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Abstract

Title of Thesis: Control of Stress in Reactively Sputtered Silicon Nitride Films

Ajay Krishnan, Master of Science in Electrical Engineering, 1990

Thesis Directed by: Dr. Roy Comely, Professor of Electrical Engineering.

Silicon nitride thin films of varying composition and thickness were deposited

on silicon substrates by reactive rf diode sputtering of a silicon target using an

argon/nitrogen gas mixture. Film stoichiometry could be controlled by varying

the partial pressure of nitrogen, the total sputtering gas pressure and the target

rf power. Films with refractive index of 2.01, the value for stoichiometric silicon

nitride, could be obtained. Film stress was measured by wafer curvature; refractive

index and thickness of deposited films were obtained by ellipsometry and interfer-

ometry measurements. The etch rate in buffered HF for films with refractive index

2.05 was 29A/min; as measured by IR spectroscopy these films had relatively low

oxygen and hydrogen content. On increasing the film thickness from 300 A to 1900,

A, the stress decreased from 4.45 x 10 9 N m2  to 0.56 x 10 9N/m2 for a film with a

refractive index of 2.05. It was observed that films with silicon in excess of the sto-

ichiometric value and films with greater thickness exhibited reduced stress. Films

with higher refractive index were obtained on reducing the nitrogen partial pressure



and increasing the applied rf power.

Since low temperature deposition. is critical for reducing the stress developed in

thin films, the substrate temperature during sputter deposition was maintained at

140°C (10°C). The stress content of the unannealed NJIT films was observed to be

higher by about a factor of 10 than the lowest stress value (2 x 10 8N/m2 ) obtained

by plasma deposition followed by a 400 °C postanneal for a 1000 A thick film. The

lowest stress value obtained during this research was 0.98 x 10 9 N/rn 2 , with 2.24

being the refractive index for this silicon rich film with a thickness of 700 A. The

value for a 730 A thick film with index of 1.702 was 2.036 x 109N/m2.



2/ Control of Stress in Silicon Nitride
Thin Films

by
Ajay Krishnan.

Thesis submitted to the Faculty of the Graduate School
of the New Jersey Institute of Technology in partial fulfillment

of the requirement for the degree of
Master of Science

1990



Approval Sheet

Title of Thesis: Control of Stress in Reactively Sputtered Silicon Nitride Films

Name of Candidate: Ajay Krishnan

Degree: Master of Science in Electrical Engineering

Thesis and Abstract Approved:

Dr Roy Cornely 	 Date
Thesis ,visor

Dr e eth ohn Date
Committee Member

Sosnowski 	 Date
Committee Member



Vita

Name: Ajay Krishnan.

Degree and date to be conferred: M.S.E.E., 1990.

Secondary Education: Central School, Bhopal, India.

Collegiate institutions attended Dates Degree Date of Degree
College of Engineering, Guindy. 1984-88 B.S.E.E. May, 1988

New Jersey Institute of Technology 1988-90 M.S.E.E. October, 1990

Major: Electrical Engineering.



 
 
 
 
 
 
 
 
 
 
 
 
 
 



Contents

1 Introduction 1

2 3
2.1 Ion bombardment of a surface 	 3

2.1.1 	 Characteristics of sputtering 	 6
2.2.1 	 Types of Passivation 	 9
2.2.2 	 Electrical Requirements of an Ideal Passivating Layer 	 . . . 10
2.2.3 	 Passivation Mechanism 	 10
2.2.4 	 Comparision of Passivating Materials 	 11

2.3 Characterization techniques    18
2.3.1 	 Ellipsometry 	 18
2.3.2 	 Chemical Etching of Thin Films 	 20

3 Experimental Procedure 28
3.1 	 Sputtering system 	 28
3.2 Substrates 	  	 29

3.2.1 	 Etching of Substrates 	 29
3.3 Deposition Process 	 31

3.3.1 	 Presputtering 	 31
3.3.2 	 Sputter Deposition    32

4 Experimental results 34
4.1 	 Refractive Index 	 35

4.1.1 	 Effect of N2 Partial Pressure on Refractive Index 	 35
4.1.2 	 Effect of Total Gas Pressure on Refractive Index 	 35
4.1.3 	 Variation of Etch Rate with Refractive Index 	 35
4.1.4 	 Effect of Power Density on Refractive Index 	 35

4.2 Deposition and Etch Rates 	 36
4.2.1 	 Effect of Power Density on Deposition and Etch Rates . . . . 36
4.2.2 	 Effect of N2 Partial Pressure on Deposition Rate 	 36
4.2.3 	 Effect of Total Gas Pressure on Deposition Rate 	 37
4.2.4 	 Effect of Deposition Time on Deposition Rate 	 37

4.3 Stress 	  	 37
4.3.1 	 Effect of N2 Partial Pressure on Stress 	 37
4.3.2 	 Effect of Thickness on Stress 	 38

4.4 IR absorption spectra 	 38

iii



5 Discussion of Results 47
5.1 Refractive Index 	 47

5.1.2 	 Variation of Refractive Index with Sputtering Gas Pressure . 48
5.2 Deposition and Etch Rates 	 51
5.3 Stress 	 51

5.3.1 	 Effect of Deposition Parameters on Stress 	 51
5.3.2 	 Variation of Lateral Diffusion with Stress 	 53

5.4 IR Absorption Spectra 	 54
5.4.1 	 Effect of Nitrogen Partial Pressure 	 54

6 Conclusions and Suggestions for Future Work 57
6.1 	 Conclusions 	 57
6.2 Suggestions for Future Work    59

7 Bibliography

iv



List of Figures

2.1 Representation of three types of collision between an incident ion and
a surface atom. The mass of the incident ion is represented here as
being less than the mass of the struck atom.  	 5

2.2 Typical C-V curves for a MNS capacitor: A, theoretical curve; B,C
curves showing hysteresis of an MNS capacitor; D, curve for an MNS
capacitor as-deposited; 0,11, curves for an MNS capacitor after a
bias-temperature stress test; I, curve for an MNOS capacitor. [14]. . 16

2.3 Schematic of an ellipsometer  19
2.4 Etch rates of silicon nitride in refluxed phosphoric acid at atmo-

spheric pressure [Van Gelder and Hauser] 	  22
2.5 Schematic of Fourier Transform Infrared Spectrophotometer (FTIR) 	 24
2.6 Schematic of laser reflectance measurement apparatus 	  26

3.1 MRC 8800 sputtering system 	  30

4.1 Variation of refractive index with nitrogen partial pressure. 	  39
4.2 Variation of refractive index with total gas pressure. 	  39
4.3 Variation of etch rate with refractive index. 	  40
4.4 Variation of film density with power density.[Gregor] 	  40
4.5 Variation of refractive index with power density. 	  41
4.6 Variation of deposition and etch rates with power density 	  41
4.7 Variation of deposition rate with nitrogen partial pressure. 	  42
4.8 Variation of deposition rate with total gas pressure. 	  42
4.9 Variation of deposition rate with deposition time 	  43
4.10 Variation of compressive stress with nitrogen partial pressure 	  43
4.11 Variation of compressive stress with thickness. 	  44
4.12 Infrared absorption spectrum 	  44
4.13 Infrared absorption spectrum 	  45
4.14 Infrared absorption spectrum 	  45
4.15 Infrared absorption spectrum 	  46
4.16 Lorentz-Lorenz correlation curves for reactive plasma deposited sili-

con nitride films (after Sinha [48]) 	 46

5.1 Variation of Stress with Thickness 	  54
5.2 Ratio of Lateral Diffusion to Junction Depth 'lc' for Si 3 N4 films of

varying thickness. 	  55

	

5.3 Zinc Diffusion in GaAs with Si 3N4 Mask.     55



Chapter 1

Introduction

The research reported in this thesis was a part of the joint research program between

New Jersey Institute of Technology and Epitaxx, Inc.. The research was partially

supported by the New Jersey State Commission on Science and Technology. All the

experiments were carried out at the Drexler Microelectronics Laboratories at NJIT

under the supervision of Dr. Roy H. Comely and Dr. Kenneth Sohn, Professors of

Electrical Engineering, NJIT.

