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ABSTRACT

Title of thesis : Simulation of random packing of hard spheres
using Monte Carlec method

Sung-Ho Park, Master of Science in Mechanical Engineering, 1990

Thesis directed by : Dr.Anthony D. Rosato, Assistant Professor

Mechanical Engineering Department.

A computer based method of generating a random packing of
hard spheres is described. Using a Monte Carlo method as employed
in the field of Computational Statistical Physics, packing of hard
spheres are generated and analyzed.

The mean packing fractions for the present assemblies of
1000 spheres are 0.555%0.015 after pouring and 0.58210.018 after
10 cycles of shaking. These values are approximately 5 to 6 per
cent lower than the experimental results of G.D.Scott[30], but
similar with the result of Visscher & Bolsterlil[17].

The mean coordination numbers are 5.97 and 6.33 for the
pouring and shaking case, respectively. The radial distribution
function was calculated and compared with other published data.
The simulated results are similar with those of G.D.Scott.

The pouring simulations with 5 different system sizes
verified that the resulting low packing density is independent of
the number of particles in the systenm.

In an attempt to determine the reasons for the 5 to B per
cent difference between existing experimental data of G.D.Scott
and the simulation results, two computations were done.

The first case study measured the total void volume formed by

iii



the gaps of the neighboring spheres. It was found that the void
volume occupied approximately 0.0017 per cent of the total volume.
Therefore the use of the corrected diameter cannot be a factor.
The second series of computations studied the effects of
allowing the system to rapidly "cool" to an equilibrated state as
opposed to incrementally reducing T* from a value of 15.8 to
0.00211, whereby the system is allowed to equilibrium at each
incremental step. The result shows that the packing density
increased from 0.565 to 0.617. This can account for the 5 to 8
per cent difference between the experimental result of G.D.Scott

and the result of current simulation.
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1. INTRODUCTION

1.1 Survey of Previous Research

Random packing of hard spheres have been extensively studied,
due to their importance as models for particulate systems in a
wide variety of fields such as physics, chemistry, biology and
engineering.

The methods used to investigate the sphere packings are
broadly classified into two groups, i.e. mechanical packings and
computer simulations.

G.D.Scott [3] carried out his experiments with 1/8 inch
diameter steel balls and obtained two well-defined limits which he
called "dense random packing" and "loose random packing”. For the
dense random packing, the balls in the container were gently
shaken down for 2 minutes. For the loose packing the balls filled
the <container essentially by rolling down a slope of
randomly-packed balls, The values for the limiting packing
densities were 0.637 for dense random packing and 0.601 for loose
random packing. The variation of measurements of the two limits
were within #0.2 per cent.

H.Susskind and W.Becker [34] packed rubber ballons with 0.118
inch diameter glass balls and 0.125 inch diameter steel balls.
The beds were packed by dropping balls randomly into the rubber
ballons and evacuated the air from the ballons, but in several
cases the beds were vibrated for 45 minutes on a shaker before
evacuating the air. The average densities of the loosely packed

beds were 0.638+0.01 and 0.835%0.01 for the glass and stainless



steel beds, respectively. The average density of the densely
packed glass beds was 0.652+0.01.

R.K.McGeary [B] found that a maximum packing density could be
obtained when the container diameter was more than about ten times
the sphere diameter.

G.Mason [4,31] simulated the random packing of equal spheres
on a computer, and found a limiting density of 0.63 to 0.64, close
to the experimentally determined value by G.D.Scott [3]. The
methods used by Mason essentially assumed a central confining
force on the sphere, thereby avoiding effects due to gravity.

D.J.Adams and A.J.Matheson [14] generated a random close
packing of hard spheres via a computer simulation. Their method
placed a new sphere at the tetrahedral site nearest to the center
of packing, thus producing a spherical model. The resulting
packing density was 0.628. The fluctuation in the measured
packing density was not specified.

C.H.Bennett [12] constructed packings of several thousand
equal hard spheres by depositing each sphere, one at a time, at
surface sites on a small seed cluster, placing each new sphere in
contact with three already presented ones. This yielded the mean
packing density of 0.61. The limiting values were bounded from
0.57 to 0.83. Bennett and Matheson’s techniques are basically the
same, but the choice of sites of which to place the new sphere was
different as decribed above.

Further, W.M.Visscher and M.Bolsterli [15] approached the
problem of random packing of spheres by means of a Monte Carlo
computer simulation of the physical process of dropping spheres

into a bin and found a density of 0.582. E.M.Tory et.al.



[10, 16, 19,32] simulated the very slow settling of spheres from a
dilute suspension into a randomly packed bed. To avoid the wall
effects, the packing density was measured on the interior 5000
spheres of an assembly of 10,000 monosized spheres. An overall
mean packing density of 0.58 was found.

A.J.Matheson [17] generated a homogeneous assembly of
randomly closed packed spheres of packing density 0.B80810.008. He
used a spherical growth method which involved the selection, from
among the large list of available tetrahedral sites, of that one
site which 1is nearest to the origin of the pile of existing
spheres.

W.S.Jodrey and E.M.Tory [21] generated 3000 spheres in =a
cubic container by a relaxation method. The relaxation method
eliminated the largest overlap at each step and gradually
converged to an overlap-free packing. Their packing achieved
density of 0,86368 and coordination number of 5.64.

J.Rodriguez et.al.[22] developed an assembly of packing under
gravity, particle by particle. A new particle at a randomly
chosen position above the already placed particles was dropped and
allowed to roll down until it reached a stable position. The

resulting packing density was 0.5810.05. The summarized survey is

presented in Table 1.1.;



Methods Procedures

References

Experiment Irregular packing cons-
structed by shaking to-
gether equal steel ball
bearings. These arrays

are generally fixed by

Bernal & Mason [2]
Scott [3]

Bernal [5,7]
McGeary [8]

Bernal, Mason &

means of waxes and the Knight [9]
sphere center coordinates Bernal & Finney [8]
measured by special mach- Finney [13]
ines. [34] Suskind & Becker
[35]
Computer- Computer generated sets of Tory, Cochrane &

Simulation the expected spatial coor-

dinates of the spheres.

Waddell [10]
Scott & Mader [11]
Bennett [12]

Adams & Mathe

Visscher & Bolsterli

[15]

Tory, Church, Tam

& Ratner [16]
Matheson [17]

Gotoh & Finney [18]

Jodrey & Tory [19]
Powell [20]
Rodriguez, Allibert
& Chaix [22]

Gotoh, Jodrey &
Tory [32]

Table 1.1. The summarized previous works on random packing



1.2. Comparison of Experimental and Computer Simulated Results

Computer simulations of random packings are highly dependent
on the assumptions made in the generating algorithm. In
experiments, observed results also had a high dependence on the
experimental procedures.

The summary described above indicates that the upper 1limit
values of experimental and computer simulated packing densities
are 0.637+0.001 and 0.68366%0004, respectively. The lower limiting
densities are 0.60 and 0.58, respectively. The coordination
numbers ranged from 5.45 to 6.4 at close sphere contacts in
experiments. In the case of computer simulation, the coordination
numbers ranged from 6.0 to 6.1 at close contacts.

Table 1.2 summarizes the results of experimental and computer

simulated random packings.

Mean coordinat- Packing System References
ion number density
— +
0.801+0.001 Steel balls Scott [3]
0.637£0.001 in a cylinder
- Steel balls in
0. 625 a glass conta-| McGeary [6)
iner
Steel balls in
- 0.636620.0004 | a cylinder Finney [13]
6.1 0.59 Computer Simu-| Tory, Cochrane
’ ) lation & Waddell [10]




Computer Simu-

Adams & Mathes-

- 0.628 lation on [14]
6.0 0.61 Computer Simu-| p ./ ett [12]
lation
Computer Simu-| Visscher &
6.4 0.582 lation Bolsterli [15]
Computer Simu-| Tory, Church,
6.01 0.58 lation Tam & Ratner
[186]
6.0 0.B06+0. 006 Computer Simu- \o i+ econ [17]
lation
6.0 0.6089 Statistical Gotoh & Finney
0.6%72 Method [18]
6.0 0.59£0.01 Computer Simu-| p 011 [20]
lation
Computer Simu-| Rodriguez, All-
6.0 0.5820.05 lation ibert & Chaix
- 0.634 Computer Simu-| \  on [31]
lation
- 0.582 Computer Simu-| Gotoh, Jodrey
’ lation & Tory [32]
Computer Simu-| Jodrey & Tory
5.64 0.86366 lation [21]

Table.1.2 Data comparison of experimental & computer simulation

1.3 Outline of Thesis

Section 2 describes the packing of monosized spheres. As a

first step toward the analysis of random packing of spheres, the

regular and random packing arrangements of monosized spheres are



discussed in this section. In section 3, the basic algorithms for
converting two dimensional code to three dimensional code are
presented. The periodic boundary conditions and geometry checking
subroutine are the main parts where that idea is applied. The
general concepts of the Monte Carlo Method in the pouring and the
shaking simulations are also introduced. Section 4 deals with
the analysis of the assemblies which are obtained from the
simulation code. Summary and Conclusions are presented in Section

5 with suggestions for further studies.

2. PACKING OF MONOSIZED SPHERES

2.1 Regular Packing of Spheres

A regular packing of spheres may be assembled from layers and
rows. The fundamental unit is a row of contacting spheres. These
rows can be arranged in the same place, parallel to each other and
touching, to form a layer.

The most common packings are built from one or another of the
limiting forms. These are the square layer with a 80 degree angle
and the triangular or simple rhombic layer with an angle of 60

degree [24]. Those two types of layers are shown in Figure 1.1:



\/ v

[-] [-]
90 60
(a) square layer (b) simple rhombic layer

Fig.1.1 Types of Layers

The highest over-all density in a regular packing is achieved
in the face-centered cubic (F.C.C.) and hexgonal close-packed
(H.C.P.) structures. The FCC structure has four spheres per unit

cell and its packing density is calculated as follows:

Vs 4 x(4/3 xmx re )

Ve (axr /s vz )°

0.7405

where,

Vs : Total volume of spheres
Ve : Volume of unit cell

r : Sphere radius

In the case of HCP structure, each sphere touches three



spheres in the layer below its plane, six spheres in its own
plane, and three spheres in the layer above. The packing density

is also found to equal 0.7405.
2.2 Random Packing of Spheres

A random packing [23,24] 1is formed By the haphazard
positioning of spheres to form an assembly or a bed. The loose
and close random packings characterize the configurations which
result when an assembly of spheres is packed in an apparently
random manner to its loosest and densest conditions, respectively.

In this work, Monte Carlo method [1,23,25,26]1 of the type
from Computational Statistical Physics is applied to achieve

random packings of hard spheres.
2.2.1 Random Loose Packing

This configuration is obtained by packing the spheres so that
they roll individually into place over similarly placed spheres by
individual random hand packing or by "dropping" the spheres into the
container without bouncing.

The most probable value for the packing density of a random
loose packing [2,3,10,12,15-17,20,22,32] of monosized spheres is

bounded between 0.58 and 0.860.

2.2.2 PRandom Close Packing

A random close packing for monosized spheres corresponds to



their maximum density without long range order or deformation.
These are obtained when the bed is vibrated or vigorously shaken
down. Most of the reported experimental wvalues of the packing
density for random close packing lies between 0.625 and 0.64
[2,3,6].

In the case of computer simulated techniques, produced
packing densities [14,21,31] ranged from 0.628 to

0.B6366+0.0004 for monosized spheres.

3. THE SIMULATION CODE AND PROCEDURES

This section outlines the simulation procedure and the Monte
Carlo method. The algorithm for this code 1is presented in
Appendix A.1 and the FORTRAN code listing 1is also found in
Appendix B.1. The Monte Carlo method adapted here is commonly
used in the field of Computational Statistical Physics. It was
developed by von Neumann, Ulman, and Metropolis to study the
diffusion of neutrons in fissionable material. The details can be

found in [1], [23]-[25],[28], and [29].

3.1 Periodic Boundary Conditions

The two dimensional code is converted to three dimension
mainly bymodifying the periodic boundary conditions (P.B.C.) and
the geometry checking subroutine (GEOMCK). The existing
dimensional code has only 6 cases of P.B.C., but 49 cases are
considered 1in three dimension code. The ©basic idea for

establishing the P.B.C. in three dimensions is now described:

10



(i) X-Y-Z coordinate system is defined in Figure 3.1. Two
boundary conditions are established here. One is a hard vertical
wall, X-0-Z plane and the others have periodic boundary
conditions. A sphere at coordinate ( X, Y, Z ) reappears at ( X %
Lx, Y, 2 *+ Lz ) in a periodic boundary condition, so the packing

is effectively infinite in horizontal direction.

> <

g
O D-——b p.b.c.
° —>
x hard wall

Fig.3.1 Coordinate system and periodic boundary conditions

(ii) If a new sphere is created on the side of a cell and
partially included in the cell as shown in Figure 3.2.(a), the

other segment of the sphere appears on opposite side of the cell.

11



4- r—~——4> new spheres

4

(a) P.B.C. on the sides
(ii1) If a new sphere 1s created in the corner of a cell and
included partially in the cell , the other segments of the sphere

appears in three other corners as shown in Figure 3.2. (b).
*,z

-

new sphere

LI

(b) P.B.C. in the corner

Fig.3.2 Periodic Boundary Conditions in each case

LB>]



(iv) In each case (ii) and (iii), the sphere can lie at seven
different locations in X direction as shown in Figure 3.3.
Considering the Z direction, combinations of X and Z result in 48

differnet cases of boundary conditions in this system.

z
—> -
ot <
—>
aa ~
» X
0 xlng
. di
-dia G2 xlng - dia dia
2 xlng +

xlng : Length of a cell

Fig.3.3 Possible locations of sphere in X direction

By those rules, finally 47 cases of P.B.C. are established
and coding is modified to Iincorporate these cases. In order to
check the sphere overlaps, geometry checking subroutine (GEOMCK)
is used. All the cases are checked by GEOMCK whether the spheres
are overlapped or not. This is effectively done to enforce the
hard sphere potential, ie., spheres can touch without experiencing

any attractive or repulsive force, but cannot overlap.

12



3.2 Pouring Simulation

The "pouring" process starts with moving one sphere at a time

according to the following prescription:

X> X+ 651

Yo>Y + 6&2
Z->2Z+ 6&3

where 8 is the maximum allowable displacement. El, Ez and ga
are the random numbers between -1 and 1. After moving a sphere,
it is equally likely to be anywhere within a cubic of side 23
centered about its original position.

A trial configuration is accepted as the new configuration
based on the change of potential energy AE in the system. If AE <
0, the new position is allowed by placing the trial sphere in its
new position. If AE > 0, the new position is accepted with
probability exp(-AE/kT), i.e. compare a random number, and 0 = J =
1, with exp(-AE/kT); move the sphere to its new position if J
<exp(-AE/KT). Otherwise, reject the position and keep the sphere
at its old location. This process is carried out for all N
particles of the system thereby completing one "pass".

In this simulation, the gravitational potential is permitted
only to decrease the configuration energy and no bouncing is
permitted. Hence the spheres slowly settle down to the bottom of
the container. As the pass number increases, the change of
configuration energy becomes smaller. It requires more than a

hundred thousand passes to attain an equilibrazted state.

14



The input data for the pouring simulation is presented in

Table.3.1.

sphere number 1,000

3.0 x 5.0 x 3.0
( Width x Height x Depth )

container dimensions (inch)

sphere diameter (inch) 0.3

d in each pass 1 / 6 Dia.

Table 3.1 Initial input data for the pouring simulation

3.3 Shaking Simulation

In order to get the densest packing, =a shaking procedure is
necessary. The spheres are first lifted uniformly by a predefined
specific amplitude and then allowed to settle down via the Monte
Carlo method without bouncing as described in section 3.2.. This
completes one cycle.

In this simulation, the shaking amplitude for each case is
between one thirds and one sixths of the sphere diameter. Many
cycles are required to obtain the "densest" packing. A cycle is
halted when the change of the potential energy is less than a
predefined tolerance in the input data. Table 3.2 shows the input

data for shaking process.

amplitude 1 /3 ~1/6 Dia.

passes for cycle 40,000

8 in each pass 1 / 6 Dia.

number of cycles 10 cycles

Table 3.2. Input data for the shaking simulation

15 -



4. RESULTS

To analyze the sphere assemblies generated, geometrical
properties of the assemblies are measured and compared with the
published ones. These include the packing fraction, the
distribution of coordination numbers and the radial distribution
function.

The mean coordination number is computed wusing three
different tolerances, ie., 1%, 5% and 10% of sphere diameter. The
first one included the close contacts within 1% of the sphere
diameter in separation. The second and the third one included 5%
and 10%, respectively. The comparison of the results with others
is based on the 5% diameter separation, because the experimental
result of Bernal et.al. and the computer simulated result of
Matheson are using same tolerance. The details are presented in
Section 4.1.

In this work, two methods are used to calculate the packing
fraction. The first one is a "Plane Growth Method" and the other
one is a "Spherical Growth Method". The details are explained in
Section 4.2 and 4.3.

The calculated radial distribution function is presented
in Section 4.3 and compared with published results.

In order to obtain the possible factors that effect the low
packing densities, three case studies were done and their results
are presented in Section 4.4 to 4.6.

All the calculations were carried out usingVAX/VMS-8800

computer.
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4.1 Coordination Number

The coordination number [2,21] 1s defined as the mean number
of spheres 1n contact with any glven sphere. The expected value
of the coordination number seems to be six [2], as each sphere may
be generally supported by three others and in turn to support
another three spheres.

In order to 1include all the contacting neighbors, the
coordination numbers of the central 583 spheres of the 1000 sphere
assembly have been calculated. The coordination number
distribution is shown in figure 4.1 for the pouring simulation.
The results are computed for the sphere separations of 1.1, 1.05
and 1.01 diameters. The mean coordination numbers are 6.80 at 1.1
diameter separation, 5.97 at 1.05 diameter and 4.88 at 1.01
diameter. These values are measured using the coordination number
code located in Appendix B.Z2. The computed values of the

coordination numbers are also presented in Appendix C.1.

35+
304 —1 1000 spheres
1.1 diameter separation
~ 254
B2 -—1 — mean number : 6.9
> 204
O
S ;
S 154
O- -
e
& 104
54
0 o rl . ; ' . v u .
2 3 4 S 6 7 8 9 10 11

coordination number

(a) 1.1 diameter separation

17



frequency(%)

3 54

tion

30 1000 spheres
1.05 diameter separa
254
] B mean nhumber : 5.97
2 0+
1 54
1 O+
54
0 . . . I -
2 4 5 6 7 8 g 10 i1
coordination number
(b) 1.05 diameter separation
35,
304 1000 spheres
—~ 25 1.01 diameter separation
& m mean number : 4.98
> 204
O
S
< 154
o
[«3]
& 10
5.
0 v v v — 1 v v \
2 4 5 6 7 8 9 10 11

coordination number

{(c) 1.01 diameter separation
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354

O 1.1 diameter separation
30' [ 1.05 diameter separation
] A 1.01 diameter separation
~ 254
B
> 20-
(e
g
3 15
P
[
— 104
5
0 . v . . - v
2 3 4 5 6 7 8 9 10 11

coordination number

(d) Comparison of the results
Fig.4.1 Coordination numbers at 1.01, 1.05 and 1.1 diameter

separation after pouring

The experimental result of Bernal & Mason and the computer
simulation results of Tory et.al., Jodrey & Tory, Matheson and the
current results of pouring simulation are compared in fig 4.2.
All the results show a peak value at a coordination of six, except
for the result of Bernal et.al.. The results of Tory et.al. and
Matheson showed a similar distribution. In comparison with the
experimental results by Bernal et.al., the simulated distribution

is shifted to the left.
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501
45 O Bernal & Mason
O Jodrey & Tory
401 A Matheson
ge 33 © Tory et.al.
<. 30- + After pouring simulation
Q
§ 2 54
T 204
&
o« 151
10+
F
0 Y v Y v -
2 3 4 5 6 7 8 9 10

coordination number

Fig. 4.2 comparison of the results between published data and

pouring simulation

With an amplitude of one sixth of the sphere diameter, 10
cycles ( 40,000 passes per cycle ) of shaking were carried out.
Then coordination numbers for each case are computed. The result
shows an approximate 6 to 10 per cent increase of coordination
number.

