
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



:IMULTIPROCESSOR SYSTEM DESIGN -I TUTOR

(EXPERT SYSTEM APPROACH)

BY

RAKESH KAMDAR

Thesis submitted to the Faculty of the Graduate School of the
New Jersey Institute of Technology in partial fulfillment of

the requirements for the degree of
Master of Science in Electrical Engineering

/1989)



APPROVAL SHEET

Title of Thesis: 	 Multiprocessor System Design - Tutor

(Expert System Approach)

Name of Candidate: Rakesh Kamdar

Master of Science in Electrical Engineering

1989

Thesis and abstract approved: 	
Dr. John Carpinelli 	 Date
Department of Electrical
and Computer Engineering

Dr. Stanley Reisman 	 Date
Department of Electrical
and Computer Engineering

Dr. Solomon Rosenstark 	 Date
Department of Electrical
and Computer Engineering



VITA

Name: Rakesh Kamdar

Degree and date to be confirmed: M. S. (E. E.), 1989

Secondary Education:

College 	 Date 	 Degree 	 Date of Degree

L.D.College of Engg. 1981-85 	 B.S. (E.C.) 	 1985

NJIT 	 1986-89 	 M.S. (E.E.) 	 1989

Major: Electrical Engineering

Position Held: Systems Engineer

Lobb Systems Inc.

20 Corporate Place 128

Wakefield, MA 01880



ABSTRACT

Title of Thesis: Multiprocessing System Design - Tutor

Rakesh I. Kamdar, Master of Science in Electrical Engineering,

1n-99('

Thesis Directed by: Dr. John Carpinelli, Assistant Professor

Dept. of Electrical and Computer Engineering.

To increase computational bandwidth and system resilience,

integration of several microprocessors in a single system becomes

necessary. The overall throughput and efficiency of such a system

is directly dependent on the hardware and software

interconnection supported by the basic microprocessor chip.

Sometimes it becomes difficult to put together all the

information for design criteria and all the design related

formulas.

The approach made here is to continuously update the

hardware and software information in the database related to a

given microprocessor. This information can be accessed at any

time for efficient design solution. Intel 80386 and Motorola

68020 microprocessors are reviewed in detail and all the

information is stored in a database.

The above approach has been implemented in the

Multiprocessor System Design - Tutor (MSDT) using the Informix

relational database management system. MSDT is a menu driven

system implemented to help the system design engineers. MSDT



stores and maintains information related to multiprocessor system

design, which includes multiprocessor system requirements,

microprocessor characteristics, the role of microprocessor in

multiprocessor system design and interconnection network

configurations and their performance factors. This information is

presented to the user via the screen building utility of

Informix-4GL; the user can also get a hard copy of all the

information within the database by running the report generation

utility. MSDT also has security password protection. The system

has a good help facility available for the design process. At any

given time the user can update the data in the table using this

menu driven system.

The system is intended to grow into a complete evaluation

system based on the Informix-4GL. It is developed on the basis of

Fourth Generation Language which has a screen building utility, a

menu building utility, a report writer and a window manager.

This system will suggest the candidate microprocessor and

suitable support chips and interconnection techniques for

different applications.



 
 
 
 
 
 
 
 
 
 
 
 
 
 



TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	  1

2 MICROPROCESSOR CHARACTERISTICS AND SUPPORT 	  6

3 EXPERT SYSTEM AND DATABASE 	  29

	

4 INTERCONNECTION NETWORKS   39

5 DESIGN AND FUNCTION DESCRIPTION .. 	 47

6 SYSTEM OPERATION 	  58

7 CONCLUSIONS AND SUGGESTIONS 	  74

APPENDIX 1 - INFORMIX FORMS 	  75

SELECTED BIBLIOGRAPHY 	 101



LIST OF FIGURES

Figure 	 Page

1.1 Multiprocessor tree structure. . . . .... • . • 	 • 	 2

2.1 Block diagram of MC68020 	  8

4.1 The construction of two 4-cube network . . . . . . . . 	 45

6.1 Main title screen 	  60

6.2 Password entry screen 	  61

6.3 	 Main menu ........... . 	 ...... 	 • 	 • • 	 • • 	 • 62

6.4 Submenu 1 	 63

6.5 Multiprocessor characteristics   64

6.6 Detailed description of characteristics 	  65

6.7 Microprocessor characteristics 	  66

6.8 Network type 	  67

6.9 Submenu 2 	  68

6.10 Configuration selection 	  69

6.11 Microprocessor selection 	  70

6.12 Submenu 3 	  71

6.13 Submenu 4 	  72

6.14 Network selection. ..... 	 • • • 0 • • • 	 • • • • 	 73



LIST OF TABLES

Table 	 Page

2.1 	 Stack frame. . . . . . . . . . . . 	 8

5.1 Multiprocessor performance 	  50

5.2 Multiprocessor characteristics . . . ......... 	 51

5.3 Network characteristic . . . . . . . . • • • .... 	  52

5.4 Multiprocessor design 	  53

5.5 Multiprocessor configuration . . . 	  54



CHAPTER 1

INTRODUCTION 

1.1 INTRODUCTION TO MULTIPROCESSING

High performance computers are in demand in the areas of

structural analysis, weather forecasting, petroleum exploration,

fusion energy research, medical diagnosis, aerodynamics, and

simulations. They are also needed in artificial intelligence,

expert systems, industrial automation, remote sensing, military

defense, and genetic engineering, among many other scientific and

engineering applications. Without superior computers, many of

these challenges to advance human civilization cannot be made

within a reasonable time period. It has become necessary for

human beings to develop advanced computer architectures and

various VLSI technologies. The new era of multiprocessing

involves the efforts of the hardware designer for efficient

utilization of available resources at a low cost [1].

This thesis is devoted to study some features of

multiprocessors and the capabilities of presently available

microprocessors for multiprocessing. This chapter of the thesis

covers the following two features of multiprocessing protocols:

* Context switching

* Operating systems

A multiprocessor is defined as having these characteristics:

1



• A multiprocessor contains two or more processors of

approximately comparable capabilities.

• All processors share access to common storage.

• All processor share access to input/output channels, control

units, and input/output devices.

• The entire system is controlled by one operating system

providing interaction between processors and their programs

at the job, task, step, data set, and data element levels.

One advantage of the multiprocessor is that it reduces the

height of the formula tree by performing independent calculations

simultaneously. The following is an example of the simple operation

(p + q + r + s). Here, two processes, (p + q) and (r + s), can be

divided as shown in Figure 1.1.a. If the same operation is

performed by the single processor, the operation tree is as shown

in Figure 1.1.b.

Figure 1.1 Multiprocessor tree structure

2



Thus it is very advantageous to use the multiprocessor

configuration with the least cost increase [1].

1.2 TRENDS TOWARD MULTIPROCESSING

Multiprocessors are computer systems encompassing more than

one general-purpose processor, each capable of executing a

separate instruction stream, all of them sharing a global memory.

One of the most important components in a multiprocessor is the

processor memory interconnection network [4].

The first multiprocessor is S-1, developed by Widdoes and

Correll[4]. The S-1, as many of the multiprocessors built in the

past, consists of a few processors and a few memory modules

interconnected through a crossbar switch. Other examples in this

class include the Burroughs 5000 series, the Burroughs D825

command and control computer, and Carnegie-Mellon's C.mmp. [4]

The second multiprocessor is Cm* from Carnegie-Mellon

University. The interconnection used in Cm* consists of

asynchronous buses; this allows the inclusion of processors and

memory modules at a cost roughly linear in their number.

The third multiprocessor is Burroughs' FMP. Even though it

has not been built, a careful study of its feasibility and

performance has been done. The interconnection network chosen for

this machine was the baseline network[4], whose cost is

proportional to Nlog N where N is the number of processors. This

3



seems to be a good compromise between the costly crossbar switch

and slow asynchronous buses.

One of the problems affecting the performance of

multiprocessors is memory interfaces. Independent processors

provide the flexibility which makes multiprocessors ideal for the

exploitation of parallelism in a range of applications where

pipelined and array processors are not effective [4].

1.3 DESIGN AND IMPLEMENTATION OVERVIEW OF MSDT

MSDT (Multiprocessor System Design - Tutor) is a menu driven

informative and intelligent system which keeps track of all the

recent and important characteristics of microprocessors and

interconnection networks.

The design of MSDT includes the different tables in the

database and these tables are maintained through the screens

developed using Informix-4GL (Fourth Generation Language) and

SQL (Structured Query Language). This design is implemented on

an IBM PC AT compatible computer and uses Microsoft C and PLINK

(Phoenix Technology Group) to link all the larger Informix

modules.

This system has three basic sections:

1. View function to look at the data of the multiprocessor and

microprocessor.

4



2. Maintenance function to keep all the information up to date

for future applications.

3. Report writing, which produces the report on the printer for

system configuration, network or multiprocessor

characteristics.

This system is very simple to use and all the instructions are

provided when the user is executing MSDT application.

1.4 OUTLINE OF THE REST OF THE THESIS

The rest of this thesis is organized as follows. Chapter 2

introduces the need of automation for multiprocessing and basic

information on the 68020 and 80386 microprocessors. Chapter 3

introduces the expert system approach to solve the multiprocessor

system design and also describes the basic tools of Informix.

Chapter 4 describes the basic introduction to interconnection

networks and some mathematical formulas to evaluate the

interconnection network. Chapter 5 describes a basic database

design, modules, screen forms and reports generated. Chapter 6 is

basically an operation guide for the software. Chapter 7 provides

conclusions and suggestios for future enhancements. The Appendix

shows the actual program code.

5



CHAPTER 2

MICROPROCESSOR CHARACTERISTICS AND SUPPORT 

2.1 NEEDS OF AUTOMATION

The solution to multiprocessor design is a computerization

of the data storage, so that one can try different ideas without

implementing the actual hardware. It is important to integrate

the system in such a way that all users can access and

continuously update the information. This will facilitate the

creation of an efficient system. Intel 80386 and Motorola 68020

microprocessors are reviewed in detail for the system

implementation and other microprocessors can be added to the

system.

2.2 INTRODUCTION TO THE 68020 MICROPROCESSOR

The MC68020 is the first full 32-bit implementation of the

M68000 family of microprocessors from Motorola. Using VLSI

technology, the MC68020 is implemented with 32-bit register and

data paths, 32-bit addresses, a rich instruction set, and

versatile addressing modes [5].

The MC68020 is object code compatible with the earlier

members of the M68000 family and has the added features of new

addressing modes in support of the high level languages, an on

chip instruction cache, and a flexible co-processor interface

with full IEEE floating point support. Also the internal

6



operations of this microprocessor are designed to operate in

parallel allowing multiple instructions to be executed

concurrently.

The resources available for the MC68020 are:

* Virtual Memory/Machine support

* Sixteen 32-bit General purpose data and address registers

* Two 32-bit supervisor stack pointers

* 32-bit program counter

* Five special purpose control registers

* 4 Gigabyte Direct Addressing Range

* 18 Addressing modes

* Memory mapped I/O

* Coprocessor interface

* High performance on-chip instruction cache

* Operations on seven data types

* Complete Floating-point support via the MC68881 coprocessor

A block diagram of the MC68020 is shown in Figure 2.1. The major

blocks depicted operate in a highly independent fashion that

maximizes concurrency of operation while managing the essential

synchronization of the instruction execution and the bus

operation.