The primary goals of this research were to control the stress silicon nitride

films for applications in microelectronics and optoelectronic device passivation..

Silicon nitride thin films of varying composition were deposited by reactive rf sput-

tering. This was done by adjusting the various deposition parameters. Refractive

index and thickness of the films were determined by ellipsometry, infrared spec-

trophotometry was used to determine the film composition and etch rate studies

were used to study the structural and chemical properties of the film. Stress devel-

oped in the deposited films was determined by measuring the wafer curvature using

laser reflectance technique.

Chapter 2 is a review of sputtering and sputter deposition, passivation, the

different materials used for passivation, and the theoretical background of the var-

ious characterization techniques used in this study.
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Chapter 3 discusses the deposition equipment, substrate preparation and the

deposition procedure.

Experimental data and results obtained during this research as well as data

obtained by other researchers are presented in chapter 4.

Chapter 5 discusses the results presented in chapter 4. The work of other

researchers is also discussed and the results of this research are compared.

Concluding remarks and suggestions for future work are given in chapter 6.
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Chapter 2

Introduction

This chapter discusses the process of sputtering, passivation and the need for pas-

sivation of surfaces. Different types of passivating materials used in the industry

are analysed, although emphasis has been placed on silicon nitride and its prop-

erties. Then the different techniques commonly used for thin film deposition are

described, the advantages and drawbacks of each method are stated. Finally, the

different characterization techniques used for sample analysis during this research

are described.

2.1 Ion bombardment of a surface

When a solid, or liquid, at any temperature is subjected to bombardment, by suit-

ably high energy particles (usually ions), it is possible for individual atoms to acquire

adequate energy via the process of momentum transfer, due to collisions, to escape

from the surface. This process of ejection of atoms from a surface is called Sput-

tering. The atoms ejected from the surface can be used to deposit a coating on a

substrate by a process called sputter-deposition.

The exact mechanism by which atoms are ejected from a surface when the

surface is subjected to ion bombardment is not very clear. According to Stuart

[1], when an ion impinges against a surface, it suffers a collision with a surface

3



atom. When the energy exchange between the impinging ion and the surface atom

is much greater than the lattice energies or the vibrational energies of the lattice

atoms, significant sputtering occurs. At these energies the collisions are purely

binary, the neighbouring atoms do not become involved in the collision. Such a

collision is called a "Primary collision". An ion incident on the bombarded surface

in a direction perpendicular to the surface will bounce back from the surface after

the collision. During the collision some energy will be imparted to the surface atom,

which has been driven into the surface. When the mass of the incident ion is greater

than the mass of the atom at the surface then both the ion and the atom will be

driven into the surface, irrespective of the nature of the collision [2] (ie. whether

the collision was head on or glancing). This is shown in Figure 2.1.

For the atom to be ejected from the surface, it must acquire a velocity com-

ponent in a direction opposite to that of the original incident ion. The greatest

possible angle between the original incident ion and the subsequent momentum

vector of the struck atom is 90°. But in this case the velocity component perpen-

dicular to the surface of the struck atom is zero. Hence it is not possible to eject an

atom from the surface as the direct result of a primary collision. We need a second

set of binary collisions to enable atoms to be ejected from the surface.

Another phenomenon which occurs ion bombardment is secondary electron

emission. When an ion approaches a surface at any energy, it will be neutralized

before impact due to interaction with lattice electrons of the surface. This interac-

tion involves two lattice electrons and occurs within less than an atomic diameter

of the surface. One electron is captured by the incident ion, thereby neutralizing

the ion. The second electron acquires the excess energy and momentum given up

by the other electron and may be ejected from the surface. This ejection process

is referred to as secondary emission and the electrons ejected in this manner are

4



Figure 2.1: Representation of three types of collision between an incident ion and
a surface atom. The mass of the incident ion is represented here as being less than
the mass of the struck atom.
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called "Secondary electrons".

2.1.1 Characteristics of sputtering

Some of the unique characteristics of sputtering are:

1. Deposition rates do not differ significantly for different metals, alloys, or even

insulators. The compatibility and applicability to various materials make

sputtering attractive in multilayer deposition.

2. Thickness control is very simple. After a calibration run has been made,

thickness control is merely a matter of setting the time.

3. The lifetime of a sputtering target may be as long as 150-200 hours; it is

seldom less than 10.

4. In sputtering alloys and other composite materials, the deposit maintains

stoichiometry with the original target composition.

This can be explained by considering the mechanism of sputtering wherein the

target atoms are dislodged from the target by momentum transfer from the

impinging ion. Since there is no mass transport within the target, the compo-

sition of the sputtered constituents must be identical with the composition of

the target; however, the composition of the deposit could vary if the sticking

coefficient or the angular distribution is different for each ejected species.

5. Cleaning of parts and substrates can be achieved by a applying negative volt-

age to the anode (reverse sputtering is an advantage that can be gained with

no other process).

6. The problem of ejection of large particles from sources, "Spitting", usually

does not occur in sputtering. However, one has to be careful that particles do



not fall out of the target during sputter-down (this would occur, in a system

in which the target is located at the top of the chamber, is used). Spitting

does occur in evaporation, laser ablation and other methods.

7. The high ejection energy of sputtered atoms, average mean energy for diode

sputtering is often suggested as a factor in improving the film structure and

adhesion to the substrate. On the other hand, the high energy tail of the

sputtered species, estimated to be 1 to 10 KeV, can cause surface defects and

other undesirable effects.

8. There are different types of sputtering systems available, each having its own

unique features and each capable of either dc or rf operation:

• Planar diode sputtering;

• Triode sputtering;

• Ion beam sputtering;

• Magnetically assisted sputtering.

Low pressure operation gives the triode technique several advantages over the

typical diode system. They are:

(a) The triode technique results in increased deposition rates due to higher

ion density.

(b) The decreased ratio of residual gas molecules to sputtered atoms means

the film density and purity are enhanced.

(c) Consistent straight line deposition from target to substrate, due to low

pressure, makes it possible to use masks in front of the substrate to define

film patterns.
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(d) Independent control of the plasma density makes it possible to regulate

film deposition more carefully.

As compared to the diode mode, the triode mode has its disadvantages too.

The thermionic filaments (usually tungsten is used), make reactive sputtering

with oxygen impractical because oxidation of tungsten makes the filament very

brittle. The filament contributes to contamination. It is subject to burnout

and its power dissipation adds heat to the chamber area.

The following are some of the advantages of RF induced plasma sputtering

over the DC diode or triode modes:

(a) It is possible to sputter insulators using RF sputtering because the RF

prevents the charge buildup on the target surface.

(b) At operating pressures as low as 2x10 -4torr, two difficulties, gaseous

impurity inclusions and nonreproducibility of film properties, inherent in

higher pressure diode type of sputtering are reduced.

(c) A heated filament to sustain the plasma is not required. Hence contam-

ination from thermionic emission is eliminated and filament burnout is

avoided.

2.2 An Overview of Semiconductor Surface
Passivation

Introduction

The characteristics of an electronic device are subject to deterioration due to the

incursion of moisture, impurities or diffusion of dopants. The device properties

can be stabilized by deposition of a passivating coating over its surface. This is

8



termed "Passivation". In the case of semiconductor device passivation, in addition

to chemical stability, electrical stability is also required.

2.2.1 Types of Passivation

Semiconductor surface passivation can be broadly classified into two categories:

• Primary passivation

• Secondary passivation

Primary Passivation

Passivation coatings may be classified as primary if they are directly in contact with

single crystal silicon from which the device is fabricated [3,4]. Primary passivating

coating serves to:

1. Control and stabilize semiconductor surface properties;

2. Provide good dielectric properties, low surface recombination velocity and

control immobile charge density;

3. Improve device stability at elevated temperatures.

Secondary Passivation

When an underlying dielectric layer separates the passivating coating from silicon,

it is termed secondary passivation [3,4]. The function of secondary passivation is

to:

1. Protect and stabilize the primary passivating medium;

2. Insulate and protect the interconnections and terminal metallurgy;

3. Provide overall chemical and mechanical protection.

9



2.2.2 Electrical Requirements of an Ideal Passivating Layer

The electrical requirements of an ideal passivating layer are [4,5j:

1. The semiconductor surface potential must not change significantly with time,

under the stress conditions encountered by the devices;

2. The semiconductor surface potential must be optimum for the particular de-

vice under consideration;

3. Device requirements of the surface state density and surface charge should be

met by passivation.

