterministic modelling may be enhanced into a stochastic analysis when coupled
with a Monte Carlo Simulation.

We intuitively observe that the distribution of lesion probability as a function
of the overall sum of the positive net malfunction factors (Af) must possess certain
trends: both asymptotic and relating to the curvature of the graph. We intuitively
recognize that as M — 0 the distribution of lesion probability approaches 0 and as
M — oo the distribution of lesion probability approaches to 1 (for the universe).

How this distribution progresses as M increases from 0 to oc is also important.
We believe that it must be monotone increasing. We are also concerned with its
rate of increase. If it increases gradually then the underlying disease associated
with this probability of lesion distribution does not have critical values of M. If it
increases dramatically, for some relatively small increase in M, then the underlying
neurological disease associated with this particular probability of lesion distribution
possesses the characteristic of exhibiting dramatic, critical changes at some point

after its onset.
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Whether or not this dramatic change in lesion probability exists is determined

the disease and patient attributes (genetic.environmental and symptomatic).

This tendency for dramatic increase in probability of lesion represents a critical

case for neurologists that warrants further study. Our approach will be algebraic.

probabilistic and will make extensive use of the calculus. In essence, we need to

explore a technique for associating patient and disease attributes to critical increase

in probability of lesion. In order to accomplish our task we must:

(1)
(2)

(3)

(4)

(5)

(6)

(7)

pose a model (discussed in Section 6.2);
justify its appropriateness (discussed in Section 6.2);

study how certain parametersin the model affect its graph (discussed in Section

6.4):

associate these parameters with patient and disease attributes (discussed in

Section 6.5 and 6.5.3);

focus upon the case in which a critical jump in lesion probability occurs (dis-

cussed in Section 6.6);

estimate the size of the lesion probability jump in terms of the patient and

disease attribute parameters (discussed in Section 6.6.1);

associate this overall jump in lesion probability with its causative criteria: i.e.,
locate an impulse (or impulses) of lesion which generate this critical jump in

lesion probability. (discussed in Section 6.8).

We ask the reader to bear with us in the following mathematical development

which will provide us with insight into the above concern.
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6.2 Justification For Model Selection

The model chosen is given as:

A

P=—rrr—

1+ Be—oM
which can be shown graphically as follows,
P
A e — -_— ;—’ ._"'° 0 v v
[ ]
[ ]
®
®
]
. o [® ¢
M

Figure 6.1: Logistic Sigmoid Model

This model is plausible because it contains intrinsic and necessary patterns in
the rate of change of P with respect to M (i.e., the slope of the tangent to the
curve).

These patterns are clear by inspection of the curve's convexity. Since one may
observe that. for 0 < M < I%E, one has P” > 0 indicating that the curve is concave
up, it is evident that P’ is an increasing function (i.e., the tangent to the curve is
becoming increasingly more vertical as M moves to the right). There is a change

InB
when M = et This point is an tnflection point because P” changes sign (from

InB InB
positive values when M < 22 o negative values when M > —n—) Thus, for
o 24

inB
a < M < MMax. of the Universe <
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it is clear that since P" is negative, and hence, P’ is a decreasing function (i.e., the
tangent to the curve is approaching a horizontal line). It is clear that. despite P
being a monotone increasing function of M (with P’ always positive for M > 0),
the asymptotic trends of the curve agree with appropriate expectations, since P
increases at the different rates which are demonstrated above.

Observe that P = A(1 — Be™*M)~! is a solution to the following Initial Value

Problem:

Initial Value Problem

Derivative Condition

Initial Value
4

M = P = —
V=0= 1-B

where P = P(M) for M > 0.

Let us study this rate of change condition in Eq. 6.1.
As P — 0,P' — 0. Also. as P — A,P’ — 0. Thus, the curve approaches
horizontal asymptotes as P — 0 and P — A, since it approaches these values but

never assumes them.
Also observe that P and P’ are well defined for all values of M. The function

P is bounded, and in fact the derivative is bounded since, first of all.

a>0

150 and 0<P<4=P >0

and further, by deriving all possible inflection points (as shown below). the slope of
the tangent,P’, achieves its maximum value for P = A4/2 (or M = (InB)/a). By

computation, we see this value to be,

A 4
Pirax == for P=%

Thus

aAd
P < —=
0< =
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° °o |® (Jj=0
M

Figure 6.2: The Asymptotes of the Sigmoid Function

6.3 Points of Inflection: A Discussion

1f
P p
! — —— —
P= M(A) (1 4)
then
" pPpP' P PP’
P'=ed|-"5 + 7 -]
and for P"” = 0 one gets,
_Ii _2PP’
4 a4

Thus. the possible inflection points will be listed as follows:

A=0 +P'=0 A/2 =P
Trivial case This occurs for | P = 4/2

P =0 or A. for M = InB/a
P =0 always | (see below)*

*(The curve never reaches these values because it approaches them asymptoti-

cally).
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[]
~ ~ ~ ~o~ Point of Inflection

SIS

I
. : (P=0

(InB)/«

Figure 6.3: Points of Inflection of the Sigmoid Function

6.4 Variations in Parametric Values

Given.
A
P= 1+ Be—eM
with
, P P
P=ai(7)(1-5)
and
" o__ ] p
P'=aP [1 - m]

By inspection of the function and derivative relationships we see that.

(i) A is primarily a parameter that determines the spread of the plot.

Since one can write P’ = o P(1 — P/4), we see that A primarily regulates when

the asymptotic trend P’ — 0 is achieved.

(i1) In the way in which B is present in the equation for P, large values of B

always cause the function P = P(M) to have drastic convexity.

(ii1) Clearly, a very large produces diminished convexity beyond all effects of

B. However a very small produces a curve which approaches a linear trend (This
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Figure 6.4: Asymptotic trends of the Sigmoid Function

is clear since
P" = aP'[l1 — P/(4/2)]
is very small for o very small which means that the convexity is very small).

That is.

PII ~ 0
= P' == constant

= P =~ linear

Which values of A, B, o yield a sequence of models which reflect certain expecta-

tions of neurologists 7 A general statement would be: The function is more realistic

for o small. not too small; B large, not too large; with A serving as a maximum prob-

ability of lesion which defines the overall spread of the lesion probability distribution.