The bus controller loads instructions from the data bus into

the decode unit and the on-chip cache. The sequencer and control

7



unit provide overall chip control, managing the internal buses,

registers, and the function of the execution unit.

2.2.1 EXCEPTION PROCESSING

The exception processing state is associated with

interrupts, trap instructions, tracing, and other exceptional

conditions. The exception may be internally generated by an

instruction or by an unusual condition arising during the

execution of the instruction. Exception processing can also be

initiated by conditions external to the processor such as an

interrupt, a bus error, a reset, or a coprocessor primitive

command. Thus, exception processing is designed to provide an

efficient context switch so that the processor may quickly and

gracefully handle the unusual conditions.

Figure 2.1 Block diagram of MC68020

8



2.2.2 EXCEPTION PROCESSING SEQUENCE

Exception processing occurs in four identifiable steps.

1. An internal copy is made of the status register. After the

copy is made, the processor state bits in the status register are

changed. The S bit is set, putting the processor into the

supervisor privilege state. The T1 and T0 bits are cleared, which

allows the exception handler to execute unhindered by tracing.

For the reset and interrupt exceptions, the interrupt priority

mask is also updated.

2. The vector number of the exception is determined. For

interrupts, the vector number is obtained by the processor read

from CPU address $F, which is defined as an interrupt acknowledge

cycle.

3. Save the current processor context. An exception stack frame

is created and filled on the active supervisor stack. Other

information may also be stacked, depending on which exception is

being processed and the context of the processor prior to the

exception. If the exception is an interrupt and the M bit is set,

the M bit is cleared, and a second stack frame is created on the

interrupt stack.

4. This step is the same for all the exceptions. The exception

vector offset is determined by the multiplying the vector number

by four. This offset is then added to the contents of the vector

9



base register to determine the memory address of the exception

vector. The program counter value is loaded with the value in the

exception vector. The instruction at the address given in the

exception vector is fetched, and instruction decoding and

execution is resumed.

2.2.3 EXCEPTION STACK FRAME

Exception processing saves the most volatile portion of the

current processor context on the top of the supervisor stack. The

context is organized in a format called the exception stack

frame. This information always includes the status register, the

program counter, and the vector offset used to fetch the vector.

The processor also marks the stack frame with a frame format. The

format field allows the RTE instruction to identify what

information is on the stack so that it may be properly restored

and the stack space deallocated.

2.2.4 MULTIPLE EXCEPTION

The priority relationship between two exceptions determines

which is processed first if both exceptions occur simultaneously.

The term "process" in this context means the execution of the

four steps defined previously. "Process" in this context does not

include the execution of the routine pointed to by the fetched

vector. As soon as the processor has completed processing for an

exception, it is then ready to begin execution of the exception

1 0



handler routine, or begin exception processing for other pending

exceptions. Also, a higher priority exception can be processed

before the completion of exception processing for the lower

priority exceptions.

This priority scheme is very important in determining the

order in which exception handlers are executed in multiple

exception situations. As a general rule, the lower the priority

of an exception, the more quickly the handler routine for that

exception will be executed. An exception to this rule is the

Reset exception, which is the highest priority and also the first

exception handled, since all other exceptions are cleared by the

reset condition [6].

2.2.5 RETURN FROM THE EXCEPTION

After exception stacking operations have been completed for

all the pending exceptions, the processor resumes normal

instruction execution at the address contained in the vector

referenced by the last exception to be processed. Once the

exception handlers have completed the execution, the processor

must return to the system context prior to the exception. The

mechanism used to accomplish this return for any exception is the

RTE instruction.

When the RTE instruction is executed, the processor examines

the stack frame on the top of the active supervisor stack to

1 1



determine if it is a valid frame and what type of the context

restoration should be performed.

2.2.6 MC68020 EXCEPTION STACK FRAMES

The MC68020 generates six different stack frames. Whenever

the MC68020 writes or reads a stack frame, it will use long word

operand transfers whenever possible. Thus, if the stack area

resides in a 32-bit ported memory and the stack pointer is

longword aligned, exception processing performance will be

greatly enhanced. Also, the order of the bus cycles used by the

processor to write or read a stack frame may not follow the order

of the data in a frame [6].

The six different stack frames are:

1. Normal four word stack frame

2. Throwaway four word stack frame

3. Normal six word stack frame

4. Coprocessor Mid-instruction Exception stack frame

5. Short bus cycle fault stack frame

6. Long bus cycle fault stack frame

NORMAL FOUR. WORD STACK FRAME

This frame is created by interrupts, format errors, TRAP#n

instructions, illegal instructions, A-line and F-line emulator

traps, privilege violation, and co-processor preinstruction

exceptions. The program counter value is the address of the next

12



instruction to be executed, or the instruction that caused the

exception, depending upon the exception type.

THROWAWAY FOUR WORD STACK FRAME

This stack frame is the throwaway frame that is created on

the interrupt stack during exception processing for an interrupt

when a transition from the master state to the interrupt state

occurs. The program counter value on the normal four word or

coprocessor mid-instruction exception stack frame that was

created on the master stack.

NORMAL SIX WORD STACK FRAME

This stack frame is created by instruction related

exceptions which include coprocessor post-instruction exceptions,

CHK, CHK2, TRAPcc, TRAPV trace, and zero divide. The instruction

address value is the address of the next instruction that caused

the exception. The program counter value is the address of the

next instruction to be executed, and the address to which the RTE

instruction will return.

COPROCESSOR MID-INSTRUCTION EXCEPTION STACK FRAME

This stack frame is created for three different exceptions,

all related to coprocessor operations.

SHORT BUS CYCLE FAULT STACK FRAME

This stack frame is created whenever a bus cycle fault is

detected, and the processor recognizes that it is at an

13



instruction boundary and can use this reduced version of the bus

fault stack frame. The program counter value is the address of

the next instruction to be executed.

LONG BUS CYCLE FAULT STACK FRAME

This stack frame is created whenever the processor detects a

bus cycle fault and recognizes that it is not an instruction

boundary. The program counter value is the address of the

instruction that was executing when the fault occurred.

Table 2.1 gives a summary of the stack frames.

FORMAT FRAME TYPE

0000 SHORT FRAME

0001 THROWAWAY

0010 INSTRUCTION EXCEPTION

0011-0111 UNDEFINED, RESERVED

1000 MC68010 BUS FAULT

1001 COPROCESSOR MID INSTRUCTION

1010 MC68020 SHORT BUS FAULT

1011 MC68020 LONG BUS FAULT

1100-1111
,.

UNDEFINED, RESERVED
.

Table 2.1 Stack Frames

The exception processing may occur from the following causes:

* Reset

14



* Bus error

* Instruction traps

* Breakpoints

* Format error

* Illegal instructions or unimplemented instruction

* Privilege violations

* Tracing

* Interrupts

* Return from exception

2.3 INTRODUCTION TO THE 80386 MICROPROCESSOR

The 80386 is an advanced 32-bit microprocessor for

applications needing very high performance and optimized for

multitasking operating systems. The 32-bit registers and data

paths support 32-bit addresses and data types. The processor

addresses up to four gigabytes of physical memory and 64

terabytes of virtual memory. The integrated memory management

and 	 protection architecture includes address transition

registers, 	 advanced multitasking hardware and a protection

mechanism to support operating systems. In addition, the 80386

allows the simultaneous running of the operating systems [5].

Instruction pipelining, on-chip address translation, and high

bus bandwidth ensure short average instruction execution times

and high system throughput. The 80386 processor is capable of

15



execution at sustained rates of between three and four million

instructions per second.

The resources available for the 80386 are:

* Flexible 32-bit microprocessor

- 8, 16, 32-bit data types

- 8 general purpose 32-bit register

* Very large address space

- 4 Gigabyte physical

- 64 terabyte virtual

- 4 gigabyte maximum segment size

* Integrated memory management unit

- Virtual memory support

- Optional on-chip paging

- 4 levels of protection

- Fully compatible with the 80286

* Object code compatible with all 8086 family microprocessors

* Virtual 8086 mode allows running of 8086 software in a

protected and paged system

* Hardware debugging support

* Optimized for system performance

- Pipelined instruction execution

- On-chip Address translation caches

- 12.5 and 16 MHz clock

16



- 32 megabytes/sec bus bandwidth

* High speed numeric support via 80287 and 80387 coprocessors

* Complete system development support

- Software: C, PL/M, Assembler system generation tools

- Debuggers: PSCOPE, ICE - 386

* High speed CHMOS III technology

* 132 pin grid array package

The 80386 offers new testability and debugging features.

Testability features include a self test and direct access to the

page translation cache. Four new breakpoints registers provide

breakpoint traps on code execution or data accesses for powerful

debugging of even ROM-based systems.

Object-code compatibility with 80XX family members means

that the 80386 offers immediate access to the world's largest

microprocessor base [5].

2.3.1 TERMINOLOGY

The following is the terminology used throughout the

discussion of the descriptor tables.

PL: 	 Privilege Level

RPL: Requester Privilege Level

DPL: Descriptor Privilege Level

CPL: Current Privilege Level

EPL: Effective Privilege Level

17



TASK: One instance of the execution of a program. Tasks are also

referred to as processes.

2.3.2 PROTECTION

The 80386 has four levels of protection which are optimized

to support the needs for a multi-tasking operating system to

isolate and protect user programs from each other and the

operating system. The privilege levels control the use of the

privileged instructions, I/O instructions, and access to segments

and segment descriptors. Unlike traditional microprocessor based

systems, where this protection is achieved only through the use

of complex external hardware and software, the 80386 provides

the protection as part of its integrated Memory Management Unit.

The 80386 offers an additional type of protection on a page

basis, when paging is enabled.

It is an extension of the user/supervisor privilege mode

commonly used by minicomputers and in fact, the user/supervisor

mode is fully supported by the 80386 paging mechanism. The

privilege level 0 is the most privileged or trusted level. The

privilege levels are numbered 0 through 3.

2.3.3 RULES OF PRIVILEGE

The 80386 controls the access to both data and procedures

between levels of a task according to the following rules:

18



* Data stored in a segment with privilege level p can be accessed

by the code executing at a privilege level at least as privileged

as p.

* A code segment/procedure with privilege level p can only be

called by a task executing at the same or a lesser privilege

level than p.

2.3.4 DESCRIPTOR TABLES

The descriptor tables define all of the segments which are

used in an 80386 system. There are three types of tables in the

80386 that hold descriptors:

GDT: Global Descriptor Table

LDT: Local Descriptor Table

IDT: Interrupt Descriptor Table

All of the tables are variable length memory arrays. They

can range in size between 8 bytes and 64K bytes. The upper 13

bits of the selector are used as an index into the descriptor

table.

Each of the tables has a register associated with it. The

GDTR, LDTR, IDTR. The LGDT, LLDT, and LIDT instructions load the

base and limit of each descriptor, while the SGDT, SLDT, and SIDT

instructions store the base and limit of each descriptor. These

tables are manipulated by the operating system only. Therefore

these are the privilege instructions.

19



GDT

The Global Descriptor Table contains descriptors that are

possibly available to all of the tasks in the system. The GDT can

contain any type of segment descriptor except for the descriptors

which are used for servicing interrupts. Every 386 system

contains code and data segments used by the operating systems and

task state segments, and descriptor for the LDTs in a system.