2.2.3 Passivation Mechanism

Surface states arise from the termination of a periodic array and are present on an

ideal surface. On real surfaces the density and distribution of the surface states

are affected by the impurities, structural defects and adsorbed molecules and ions.

The formation of an oxide layer uses up most of the surface states through bond

formation. A residual broken chemical bond at the surface is referred to as a

"dangling bond".

The presence of charge, in an oxide layer on the surface of a crystal can give

rise to a surface potential at the interface, which causes perturbation of the electron

density inside the semiconductor. This perturbation region near the surface is

called as the space charge region. It is a complex function of the surface potential,

carrier density and the oxide semiconductor interface. Formation of the oxide layer

generally results in positive interfacial charge, which causes an accumulation of

electrons at the silicon surface. The excess carriers near the surface cause surface

conductivity to vary from bulk value [6).
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2.2.4 Comparision of Passivating Materials

There are a number of materials that have passivating properties. Only some of

the important and frequently used passivating materials such as silicon dioxide,

phosphosilicate glass (PSG), borophosphosilicate glass (BPSG) and silicon nitride

will be discussed here.

Silicon Dioxide

Amorphous SiO2 grown on silicon is the most widely used primary passivation layer,

it can be grown thermally, chemical vapor deposited, directly sputtered or reactively

sputtered. The best electrical properties are obtained with thermally grown films.

A layer of undoped silicon dioxide is used to insulate multilevel metallization, to

mask ion implantation, diffusion and to increase the thickness of thermally grown

field oxides.

Silicon dioxide has a refractive index of 1.46 and very high resistivity (2x10 15

ohm-cm). Oxides with lower refractive index are porous. The porous nature of

the oxide is also responsible for the lower dielectric strength. The etch rates of the

oxides in a hydrofluoric acid (11F) solution depend upon the deposition tempera-

ture, annealing history and dopant concentration. Usually higher quality oxides are

etched at lower rates [7].

PSG and BPSG

Phosphorous doped silicon dioxide (usually called P-glass or PSG) inhibits the diffu-

sion of sodium impurities. It softens and flows at 950-1100'C, creating a smoother

topography which is useful for depositing metals.

Borophosphosilicate glass (BPSG) is formed when boron is added to phos-
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phorous. It flows at even lower temperatures 850 ° — 950°C [7].

Silicon Nitride

The bulk properties of silicon nitride show an interesting combination of chemi-

cal, mechanical and electrical properties for applications in silicon semiconductor

technology. The applications of silicon nitride films for passivation are based on its

properties as a barrier against atomic and ionic diffusion and its electrical prop-

erties. The major applications are: a) as a barrier against ionic contamination in

FET applications, where it forms a part of the gate insulation and b) as a mask for

diffusants in optoelectronic materials, eg. zinc in GaAs.

The advantages of silicon nitride are:

• Inhibitor of diffusion by many species;

• High dielectric constant;

• Chemically inert nature;

• Mechanical durability.

Due to the importance of silicon nitride in the processing industry, its prop-

erties are discussed at length in the following paragraphs.

Mechanical and Thermal properties

The main mechanical [8-14] and thermal [15-17] properties of thin film/substrate

pairs are: adhesion of the film to the substrate, hardness and scratch resistance of

the film, relative thermal expansion coefficients and thermal stresses at the interface.

The adhesion of a thin film to a substrate is controlled by the nature of the

film-substrate interaction forces (particularly forces of the Van der Waals type or

12



electrostatic forces). The adhesion also depends greatly upon the cleanliness and

microstructure of the substrate, on the deposition process, the temperature during

deposition and on the subsequent treatment. As a general rule, good adhesion is

obtained with a clean substrate which has few structural flaws and which is heated

to a temperature high enough to cause some interdiffusion at the interface dur-

ing deposition. However, this last condition leads to an increase in the number and

intensity of mechanical stresses of thermal origin in the film. Subsequent heat treat-

ment conducted in vacuum or in inert atmospheres can also improve the adhesion

between the sample and the support.

Density determinations have been made by weighing the wafers on a semi-

microbalance with and without the deposited silicon nitride film, measuring the

film thickness and wafer diameter and using the values thus found, to compute the

density value.

Mechanical stresses developed in the films generally have two components:

• An intrinsic component which is characteristic of the layer and is controlled

by structural imperfections, impurities etc.

• A thermal component which originates from a difference in the thermal coef-

ficient of expansion of the substrate and the layer.

Silicon nitride films deposited by CVD processes are generally under tensile

stress while those deposited by plasma sputtering have been found to be under

compressive stress (about 2-4x10 9 dynes/cm 2 ). There are different techniques to

determine the stress developed between the substrate and the deposited film. In

this thesis, laser reflectance technique was used. This is discussed in detail in section

2.4.4

13



Optical properties

Investigations into the optical properties {18-24] of thin silicon nitride layers have

led to important conclusions about their structure and composition. Among these

optical properties, absorption and reflection of light and the refractive index have

been widely studied.

The refractive index of thin films can be obtained using ellipsometry and

interferometry among other techniques. The use of an ellipsometer to determine

the refractive index and thickness is discussed in section 2.4.1 .

The absorption spectra in the IR range are particularly important for silicon

nitride since they provide information on the molecular structure of the layers. The

absorption peak due to Si-N bond occurs at 11.5μm. Absorption peaks for Si-O

(9.4μm), O-N (2.9 μm ) and Si-H (4μm) and N-H (7.2μm) have seldom been found

in high quality films, but are often observed in non stoichiometric silicon nitride

films.

Chemical Properties

Silicon nitride is highly resistant to many chemicals. However, it can be etched at

room temperature by fluoride solutions (conc. HF, Buffered HF), non fluoride solu-

tions (H3 PO4 at 140 - 180 ° C) and by gaseous HCl [25], according to the following

reactions:

Si 3N4 + 18 HF H2 SiF6 2(NH4 ) 2 SiF6

Si3N4 +27H 2 0 +4H 3 PO4 = 4(NH4 )3 PO4+9H2SiO3

Si3N4 + 16 HC1 3SiCL4 NH4 Cl.

The etch rate of silicon nitride film is controlled by:

o the density of the film;

14



• film stoichiometry;

• bond strain;

• impurities.

Electrical properties

Silicon nitride films are electrical insulators. The breakdown voltage, dielectric

constant and electric conductance of silicon nitride have been widely studied {26-

30].

The electrical characteristics of silicon nitride films on Si are obtained from

Metal-Nitride-Semiconductor (MNS) capacitors. A MNS capacitor has two elec-

trodes, one is connected to the metal layer deposited over the nitride and is called

the "grid" and the other is the ohmic contact to the semiconductor. The capacitance

"C" between the electrodes is measured and it's dependance on the d.c voltage Vg

applied to the grid i.e the C-Vg characteristic is plotted. Fig. 2.2 gives the typical

curves.

The capacitance of MNS devices varies from a maximum (C,) to a minimum

(Cmin ) according to the relation:

where εn , εsi represent the relative dielectric constant of the nitride and silicon

resp.,

εo is the permitivity of free space (8.85x10 —" F/cm),

CN is the capacitance per unit area of the nitride film,

NA is the concentration of acceptor impurities,

XN is the thickness of the nitride layer,

15



Figure 2.2: Typical C-V curves for a MNS capacitor: A, theoretical curve; B.0
curves showing hysteresis of an MNS capacitor; D, curve for an MNS capacitor
as-deposited; G.11, curves for an MNS capacitor after a bias-temperature stress
test; I, curve for an MNOS capacitor. [14].
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and V9 is the Grid voltage.