From the trial runs attached it can be seen that o = 0.2, Py = 0.9, A = 1, B = 33.03

produce a very plausible model.
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6.5 Examples

In the following, the sigmoid logistic model has been analyzed for different values

of the parameters involved in the model. The model is given as follows:

A
P= 1+ Be~oM
For this model, B is defined as;
(T) 1
B=c.~21.2
(V) I

where c¢ is the calibration factor which is calculated from the & priori probability
conditions of the section under study; 7T is the total number of tests applied in
the section; and V is the total number of voxels involved in the section. I is the
involvement factor taken as I = /M? = F?; and M is defined as the sum of positive
net malfunction factors in the section under study. In the preliminary calculations,
A, which is the maximum lesion probability, is set to unity.

In Table 6.1', we list, for different values of o and .4, the subsequent lesion
probabilities for appropriate subregions.

The attached graphs are in two sets. Each graph depicts the Probability of lesion
versus the Positive Net Malfunction Factor. In one set of graphs. the maximum
lesion probability is held constant and the parameter a is varied accordingly. In
the other set, for a fixed parameter a, the maximum lesion probability is allowed

to vary.

1The region used is the left half of Section {J, namely voxels 700, ...,704;710,...,714.790....,794
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MIP a=01'P ¢a=02.P a=025]P a=05|P a=08
0 | 0.0060765  0.0003364 . 7.8958E-05 | 5.6E-08 9.3353E-12
8 |0.0134236 | 0.001664 | 5.8312E-04 | 3.0506E-06 | 5.6E-09

10 | 0.0163471 | 0.0024803 | 9.6103E-04 | 8.3167E-06 | 2.78E-08
15 | 0.0266689 : 0.0067137 ! 3.3464E-03 | 1.0131E-04 | 1.5304E-06
20 | 0.0432219 ' 0.018042 | 1.1583E-02 | 1.2328E-03 | 8.2949E-05
25 | 0.0693173 ; 0.047567 | 3.9297E-02 | 1.4919E-02 | 4.5088E-03
29 | 0.1 { 0.1 0.1 0.1 0.1

0 | 0.0135692  0.00075633 | 1.7751E-04 | L.2161E-07 | 2.1005E-11
8 | 0.0368572 | 0.0037349 | 1.3102E-03 | 6.8830E-06 | 1.26E-08
10 | 0.0446531 | 0.0055617 | 2.1583E-03 | 1.8712E-05 | 6.26E-08
15 | 0.0580693 | 0.014975 | 7.4928E-03 | 2.2791E-04 | 3.4434E-06
20 | 0.0922644 . 0.039685 | 2.5673E-02 | 2.7695E-03 | 1.8662E-04
25 | 0.1435277  0.10099 | 8.4224E-02 | 3.2726E-02 | 1.0088E-02
29 | 0.2 | 0.2 | 0.2 0.2 0.2

0 | 0.05211536 | 3.0195E-03 | 6.9580E-04 | 5.043E-07 | 8.4019E-11
8 |0.1090968 | 1.4779E-02 ! 5.2236E-03 | 2.7535E-05 | 5.06E-08
10 | 0.1301085 , 2.1889E-02 | 8.5831E-03 | 7.4845E-05 | 2.505E-07
15 | 0.1978161 | 5.7347E-02 | 2.8759E-02 | 9.1103E-04 | 1.3773E-05
20 | 0.2890505  0.14189 . 9.5407E-02 | 1.0987E-02 | 7.4605E-04
25 | 0.4013123 ' 0.301 i 0.2651 0.11996 3.9166E-02
29 | 0.5 | 0.5 0.5 0.5 0.5

0 | 0.3311972 | 2.6535E-02 | 6.3553E-03 | 4.5263E-06 | 7.5614E-11
8 | 0524287 : 0.11895 | 4.5127E-02 | 2.4704E-04 | 4.551E-07
10 | 0.5737639 , 0.16765 : 7.2285E-02 | 6.7T132E-04 | 2.2541E-06
15 | 0.6893805  0.3538 | 0.2138 8.1173E-03 | 1.2394E-04
20 | 0.7853675 . 0.59811 ' 0.48698 4.066E-02 | 5.3467TE-03
25 | 0.8578108  0.8018 | 0.76815 0.55022 0.26839

29 | 0.9 ' 0.9 ' 0.9 0.9 0.9

Table 6.1: The list of lesion probabilities vs M for different values of a and A4.
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The values of Table 6.1 are plotted in Figures 6.5-6.9, they are graphs of

A

P=—roe——
1+ Be—aM

with M on the horizontal axis, and P on the vertical axis. Four curves are shown
on each page; individual curves for 4 values of: 0.1, 0.2, 0.5 and 0.9. The plots on

each page have a fixed a value.
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Figure 6.5: Probability vs Net-Malfunction Factor for « = 0.1



Q.20

PROBABILITYNALPHA

0.9 4

0.8 +

0.7 4

0.6 1

1

8 10 15 20 25 29

POSITIVE NET-MALFUNCTION FACTOR
A0.10 - A0.20 o AQ.50 a A0.90

Figure 6.6: Propability vs Net-Malfunction Factor for o = 0.20

T4



0.25

PROBABILITYNALPHA

0.9 -~ p
0.8 1

0.7 4

0.6 — /

0.5 /]

| i

8 10 15 20 25 29

0 & & 2 =
0
POSITIVE NET—MALFUNCTION FACTOR

=z A0.10 - A0.20 o A0.50 A A0.90

Figure 6.7: Probability vs Net-Malfunction Factor for & = 0.25

-]

(<11



0.50

PROBABILITYNALPHA

0.9

0.8

0.7

0.5

0.4

0.3

0.2

0.1

= 3
—! /
/

= /

| ,
) /

|
4 i
; yd
4 / 2
& & —& ’ = T

0 8 10 15 20 25 29

POSITIVE NET-MALFUNCTION FACTOR
AD.10 - A0.20 o A0.50 A A0.S0

Figure 6.8: Probability vs Net-Malfunction Factor for @ = 0.50



0.80

PROBABILITYNALPHA

0.9

0.8

0.7

0.6

a.5

0.4

0.3

0.2

0.1

0 8 10 15 20 25 29

POSITIVE NET-MALFUNCTION FACTOR
AQ.10 - A0.20 o AQ0.50 a A0.90

Figure 6.9: Probabiiity vs Net-Malfunction Factor for a = 0.80



6.5.1 Trends in the overall distribution of lesion probability
effected by the parameter «

We observe that, as expected, large values of a (say, a = 0.80) produce a family
of curves that experience extreme convexity. There is evidence of a critical value
for M which, when attained, causes the lesion probability to rapidly jump from a
very small to a very large value. This jump is, of course, proportional to 4. As
a decreases, and reaches a value of 0.50, one begins to see traces of our desired
schematic in an apparent change of convexity visible for large values of 4.