LDT

LDTs contain descriptors which are associated with a given

task. Generally, operating systems are designed so that each task

has a separate LDT. The LDT may contain only code, data, stack,

task gate, and call gate descriptors. LDTs provide a mechanism

for isolating a given task's code and data segments from the rest

of the operating system, while the GDT contains descriptors for

segments which are common to all tasks if its segment descriptor

does not exist in either the current LDT or the GDT. This

provides both isolation and the protection for a task's segments,

while still allowing global data to be shared among the tasks.

IDT

The third table needed for the 80386 system is the interrupt

descriptor table. The IDT contains the descriptors which point to

the location of up to 256 interrupt service routines. The IDT

may contain only task gates, interrupt gates, and trap gates. The

20



IDT should be at least 256 bytes in size in order to hold the

descriptors for the 32 Intel reserved interrupts. Every interrupt

used by a system must have an entry in the IDT. IDT entries are

referenced via INT instructions, external interrupt vectors, and

exceptions.

2.3.5 PRIVILEGE LEVELS

Task Privilege

At any point in time, a task on the 80386 is always executed

at one of the four privilege levels. The Current Privilege Level

specifies the task's privilege level. A task's CPL may only be

changed by control transfer through gate descriptor to a code

segment with a different privilege level. Thus, an application

program running at PL = 3 may call an operating system routine at

PL = 1 which would cause the task's CPL to be set to 1 until the

operating system routine was finished.

Selector Privilege

The privilege level of a selector is specified by the RPL

field. The RPL is the two least significant bits of the selector.

The selector's RPL is only used to establish a less trusted

privilege level than the current privilege level for the use of a

segment. This level is called the task's effective privilege

level for the use of a segment. The EPL is defined as being the

least privileged level of a CPL and a selector's RPL. Thus, if

21



the selector's RPL = 0 then the CPL always specifies the

privilege level for marking an access using the selector. On the

other hand if RPL = 3 then a selector can only access segment

level 3 regardless of the task's CPL. The RPL is most commonly

used to verify that pointers passed to an operating system

procedure do not access data that is of higher level privilege

than the procedure that originated the pointer. Since the

originator of a selector can specify an RPL value, the Adjust RPL

instruction is provided to force the RPL bits to the originator's

CPL.

2.3.6 PRIVILEGE VALIDATION

The 80386 provides several instructions to speed pointer

testing and help maintain system integrity by verifying that the

selector value refers to an appropriate segment.

This pointer verification prevents the common problem of an

application at PL = 3 calling a operating system routine at PL =

0 and passing the operating system routine a "bad" pointer which

corrupts a data structure that belongs to the operating system.

If the operating system routine uses the ARPL instruction to

ensure that the RPL of the selector has no greater privilege

than that of the caller, then this problem can be avoided.

22



DESCRIPTOR ACCESS

There are basically two types of segment accesses: those

involving code segments such as control transfers, and those

involving data accesses. Determining the ability of a task to

access a segment involves the type of descriptor used and CPL,

RPL, and DPL as described above.

Any time an instruction loads the data segment register the

80386 makes protection validation checks. Selectors loaded in the

DS, ES, FS, and GS registers must refer only to data segments or

readable code segments. The data access rules are specified in

advance. The only exception to those rules are readable

conforming code segments which can be accessed at any time.

The rules regarding the stack segment are slightly different

than those involving data segments. Instructions that load the

selector in to the Stack Segment must refer to data segment

descriptors for writable data segments. The DPL and RPL must

equal the CPL. All other descriptor types or a privilege level

violation will cause exception 13. A stack not present fault

causes exception 12. Note that an exception 11 is used for a not-

present code or data segment.

2.3.7 PRIVILEGE LEVEL TRANSIFER

Inter-segment control transfers occur when a selector is

loaded in the CS register. For a typical system most of these

23



transfers are simply the result of a call or a jump to another

routine. There are five types of control transfers which are

described. Many of these transfers result in a privilege level

transfer. Changing privilege levels is done only via control

transfers, by using gates, task switches, and interrupt or trap

gates.

Control transfers can only occur if the operation which

loaded the selector references the correct descriptor types. Any

violation of these descriptor usage rules will cause an exception

13.

In order to provide further system security, all control

transfers are also subject to the privilege rules.

The privilege rules require that:

- Privilege level transitions can occur only via gates.

- Jumps can be made to a non-confirming code segment with the

same privilege or to a conforming code segment with greater or

equal privilege.

- CALLs can be made to a non-conforming code segment with the

same privilege or via a gate to a more privilege level.

- Interrupts handled within the task obey the same privilege

rules as CALLS.

- Conforming code segments are accessible by privilege levels

which are the same or less privileged than the conforming code

24



segment's DPL.

- Both the requested privilege level (RPL) in the selector

pointing to the gate and the task's CPL must be of equal or

greater privilege than the gate's DPL.

- The code segment selected in the gate must be the same or more

privileged than the task's CPL.

- Return instructions that do not switch tasks can only return

control to a code segment with the same or less privilege.

- Task switches can be performed by the CALL, LIMP, or INT

instructions, which reference either a task gate or a task state

segment whose DPL is less privileged or the same privilege as the

old task's CPL.

Any control transfer that changes the CPL within a task

causes a change of stacks as a result of the privilege level

change. The initial value of stack segment for privilege levels

0, 1, and 2 is retained in the task state segment. During a CALL

or JUMP control transfer, the new stack pointer is loaded into

the SS and ESP registers and the previous stack pointer is

pushed onto a new stack.

2.3.8 TASK SWITCHING

A very important attribute of any multi-tasking/multiuser

operating systems is its ability to rapidly switch between tasks

or processes. The 80386 directly supports this operation by

25



providing a task switch instruction in hardware. The 80386 task

switch operation saves the entire state of the machine, loads the

new execution state, performs protection checks, and commences

execution in the new task in about 17 microseconds. Like transfer

of control via gates, the task switch operation is invoked by

executing an inter-segment JMP or CALL instruction, which refers

to a Task State Segment (TSS), or a task gate descriptor in the

GDT or LDT. An INT n instruction, exception, trap, or external

interrupt may also invoke the task switch operation if there is a

task gate descriptor in the associated IDT descriptor slot.

The TSS descriptor points to a segment containing a TSS

selector. The 80386 supports both 286 and 386 style TSSs. The

limit of the 386 TSS must be greater than 0064H, and can be as

large as 4 Gigabytes. In the additional TSS space the operating

system is free to store additional information such as the reason

the task is inactive, the time the task has spent running, and

open files belonging to the task.

Each task must have a TSS associated with it. The current

TSS is defined by the special register in the 80386 called the

Task State Segment Register (TR). This register contains a

selector referring to the task state segment descriptor that

defines the current TSS. A hidden base and limit register

associated with TR is loaded whenever TR is loaded with a new

26



selector. Returning from a task is accomplished by the IRET

instruction. When IRET is executed, control is returned to the

task which was interrupted. The current executing task's state

is saved in the TSS and the old task state is restored from its

TSS.

Several bits in the flag register and machine status word

give information about the state of a task which are useful to

the operating system. The Nested Task (NT) bit controls the

function of the IRET instruction. If NT = 0, the IRET instruction

performs the regular return; when NT = 1, IRET performs a task

switch operation back to the previous task. The NT bit is set or

reset in the following fashion:

When a call or INT instruction initiates the task switch,

the new TSS will be marked busy and the back link field of the

new task is set to the old TSS or INT initiated task switches. An

interrupt that does not cause a task switch will clear NT. NT may

also be set or cleared by the POPF or IRET instructions.

The 386 task state segment is marked busy by changing thE

descriptor type field from TYPE 9H to TYPE BH. A 286 TSS

marked busy by the changing the descriptor type field from TYPE

to TYPE 3. Use of a selector that references a busy task statE

segment causes an exception 13.

27



The Virtual Mode (VM) bit 17 is used to indicate if a task

is a virtual 8086 task. If VM = 1 than the tasks will use the

real mode addressing scheme. The virtual 8086 environment is only

entered and exited via a task switch.

The coprocessor state is not automatically saved when a task

switch occurs, because the incoming task may not use the

coprocessor. The task switched (TS) bit helps deal with the

coprocessor's state in a multi-tasking environment. Whenever the

80386 switches tasks, it sets the TS bit. The 80386 detects the

first use of a processor extension instruction after a task

switch and causes the processor extension not available exception

7. The exception handler for exception 7 may then decide whether

to save the state of the coprocessor. A processor extension not

present exception will occur when attempting to execute a WAIT or

ESC instruction if the Task Switched and Monitor coprocessor

extension bits are both set.

The T bit in the 386 TSS indicates that the processor should

generate a debug exception when switching to a task. If T = 1

then upon entry to a new task, a debug exception 1 will be

generated.

28



CHAPTER 3

EXPERT SYSTEM AND DATABASE 

3.1 EXPERT SYSTEM APPROACH

3.1.1 DEFINITION OF AN EXPERT SYSTEM

There are many areas where traditional computing methods

cannot be applied. Here, experts are needed to gather and

interpret data and select a strategy for solving a problem. Such

problems are typically poorly specified, difficult to define and

heavily dependent upon rules of thumb. A decision making system

design by domain expert with the help of an expert is called an

expert system.

3.1.2 BUILDING EXPERT SYSTEM

Over the years, expert systems have emerged as a major

practical application of artificial intelligence. "Expert system"

is the name given to software systems which augment the decision

making process of human experts. These systems are designed to

support and extend human problem solving.

At least two people are needed to create an expert system: a

knowledge engineer and a domain expert. The domain expert is

someone who is intimately familiar with the target problem.

During the knowledge acquisition phase of a project, the

knowledge engineer acquires, by trial and error, a working

knowledge of the domain expert's understanding. The model that

29



results is not a static one. Gradually, as new aspects of the

problem are introduced, the existing program is modified, and the

complete system is then tested. This process is repeated

cyclically. The prototype is thus expanded and refined in ever

increasing degrees of detail and sophistication until the expert

concludes that the system meets the standard of excellence in

finding correct solutions to the problems at hand.

Throughout this process, knowledge about the problem is

encoded in such a way that it can be interpreted by the expert

system's inference mechanism (the part of the software that draws

conclusions from the given set of facts and conditions). Al

researchers refer to such codification as knowledge

representation and to the sum of such representation as a

knowledge base.

The reasons to use an expert system are the following:

a. Experts' time is valuable and in short supply.

b. Expert systems can become perfect as time goes by, thus

ultimately eliminating the need for an expert. However,

such a system should be able to diagnose as perfectly and as

fast as the human expert.

c. Once the expertise is secured in an expert system, it

can be copied, distributed, and used in far-flung locations,

a difficult feat to achieve with the human expert.

30



3.2 DATABASE ENGINES

3.2.1 DATABASE CAPACITY

The limits of the database are important. The questions one

should ask about capacity include limits on the number of

databases, tables per database, and rows and columns per table.

In addition, one needs to know the maximum size of a row and

column, and how many fields can be indexed or how many indices

can be stored for one table. The database management system must

be able to accommodate the largest tables and databases that any

business needs, now and in the future, so it is also important to

understand whether the size of any of these individual items can

exceed the physical size of a disk. As an application grows and

requires additional disk storage, incorporating it into the

database environment should be easy.