To determine the breakdown voltage, an MNS capacitor is biased in the

accumulation region by increasing the d.c voltage. Breakdown occurs when the

leakage current exceeds certain limits. The breakdown field (10 7 v/cm) of high

quality silicon nitride is independent of the contact area or film thickness.

The dielectric constant "E" can be obtained from the relation:

where C is the measured capacitance,

d is the thickness of the silicon nitride layer,

εo is the permitivity of free space,

and A is the area of the capacitor.

Electrical Conductance:

In silicon nitride films conduction is not governed by ohm's law; Poole-Frenkel mech-

anism is obeyed. The Poole-Frenkel effect is the lowering of the potential barrier due

to interaction with an external electric field. This can also be described as a field

enhanced thermal excitation of the trapped electrons into the conduction band [31].

In short, it is the mechanism by which electrical conduction takes place by means

of electrons/holes which are generated by electric field ionization of trapping levels

in silicon nitride films. The current density equation governing the Poole-Frenkel

mechanism is:

17



where C2 is a constant depending on the trapping density in the insulator

φB is the barrier height, εj the dynamic permitivity and E is the field.

2.3 Characterization techniques

2.3.1 Ellipsometry

Ellipsometry is the art of measuring and analysing the elliptical polarization of light.

Ellipsometry is based on the classic theory of Paul Drude, concerning the change

in the state of polarization of light upon reflection from a bare surface or a surface

with a film on it. By measuring the change in the state of polarization, it is possible

to measure the thickness and refractive index of the film [32].

The Fresnel formulae are the foundations of ellipsometry. These indicate

that when light is reflected, the two components vibrating in and perpendicular to

the plane of incidence, which can be referred to as τ p and τs undergo a phase shift

of 180° or 00 . Also τp becomes zero at a certain angle called Brewster angle. If the

incident light is plane polarized at 45 0 to the principal planes, after reflection at

the Brewster angle, the ratio K of the reflected amplitudes in the plane of incidence

and perpendicular to the plane of incidence is called "Ellipticity". In the proximity

of the Brewsterian angle, the reflection of light deviates from fresnel's law and an

appreciable amount of ellipticity is present. The two parameters characterizing the

ellipse representing the reflected light are:

the ratio tanψ = ρp/ρs andΔ = δp- δs

where ρp , ρ3 are the reflection coefficients of the components in and perpendicular

to the plane of incidence after reflection. δp, δs are the absolute phase shifts of the

same two components.

18



Figure 2.3: Schematic of an ellipsometer
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where rp1sf, rp1sm are the fresnel coefficients for reflection at the film and the

surface.

ψ and Δ  are obtained experimentally from ellipsometric measurements, ie.

by measuring the orientation of the amplitude vectors.

The plane of the paper is perpendicular to the light beam. The plane of

polarization is perpendicular to the plane of vibration of the electric vector. A

light beam is plane polarized at 45 ° to the plane of incidence. Before reflection,

the two components in the plane of incidence and perpendicular to it, are equal in

magnitude and are in phase. After reflection each of them suffers a phase shift (SP

and Se), and the ratio of their amplitudes which is now equal to iamb is decreased.

2.3.2 Chemical Etching of Thin Films

Chemical etching in thin film technology plays a prominent role in both the prepa-

ration and utilization of thin films. The substrate must be first suitably prepared

prior to film deposition. Once the film has been deposited, chemical etching is often

used again, to create patterns in appropriately masked films. Another important

application of chemical etching is in characterization of materials, especially in the

detection of lattice defects in semiconductors, the study of distribution of localized

impurities and the determination of composition [25].

The variations in the etch rate of a specific material in a given etchant are

the function of

• Chemical composition;

• Film density;

20



• Residual stress;

• Defect density; and

• Microstructure.

In general insulating and dielectric materials are relatively inert chemically

and hence require highly reactive media for etching.

Chemical Etching of Silicon Nitride

The silicon nitride films deposited in this research were found to be amorphous.

This is in agreement with the results obtained by other researchers [5,25]. Low

substrate deposition temperature (100 — 150°C) was used. Since the structure is

found to be amorphous, the etching proceeds isotropically [33].

The commonly used etchants for silicon nitride are :

• Concentrated Hydrofluoric acid (49% HF);

• Buffered HF (7:1);

• Phosphoric acid (at 140 ° C — 200 °C).

The etch rate of silicon nitride is different in the different etchants. Depend-

ing upon factors such as the type of the substrate on which the silicon nitride is

deposited and the thickness of the nitride layer etc., the etchant is chosen. Fig.

2.7 gives the etch rates of silicon nitride in' refluxed boiling phosphoric acid at at-

mospheric pressure as a function of boiling temperature and acid concentration. .

The table also gives the etch rates for CVD deposited silicon nitride for comparison

purposes.
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Figure 2.4: Etch rates of silicon nitride in refluxed phosphoric acid at atmospheric
pressure [Van Gelder and Hauser].
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Silicon nitride films deposited by sputtering techniques generally have lower

etch rates than CVD deposited silicon nitride. If they are less dense, they most

probably contain large quantities of gases and/or are nonstoichiometric.

Infrared Spectroscopy

The physical and electrical properties of silicon nitride depend on the stoichiome-

try of the film. As discussed earlier, film composition depends on the deposition

parameters. Infrared spectroscopy is one of the techniques used to determine film

composition [18-24].

In this work, an infrared spectrophotometer (Perkin-Elmer type 1600 FTIR)

was used. An interferometer utilizing Fourier Transform (FTIR) method was used

to determine the absorption spectrum (fig. 2.8 ). A beam of incident IR radiation

is split by a, semitransparent mirror into two spatially separated beams (A, B)

which follow their respective paths shown by the respective dashed and dotted

lines. The two beams interfere with each other at the detector. If, one of the

mirrors is uniformly translated, the path difference will change continuously. If the

source is monochromatic, then the combined beams will go in and out of phase

with each other, resulting in a sinusoidal modulation at the detector. The fourier

transform of such a function will be a delta function, propotional in strength to the

incident intensity at the source frequency. If the source is polychromatic, the fourier

transform of the signal at the detector will produce its frequency spectrum. The

fourier transforms are calculated by the computer. Then on inserting the sample,

an absorption signal is obtained. By absorption spectrum can then be obtained

from the fourier transforms of the sample and the instrument background.

The results obtained are presented in chapter 4 and discussed in chapter 5.
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Figure 2.3: Fourier Transform Infrared Spectrophotometer t FTIR}.
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Stress Measurement

The measurement of stress in thin films is of interest in many areas of microfabri-

cation. Nearly all films, by whatever means they are produced are found to be in a

state of internal stress. The stress may be compressive (ie., the film would like to

expand parallel to the surface). Alternatively, the film may be in tensile stress (ie.,

the film would like to contract).

High stress causes lateral diffusion ( Winging) during doping processes when

silicon nitride is used as a mask [34-40]. High stress can also cause cracking of the

nitride film during bonding operations. Intrinsic stress plays a key role in altering

the mechanical, electrical, optical and electron-transport properties of a film.

In this work, laser reflectance measurements of wafer curvature was used to

compute film stress. Stress may also be measured by x-ray or electron diffraction

techniques.

Laser Reflectance

The stress of a film on a thick substrate, assuming uniform film thickness and

otherwise isotropic film stress, is given as

where E and v are the Young's modulus and Poisson's ratio of the substrate.

t are the substrate and film thicknesses respectively, R is the radius of curvature

of the composite. By convention R is negative for a convex wafer surface (compres-

sive film stress) and positive for a concave wafer surface (tensile film stress).

The radius R can be determined by measuring the deflection of a light beam

reflected off a wafer surface as the wafer is moved a fixed distance perpendicular to

the beam. This method uses a collimated laser beam which reflects from a wafer

surface and projects on a screen about 5 m away. The wafer is moved a known and
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Figure 2.9: Schematic of laser reflectance measurement apparatus
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fixed distance while being illuminated by the incident laser beam. Wafer curvature

causes the image of the beam to appear shifted on the screen. A measure of the

wafer translation x, the corresponding translation of the position of the reflected

beam d, and the reflected beam path length L gives the radius of curvature R:

A sample calculation is presented here:

For x = 1 cm 	 d = 2.8 x 10-3 	L = 5.08 m.