The average coordination numbers are 7.55 for 1.1 diameter
separation, 6.55 for 1.05 diameter separation and 5.29 for 1.01
diameter separation. Figure 4.3 shows the coordination number

histogram for the shaking case. The computed values are found in

Appendix C.2.
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(d) Comparison of the results
Fig.4.3 Coordination numbers at 1.01, 1.05 and 1.1 diameter

separation after 10 cycles of shaking
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Figure 4.4 shows a comparison of the results between
experimental results of Bernal et.al. and the current result after
10 cycles of shaking simulation. The mean coordination number of
Bernal & Mason’s result is 7.99 and the current one is 6.55 for
the sphere separation of 1.05 diameter.

Because of the low packing density, the present result shows
a configuration shifted to left as compared with the result of

Bernal et.al..

35,
304 O Bernal & Mason
O After 10 cylces
~ 25/
Be
> 20
8
-
S 15,
o
(<8}
& 10,
5'!
0 v v r v -r v v ~ r ]
2 3 4 5 6 7 8 g 10 11 12

coordination number

Fig. 4.4 Comparison of the results between Bernal & Mason’'s

experiment and shaking simulation.
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4.2 Packing Fraction

The packing fraction [12-20,24,26,27] or solids fraction is
defined as the ratio of the total volume of spheres to the volume
containing them. Two methods are used to calculate the packing

fraction.

4.2.1 Spherical Growth Method

This method calculated the packing fraction from the 18
spherical samples within the packing. The code may be found in
Appendix B.3. The actual volume of solids within each spherical
sample is determined by calculating the volume of the spheres
totally within the radius plus fractional volume of those of those
spheres which intersected the sampling sphere. The details are

shown in Figure 4.5.

E§§ ¢ common volume

Spherical sample

container

Fig.4.5 The basic algorithm of Spherical Growth Method
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The volume common to two spheres [12] of radii a and b, with
centers a distance ¢ apart is given by:
vV = g x[2xa+2xb +cc=-3xex(d+1b2))
where,
la - bl scsa+b
V : common volume

a &b : radii of two spheres

¢ : distance of centers between two spheres
2 2 2
d ., a +c¢c =-b
2 xc

A spherical sample containing central 588 spheres is taken
from the packing and the packing fraction is calculated for the
intervals of 0.05 sphere dlameters. The measured mean packing
fractions are 0.555%0.015, 0.582%0.018 for the pouring and the
shaking simulation, respectively.

Figures 4.8 (a) and (b) show the packing fractions for the
pouring and shaking cases versus r/dia. where dia. equals the
diameter of the sphere and r is the radial distance measured
outward from the center of the packing. Thereffound a small peak
at 1.33 sphere diameter outward from the center of the packing and

the result of G.D.Scott[30] shows a similar distribution of

packing fraction.
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Fig.4.8 packing fractions by Spherical Growth Method
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4,2.2 Plane Growth Method

This method first cuts the packing by a plane and calculates
the volume of spheres bounded by that plane and the periodic

"walls". The details are shown in Figure 4.7.

R

NG

OO L

container

Fig.4.7 The volume of a spherical segment
The volume of spherical segment of one base [35] is given by:

Vs = % xTxhx(3xa®+h®)
Where,
Vs : volume of spherical segment
h : height of a spherical segment

a : Intersected distance between plane and sphere

{(=d hx(2xR-h)

R : radius
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The local packing fractions are calculated from the bottom to the
top of the packing for the intervals of 0.1 inch. The resulting
mean packing fractions are 0.551+0.01 for the pouring case and
0.581+0.006 for 10 cycles of shaking case, which is in a good
agreement with the results obtained by spherical growth method.
The mean packing fractions by spherical growth method are
0.55510.015 and 0.582+0.018 for the pouring and shaking,
respectively. The published results of Visscher & Bolsterli,
Tory et.al., Powell and Gotoh et.al. show similar packing

fractions with the current results.

Reference Packing fractions
Tory, Cochrane & Waddell [10] 0.59

Visscher & Bolsterli [15] 0.582

Tory et.al. [16] 0.58

Powell [20] 0.58

Gotoh et.al.[32] 0.582

Current results 0.581-0.582

Table 4.1 Comparison of the packing fractions

Fig 4.8 shows the distribution of 1local packing fractions

from the bottom of the packing.
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Fig.4.8 packing fractions by plane growth method
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4.3 Radial Distribution Function

The radial distribution function [4,24,29,30] is defined as
the number of spheres ( or density of sphere centers) as a
function of distance from the center of the packing. In other
words, it is the average number of sphere centers per unit volume
in a spherical shell about a central sphere. By the definition,

radial distribution function g (r/D) is,

Nav
g (r/D) =

4 x 1 x (r/D)* A(r/D)

where,

Nav : average number of sphere
centers per interval

A{r/D) : interval (= one-fifth of
sphere diameter was used)

r : radial distance

D : sphere diameter

The values of g(r/D) is plotted versus r/D and this is shown
in Fig.4.%. The measurement was made for a cluster of 1000
spheres and the code 1listing is found in Appendix B.5. The
computed list of data is also found in Appendix C.7 and C.8.
Some published values of the radial distances of the first, second,

third, fourth and fifth peaks are presented in the Table 4.2,
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r/dia. at positions of peaks
Reference

first second third fourth fifth

Bennett [12] 1.00 1.73 2.68 3.83 4.38

Finney [13] 1.00 1.73 2.65 3.50 4.35
Matheson [17] 1.00 1.8 2.78 3.64 4.45
Scott [30] 1.00 1.83 2.64 3.45 -

Current result| 1.00 1.9 2.7 3.5 4.5

Table 4.2 r/dia. at positions of peaks

The results for the poured and the shaken assemblies are
illustrated in figure 4.8. The first peak in the distribution
function lies in the interval 1.0 - 1.1. Since the spheres can
not overlap, values of r/D can not occur less than 1.0. The
maxima of peaks 2, 3 and 4 of the assembly in pouring case
occurred at 1.8, 2.6 and 3.4 sphere diameters. These values are
nearly the same as Scott [30] and slightly larger than Matheson’s
values. After 10 cycles of shaken, the value of g at r/D =1
increased from 0.5403 to 0.5806 and this also appears as an
increase of the coordination number. Figure 4.9.c¢ presents the

comparison of the G.D.Scott’s result with the simulated results.
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4.4. System Size Dependence

In order teo verify that the results are independent of the
number of particles, four different cases were done by varying the
numbers of spheres. The cell dimension for each case was 3.0" x
3.0" (base area) x 5.0" (height).

In each case, the spheres were poured into the cell to obtain
a configuration in the equilibrated state.

In order to measure the packing densities in a similar
condition, the packing of each system was made in a similar height
by varying the radius of sphere. The sphere diameters used in
this simulation were 0.75" for 64 sphere system, 0.58" for 125
sphere system, O0.45" for 218 sphere system and 0.4" for 343 sphere
system. Normalized configuration energy versus pass number shows
the height of each system in the equllibrated state. Table 4.4
lists these energies for each size system in the equilibrium.
Here Zi denotes the location of the sphere center above the cell

bottom, mi 1is the sphere mass and g 1is the gravitational

acceleration.
n n n
cases ¥ migz: ¥ omi Y g1
1=1 1=1 1=1
64 0.1080 0. 2858 0.3709
125 0.08B475 0.2201 0.2942
216 0.05622 0. 2083 0.2699
343 0.06701 0.2323 0.2885

Table 4.2 Normalized configuration energy
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packing density

This simulation was repeated on systems of 125, 216 and 343
spheres and run for 44,000 passes for each case. The final
packing densities are 0.553+0.01 for 64 sphere case, 0.535:0.01
for 125 sphere case, 0.545+0.01 for 216 sphere case and 0.564#0.01
for 343 sphere cases. Fach size case were carried 3 times to
obtain an average value. Comparing these results with the result
of 1000 sphere case, the mean packing density of 1000 sphere case
(0.555+0.015)1ies within these wvalues. The results of four
separate cases also show independence between the system size and
the packing density. So the resulting low packing density of
current simulation is not affected by the system size.

The final packing densities for each case are plotted in

Figures 4.10 (a), while (b) - (e) shows the variation versus pass

number.
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(a) packing densities in each case
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Fig.4.10 packing density in each case
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4.5. Comparison of the Packing Density between Corrected &

Uncorrected Values

This work was done to attempt to discover what could account
for the 5 to 6 per cent lower density from published experimental
data.

Let the distance between one geometric neighbor and its
center sphere be d, and lét its radii be r. In this case the

geometric neighbor is in contact with the center sphere if,

In the simulation process, the equality can never be exactly
obtained because of the machine error.

To locate the nearest neighbor and calculate the distance, a
1000 sphere configuration was produced, processing 415,000 passes.
Since there exists only one nearest neighbor, there are 1000
nearest neighbor distances. These distances fell between
1.000000024124545 and 1.017997631992374 sphere diameter. For all
practical purpose, the lowerbound is considered to be 1.0 due to
machine error.

Let o be the diameter of the spheres in the packing and P(D)
be the cumulative probability [36] that the nearest neighbor is
located in the range of ¢ = D = o+do. Then, for a fixed packing
fraction m, the median nearest neighbor distance Dmnn(m) 1is
defined by:

P(Dmnn) =

N
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The median nearest neighbors are 1.0000068588507291 sphere
diameter for the pouring case and 1.000096933545630 sphere
diameter after 12 cycles of shaking (20,000 passes per cycle).

The cumulative probability versus normalized distance r/dia
is plotted in Figure 4.11.

By using the median value Rmnn, to compute the sphere volume, a

corrected packing density 1is calculated as follows:

'S

Vsp=—x1tX(Rmnn)3><N

w

Voc = X1 x Y1 x 21

Vsp

pdcorr = Voo

Where,

Vsp : total volume of spheres
Voc : occupied volume
pdecorr : corrected packing density
N : number of spheres
Rmnn : Dmnn / 2

The corrected packing density was 0.85338. The difference
between uncorrected and corrected packing densities is 0.002 per
cent in the pouring case.

The same procedure was repeated for the shaking case and the
corrected packing density was computed to be 0.573823, a very
insignificant increase from the uncorrected value of 0.578. The
increase was approximately 0.028 per cent.

Because the volume difference between the corrected and the
uncorrected one is not significant, the use of the "corrected"
sphere diameter cannot be a significant factor in accounting for

the 5 to 6 per cent difference between the experimental data and
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(b) After 12 cycles of shaking
Fig.4.11 The cumulative probability distribution versus the

normalized distance

In order to characterize the geometry of these two packings
more exactly, the coordination numbers for both cases are also
calculated. The mean coordination numbers are B5.91 for the
pouring case and 6.46 for the shaking case. The distributlions. of

the coordination numbers are plotted in Figure 4.12.
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4.6. The Annealing Simulation

In the previous simulations, we choose a very large value for
1/kBT as 1.0E+30 where kB is a Boltzmann constant and T is a
absolute temperature. This choice is equivalent to allowing only
a downward movement in order to minimize the system potential
energy.

Because the value of 1/ka was so large, the system cooled
rapidly and possibly prevented the formation of a greater density.
In order to check this factor, the "annealing simulation" was dcne
in a 64 sphere system. The system was heated with a high
temperature to an equilibrated state and then slowly cocled by
decreasing the temperature of the system.

*
A normalized temperature, T , is defined as follows:

kT
= B ___
ngg d
where,
-23 -1
k% : Boltzmann constant (= 1.380 x 10 JK )
T : Absolute temperature ( K )
m : Mass of a sphere

g : Gravitational velocity

d : Diameter of a sphere

The normalization 1is made as a comparison with the
gravitational potential energy.
The annealing simulation was started with an initial value of

>
T as 15.81. When the system was brought to an equilibrated
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state, T* was changed to a smaller value and again the simulation
was run until the system reached another equilibrium state at T*.
Table 4.3 shows the sequence of Ty.The final configuration was
obtained after 680,000 passes. The resulting packing density
without wusing the annealing simulation was 0.585 which was
computed after 550,000 passes. Comparison of these two results
shows approximately 5.2 per cent difference. This gap is almost
the same as the difference between the current result and the
result of G.D.Scott. The wvalues are 0.555 and 0.806 for the
current result and the result of G.D.Scott, respectively.

The resulting packing densities according to T* are also

shown in Table 4.3.

T* pass number packing density
1.58 120,000 0.248
0.158 280,000 0.504
0.0158 440,000 0.608
0.00316 560, 000 0.617
0.00211 680, 000 0.618

*
Table.4.3 The packing densities according to T

Eventually the systém reached an equilibrated state and the
change in the packing density became less than 0.1 per cent.

The result in the annealing simulation shows that the manner
in which the system is dropped to a T*z 0. Therefore, this is a
significant factor in accounting for the deficit between

experimental data and the simulated result.
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5. SUMMARY & CONCLUSION

The random packing of spheres is a process of considerable
scientific interest and practical importance. A variety of simple
models have been developed to obtain a better understanding of
technically important processes.

In this work, a Monte Carlo simulation code [1] has been
extended from two dimension to three dimension and then to
investigate the properties of ranom packing of hard spheres.

With configurations of 1000 spheres obtained from the
simulation code,the properties of the assemblies are calculated
and compared with other results in many ways such as coordination
number, packing density and radial distribution function etc..

The followings are the results and the conclusions:

(1) The coordination numbers for 3 different diameter
separations (ie., 1.01, 1.05 and 1.1) are calculated and compared
with the published data. All the comparisons are based on using
the 1.05 sphere diameter separation because the experimental and
computer simulated results of Bernal et.al. and A.J.Matheson uses
same tolerances. In the pouring simulation, the peak value
occurred at a coordination number of approximately six similar to
the result obtained by Jodrey et.al.. In shaking simulation
studies, the peak value occurred at seven coordination, but the
average number is lower than the experimental results of Bernal
et.al.. The average coordination numbers are 6.55 for the shaking
simulation and 7.98 for Bernal et.al..

(2) Another way of characterizing the bulk configuration of

the system is the packing fraction. This quantity is measured by
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two different methods called Spherical Growth Method and Plane
Growth Method. A good agreement for the results is obtained by
both methods. In the case of pouring simulation, the packing
fractions are 0.555%0.015 by the spherical growth method and
0.551+%0.01 by the plane growth method. The packing fractions
obtained from the shaking simulation give a packing fraction of
0.582+0.018 using the "Spherical Growth Method" and 0.58110.006
using the "Plane Growth Method". Both in the small and large
systems, the results from the plane growth method show a good
accuracy.

Comparisons with the published data shows that the resulting
packing fractions are approximately 5 to 6 per cent lower than the
experimental results of G.D.Scott.

Three case studies are done to find the significant factor in
accounting for the 5 to 6 per cent deficit of the packing density
between the cited experimental results. The following are the
results and conclusions ofthree case studies.

(4) To check the dependence of the system size, 4 separate
cases were simulated. The simulation was repeated 3 times each
using an identically sized cell. Each study was allowed to run
for 400,000 passes to cbtain final equilibrium configurations.
The final averaged packing densities for each case do not show the
dependence between the system size and the packing density. Hence
it is concluded, the simulation results are not system-size
dependent.

(5) Comparison of the "corrected”" and the '"uncorrected
packing densities" was done to attempt to discover what could

account for the 5 to 6 per cent lower density than published
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experimental results. The corrected packing density was computed
using the median nearest neighbor distance and compared with the
results of the uncorrected packing density. The resulting
uncorrected and corrected packing densities in the pouring case
were 0.5335 and 0.5338, respectively. In the shaking case, the
resulting uncorrected and corrected packing densities were 0.579
and 0.57923, respectively. The differences between two cases were
only 0.002 per cent and 0.023 per cent. So the use of the
corrected sphere diameter cannot be a significant factor.

(6) The annealing simulation was done in an attempt to
determine if the way the system was cooled effected the density.
This process excluded the possibility which could prevent the
formation of a greater density because of the rapid cooling of the
system. The system was first heated with a high temperature then
slowly cooled. The results showed approximately 5.2 per cent
increase of the packing density as compared with the rapid cooling
results. The packing densities are 0.585 for the rapid cooling
simulation and 0.618 after annealing simulation. It is found that
the method of dropping the system is a critical factor effecting
the packing density and this could account for 5 to & per cent
difference between the experimental data and the simulated
results. Many case studies are necessary to verify this.
However, the preliminary results cited here indicate that the
claim is true.

Some aspects for further research are as follows:

(1) Find an optimized sequence of values T* from the results

of annealing simulation on various sytem sizes.

(2) The Voronoi diagram may be used in the analysis of the
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results. If this diagram is applied in the analysis, the exact
value of the coordination number and 1its distribution are
obtained. In this way, the configurarion may be looked at on a

local level.
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APPENDIX A :
A.1 Algorithm for Monte Carlo simulation code

(a) Initial configuration

READ INPUT DATA

v

GENERATE RANDOM NUMBER
SEED USING SYSTEM CLOCK

v
e ®
L V > l<

READ INFORMATION FROM Gg:sl?giﬁd g?rHE%Ri?xF
THE PREVIOUS RUN e DY AN .

'POUR'OR'NP'?

SPHERE OVERLAPS ?
(GEOMETRY CHECKING

GO TO POURING GO TO SHAKING
SIMULATION SIMULATION

FINISH GENETRATIN

N - SPHERES ?

CALCULATE THE
ENERGY OF THE
CONFIGURATION

v

WRITE OUTPUT
DATA

v

GO TO SIMULATION
PART
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(b) Pouring simulation : begin moving spheres and generating

new configurations

YES

>l <

SELECT A RAMDOM TRIAL
SPHERE COORDINATE TO
MOVE

!

P.B.C. P.B.C ORHARD HV.W,

VERTICAL WALLS ?

YES

SPHERE OVERLAPS *
GEO. CHEC

SPHERE OVERLAPS ?

CHECKALL THE
SPHERES ?

PASS COMPLETES
AND CALCULATE
THE NEW ENERGY
OF THE SYSTEM

NERGY DIFFERENCE BETWEE
NEW AND PREVIOUS CONFIGURATIONS
IS LESS THAN PREDEFINED VALUE ?

NO

CONTINUE UPPER
PROCEDURE @
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(c) Shaking simulation : begin moving spheres with amplitude

and generating new configurations

LIFT ASSEMBLY OF
SPHERES BY PREDEFINED
AMPLITUDE

»‘4

SELECT A RAMDOM TRIAL
SPHERE COORDINATE TO
MOVE

Y

P.B.C. .B.C OR HARD HV.W,

l VERTICAL WALLS 2
4

SPHERE OVERLAPS ?

YES
YES

SPHERE OVERLAPS ¢
GEO. CHECK

CHECK ALL THE
SPHERES ?

PASS COMPLETES
AND CALCULATE
THE NEW ENERGY
OF THE SYSTEM

v

NERGY DIFFERENCE BETWEE
NEW AND PREVIOUS CONFIGURATIONS
LESS THAN PREDEFINED VALUE 2

CONTINUE UPPER
PROCEDURE
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A.2 Algorithm for Coordination Number

Cemard

READ X, Y, Z

CHOOSE ALL SPHERES
TOTALLY INSIDE THE
CONTAINER 2

CALCULATE THE DISTANCE
FROM CENTER TO ALL THE
OTHER SPHERES

'

COUNT THE NEAREST
ONES (COORDINATION
NUMBER) WITHIN
PREFIXED TOLERANCE

ADD FREQUENCY
FOR EACH CASE OF
COORDINATION NUMBER

!

WRITE COORDINATION
NUMBER AND FREQUENCY
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A.3 Algorithm for Packing Fraction

(2) Spherical Ggrowth Method

Csmar>

READ X, Y, Z

'

CHOOSE A SPHERICAL SAMPLE
WITH A PREFIXED RADIUS FROM
THE CENTER OF THE PACKING

'

CALCULATE THE VOLUME
OF SPHERES INSIDE THAT
SPHERICAL SAMPLE

v

CALCULATE THE VOLUME
OF THE SAMPLE

y

COMPUTE THE DENSITY
(= SPHERE VOL/ SAMPLE VOL.)
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(b) Plane Growth Method

READ X, Y, Z

l

CHOOSE A SAMPLE BY
CUTTING A PACKING
WITH A HORIZONTAL

PLANE

CALCULATE THE VOLUME
OF SPHERES INSIDE THAT
SAMPLE

CALCULATE THE VOLUME
OF THE SAMPLE

v

COMPUTE THE DENSITY
(= SPHERE VOL./ SAMPLE VOL.)

!
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A.4 Algorithm for Radial Distribution Function

CsTaRT >

READ X, Y, Z

v

CALCULATE THE DISTANCE
FROM CENTER SPHERE TO THE
OTHER SPHERES USING P.B.C.