Let us allow a to decrease further. We see that (for larger values of A) an « value
of 0.20 produces a curve reflecting our expectations~since small changes in value of
M should not produce drastically different lesion probabilities. Even smaller values

of a produce a family of curves that approach linearity with a jump near M = 0.



The values of Table 6.1 are plotted in Figures 6.10-6.13, they are graphs of

A

Pe=
1+ Be—oM

with M on the horizontal axis and P on the vertical axis. Five curves are shown on

each page; individual curves for & values of 0.1 0.2, 0.25, 0.50 and 0.80. The plots

on each page have a fixed 4 value.
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6.5.2 Trends in the overall distribution of lesion probability
effected by the parameter, 4

The desirable convexity trends for

A

P
1+ Be-aM

are apparent for larger values of A.(4 = 0.90), and a in the range of 0.1 < a < 0.5
The family of curves generated for fixed A values where 4 < 0.5 do not reflect the

convexity changes which we seek.

6.5.3 Significance of the results on the variation of para-
metric values

Our motivation in pursuing a comparison of the logistic model curves for different
values of & and 4 is based upon some intuitive understanding of the graphical
charateristics of the overall probability of lesion as a function of M (M being the
aggregate of all positive net malfunction factors). Exaggerated convexity which is
attained for a large, indicates the presence of a critical value for M/ at which a
large jump in lesion probability occurs; this may be considered a tlilreshold value
which, when attained, leads to an almost certain presence of lesion. When convexity
changes are almost absent (i.e.. a small) the overall lesion probability is almost
linear-there is no presence of a threshold value. which suggests we should turn to the
concept of a malfunction angle 6. as discussed in Chapter 4, to locate the transition
point for M (i.e., the M values for which one crosses from the “ambiguous” to the
“malfunction” regions).

The more speculative case is for moderate convexity in which a is midrange
(say, 0.2 < @ < 0.8); we see that the inflection point represents the M* value
(M* = inB/a) which, when attained, indicates that the overall lesion probability is
increasing rapidly rather than slowly as before. This M* is somewhat of a threshold

and it should represent to the neurologist, making use of this model. that M > M*
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represents entry into a cautious region in which the overall lesion probability may
rapidly escalate with future malfunction test outcomes.

Small values of A correspond to neurological examinations focusing on anatom-
ical regions or diseases with a minimal overall lesion probability. No threshold is
apparent since there is little range for probability fluctuations.

The severity of the nature and outcome of a2 neurological examination may be

partially viewed in terms of the chosen value of 4 as shown below.

SUB. MODERATE CRITICAL SUP.

$ + 4
0 0.1 0.5 0.9 1

i
T

1

Figure 6.14: A values and corresponding level of severity

where. SUB=SUBCRITICAL. and SUP=SUPERCRITICAL respectively.

In actuality, future research may focus upon associating a set of values for the
triad (e, B, A) with all acquired personal data for the patient undergoing the
examination as well as the primary symptomalogy which is present (suggestive of a
specific disease). This association process would involve extensive Monte Carlo sim-
ulation in conjunction which significant expansion of the neurological information
database.

The physician would then be able to identify «, B and A for the patient he is
about to further examine and actually see from the plot of P(M) versus M, the
presence or absence of threshold values presenting regions of lethality, as well as the

overall limiting value of probability of lesion.
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6.6 Step Function Approach

In this section, the sigmoid logistic model will be viewed as a step function generated
by lesion impulses. It was observed that exaggerated convexity in the logistic model
(i.e., a large) produces drastic change in the P" polarity (from positive to negative).

Recall that,

. p' 2pp
P =°‘A[E_ A2 }

and assume M is in the neighborhood of the inflection point: P = A/2 for M =
InB/a. For P =~ A/2, the curve possesses exaggerated convexity in the following
cases: at least one of the following are large: «, A4, P'/4, 1 — 2P/A4; while the
other remaining three quantities are not very small.

Consider the following figure,

M

Figure 6.15: Exaggerated convexity of the Sigmoid Function

The original function is given as:

A
P
1+ Be—eM
Here M, is in a § neighborhood of l_ng,
a
|.° InB

ix'%———a— < é for 6 >0, small

86



Suppose,

InB
M -22 =¢ = very small.

e

or
InB
My=a+ 22
o
then
A
PI = 1+ Be~—aia+inB/a)

or

P = A _ A

1=+ Be—aqe—lnB ] + e~

It is clear that
1 - alarge allows 1P, —A/2! to be large, which is necessary for exaggerated convexity.
2 - A large also allows extreme convexity simply because A4/2 and A4 are very far

apart iff 4 is large.
3 - Consider P'/A. P'/A is large iff we are in a neighborhood of InB/4 (which is

indeed the case!) and then it may be estimated as follows:

P P
P=ad(3)(1-3)
ad 1 1 1
Pl
T=e(3)(-3)
LN (E) (l) =2
4°%2)\2) 7%
- (1 - 2P/.4> is small in a neighborhood of the inflection point and hence only
very large values of a and/or A can produce a large P"(M,;) if ¢, is very small;
but it is, never the less, possible to give appropriate @ and 4 (lower bounds) for

which any pre specified P” value will be attained within an ¢; neighborhood of the

inflection point.
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6.6.1 Estimation of change in lesion probability for large o

P

<

| AM| M

Figure 6.16: Changes in M and P

Let @ be the change in the probability,

Change in vertical direction = @ = AP

Change in horizontal direction = 26 = AM

@ represents the change in the probability for some AM.

y:| A
P-P=0=1Tgar 1T g
But AIQ =4M1 +25.
4 4
P,-P=Q=

1 + Be-a(Mi+25) | . Be-odh
After some simplifications

ABe_o‘M‘ [1 - e-2a6]
Q=

(1 + Be~aM:) [1 + (Be—aM )6_20‘6}

Let £ =1+ Be M then

(2-1)-(1 e

=i G D)

Then, if we let
and F=z¢
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we have
A(1 — ™28
E 4+ Fe~2aé

It is clear that E and F are functions of a: but, they are independent of § and.