Hence, R = 36.38 m

Substituting v = 0.42; E = 10.89 x 9.81 x 109 N/m 2 ; D = 355.6 x 10 -6 in

and t = 1.9 x 10 -7 in,

We get, film stress cr 0.56 x 10 9 N/m2.
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Chapter 3

Experimental Procedure

Introduction

In this chapter the sputter deposition equipment is described and the experimental

procedure followed in this research work given. The cleaning of silicon substrates

by chemical etching prior to film deposition is also discussed.

3.1 Sputtering system

A modified version of the MRC 8800 sputtering system ( Triode system 18120) was

used for the deposition of silicon nitride thin films. A schematic representation of

the sputtering system is shown in fig. 5.1. The RF generator which operates at

13.56 MHz supplies voltage to an intrinsic silicon target of 99.999% purity, 5.0 inch

diameter and 0.25 inch thickness. The rotating target head can accommodate four

targets fitted with ground shields. The anode cathode spacing can be varied between

1.0 to 4.0 inches. The substrates are placed on a plate in the intervac chamber and

then transported, without breaking the vacuum, into the main chamber through

a connecting door. This is done using a pneumatic plunger arrangement. The

background vacuum pressure, which is an important parameter in any vacuum

deposition process, must be in the 10 -6 torr region to be considered low enough
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for sputtering. The gases for sputtering are supplied from high pressure cylinders

through a micrometer valve provided at the top edge of the deposition chamber.

The deposition chamber is heated externally prior to deposition for about

4-5 hours, to remove any moisture that may be present in the chamber. This is

crucial for obtaining good films since the presence of even traces of water vapor in

the chamber will cause a deterioration of the film properties.

3.2 Substrates

Silicon substrates of low resistivity (14-16 ohm-cm), (100) orientation and n-type

doping were used for deposition. Silicon nitride was also deposited on indium phos-

phide substrates provided by Epitaxx, Inc., Princeton, New Jersey.

3.2.1 Etching of Substrates

Introduction

Silicon substrates carry approximately a 5-10 nm thick layer of native oxide which

must be etched prior to deposition of silicon nitride. This would also remove any

impurities or contamination that might be present on the substrate surface. Organic

residues can be removed by treating with a series of appropriate organic solvents.

Substrate Preparation

The following procedure was adopted during this research, for cleaning the substrate

surface prior to film deposition:

1. The samples were first ultrasonically cleaned in deionized water for about 20

minutes;
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Figure 3.1: MRC 3800 sputtering system
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2. They were then clipped into 48% Hydrofluoric acid (HF) solution for 40 sec-

onds.

3. The samples were then rinsed with DI water to remove any acid and then

treated with 2- propanol for about 2 minutes.

4. They were then treated in 1-1-1 Trichloroethane for about 2-3 minutes.

5. The next step was a 3 minute dip in methanol.

6. The samples were treated with 1-1-1 Trichloroethane for 1 minute followed by

a rinse in DI water.

7. The final step was to blow the samples dry with a jet of N2 gas.

After this process was complete the samples were immediately transferred

into the intervac chamber which was pumped down to a pressure of 30 - 40 mTorr

in about 25 minutes, after which they were inserted into the deposition chamber

as discussed earlier. This was done in order to minimize the probability of any

impurities from being absorbed into the substrate surface.

3.3 Deposition Process

Introduction

This section focuses on presputtering of the target, the formation of an altered

surface layer on the target and the subsequent film deposition on the substrate.

3.3.1 Presputtering

Presputtering of targets is done in order to clean and equilibrate the target surface

prior to film deposition and to outgas the vacuum chamber. During presputtering,

the substrates are sheilded with a shutter located close to the substrates. If the
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shutter facility is absent, then the substrates are introduced into the chamber after

presputtering. Presputtering results in the formation of an altered surface layer on

the target. During this research, the presputtering time used ranged between 15 to

60 minutes and was typically 30 minutes for most cases.

To aid the removal of moisture from the interior of the chamber, the exter-

nal walls of the chamber were heated for a period of 3-4 hours prior to presputtering.

3.3.2 Sputter Deposition

The substrate samples were placed on the anode plate, which was then reintro-

duced into the deposition chamber from the intervac. Nitrogen gas (99.95% pure)

was introduced into the chamber, then argon gas (99.95% pure) was added to ob-

tain the required ratio of the gas mixture in the chamber. The ratio of the gases

introduced into the chamber determines the film composition. When the desired

ratio of the mixture is attained at the required deposition pressure, the plasma is

ignited. The typical chamber pressure during deposition is in the range of 10' torr.

If the plasma fails to ignite at this deposition pressure, the pressure is increased to

the 10 -2 torr range by increasing the argon flow into the deposition chamber. This

however should be done only for a short period of time (less than about 10 seconds)

until a plasma is obtained. The tuning circuit is then adjusted to obtain the forward

power of 220 W and a reflected power of 0-10W. During deposition, the measured

substrate temperature ranged from 100 —150°C. The ability to deposit high quality

thin films at low temperatures is crucial in the fabrication of semiconductor and

optoelectronic devices. Sputter deposition time depends upon the film thickness

required. The deposition parameters recorded were: Background pressure, Deposi-

tion gas pressure, partial pressures of the reactant gases, anode-cathode separation,
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cathode voltage, deposition time and the target power. The experimental data are

given at the end of chapter 4.

After deposition was completed, the power to the circuit and the gas mix-

ture supply to the chamber were turned off. The samples were then allowed to cool

down for a period of 1-2 hours before removing them for analysis. The samples

were then subjected to ellipsometric analysis to determine the refractive index and

thickness of the film. The film composition was determined by infrared spectropho-

tometry. One sample from each experiment was used to fabricate a Metal-Nitride-

Semiconductor (M-N-S) structure and the capacitance-voltage (C-V) characteristics

studied. Chemical etching of one sample per experiment was also done to determine

the the etch rate. Etch rate was also used as an indicator of the composition of the

film. Stress analysis was conducted on many films. These techniques are presented

and discussed in detail in section 2.4.
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Chapter 4

Experimental results

Introduction

Experimental data obtained by reactive sputter deposition of silicon nitride thin

films on silicon and indium phosphide substrates are presented in this chapter.

The variation of film properties with different deposition parameters are shown. A

summary of the results has been given in table 4.1 . The IR absorption spectra

obtained for a representative set of samples are also presented.

The effects of the following deposition parameters on the refractive index,

stress, C-V characteristics and etch rate were studied:

• Nitrogen partial pressure;

• Total gas pressure;

• Deposition time;

• RF power density;

• Cathode voltage.
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4.1 Refractive Index

Introduction

The change in the refractive index of the films was studied as a function of the

different deposition parameters. Refractive index of the films was measured using

an ellipsometer (Rudolph type 43603-200E).

4.1.1 Effect of N2 Partial Pressure on Refractive Index

The variation in the refractive index of the silicon nitride with the partial pressure

of nitrogen is shown in fig. 4.1 . It is observed that the refractive index decreases

with an increase in nitrogen partial pressure.

4.1.2 Effect of Total Gas Pressure on Refractive Index

As observed in fig. 4.2, at low gas pressures the refractive index is low and increases

with an increase in pressure. It exhibits a peak at 5 mTorr and then decreases.

4.1.3 Variation of Etch Rate with Refractive Index

The variation of etch rate with refractive index is shown in fig. 4.3 . It is observed

that the etch rate drops with an increase in the refractive index of the film. The

experimental data obtained are in general agreement with data obtained by other

researchers [33].

It is interesting to observe the correlation obtainted by Gregor between film

density and power density (fig. 4.4) [4].

4.1.4 Effect of Power Density on Refractive Index

It has been seen earlier that an increase in the power density leads to the deposition

of denser films fig 4.4. It was also observed that the etch rate drops with an increase
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in the refractive index of the films. On comparing the data from fig. 4.5 (refractive

index vs power density) with those in fig. 4.3 (etch rate vs refractive index) and

taking into account that denser films have a higher refractive index, a relationship

between the refractive index and the film density is observed.