;

COMPUTE THE NUMBER OF SPHERE
CENTERS WITHIN PREDEFINED
INTERVAL ( R, R+dR )

'

CALCULATE THE R.D.F. WHICH
DEFINED AS THE FREQUENCY
DIVIDED BY 411 (R/DIA.) 2
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A.5 Algorithm for calculating Median Nearest Neighbor

CeTaRT >

READ X, Y, Z

>y

CALCULATE ALL THE GEOMETRIC
NEAREST NEIGHBOR DIST
ANGES WITHIN PREFIXED TOLERANCE
FROM GIVEN SPHERES.

!

CHECK ALL THE
SPHERES ?

CHOOSE THE NEAREST
DISTANCE FOR EACH
SPHERE

v

SORT THOSE
DISTANCES IN
ORDER

v

NORMALIZED THE
DISTANCES (DEVIDE
BY DIAMETER OF A
SPHERE)

!
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APPENDIX B :

B.1 Monte Carlo Simulation Code

C N TN T W N U A AE e e T 0N A WA TN A N NN N AN e
C #» *
C * MONTE CARLO SIMULATION OF SETTLING OF SPHERES *
C * AND SHAKING *
C * *
C 3N 3 N HE A NN N U NN A T 03 06 D0 N E N M 0 N I e NN
C

C Variable List

C

C beta I "temperature" parameter appearing in Boltzmann
C | distribution

C d | real-valued array of different diameters in
C | polydisperse systems

C delt | maximum allowable sphere displacement

c dens | density in (gms/cm**3)

C dia | array of sphere diameters

C dmax | diameter of largest sphere

C dmin { diameter of smallest sphere

C dpe | difference in the potential ENERGY between the
C | current and a previous configurations

C dsame | character variable: value is ’yes’ if all the
C | particles are the same and ’'no' 1if array of
C | diameters are to be read in

C diam | disc diameter when all spheres are the same size
C eps | tolerance used in conjunction with ebrat

C emean | mean value of the ENERCY over "mpl" values

C edev | standard deviation of ENERGY array over ‘"mpl"
C | values

C ebr | array of averaged ENERGY values; ebr(k) =
C | average of O e(1) through e(k)

C ebrp | previous value of ebr (at pass k-1)

C ebrat | ratio of current average ENERGY to previous
C ! average ENERGY

C g | 8.8 meters/(sec**2)

C height | height of parallelopiped (inches)

C iacept ! number of accepted moves performed to generate
C | one pass

C icycO | cycle at which restart begins

C icycle I cycle counter

C id | integer array of size "kn" whose value 1id(k)
C | represents the diameter dsort(k)

C ipaspr | pass print iteration counter

C iprint | print counter within each pass

C iterpr | integer designating the iteration number in a
C | specific pass at which a printout is desired

C iterg | integer specifying frequency at which ENERGY
C { value is output

c ix | parameter used by SETRAN

C length | length of the parallelopiped (inches)

C mass |

mass of the sphere in kllograms
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maxgen

maxpas
mode

mpl
n
nh

maxcyc
nbig

ns

nsize
nv

nw
passpr

pbc

pe
peo
poly

psintl

ra
restrt

xnew
X
ynew

Y
z

Znew
yjumpO

yJump
ymean
ydev

maximum number of trial to generate 1initial
positions

maximum number of complete passes

character variable passed inte GEOMCK which
designates the mode in which GEOMCK is to
operate (either ’generate’ or 'simulate’)

maxpas + 1

total number of spheres

number of layers (horizontal) of large spheres
generated for the initial configuration (if

the layer option is ’yes’).
maximum number of "shaking" cycles

number of large spheres to be located in close-
packed configuration on container bottom. This
initial configuration will be generated if

the variable ’'layer’ is input as ’*yes’.

interger array containing distribution of the
number of sphere sizes of dlameter array d; Note
that the sum of allthe entries of this array
must be n

number of diameters in polydisperse systems
number of columns of large spheres (vertical) to
be generated in the initial configuration (on
the container bottom) if the layer option is
read in as ’'yes’'.

number of spheres along z-axis.

integer designating the pass number at which to
print

character variable (yes,no) for implementation
of periodic boundary conditions or not (no =>
hard vertical walls)

potentlal ENERGY of the current configuration
potential ENERGY of the previous configuration
character variable (yes,no) designating
polydisperse system S

designates the pass number at which the progran
starts. It iIs nonzero only if the wvalue of
"restrt" is yes

sphere radius when all spheres are the same size
character variable: value is 'yes’ if a restart
is to be done and 'no’ if no restart required
trial x-coordinate of & particular spheres.
array containing x-coordinates of spheres.

trial y-coordinate of a partlcular spheres.
array containing y-coordinates of spheres.
array containing z-coordinates of spheres.
trial z-coordinate of a particular spheres.
value by which to displace y-coordinates of
spheres when simulating shaking of spheres.
1]

average of the y array
standard devliation the y array
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Qo000

AINSRT

ENERGY

GEOMCK

IINSRT

SEARCH

SHELL

SDEV

YBARF

Unit 8

Unit 7

Unit 12

Unit 31

Unit 386

Subroutines and Functions

This routine inserts the newly  generated
coordinate into position "isave" of a
real-valued array. (4 arguments)

This function computes the potential ENERGY of the
current configuration based on the height of each
sphere above the datum positon. (6 argument)
This routine searches the trial configuration for
geometric violations (forbidden overlap of
spheres). If there 1is a violation, a value of -1
is returned for "ler". (9 arguments)

This routine is ldentical to AINSRT except that it
works on integer-valued arrays.

This routine searches for the location in which to
insert the trial x~coordinate (xtemp) 1into the
existing x array.It returns this location as
isave, which 1is then |used by the other
routines. (4 arguments)

This routine does a shell sort of a
one-dimensional array into increasing order (2
arguments).

This routine returns the mean and standard
deviation of a sample (4 arguments).

This function computes the y coordinate of the
area centroid (3 arguments).

Input and output file unit numbers

File containing the output from the progranm. it
is opened as ’ [sxpd639.mc3d]Imc3d. out’

File containing the input data. It is opened as
"[sxp4B39. mc3d]me3d. dat", status = "old".

File containing the configuration number and
ENERGY for each pass. It is defined as
"[sxp46339. mc3d1mc3d. erg".

File containing the restart data. It is opened
as '[sxp4639. mc3dlmec3d.res’. '

File containing the configuration data to be
transferred to the DEC-20 system and then plotted
via DISPLA. It is opened as

’ [sxp4639. mc3dIme3d. plo’

PN PN NS NS 1D L N8 PN I N b Il T3 N0 Pt D Pt Pt N N8 o 0 P IS O I Pl I Pk P70 O ) It ot

Beginning o f MAIN Programnm

AN NI N Pl P Pk Pl It N oD 1 Il 7 Il P ) P o8 I B3 Pl I TN O NS N N 0 s

Implicit Real*8 (a~h, o-z)
Real*8 1lmax, mass

65



aaaaon

oNeNe!

aaoaoao

o0

Dimension x(2000), y(2000), z(2000), e(60010), mass(2000),
d(100), dia(2000), rad{2000), yt(50), ebr(5000)

Integer freq(300), 14(100), ns(100)

Common diam, dmin, ipass

Character * 3 restrt, dsame, poly, layer, pbc

Character * 8 mode

Character * 4 pour

Integer passpr, psintl, totpas

Integer temp(2000), trace(2000), origin(2000)

Integer temdim, select, ip, J, lor, upbd, 1lwbd, Jor, jtr

Open units 36, 8, 12 and 7
open{unit=36,file=’ [sxp4639.mc3dImc3d. plo’,status="new’)
open{unit=9, file=' [sxp4B39. mc3d]mec3d. out’, status="new' )

open(unit=7,file=' [sxp4639, mc3d]mc3d. dat’, status="014d")
open(unit=12,file=' [sxp4639. mc3d]lmec3d. erg’,status=’new’)

read(7,*) length, height, width, diam, dens, beta, delt
read(7,*) n, maxpas, maxgen, nsize

read(7,*) iterpr, passpr, iterg

read(7,*) eps

read (7,921} yjumpO

read(7,*) maxcyc

read(7,902) restrt

read (7,802) poly

read (7,802) pbc

Initialization of parameters, indices and file ocutputs

g = 9.8D0

ndim =n + 1
nl=n*(n-1) * 0.5
mpl = maxpas + 1

ra = diam * 0.5D0

epsl = 1.,0D0 - eps.

pl = 3.1415926536D0

icycle = 0

icycC = 0

yjump = 0.0D0
totpas = 0

mxcl = maxcyc + 1
mode = ’generate’

Generate the Random Number Seed (ix) using system clock

rns = SECNDS(0.0)
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500

oSNNS NGRS NORPNP]

5550

5560

pi * rns * 1.0D3
IDINT(rns)

rns
ix

if ((restrt .eq. 'YES').or.(restrt .eq. ’'yes’)) go to 110
read(7,920) pour

read(7,902) dsame

read(7,902) layer

if((dsame.eq.’'YES’ ).or. (dsame.eq.’yes’)) then

dmax = diam

dmin = diam

atem = 4.0D0/3.0D0 * pi * (ra*ra*ra) * ((2.54D+00)**3)
ams = atem * dens * 1.0D-03

do 500 ir =1, n
dia(ir) = diam
mass(ir) = ams

continue

close(unit=7)

go to 2

endif

This part of the code will generate an initial configuration
in which part of the contalner will contain "nbig" large
spheres. On top of this, there will be "n - nbig" smaller

spheres. (There will be 2 layers.)

IF ( ( layer .eq. 'YES’ )} .or. ( layer .eq. 'yes’ ) ) THEN

read(7,*) dbig, dsmall
read(7,*) nv, nh, nw

dmax = dbig
dmin = dsmall
nbig = nv ¥ nh * nw

do 5550 ir = 1, nbig
dia ( ir ) = dbig
cont inue
do 5560 ir = nbig + 1, n
dia ( ir ) = dsmall
continue

close ( unit =7 )

rbig 0.5D0 * dbig
rsmall = 0.5D0 * dsmall
do 5581 k=1, nw
do 5580 1 =1, nv
do 5570 j = 1, nh
iml=1-1
Jmi=J3 -1
kml=k-1
Kx = 1 + (jml * nv)+(kml*nv*nh)

on

x(kx) = rbig + dbig * Jml
y(kx) = rbig+dbig*iml
z(kx) = rbig + dbig *kml
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S570 continue
5580 continue
§581 continue
kdim = (nv * nh * nw) + 11
Imax length -~ rsmall
hmax = height - rsmall
wmax = width -~ rsmall
5530 xtemp = RAN ( ix ) * length
if (( xtemp .le. rsmall ).or.{ xtemp .ge. lmax )) go to 5590
ymin = nv * dbig
5582 ytemp = RAN ( {x ) * height + ymin
if (( ytemp .le. rsmall ).or.( ytemp .ge. hmax )) go to 55892
5593 ztemp = RAN(ix)*width
if (( ztemp.le.rsmall).or. (ztemp.ge.wmax)) go to 5593

call SEARCH ( xtemp, x, Kdim, isave )
call GEOMCK ( x, y,z, dia, xtemp, ytemp,ztemp, dbig, dsmall,
+ isave, Kdim, 0, mode, ler )

if ( ler .eq. 0 ) then
call AINSRT ( xtemp, x, Kdim, isave )
call AINSRT { ytemp, y, kdim, isave )
call AINSRT ( ztemp, z, Kdim, isave )
call AINSRT ( dsmall, dia, Kdim, isave )
icount = lcount + 1
kdim = kdim + 1
if ( icount .gt. maxgen ) go to 888
if { kdim .le. n ) then
go to 55390
else
xpid = pi * ((2.54D+00)**3) * dens * 1.0D-03
do 5594 i =1, n
mass(1)=4.0D0/3.0D0*xpid*((dia(i)*0.5D0)**3)
5594 cont inue
go to 377
endif
else
icount = icount + 1
if ( icount .gt. maxgen ) go to 888

go to 5580
end if
C
ENDIF
C
C [Either generate a polydisperse array or read in
C distribution from unit 7]
C
503 1IF (( poly .eq. 'NO’ ) .or. ( poly .eq. 'no’ )) THEN

read(7,*) n2
do 385 1 = 1, n2
read(7,*) x(1), y(i), z(1), dia(i)
395 continue
read(7,*) dmax, dmin
rmin = dmin * 0.5DC
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392

383

397

388

381

(o RoNe!]

rmax = dmax * 0.5D0

close(unit=7)

do 382 1 = n2+1, n
dia{i) = diam

continue

[generate the remainder of the spheres of diameter

‘diam’ ]
icount = 1
kdim = n2 + 1
xtemp = RAN(ix) * length

if((xtemp.le.ra) .or. (xtemp.ge.length-ra)) go to 393

ytemp = RAN(ix) * height

if((ytemp. le.ra).or. (ytemp. ge.height-ra)) go to 397
ztemp = RAN(ix) * width :
if((ztemp.le.ra) .or. (ztemp.ge.width-ra)) go to 398
Call SEARCH(xtemp,x,kdim, isave)

Call GEOMCK(x,y,z,dia,xtemp, ytemp, ztemp, dmax, diam, isave,
+ kdim, O, mode, ler)

if(ier .eq. 0) then
Call AINSRT(xtemp, x,kdim, isave)
Call AINSRT(ytemp,y,kdim, isave)
Call AINSRT(ztemp, z,Kdim, isave)
Call AINSRT(diam,dia,kdim, isave)
kdim = kdim + 1
icount = icount + 1
if (icount .gt. maxgen) go to 888
if(kdim .le. n) then
go to 383
else
xpid = pi * ((2.54D+00)**3) * dens * 1.0D-3
do 381 ia =1, n

tempa=4.0D0/3.0D0*xpid*((dia{ia)*0.5D0)**3)

mass(ia) = tempa
cont inue
go to 377
endif
else
icount = icount + 1
if (icount .gt. maxgen) go to 888
go to 393
endif
ELSE

[Generate polydisperse system of spheres]

Jend = O
jcount = 1
kdim = 1

read (7,*) dmax, dmin

DO 2000 K = 1, NSIZE
read (7, *) ns(k), d(k)
if ( d(k) .gt. dmax ) dmax
if ( d(k) .1t. dmin )} dmin
rad(k) = 0.5D0 * d(k)

d(k)
d(k)
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if (k .eq. 1 ) then

Jstrt = 1
else

Jstrt = jend + 1
endif

Jend = jend + ns(k)
do 551 J = jstrt, Jend
dia(Jj) = d(k)
551 continue
501 xtemp = RAN(ix) * length
if((xtemp. le.rad(k)).or.
+ (xtemp. ge. length-rad(k))) go to 501
502 ytemp = RAN(1x) * height
if((ytemp. le.rad(k)).or.
+ (ytemp. ge. height-rad(k))) go to 502
508 ztemp = RAN(ix) * width
if((ztemp.le.rad(k)).or.
+ (ztemp. ge.width-rad(k))) go to 506
if (kdim .eq. 1) then
isave = 1
go to 505
endif
Call SEARCH(xtemp, x, Kdim, isave)
505 Call GEOMCK(x,y,z,dia,xtemp, ytemp, ztemp, dmax, d(k), isave,
+ Kdim, O, mode, ier)
if (ier .eq. 0) then
Call AINSRT(xtemp, x, Kdim, isave)
call AINSRT(ytemp, y, kdim, isave)
Call AINSRT(ztemp, z, Kdim, isave)
Call AINSRT(d(k)}, dia, Kdim, isave)
Kdim = Kdim + 1
icount = icount + 1
if (icount .gt. maxgen) go to 888
if (Kdim .le. jend ) go to 501
else
icount = icount + 1
if (icount .gt. maxgen) go to 888
go to 501
‘ endif
2000 CONTINUE

xpid = pl * ((2.54D+00)**3)* dens * 1.0D-3

do 8555 k=1, n
tempa = 4.0D0/3.0D0 * xpid *((dia(k)*0.5D0)**3)
mass(k) = tempa

555 continue

close(unit=7)

go to 377

ENDIF

This section to generate n-spheres of diameter 'diam’

NOOO

psintl = 0O
x(1) = RAN(ix) * length
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if((x(1) .le. ra).or.(x(1) .ge. length-ra)lgo to 2
8 y(1) = RAN(ix) * height

if((y(1) .le. ra).or.(y(1) .ge. height-ra))go to 6
5 z(1) = RAN(ix)*width

if ((z(1).le.ra).or.(z(1).ge.width-ra)) go to 5

3 xnew = RAN(ix) * length
if{(xnew.le.ra) .or. (xnew .ge. length-ra))go to 3
7 ynew = RAN(ix) * height

if((ynew.le.ra) .or. (ynew .ge. helght-ral))go to 7
8 znew=RAN(1ix)*width

if ((znew.le.ra).or.{znew.ge.width-ra)) go to 8

isave = 1

if (x(1) .le. xnew) isave = 2

Call GEOMCK(x,y,z,dla, xnew, ynew, znew, dmax, diam, isave,

1 2,0, mode, ier)

if(ler .eq. -1) go to 3

Call AINSRT(xnew, x, 2, lsave)

call AINSRT(ynew, y, 2, isave)

Call AINSRT(znew, z, 2, isave)
35 icount = 1

Xdim = 3
96 xtemp = RAN(ix) * length

if((xtemp .le. ra).or.(xtemp .ge. length-ra))go to 86
g8 ytemp = RAN(ix} * height

if((ytemp .le. ra).or.(ytemp .ge. height-ra))go to 88
9g ztemp=RAN(ix) * width

if((ztemp. le.ra).or. (ztemp. ge. width-ra)) go to 99

Call SEARCH(xtemp, x, Kdim, isave)

Call GEOMCK(x,y,z,dia,xtemp, ytemp, ztemp, dmax, diam,

1 isave, Xdim, O, mode, ier)

if (ier .eq. 0) go to 81

lcount = icount + 1
if (icount .gt. maxgen ) go to 888
go to 96
g1 Call AINSRT(xtemp, x,Kdim, isave)

call AINSRT(ytemp,y,kdim, isave)

Call AINSRT(ztemp,z,Kdim, isave)

kdim = kdim + 1

icount = icount + 1

if { icount .gt. maxgen ) go to 888

if (kdim .le. n) then

go to 86

endif
C
377 peo = ENERGY(C, n, mass, g, y, 0.0D0)

e(1) = peo

if (kdim .gt. n) go to 885
C
C [The following statments will be executed if restrt = ’Yes’.
C File unit 31 contains the information from the previous
C run. ]
C
110 open(unit=31,file=’ [sxp4639. mc3dlmc3d.res’,status="o0ld’)
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57

00000000

120

C
C

do 57 ir=1, n
read(31,9801) x(ir), y(ir),z(ir)
read(31,9901) dia(ir), mass(ir)

cont inue

read (31,*) psintl, peo

read(31,*) icycO

read (31,*) dmax, dmin

read(31,%*) yjumpO

" read(31,919) pour

e(1) = peo
totpas = psintl
icycle = 1

yjump = yjumpO

if (yjump .ne. 0.0) pour = 'np
close(unit=31)

rewind(unit=31)

go to 885

»
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* Start of the Simulation *
6 HE e N B A A 3 e N6 I N A

Begin moving spheres and generating new configurations

if (icycle .le. maxcyc) then
ix=1ix + 2
go to 767

else
go to 9898

endif

=~ Lift assembly of spheres by amplitude "yjump" --

do 116 1 =1, n
y(i) = y(i) + yJjump
continue

peo = ENERGY(0, n, mass, g, y, 0.0DO)
e(l) = peo

mode = 'simulate’
ipass = O
ipaspr = O

iaccpt 0]

totpas totpas + 1

ipass = ipass + 1

if (ipass .eq. 20) then
Call SDEV(e, 20, ebrp, ebrdp)
ebr(1) = ebrp

"

endif
ipaspr = ipaspr + 1
iprint = 0

~-—-- Start of Random Selection Procedure —-——--
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temdim = n
do 3000 J =1, n
Temp ( J ) = J
Trace ( J ) = J
Origin ( J ) =J
3000 continue
15 if ( temdim .eq. 1 ) then
select = 1
ip=temp (1)
i = trace ( ip )
temdim = O
go to 70
else if ( temdim .eq. 0 ) then
go to 80
endif

4005 select = IFIX(temdim * RAN(ix))
if ( select .eq. 0 ) go to 4005

C
ip = temp ( select )
i = trace ( ip )
C
if ( select .1lt. temdim ) then
do 4000 J = select, temdim
temp ( J ) =temp ( jJ+ 1)
4000 continue
endif
C
temdim = temdim - 1
C

70 iprint = iprint + 1

xnew = x(i) + delt * (1.0D+00-2.0D+00*RAN(ix))
ynew = y(1) + delt * (1.0D+00-2.0D+00*RAN(ix))
znew = z(1) + delt * (1.0D+00-2.0D+00*RAN(ix))
if (ynew .le. dia(i)*0.5D+00) go to 15
if ((ynew .gt. dia(1i)*0.8D+00) .and.
1 (ynew .1t. height-dia(i)*0.5D+00)) then

go to 65

endif

L3222 2222322222222 2 2222 2 28 2

* Impose Hard Vertical Walls *
L3122 2222222222222 22222 XX

o NONONONS]

5 if ((pbc .eq. 'no’).or.(pbc .eq. 'No’).or.(pbc .eq. 'n0’)
+ .or.(pbc .eq. 'NO’)) then
if (((xnew .gt. dia(1)*0.5D0).and.
(xnew .1t. length-dia(i)*0.5D0)).and.
((znew .gt. dia(1)*0.5D0).and.
(znew .1t. width-dia(i)*0.5D0))) then
Call SEARCH(xnew, x, ndim, isave)
Call GEOMCK(x,y,z,dia, xnew, ynew, znew, dmax,diali),
+ isave,ndim, i, mode, ier)
if (ier .eq. -1) then

W N -
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go to 15
else
ge to B9
endif
else
go to 15
endif
endif
(2223222122222 2222323222332 2322220 22 Y ]

* Impose Periodic Boundary Conditions *
AN NN N NE

if (((xnew.gt.0.0) .and. (xnew .1lt. dia(i))).and.

