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ABSTRACT

Title of Thesis: A STEREO VISION TECHNIQUE
BASED ON THE MULTI-POSITIONED CAMERA CRITERION

Author: ,DE BA°, Master of Science in Electrical Engineering, 1990

Thesis directed by: DR. ALI N. AKANSU

A modified feature based stereo vision technique is described in this thesis.

The technique uses the curve segments as the feature primitives in the matching

process. The local characteristics of the curve-segments are extracted by the

Generalized Hough Transform.

A set of images of a scene, which are taken by a multi-positioned camera. sat-

isfying the parallelism criterion, are first filtered by the Laplacian of a Gaussian

operator in different widths, i.e. coarse to fine channels. At each channel, the

Generalized Hough Transform is applied to the curve-segments in each image.

The curve position, the curve-length, the curve centroid, the average gradient

of the curve-segment and the R-table are used as the local features in represent-

ing the distinctive characteristics of the curve-segment. These features of all the

curve-segments in an image are used as the constraints to find the corresponding

curve-segments in the different images. The epipola.r constraint on the centroid

of the curve-segment is used to limit the search window in the images. Since the

multi-images of one view are used, there exist more information about the scene

than the, two relational images criterion. Its performance compares to the other

matching techniques, for example, the point matching, or twin image matching

that the mismatching and the calculation arc greatly reduced. Although the

algorithm is not 'feasible for the realization of the real-time implementation of

stereo vision, it is a more economic way of finding the depth of an object or a.

view.
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Chapter 1

Introduction

Stereo vision systems have a. large number of applications such as inspection of

objects in three dimensions for defect identification or verification of product

specification, recognition of objects in three-dimensionional models of a robot,

work cell for robot arm control. In all these stereo vision applications, three-

dimensional information about the environment is essential. Depth information

is important for the control system a.s well as for object modelling and recogni-

tion.

Methods of obtaining depth information have been presented by many re-

searchers. One of these methods uses camera. system and multi-ima.ges are

obtained by moving the camera from one position to another. The distances

between the camera positions can be known from the camera calibration and

robot arm calibration. The details of camera. calibration and robot arm calibra-

tion can be found in [1], [2], [3] and [4].

The development of a. stereo system involves image acquisition and prepro-

cessing, feature extraction, registration ( with recover} , of camera. parameters),

matching, depth-from-disparity and surface reconstruction. 'Hie major prob-

lem in stereo vision techniques is to find the corresponding points in the stereo

images. The corresponding points are the projections of a single point in the



three-dimensional space. The difference of the projections of a point, into their

respective images is called disparity. Disparity is a function of both the position

of the point in the scene and the position, the orientation, and the physical

characteristics of the multi-positioned camera. There is no complete solution to

this problem, but constraints can be used to reduce the search. In this thesis,

we will focus on the feature extraction and the it algorithm.

The camera geometry in any stereo vision system is very important. It is

possible to limit the search space for matching image points to one dimension.

In this thesis, the positions of the camera which is mounted on the robot, arm are

set up that, their focal axes are parallel and the distances between the camera

positions are known as baselines, b, which is fixed as shown ill Figure I. This

is known as the parallel axis geometry.

File proposed technique is a feature based matching technique where curve-

segments are used as the feature primitives, combined with the multi-positioned

camera geometry. Curve-segments are used because the figural continuity con-

straint is inherently embedded in the matching primitives and ambiguity in

finding matches for the curve-segments is much less than the point matching

algorithms. The local characteristics of a curve segment is represented by the

curve-length, the average gradient along the curve-segment, and the R-table of

the Generalized Hough Transform of the curve-segment. An instance of the

curve-segment in other images is sought by using the local characteristics of the

curve-segments, and the constraints based on the graph matching technique.

In other matching techniques, the process of eliminating False matches tends to

be complex and slow, and many errors remain. Because many of the accepted

matches may be spurious, not corresponding to the physical structure in the

scene. A multi-channel graph matching technique is also used here to reduce



the ambiguity of the disparity in the two image pairs.

1.1 Camera Geometry

In our setup, a SONY CCD camera is mounted on a platform with a fixed

baseline and parallel focal axes. Hereafter we will refer to this as the parallel

axes method. The camera moves along the baseline so that the horizontal scan

lines of both camera positions are parallel to the baseline and all the flow of

disparities are horizontal and unidirectional on one of the image planes. In

this case, the Fixation point may be assumed to lie at infinity. Any point, in

the three dimensional space, together with the centers of the projection of the

multi-positioned camera system, defines a. line called the epipolar line. In the

parallel axis geometry the epipola.r lines are parallel to the scan lines. Thus the

search for finding the corresponding points is unidirectional as shown in Figure

1.