4.2 Deposition and Etch Rates

Introduction

Deposition rates depend upon the geometry of the system, particularly upon the

diameter of the target and the spacing between the target and substrate.

Etch rate is a very sensitive indicator of both chemical and structural prop-

erties. In this research, etch rates were found in buffered HF solution (7 parts 40%

NH4F aqueous solution and 1 part 49% HF aqueous solution).

4.2.1 Effect of Power Density on Deposition and Etch Rates

A plot of the variation in the deposition rate with power density is shown in fig.

4.6 . At fixed N2 pressure, the deposition rate is observed to increase linearly with

power density.

This result is consistent with those obtained by other researchers[5,7]. The

variation of etch rate of the films with power density is shown in fig. 4.6. Below a

power density of 1.5 W/cm 2 a sharp rise in etch rate is observed.

4.2.2 Effect of N2 Partial Pressure on Deposition Rate

The deposition rate is observed to increase marginally with an increase in nitrogen

partial pressure. A plot of data obtained in six separate experiments is shown in

fig. 4.7 .
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4.2.3 Effect of Total Gas Pressure on Deposition Rate

It is observed that the deposition rate was almost constant for varying total gas

pressures (fig.4.8). Deposition was done at 5, 6, 6.5 m Torr at constant nitrogen

partial pressure and power density. Deposition was also done at 8 mTorr and 1.2626

W/cm2 power density. It is seen that, at reduced power density, there is a drop in

the deposition rate.

4.2.4 Effect of Deposition Time on Deposition Rate

The deposition rate was more or less the same with time of deposition. This is

a useful feature of sputter deposition. Getting the required film thickness is only

a matter of setting the time once the deposition rate for a particular material is

known (at a fixed power density and partial pressure). This is shown in fig. 4.9 .

4.3 Stress

Introduction

Stress developed in the deposited film has been studied with variation in film com-

position and thickness. The stress measurement in the deposited film was done by

using a laser reflectance (LR) apparatus specifically setup for the purpose at Drexler

Microelectronics and Surface Modification Laboratory, NJIT.

4.3.1 Effect of N2 Partial Pressure on Stress

An analysis of the data obtained showed that there was a variation in the stress

induced in the deposited film with a change in the nitrogen partial pressure (ie.

with composition). Samples of varying composition were deposited and their stress

calculated using LR. The data obtained are shown in fig. 4.10. The data indicate

an increase in stress with an increase in the nitrogen partial pressure.
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4.3.2 Effect of Thickness on Stress

It is observed that the stress in the deposited silicon nitride film reduced with an

increase in film thickness. Films of varying thickness were deposited The variation

of stress measured in these films is shown in fig. 4.11 .

4.4 IR, absorption spectra

FTIR absorption spectra were obtained for a representative set of the samples. Fig-

ures 4.12-4.16 show the absorption spectra. The characteristic absorption bands

are at 1100 cm-1 for Si-O, 880 cm' for Si-H and 840 cm - ' for Si-N.

38



Figure 4.1: Variation of refractive index with nitrogen partial pressure.

Figure 4.2: Variation of refractive index with total gas pressure.
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Figure 4.3: Variation of etch rate with refractive index.

Figure 4.4: Variation of film density with power density.[Gregor]
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Figure 4.5: Variation of refractive index with power density.

Figure 4.6: Variation of deposition and etch rates with power density.
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Figure 4.7: Variation of deposition rate with nitrogen partial pressure.

Figure 4.8: Variation of deposition rate with total gas pressure.
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Figure 4.9: Variation of deposition rate with deposition time.

Figure 4.10: Variation of compressive stress with nitrogen partial pressure.
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Figure 4.11: Variation of compressive stress with thickness.

Figure 4.12: Infrared absorption spectrum.
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Figure 4.13: Infrared absorption spectrum.

Figure 4.14: Infrared absorption spectrum.
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Figure 4.15: Infrared absorption spectrum.

Figure 4.16: Lorentz-Lorenz correlation curves for reactive plasma deposited silicon
nitride films (after Sinha
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EXPT. DEP.
TIME
MIN

BASE
PRESS
X10-3

DEP.
PRESS
MTORR1

1	 % Ma
I

CATHODE
VOLTAGE
XVOLTS

FORWARD
POWER
WATTS

REFLECTED
POWER
WATTS

REF.
INDEX

FILM
THICK
A°

13JUN 30 4 2 16.5 2.5 500 8 1.456

14JUN 30 4 2 15.5 1.8 160 0 1.555

21JUN 30 4 2 25 1.6 125 8 1.424

21JUN 20 4 2 10 2.1 300 25 1.410

22JUN 30 4 3 15 1.5 160 0 1.669 1000

22JUN 30 4 15 1.5 125 8 1.602 830

12JUL 25 4 6 15 1.5 160 8 1.458 780

17JUL 20 4 16 1.5 220 4  1.234 200

26JUL 15 4 6.3 	 1 16.3 1.5 220 9 1.740

06AUG 15 2 6 15.2 2.1 220 a 1.920 860

06AUG 15 2 6.3 15.1 2.0 220 12.5 1.394

12AUG 15 2 6  15 1.6 220 0 1.320

12AUG 15 2 14.6 2.0 220 6 1.377

12AUG 15 2 6 14.3 1.7 220 11 1.730

14AUG 15 2 15 2.0 220 12.5 1.340 850

15AUG 15 0.8 5.3 	 I 15.2 1.9 220 12.5 1.790

16AUG 15 1 6.3 15.1 1.9 220 13 1.320 930

17AUG 15 2 15 2.0 220 a 1.347

21AUG 15 0.8 z 15. 1.8 220 3 1.360

22AU2 15 2 16.01 1.9 220 1 1.340 930

02AUG 15 2 5 15.Z 2.3 400 10 1.352 1200

22AUG 10 2 z- 15. 2.4 400 3 1.920

24AUG 15 2 5 15.6 1.9 220 5 1.850 770

25AUG 13 0.8 z- 15.2 2.0 220 5 1.916 770

05SEP 15 .52 53 10.01 2.0 220 10 1.434

13SEP 15 .8 10.01 1.5 220 10 1.609

02OCT 15 .2 6 10.01 2.1 220 10 --

040= 15 .2 z 10.01 2.0 220 2.250 700

050CT 15 .2 3 12.01 2.0 220 6 2.06 300

14MAR 30 	 .45 12.01 2.1 220 7 1.704 1500

02APR 15 .4 5 12.01 1.9 220 7 1.702 730

10APR 45 .35 3 12.01 2.0 350 6 2.401 2100

14APR 45 .25 5 3.01 1.9 150 7 2.050 1900

47



Chapter 5

Discussion of Results

Introduction

Silicon nitride films were deposited in an Ar-N 2 plasma by reactive rf sputtering

using a Si target of 99.99% purity. It was seen in chapter 4 that precise control

of the deposition parameters was critical for obtaining films of desired composition

and characteristics. This chapter presents a discussion of the experimental data

obtained.

5.1 Refractive Index

The refractive indices of stoichiometric silicon nitride (Si 3N4 ) and bulk silicon are

2.01 and 4.05 respectively at 5461 A. Silicon nitride films that have a refractive

index higher than 2.01 are expected to have excess silicon. A refractive index of less

than 2.01 can be caused either by nitrogen in excess of the stoichiometric amount

or by oxygen impurities incorporated into the film.

5.1.1 Effect of Nitrogen Partial Pressure on Refractive
Index

The refractive index of silicon nitride films deposited during this research was found

to be inversely proportional to the N2 partial pressure in the Ar-N 2 mixture in the
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deposition chamber (fig.4.1). This can be attributed to the change in nitrogen

content at the target surface, ie. the formation of an altered layer.