Q=

for the moment, our goal is to find an estimate of Q as a function of §.
Allowing e™2% to be approximated by the first 3 terms of its Taylor Series
(e72@6 =~ 1 — 22§ + 22%6%) we find

A(2ab — 2a262)

O FTF 206 <2078
and for § very small
24ad

°=ErF

but, since
calM
E = 7" 1

and

we may estimate

E+F b -2
Y 7B
for a large.
Thus
0~ 24aé _ 24Boé
~ EQTM P - eaM1 - QB

i.e., our estimate of Q) is governed by the proportionality

248«
Q~ (e"‘M’ +2B)6

@ represents the jump in lesion probability for a § neighborhood between M; and
M,. If M, is chosen to be M; = InB/a, then

24AB«
@~ 3B

2
= =(Aa)é
3( )
is our estimate for the lesion probability increase.

89



6.7 Moments

6.7.1 Definitions

First consider the following definitions31].

The Moment generating function:

Mx(0) = E(e@=> - /_: €% f(z)dz

The double sided Laplace transform:

= c{f)} = [ et

The following properties of the Moment Generating function will be employed:

My(® =0)=1

dMy

L0 =0 =4
d*Mx

~0° (@=0)=p*+o°

[ Please note that Mx (@) exits and is well defined if f(z) is a probability density
function: the Laplace transform of a probability density function is also well defined
since these density functions are piecewise continuous and of exponential order (i.e

they can be bounded by an exponential with linear argument).]
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6.7.2 Moment generating function for lesion probability den-
sity

Now recall our probability distribution

A

T~ 1+ Be==

F(z) = P{X <z}

as }L%F(a:) = A =1 for the universe, and it is less than one for subregions of the

universe. We observe that the density function which generates this distribution is

ABae™

:m for — 0w <t< >

f(2)

where A = 1 for the universe. In addition, we require

/_Z F(t)dt = 1

and indeed

z  4Bae

. . A
Ill’% -0 (1 Be""‘)zdt - zan;(l + Be'“’) =d=1

Hence we may consider a double sided Laplace Transform,

L{f0}y = [~ e Aty

analogous to the Moment Generating function.

Mx(©) = /°° €% f(z)dz

— oo
Laplace Transforms exist for functions of exponential order which are piecewise

continuous on the real line. Thus we see that;
L{f(t)} = F(s) and Mx(f(z)) = M(Q)

SO we assoclate
F(~s) = M(Q) or F(s)= M(-0)

In order to generate Af(@) for our lesion probability distribution we must compute

® oz © ABael®~%)=
MX(@) =Lm€® f(-'I:)d:c =[_wm T

and this result may be used to find x and o2 for our lesion probability distribution.
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6.7.3 Motivation

The distribution for lesion probability, P(M) = A/(1+ Be™*M), may be
viewed as the moment generating function of a lesion impulse density

for o large, (i.e., P(M) is almost a step function).

Consider the concept of "center of lesion” equivalent to an impulse. When the
lesion probability distribution function comes in contact with this location (center
of lesion—identified by M* value) the probability jumps from (£,) to (1 — £2) within

a 26 interval.

4 }(A—fz)

/‘ Inflection Point
£

M*  Center of Lesion]

Figure 6.17: Center of Lesion

A Lapiace transform operates on an impulse function to generate a step function
as its end product. The following relation will be explored using the Laplace Trans-
form properties: if a probability of lesion distribution can be modeled by a step
function, then the inverse Laplace Transform of this distribution, if it exists, may
approach an impulse (or sequence of impulses) which may be considered causative
(from a neurologist’s perspective). Hence, one may infer the presence of a lesion at
such a location, and one may refer to the center of the impulse region as a center

of lesion. Thus,
L{Impulse function} = L{L™{F(M)}} = F(M) = Step Function
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where

A

F(M) = T g

= L{Impulse Function}

Hence

A
Impulse Function = £ {T:ETM}

The explicit solution of this Inverse Laplace Transform is shown in section 6.7.

6.7.4 Observation

Given X. a random variable, §Sy, its corresponding sample space. and f(z), its

corresponding continuous probability density function. then the moment generating

function is found by evaluating
Mx(0O) =/ e® f(z)dz
SSx

which becomes
o s}
Mx(0) = /0 e f(z)dz +/ e f(z)dz

if §5y = (—oo0.0). If we then let u = —z we have,

Mx(0) = /0 e % f(—u)du —1-/0°° e % f(—u)du = /w e f(—u)du

P -0
Thus if we viewed this final expression as depicting some moment generating func-
tion we could conceptualize —u = X as a random variable and S5., = (—oc.x)

as the new sample space and
M_.(©) =/°° =% f(—u)du

or

M_,(0) = /;Oco e ® f(—u)du + /ooo e f(—u)du

Now if we let f(—u) = g(u) then,
M-u(©) = L{g(u)}
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Furthermore. if g(u) is the density function for the lesion impulses. which are de-

picted as generating our step function, then

A
Li9} = T gmem = M-u(0)

And thus we may compute g and o for the impulse densitv function using the

properties in section 6.6.1. That is.

d d d I' 4
Eﬁ{g} - Z;P(s) - al_l - Be""}ia:o
d ABa
Ol (1+B)
and since
dM—ui —
d@ I@:O— K
then,
_ ABa

is the centroid for the lesion Impulse density function.

The variance will be calculated as follows:

dzp(S)! 2, )
dSZ Ea:O—'u e

We find
2. g2 ABo*(B -1)
b =T a=By

and hence eliminating u*

.  ABo*(B*— 4B -1)
B (1+ B)*

(o2
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6.7.5 Series Expansion of L{g(u)}

We wish to find the density for the lesion impulse(s). This is facilitated by a power
series expansion of P(M).

The model is given as follows;

A
-— 6.2
P 1+ Be—-aM ( )
Recalling the geometric series theorem:
N k
PQM) = Jim S A(=1)* [Be~°M] (6.3)

k

I
=)

provided that the following convergence condition holds:

}Be'“M'i <1
|

Let us explore this convergence condition. If P, is a value of P(M) for which

we have convergence then we require;

A

P —
0 1+ Boe“"MO

where

_ To - co -
BO = L,o -IO (60)

If we set 4 =1 (as we do for the sample space)
P [1 - Boe*°M°] =4=1
hence

1-P5
Py, ’

Boe—aMo —
and since we require i Boe *M°! < 1, we then find
1
< 1= 5 <PF<l1

or, in general, -’21 < Py < 4 and. hence, InB/a < My < oo.
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Furthermore using Eq. 6.5

TO'CO_]-—POecuWo
Vo-Io P

or

¢ = 22 Lo g _;:D")GQMO. (6.6)
where {(1 — Py)/Py| < 1. No other requirements on Vy, Ty, [y or M, are present.
Clearly, from our plots in section 6.4, curves with 4 > 0.5 possess the desired
convexity changes which may for some values of the parameter produce curves
which model a step function.