1 (znew. ge.width+dia(1)*0.5D0}) then

znew=znew-width

call SEARCH(xnew, x, ndim, isave)

call GEOMCK(x,y,z,dia, xnew, ynew, znew, dmax,dia(i),
* isave,ndim, i, mode, ier)

if (ler.eq.-1) go to 15

xnewl=xnew+length

call SEARCH(xnewl, x,ndim, isavel)

call GEOMCK(x,y,z,dia, xnewl, ynew, znew, dmax, dia(i),
* isavel,ndim, i, mode, ier)

if (ier.eq.-1) go to 15

znewl=znew+width

call SEARCH{xnew, X, ndim, isave)

call GEOMCK(x,y,z,dia, xnew, ynew, znewl, dmax, dia(i),
* isave, ndim, i, mode, ier)

if (ier.eq.-1) go to 15

xnewl=xnew+length

znewl=znew+width

call SEARCH(xnewl, x,ndim, isavel)

call GEOMCK(x,y,z,dia, xnewl, ynew, znewl, dmax,dia(i),
* isavel,ndim, i, mode, ier)

if (ier.eq.-1) then

go to 15
else
go to 69
endif

else if (((xnew.gt.0.0).and.(xnew.1lt.dia(i))).and.
1 ((znew.gt.width).and. (znew. lt.width+dia(i)*0.5D0))) then
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y, z,dia, xnew, ynew, znew, dmax,dia(i),
* isave,ndim, i, mode, ier)
if (ier .eq. -1) go to 15
xnewl=xnew+length
call SEARCH(xnewl, x, ndim, isavel)
call GEOMCK(x,y, z, dia, xnewl, ynew, znew, dmax, dia(1i),
* isavel,ndim, i, mode, ier)
if (ier .eq. -1) go to 15
znewl=znew-width
call SEARCH(xnew, %, ndim, isave)
call GEOMCK(x,y, z,dla, xnew, ynew, znewl, dmax, dia(i),
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1

else if

else if

isave,ndim, i, mode, ier)
if (ier.eq.-1) go to 15
xnewl=xnew+length
znewl=znew-width
call SEARCH(xnewl, x, ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znewl, dmax, dia(i),
isavel,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
else
zZnew=znewl
go to 69
endif

(((xnew.gt.0.0).and. (xnew.1t.dia(i))}).and.
((znew.gt.width-dia(i)).and. (znew.1t.width))) then
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y, z,dia, xnew, ynew, znew, dmax, dia(i),
isave,ndim, i, mode, ier)
if (ier .eq. -1) go to 15
xnewl = xnew+length
call SEARCH(xnewi, x, ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znew, dmax,dia(i),
isavel,ndim, i, mode, ier)
if (ier .eq. -1) go to 15
znewl=znew-width
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y, z,dia, xnew, ynew, znewl, dmax, dia(i),
isave,ndim, i, mode, ier)
if (ier.eq.-1) go to 15
xnewl=xnew+length
znewl=znew-width
call SEARCH(xnewl,x,ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znewl, dmax,dia(i),
isavel,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
else
go to B9
endif

(((xnew.gt.0.0).and. (xnew. 1t.dia(i))).and.

((znew.ge.dia(l)).and. (znew. le.width-dia(i)))) then

call SEARCH(xnew, x, ndim, isave)

call GEOMCK(x,y,z,dla, xnew, ynew, znew, dmax, dia(i),
isave,ndim, i, mode, ier)

if (ier .eq. -1) go to 15

xnewl = xnew+length

call SEARCH(xnewl, x, ndim, isavel)

call GEOMCK(x,y,z,dia, xnewl, ynew, znew; dmax,dia(i),
isavel,ndim, i, mode, ier)

if (ier .eq. -1) then

go to 15
else
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go to 69

endif
else if (((xnew.gt.0.0) .and. (xnew.lt.diaf(i))).and.
1 ((znew.gt.0.0).and. (znew.1t.dia(1)))) then

call SEARCH(xnew, X, ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znew, dmax, dia(i),
* isave,ndim, i, mode, ier)
if (ier .eq. -1) go to 15
xnewl = length + xnew
call SEARCH(xnewl, x, ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znew, dmax, dia(i),
* isaveil,ndim, i,mode, ier)
if (ier .eq. -1} go to 15
znewl=znew+width
call SEARCH(xnew, x,ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znewl, dmax,dia(i),
* isave,ndim, i,mode, ier)
if (ier.eq.-1) go to 15
xnewl=xnew+length
znewl=znew+width
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znewl, dmax,dia(i),
* ' isavel,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
else
go to 68
endif

else if ({(xnew.gt.0.0).and. (xnew.1t.dia(i))).and.
1 {(znew.gt.-dia(1)*0.5D0). and. (znew. 1e.0.0))) then
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y,z,dia,xnew, ynew, znew, dmax, dia(i),
isave,ndim, i, mode, ier)
if (ier .eq. -1) go to 1B
znewl=znew+width
call SEARCH(xnew, %, ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znewl, dmax,dia(i),
* isave,ndim, i, mode, ier)
if (ier .eq. -1) go to 15
xnewl=xnew+length
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia,xnewl, ynew, znew, dmax, dia(i},
* isavel,ndim, i, mode, ier)
if (ier.eq.-1) go to 18
xnewl=xnew+length
znewl=znew+width
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znewl, dmax,dia(i),
* isavel,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
else
znew=znewl
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go to 69
endif
else if (((xnew.gt.0.0).and. (xnew.1t.dia(i))).and.
1 (znew. le.-dia(1)*0.5D0)) then
znew=znew+width
call SEARCH(xnew, %, ndim, isave)
call GEOMCK(x,y, z,dia,xnew, ynew, znew, dmax,dia(i),
* isave,ndim, i, mede, ier)
if (ier .eq. -1) go to 15
xnewl=xnew+length
call SEARCH(xnewl, x, ndim, isavel)
call GEOMCK(x,y, z,dia, xnewl, ynew, znew, dmax, dia(i),
* isavel, ndim, i, mode, ier)
if (ier.eq.~1) go to 15
znewl=znew-width
call SEARCH(xnew, %, ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znewl, dmax,dia(i),
+ isave,ndim, i, mode, ier)
if (ier.eq.-1) go to 18
Xnewl=xnew+length
znewl=znew-width
call SEARCH(xnewl, %, ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znewl, dmax, dia(i),
* . isavel,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 18
else
go to 68
endif

else if ({(xnew.gt.length-dia(i)).and. (xnew. le.length)).and.
1 (znew. ge.width+dia(1)*0.5D0)) then
znew=znew-width
call SEARCH{xnew, x, ndim, isave)
call GEOMCK(x,y, z,dia, xnew, ynew, znew, dmax, dia(i),
* isave, ndim, i, mode, ier)
if (ier .eq. -1) go to 15
xnewl=xnew-length
call SEARCH(xnewl, x, ndim, isavel)
call GEOMCK(x,y, z,dia, xnewl, ynew, znew, dmax, dia(i),
* isavel, ndim, i, mode, ier)
if (ier.eq.-1) go to 15
znewl=znew+width
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y,z,dlia, xnew, ynew, znewl, dmax,dia(i),
+ isave,ndim, i, mode, ier)
if (ier.eq.-1) go to 15
xnewl=xnew-length
znewl=znew+width
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znewl, dmax,dia(i),
* isavel,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
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else
go to 69
endif
else if (((xnew.gt.length-dia(i)).and. (xnew.le.length)).and.
1 ((znew. ge.width).and. (znew. 1t.width+dia(i)*0.5D0))) then
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znew, dmax, dia(i),
* isave, ndim, i, mode, ier)
if (ier .eq. -1) go to 15
znewl=znew-width
call SEARCH(xnew, x, ndim, 'isave)
call GEOMCK(x,y, z, dia, xnew, ynew, znewl, dmax,dia(i),
* isave,ndim, 1, mode, ier)
if (ier .eq. -1) go to 15
xnewl=xnew-length
call SEARCH(xnewl, x, ndim, isavel)
call GEOMCK(x,y, z,dia, xnewl, ynew, znew, dmax, dia(i),
* isavel,ndim, i, mode, ier)
if (ier.eq.-1) go to 15
xnewl=xnew-length
zZnewl=znew-width
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia,xnewl, ynew, znewl, dmax,dia(i),
* isavel,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
else
Znew=znewl
go to 69
endif

else if (((xnew.gt.length-dia(i)).and. (xnew.le.length)).and.
1 ((znew. gt.width-dia(1)).and. (znew. le. width))) then
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znew, dmax, dia(i),
* isave,ndim, i, mode, ier)
if (ier .eq. -1) go to 15
Xnewl = xnew-length
call SEARCH(xnewl, %, ndim, isavel)
call GEOMCK(x,y, z,dia, xnewl, ynew, znew, dmax, dia(i),
* isavel,ndim, i, mode, ier)
if (ier .eq. -1) go to 15
znewl=znew-width
call SEARCH(xnew,x,ndim, isave)
call GEOMCK(x,y, z,dia, xnew, ynew, znewl, dmax,dia(i),
* isave, ndim, i, mode, ier)
if (ier.eq.~1) go to 15
xnewl=xnew-length
znewl=znew-width
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znewl, dmax, dia(i),
* isavel,ndim, i, mode, ier)
if (ier.eq.~1) then
go to 15
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else
go to 69
endif

else if (((xnew.gt.length-dia(i)).and. (xnew. le.length)).and.
((znew.ge.dia(1)).and. (znew. le. width-dia(i)))) then

call SEARCH(xnew, x,ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znew, dmax, dia(1i),
isave,ndim, i, mode, ier)
if (ier.eq.-1) go to 15
xnewl = xnew - length
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znew, dmax,dia(i),
isavel, ndim, i, mode, ier)
if (ifer.eq.-1) then
go to 15
else
go to 69
endif

else if (((xnew.gt.length-dia(l)).and. (xnew.le.length)).and.

((znew.gt.0.0).and. (znew.1t.dia{1)))) then
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y, z,dia, xnew, ynew, znew, dmax,dia(i},
isave,ndim, i, mode, ier)
if (ier .eq. ~1) go to 15
xnewl = xnew-length
call SEARCH(xnewl, x, ndim, isavel)
call GEOMCK(x,y,z,dla, xnewl, ynew, znew, dmax, dia(i),
isavel,ndinm, i, mode, ier)
if (ier .eq. ~1) go to 15
znewl=znew+width
call SEARCH(xnew, x,ndim, isave)
call GEOMCK(x,y,z,dia,xnew, ynew, znewl, dmax,dia(i),
isave,ndim, i,mode, ier)
if (ler.eq.-1) go to 15
xnewl=xnew-length
znewl=znew+width
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znewl, dmax, dia(1),
isavel,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
else
go to 69
endif

else if (((xnew.gt.length-dia(i)).and. (xnew. le.length)).and.

((znew.gt.~dia(1i)*0.5D0).and. (znew.1e.0.0))) then
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y, z,dia, xnew, ynew, znew, dmax, dia(i),
isave,ndim, i, mode, ier)
if (ier .eq. -1) go to 15
znewl=znew+width
call SEARCH(xnew, x, ndim, isave)
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else if

else if

call GEOMCK(x,y,z,dia, xnew, ynew, znewl, dmax, dia(i),
isave, ndim, i, mode, ier)
if (ier .eq. ~-1) go to 15
xnewl=xnew-length
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y, z,dia, xnewl, ynew, znew, dmax,dia(i),
isavel, ndim, i, mode, ier)
if (ier.eq.-1) go to 15
xnewl=xnew-length
znewl=znew+width
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia, xnevwl, ynew, znewl, dmax, dia(i)},
isavel,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
else
znew=znewl
go to B9
endif

(((xnew.gt. length-dia(i)).and. (xnew. le. length)).and.
(znew. le. -dia(i)*0.5D0)) then
znew=znew+width
call SEARCH(xnew, %, ndim, isave)
call GEOMCK(x,y, z,dia, xnew, ynew, znew, dmax, dia(i),
isave,ndim, 1, mode, ier)
if (ier .eq. -1) go to 15
xnewl=xnew-length
call SEARCH(xnewl, x, ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znew, dmax,dia(l),
isavel,ndim, i, mode, ier)
if (ier.eq.-1) go to 15
znewl=znew-width
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znewl, dmax, dia(i),
isave,ndim, i, mode, ier)
if {(ier.eq.-1) go to 15
xnewl=xnew-length
znewl=znew-width
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znewl, dmax, dia(i),
isavel,ndim, i, mode, ier)
if (jer.eq.~1) then
go to 15
else
go to 69
endif

(((xnew. gt.-dia(1)*0.5D0).and. (xnew.1le.0.0)).and.
(znew. ge. width+dia(1)*0.5D0)) then

znew=znew-width

Xnew=xnew+length

call SEARCH(xnew, x, ndim, isave)

call GEOMCK(x,y, z,dia, xnew, ynew, znew, dmax,dia(i),
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* isave,ndim, i, mode, ier)

if (ier.eq.-1) go to 15

xnewl=xnew-length

call SEARCH(xnewl, %x,ndim, isavel)

call GEOMCK(x,y,z,dlia, xnewl, ynew, znew, dmax, dia(i),
* isavel,ndim, i, mode, ier)

if (ier.eq.-1) go to 15

znewl=znew+width

call SEARCH(xnew, x,ndim, isave)

call GEOMCK(x,y,z, dla, xnew, ynew, znewl, dmax, dia(i),
* isave,ndim, i, mode, ier)

if (ier.eq.-1) go to 15

xnewl=xnew-length

znewl=znew-width

call SEARCH(xnew1, x,ndim, isavel)

call GEOMCK(x,y,z,dia, xnewl, ynew, znewl, dmax,dia(i),
* isavel,ndim, i, mode, ier)

if (ier.eq.-1) then

go to 15
else
go to 89
endif

else if (((xnew.gt.-dia(i)*0.5D0).and. (xnew.le.0.0)).and.
1 ((znew. gt.width).and. (znew. 1t. width+dia(i)*0.5D0))) then
call SEARCH(xnew, x, ndim, isave)
v call GEOMCK(x,y,z, dia, xnew, ynew, znew, dmax, dia(i),
+ isave,ndim, i, mode, ier)
if (ier .eq. -1) go to 15
znewl=znew-width
xnewl=xnew+length
call SEARCH{xnewl, x,ndim, isavel)
call GEOMCK(x,y, z,dia, xnewl, ynew, znewl, dmax, dia(i),
+ isavel,ndim, i, mode, ier)
if(ier.eq.-1) go to 15
xnewl=xnew+length
call SEARCH(xnewl, x, ndim, isavel)
call GEOMCK(x,y, z,dia, xnewl, ynew, znew, dmax, dia(i),
+ isavel, ndim, i, mode, ier)
if (ier.eq.-1) go to 15
znewl=znew-width
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y,z, dia, xnew, ynew, znewl, dmax, dia(i),
* isave,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
else
znew=znewl
xnew=xnewl
isave=isavel
go to B9
endif

else if (((xnew.gt.-dia(1)*0.5D0).and. (xnew.le.0.0)).and.
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((znew. gt.width~-dia(i)).and. (znew. le.width))) then
call SEARCH(xnew, x, ndim, 1save)
call GEOMCK(x,y,z,dia, xnew, ynew, znew, dmax, dia(i},
+ isave,ndim, i, mode, ier)
if (ier .eq. -1) go to 15
xnewl=xnew+length
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dla, xnewl, ynew, znew, dmax,dia(i),
+ isavel,ndim, i, mode, ier)
if (ler.eq.-1) go to 15
znewl=znew-width
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y, z,dia, xnew, ynew, znewl, dmax,dia(i),
+ isave,ndim, i, mode, ier)
if (ier.eq.-1) go to 15
xnewl=xnew+length
znewl=znew-width
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia,xnewl, ynew, znewl, dmax, dia(i),
* isavel, ndim, i, mode, ier)
if (ier.eq.-1) then
go to 1B
else
xnew=xnewl
isave=isavel
go to 69
endif

else if (((xnew.gt.-dia(1)*0.5D0).and. (xnew.le.0.0)).and.
1 ((znew.ge.dia(i)).and. (znew. le.width-dia(i)))) then

call SEARCH(xnew, x,ndim, isave)

call GEOMCK(x,y, z,dia, xnew, ynew, znew, dmax, dia(i),
* isave,ndim, i, mode, ier)

if (ier.eq.-1) go to 15

Xxnewl = xnew + length

call SEARCH(xnewl,x,ndim, isavel)

call GEOMCK(x,y, z,dia, xnewl, ynew, znew, dmax,dia(i},

* isavel,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
else

Xnew = xnewl
isave = isavel
go to B9

endif

else if (({xnew.gt.-dia(i)*0.5D0) .and. (xnew .le. 0.0)).and.
1 ({znew.gt.0.0).and. (znew. 1t.dia(i)))) then

call SEARCH(xnew, x, ndim, isave)

call GEOMCK(x,y, z,dia, xnew, ynew, znew, dmax,dia(i),
* isave,ndim, i, mode, ier)

if (ier .eq. -1) go to 15

xnewl=xnew+length

call SEARCH(xnewl, x,ndim, isavel)
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call GEOMCK{x,y, z,dla, xnewl, ynew, znew, dmax,dia(i)},
» isavel,ndim, 1,mode, ier)
if (ier.eq.-1) go to 15
znewl=znew+width
call SEARCH(xnew, X, ndim, isave)
call GEOMCK(x,y, z,dia, xnew, ynew, znewl, dmax, dia(i),
+ isave, ndim, i, mode, ier)
if (ier.eq.-1) go to 15
znewl=znew+width
xnewl=xnew+length
call SEARCH(xnewl, X, ndinm, isavel)
call GEOMCK(x,y,z,dla, xnewl, ynew, znewl, dmax,dia(i},
* isavel,ndim, i, mode, ier)
if (ier.eq.=-1) then
go to 15
else
xnew=xnewl
isave=isavel
go to 69
endif

else if (((xnew.gt.~dia(i)*0.5D0).and. (xnew.le.0,0)).and.
1 ((znew.gt.-dia(1)*0.5D0).and. (znew.1le.0.0))) then
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y,z,dla, xnew, ynew, znew, dmax, dia(i},
+ isave,ndim, 1, mode, ier)
if (ier .eq. ~1) go to 15
xXnewl=xnew+length
znewl=znew+width
call SEARCH(xnewl, x, ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znewl, dmax, dia(i),
+ isavel,ndim, i, mode, ier)
if (ier.eq.-1) go to 1B
xnewl=xnew+length
call SEARCH(xnewl, %, ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znew, dmax, dia(i},
+ isavel, ndim, 1, mode, ier)
if (ier.eq.~1) go to 15
znewl=znew+width
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y,z, dia, xnew, ynew, znewl, dmax, dia(i),
* isave,ndim, i, mode, ier)
if (ler.eq.-1) then
go to 15
else
xnew=xnewl
zZnew=znewl
isave=isavel
go to 68
endif

else if (({xnew.gt.-dia(1)*0.5D0).and. (xnew.le.0.0)).and.
1 {znew. le. ~dia(1)*0.5D0)) then
znew=znew+width



else

xnew=xnew+length

call SEARCH(xnew, x,ndim, isave)

call GEOMCX(x,y,z,dia, xnew, ynew, znew, dmax,dia(i),

isave, ndim, i, mode, ier)

if (ier.eq.-1) go to 15

xnewl=xnew-length

call SEARCH(xnewl, x,ndim, isavel)

call GEOMCK(x,y,z,dia,xnewl, ynew, znew, dmax,dia(i),
isavel,ndim, i, mode, ier)

if (ler.eq.-1) go to 15

znewl=znew-width

call SEARCH(xnew, X,ndim, isave)

call GEOMCK(x,y.z,dla, xnew, ynew, znewl, dmax, dia(i),
isave,ndim, i, mode, ier)

if (ier.eq.-1) go to 15

xnewl=xnew-length

znewl=znew-width

call SEARCH({xnewl, x,ndim, isavel)

call GEOMCK(x,y, z,dia, xnewl, ynew, znewl, dmax,dia(i),
isavel,ndim, i, mode, ier)

if (ier.eq.-1) then

go to 15
else
go to 69
endif

if ({(xnew.gt.length).and. (xnew.1t.length+dia(i)*0.5D0)).and.