An increase in the nitrogen partial pressure results in an increase in the

number of nitrogen ions bombarding the silicon target. This leads to the formation

of a nitrogen rich altered layer which results in the deposition of a film with higher

nitrogen content thereby lowering the refractive index. In addition, since the total

gas pressure is kept constant, increasing the partial pressure of nitrogen reduces the

number of argon ions impinging at the target surface. Argon has a higher sputtering

yield than nitrogen hence a decrease in the number of argon ions could also lead

to a decrease in the number of silicon atoms sputtered from the target leading to

lower refractive indices.

Hu and Gregor [4] also obtained similar results on measuring the refractive

indices while depositing silicon nitride films by reactive rf sputtering in nitrogen.

They observed lower refractive indices (indicating excess nitrogen incorporation) at

higher nitrogen concentrations.

5.1.2 Variation of Refractive Index with Sputtering Gas
Pressure

It is observed from fig.4.2 that the refractive index initially increases with an in-

crease in sputtering gas pressure (at constant Ar-N 2 gas ratio in the deposition

chamber). On increasing the gas pressure beyond a "Critical pressure" a drop in

refractive index is observed. This occurs due to the variation of refractive index

with composition. There are two possible explanations for pressure affecting com-

position, that have been considered. The first is that pressure changes cause the

impact rate of nitrogen and argon bombarding ions to change. When one consid-

ers the sputtering yields for nitrogen and silicon atoms in a silicon nitride matrix
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(which are different for argon and nitrogen bombardment) one can see that the rate

at which nitrogen and silicon atoms are sputtered off the target will be a sensitive

function of pressure. The second possible explanation is the scattering of the sput-

tered species as they pass from the target to the substrate. This could affect the

composition of the depositing film.

The Lorentz-Lorenz relation [42] 1 states that the film density and refractive

index are directly proportional. At low pressures (2 mTorr), the energy with which

the sputtered atoms from the target arrive at the substrate might be high enough

to cause damage to the depositing film. The film thus formed would be less dense.

Increasing the gas pressure would reduce the energies of the sputtered atoms (since

the ions impinging at the target would now possess lower energy due an increase in

the number of collisions) and thereby change the sticking coefficients of the arriving

species. Denser films would thus be obtained (resulting in a higher refractive index).

On increasing the pressure beyond the "critical pressure" (5 mTorr in this research),

a, decrease in refractive index is observed. The refractive index is lowered because

of further reduction in the energy (due to increase in the number of collisions by the

ions) with which the sputtered atoms reach the substrate, leading to the formation

of porous (less dense) films.

The mean free paths (m.f.p) 2 for argon and nitrogen at varying deposition

pressures was calculated. At 2 mTorr deposition pressure (for a fixed ratio of the

reactant gases, say 12.5% N2 and 87.5% Ar) the m.f.p for argon and nitrogen are

5.68 cm and 4.748 cm respectively. which reduce to 2.272 cm and 1.899 cm respec-

tively on increasing the pressure to 5 mTorr. Since the target-substrate spacing

'Dielectric constant c = 14487`13IN ' where N is the number of molecules per unit volume and a1—(4r/3)Ara ,

represents the mean polarizibility.
'Mean free path A (in m) - 2t.T.pd, , P - pressure in Pascal; d - molecular diameter in meters

( ciet, = 2.88 A; dNi trogen = 3.17 A).
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is approximately 9 cm, the reduction in mean free path (with increasing gas pres-

sure) indicates a reduction in the energy (of particles causing sputtering) due to

an increase in the number of collisions. Thus it is observed that energetic particle

bombardment can lead to film densification in at least two ways: (i) enhancement of

surface mobility of surface atoms and (ii) reemission of weakly bound atoms or clus-

ters which are in unfavorable positions for achieving optimum density. Both these

effects will be attenuated due to scattering collisions as the pressure is increased.

The film density, composition and refractive index of plasma silicon nitride

have been correlated by Sinha [48] using Lorentz-Lorenz relationship. This is shown

in fig. 4.16.

The number of ions bombarding the cathode increases on increasing the

power density (this would cause an increased number of secondary electrons to be

emitted from the cathode). At low nitrogen partial pressures, the film deposited

would tend to be silicon rich resulting in a higher refractive index. At higher

nitrogen partial pressures the altered layer at the target would have a higher nitrogen

content hence the depositing film would have a lower refractive index. But it is

observed from the experimental data that the refractive index increases. This could

probably be due to resputtering of nitrogen from the depositing film preferentially,

by energetic particles, which results in an increase in the film refractive index. Other

workers have also obtained similar results. Jones et al [43] observed that insulating

films of Si0 2 deposited by rf sputtering could develop a substantial floating potential

at the surface (approximately 100 V). Ions accelerated out of the plasma could then

cause considerable resputtering.

An additional effect could be substrate heating due to the substantial number

of secondary electrons generated at the cathode. This could lead to the formation

of denser films (thereby increasing the refractive index) due to enhanced mobility
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of the surface atoms.

5.2 Deposition and Etch Rates

The variation of deposition and etch rates with power density is shown in fig.4.6. It

is seen that the deposition rate is proportional to the target power density, whereas

the etch rate decreases with increasing power density.

The glow discharge adjusts to an increase in the target power density by

increasing the current density, ie. the number of particles bombarding the target

increases. Therefore, increasing power density results in higher deposition rates.

Etch rate is a very sensitive indicator of the chemical and structural proper-

ties of an amorphous solid. The etch rate of amorphous silicon nitride varies over a

wide range. It increases drastically at lower power densities where the films are ap-

preciably off stoichiometry and there are many broken bonds available for chemical

reactions. Films deposited by sputtering frequently have lower etch rates than films

deposited by other techniques. This is mostly due to the presence of traces of water

vapor in the deposition chamber which use up the Si bonds leading to the forma-

tion of Si-H. The presence of traces of water vapor in the chamber can be observed

from the IR. spectroscopic analysis of the samples shown in figures 4.12-4.15. Along

with the change in stoichiometry the lowering of film density could also be due to

entrapped gas species. This was suggested by Cordes [49] where he discussed the

effect of neutral N2 molecules driven into the films. Trapping of energetic argon in

sputtered Ni films has been observed by Winters and Kay [54
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5.3 Stress

Introduction

In this section the variation of stress with film refractive index and thickness has

been discussed. The results obtained by other researchers have also been presented.

5.3.1 Effect of Deposition Parameters on Stress

The variation of stress in the film with change in refractive index and thickness are

shown in figures 4.10 and 4.11 respectively.

Experimental data obtained indicate that stress in the film increased with

an increase in nitrogen partial pressure. Silicon nitride films, with silicon in excess

of the stoichiometric value, exhibited reduced stress. This reduction in stress in

silicon-rich silicon nitride films is most likely due to a reduction in lattice mismatch

between the substrate and the deposited film.

Stress developed in the deposited film also depends upon the deposition

temperature. Claassen et al [40] studied the influence of deposition temperature

on plasma deposited silicon nitride and found that the stress developed in films de-

posited at low temperatures (< 550 ° C) was compressive. The stress was observed to

be tensile in films deposited at higher temperatures. The temperature during sput-

ter deposition was recorded to be close to 140 °C (+10'). Due to the low deposition

temperature, the stress developed in the NJIT films are compressive.

During this research it was observed that increasing film thickness reduced

the stress in the deposited film. Blaauw et al [45, 461 examined plasma deposited

Si3N4 films and found that the stress in Si3 N4 decreased with increasing the thick-

ness (as in this research). Roedel et al [34] employed sputtered dielectrics (Si3N4,

SiO2 and Al 2O 3 as masks for localized zinc diffusion into GaAs. Zinc diffusion was
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carried out for 60 minutes at 600 °C. They observed diminishing stress with increas-

ing thickness for Si3N4 films, which implies that stress relief occurs during sputter

deposition. This stress relief possibly occurs due to the exposure of the film to

energetic particle bombardment for an increased length of time (since increased

thicknesses require increased deposition time) causing nitrogen from the depositing

film to get reemitted. This increases the silicon content of the film resulting in

reduced lattice mismatch between the substrate and the deposited film. At this

point, it is interesting to note that in the case of SiO 2  films the stress increased with

increasing thickness contrary to the behaviour of silicon nitride films. The stress

variation of both Si 3N4 and Si02 films is shown in 4.5.1.