3.2.2 DATA TYPES

Data types describe the format of the data that is allowed

for a column. In general, the most commonly used data types are

integer, floating point, decimal, money, character and date. If

the right data types are used, input displays, data storage,

output format, and computations are much easier. Specific

processes may dictate the need for special datatypes.

31



0.2.3 DATA INTEGRITY

Data integrity ensures that only valid types of data are

tored in the database. With many different people updating a

database, it is easy for users to attempt to store incorrect or

ynvalid data. Integrity rules govern what can and cannot be

,..tored. The assignment of a data type to a column creates the

post basic type of integrity.

There is often a need to ensure that a value is entered into

3 field. If a database is able to store what is known as "a null

value," then it can force the entry of a value for each update.

Defining a field as "not null" forces the user to include

important information.

Sometimes there is a need to enforce uniqueness within a

field in a table. Defining a field as "unique" prevents

duplicates, such as two employees with the same employee number.

In addition, there are a number of other integrity constraints

that a database or application can enforce. These constraints

raay involve relationships between fields in different tables.

.2.4 DATA SECURITY

Sometimes there is confusion between security and integrity.

general, "Security means protecting the database against

lanauthorized users"[8]. Data security is an important factor in

database selection. Because many corporations and people consider

32



data as an asset of the corporation or a person, data must be

frotected against unauthorized individuals[8].

.2.5 DATABASE RESTART AND RECOVERY

When data is being inserted and changed, a database can log

or journal the database activity for use in recovery from

failures. Usually there are archive logs stored on tape that

contain previous "snapshots" of the database contents. In

0.ddition, there is an on-line log on disk that contains

Information about more recent transactions. In the event of a

system failure, such as a power failure, the database should

automatically recover without operator intervention. This can be

done because DBMS (Database Management System) use disk logs to

ensure that all committed transactions at the time of failure are

in the database and all partial transactions are removed. The

database is restored to a consistent state and is back on-line

within minutes after a system restart.

3.3 DATABASE TOOLS: INFORMIX - SQL AND INFORMIX - 4GL

3.3.1 DATA DEFINITION

Informix provides both menu-driven and command driven

interfaces to define databases. One can create and delete

oiatabases through a menu-driven interface or through structured

query language commands included in a 4GL program. One can also

Iqefine, rename, and delete tables, as well as update table

33



definitions using either of the above-mentioned interfaces. The

command oriented interface is also available from the QUERY

LANGUAGE options. One can get this option from the main menu of

SQL and 4GL. When one selects this option, it presents a blank

screen. One can enter one or more RDSQL statements and execute

them. A useful feature of the menu-oriented interface is that one

can ask Informix to create an RDSQL command file based on the

interactive input one provides. This can come in handy while one

is still experimenting with database definitions. One can run the

command file as is or can modify it through an editor and then

run it. Another way to do this is with the DBSCHEMA utility,

which will produce RDSQL statements required to replicate an

entire database or a selected table.

3.3.2 FORM GENERATOR

A form generated by 4GL's form generator is used with a 4GL

program, and a form generated by SQL's form generator is

processed by PERFORM. With either form generator, one can create

a default form and compile a form from a menu-oriented interface.

If one wants to modify a form or create one from scratch, one has

to learn specific syntax to modify and create from scratch. No

menu-oriented capability exists to accomplish this.

A 4GL form specification contains five sections. The

DATABASE section contains the name of the database. The SCREEN

34



section contains a layout of the screen form. The screen layout

cannot be more than 20 lines long, as 4GL reserves four lines of

the screen for prompts, messages, comments, and error messages.

The TABLES section lists the tables. The ATTRIBUTES section links

field names (database or non-database) to field tags (contained

in the screen section). One can assign more than one attribute to

the field in this section. The INSTRUCTIONS section is used to

define screen records or to change the default delimiters for

display fields. Screen records can be used to group fields.

3.3.3 AD HOC QUERY, INSERT, UPDATE AND DELETION OF DATA FROM

TABLE

Informix provides two methods for ad-hoc 	 (without

programming) query, insert, update, and deletion of data from

tables. The first method is form-driven and involves generating

a default form with SQL's form generator and processing it with

PERFORM. When one executes the form using PERFORM it displays a

horizontal menu with these choices: QUERY, NEXT, PREVIOUS, ADD,

UPDATE, REMOVE, TABLE, SCREEN, CURRENT, MASTER, DETAIL AND

QUTPUT. QUERY retrieves rows from a table based on the values

1.1.tered in the form. Using the NEXT and PREVIOUS choices, one can

go back and forward in the retrieved rows.

The second method is command oriented and it involves

xecuting RDSQL statements from the query language option. This

35



topic is covered in Section 3.3.1.

3.3.4 APPLICATION DEVELOPMENT

Informix supports three methods for building applications:

1. Generate forms using the form generator of SQL and run the

forms under PERFORM. One can customize the form and can add some

amount of control to it. This approach has limitations:

- One can run only one form at a time. It is not possible to

present forms in a hierarchical fashion (one form displaying

another form).

- The menus presented on the form cannot be customized.

- Complex computations and logic cannot be included.

- No database access statement can be included.

2. Generate forms with screen building utility of operating

system and use forms in the routines written in C or COBOL

programming language and embed SQL statements in these routines.

3. Generate forms with the form generator of the 4GL and use

forms in the routines written in the 4GL programming language. A

4GL program consists of a set of routines. There are three types

of routines: MAIN, FUNCTION and REPORTS. Before one runs the 4GL

program, one has to preprocess the 4GL routine. Preprocessing

converts the 4GL to C language and then it has to be compiled and

linked. This project is implemented using this method.

36



3.3.5 REPORT WRITING

The 4GL product does not have a separate report generator;

it is part of the 4GL programming language. The data is retrieved

in a MAIN or FUNCTION routine, and the formatting and printing

are controlled from a report routine. In the report routine, it

is possible to include the other 4GL statements. This facility

of the report routine makes it very flexible and powerful. One

can include more complicated computations that require many

lines of code. It is even possible to update the database in the

middle of writing a report. One can combine the output of

several SELECT statements into one report, and execute SELECT

conditionally before one calls the REPORT routine.

3.3.6 VIEWS

One can create and drop views with RDSQL statements, and

execute this statement from the query-language option or include

them in a 4GL routine. Informix imposes some restrictions on

updating tables through views. A view column may be updated only

if it is derived directly from a column in a table of the

database and not a result of an expression. Expression-derived

columns are called virtual columns. One can insert rows through

a view that contains virtual columns, although one may delete a

row that contains a virtual columns. One cannot build indices

on views.

37



3.3.7 JOIN

Informix supports two methods of handling joins. The first

method is command-oriented. It involves using the SELECT

statement with a where clause between at least one column from

one table and at least one column from the other. One can execute

a SELECT statement whenever one wants to join two tables or save

the definition as a view. One can also join more than two tables

having one-to-one or one-to-many relationships. The second method

is form oriented. It involves using SQL's form generator and

PERFORM. One can ask Informix to create an RDSQL command file

based on the interactive input one provides. This can come in

handy while one is still experimenting with database definitions.

One can run the command file as is or can modify it through an

editor and then run it. Another way to do this is with the

DBSCHEMA utility, which will produce RDSQL statements required to

replicate an entire database or a selected table.

38



CHAPTER 4

INTERCONNECTION NETWORKS 

4.1 INTRODUCTION TO INTERCONNECTION NETWORKS

There is a limit to the maximum speed obtainable from a

computer based on a single processor. The closer one approaches

this limit, the more rapidly the cost of such a computer rises.

The crucial decision that must be made in the design of such a

multiprocessor system is the level of parallelism, or in other

words, the size of the subtasks into which the original task is

split. When several processors are required to work cooperatively

on a single task, one expects frequent exchanges of data among

the several subtasks that comprise the main task. The amount of

data, the frequency with which they are transmitted, the speed of

their transmission, and the route that they take are all

significant in effecting this intercommunication. The speed of

transmission is a function of the hardware used and is not the

point of discussion here. There have been many approaches that

try to address this problem--that is, given these n processors,

how to connect them in the most cost-effective manner.

A variable interconnection topology must have a smaller

number of channels, and relatively easy routing rules. There are

also such other considerations as fault tolerance: how to route

data and recover gracefully in case a processor fails. With the

39



range of possible applications in mind, the designer must choose

the most cost-effective one for his purposes. Any evaluation of

the performance of these schemes must be, to a certain extent,

qualitative. It is instructive to examine, at least

qualitatively, some of the important characteristics of these

interconnection schemes[2].

4.1.1 NETWORK CHaRACTERISTICS

In all these networks, it should be emphasized that

improving one parameter might adversely affect some other

parameters: what is sought is an optimization of the network.

Average Distance

One of the more important evaluative measures of an

interconnection network is the average distance. This is the

distance a message must travel, on an average, in the network. It

is advantageous to make this as short as possible. The average

distance is defined as:

dN,
AvgDist -  

N - 1-

Where N, is the number of computers at a distance d links away,

d is the diameter (maximum of the minimum distance between any

two pairs of nodes), and N is the total number of processors.

For the regular network, i.e. those in which each computer

is connected to the same number of processors, the average

40



distance is a constant. For irregular networks, the formula will

yield different results, depending upon the node from which d is

measured. A network that has a low average distance may require

an unreasonable number of communication ports for each processor.

In order to distinguish these cases, a normalized average

distance is defined for link-based structures:

NormAvgDist (link) = AvgDist * Ports/Processor

In the case of bus structures, the distance d is the number

of buses a message has to cross on the way to its destination.

Also, the number of processors tied on a single bus may create

bottlenecks due to bus contention. To account for this, define

the normalized distance for bus structure as the average distance

weighted by the number of processors that may have access to a

single bus.

NormAvgDist (bus) = AvgDist * Ports/Bus

Communication links

The total number of communication links in a network of

given size is another useful measure. Clearly, among two

networks, the one that has fewer connecting links is the more

desirable, assuming all else is equal.

Routing Algorithm

When a message is to be routed from one computer to another,

the route it must take is obtained from the routing algorithm. It

41



is desirable that the routing algorithm be simple and not require

complete knowledge of the entire network. In particular, it would

be convenient merely to have the destination address. It is

possible to obtain the exact--and preferably the shortest--

sequence of computers the message must traverse.

Fault Tolerance

If one of the processors along this route were to be faulty,

then a breakdown in communication would result, and this could

make any further computation pointless. To preclude such a

possibility, networks must be fault tolerant. Fault-tolerant

networks have at least one redundant path between any two

processors; these redundant paths are used in the case of a

fault in a connecting channel. Another fault that is potentially

more dangerous is the failure of a processor. Should such a fault

arise, it is desirable that the system bypass this faulty

computer in all future computations and remain functional

although possibly impaired. This "graceful degradation" feature

is desirable in certain critical areas, such as space and

military applications.

Expansion Capability

Any large system must be capable of expansion in such a way

that requires a complete rebuilding, with fresh demands on the

number of communication ports of individual processors. Every

42



time extra computers are added, it is less preferable to one that

can be extended in a natural way, without major upheaval of the

entire system.