1

(znew. ge.width+dia(i)*0.5D0)) then
zZznew=znew-width
xnew=xnew-length
call SEARCH{xnew, x, ndim, isave)
call GEOMCK(x,y, z,dla, xnew, ynew, znew, dmax,dia(i},
isave,ndim, i, mode, ier)
if (ier.eq.-1) go to 15
xnewl=xnew+length
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia,xnewl, ynew, znew,dmax,dia(i),
isavel, ndim, i, mode, ier)
if (ier.eq.-1) go to 15
znewl=znew+width
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znewl, dmax, dia(i),
isave,ndinm, i, mode, ier)
if (ier.eq.-1) go to 15
xnewl=xnew+length
znewl=znew+width
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dla, xnewl, ynew, znewl, dmax,dia(i),
isavel,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 1B
else
go to B9
endif
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C
else

else

if (((xnew.gt.length).and. (xnew.1t.length+dia(1i)*0.5D0)).and.
1 ((znew.gt.width).and. (znew. lt.width+dia(i)*0.5D0))) then
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y,z,dla, xnew, ynew, znew, dmax, dia(i),
+ isave,ndim, i, mode, ier)
if (ler .eq. -1) go to 15
xnewl=xnew-length
znewl=znew-width
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dla, xnewl, ynew, znewl, dmax,dia(i),
+ isavel,ndim, i, mode, ier)
if(ier.eq.-1) go to 15
xnewl=xnew-length
call SEARCH(xnewl, x, ndim, isavel)
call GEOMCK(x,y, z,dia, xnewl, ynew, znew, dmax, dia(i),
+ isavel, ndim, i, mode, ier)
if (ier.eq.~1) go to 15
znewl=znew-width
call SEARCH(xnew, ¥,ndim, isave)
call GEOMCK(x,y,z,dla, xnew, ynew, znewl, dmax, dia(i),
* isave,ndim, i, mode, ier)
if (ier.eq.~1) then
go to 15
else
xnew=xnewl
znew=znewl
isave=isavel
go to 68
endif

if (((xnew.gt.length).and. (xnew. 1t.length+dia(i)*0.5D0)). and.
1 ((znew. gt.width-dia(i)).and. (znew. le.width))) then
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znew, dmax, dia(i),
+ isave,ndim, i, mode, ier)
if (ier .eq. ~1) go to 15
xnewl=xnew-length
call SEARCH{xnewl,x,ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znew, dmax, dia(i),
+ isavel,ndim, i, mode, ier)
if (ier.eq.-1) go to 15
znewl=znew-width
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znewl, dmax,dia(l),
+ isave, ndim, i, mode, ier)
if (ier.eq.-1) go to 15
xnewl=xnew-length
znewl=znew-width
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znewl, dmax,dia(1),
* isavel,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
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C

else
Xnew=xnewl
isave=isavel
go to 69
endif

else if (((xnew.gt.length).and. (xnew.1t.length+dia(i)*0.5D0)).and.

1
»*
*
C
else if
1
2
+
+
+
*
C

((znew.ge.dia(i)).and. (znew. le. width-dia(i}))) then
call SEARCH(xnew,x,ndim, isave)
call GEOMCK(x,y,z,dla, xnew, ynew, znew, dmax, dia(i),
isave,ndim, i, mode, ier)
if (ier.eq.-1) go to 15
xnewl = xnew - length
call SEARCH(xnewl, x, ndim, isavel)
call GEOMCK(x,y, z,dia,xnewl, ynew, znew, dmax, dia(i),
isavel,ndim, i, mode, ier)
if (ier.eq.~1) then
go to 15
else
xnew=xnewl
isave=isavel
go to B9
endif

(((xnew.gt.length).and.
(xnew. 1t. length+dia(1i)*0.5D0)).and.
((znew.gt.0.0).and. (znew.1t.dia(i)))) then
call SEARCH(xnew, %, ndim, isave)
call GEOMCK(x,y, z,dia, xnew, ynew, znew, dmax, diaf{i),
isave,ndim, i, mode, ier)
if (ier .eq. =1} go to 15
xnewl=xnew-length
call SEARCH(xnewl,x,ndim, isavel)
call GEOMCK(x,y, z,dia, xnewl, ynew, znew, dmax, dia(i),
isavel,ndim, i,mode, ier)
if (ier.eq.-1) go to 15
znewl=znew+width
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x, y, z,dia, xnew, ynew, znewl, dmax,dia(i),
isave, ndim, i, mode, ier)
if (ier.eq.-1) go to 15
xnewl=xnew-length
znewl=znew+width
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y, z,dlia, xnewl, ynew, znewl, dmax, dia(i),
isavel,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
else
Xnew=xnewl
isave=isavel
go to 69
endif
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else if (((xnew.gt.length).and. (xnew.1lt.length+dia(i)*0.5D0)}).and.

else

1

{(znew.gt.-di=a(1)*0.5D0). and. (znew. 1e.0.0))) then
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y, z,dla, xnew, ynew, znew, dmax,dia(i),
isave,ndim, i, mode, ier)
if (ier .eq. -1) go to 15
znewl=znew+width
xnewl=xnew-length
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y, z,dia, xnewl, ynew, znewl, dmax,dia(i),
isavel,ndim, i, mode, ier}
if (ler .eq. ~1) go to 15
xnewl=xnew-length
call SEARCH(xnewl, %, ndim, isavel)
call GEOMCK(x,y, z,dla, xnewl, ynew, znew, dmax,dia(i),
isavel, ndim, 1, mode, ler)
if (ier.eq.-1) go to 18
znewl=znew+width
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y, z,dla, xnew, ynew, znewl, dmax,dia(i),
isave,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
else
xXnew=xnewl
znew=znewl
isave=isavel
go to 69
endif

if (((xnew.gt.length).and. (xnew.1t.length+dia(i)*0.5D0)).and.

1

(znew. le.-dia(i)*0.5D0)) then
xnew=xnew-length
znew=znew+width
call SEARCH(xnew, x,ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znew, dmax,dial(i),
isave, ndim, i, mode, ier)
if (ier.eq.-1) go to 15
xnewi=xnew+length
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK{x,y, z,dia, xnewl, ynew, znew, dmax,dia(i),
isavel, ndim, i, mode, ier)
if (ier.eq.-1) go to 15
znewl=znew-width
call SEARCH(xnew, x,ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znewl, dmax, dia(i),
isave,ndim, i, mode, ier)
if (ier.eq.-1) go to 15
xnewl=xnew+length
znewl=znew-width
call SEARCH(xnewi, %, ndim, isave1)
call GEOMCK(x,y,z,dia, xnewl, ynew, znewl, dmax, dia(i),
isavel,ndim, i, mode, ier)
if (ier.eq.-1) then
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go to 15
else

go to BS
endif

else if ((xnew.le.-dia(1i)*0.5D0).and.
1 (znew. ge.width+dia(1)*0.5D0)) then

xnew=xnew+length

znew=znew-width

call SEARCH(xnew, x,ndim, isave)

call GEOMCK(xX,y,z,dia,xnew, ynew, znew, dmax,dia(1),
* isave,ndim, i, mode, ier)

if (ier.eq.-1) go to 15

xnewl=xnew-length

call SEARCH(xnew1,Xx, ndim, isavel)

call GEOMCK(x,y,z,dia,xnewl, ynew, znew, dmax,dia(i),
* isavel, ndim, i, mode, ier)

if (ier.eq.-1) go to 15

znewl=znew+width

call SEARCH(xnew, x,ndim, isave)

call GEOMCK(x,y,z,dla, xnew, ynew, znewl, dmax, dia(i),
* isave, ndim, i, mode, ier)

if (ier.eq.-1) go to 15

xnewl=xnew-length

znewl=znew+width

call SEARCH(xnewl,x,ndim, isavel)

call GEOMCK(X,y,z,dia,xnewl, ynew, znewl, dmax,dia(i),
* isavel,ndim, i, mode, ier)

if (ier.eq.-1) then

go to 18
else
go to 68
endif

else if ((xnew.le.-dia(i)*0.5D0).and.
1 {((znew.gt.width).and. (znew. 1t.width+dia(i)*0.5D0))) then
xnew=xnew+length
znew=znew-width
call SEARCH(xnew,¥,ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znew, dmax,dia(i),
* isave,ndim, i, mode, ier)
if (ler.eq.-1) go to 15
xnewl=xnew-length
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znew, dmax,dia(i),
+ isavel,ndim, 1, mode, ier)
if (ier.eq.-1) go to 15
znewl=znew+width
call SEARCH(xnew, x,ndim, isave)
call GEOMCK(x,y, z,dia, xnew, ynew, znewl, dmax, dia(i),
* isave,ndim, i, mode, ier)
if (ier.eq.-1) go to 15
xnewl=xnew-length
znewl=znew+width
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call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia,xnewl, ynew, znewl, dmax,dia(i),
* isavel,ndim, i, mode, ier)
if (ier.eq.~1) then
go to 15
else
go to 68
endif

else if ((xnew.le.-dia(1)*0.5D0).and.
1 {(znew. gt . width-dia(i)).and. (znew. le.width))) then

xnew=xnew+length

call SEARCH(xnew, x, ndim, isave)

call GEOMCK(x,y,z,dlia, xnew, ynew, znew, dmax, dia(1i),
+ isave,ndinm, i, mode, ier)

if (ier .eq. ~1) go to 18

xnewl=xnew~-length

call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znew, dmax, dia(i),
+ isavel,ndim, i, mode, ier)
if (ier.eq.-1) go to 15

znewl=znew-width

call SEARCH(xnew, x,ndim, isave)

call GEOMCK(x,y,z,dia, xnew, ynew, znewl,dmax,dia(i),
* » isave, ndim, i, mode, ier)

if (ier.eq.-1) go to 15

xnewl=xnew-length
znewl=znew-width
call SEARCH(xnewl, x,ndim, isavel)

call GEOMCK(x,y,z,dla, xnewl, ynew, znewil, dmax, dia(i),
* isavel,ndim, i, mode, ier)

if (ier.eq.-1) then

go to 15
else
go to B8
endif

else if ((xnew.le.-dia(1)*0.5D0).and. ({znew.ge.dia(i)).and.
1 (znew. le.width-dia(i)))) then
xnew = xnew + length
call SEARCH(xnew,x,ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znew, dmax, dia(i),
* isave, ndim, i, mode, ier)
if (ier.eq.-1) go to 15
xnewl=xnew-length
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dla, xnewl, ynew, znew, dmax, dia(i),
* isavel,ndim, i, mode, ier)
if (ler.eq.-1) then
go to 15
else
go to 68
endif
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else if
1

else if

((%xnew.le.-dia(1)*0.5D0). and.
((znew.gt.0.0).and. (znew. 1t.dia(i1)))) then
xnew=xnew+length
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y,z,dia,xnew, ynew, znew, dmax, dia(i),
isave,ndim, i, mode, ier)
if (ier.eq.~1) go to 15
xnewl=xnew-length
call SEARCH({xnewl, x,ndinm, isavel)
call GEOMCK(x,y, z,dia, xnewl, ynew, znew, dmax,dia(i},
isavel,ndim, 1, mode, ier)
if (ler.eq.-1) go to 15
znewl=znew+width
call SEARCH(xnew, X, ndim, isave)
call GEOMCK(x,y, z,dla, xnew, ynew, znewl, dmax,dia(i},
isave, ndim, i, mode, ier)
if (ler.eq.-1) go to 1B
xnewl=xnew-length
znewl=znew+width
call SEARCH{xnewl,x,ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znewl, dmax, dia(i),
isavel,ndim, i, mode, ier)
if (ier.eq.-~1) then
go to 15
else
go to 69
endif

{({xnew. le. -dia(1)*0.5D0).and.
((znew.gt.-dia(1)*0.5D0).and. (znew.le.0.0))) then
xnew=xnew+length
znew=znew+width
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y, z,dia, xnew, ynew, znew, dmax, dia(i),
isave,ndim, i, mode, ier)
if (ier.eq.~1) go to 1B
xnewl=xnew-length
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znew, dmax,dia(i),
isavel,ndim, i, mode, ier)
if (ier.eq.~1) go to 15
znewl=znew-width
call SEARCH({xnew,x,ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znewl, dmax,dia(i),
isave,ndim, i, mode, ier)
if (ler.eq.-1) go to 15
xnewl=xnew-length
znewl=znew-width
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y, z,dla, xnewl, ynew, znewl, dmax, dia(i),
isavel,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
else
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else if

else if
1

go to 69
endif

((xnew. le.-dia({1)*0.5D0). and.
(znew.le.-dia(1)*0.5D0)) then

xnew=xnew+length

znew=znew+width

call SEARCH(xnew, X, ndim, isave)

call GEOMCK(x,y,z,dia, xnew, ynew, znew, dmax, dia(i),
isave,ndim, i, mode, ier)

if (ier.eq.-1) go to 15

xnewl=xnew-length

call SEARCH(xnewl, x,ndim, isavel)

call GEOMCK(x,y,z,dia, xnewl, ynew, znew, dmax dia(i),
isavel,ndinm, i, mode, ier)

if (ier.eq.~1) go to 15

znewl=znew-width

call SEARCH{xnew, x,ndim, isave)

call GEOMCK(x,y,z,dla, xnew, ynew, znewl, dmax, dia(i},

isave,ndim, i, mode, ier)

if {(ier.eq.-1) go to 1B

xXnewl=xnew~length

znewl=znew-width

call SEARCH(xnewl,x,ndim, isavel)

call GEOMCK(x,y,z,dia,xnewl, ynew, znewl, dmax, dia(i),

isavel, ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
else
go to 69
endif

((xnew. ge. length+dia(i)*0.5D0). and.
{znew. ge. width+dia(i)*0.5D0)) then

xnew=xnew-length

znew=znew-width

call SEARCH(xnew, X, ndim, isave)

call GEOMCK(x,y, z,dia, xnew, ynew, znew, dmax, dia(i),

. isave,ndim, i, mode, ier)

if (ier.eq.-1) go to 15

xnewl=xnew+length

call SEARCH(xnewl, x,ndim, isavel)

call GEOMCK(x,y, z,dia, xnewl, ynew, znew, dmax, dia(i),
isavel,ndim, i, mode, ier)

if (ier.eq.-1) go to 15

znewl=znew+width

call SEARCH(xnew,x, ndim, isave)

call GEOMCK(x,y,z,dia, xnew, ynew, znewl, dmax, dia(i),
isave, ndim, i, mode, ier)

xnewl=xnew+length

znewl=znew+width

call SEARCH(xnewl, x,ndim, isavel)

call GEOMCK(x,y,z,dia, xnewl, ynew, znewl, dmax, dia(i),

isavel, ndim, i, mode, ier)
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if (ier.eq.~1) then
go to 15

else
go to 69

endif

else if ((xnew.ge.length+dia(i)*0.5D0).and.
((znew. gt.width).and. (znew. 1t.width+dia(1i)*0.5D0))) then

1

else

if

xnew=xnew-length
znew=znew-width
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y,z,dla, xnew, ynew, znew, dmax, dia(i},
isave, ndim, i, mode, ier)
if (ier.eq.-1) go to 15
xnewl=xnew+length
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znew, dmax, dia(i),
isavel,ndim, i, mode, ier)
if (ier.eq.-1) go to 15
znewl=znew+width
call SEARCH(xnew, x,ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znewl, dmax,dia(i),
isave,ndim, i, mode, ier)
if (ier.eq.~1) go to 15
xnewl=xnew+length
znewl=znew+width
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y, z,dia, xnewl, ynew, znewl, dmax,dia(i),
isavel,ndim, i, mode, ler)
if (ier.eq.-1) then
go to 15
else
go to 69
endif

((xnew. ge. length+dia(1i)*0.5D0). and.
({znew.gt.width-dia(i)).and. (znew. 1t.width}))} then
xXnew=xnew-length
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znew, dmax,dia(i),
isave,ndim, i, mode, ier)
if (ier.eq.-1) go to 15
xnewl=xnew+length
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znew, dmax,dia(i},
isavel, ndim, i, mode, ier)
if (ier.eq.~-1) go to 15
znewl=znew-width
call SEARCH(xnew, x,ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znewl, dmax, dia(i),
isave,ndim, i, mode, ier)
if (ier.eq.~-1) go to 15
xnewl=xnew+length
znewl=znew~-width

92



1

else if

else if

call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia, xnewl, ynew, znewl, dmax, dia(i),
isavel,ndim, i, mode, ier)
if (ier.eq.-~1) then
go to 15
else
go to 869
endif

((xnew.ge. length+dia(1)*0.5D0).and. ((znew. ge.dia(i))
.and. (znew. le.width-dia(i)))) then
xnew = xnew - length
call SEARCH(xnew,x,ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znew, dmax,dia(i),
isave,ndim, i, mode, fer)
if (ler.eq.-1) go to 15
xnewl=xnew+length
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dla, xnewl, ynew, znew, dmax,dia(i)},
isavel, ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15.
else
go to B8
endif

({xnew.ge.length+dia(1)}*0.5D0).and.
((znew.gt.0.0).and. (znew. 1t.dia(1)))) then
xnew=xnew-length
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y, z,dia, xnew, ynew, znew, dmax,dia(i),
isave,ndim, i, mode, ier)
if (ier.eq.-1) go to 15
xnewl=xnew+length
call SEARCH(xnewl, x, ndim, isavel)
call GEOMCK(x,y,z,dla, xnewl, ynew, znew, dmax,dia(i),
isavel,ndim, i, mode, ier)
if (ier.eq.~-1) go to 15
znewl=znew+wldth
call SEARCH({xnew, x,ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znewl, dmax,dia(i),
isave,ndim, i, mode, ier)
if (ier.eq.-1) go to 15
xnewl=xnew+length
znewl=znew+width
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y,z,dia,xnewl, ynew, znewl, dmax,dia(i),
isavel, ndim, i, mode, ier)
if (ler.eq.-1) then
go to 15
else
go to 69
endif
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else if
1

else if
+

({xnew. ge. length+dia(i)*0.5D0).and.
((znew.gt.~d1a(1)*0.5D0).and. (znew.1e.0.0))) then
xnew=xnew-length
znew=znew+width
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y, z,dia, xnew, ynew, znew, dmax,dia(i),
isave, ndim, i, mode, ier)
if (ier.eq.-1) go to 1B
xnewl=xnew+length
call SEARCH(xnewl,x,ndim, isavel)
call GEOMCK(x,y,z,dia,xnewl, ynew, znew, dmax, dia(i),
isavel,ndim, i, mode, ier)
if (ier.eq.-1) go to 15
znewl=znew-width
call SEARCH(xnew, x,ndim, isave)
call GEOMCK(xX,y,z,dia, xnew, ynew, znewl, dmax,dia(i),
isave,ndim, i, mode, ier)
if (ler.eqg.-1) go to 15
xnewl=xnew+length
znewl=znew-width
call SEARCH(xnewl, x,ndim, isavel)
call GEOMCK(x,y, z,dia,xnewl, ynew, znewl, dmax,dia(i),
isavel, ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
else
go to 69
endif

((xnew. ge. length+dia(i)*0.5D0).and.
(znew.le.-dia(1)*0.5D0)) then

xnew=xnew-length

znew=znew+width

call SEARCH(xnew, x, ndim, isave)

call GEOMCK(x,y, z,dia, xnew, ynew, znew, dmax, dia(i),
isave,ndim, i, mode, ier)

if (ier.eq.~1) go to 185

xnewl=xnew+length

call SEARCH(xnewl,x,ndim, isavel)

call GEOMCK(x,y, z,dia, xnewl, ynew, znew, dmax, dia(i),
isavel, ndim, i, mode, ier)

if (ier.eq.-1) go to 15

znewl=znew-width

call SEARCH(xnew, x,ndim, isave)

call GEOMCK(x,y,z,dla, xnew, ynew, znewl, dmax, dia(i),
isave,ndim, i, mode, ier)

if (ier.eq.-1) go to 15

xnewl=xnew+length

Znewl=znew-width

call SEARCH(xnewl, x,ndim, isavel)

call GEOMCK(x,y, z,dia, xnewl, ynew, znewl, dmax, dia(i),

isavel,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
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»*

1

1

else if

else if

else
go to B9
endif

(((xnew.ge.dia(i)).and. (xnew. le. length-dia(i)))
,and. (znew. ge. width+dia(1i)*0.5D0)}) then
znew=znew-width
call SEARCH(xnew, x,ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znew, dmax, dia(i),
isave,ndim, i, mode, ier)
if (ier.eq.-1) go to 1B
znewl=znew+width
call SEARCH{xnew, x,ndim, isave)
call GEOMCK(x,y,z,dla, xnew, ynew, znewl, dmax,dia(i),
isave, ndim, i, mode, ler)
if (ier.eq.-1) then
go to 18
else
go to B9
endif

(((xnew. ge.dia(1)).and. (xnew. le. length-dia(i))).and.