For a given region with known values of P;. My and a (for which A/2 < Py < A4)

one can find By and subsequently, co. In addition. we can verify that.

1
§<Po<1 for 4 =1

1
<1
1+ Boe“‘M"

o | =

2> 1+ Bge oMo > 1
or

1> Bpe™*Mo 5

Hence. it is important to check that
emwo > By >0

for any estimation of Py using a numerical algorithm.
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6.8 Solving for the lesion impulse density func-
tion

Recall that the density function for lesion impulses can be obtained by

A
-1
£ {1 + Be""}

using our power series expansion.

Since
A

1 + Be—a®

F(So) =

we can write

N
F(so) = lim Y 4(—Be®°)¢ for

N—oo k=0

< F(se) £ A

]

where a > 0. B is positive and real. We may write explicitly and in general.

F(s) = A{l — Be™™* + B?e7%® _ ... _B"e ™ ...| for s = s

Recall that F(s) =~ A4 (i.e., a step function) and applying the following Laplace
Transform property,

F(s)e™ — f(t — a)

one obtains
F(t) = A|6(t) — B6(t — ) + B*6(t — 2a) — -+ + B"6(t — na)---

or

F(t) = i‘(—l)"AB"&(t — na).

n=0

which represents a sequence of lesion impulses that reflect the sudden increase in

lesion probability as depicted by our step function.
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In the following figures. the function F(s), and the Laplace Inverse of F'(s), that

is f(t), are shown respectively.

Figure 6.18: The Step Function F(s)

Figure 6.19: The Sequence of Lesion Impulses
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Chapter 7
CONCLUSIONS

7.1 Summary

This thesis explored the localization of lesions in the human nervous svstem based
on ;)bserved test outcomes. First, we addressed the issue of probability of lesion
and turned to a Bayesian model as a technique for using & priori information to
estimate posterior probabilities of lesion based on test outcomes. The Bayesian
model was presented, with all its shortcomings, and hence we were led to explore
certain methods and alternative models to deal with the sparsity of data and a

limited neurological information base.

After a brief introduction. in the First Chapter, the literature survey was inter-
posed focusing on papers and books dealing with relevant topics from 1959 to 1989.
Chapter 2 was devoted to a Bayesian formulation of the CALOND. Eq. 2.8 of this
chapter was the fundamental equation used for our preliminary studies. The pur-
pose was to find the estimate of a lesion probability at a certain voxel for a given set
of observed test outcomes. But the need to be able to estimate certain parameters
of the fundamental equation was the main problem. For example, it was not feasible

to obtain the 4 priori probability estimates for the presence of a lesion at a certain
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voxel. Recall that, there are 1000 voxels. as defined in this model.

Observing the linear relation of the parameters of the fundamental equation, it
was possible to apply a Regression Analysis. which in turn helped us to derive a
functional relation between the unknown probability estimates. Initially, a linear
first order model (with a physician’s experience factor taken into account) was
introduced. The lack of data was a major drawback which led us to simulation.

In Chapter 4, The Monte Carlo simulation was introduced: first the functional
relation between the positive net-malfunction factor and negative net-malfunction

factors were presented. Then. a new probability model was defined as:

P, =c T, - M,

s 1, - 1,
where. ¢, was defined as the Calibration factor and I, was defined as the Involvement
factor. On the basis of this model, for a specific case-Friedreich’s Ataxia-the simu-
lation results showed that the calibration factors hardly differ if the given brainstem
section contains a rather dense lesion distribution, and if the distribution contains
lack of geometrical connectivity, then there was a notable difference between the
real and simulated calibration factors.

The descriptive statistics of the simulation were studied in Chapter 5. The
mode. mean and the median were discussed in relation to the probability model
posed for CALOND, since they served as the basis for subregion determination in
our simulation.

The Logistic Sigmoid Model was introduced in Chapter 6. The model was

defined as:
A

P =
1 + B,e~aM,

and the relation between this model with the linear one was depicted in the value

of B as:




Under these assumptions, the plots of the probability of lesion versus the Positive
Net-Malfunction Factor. for different values of a and P,, were compared and it
was shown that 0.1 < a < 0.5 and 4 > 0.5 provide the expected convexity of
the curves in our model. In the last portion of this Chapter, a severely convex
logistic sigmoid model, i.e., a step function-like approach, was analyzed. It was
shown that, the distribution for lesion probability, P(M) = 4/(1 + Be~*M), may
be viewed as the moment generating function of a lesion impulse density, which for
large « approaches a step function. Using transform methods a sequence of lesion

impulses. which generated this large jump in lesion probability, was derived.

7.2 Conclusions
From the preceding summary, we focus upon some salient conclusions:

1. Modelling a predictor probability distribution to localize neurological lesions
may take a variety of approaches and formulations—from strictly empirical
estimation—to randomized simulation of patient and disease attributes—to more
deterministic perspectives which identify a classical case (such as logistic sig-
moid nonlinearity) and then parameterize it to appropriately reflect true char-

acteristics of the initial problem under study.

[

Computer aided medical diagnosis, which makes use of the CALOND database,
must find a medium through which the physician may associate an underly-
ing probability of lesion distribution with the patient currently undergoing a
neurological examination. This connective medium must consolidate patient
attributes and symptomology (in the form of neurological test outcomes) and
apply this 4 priori information to a synthesizing process which produces a
posterior probability of lesion distribution. The groundwork for this synthesis

has been laid in the following discussions.
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a) The initial step in the generation of a posterior lesion probability dis-
tribution involves the application of Bayes’ Theorem. An appropriate
statistical process has been identified to estimate posterior probabilities:
regression analysis. This process is inherently compatible with our goals

because of the existing linearity mandated by Baves’ Theorem.

b) A primary contribution made by this thesis is the subsequent identification
of appropriate linear and non-linear models which incorporate personal
and symptomatic attributes of a patient undergoing a neurological ex-
amination into the Bayesian (i.e., conditional: based upon all available

historic information) framework.