4.2 TYPES OF NETWORKS

4.2.1 THE RING NETWORK

The ring structure is one of the simplest networks. The

routing is simple and the structure has been well analyzed,

mainly because, along with the star and tree networks, it is

among the most popular of the topologies used in local area

networks (LANs). The topology has also been used in dataflow

machine architectures [2]. It consists of a number of processors

connected in the form of a ring, i.e. each connected to its two

neighbors. Although most LAN topologies use a unidirectional ring

(i. e. one in which data flows in one direction only around the

ring), because of its obvious problem of poor fault tolerance, a

bi-directional ring will be assumed.

Average Distance The normalized average distance is

(N + 1)/8, as there are two ports on each processor [2]. This

linear relationship between the total number of processors and

average distance means that the average distance of the ring

network increases as the total number of processors increases.

43



Communication Links The total number of communication links

is N.

Routing Algorithm The routing algorithm is relatively

straightforward because of the simplicity of the network. In a

ring network a single processor is connected with two other

processors, a message is to be routed from one processor to

another, the route it must take is obtained from the routing

algorithm. It is simplest for unidirectional rings and only

slightly more involved for bi-directional rings.

Fault tolerance The fault tolerance of the ring structure is

questionable. If any node in a unidirectional ring fails, it may

render the entire system nonfunctional. In a bi-directional ring

the failure of two nodes will cause the same result.

Expansion capability The ring network is obviously one of

the simplest to expand.

4.2.2 THE CUBE CONNECTED NETWORK

This network connects 2k computers (k is an integer) in such

a way that groups of 2 	 (r is the smallest integer such that

r + 	 2 >-= k) are interconnected so as to form a (k 	 r)

dimension cube. Each processor has a k-bit address that is

expressed as a pair (1, p) of integers, 1 having (k - r) bits,

and p having r bits. There are three ports called F (Forward), B

(Backward) and L (Lateral) provided on each processor.

44



Average distance 	 The average distance for the Cube

Connected Configuration is obtained as the product of the

average distance of a subgroup of 2 processors (which form a

ring) and the main (k - r) cube network. The number of ports in

each computer is three, so the normalized distance is simply the

average distance times three.

Communication links The total number of communication links

is at most (3/2)N, where N is the total number of nodes in the

network.

Routing algorithm and fault tolerance When a node is faulty,

an alternative path may be found with ease because of the simple

routing algorithm.

Expansion capability Because of the cube structure,

expansion must be in powers of two. The system must be

restructured, i.e. as shown in Figure 4.1 a 4-cube network can be

constructed from two 3-cube network by using 8 = 23 extra edges

between corresponding vertices at the corner positions [1].

Figure 4.1 The construction of two 4-cube network

45



4.:a.3 THE ALPHA NETWORK

This is a generalized hypercube structure.

Average distance The average distance is given by

	

D(W 	 1)Tel
AvgDist (alpha)

	

N 	 1

The number of ports on each processor is given by

Ports = D(W - 1)

where D is the distance between nodes of the alpha network and W

is the total number of processors in each dimension.

Communication links The total number of communication links

is 	 Links(alpha) = N * Ports/2 and N = WD

Routing algorithm and fault tolerance A simple routing

algorithm is designed for a alpha connected network. Because of

the several redundant paths that exist, this network is highly

fault tolerant [2].

Expansion Capability Since this network is a generalized

cube network, expansion is not easy as the number of ports is

dependent upon network size. Unlike cube networks, however, any

nonprime value of N can be accommodated.

In the same way one can derive the average distance and the

analysis of communication link, routing algorithm, and fault

tolerance for the rest of the network structures (i.e. Hyper tree

network, multitree structure, and beta network).

46



CHAPTER 5

DESIGN AND FUNCTION DESCRIPTION 

5.1 DATABASE DESIGN

Multiprocessing System Design - Tutor is designed with the

Informix Relational database. The name of the database which

stores all the information about the microprocessors is MULPROST.

Tables and indices created in this database are explained below.

A functional description is also given for each column in the

database. All the 4GL modules are designed using the MULPROST

database and its tables. The 4GL module is compiled using C4GL

which converts the 4GL module into a C program; this C program is

then compiled into executable form using the Microsoft C

compiler and linker.

An Informix-4GL program consists of a series of English-like

statements that obey a well-defined syntax. Informix-4GL deals

with a number of different kinds of objects. These includes local

and global program variables, constants, screen forms, functions

and reports. A typical sequence in an Informix-4GL program

consists of selecting a database, opening a form with or without

window and allowing the user to select menu options to enter or

edit data through the fields defined in the form. Multiple forms

related to different actions are handled sequentially within the

same program.

47



The following section describes the creation of tables and

indices or indices for a table.

5.2 TABLES

The multiprocessor performance table, Table 5.1, holds

information about the performance of a microprocessor. It

contains performance factors such as the total number of basic

instructions, direct addressing range, number of addressing

modes, basic clock frequency, primitive data types, data

structure and operating system support.

FIELD NAME DESCRIPTION

micropro char(11), Microprocessor name

bascinst char(25), basic Instructions

dar char(20), Direct Addressing Range

noofadmo char(40), Number of Addressing Modes

bcf char(10), Basic Clock Frequency

primdata char(20), Primitive Data Types

datastrc char(30), Data structure

primcont char(30), Primitive Control

contstrc char(30), Control Structure

ossupport char(20), Operating System Support

gpr char(20) General Purpose Register

TABLE 5.1 Multiprocessor performance

The grant command allows access of this table to all the users.

48



The multiprocessor characteristic table, Table 5.2, holds

all the characteristics for a given multiprocessor configuration.

It keeps track of characteristic names within the table. It has

12 description lines and two remark lines.

FIELD NAME DESCRIPTION

l' charname char(50), Charcteristic Name

chardescl char(54), Line 1 of Description

chardesc2 char(54), Line 2 of Description

chardesc3 char(54), Line 3 of Description

chardesc4 char(54), Line 4 of Description

chardesc5 char(54), Line 5 of Description

chardesc6 char(54), Line 6 of Description

chardesc7 char(54), Line 7 of Description

chardesc8 char(54), Line 8 of Description

chardesc9 char(54), Line 9 of Description

chardesc10 char(54), Line 10 of Description

chardescll char(54), Line 11 of Description

chardesc12 char(54), Line 12 of Description

rOmarkl char(35), Line 1 for Remarks

remark2 char(35) Line 2 for Remarks

TABLE 5.2 Multiprocessor characteristics

The grant command will allow access of this table to all the

users.

49



The network characteristic table, Table 5.3, contains

information about all the networks and their characteristics.

create table netwchar

FIELD NAME DESCRIPTION
-

nettype char(20), Type of Network

avgdist decimal(7,2), Average Distance

diameter smallint, Maximum of minimum distance

between two nodes.

commlink smallint, Communication Link

computers smallint, Total Number of COmputers

routalgo char (25), Routing Algorithm

algodesl char(50), Algorithm Description Line 1

algodes2 char(50), Algorithm Description Line 2

faultolr smallint Fault Tolerance

TABLE 5.3 Network charcteristic

The grant command will allow access of this table to all the

users. It keeps track of network characteristics and information

about routing algorithms for different networks. The user can

add, update or delete information from this table for any type of

network.

The design table, Table 5.4, 	 stores all the created

designs. This table holds the information about all the designs

50



created during the design process.

FIELD NAME
	 ..__

DESCRIPTION

designno serial not null Design Number

description char(40), Description

micropro char(11), Microprocessor

multtype char(20), Multiprocessor Configuration

nettype char(20), Network Type

desdescl char(60). Design description Line 1

desdesc2 char(60), Design description Line 2

desdesc3 char(60), Design description Line 3

desdesc4 char(60), Design description Line 4

appdesc1 char(60), Application Description Line 1

appdesc2 char(60) Application Description Line 2

TABLE 5.4 Multiprocessor design

This design number automatically becomes a unique index for this

table because of the type serial. A unique index is created on

this table on the designno field to increase the record search

speed. The grant command will allow access of this table to all

the users.

51



The configuration table, Table 5.5, stores all the different

configurations of multiprocessor.

FIELD NAME DESCRIPTION

conname char(30),

confdesl char(50),

Configuration Name

Configuration Description Line 1

confdes2 char(50), Configuration Description Line 2

confdes3 char(50), Configuration Description Line 3

confdes4 char(50), Configuration Description Line 4

confdes5 char(50), Configuration Description Line 5

confdes6 char(50), Configuration Description Line 6

confdes7 char(50), Configuration Description Line 7

confdes8 char(50) Configuration Description Line 8

TABLE 5.5 Multiprocessor configuration

A unique index is created for this table on oonname field to

increase the record search speed. The grant command will allow

access of this table to all the users.

5.3 MODULES

The 4g1 functions and related modules used in the system are

described below.

add_data ()

add_date.4g1

This function is used to display a date at the line no 3 of the

form. It displays the date in the format dd mmm yy, e.g. 16 Sep

52



89.

get_config()

confhelp.4g1

This function is a help function to get the system configuration

from the reference table.

deletwin() returning IS DEL

deletwin.4g1

This function can be used to verify whenever the user chooses to

delete a record from any table. It gives a RING MENU option of

"YES" or "NO" to choose from. If "YES" is chosen, then IS DEL is

set to TRUE; if "NO" is chosen, then IS_DEL is set to FALSE.

After a particular choice is made, the function returns Is_pEL.

Any program calling this function can work on the value returned

by IS_DEL. For information sake,the window delwin is displayed at

21,3 with 2 rows and 30 columns.

mainmenu()

mainmenu.4g1

This is the main function of the whole system. It displays the

main menu of the system and it is used as a driver for all

functions. This is the only one which contains main; all other

files are functions only. Here, the defer interrupt is used so

that when the user presses (CONTROL-C), it sets int_flag to true,

and based on that one can decide whether the user aborted the

53



process or selected a row.

manul()

menu1.4g1

This function is used as a submenu of a main menu. When the user

selects item 1 from the main menu, then this menu is displayed.

menu3()

menu3.4g1

This function is used as the submenu of the main menu. The basic

functionality is based on the user selection from the menu. It

calls the function corresponding to the user's choice.

menu4()

menu4.4g1

This function is used as a submenu of the main menu. The basic

functionality is based on the user selection from the menu. It

calls the function corresponding to the user's choice.

menu5()

menu5.4g1

This function is used as a submenu of the main menu. The basic

functionality is based on the user selection from the menu. It

calls the function corresponding to the user's choice.

54



get mic ()

michelp.4g1

This function is used to get the help for the name of the

microprocessor. It will list the name of the microprocessor from

the reference table; one can select the microprocessor by

pressing the ESC key.

get_chars()

multchlp.4g1

This function is used as a help function to get the name of the

characteristics. The data is fetched from the characteristic

reference table and is displayed as a program array on the

screen.

multperf()

multperf.4g1

This function is used as a maintenance of the performance of the

multiprocessor. The basic logic is the input array of some

elements.

mult chr()

mult_chr.4g1

This function is used to maintain the characteristics of the

multiprocessor.

55



get net()

nethelp.4g1

This function is a help function to get the network name from the

reference table.

net_char()

netwchar.4g1

This module is used to maintain the characteristics of a network

reference table. It is also used as the view in the main menu.

pr_char()

prt_char.4g1

This function is used to print the multiprocessor characteristics

in report form so that one can keep the readable copy.

prt net()

prt net.4g1

This function is use to print the multiprocessor network

configuration in report form so that one can keep the readable

copy.