((znew. gt.width).and. (znew. 1t.width+dia(i)*0.5D0))) then

else if

call SEARCH(xnew,x,ndim, isave)
call GEOMCK(x,y,z,dla, xnew, ynew, znew, dmax,dia(i},
isave,ndim, i, mode, ier)
if (ier.eq.-1) go to 15
znewl = znew - width
call SEARCH(xnew, x,ndim, isave)
call GEOMCK(xX,y,z,dia, xnew, ynew, znewl, dmax, dia(i),
isave,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
else
znew = znewl
go to 69
endif

({(xnew. ge.dia(i)).and. (xnew. le. length-dia(i))}.and.
((znew. gt.width-dia(i)).and. (znew.le.width))) then
call SEARCH(xnew, X, ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znew, dmax,dia(i},
isave,ndim, i, mode, ier)
if (ler.eq.~1) go to 15
znewl = znew - width
call SEARCH(xnew, x,ndim, isave)
call GEOMCK(x,y,z,dla, xnew, ynew, znewl, dmax, dia(i},
isave,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
else
go to B9
endif
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else if (({xnew.ge.dia(i)).and. (xnew.le.length~dia(i))).and.

1

1

1

else if

else if

((znew.gt.0.0).and. (znew.1t.dia(i)))) then
call SEARCH(xnew, x, ndim, isave)
call GEOMCK(x,y,z,dia,xnew, ynew, znew, dmax, dia(i),
isave,ndim, i, mode, ier)
if (ier.eq.-1) go to 15
znewl = znew + width
call SEARCH(xnew, x,ndim, isave)
call GEOMCK(X,y,z,dia, xnew, ynew, znewl, dmax,dia(i),
isave, ndim, i, mode, ier)
if (ier.eq.-1) go to 15
znew2=znew-width
call SEARCH(xnew,x,ndim, isave)
call GEOMCK(x,y, z,dla, xnew, ynew, znew2, dmax,dia(i),
isave,ndim, i, mode, ier)
if (ier.eq.~1) then
go to 18
else
go to 68
endif

(((xnew.ge.dia(1)).and. (xnew. le. length-dia{i))).and.
{{znew. gt.~dia(1)*0.5D0).and. (znew. 1e.0.0))) then
call SEARCH({xnew, X,ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znew, dmax,dia(i),
isave,ndim, i, mode, ier)
if (ier.eq.~-1) go to 15
znewl = znew + width
call SEARCH(xnew,x,ndim, isave)
call GEOMCK(x,y, z,dla, xnew, ynew, znewl, dmax,dia(i),
isave,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
else
zZnew = znewl
go to 68
endif

(((xnew.ge.dia(i)).and. (xnew. le. length-dia(i)})).and.
(znew. le.-dia(i)*0.5D0)) then
znew = znew + width
call SEARCH(xnew, %, ndim, isave)
call GEOMCK(x,y, z,dia, xnew, ynew, znew, dmax,dia(i),
isave,ndim, i, mode, ier)
if (ier.eq.~1) go to 15
znewl=znew-width
call SEARCH(xnew,x,ndim, isave)
call GEOMCK(x,y,z,dia,xnew,ynew,znewl,dmax,dia(i),
isave,ndim, i, mode, ier)
if (ier.eq.-1) then
go to 15
else
go to 69
endif
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else
call SEARCH(xnew, x,ndim, isave)
call GEOMCK(x,y,z,dia, xnew, ynew, znew, dmax,dia(i),
* isave,ndim, i, mode, ier)
if (ier .eq. ~1) then
go to 15
else
go to B9
endif
endif

LE2 2222223222232 22 X2 22222222222

*Calculating new ENERGY of the system*
(2222233233823 2222222323222 2 23

OO0 n

9 pe = ENERGY(i, n, mass, g, y, ynew)
dpe = pe ~ peo
if (dpe .gt. 0.0D0} go to 80

78 iacept = lacept + 1

peo=pe
C
C ---- Core section of random selection -----
C
tempd = dia ( i )
tempm = mass ( i )
C
if ( isave .gt. 1 ) isave = isave - 1
C
IF (i .1t. isave )} THEN
c
c -—-~- Update arrays x, y, z, dia, & mass --—--
c
Jr = isave ~ 1
do 8100 j = 1, Jjr
=1+
ijml =1 -1
x (ijm1 ) =x ( 13)
y (ijml ) =y (13
z (ijmi ) =2 ( 13 )
dia ( 1jml ) = dia ( 1J )
mass ( 1jml ) = mass ( 1j )
3100 continue
c
c——=-- Update arrays trace and origin -----

ior = Origin ( 1 )
upbd = lor
lwbd = ior
do 5000 j = i+1, lsave
Jjor = Origin ( J )
if ( jor .gt. upbd ) then
upbd = Jjor
go to 5000
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endif
if ( Jor .1t. lwbd ) lwbd = Jor
5000 continue

do 6000 J = 1lwbd, upbd
Jtr = trace ( )
if ( jtr .le. 1 ) go to B0OO
if ( Jtr .gt. isave) go to 6000
trace ( J ) = jtr - 1
origin(trace(Jj)) = J
8000 continue

C
trace ( ip ) = isave
origin ( isave )} = ip
Cc
else if (1 .gt. isave ) then
c
Cm—=—- Update arrays x, y, z, dia, and mass ~--~~
c
Jr = 1 - lisave
do 8200 J =1, Jr
ij=1-3
ijpl =1 + 1
x (ijpt ) =x (1)
y (ijp1 ) =y (13
z (ijpl ) =2 ( 1)
dia ( ijpl ) =dia ( 1] )
mass ( 1jpl ) = mass ( 1 )
9200 cont inue
c
c———-- Update arrays trace and origin -----
c
ior = origin ( isave )
upbd = jor
lwbd = ior
do 7000 j = isave + 1, 1}
Jor = origin ( J )
if ( jor .gt. upbd ) then
upbd = Jjor
go to 7000
endif '
if ( Jor .1t. lwbd ) lwbd = jor
7000 continue
C
do BOOO J = lwbd, upbd
Jtr = trace ( J )
if ( Jtr .ge. 1 ) go to 8000
if ( jtr .1t. isave ) go to 8000
trace {( J ) = Jtr + 1
origin ( trace ( J ) ) = j
8000 continue
C

trace ( ip ) = isave

98



origin ( isave ) = ip

ENDIF

c
x ( isave ) Xnew
vy ( isave ) = ynew

z { isave ) = znew
dia ( isave ) = tempd
mass ( isave ) = tempm

Cr=m=- end of random selection =-==—=-

if ( iprint .ne. iterpr ) go to 15
iprint = 0

write(9,205) ipass

write(89,208)

write(9,203)

c do 305 Kp =1, n
c write(9,204) Kp, x(Kp), y(kp), z(Xp)
c305 continue
go to 15
C

80 bd = beta * dpe
if (DABS(bd) .ge. 170.0D+00) go to 15
pr = DEXP(-bd)
if (RAN(ix) .le. pr) then
go to 75
else
go to 15
endif

el @]
O

e(ipass+l) = peo
perctg = DFLOAT(iaccpt)/DFLOAT(n) * 100.0D+00

After 10,000 passes, Set the value of delta as 0.06E-02

if (perctg .1t. 3.0D+00) then
delt = delt * 0.75D+00
endif

(2222228222222 2222

*Output pass data*
(2323232322222 22 2

sNeoNoNoNoNeoNoNoNoNeNe!

IF (ipaspr .eq. passpr) THEN
ipassl = ipass + psintl
ipaspr = 0
icy = icycle + icycO
write(8,220) yJjump
if (pour .eq. ’'pour’) icy=0
write(9,199) icy
write(9,208) ipassl
write(9,208) e(ipass+1)
write(9,210) perctg
write(9,206)
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write(3,203)

c do 317 Jp =1, n
c write(9,204) Jp, x(Jp), y(Jp), z(Jjp), dia(jp), mass(jp)
c317 continue

write(36,*) icy
write(36,*) n
write(38,*) ipassl
write(36,*) beta
write(36,*) e(ipass+1)
write(36,*) dmin

c do 403 jJp =1, n
c write(36,*) x(Jp), y(Jp), z(jp), dia(jp)
c403 continue

ENDIF
C
C Compute ENERGY averages from e(1) every 100 passes
C

if ( MOD(ipass, 100) .eq. 0.0 ) then
ipl = ipass + 1
ip2 ipass/100
Call SDEV(e, ipl, emean, edev)
ebr(ip2) = emean
ebrat = ebr(ip2)/ebrp

c if (icycle .eq. maxcyc) ebrat = 1.0DO
ebrp = ebr(ip2)
endif
®
C Check if cycle has been completed
C

IF ((ipass .eq. maxpas) .or.
+ ((ebrat.ge.1.0D0-eps)}.and. (ebrat. le. 1.0DO+eps))) THEN
yjump = yjumpO
mpl = ipass + 1
do 812 i2 = 1, mpl, iterg
i3 = i2 + psintl
write(12,903) 13, e(i2)

912 continue
ipassl = totpas
psintl = totpas

icy = icycle + icycO
write(8,220) yjump

if (pour .eq. 'pour’) icy =0
write(9,1989) icy

write(9,208) ipassi
write(9,209) e(mpl)
write(9,210) perctg

write(9, 208)

write(8,203)

c do 318 jJp=1, n
c write(9,204) Jjp, x(Jp), y(jp), z(Jjp), dia(jp), mass(jp)
c318 cont inue

write(36,*) icy
write(36,%) n
write(36,*) ipass!
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write(36,*) beta
write(36,*) e(mpl)
write(38,*) dmin

do

318 jp=1, n
write(36,*) x(Jp), y(Jjp), =z(Jjp), dia(jp)

continue

Compute mean and standard deviation of ENERGY array

and store values in "emean" and "edev".

Call SDEV(e, mpl, emean, edev)
write(9,807) emean, edev
write(g,918)
icycle = icycle + 1
ebrat = 0.0D0
~ebrp = 0.0DO
ebrpdp = 0.0DO
nerg = MOD(maxpas, 100) + 5
do 713 inr = 1, nerg

ebr(inr) = 0.0D0

continue

if (pour .ne. 'pour’) then
[Shaking Cycle completed: Begin new cycle.]
go to 115

else

[Pouring completed.]
go to 988
endif

ELSE

{Cycle not completed.]
[Continue until (l1-eps) <= ebrat <= {1l+eps) ]
go to 120

ENDIF

Initial Data and OQutput formats

Call IDATE(month, iday, iyear)
write(9, 201)
format (1h , 'MAIN: THE MAXIMUM NUMBER OF TRIALS TO GENERATE

*

THE INITIAL DISTRIBUTION =’,17,’ HAS BEEN EXCEEDED.')

format (16X, ' MONTE CARLO SIMULATION SHAKING SEGREGATION’, /)
write(g,218) month, iday, iyear

write(g,220) yjump

write(8, 199) icycO

write(9,202) psintl

format (11X, ' STARTING COORDINATES OF SPHERES, PASS NO: ',1I8

+,/,8%,”
+

")

if (psintl .eq. Q) then
write(36,*) ratio
write(36,%) amp, ecut
write(36,*) n
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write(36,*) beta
write(36,*) peo
write(36,%*) dmin

c do 405 ij=1, n
c write(36,*) x(13), y(13), =z(ij), dial(i])
c405 continue
endif
C

write(S,203)
203 format (4X,’'Sphere’,4x,'X’,10x,’Y’, 10X, ’2’,6x, 'Diameter’,

+ 3x, 'Mass’, /)
c do 300 K=1, n
c write(9,204) k, x(K), y(k), z(K), dia(K), mass(K)
c300 contlnue

write(9,208) peo

write(8,211) delt
204 format (2X, I5, 1x,3(D11.5, 1X),2x,D10. 4, 1x,D11.5)
198 format(///,26X,’ CYCLE NUMBER: ', 17)

208 format(///,8X,’ SPHERE COORDINATES OF A CONFIGURATION FOR
+ PASS NO.:’, 16)

208 format(7X,’
M)

208 format (/, 9X, ' SPHERE COORDINATES AT PASS NUMBER:', I8)
208 format (/, 9X, 'Configuration ENERGY =',D20.7, 1x,

+ ’Newton-meters’ )

210 format (9%, ' Percentage of moves accepted: ’,Di1.4)

211 format (9X, 'maximum absolute value of particle displacement:’
+ ,D14.6)

213 format (5(15,6x))

218 format(1h ,’Pass Number = ',19,/)

2189 format (23X, 'Run Date: ',I2,'-',I12,’-',12)

220 format (11X, ' Amplitude of Shaking: °',D11.8)

801 format (1X, 3(D22. 16, 1X})
9901 format(1X,2(D22. 16, 1X))
902 format (10X, A3)

803 format (I8, 5x%,D19.13)

904 format(1¥X,’= C » ’,D11.5,’,",D11.5,’,’,D11.5)

905 format (1X, //)

807 format (1X, 'The Mean Energy = ’,D13.5,5x,’Standard deviation
+ =' D13.5)

808 format (B8X, ' The approximate packing height = ’,Di15.8, /, 86X,
+ 'The standard deviation is ',D15.8)

809 format (11X, ’'The mean + standard deviation = ’,D15.8,/, 11X,
+ ’The mean - standard deviation = ',Di15.8)

810 format (6X,’The approximate packing center = ',D15.8)

g11 format (11X, ’Upper limit = ',D15.8,/,11X, ' Lower limit = ’,
+ D15.8)

913 format (6X, 'The mean of the entire y-array = ',D14.7)

914 format (11X, ' Its standard deviation = ’,D14.7)

9158 format (BX, ' The maximum height attained by some sphere =’,
+ D14.7)

816 format (4X,’ == ==’
+ === ")

917 format(1X ,Di12.5,1X,D12.68,1X,I1)
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818

919
820
821

800

aaa

1802
1901

1803
1800

sNoNeNOEeNY!

400

format{1lh ,’ShaKing-Segregation Parameters: °',/,26X,
'yjump = ’,D10.4, /, 26X, 'ENERGY cut-off ratio = *,D12.8,)
/, 26X, 'Number of Cycles = ’,I5,’#’)

format(1X, A4)
format (10X, A4)
format (10X, DS. 3)
go to 115

write(8, 200) maxgen
go to 888

¥xususwus rife the restart file to unit 31 ***xkskexx

open(unit=31, file="[sxp4639.mc3d]Imc3d.res’,status="new’)
open{unit=33, file="[sxp4639.rdf Jradist3.dat’,status="new’)

do 800 i1 =1, n
write(31,801) x(i1), y(il), =z(il1)
write(31,9901) dia(il), mass(il)
continue
write(31,*) totpas, e(mpl)
if (pour .eq. 'pour’) icy = O
write(31,*) lcy
write(31,*) dmax, dmin
write(31,*) yJjump
write(31,918) pour

*kkK¥¥¥ yrite the r.d.f. data file to unit 33  **¥kkwkxkx

write(33,1902) n
write(33,1801) diam
write(33,*)
write(33,*)
format(I4)
format(D7.1)
do 1800 il=1, n
write(33,1903) x(i1), y(il), =z(il)
format (3(D22.16, 1X))
continue

B 0 0O OO N N N e K K e

Shell sort the y~array to estimatethe average pacKed height.

Also compute mean and standard deviation of entire y array.
AU O U NN N N N e e N

Call SHELL(y, n)
Call SDEV(y, n, ymean, ydev)
nav = IDINT(length/diam)
nava = n - nav
do 400 K = 1, nav
J = nava + K
yt(K) = y(J)
continue
Call SDEV(yt, nav, ytmean, ytdev)
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ycen = ytmean * 0.5D0

ytmax = ytmean + ytdev

ytmin = ytmean - ytdev

yimaxc = ytmax * 0.5D0

ytminc = ytmin * 0.5DO
write(9,905)
write(8,908) ytmean, ytdev
write(9,909) ytmax, ytmin
write(9,910) ycen
write(9,9811) ytmaxc, ytminc
write(9,9813) ymean
write(9,914) ydev
write(9,915) yt(nav)
write(9,9805)

993 close{unit=12)
close(unit=9 )
close(unit=31)
close(unit=33)
close{unit=36)

stop
end
C
c
C o e e e e e e e e o e e e o e e e
c End of mAIN Progranm
C - ot s o e e e e e S s o - S e . B > i . e P S S o o B S o S S e e B o S e S S B . B B . S B e B A S B
C
C
C (22222223 2222222222222 223 222 22222222 X2 2223222222 LR 2 E ]
C *BINARY SEARCH SUBROUTINE®™*
C (2223222222222 2222222222222 222222222 2222222223 2 T
C
C
SUBROUTINE SEARCH (xtemp, X, kdim, isave)
C
C
Implicit Real*8 (a-h, o-z)
Dimension x(kdim)
Integer high, low, mid
C
C [SEARCH for location "isave” where xtemp < x(low)]
C

low = 1
high = Kdim-1

50 mid = 0.5 * ( low + high )
if(xtemp .1t. x(mid)) high = mid -~ 1
iIf(xtemp .gt. x(mid)) low = mid + 1
if(xtemp .eq. x{mid)) go to 60
if(low .le. high) go to 50
isave = low

go to 89
860 isave = mid
99 return
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* REAL-VALUED INSERT SUBROUTINE *
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SUBROUTINE AINSRT(xtemp, %, kdim, isave)

Implicit Real*8 (a-h, o-z)
Dimension x(kdim)

if (isave .eq. kdim) go to 70
templ = x(isave)

x(isave) = xtemp

ispl = isave + 1

temp2 = x(ispl)

x({ispl) = templ

J = isave + 2

Cif (J .gt. Kdim) go to 100

templ = x(J)
%x(j) = temp2
Jpl =g+ 1

if (Jpl .gt. Kdim) go to 100
temp2 = x(jp1)

x(Jjpl) = templ

J=J+2 ,

if (J .gt. Kdim) go to 100
go to 80

x(isave) = xtemp

return

end

L3332 2222223232222 222222 R 22Xy S

* INTEGER VALUED INSERT ROUTINE *

tS 2222222222222 2222222 2

aaooaoan

SUBROUTINE IINSRT{ntemp, nx, kdim, isave)

Insert xtemp in position "isave" and move other elements
appropriately. This is identical to AINSRT except the argument
are of type integer.