¢) Randomized simulation is applied to extract an estimate of the true under-
lying probability of lesion in cases where empirical data cannot be feasibly
obtained. This simulation associates underlying patient attributes with

neurological test outcomes to produce posterior lesion probabilities.

d) Techniques for converging upon anatomical subregions which contain the
centroid of a lesion (or set of lesions) are presented and compared by
way of a simulation for a specific example. In addition. overall descrip-
tive statistics of net malfunction factors are used to set guidelines for

identifying anatomical regions of function. malfunction and ambiguity.

e) The thrust of this work has been to consolidate and interrelate geometrical.
algebraic, statistical. and probabilistic elements of CALOND~-which ex-
ists as a database in the form of pathways of function or malfunction-and

to use this interrelatedness to best localize neurological lesions.

f) The concept and potential existence of net—malfunction factor threshold
values were explored. These threshold values indicate levels of criticality
present in the neurological examination and are understood to reflect a

certain “risk” value which exists for patients with the specific set of per-
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sonal and symptomatic attributes which produce those values of certain

parameters in the “at-risk™ intervals

3. This thesis lays the groundwork for some useful and much needed future re-

search as presented in the following section.

7.3 Suggestions for Future Research

The author believes that, the work done in this thesis was indeed a very small
unit of possible research topics which would be appropriate follow up studies. The

following are areas for potential future research:

o Use the results of the CAT Scanning or NMR in combination with CALOND.

to find the probable lesion locations.

e Expand CALOND to layout the pictures of the section under study—even

though the colored sections are prepared, they have yet to be used.
e Develop a user friendly, marketable product.

e Explore neurological diseases which possess a probability distribution which
approaches a step function and identify the threshold value for A (i.e.. the

inflection point).
e Associate specific values of a. B. 4 to certain diseases using nonlinear regres-

sion analysis.

o Explore additional techniques for the determination of subsequent subregions
in the Monte Carlo Simulation. other than the measures of centrality used in
this thesis. This would aid in the analysis of lesions that are not spatially

connected.
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¢ Explore differing underlying patient population distributions. such as Bernoulli,
Gamma, Poisson, Cauchy, etc., to characterize the role of individual human

attributes and how they relate to neurological test outcomes.

e Explore neurological examination procedures and isolate an appropriate order

for test application based on some initial selective criteria.
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Chapter 8

Glossary

Symbol Range and Definitions
b;; Estimated values of the parameters J3;
c,; Calibration Factor
f(M); Discrete probability of malfunction for
any subset of a fundamental set of voxels
F: Function Factor
F(s); Double sided Laplace Transform Function
F,; Sum of the negative NMF in section s
Ey; (v=1,...,V)
Event that voxel v is functioning
i (t=1,...,1)
Identification number of test (listed) in the
TESTBASE.
(n); (n=1,....N)
ID number of nth test performed
I,; Involvement Factor in section s
j; (j=1,...,.]1)
Identification number of outcome (listed) in the
TESTBASE for test ¢
j(n); (n=1,...,N)
ID number of outcome of nth test performed
k,; Inverse Malfunction Constant
M; Malfunction Factor
Mx(©); Moment Generating Function
M,; Sum of the positive NMF in section s
M,; (v=1,....V)
Event that voxel v is malfunctioning
n; (n=1,...,N)
(Consecutive) test sequence number
N:; Total number of tests performed
NMEF; Net Malfunction Factor
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Range and Definitions

(2
7
Vs

Viz(y));
V(b);

.\E(Y);

B3

Hz(or y)

b,

Verbal description of jth outcome of test ¢
The probability of malfunction in the
section s for a given set of tests outcomes
0= (Oi,j; 1= 1,...,.[; ] = 1,...,.71)
Set of all test outcomes

~ | in) _
Test outcome (vector) for nth test performed
Randomly chosen region s under study
Residual sum of Squares

T =(T,...,Ty)
Set of all tests in CALOND
(r=1,....1)

Verbal description for test i

Total number of tests applied in
section s

(r=1,....1)

ID number of voxel v

Total number of voxels involved in
section s

Variance of the distance z(y)

Variance. covariance matrix for
Regression coefficient matrix &
distance of voxel with respect to origin
(0,0) with respect to X(Y)

(i=0.1)

Unknown parameters of the linear regression
model

Mean of the distance in the z(y)
direction

Malfunction angle
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Appendix A

Brainstem

The following material is ezcerpted from * Human and Physiology-Siructure and
Function™ by D. §. Luciano. et. al.. McGraw Hill, Second Fd.. 1983.

Brainstem is literally the stalk of the brain. through which passes all the nerve
fibers that relay signals of afferent input and efferent output between the spinal
cord and higher brain centers. In addition, the brainstem contains the cell bodies
of neurons whose axons go out to the periphery to innervate the muscles and glands
of the head. the heart, and the smooth muscles and glands of most thoracic and
abdominal viscera. The brainstem also receives many afferent fibers from the head
and visceral cavities via the cranial nerves. In contrast to the distinct white and
gray areas of the spinal cord. the tracts and nuclei of the brains are intermingled.

The medulla oblongata is the section of the brainstem continuous with the
spinal cord below and the pons above. Its junction with the cord reflects a gradual
change from the external tracts and internal columns of nuclei that exits at the
upper levels of the cord. Efferent axons emerging from the medulla via cranial
nerves VIII, IX, X, XI, and XII control areas of mouth, throat. neck. throax, and
abdomen.

The pons is both wider and thicker then the medulla and is easily distinguished
by a band of fibers running across its ventral surface. These fibers converge at each

side of the pons into bundles called the middle cerebellar peduncles, one of
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the three pairs of fiber bundles that carry information between the brainstem and
cerebellum. The afferent and efferent components of cranial nerves V, VI, and VII
connecting with the pons are from the head.

The midbrain is a relatively short part of the brainstem and is somewhat
constricted in comparison with the pons. It is traversed by a huge number of axons
that contribute to the corticospinal and spinoclortical pathways. It contains major
nuclei associated with eye movements and hearing.

Running through the entire brainstem is a core of tissue called the reticular
formation, which is composed of a diffuse collection of small, many branched neu-
rons. The neurons of the reticular formation receive and integrate information from
many afferent pathways as well as from many other regions of the brain. Some
reticular formation neurons are assembled together, forming certain of the brain-
stem nuclei and "centers”. such as the cardiovascular, respiratory, swallowing, and
vomiting centers. The output of the reticular formation can be divided function-
ally into descending and ascending systems. The descending components influence
efferent neurons in the cranial and spinal nerves and frequently afferent neurons as
well; the ascending components affect such things as wakefulness and the direction

of attention to specific events.;10]

A.1 Definition of selected neurological terms

afferent pathway: The components of a reflex arc that transmits information from
a receptor to an integrating center: any pathway that conveys information toward
the central nervous system (or toward the brain).

corticospinal pathway: A descending motor pathway that has its nerve cell bodies
of origin in the cerebral cortex; the axons pass without synapsing to the region of
the motor neurons; also called pyramidal tract.

efferent pathway: That component of a reflex arc that transmits information
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from the integrating center to the effector; any pathway that conveys information

out of the central nervous system (or away from the brain within the central nervous

system).

ventral root: A group of efferent fibers that leaves the left and right side of the

region of the spinal cord that faces the front of the body.

viscera: The organs in the thoracic and abdominal cavities

e
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Appendix B
A Regression Analysis Model

The following material i1s ezcerpted from * Applied Regression Analysis™, by N.
R. Draper and H. Smith, Wiley and Sons, 1988.