5.3.2 Variation of Lateral Diffusion with Stress

The diffusion of impurities into semiconductor materials is an important step in

device fabrication. Most diffusions are performed through masks for selected area

junction formation. In many instances, the diffusion mask interacts with the dif-

fusing species so that enhanced diffusion along the substrate-mask interface takes

place. This excess lateral diffusion can have deleterious effects on device perfor-

mance and characteristics. In the first place, design rules are violated and accurate

control of lateral device dimensions becomes extremely difficult. In addition, any

parameter that depends on area, such as device capacitance, will be adversely af-

fected. A typical example of this phenomenon is shown in fig. 5.3 for zinc diffusion

in GaAs through a silicon nitride mask [34].

In general, diffusion of impurity atoms into a substrate can be understood

from defect-impurity interactions as explained by the atomistic theory. This in-

volves interaction between vacancies, interstitials and impurity atoms for diffusion

to occur. Studies [51, 52] for Si-Si0 2 systems have shown that Si interstitials are
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generated at the Si-SiO2 interface during oxidation. Assuming that vacancy concen-

tration remained constant during oxidation, the enhancement of boron and phos-

phorous diffusivities could be explained by excess interstitials diffusing away from

the oxide-silicon interface.

The search for a correlation between the extent of lateral diffusion and me-

chanical stress in sputter deposited silicon nitride films was conducted by Roedel

et al [34]. Their data are shown in fig. 5.2. which is a plot of the ratio of lateral

diffusion to junction depth, r, for silicon nitride films of varying thickness. This

shows a clear dependence on the extent of lateral diffusion upon the thickness of

the diffusion mask, a dependence which is reminiscent of that of the stress on the

film thickness. It was also seen that two films of different composition but of equal

stress value produced lateral diffusions of the same size. This further indicates a

strong correlation between the stress content of the masking film and the extent

of lateral diffusion. Baliga and Gandhi [47], reached a similar conclusion for SiO 2

diffusion masks. They obtained a strong connection between phosphorous doped

silicon dioxide diffusion masks and the lateral diffusion and minimized the extent

of lateral diffusion by controlling the phosphorous content of the film.

During this research an attempt is being made to study the effect of interface

trapped densities on stress. A study is in progress at NET in conjunction with

Epitaxx, Inc., Princeton. The results of this study will be published at a later date.
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Figure 5.1: Variation of Stress with Thickness. Roedel [ 34 ]

the diffusion mask, a dependence which is reminiscent of that of the stress on the

film thickness. It was also seen that two films of different composition but of equal

stress value produced lateral diffusions of the same size. This further indicates a

strong correlation between the stress content of the masking film and the extent

of lateral diffusion. Baliga and Gandhi [47], reached a similar conclusion for SiO 2

diffusion masks. They obtained a strong connection between phosphorous doped

silicon dioxide diffusion masks and the lateral diffusion and minimized the extent

of lateral diffusion by controlling the phosphorous content of the film.

During this research an attempt is being made to study the effect of interface

trapped densities on stress. A study is in progress at NJIT in conjunction with

Epitaxx, Inc., Princeton. The results of this study will be published at a later date.
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Figure 5.2: Ratio of Lateral Diffusion to Junction Depth 'r' for Si3N4 films of
varying thickness. Roedel [ 34 ]

Figure 5.3: Zinc Diffusion in GaAs with Si 3N4 Mask. Roedel [ 3 4
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Chapter 6

Conclusions and Suggestions for
Future Work

6.1 Conclusions

Films with a refractive index of 2.01, corresponding to stoichiometric silicon nitride,

were obtained with very specific parameters by reactive argon/nitrogen diode sput-

tering. The deposition parameters for obtaining stoichiometric silicon nitride films

were : Base vacuum pressure, 2 x 10 -6 Corr; cathode voltage, 1.8 - 2.0 kV; 12.5% N2

(in the N2 -Ar mixture); sputtering gas pressure, 5 mTorr; substrate temperature,

140°C '10°C; target power 220 W. The etch rate of these films (29-31 A/min) com-

pare well with published results of 35 A/min obtained by rf sputtering [44]. Silicon

nitride films deposited by sputtering frequently have lower etch rates than the Si3N4

deposited by other techniques if they contain gaseous impurities, eg. traces of wa-

ter vapor which use up broken Si bonds (forming Si-H bonds) [Milek;33]. Films of

Si3N4 deposited by LPCVD at low temperature have higher etch rates (150 A/min)

than high temperature CVD Si 3N4 (5O-60 A/min). In spite of the higher etch rates

the advantage of the films deposited by LPCVD/CVD is that better control over

film composition can be exercised as compared to sputter deposited films.

The film composition as determined by IR spectroscopy exhibits a strong
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absorption band centered at 840cm -1 (Si-N) and weak absorption bands centered

at 880cm -1 and 1100 cm - ' for Si-H and Si-0 respectively. IR, spectroscopic analysis

of films deposited by CVD, plasma deposition techniques also show a prominent

absorption for Si-N bonds.

The minimum stress obtained during this research for silicon nitride films

deposited on silicon substrates was 0.57 x 10 9N/m2 for a film with a refractive

index of 2.05 and 19OO A thickness. Assuming that stress decreases with thickness,

the stress in this film at 73O A thickness would be about 1.6 x 1O 9 N/m2. The

measured stress for a film with refractive index 2.24 was 0.98 x 1O 9 N/m2 for a 730

A thick film. Thus one can notice that the stress decreases with increasing silicon

content. These values compare well with the stress values (2.08 x 10 8 1\77m2 ) in

plasma deposited annealed stoichiometric silicon nitride films extrapolated to the

same thickness. Stress is thus seen to be a function of the silicon content of the

deposited film. It is suggested by the writer that the decrease in stress with the

silicon content was caused by a reduction in lattice mismatch between the substrate

and the deposited film.

Stress has also been observed to vary with film thickness. Unlike Si0 2 , the

stress reduces with greater thickness for a nitride film. This reduction in thickness

is possibly due to reemission of nitrogen from the depositing film (caused by the

energetic particle bombardment) resulting in a silicon rich film. Roedel et at {34]

also observed reduction in stress with increasing film thickness for sputter deposited

silicon nitride films. Therefore, by suitably controlling the -film composition and

thickness, the film stress could be "tuned" to the required values.

It is expected that this research will be useful in solving the problem of lateral

diffusion of dopants in silicon nitride on silicon and possibly silicon nitride on GaAs

and other semiconductors. The stress results are promising because comparable
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stress values (2 x 109N/m2) of silicon nitride on silicon by LPCVD, PECVD have

been obtained, but at much higher deposition temperatures (75O — 850 °C & 3O0 —

450°C respectively), which are unsuitable for Al/Au metallization.

6.2 Suggestions for Future Work

The author would like to make the following suggestions for future work:

1. The effect of substrate bias on the film properties should be studied. Bias can

possibly affect the energy of the ions hitting the substrate and influence the

stoichiometry and purity of the growing films. Also stress developed in the

films can be affected during growth.

1 The accuracy of the laser reflectance apparatus can be improved by incor-

porating a position sensitive detector. This would remove any inaccuracies

resulting from the present technique. It is also evident that the accuracy of

the present system could be increased by increasing the sample-screen distance

(presently 5.08 meters).

3. The LR technique currently used to determine the substrate curvature is te-

dious. It would be possible to expedite the time required for measurement by

moving the beam rather than the sample. The beam movement technique has

the advantage of in-situ measurement. Also the beam intensity data could be

inputted to a computer for faster stress calculations.

4. Sputtering should be tried in the triode mode. Sputtering can then be con-

ducted at lower voltages which might reduce the deleterious effects due to high

energy particle bombardment of the substrate by the sputtered species and

secondary electrons. Since triode sputtering can be done at lower pressures,
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there would also be a lower concentration of entrapped argon and contam-

inants in the sputtering gas source and films with better purity could be

obtained.

5. Incorporating a liquid nitrogen trap in the vacuum chamber to reduce any

traces of water vapor which could increase the conductivity of the insulating

film.
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