Implicit Real*8 (a-h, o-z)
Dimension nx(Xdim)
Integer templ, temp2, ntemp

if (isave .eq. Kdim) go to 70
templ = nx(isave)

nx(isave) = ntemp

ispl = isave + 1

temp2 = nx{ispl)

nx(ispl) = templ

J = isave + 2

if (J .gt. Kdim) go to 100
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templ
nx(J)
Jpl =
if (Jjpt
temp2 =
nx(Jjpl)
J=J+

fon

nx(J)

temp2

+ 1

.gt. Kdim) go to 100
nx(jpl)

= templ

2

if (J .gt. Kdim) go to 100
go to 80
nx(isave) = ntemp

return
end

(22332323 E S22 2222232222222 2222222222222 2222222 2sss

»*
*
»

»*

GEOMETRY CHECKING SUBROUTINE *

»

(2222223 222222222223 2222 222223 222222222 R 22l st

This subroutine checKs for forbidden overlap of spheres and
returns a value of -1 In ler if overlap occurs.

mode

ipos

Kdim

dmax

diam
isave

ier

N <

xtemp
ytemp

ztemp

Character variable designating whether the routine
is to be used in a 'generation’ mode or in the
'simulation’ mode.
array index of the particle that has been moved to
a new position (xtemp, ytemp,ztemp). This is used
used only in the’simulate’ mode.
dimension of the x, y, and z arrays (plus 1).
maximum sphere diameter in the system of spheres.
diameter of sphere to be inserted in 'generate’ mode
array Iindex, returned by SEARCH, at which the
particle is to be placed after its move. (’simulate’
mode )
error flag returned as -1 if any discs overlap with
the location of the displaced sphere. (’simulate’
mode )
array of x-coordinates of the spheres.
array of y-coordinate of the spheres.
array of z-coordinates of the spheres.
array of diameters of the spheres.
tentative new x-coordinate of the sphere whose
x-coordinate is given by x(ipos).
tentative new y-coordinate of the sphere of which
y~coordinate is glven by y(ipos).
tentative new z-coordiante of the sphere whose
z~coordinate is given by z(ipos).

SUBROUTINE GEOMCK(x,y,z,d, xtemp, ytemp, ztemp, dmax, diam,

*

isave, kdim, ipos, mode, ier)

Implicit Real*8 (a-h, o-z)
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Dimension x(kdim), y(kdim), z(kdim), d(kdim)

Character *8 mode

if (mode .eq. ’generate’) then
rtemp = 0.5D0 * diam
else
rtemp = 0.5D0 * d(ipos)
endif

J=20

if (isave+] .eq. ipos) j=J + 1

if ( isave+j .gt. Kdim-1 ) then
go to 50

endif

isj = isave + j

dx = DABS(xtemp - x(isj))
dy = DABS(ytemp - y{isj))
dz = DABS(ztemp - z(isj))

dist = rtemp + d(isj)*0.5D0

if (dx .ge. dmax) then
go to 850
endif
if (dx .ge. dist) then
J=J+1
go to 9
else if (dy .ge. dist) then
J=J+1
go to 8§
else if (dz .ge. dist) then
J=J+1
go to 8§
else
dst =DSQRT(dx*dx + dy*dy +dz*dz)
if (dst .ge. dist) then
J=J+1
go to 8
else
jer = -1
return
endif
endif

J = -1
if (isave+J .eq. ipos) J =3 -1
if (isave+J .1t. 1) go to 70

isj = isave + J

dx = DABS(xtemp - x(isj))
dy = DABS(ytemp - y(isJ))
dz = DABS(ztemp - z(isj))

dist = rtemp + d (isj)*0.5D0

if (ax .ge. dmax) then
go to 70

107



a0 0n

O

10

endif
if (dx .ge. dist) then

J=J-1
go to 51
else if (dy .ge. dist) then
J =31
go to 51
else if (dz .ge. dist) then
J=J1
go to 51
else

dst =DSQRT{dx*dx + dy*dy +dz*dz)
if (dst .ge. dist) then
J=J-1
go to 51
else
ier = -1
return
endif
endif

ier = 0
return
end

N AN U NN N

* ENERGY FUNCTION *

FEHE NN NN AN U 0N e

This function calculates the potential ENERGY of the system
in Joules, or Newton-meters. The y coordinates are
converted to meters. The mks system is used in this
calculation. (1 J = 1 Nm)

REAL*8 FUNCTION ENERGY(k, n, mass, g, Yy, ynew)

Implicit Real*8 (a-h, o-z)
Real*8 mass
Dimension y(n), mass(n)

temp = 0.0DO
templ = 0.0DO
do 10 j =1, n
temp = temp + mass(j) * g * y{(Jj) *0.0254D0

continue
energy = temp
if (k .ne. 0) then

templ = mass(k) * g * y(k) * 0.0254D0

energy = temp - templ + mass(k) * g * ynew * 0.0254D0
endif
return
end
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* Y-CENTROID FUNCTION *

AL AR SR 222223222222 2232332323223 222233

This function returns the y~coodinate of area
centroid.

QOO0 an

REAL*8 FUNCTION YBARF(n, y, dia)

@]

Implicit Real*8 (a-h, o-z)
Dimension y(n), dia(n)

suml = 0.0D0

sum2 = 0.0D0

do 10K=1, n

suml = suml + (dia(k)**2) * y(k)

10 sum2 = sum2 + (dia(k)**2)

ybarf = suml/sum2

return

end

1}
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* SHELL SORT SUBROUTINE *

LA S S22 22 2SS S22 22222222 X2 22 2223

This subroutine taKes an array "v" of dimension "n” and sorts it
into increasing order.

[sEoNoNoNO NN W]

SUBROUTINE SHELL(v, n)
C
Implicit Real*8 (a-h, o-z)
Dimension v{n)
Integer gap
gap = n * 0.5

20 do 10 i = gap, n
J=1- gap
15 if (J .le. 0) go to 10
if( v(J) .le. v(j+gap) ) go to 10
temp = v(J)
v(J) = v(j + gap)
v(J + gap) = temp
J=J - gap
go to 15
10 continue

gap = gap * 0.5

if (gap .gt. 0) go to 20
g8 return

end
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. SUBROUTINE SDEV *

P2 23S 3T E23 2228222 2 222 2 22 2 22

This routine computes the mean and standard deviation of the
array "x" and returns them in ‘"xmean" and “xdev”
respectlively.

SUBROUTINE SDEV(x, n, xmean, xdev)

Implicit Real*8 (a-h, o-z)
Dimension x(n)

nl=n-1
xsum = 0,0D0
sum = 0.0DO
dol1l0i=1,n

xsum = xsum + x(i)
if (nl .eq. 0) n1 =1
xmean = xsum / DFLOAT(ni)
do 201 =1, n
sum = sum + (xX(1) - xmean)**2
var = sum / DFLOAT(n1)
xdev =DSQRT(var)
return
end

(2322222222323 223222222222 s 2ttt ts s

* HISTOGRAM SUBROUTINE *

ETZ2T 222333323 232232322 2222222222222 sl

This subroutine taKes an array "v" which has been
presorted by the routine SHELL, and returns the integer
array "freq" consisting of "nintv" elements. The latter
arrary contains the frequency distribution of "v" which
can be used to plot its histogram. The parameter "dmax"
is the supremum of the elements of "“v". The routine in
effect does a binary SEARCH on the array "v".

SUBROUTINE HSTOGm(v, dmax, deltar, n, nintv, freq)

Implicit Real*8 (a-h, o-z)
Dimension v(n)
Integer freq(300), high, low, mid

do 10 1 =1, nintv + 1
freq(i) =0
isaveo = 1
viemp = deltar
i=1
if (vtemp .gt. dmax) go to 100
low = isaveo
high =n
mid = (high + low) * 0.5
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99

100

if (vtemp .1t. v(mid)) high = mid ~ 1
if (vtemp .gt. v(mid)) low = mid + 1
if (vtemp .eq. v(mid)) then
Km = mid + 1
mid = Km
vtl = DABS(v(Km) - vtemp)
if (vt1 .gt. 1.0D-0B*vtemp) go to 60
Km=Km+ 1
mid = Km
go to 30
endif
if (low .le. high) then
go to 50
else
isave = low
go to 88
endif
isave = mid
freq(i) = isave - isaveo
isaveo = isave
if (isaveo .gt. n) go to 100
i=1+1
vtemp = viemp + deltar
go to 80

return
end
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B.2 Coordination Number Code
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Co-ordination Number |

Variables

freq Integer array containing histogram of intersphere
distances.

(x, ¥, z) Arrays of sphere center coordinates.

n Number of spheres.

x1lng Length of "box" containing spheres.

zlng Width of "box" containing spheres.

dx Difference between x coordinates of two spheres.

dy Difference between y coordinates of two spheres.

dz Difference between z coordinates of two spheres.

dia Diameter of sphere.

eps Torelance of the close contact = (1 + eps)

* Diameter. Input by user.

dst Intersphere distance.

Input and Output Files

Unit 51 Defined as [SXP4639.codnum]lcod_num.dat. This is
the file from which the input data is read.

Unit 52 Defined as [SXP4639.codnumlcod_num.out. This is
the file to which output is written.

Description

This program calculates the coordination number which
is defined as the number of spheres in con contact with a

given sphere.
the input file,

The coodinates of spheres are readed from
then the coordination numbers within

predefined tolerances of the diameter separation are
calculated.

Beginning of Program

Implicit real*8 (a-h,o-z)

Integer freq(1000), sum(20), freq1(1000), tot
Dimension x(1000), y(1000), z(1000)

Real perctg(20)

open{unit=51,file='[SXP4638. codnum]cod_num.dat’, status=’0ld’)
open(unit=52, file="[SXP4638. codnumlcod_num.out’, status=’new’ )

read(51,*) n
read(51,*) dia
read(51,*) xlng, ylng, zlng
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do 3i=1n
read(51,*) x(1), y(1), z(i)

3 continue
Cc
do4i=1n
freq(i) =0
4 continue
do§5i=1,n
freqi(i) = 0
5 continue
C
do651=1, 13
sum(1l) = 0
5] cont inue
C
do71=1, 13
perctg(l) = 0.0
7 continue
C
eps = 0.05D+00
x1lngf = xlng*0.5D+00
ylngf = ylng*0.5D+00
zlngf = zlng*0.5D+00
i=0
k=20
C
110 k=k + 1

111 if (((x(k).gt.(xlngf-0.8D0)).and. (x(k).1t. (xlngf+0.8D0C)))
1 .and. ((y(k).gt.0.7D0).and. (y(k).1t.1.8D0)).and.
2((z(k).gt. (zlngf-0.8D0)).and. (z(k).1t. (z1ngf+0.8D0)))) then

go to 112
else
k=k +1
if (k .gt. n) then
go to 220
else
go to 111
endif
endif
C
112 i=1+1
ni=1
do 38 J=1, n
dx = DABS(x(k) - x(J))
dy = DABS(y(k) - y(J))
dz = DABS(z(k) ~ z(j))
if (dx .gt. xlngf) then
if (x(J) .gt. xlngf) then
xJjp = x(J) - xXing
else
xjp = x(J) + xlng
endif
dx = DABS(x(k) - xjp)
endif
C
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if (dy .gt. ylngf) then
if (y(J) .gt. ylngf) then
yip = y(j) - ylng
else
yip = y(J) + ying
endif
dy = DABS(y(k) - yJjp)
endif

if (dz .gt. zlngf) then
if (z(Jj) .gt. zlngf) then
zjp = z(J) - zlng
else
zjp = z(J) + zlng
endif
dz = DABS{z(k) - zjp)
endif
dst2 = dx**2 + dy**2 + dz**2
if ((dst2 .ge. ((l-eps)*dia)**2).and.
1 (dst2 .le. ((1+eps)*dia)**2)) then
freq(k) = freq(k) + 1
freqi(i) = freq(k)
endif
38 cont inue
go to 110

220 do 431 =1, nl
do 42 1 = 1, 12
if (freqi(i) .eq. 1) then
sum(1l) = sum(l) + 1

endif

42 cont inue
43 continue
C

tot = 0

do 45 k =1, 12

tot = tot + sum(k)

45 continue
C

do 46 1 = 1, 12
tr = (FLOAT(sum(i)))/(FLOAT(tot)})
perctg(i) = tr * 100.0
48 continue

write(52,55)
write(52,56)
write(52,57)
do 44 1 = 1, 12
write (82,58) 1, sum(i), perctg(i}, nl

44 continue

C

55 format (10X, ’=======z=s===z===== ")
56 format (10X, *CO.NUM. ', 5X, ' FREQ. ', 5%, ' PERCTG’ , 5X, ' INNER SP.’)
57 format (10X, '’ ")

58 format (10X, I3, 6X, 15, 7TX,F7.4, 5X, 14)
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close(unit=51)
close(unit=52)
stop

end

End of Program
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B.3 Packing Fraction code using Spherical Growth Method
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Packing volume fraction by spherical growth method

Variables

{x, ¥y, z)
n

xlng
ying
zlng

dx

----------

Input and
Unit 51

Unit 52

..........

Arrays of sphere center coordinates.

Number of spheres.

Length of "box" containing spheres.

Height of "box" containing spheres.

Width of "box" contalning spheres.

Difference between x coordinates of two spheres.
Difference between y coordinates of two spheres.
Difference between z coordinates of two spheres.
Diameter of sphere.

0.5 * Diameter

Radius of the container.

Distance of interspheres.

Volume of the spherical sample.

Volume of the spheres.

..................................................

Output Files

Defined as [SXP4639.fractnlfrac.dat. This is the
file from which the input data is read.

Defined as [SXP4638.fractnlfrac.out. This is the
file to which output is written.

..................................................

Description
This program calculates the packing fraction from the

several

spherical samples. The packing fraction is

determined by the ratio of the total volume of spheres
(svol) to the volume of spherical sample (tvol).

e v wi

Beginning of Program

Implicit real*8 (a-h,o-z)
Dimension x(2000), y(2000), z(2000), sum(110), tsum(100)

open(unit=51,file='[SXP4639. fractnlfrac.dat’,status='o0ld’)
open(unit=52,file='[SXP4639. fractn]frac.out’,status="new" )

read(51,%) n
read(51,*) dia
read(51,*) xlng, ylng, zlng

d3j=1n
read(51,*) x(J), y(J), z(3)
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3 continue

C
rad = dia * 0.5D+00
pl = 3.1415926536D+00
xlngf = x1ng*0.5d0
zlngf = zlng*0.5d0
C
do 41 =1, 100
sum(1l) = 0.0d0
4 cont inue
Cc
do 5 11 = 1, 100
tsum(11}) = 0.0DO
5 continue
C
i=0
k=0
kl1 =1
C

110 k =k + 1 4

111 If (((x(k).gt.(xlngf-1.2d0)).and. (x{k).1t. (xlngf+1.240)))
1.and. ((y(k).gt.0.16302D0).and. (y(k).1t.2.563024d0))
2.and. ({z(k).gt. (zlngf~1.2d0)).and. (z(k).1t. (zlngf+1.2d0D))))

3 then
go to 112
else
k=k+1
if (k .gt. n) then
go to 220
else
go to 111
endif
endif
C
112 i=i+1
ni=i
dst = dia
o
11 vol1=0.0d0
vol2=0,0d0

do 38 j=1, n

dx = DABS{x{k)-x(J))
dy = DABS(y(k)-y(J))
dz = DABS(z(k)-z(J))

if (dx.gt.xlng*0.5d0) then
if (x(J).gt.x1ng*0.5d0) then
xJp = x(J)-xing

else
xJp = x(J) + xIng
endif
dx = DABS(x(k)-xjp)
endif

if (dy .gt. ylng*0.5d0) then
if (y(j).gt.ylng*0.5d0) then
yip = y(J)-yling
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else
yjp = y(J) + ying
endif
dy = DABS(y(k) - yJjp)
endif
if (dz .gt. zlng*0.5d0) then
if (z(J) .gt. zlng*0.5d0) then
zjp = z(J) - zlng

else
zjp = z(J) + zlng
endif
dz = DABS(z{k)-zJjp)
endif
dist=DSQRT(dx*dx + dy*dy + dz*dz}
C
if (dist .le. (dst-rad)) then
voli= voll + 4.040/3. 0dC*pi*rad**3
C
else If ((dist .gt. (dst-rad))
1 .and. {dist .1t. (dst+rad))) then
d = (dst**2 + dist**2 - rad**2)/(2.0d0*dist)
volz = vol2 + pi/3.0d0*(2*(dst**3)+2% (rad**3)
2 + (dist**3) - 3*dist*{d**2+rad**2))
endif
C
38 continue
C
svol = voll + vol2
tvol = 4.0D0/3.0D0*pi*(dst**3)
pf = svol/tvol
sum(kl) = sum(kl) + pf
C
dst = dst + 0.05D0
if (dst .gt. 1.2D0) then
kl =1
go to 110
else
ki =kl +1
go to 11
endif
C

220 do 39 k1 =1, 19
tsum(kl) = sum(kl1)/ni
write(52,58) tsum(kl), nl
38 continue

58 format (7x, F7.4, 10x, I5)
close(unit=51)
close(unit=52)
stop
end

S

End of Program

aaao
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B.4 Packing Fraction code using Plane Growth Method
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Variables

(x, y, z) Arrays of sphere center coordinates.

n Number of spheres.

xlng Length of "box" contalning spheres.

vhigh Heith of the packing sampled.

zlng Width of "box" containing spheres.

dx Difference between x coordinates of two spheres.
dy Difference between y coordinates of two spheres.
dz Difference between z coordinates of two spheres.
dia Diameter of sphere.

rad Diameter * 0.5

tvol Volume of the container.

svol Volume of the spheres.

Description

This method cuts the packing by a plane and calculates the
volume of spheres bounded by that plane and the pericedic
"walls". The packing fraction is determined by the ratio of
the volume of spheres (svlo) to the volume of container
(tvol) containing them.

............................................................

Beginning of Program

Implicit real*8 (a-h,o-2)
Dimension x{2000), y(2000), =z(2000)

open(unit=51, file="[SXP4639.dens]dnsty. dat’,status="0ld’)
open(unit=52, file=’ [ SXP4633. dens]ldnsty. out’, status="new’)

read(51,*) n
read(51,*) dia
read(51,*) xlng, yhigh, zlng

do3 =1, n
read(51,*) x(J), y(J), z(J)
continue

rad = dia * 0.5D+00
pl = 3.14158268536D+00

nul = 0
nuZz = 0
nu3d = 0
vol = 0.0D0
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voll
vol2
vol3

0.0D0
0.0Do
0.0Do

Volume of Spherical segment of one base

do 4

k=1, n

if ((y(k).1t.{yhigh+rad)).and. (y(k).ge.yhigh)) then
nul = nul + 1
h = rad - y(k} + yhigh
voll = voll + 1.0D0/3.0D0*pi*h*h*(3*rad-h)

else if ((y(k).1lt.yhigh).and. (y(k).gt. (yhigh-rad))) then

nu2 = nu2 + 1
h = y(k) + rad - yhigh
vol2 = vol2 + 4.0D0/3.0D0*pi*rad*rad*rad
- 1.0D0/3.0D0*pi*h*h* (3*rad-h)
else if (y(k) .le. (yhigh -~ rad)) then
nu3 = nud + 1
vol3d = vol3 + 4.0D0/3.0D0*pi*rad*rad*rad

endif
continue
tvol = xlng * yhigh * zlng
svol = voll + vol2 + vol3
pd = svol/tvol

write(52,*) tvol, svol, pd

close(unit=51)
close(unit=52)

stop

end

End of Program
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B.5 Radial Distribution Function code
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|
|

e e e e e e e By yry——

Variables
freq Integer array contalning histogram of intersphere
distances.
g Array containing distribution function.
(x, ¥y, z) Arrays of sphere center coordinates.
n Number of spheres.
delbin Bin width in units of sphere diameter.
It is also redefined as "delbin * dia".
xlng Length of "box" contalning spheres.
zlng width of "box" containing spheres.
dx Difference between x coordinates of two spheres.
dy Difference between y coordinates of two spheres.
dz Difference between z coordinates of two spheres.
dia Diameter of sphere.
rad Radius of sphere.
dmax Maximum distance for which distribution function
is to be calculated
eps = 1.0D-07 error parameter to account for
machine accuracy
dst Intersphere distance.
kbmax Total number of bins.
low Integer used in binary search to locate correct
bin
high Integer used in binary search to locate correct
bin
mid Integer used in binary search to locate correct
bin
Input and Output Files
Unit 51 Defined as [SXP4639.rdf]radist3.dat. This is the
; file from which the input data is read.
Unit 52 Defined as [SXP48638.rdflradist3.out. This is the
file to which output is written.
Description
This Fortran 77 code computes the radial distribution

function from the coordinates of the center of the sphere

(i.e. the configuration).
unit 51.