For any system of which variable quantities change, it is possible to examine the
functional relations between variables. Often these functional relations might be too
complicated to handle or describe in simple way. But it is possible to appreximate
these relationships by some simple mathematical function. Then. it will be possible
to learn more about these variables. In this research. a linear relation in unknown
parameters is assumed. These unknown parameters are estimated under certain
other assumptions with the aid of the available data. In this case it is the construc-
tion of a fitted straight line with the pairs of observations (X;.1}7),---.(X,.}Y,) and

the model is linear. first-order. given as;
Y = ,’30 -+ /31X 4 €

where X is the given data., Y is the corresponding observation, ¢ is the increment
by which any individual ¥ may fall off the regression line, or simply the error. &,
and 3, are called the parameters of the model. The estimates of these parameters,

bo and b, can be find as follows:

Y =bo+ 50X
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where Y is the predicted value of Y for a given X. For an estimation Least Squares

procedure will be applied that is;
S=3 &= (Y5~ X

which shows the sum of the squares of deviations from the true line. After cer-
tain steps of mathematical calculations the following will be derived for b; and b,

respectively;
S(X = X)) - X)
S(X; - X

bo =}7—b1}:’

b1=

Knowing b, and by, it will be possible to find the confidence intervai for J; and J,.

Let ©(X;-X)Y = ¥ T(X; - X) =0, than the equation for 5, will be as follows:

b = S - XY,
PTOS(X - X

the variance for b; will be:

2
g

Verlh) =% - xR

and the standard deviation will be:

g

.s'e(bl) = {E(-Yt _ _j{’)ﬁ}l/?

for ¢ known.
Under the assumption that variation of the observations about the line are nor-
mal, that is, the errors ¢; are all from the same normal distribution. \'(0,¢?), then

100(1 — )% confidence limits can be assigned for b, by calculating,

_tn—2,1-2a)e
PTEE X

b

where t(n — 2,1 — 1) is the (1 — Ja) percentage point of a t-distribution, with

(n — 2) degrees of freedom.
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In a similar way, a confidence interval for Jp and the test of whether or not &g

is equal to some specified value, can also be constructed. In this case.

TX: w2
selbo) = {n\,“(xi = X‘)z} i

thus 100(1 — )% confidence limits for J, are given by,

P cxz
bort(n_-’l—Ea){nS(X,'—X)Z} s

Finally the standard error of ¥ can be calculated as follows, first the variance

of the predicted mean value of Y, Y} at a specified Xy, of X is,

X, - X2

A(Y) = V(YY) = (X, — X218, _-_1::_;.——-—_.—
V(YY) V(Y) = (Xe = XD)°V(h) n TSN oX7

which gives
1 Xy - _‘{")2 11/2

est.s.e(Yr) = s{-T-L - X X))

which is minimum when X, = X and decreases as X, moves away from X in either
direction. In other words, the greater distance an Xy is from X, the larger the error

expected to get. [9]
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Appendix C

Monte Carlo Simulation

The following material is ezcerpted from “ Simulation and the Monte Carlo Method™
by R. Y. Rubinstein. Wiley and Sons, 1981

The Monte Carlo method-or method of statistical trials- consists of solving var-
ious problems of computational mathematics by means of the construction of some
random process for each problem, with the parameters of the process equal to the
required quantities of the problem. These quantities are then determined approxi-
mately by means of observations of the random process and the computation of its
statistical characteristics, which are approximately equal to the required parame-
ters.
In the more strict sense of the term, the Monte Carlo method is defined as the
construction of an artificial random process possessing all the necessary properties.
but which is in principle realizable by means of ordinary computational tools.
The following situations will show where the simulation can be used successfully.

(1) It may be impossible or extremely expensive to obtain data from certain pro-
cesses in the real world. Thus simulated data are necessary to formulate hypothesis
about the system.

(2) The observed system may be so complex that it can not be described in
terms of a set of mathematical equations for which analytic solutions are available.

(3) Even though a mathematical model can be formulated to describe some
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system of interest, it may not be possible to obtain a solution to the model by
straight forward analytic technique.

Although it may be conceptually possible to use set of mathematical equations to
describe the behavior of a dynamic system operating under conditions of uncertainty
present-day mathematics and computer technique are simply incapable of handling
a problem of this magnitude.

(4) It may be either impossible or very costly to perform validating experiments
on the mathematical models describing the system, thus the simulated data can be
used to test alternative hypotheses.

Simulation analysis might be appropriate for the following reasons.

(1) Simuiation makes it possible to study and experiment with the complex
internal interactions of a given system.

(2) One can study the effects of certain informational, organizational, and envi-
ronmental changes on the operation of a system by making alterations in the model
of the system and observing the effects of these alterations on the system’s behavior.

(3) Detailed observation of the system being simulated may lead to a better
understanding of the system and to suggestions for improving it, suggestions that
otherwise would not be apparent.

(4) Simulation can be used as a pedagogical device for teaching both students
and practitioners basic skills in theoretical analysis, statistical analysis. and decision
making. Among the disciplines in which simulation has been used successfully for
this purpose are business administration. economics. medicine, and law.

(5) The knowledge obtained in designing a simulation study frequently suggests
changes in the system being studied. The effects of these changes can then be tested
via simulation before implementing them on the actual system.

(6) Simulation of complex systems can yield valuable insight into which variables

are more important than others in the system and how these variables interact.
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(7) It can be used to experiment with new situations about which we have little
or no information so as to prepare for what may happen.

(8) It can serve as a preservice test to try out new policies and decision rules for
operating a system, before running the risk of experimenting on the real system.

(9) They are sometimes valuable in that they afford a convenient way of breaking
down a complicated system into subsystems, each of which may then be modeled
by an analyst or team that is expert in that area.

(10) It makes it possible to study dynamic systems in either real time. com-
pressed time, or expanded time.

(11) When new components are introduced into a system. simulation can be
used to help forsee bottlenecks and other problems that may arise in the operation
of the system.