5.3 FORMS

The forms related to the system are described below:

Mainmenu.per: This form is used with the main menu module to

display the various items of selection.

Menul.per: This is a submenu from the main menu.

Menu3.per: This is also a submenu from the main menu.

56



Menu4.per: This is a maintain reference table screen from the

main screen.

Menu5.per: This is a report screen from the main screen.

Multchar.per: 	 This 	 is the Multiprocessor Characteristics

maintenance screen from the maintain reference table.

Design.per: This form is used to get the design data from the

user.

Netwchar.per: This function is used to maintain the network

characteristics from the maintain reference table.

Michelp.per: This is a microprocessor selection help used as an

interface between the maintain screen and menu selection.

Nethelp.per: This is the same as michelp.per but used as a help

to choose a network name.

Configsm.per: A system configuration maintenance screen.

Confhelp.per: A help screen that acts as an intermediate screen

between the maintenance and menu.

57



CHAPTER 6

SYSTEM OPERATION

6.1 us= AND REFERENCE TIPS FOR OPERATION

The basic operation of this system is menu driven. All menus

are very user friendly, and display most of the messages on the

screen while the user is in data entry mode.

Some of the standards of this system are as follows:

1. [ESC] is always an accept key, i.e. if you press [ESC] then

the corresponding action will be taken. e.g. If the user is in

ADD mode and after the complete data entry, if the user presses

[ESC], the data will be inserted in the database.

2. [CONTROL-C] is always an abort key, i.e. if you presses

[CONTROL-C] while you are in help function the corresponding row

will not be selected and the control passes back to the menu.

3.[CONTROL-J] will be used as an up arrow key.

4. [CONTROL-K] will be used as a down arrow key.

5. [CONTROL-H] will be used as back space.

6. [CONTROL-L] will be used as the right arrow.

7. All the menu forms will be displayed within the window.

8. Always enter the number corresponding to menu selection.

58



6.2 MENU STRUCTURE

Figures 6.1 thru 6.14 on the following pages show the

hierarchical menu structure. These figures are created using the

print screen command of the computer while the system is running.

59



0000 	 0#00 	 00000000000 	 00#0000000	 00000000000000
00 00 	 00 00 	 00 	 00 	 00 	 00
00 	 00 00 00 	 00 	 00 	 00 	 00
00 	 00	 00 	 00	 00 . 	 00 	 00
00 	 00 	 00000000000 	 00	 0# 	 00
00 	 00 	 00 	 00 	 00 	 00
00 	 00 	 00 	 0# 	 0# 	 00
00 	 00 	 00 	 00 	 00 	 00
00 	 00 	 00000000000 	 0000000000 	 00

=== =================================== = ================================= ======
PRESS ANY KEY TO CONTINUE

=== ============================================ == ======================= ======

@COPYRIGHT: RAKESH KAMDAR 1989

Figure 6.1 Main title screen

Figure 6.1 shows the main title screen when user first

enters into the system. This screen allows the user to press any

key to continue.

60



<<<WARNING>>>

Unauthorized access is punishable !

Under Article of Software Protection

1
Password:

Under Article of Software Protection

Unauthorized access is punishable !

< < <WARNING> > >

Figure 6.2 Password entry screen

Figure 6.2 shows the password entry screen. This screen

allows the user to enter a valid password to get entry into the

first menu screen.

61



16 May 89 	 MULTIPROCESSOR SYSTEM DESIGN - TUTOR 	 SCREEN-1

1 - View Multiprocessor Characteristics
2 - View Network Characteristics
3 - Design Multiprocessor System
4 - Maintain Reference Tables
5 - Generate Microprocessor Reports

E - Exit

Make Selection :

Figure 6.3 Main menu

Figure 6.3 shows the main menu of the system. The user can

select any of the items by pressing the number corresponding to

that item.

62



16 may 89 	 MULTIPROCESSOR SYSTEM DESIGN - TUTOR 	 SCREEN-2

1 - View Multiprocessor Characteristics
2 - View Multiprocessor Performance

E - Exit

Make Selection

Figure 6.4 Submenu 1

Figure 6.4 shows the submenu for the selection number 1 from

the main menu. The user can view multiprocessor characteristics

or multiprocessor performance by selecting appropriate number

from this submenu.

63



[ESC] Exit, [CTRL-N] Abort

MULTIPROCESSOR CHARACTERISTICS 	 SCREEN-9

INSTRUCTION SET

EFFICIENT CONTEXT SWITCHING

LARGE VIRTUAL AND PHYSICAL ADDRESS SPACE

EFFECTIVE SYNCHRONIZATION PRIMITIVES

INTERPROCESSOR COMMUNICATION MECHANISM

Figure 6.5 Multiprocessor characteristics

Figure 6.5 lists multiprocessor characteristics available in

the system. The user can view these characteristics in detail by

pressing the ESCAPE key.

64



r
1CHARACTERISTICS: Fl-Insert Row F2-Delete Row

I= =========== = ===========================================================
1 Characteristic === PROCESS = RECOVERABILITY =================================

Description The architecture of processor used in a multiprocessor
system should reflect the fact that the process

I 	

and the processors are two different entities. If the
processor fails, it should routinely be possible for
another processor to retrieve the interrupted process

I 	
so that execution of the process can continue. With
out this feature the potential for reliability is

1 	

substantially reduced. Most processors contain the
state of the current-running process in internal
registers which are not accessible from outside the
process and are not returned to memory in the event of1

I 	
fault.

remark

I 	

It is desirable to have register
file shared by all the processors.= ====================================================================== =

FIgure 6.6 Detail description of characteristics

Figure 6.6 shows the detailed description of the process

recoverability of multiprocessor. The user can scroll through all

the characteristics to view in detail.

65



NETWORK: Fl-Insert Row F2-Delete Row

===== = ================================================ ==== ===============
16 May 89 	 Microprocessor 	 INTEL 80386 	 SCREEN-10
== ====== == ===============================================================
Basic Instruction 118 BASIC INST

Direct Add. Range 4 GIGA BYTES

No. Of Add Mode 	 13 BASIC, OBJECT CODE COMPATIBLE 80286

Basic Clock 12.5-16MHZ 	 Primitive Date Types 8, 16, 32-BIT DATA

Date Structure VIRTUAL MEMORY SUPPORT

Primitive Control PIPELINED INSTRUCTION

Control Structure NUMERIC SUPPORT 80287 80387

0. S. Support UNIX AND CP/M 	 General Pur. Reg 8 OF 32-BITS

Figure 6.7 Microprocessor characteristics

Figure 6.7 shows the characteristics of the Intel 80386

microprocessor.

66



NETWORK: Fl-Insert Row F2-Delete Row

== ================ = ================= = ==================================
16 Nov 89 	 Network Type RING NETWORK 	 SCREEN-12
==================================================================== ===
Average Distance 	 4.50 	 Dia. 	 15 No. Of Comm. Links 	 8

Routing Algorithm SIMPLE AND STRAIGHTFORWARD No. of Computers 	 5

Algorithm Desc 	 It also accommodates fault tolerance and is very u
seful when the ring is unidirectional.

Fault Tolarance 	 89
Please enter Name of the Routing Algorithm

Figure 6.8 Network type

Figure 6.8 shows all the parameters of a ring network. The

user can scroll through the details of other network

configurations.

67



16 May 89 	 MULTIPROCESSOR SYSTEM DESIGN - TUTOR 	 SCREEN-3
--

1 - Choose Configuration
2 - Select Microprocessor
3 - Select Interconnection Network
4 - View Some Configuration

E - Exit

Make Selection

Figure 6.9 Submenu 2

Figure 6.9 shows the submenu for item number 3 of the main

menu. The user can select any item by pressing a number

corresponding to that item. The user can exit from this submenu

by pressing 'E'.

68



[ESC] Exit, [CTRL-NJ Abort
.......... = ======================================== = =======

SELECTION OF CONFIGURATION 	 SCREEN-7
===========================================================

LOOSELY COUPLED MULTIPROCESSOR

TIGHTLY COUPLED MULTIPROCESSOR

SI MD

MIMD

=== ======== = ======================= ====================== =

Figure 6.10 Configuration selection

Figure 	 6.10 	 shows 	 the various 	 configurations 	 of

multiprocessor systems. The user can view these configurations in

detail by pressing ESCAPE key.

69



(ESC] Exit, (CTRL-N] Abort========================================
SELECT MICROPROCESSOR 	 SCREEN-8

========================================

MC 68020

INTEL 80386

========================================

Figure 6.11 Microprocessor selection

Figure 6.11 lists the microprocessors currently available in

the system.

70



16 May 89 	 MULTIPROCESSOR SYSTEM DESIGN - TUTOR 	 SCREEN-4

1 - Multiprocessor Characteristics
2 - System Configuration
3 - Network Characteristics
4 - Microprocessor Characteristics

E - Exit

Make Selection

Figure 6.12 Submenu 3

Figure 6.12 shows the submenu for the selection of item

number 4 of the main menu. These are the reference tables in the

database, which store all the information of multiprocessors and

microprocessors.

71



May 89 	 MULTIPROCESSOR SYSTEM DESIGN - TUTOR 	 SCREEN-5

1 - Generate Design Reports
2 - Generate Characteristics Reports
3 - Generate Network Reports
4 - Generate Configuration Reports

E - Exit

Make Selection :

Figure 6.13 Submenu 4

Figure 6.13 shows the submenu for the selection of item

number 5 of the main menu. These are the reports from the

database, which print all the information of multiprocessors and

microprocessors reference tables.

72



[ESC) Exit, (CTRL-N) Abort
===========================================================

SELECTION OF NETWORK 	 SCREEN-11
======== ===================================================

STAR NETWORK

ALPHA NETWORK

HYPER TREE NETWORK

MULTI TREE STRUCTURE

BETA NETWORK

Figure 6.14 Network selection

Figure 6.14 lists all the network configurations available

in the database. The user can view any of the network

configuration by pressing the ESCAPE key.

73



CHAPTER 7

CONCLUSIONS AND SUGGESTIONS 

7.1 CONCLUSIONS

Multiprocessing System Design - Tutor is designed and

implemented as a helping tool to system design engineers. MSDT

stores and maintains information related to multiprocessor system

design, which includes multiprocessor system requirements,

microprocessor characteristics and interconnection network

configurations and their performance factors. This information is

presented to the user via screen building utility of Informix-

4GL.

7.2 SUGGESTIONS

This system needs development in the area of evaluation of

microprocessor characteristics and memory module interface.

Currently, it contains all the information about the MC68020 and

Intel 80386. For further development it needs information about

other microprocessors. The Informix Rapid Development Tool is

commercially available, so one can use that for further 4GL code

development.

One can also make this system work for new microprocessors

like the Intel 80486 and the MC68030. This system has very good

potential to grow into a large multiprocessing system design

tool.