The configuration is read from
The code computes and returns (to unit 52) the

histogram of intersphere distances and the distribution

function,

This 1s defined as the number of sphere

centers in (r, r+dr) divide by 4 * pi * (r/dia)**2 Note

that the ring width,

"dr", is not included here in the
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definition of the distribution function. Also, the
distribution function is computed at the midpoint of each
bin.

Beginning of Program

Implicit real*8 (a-h,o0-z)
Integer freq(600), low, high, mid
Dimension x(2000), y(2000), z(2000), g(8600)

open(unit=51,file='[SXP4639. rdf Jradist3.dat’,status="0l1d’)
open(unit=52, file=' [SXP4639. rdf Jradist3.out’,status="new’ )
eps=1.0D-07

read(51,%*) n

read(51,*) dia

read(51,*) delbin
read(51,%) xlng, ylng, zlng

do3i=1,n
read(51,*) x(1), y(1), =z(i)
continue

do 41 =1, 80O
freq(i) = 0O
continue

dmax = xlng

rad = dia * 0.5D0
delbin = delbin * dia
kbmax = dmax/delbin

k=1
J=k +1
if (J .gt. n) then
k=k+1
if (k .gt. n) then
go to 100
endif
go to 5
endif
dx = DABS(x(k) ~ x(Jj))
dy = DABS(y(k) - y(J))
dz = DABS(z(k) - z(J))

if (dx .gt. x1ng*0.5D0) then
if (x(3) .gt. x1ng*0.8D0) then
xjp = x(J) - xIng

else
xjp = x(J) + xlng
endif
dx = DABS(x(k) - xJp)
endif
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100

110
200

if (dy .gt. ylng*0.5D0) then
if (y(J) .gt. ylng*0.5D0) then

vip = y(J} - ylng
else

yJp = y(J) + ylng
endif
dy = DABS(y(k) - yJjp)

endif

if (dz .gt. zlng*0.5D0) then
if (z(J) .gt. zlng*0.5D0) then
zjp = z(J) - zlng
else
zjp = z(J) + zlng
endif
dz = DABS(z(k) - zJjp)
endif

[}

dst = DSQRT(dx*dx + dy*dy + dz*dz)
low = 1
high = kbmax
mid = (low + high}/2
bmid = FLOAT(mid) * delbin
if (dst .1t. bmid) high = mid - 1
if (dst .gt. bmid) low = mid + 1
if ((dst .le. bmid+eps).and.(dst .ge. bmid-eps)) then
freq(mid) = freq(mid) + 1
J=J+1
go to B
endif
if (low .le. high) then
go to 5O
else
isave = low
freq{isave) = freq(isave) + 1
J=J+1
go to 6
endif

write(52, 200)
write(52,201)
write(52, 202)

3. 141582653600
delbin

pi
rs

do 110 J = 1, kbmax
rsdl = (rs - 0.5D0*delbin)/dia
g(J) = 2.0DO*FLOAT(freq(Jj))/(4.0DC*pi*rsd1*rsd1*FLOAT(n))
write(52,203) rsdl, freq(J), g(J)
rs = rs + delbin
continue
format(1ih ,10x, 'RADIAL DISTRIBUTION FUNCTION’,/, 1h , 10%,
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203
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1 *FOR PERIODIC BOUNDARY CONDITIONS’, //)
format(1ih ,5x,’r/diameter ', Bx, ’Frequency , 3%,
1 ’Distribution Function’)

1 ==z=z==zz===' /)
format(1ih ,5x,D10.3, 10x, I7,8x%,D13.6)

close(unit=51)
close(unit=52)
stop

end

End of Program
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B.6 Cumulative Probability of the Normalized Nearest Neighbor
Distance r/dia.

(a) Calculating the nearest neighbor distances

. o o e 2 o e e e

e e e e s e s e S e e s e —

Variables

(x, y, z) Arrays of sphere center coordinates.

n Number of spheres.

xlng Length of "box" containing spheres.

ylng Heith of "box" contalining spheres.

zlng Width of "box" containing spheres.

dx Difference between x coordinates of two spheres.
dy Difference between y coordinates of two spheres.
dz Difference between z coordinates of two spheres.
dia Diameter of sphere.

rad Diameter * 0.5

dst Distance of interspheres.

...........................................................

Input and Output files

Unit 51 Defined as [adr7805.park.dist]ldist.dat. This is
the file from which the input data is read.

Unit 52 Defined as [adr7805.park.distldist.out. This is
the file from which the output data is written.
Description
This program chooses the nearest distance between two
spheres. {[dist.dat] is the coordinates of the spheres.

............................................................

oNoRoNoNeNoNeNsNoNoNoNoRoRNoRoNo RO RoRoNoNo N EoNoNoNoNoNoRoNoNe RO RO Ro RO NOK®!

Implicit real*8 (a-h,o-z)
Integer low, high, mid
Dimension x(1100), y(1100), z(1100), dst(1100)

C
open{unit=51, file="[ ADR7805.PARK.dist ]dist.dat’,status="01d’)
open(unit=52,file="[ ADR7805.PARK. dist ]dist.out’, status=’new’)
C
read(51,*%) n
read(51,*) dia
read(51,*) xlng, ylng, zlng
C
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66

do

3i=1,n
read(51,*) x(i), y(i), z(1)

continue

do

co
k
J
J1

if

en
if
en
dx
dy
dz

ir

if

4 i =1, n
dst(i) = 0.0DO
ntinue

1
1
=1
(J .gt. n) then
L=1
do 66 i1 = 2, 998

if (dst(il) .ge. dst(L)) then

go to 66
else
L =1i1
endif
continue
write(52,*) dst(L)

k=k+1
if (k .gt. n) then
go to 100

endif

J=1

Ji1 =1

go to B7
dif

(k-j .eq. 0) then
J=3+1
dif

DABS(x(k) - x(J))
DABS(y(k) - y(J))
DABS(z(k) - z(J§))

{(dx .gt. x1ng*0.5D0) then
if (x(j) .gt. x1lng*0.5D0) then
xjp = x(j) - xlng
else
xjp = x(J) + xlng
endif
dx = DABS(x(k) ~ xJp)
endif
(dy .gt. ylng*0.5D0) then
if (y(3) .gt. ylng*0.5D0) then
yip = y(3) - ylng
else
yip = y(J) + ylng
endif
dy = DABS(y(k) - yJjp)
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endif

if (dz .gt. zlng*0.5D0)
if (z(J3) .gt. zlng*o.
zJp = z(J3) - zlng
else
zjp = z(J) + zlng
endif
dz = DABS(z(k) - zJjp)
endif

dst(j1) = DSQRT(dx*dx

J=J+1
Ji=J1+1
go to 6

close(unit=51)
close(unit=52)
stop

end

then
5D0) then

+ dy*dy + dz*dz)

End of program
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(b) Sorting the nearest distances obtained from code (a)

oo 0n

Exchange sort method

Variables

a(i) Arrays of distances obtained from code (a).
n Number of distances.

dia Diameter of sphere.

-----------------------------------------------------------

Input and Output files

Unit 5 Defined as [adr7805.park.distlsort.dat. This is
the file from which the input data is read.

Unit 6 Defined as [adr7805.park.dist]sort.out. This is
the file from which the output data is written.

Description

This program sorts the distances obtained from code (a) and
normalize them by diameter of a sphere.

............................................................

Beginning of Program

implicit real*s8 (a-h, o-z)
dimension a(1000)

open (unit=5,file=’[adr7805. park.dist]sort.dat’,status="0ld’)
open (unit=6,file=’[adr7805. park.dist]sort.out’,status='new’)

read (5,%) n
read (5,*) dia

do 3i=1, n
read (5,*) a(i)
continue

last = n -1

dod =1, n
1=
Jji=J+1
do 110 k = j1, n
if (a(l) .le. a(k)) then
go to 110
else
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1=k

endif
continue
temp = a(l)
a(l) = a(y)
a(J) = temp

if ((a(J)-a(j~1)) .ne. 0.0D0C) then

write (6,*) a(j)/dia
endif

continue

close (unit = 5)
close {unit = 6)
stop

end

End of program
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(c) Cumulative probability of the normalized distances.

cNoNoNoRoNoNoNoRoNoNsRoNoRoNoNeNoNoNeReRo e R Re e e N N Re Ke Ke!

-

Cumulative probability of the normalized distances

Variables

dist

n

dia
delbin
kbmax

..........

Arrays of normalized distances from code (b).
Number of distances.

Diameter of sphere.

Bin width in unit of sphere diameter.

Total number of bins.

-------------------------------------------------

Input and Output files

Unit 51 Defined as [adr7805. park.dist]search.dat. This
is the file from which the input data is read.
Unit 52 Defined as [adr7805.park.distlsearch.out. This
is the file from which the output data is written
Description

This program computes the cumulative probability of the nor-
malized nearest distances using the result of code (b).

Beginning of Program

Implicit real*s8 (a-h,o-z)
Integer freq(2000), sum
Dimension dist(1100)

open(unit=51,file=’[adr7805. park.dist]search.dat’,status=’01d")
open(unit=52, file=’ [adr7805. park.dist }search.out’, status="new’ )

read(51,*%) n
read(51, *) delbin

do3i=1,n
read(51,*) dist(i)

continue

do 41 =1, 2000
freq(i) =0

continue

kbmax = 0.001D0/delbin

i=1
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40
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50

if (i .eq. 360) then
write(52,*) dist(i)

endif
if (i .gt. n) then
go to 220
endif

ad = dist(1)-1.0D0

call SEARCH (kbmax, delbin, ad, freq)
i=1+1

go to 110

sum = 0

rs = 1.0D0 + delbin

do 40 J =1, kbmax
sum = sum + freq(j)
cum = FLOAT(sum)}/FLOAT(n)
write(52,53) rs, sum, cum
rs = rs + delbin

cont inue

format (5X,F12.6,5%, 15,5X,F12.5)
close(unit=51)
close(unit=52)

stop
end

Subroutine SEARCH (kbmax, delbin, ad, freq)

Implicit Real*8 (a-h, o-z)
Integer freq(2000), high
epsl = 1.0D-08

low =1

high = kbmax

mid = (low + high)/2

bmid = FLOAT(mid) * delbin

if (ad .1t. bmid) then
high = mid - 1

endif

if (ad .gt. bmid) then
low = mid + 1

endif

if ((ad .le. bmid+epsil).and.(ad .ge. bmid-epsl)) then
freq(mid) = freq(mid) + 1
return .

endif

if (low .le. high) then
go to BO

131



else
isave = low
freq(isave) = freq{isave) + 1
return
endif
end
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APPENDIX C

c.1 Coordination number of pouring simulation

SPHERE SEPARATION BY DIAMETER

NO. OF CONTACTS
1.1 1.08 1.01
3 0.654 2.064 g, 455
4 2.748 8.644 24.587
5 8.974 23.71 33.78
6 23.29 32.858 23.78
7 32.08 24.18 7.232
8 23.38 7.701 0.797
9 7.886 1.044 0.0
10 0.972 0.0 0.0
MEAN NUMBER 6.9 5.97 4.98

C.2 Coordination number of shaking simulation

SPHERE SEPARATION BY DIAMETER

NO. OF COKTACTS
1.1 1.085 1.01
3 - 0.178 6.5395
4 1.07 4.8635 21.38
5 4.10 13.90 29.23
B 12.12 29.086 25.13
7 28.77 30.48 14.08
8 31.55 17.28 3.030
9 17.65 4.099 0.357
10 3.743 0.357 -
MEAN NUMBER 7.558 B.55 5.29
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C.3 Packing fraction byjspherical growth method sfter pouring

packing fraction
2 sphere dia. 3 sphere dia. 4 sphere dia.
0.3 0.538 0.543 0.535
0.358 0.573 0.578 0.566
0.4 0.584 0.587 0.574
0.45 0.571 0.572 0.558
0.5 0.558 0.558 0.8542
0.55 0.560 0.560 0.542
0.6 0.566 0.564 0.544
0.65 0. 568 0.5686 0.843
0.7 0.568 0.562 0.539
0.75 0. 5865 0.5858 0.832
0.8 0.564 0.558 0.528
0.85 ~0.565 D.554 0.526
0.8 0.565 0.552 0.523
0.95 0.563 0.548 0.518
1.0 0.562 0.545 0.514
1.05 0.560 0.541 0.510
1.1 0.558 0.538 0.506
1.15 0.556 0.534 0.502
1.2 0.553 0.530 0.498
average 0.5863 0.855 0.5832
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C.4 Packing fraction by spherical growth method after shaking

spherical distance packing fraction
from the center centers within
2 sphere dia.| 3 sphere dia.| 4 sphere dla.
0.3 0.574 0.578 0.560
0.35 0.8608 0.612 0.580
0.4 0.615 0.617 0.593
0.45 0.597 0.588 0.5872
0.5 0.584 0.585 0.558
0.55 0.590 0.588 0.555
0.6 0.598 0.596 0.558
0.85 0.8600 0.596 0.558
0.7 0.597 0.581 0.548
0.75 0.593 0.585 0.542
0.8 0.593 0.582 0.538
0.85 0.585 0.581 0.535
0.9 0.596 0.579 0.532
0.85 0.593 0.574 0.527
1.0 0.580 0.568 0.521
1.05 0.887 C.564 0.516
1.1 0.585 0.560 0.512
1.15 0.582 0.556 0.508
1.2 0.579 0.551 0.504
average 0.582 0.582 0.543
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C.5 Packing fraction by plane growth method after pouring

r/dia. packing fractlon

.5401182108310428
. 5533563455982388
. 5600851403260435
.5615047610326287
.5611386025702016
.5589272515142990
.5585471876137151
. 55856'78923456342
.5570778976261102
. 5562386420548730
.5554193648712017
. 5556645800807506
. 5552448467437003
.55309736802248455
.5534938907057115
.5536318213528416
. 5520483410288450
.5508418418623847
.5492418546887472
.5464236879526412
.5417447435574421
,5385738956187314
.5358313991082853
. 5289553649018375
.5252080183302946

OO0 O0OO0OrRr R RELERRPEPEFE AR, SDDDDNDNNDNDND
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C.6 Packing fraction by plane growth method after shaking

r/dia. packing fraction

. 5606383468702842
.5766485711363378
.B5846561458142102
. 585743848329233C
. 5855628952082822
. 5850296185058922
.5849551228148686
.5851321397674422
.5841343563632578
. 5853026573358648
.5848086754926802
.5831994237058778
.5832984725730151
.5815191561614208
. 5817628050301373
. 5833582808004963
. 5823838955573167
. 5824365402864338
.58325313057598836
.5818327194835322
.5783872140324019
. 5782444496803609
. 5725269548270808
.5726105533288888

OO O QO P PP P R R RN NN
U N0 OO, NDNW PO ~NOOORNWG,UIODIO
cNoNoNoNoReRoNoRaNoRNsNoNeNeoNoNoNoNoNoNoNoNoNeNe]
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C.7 Radial distribution after pouring

r/D Radial distribution function

. 540864
. 149287
. 140551
. 185392
. 256588
. 183289
. 165834
. 181820
. 189566
. 190883
. 172073
. 172922
. 181047
. 1773286
. 168825
. 1668180
. 187453
. 1662786
. 182158
. 157418
. 148973
. 133386

@M R R A R W DWW WNNNNN e e e e e
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C.8 Radial distribution after shaking

r/D Radial distribution function
1.1 0.580587
1.3 0. 139755
1.5 0.136803
1.7 0.209765
1.9 0.272812
2.1 0. 187088
2.3 0. 163367
2.5 0.180731
2.7 0.211617
2.9 0. 196455
3.1 0.173282
3.3 0.177219
3.5 0. 188284
3.7 0.184894
3.9 0.172203
4.1 0.170800
4.3 0. 170603
4.5 0.171321
4.7 0. 165971
4.8 0.1681886
5.1 0.151402
5.3 0. 136503
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c.8 Cumulative probability of the normalized nearest neighbour

distance r/dia. for 1000 sphere after pouring

r/dia. number cunulative probability

. 000000 0
. 000002 139
. 000004 244
. 000006 322
. 000008 413
.000010 461
.000012 480
.000014 525
. 000016 548
.000018 577
. 000020 595
.000022 607
.000024 627
.000026 636
.000028 646
.000030 653
.000032 660
. 000034 665
.000036 668
.000038 671
. 000040 673
. 000042 B79
. 000044 683
. 000046 684
. 000048 687
. 000050 689
. 000052 691
. 000054 694
. 000056 635
. 000058 696
.000080 | 696
. 000062 697
. 000064 697
. 000066 697
. 000068 698
.000070 699
.000072 699
.000074 700
. 000076 700
.000078 700
. 000080 700
.000082 701
.000084 705
. 000086 705

. 00000
. 18577
. 34366
. 45352
.58169
.64830
.69014
. 73944
. 77183
.81268
.83803
.85483
.B8310
. 89577
. 90886
.91972
. 82958
. 93662
.94085
. 94507
. 84789
. 95634
. 96187
. 96338
.96761
. 87042
.97324
.97748
. 97887
. 88028
. 88028
.88168
. 98168
.98169
.88310
. 98451
98451
98592
. 88592
. 98582
. 98592
. 98732
. 99286
. 98286

o T T T S T R T T O T N T e T o T e e e e R S = N e N e e
eEeReReReReRoReReRoReRoReReRoleReNoNaoNoloNeNeoNoNoNaNoNoNoRoNoNoNoNoNoN ool oo No oo o o]
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[ TN

. 0ocoss
. 000094
.000124
. 000160
. 000166
.000188

7085
7086
707
708
709
710

0.88296
0.88437
0.89577
0.89718
0. 998589
1. 00000

141



C.10 Cumulative probability of the normalized nearest neighbour

distance r/dia. for 1000 sphere after shaking

r/dia. number cumulative probability
1.000010 44 0.08162
1.000020 82 0.11485
1.0000630 119 0. 16667
1.000040 154 0.215868
1.000050 189 0.28471
1. 000060 218 0.30872
1.000070 280 0.36415
1. 000080 304 0.42577
1.000080 332 0. 46498
1.000100 361 0.50580
1.000110 387 0.55802
1.000120 422 0.59104
1.000130 449 0.62885
1.000140 472 D.B66106
1.000150 430 0.68627
1.000160 505 0.70728
1.000170 515 0.72129
1.000180 528 0.73850
1.000190 542 0.75910
1.000200 8§52 0.77311
1.000210 564 0.78292
1.000220 577 0.80812
1.000230 585 0.81933
1.000240 595 0.83333
1.000250 603 0.84454
1.000280 610 0.85434
1.000270 612 0.85714
1.000280 616 0.886275
1.000280 624 0.87385
1. 000300 627 0.87815
1.000310 832 0.88515
1.000320 540 0.89836
1.000330 647 0.90816
1.000340 850 0.81038
1.000350 854 0.918897
1.000380 8858 0.81737
1.000370 680 0.82437
1.000380 685 0.83137
1.000380 887 0.83417
1.000400 670 0.83838
1.000410 673 0.84258
1.000420 676 0.584678
1.000430 880 0.85238
1.000440 683 0.95658
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. 000450
. 0004860
. 000470
. 000480
. 000480
. 000500
. 000510
. 000520
. 000530
. 000540
. 0DOS50
. 000560
. 000570
. 000580
. 000590
. 000600
.000610
. 000620
. 000630
. 000640
. 000650
. 000660
.000B70
. 000680
. 000680
. 000700
.000710
.000720
.000730
. 000740
. 000750
. 0007860
. 000880
. 0009860
. 000870
. 001000

686
687
688
689
680
B83
685
636
697
698
699
701
702
703
704
706
706
706
706
7086
708
708
708
706
706
708
708
707
708
708
710
711
712
713
714
714

S, R, 0000000000000 O0OO0O0OODODOO0DO0OOO0O0DDODOO0OOO0OOO

. 96078
. 96218
. 886359
. 96499
. 86639
. 87058
. 97339
. 974739
.87619
. 97759
. 978388
. 88179
. 88319
. 98459
. 985889
. 88880
. 88880
. 88880
. 98880
. 98880
. 98880
. 98880
. 98880
. 98880
. 88880
. 98880
. 88880
. 88020
. 99300
. 88300
. 89440
. 98580
.99720
. 99860
. 00000
.gooco
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