Computer simulation allows us to induce correlation between the random num-
ber sequences to improve the statistical analysis of the output of a simulation. In
particular a negative correlation is desirable when the results of two replications are
to be summed, whereas a positive correlation is preferred when the results are to
be differenced.

Simulation dose not require that a model be presented in a particular format.
It permits a considerable degree of freedom so that a model can bear a close corre-
spondence to the system being studied.

Simulation is by no means ideal. It is an imprecise technique. It provides only
a statistical estimates rather then exact results, and it only compares alternatives
rather then generating the optimal one. It is also a "slow”™ and " costly™ way to study
a problem. It yields only numerical data about the performance of the system, and
sensitivity analysis of the model parameters is very expensive. The only possibility
is that to conduct series of simulation runs with different parameter values

Simulation is defined as a technique of performing sampling experiments on
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the model of the system. Since sampling for a particular distribution involves the
use of random numbers, stochastic simulation is sometimes called lfonte Carlo
Simulation. The Monte Carlo Method was considered to be a technique. using
random or pseudorandom numbers, for solution of a model. Random numbers
are essentially independent random variables uniformly distributed over the unit

interval 0,1]. [28].

.
4

116



Appendix D

List of tests/outcomes used in

CALOND

Test 1: Observe vocal cords during phonation
Left cord weak or paralyzed, right motion normal
Right cord weak or paralvzed. left motion normal
Test 2: Ask patient to say "ah”, observe oropharynx
Weak or paralyzed left palate
Normal Palatal action
Weak or paralyzed right palate
Bilateral Palatal Weakness or Paralysis
Test 3: Observe pupillary size
Left constricted. right larger
Right constricted, left larger
Test 4: Pin-prick applied to right limbs and right torso
No pain experienced
Pain acutely experienced
Test 5: Observe pupillary size
Right redilates
Left redilates

Test 6: Shine light in right pupil
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Right contracts markedly, Left contracts minimally

Test 7: Observe pupils
Right redilates
Left remains miotic

Test 8: Shine light in left pupil
Right contracts markedly, Left contracts minimally

Test 9: Ask patient to look up to right, then up to left
Movements normal

Test 10: Ask patient to look down to right, then down to left
Movements normal

Test 11: Ask patient to follow the moving finger horizontally
Nystagmus present
Eyes track normally

Test 12: Touch patient’s forehead to estimate moisture
Right moist. left dry

Test 13: Pin-prick applied to left limbs and left torso
Pain acutely experienced

Test 14: Ask patient to follow rising finger
Right lid elevates. left drops

Test 15: Have patient alternately touch each index finger to nose
Right motion normal. Left motion awkward

Test 16: Have patient slide each heel along opposite shin
Right motion normal. Left awkward

Test 17: Touch right corneal edge with cotton whisp
Evelids blink
Right lid blinks only

Test 18: Touch left corneal edge with cotton whisp
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Neither eyelid contracts

Test 19: Place sweet, sour or salt solution on each anterior half tongue
Right savors, Left impaired

Test 20: Place sweet, sour or salt solution on each posterior third tongue
Right savors, Left does not

Test 21: Move right thumb, distal phalanx to test motion sense
Proprioception normal

Test 22: Move left thumb, distal phalanx to test motion sense
Proprioception normal

Test 23: Move right great toe. distal phalanx, to test motion sense
Proprioception normal

Test 24: Move left great toe, distal phalanx, to test motion sense
Proprioception normal

Test 25: Observe vocal cords while patient breathes quietly
Normal bilateral cord activity

Test 26: Whisper words in patient’s right ear
Patient repeats word properly

Test 27: Whisper words in patient's left ear
Patient repeats word properly
Patient denies hearing

Test 28: Touch to irritate right cornea
Tearing induced on right

Test 29: Touch to irritate left cornea
No tearing on left
Tearing induced on left

Test 30: Whisper words in patient’s left ear

Patient denies hearing
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Patient hears properly

Test 31: Perform right caloric test (cold water)
Horizontal nystagmus, slow phase to right

Test 32: Perform left caloric test (cold water)
Horizontal nystagmus. slow phase to left
No nystagmus

Test 33: Observe vocal cords attempting phonation
Cords remain adducted
Normal bilateral cord excursion

Test 34: Touch right pharyngeal wall
Patinet feels touch
Patient can not feel touch

Test 35: Touch left pharyngeal wall
Patient feels touch
Patient can not feel touch

Test 36: Stimulate right posterior pharyngeal wall
Normal gag reflex induced |
Gag reflex not elicited

Test 37: Stimulate left posterior pharyngeal wall
Gag reflex not elicited
Normal gag reflex induced

Test 38: Observe tongue in patient’s mouth
Fasciculations/atrophy on right only

Test 39: Hot/cold application to left chin
Thermal sense perceived

Test 40: Ask patient to demonstrate chewing ability

Jaw motion normal
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Test 41: Tap chin to elicit jaw-jerk
Normal reflex

Test 42: Pin-prick applied to right forehead
Patient does not feel pain

Test 43: Pin-prick applied to left forehead
Patient experiences pain

Test 44: Pin-prick applied to right cheek
Patient experiences pain

Test 45: Pin-prick applied to left cheek
Patient experiences pain

Test 46: Pin-prick applied to right chin
Patient does not feel pain

Test 47: Pin-prick applied to left chin
Patient experiences pain

Test 48: Light touch applied to right forehead
Touch perceived

Test 49: Light touch applied to left forehead
Touch perceived

Test 50: Observe protrusion of patient’s atrophic tongue
Tongue deviates to right

Test 51: Ask patien to wrinkle brow
Left forehead furrows. right flat

Test 52: Ask patient to squeeze eyelids shut
Left normal, right closure incomplete

Test 53: Ask patient to exaggerate smile

Left lips active. right weak with flat or sagged aspect
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Appendix E

Voxel numbering and location
identification

In the example shown on the next page, 3 of the 10 sections are displaved with
corresponding r and y coordinates. On the vertical coordinate the numbers are
shown as 20.71..... t9, where ¢ refers to section number. Also shown are some
numbers to indicate the malfunction factors. For example. v = 1022, is the voxel
in section 10 with z = 2 and y = 2, then M(v) = M(1022) = 4, that is, voxel v
has a malfunction factor of 4, for v = 272, the voxel is in section 2 with =z = 2
and y = 7 and M(v) = M(272) = 3. In CALOND there are v = 1000 voxels.

v = 100.101,..., 1099.
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Figure E.1: Display of sections and voxel, v representation.
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