74



APVEND/X 1

INFORM/X FORMS 

database formonly
screen
1

MULTIPROCESSOR SYSTEM DESIGN - TUTOR 	 SCREEN-1

1 - View Multiprocessor Characteristics
2 - View Network Characteristics
3 - Design Multiprocessor System
4 - Maintain Reference Tables
5 - Generate Microprocessor Reports

E - Exit

Make Selection : [a]

attributes
a=formonly.s_choice type char, upshift, autonext, reverse;
instructions
delimiters " "
end

75



database formonly
screen

MULTIPROCESSOR SYSTEM DESIGN - TUTOR 	 SCREEN-2

1 - View Multiprocessor Characteristics
2 - View Multiprocessor Performance

E - Exit

Make Selection : [a]

attributes
a=formonly.s_phoice type char, upshift, autonext, reverse;
instructions
delimiters " "
end

76



database formonly
screen
{

MULTIPROCESSOR SYSTEM DESIGN - TUTOR 	 SCREEN-1

1 - Linear Array
2 - Ring
3 - Star
4 - Tree
5 - Near-Neighbour mesh
6 - Systolic Array
7 - Completely Connected
8 - Cube

E - Exit

Make Selection : [a]
)
attributes
a=formonly.s_choice type char, upshift, autonext, reverse;
instructions
delimiters " "
end

77



database formonly
screen

MULTIPROCESSOR SYSTEM DESIGN - TUTOR 	 SCREEN-3

1 - Choose Configuration
2 - Select Microprocessor

- Select Interconnection Network
4 - View Some Configuration

E - Exit

Make Selection : [a]
}

attributes
a=formonly.s_choice type char, upshift, autonext, reverse;
instructions
delimiters " "
end

78



database formonly
screen

MULTIPROCESSOR SYSTEM DESIGN - TUTOR 	 SCREEN-4

1 - Multiprocessor Characteristics
2 - System Configuration
3 - Network Characteristics
4 - Microprocessor Characteristics

E - Exit

Make Selection : [al

attributes
a=formonly.s_choice type char, upshift, autonext, reverse;
instructions
delimiters "
end

79



database formonly
screen

MULTIPROCESSOR SYSTEM DESIGN - TUTOR 	 SCREEN-5

1 - Generate Design Reports
2 - Generate Characteristics Reports
3 - Generate Network Reports
4 - Generate Configuration Reports

E - Exit

Make Selection : [a)
1
attributes
a=formonly.s_phoice type char, upshift, autonext, reverse;
instructions
delimiters " "
end

80



latabase MULPROST
3creen

[a|b|c] 	 MULTIPROCESSOR CHARACTERISTICS 	 SCREEN-9

[f000

[f000

[f000

[f000

[f000

1
end
tables
nultchar

attributes
a = formonly.b1;
b = formonly.b2;
c = formonly.b3;
f000 = multchar.charname, REVERSE, UPSHIFT;

INSTRUCTIONS

DELIMITERS " "

SCREEN RECORD s multchar [5] (multchar.charname)

end

81



database MULPROST
screen

Characteristic [f000

Description 	 [f001
[f002
[f003
[f004
[f005
[f006
[f007
[f008
[f009
[f010
[f011
[f012

remark 	 [f014
[f015

end
tables
multchar
attributes
f000 = multchar.charname, REVERSE, UPSHIFT;
f001 = multchar.chardescl, REVERSE, AUTONEXT;
£002 = multchar.chardesc2, REVERSE, AUTONEXT;
f003 = multchar.chardesc3, REVERSE, AUTONEXT;
f004 = multchar.chardesc4, REVERSE, AUTONEXT;
f005 = multchar.chardesc5, REVERSE, AUTONEXT;
f006 = multchar.chardesc6, REVERSE, AUTONEXT;
f007 = multchar.chardesc7, REVERSE, AUTONEXT;
f008 = multchar.chardesc8, REVERSE, AUTONEXT;
£009 = multchar.chardesc9, REVERSE, AUTONEXT;
f010 = multchar.chardesc10, REVERSE, AUTONEXT;
f011 = multchar.chardescll, REVERSE, AUTONEXT;
f012 = multchar.chardesc12, REVERSE;
£014 = multchar.remarkl, REVERSE, AUTONEXT;
£015 = multchar.remark2, REVERSE;
INSTRUCTIONS
DELIMITERS " "
screen record s mult (multchar.charname thru multchar.remark2)
end

82



database MULPROST
screen
{

Design No [f000 	 ] Desc [f001

Microprocessor [f002

Multiprocessor [f003

Network 	 [f004

Desc. 	 [f005
[f006

	

[f007 	 1
[f008
[f009

App 	 [f010

end
tables
design
attributes
f000 = design.designno, REVERSE, NOENTRY;
f001 = design.description, REVERSE;
f002 = design.micropro, REVERSE;
f003 = design.multtype, REVERSE;
f004 = design.nettype, REVERSE;
f005 = design.desdescl, REVERSE;
f006 = design.desdesc2, REVERSE;
f007 = design.desdesc3, REVERSE;
f008= design.desdesc4, REVERSE;
f009= design.appdesc1, REVERSE;
f010 = design.appdesc2, REVERSE;
end

instructions

delimiters " "

end

83



database MULPROST
screen

	Network Type [f000	 SCREEN-12
	 - 
Average Distance[f001 	 ]Dia. [f008] No. Of Comm. Links [f002 ]

Routing Algorithm [f003 	 ] No. of Computers [f007]

Algorithm Desc 	 [f004
[f005

Fault Tolarance 	 [f006 ]
1
end

tables
netwchar

attributes
f000 = netwchar.nettype, REVERSE, UPSHIFT,
Comments = "Please enter Network Type";
f001 = netwchar.avgdist, REVERSE, NOENTRY;
f008 = netwchar.diameter, REVERSE,
Comments="Enter Maximum of the minimum distance between any
two pairs of nodes";
f002 = netwchar.commlink, REVERSE,
comments = "Please enter No of Communication Links";
f007 = netwchar.computers, REVERSE,
comments = "Please enter No of Computers";
f003 = netwchar.routalgo, REVERSE,
comments = "Please enter Name of the Routing Algorithm";
f004 = netwchar.algodesl, REVERSE, AUTONEXT,
comments = "Please enter Routing Algorithm short description";
f005 = netwchar.algodes2, REVERSE,
comments = "Please enter Routing Algorithm short description";
f006 = netwchar.faultolr, REVERSE;
end

Instructions

delimiters " "

screen record s netwchar(netwchar.nettype thru netwchar.faultolr)

end

84



database MULPROST
screen
{

Microprocessor [f000 	 ] 	 SCREEN-10

Basic Instruction [f001

Direct Add. Range [f002

No. Of Add Mode [f003

Basic Clock [f004 	 ] Primitive Date Types [f005

Date Structure [f006

Primitive Control [f007

Control Structure [f008

0. S. Support [f009 	 ] General Pur. Reg [f010
1
end

tables
multperf

attributes
f000 = multperf.micropro, REVERSE;
f001 = multperf.bascinst, REVERSE;
f002 = multperf.dar, REVERSE;
f003 = multperf.noofadmo, REVERSE;
f004 = multperf.bcf, REVERSE;
f005 = multperf.primdata, REVERSE;
f006 = multperf.datastrc, REVERSE;
f007 = multperf.primcont, REVERSE;
f008 = multperf.contstrc, REVERSE;
f009 = multperf.ossupport, REVERSE;
f010 = multperf.gpr, REVERSE;
end

instructions

delimiters " "

screen record s multperf (multperf.micropro thru multperf.gpr)
end

85



database MULPROST
screen

[a|b|c] 	 SELECT MICROPROCESSOR 	 SCREEN-8

[f000

[f000

[f000

[f000

	 =

end
tables
multperf

attributes
a = formonly.b1;
b = formonly.b2;
c = formonly.b3;
f000 = multperf.micropro, REVERSE, UPSHIFT;

INSTRUCTIONS

DELIMITERS " "

SCREEN RECORD s michelp [4] (multperf.micropro)

end



database MULPROST
screen

MAINTAIN SYSTEM CONFIGURATION 	 SCREEN-6

System Configuration: 	 [f000

Description: [f001

[f002

[f003

[f004

[f005

[f006

[f007

[f008
1
end
tables
configsm
attributes
f000 = configsm.conname, UPSHIFT, REVERSE;
f001 = configsm.confdesl, AUTONEXT, REVERSE;
f002 = configsm.confdes2, AUTONEXT, REVERSE;
f003 = configsm.confdes3, AUTONEXT, REVERSE;
f004 = configsm.confdes4, AUTONEXT, REVERSE;
f005 = configsm.confdes5, AUTONEXT, REVERSE;
f006 = configsm.confdes6, AUTONEXT, REVERSE;
f007 = configsm.confdes7, AUTONEXT, REVERSE;
f008 = configsm.confdes8, REVERSE;
end

instructions

delimiters " "

SCREEN RECORD s confmnt (configsm.conname THRU configsm.confdes8)

end

87



database MULPROST
screen

[a|b|c] 	 SELECTION OF CONFIGURATION 	 SCREEN-7

[f000

[f000

[f000

[f000 ]

[f000

}end
tables
configsm

attributes
a = formonly.b1;
b = formonly.b2;
c = formonly.b3;
f000 = configsm.conname, REVERSE, UPSHIFT;

INSTRUCTIONS

DELIMITERS " "

SCREEN RECORD s confhelp [5] (configsm.conname)

end

88



# Rakesh Kamdar
# Makefile for the Multiprocessor System Design Tutor

CFLAG=

LDFLAGS=/st:12288 /se:256 /exepack

MAK=$(MENUo) $(HELPo) $(MNTo) $(REPo)

MENUo=add_date.obj mainmenu.obj menul.obj menu3.obj
deletwin.obj menu4.obj menu5.obj init_pro.obj

HELPo=confhelp.obj multchlp.obj nethelp.obj michelp.obj

MNTo=mult_chr.obj netwchar.obj multperf.obj mntconf.obj

REPo=prt_char.4g1 prt_net.4g1

cci $*
del $*.c
del $*.ec

form4g1 $*

add_date.obj:add_date.4g1

deletwin.obj:deletwin.4g1

mainmenu.obj:mainmenu.4g1

menul.obj:menu1.4g1

#menu2.obj:menu2.4g1

menu3.obj:menu3.4g1

menu4.obj:menu4.4g1

menu5.obj:menu5.4g1

init_pro.obj:init_pro.4g1

multchlp.obj:multchlp.4g1

mult_chr.obj:mult_chr.4g1

netwchar.obj:netwchar.4g1

89



multperf.obj:multperf.4g1

michelp.obj:michelp.4g1

confhelp.obj:confhelp.4g1

mntconf.obj:mntconf.4g1

prt_char.obj:prt_char.4g1

prt_net.obj:prt_net.4g1

nethelp.obj:nethelp.4g1

menul.frm:menul.per

menu2.frm:menu2.per

menu3.frm:menu3.per

menu4.frm:menu4.per

menu5.frm:menu5.per

multchar.frm:multchar.per.

mainmenu.frm:mainmenu.per

mult.frm:mult.per

netwchar.frm:netwchar.per.

multperf.frm:multperf.per

michelp.frm:michelp.per

nethelp.frm:nethelp.per

configsm.frm:configsm.per

confhelp.frm:confhelp.per

90



echo off

REM #########################################################
REM #
REM # FILE NAME:cci.bat
REM #
REM # DESC: 	 The main functionality of this batch process is to
REM # 	 compile the Very Huge 4GL function using Huge Library
REM # 	 of the Microsoft C 4.0. This Batch file will generate
REM # 	 object file from the 4GL file.
REM # 	 Usage:cci <4GL filename without extension>
REM # 	 i. e. cci menul 	 for menu1.4g1
REM #
REM #############################################################

REM # IF first argument to cci is null then display the Usage.
if .%1 == .—goto usage

:loop

if .%1 == . goto exit

REM # Check the existence of 4g1 module.
if not exist %1.4g1 goto usage

if exist %1 goto usage

echo Phase 1 ...

REM # Use fglc of I4GL library to compile .4g1 module into .obj .
fglc %1.4g1

REM # If there is an error in compilation that it will go and
REM # search for the error file. If error file is not found than
REM4 the compilation is 0. K.
if not exist %1.err goto is_ok

BEEP

REM # If error file exist then open error file and show the error

REM # to the user and then show 4g1 module to correct the error.
vi %1.err %1.4g1

pause

91



REM # Delete error file after correction.
del %1.err
del fg*.

goto loop
:is ok

echo Phase 2 ...

c4g1 -e %1.ec

echo Phase 3 ...

msc -AH %1 /Gt16;

REM del xx457
REM del %1.ec
REM del %1.c

shift
goto loop

:usage
echo Usage: cci 4gl_file 	  (no .4g1)
:exit

92



#################################################################
# FUNCTION NAME: mainmenu()

# FILE NAME: 	 mainmenu.4g1

# DESCRIPTION: This is the main function of the whole system, It
# displays the mainmenu of the system and it is used
# as driver for the all function. This is the only
# which contains main, all other files are functions
# only. Here, we do the defer interrupt so that when
# user presses (CONTROL-C) key it sets int_flag to
# true, and based on that we can take the decision
# wether user aborted the process or selected a row.

#################################################################

# Name of the database is abbriviated to mulprost from
#(Multiprocessor System Design Tutor)
database mulprost

main
defer interrupt
call init_prog ()
call mainmenu ()

end main

function mainmenu()

define choice char(1)
define dummy,dummy2, dummy3, dummy4, dummy5 char(3)
define dummy1, done smallint

let done = FALSE

# This opens the form to display on the screen.
open form mainmenu from "mainmenu"
clear screen

while not done
#This window covers the form opend before and it also displys the

#border of the window.
open window win_l at 2,3 with 22 rows, 75 columns
attribute (border)
display form mainmenu

call add date()

93



input choice from s_choice

#If user selects option from the mainmenu, then close the window
#with form and call the another menu for the user.

case
when choice = 1
close window win 1
call menul ()
when choice = 2

close window win_i
call net char 0
when choice = 3
close window win 1
call menu3 ()

when choice = 4
close window win 1
call menu4 ()

when choice = 5
close window win 1

call menu5 ()

when choice =
close window win 1

let done = TRUE
exit case
otherwise
close window win 1

error "Invalid Menu Selection"
end case

options input no wrap
initialize choice to null
end while

close form mainmenu
end function

94



########################################################## #######

# FUNCTION NAME: net char()

# FILE NAME: netwchar.4g1

# DESCRIPTION: This module is use to maintain the
# characteristics of a Network reference table. It is also used
# as the view in the mainmenu.
#################################################################
database mulprost

globals

define p_net record like netwchar.*
define p_ddsp record like netwchar.*
define is_del smallint
define eflag smallint
define g_is_err smallint

end globals

function net_char ()

define pa_net_array[10] of record like netwchar.*
define idx smallint
define iflag smallint
define scrn smallint
define cnt smallint
define pa_rows smallint
define i smallint
define redraw smallint
define tmp_dat date

initialize p_ddsp.* to null

# defer interrupt

open window net_disp at 6,7 with form "netwchar"
attribute (border, message line last,prompt line last-1)

let tmp_dat = today

display tmp_clat using "dd mmm yy" at 4, 1

for i = 1 to 10
initialize pa_net[i].* to null

95



end for

declare net cnt cursor for
select * from netwchar

let redraw = true

while redraw
error "
let idx = 0
let redraw = false
# return to the menu after exitting the input array

foreach net_cnt into p_pet.*
let idx = idx + 1
let pa_net[idx].* = p_net.*
end foreach

display
"NETWORK: Fl-Insert Row F2-Delete Row"
at 1,l

call set count(idx)

input array pa_net without defaults from s_netwchar.*

before row
let idx = arr curr()
display pa_net[idx].* to s_netwchar.* attribute (reverse)
let scrn = scr_line()
if idx > 1 then
if pa_net[idx-l].nettype is null then
let redraw = true
exit input
end if
end if
let p_net.* = pa_net[idx].*
let iflag = 0

on key (control-N,interrupt)
let pa_net[idx].* = p_net.*
display pa_net[idx].* to s_netwchar.* attribute (reverse)
let int_flag = false
exit input

before insert
initialize p_net.* to null

96



after insert
let iflag = -1
let eflag = 0
if (pa_net[idx].nettype is not null) then
select count(*)
into cnt
from netwchar
where nettype = pa_netridx].nettype

if cnt != 0 then
error " Code ",pa_net[idx].nettype,

" already exists
clear form
next field nettype
end if
end if

if (pa_net[idx].nettype is not null) then
insert into netwchar
values (pa_net[idx].*)
message "Record added"
sleep 2
message "
else
error "Entry is required in each field"
next field nettype
end if

before delete
let iflag =-1
call deletewin() returning is_del
if is del then
message "Deleting record..."
delete from netwchar
where nettype = pa_net[idx].nettype
message "Record deleted"
sleep 2
message ""
end if

after field computers

case
when pa_net[idx].nettype = "RING NETWORK"
let pa_net[idx].avgdist = (pa_net[idx].commlink + 1)/2
display pa_net[idx].avgdist to s_netwchar.avgdist

97



when 	 pa_nettidx].nettype 	 = 	 "CUBE 	 CONNECTION 	 NETWO"let
pa_net[idx].avgdist =

(pa_net[idx).commlink + l)/2 *(2**pa_net[idx].computers)
display pa_net[idx].avgdist to s_netwchar.avgdist

when pa_net[idx].nettype = "ALPHA NETWORK"
let pa_net[idx].avgdist =

(pa_net[idx].commlink + 1)/2 *(2**pa_net[idx].computers)
display pa_net[idx].avgdist to s_netwchar.avgdist

when pa_net[idx].nettype = "HYPER TREE NETWORK"
let pa_net[idx].avgdist = (pa_net[idx].commlink + 1)/2
display pa_net[idx].avgdist to s_netwchar.avgdist

when pa_net[idx].nettype = "MULTI TREE STRUCTURE"
let pa_net[idx].avgdist =

(pa_net[idx].commlink + 1)/2 *(2**pa_net[idx].computers)
display pa_net[idx].avgdist to s_netwchar.avgdist

when pa_net[idx].nettype = "BETA NETWORK"
let pa_net[idx].avgdist = (pa_netfidx].commlink + 1)/2
display pa_net[idx].avgdist to s_netwchar.avgdist
end case

after row
let pa_rows = arr_count()
display pa_net[idx].* to s_netwchar.*
attribute (reverse)
if (pa_net[idx].nettype is null) then
let iflag = -1
end if
if(p_net.nettype != pa_net[idx].nettype or
p_net.avgdist != pa_net[idx].avgdist or
p_net.diameter != pa_net[idx].diameter or
p_net.computers != pa_net[idx].computers or
p_net.commlink != pa_net[idx].commlink or
p_net.routalgo != pa_net[idx).routalgo or
p_net.algodes1 != pa_net[idx].algodesl or
p_net.algodes2 != pa_netidx].algodes2 or
p_net.faultolr != pa_net[idx].faultolr or

(p_net.nettype is NULL and pa_net[idx].nettype is NOT NULL) or
(p_net.avgdist is NULL and pa_net[idx].avgdist is NOT NULL) or
(p_net.diameter is NULL and pa_net[idxj.diameter is NOT NULL)

or
(p_net.computers is NULL and pa_netfidx].computers is NOT NULL)

98



or
(p_net.commlink is NULL and pa_net[idx].commlink is NOT NULL)

or
(p_net.routalgo is NULL and pa_net[idx].routalgo is NOT NULL)

or
(p_net.algodesl is NULL and pa_net[idx].algodesl is NOT NULL)

or
(p_net.algodes2 is NULL and pa_net[idx].algodes2 is NOT NULL)

or
(p_net.faultolr is NULL and pa_net[idx].faultolr is NOT NULL))

then
update netwchar set
netwchar.* = pa_net[idx].*

where nettype = p_net.nettype
message "Record updated"
sleep 2
message ""
end if
on key (escape)
let redraw = false
exit input
end input
end while #redraw
close window net_disp
display "" at l, 1
display "" at 2, 1
return
end function

99



#########################################################
# FILE NAME: lnk.bat

# DESCRIPTION: This batch program is use to link all the
# necessary modules.
#########################################################

VERBOSE
#NOVECTOR llibfp.lib,llibc.lib,em.lib,libh.lib
NWIDTH 30
MAP=msdt A
RELOAD FAR 200
STACK 4500
OUTPUT c:\modules\msdt.exe
OVERLAY CODE, FAR_DATA, NIL, ENDCODE
FILE mainmenu, init_ pro
SEARCH llib4g1,11ibsql,llibform
BEGIN

section file menul
section file multchlp
section file add_date
section file deletwin

END
BEGIN

section file netwchar
END
BEGIN

section file confhelp
END
BEGIN

section file menu3
section file michelp
section file nethelp

END
BEGIN

section file mult chr
END
BEGIN

section file menu4
section file multperf
section file mntconf

END
BEGIN

section file menu5
section file prt_net
section file prt_char

END

100



SELECTED BIBLIOGRAPHY

1. Kai Hwang and Faye A.Briggs, Computer Architecture and

Parallel Processing, McGraw Hill Book Company, 1985.

2. D. P. Agarwal and V. K. Jankiram, "Evaluating the Performance

of Multicomputer Configuration", IEEE Trans. Computers, Vol.

C-30, pp.23-37, May 1981.

3. Hoo-min D. Toong and Amar Gupta, "An architectural comparision

of contemporary 16-Bit Microprocessors", IEEE Micro, Vol.

26, pp.26-36, May 1981.

4. Robert H. Kuhn and David A. Padua, Tutorial on Parallel 

Processing, IEEE Computer Society, 1981.

5. Intel Corporation, 80386 Hardware Reference Manual, 1986.

6. Motorola Inc, MC 68020 32-Bit Microprocessor User's Manual,

1986.

7. Informix Inc., How to Choose an RDBMS, 1988.

8. Manju Bewtra, "Informix and Ingres: A Comparative Look",

DATABASE, pp. 58-69, August 1988.

9. Informix Inc, Informix-4GL User Guide, 1987.

10.Informix Inc, Informix-4GL Reference Manual 1 - 2, 1987.

101


	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Approval Sheet
	Vita
	Abstract (1 of 2)
	Abstract (2 of 2)

	Table of Contents
	Chapter 1: Introduction
	Chapter 2: Microprocessor Characteristics and Support
	Chapter 3: Expert System and Database
	Chapter 4: Interconnection Networks
	Chapter 5: Design and Function Description
	Chapter 6: System Operation
	Chapter 7: Conclusions and Suggestions
	Appendix 1: Informix Forms
	Selected Bibliography

	List of Figures
	List of Tables