Consider a. point P(x,y,z) in the world coordinate system that corresponds

to points P1 ,P2  andP3  in the left, center and right image coordinate planes

respectively. We assume that the imaging system is linear, does not require any

correction. The camera calibration has been studied and those results are used

here [4]. The distancesP'2P1,and P' 3P' 2 , tc., whereP'2  is the transformed location

of P2  and P'3is the transformed location of

P

3 , are known as disparities. It can

be shown that the distance Z is inversely proportional to the each sub-disparity,

which is the difference in the positions of the two corresponding points in two

different images of the neighboring camera positions. The points which are

closer to the camera. position have a. larger disparity than the points which arc

3



Figure 1.1: Parallel axes method, the positions of the camera are set up such that
their focal axes are parallel and the line joining the focal centers is perpendicular
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farther away from the camera. position.

where d = P;iPi-1 i > 1 and the disparity is a. function of the point position

in the scene and the position, the orientation and the physical characteristics

of the camera respectively. Therefore once the location of the target points

and 	 are identified, the distance Zi can be calculated.

From last formula, it can be seen that we can easily find the depth of the

point if there is only one point in the scene using the camera. setup. But if

there are more than one point in the scene, you can not find the right depth

of one particular point, easily by using this method. This introduces the major

problem of stereopsis. The task of identifying corresponding locations in the

images is a difficult one because of what is called the false target problem_ If

you can not find the correct corresponding points in the different images, the

depth you detect will be the depth of one false target. 'Phis is shown in Figure

2.

There are four parallel points in the scene of Fig. 2. We take two pictures

separately from the left and right camera. positions. There are four points in

each picture. We want to find the corresponding point, in the right picture to

a. point in the left image. If we choose the corresponding points randomly in

the right image, we'll get. three false targets. So there exist, twelve false target.

points. The probability we have the correct depth information of the four points

is only 0.25. If we have two gray level intensity images, it's almost impossible for

us to find the correct depth information of the whole image. Therefore reducing

the false targets is the main and hardest work of stereo vision.

To answer this question, additional information is needed to help to decide

5



Figure 1.2: False targets problem. .Fhe 16 possible matches indicated by the
circles. Only those indicated by the filled circles are actually perceived.



which matches are correct by constraining them in some manner. The only way

to do this is to examine the basis in the physical world to make a correspondence

between the images. Mary and Poggio describe two physical constraints which

are relevant to the stereo process [7]:

(1) A given point on a, physical surface has a unique position in space at,
any one time.

(2) Matter is cohesive, it is separated into objects, and the surfaces of
objects are generally such that the changes in the surfaces are very
small compared with their distance from the viewer.

The computational problem for the stereo process may be summarized as

follows. First, for each view of the scene, construct, a. description of the elements

that are to be matched. The second step consists of solving this correspond-

ing problem, determining which descriptor from one view matches to which

descriptor from the other view.

1.2 Synopsis

The thesis consists of six chapters.

In Chapter 1, a summary of the thesis is included. Edge detector, tracking

algorithm, Hough transform and matching process are introduced. The camera.

geometry is also explained in this chapter.

Chapter 2 provides a. discussion of the theory of edge detection. 'Hie

coarse-to-fine strategy of the MPG algorithm is explained.

A tracking algorithm is given in Chapter 3. It is used to segment, the bound-

aries of the objects in the scene into short, curve-segment. These curve-segments

are used as the feature primitives in the matching process.

Chapter 4 introduces the Generalized Hough Transform. It is used to identify

an instance of each curve-segment of one image to the other images.



In Chapter 5, a multi-channel graph matching process is presented. Re-

laxation matching techniques are used to obtain a global match between the

multi-position image curve-segments.

The last chapter, Chapter 6 includes the discussion of the experimental

results and conclusions. At last the outlined future work of this stereo vision

system is presented.

The thesis also includes an appendix which includes all the source programs

of the system simulations.
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Chapter 2

Edge Detection

It is impossible to identify surface locations unambiguously from the images

themselves at all points. It has been shown in the Chapter 1. A smooth feature-

less surface will be of no meaning to this process, because the image i ntensities

will be indistinguishable over this surface. Any surface containing scratches,

texture or other markings will, however, give rise to locally sharp changes in re-

flectance which can be used to define surface points. Since only certain features

of a surface will be well defined in the images, it is claimed (Marr 1971, Mart.

and Poggio 1979) that the computation of disparity takes place by comparing

symbolic descriptions of 'those features in the images.

2.1 Edge

It would be pleasant if one could design a single filter to extract all the features

from a. scene. Unfortunately, such intensity changes take place over a. wide range

of scales (Mari., 197(i). For example, if we look at individual picture elements

(pixels), we can find intensities changing from pixel to pixel. However, slick

changes occur at too small scales to be of interest to its. Most of the edges

in the real world are sharp edges, and the associated intensity function will

be composed of a few steep changes over a. small number of pixels. At the

1 0



same time, other edges, such as shading edges, are spatially extended, and the

intensity function will increase slowly over a. large number of pixels. Moreover,

these different types of intensity changes are not distinct in the image; one can

have high contrast edges superimposed on a spatially extended shading edges.

As a consequence of this wide range of intensity changes, one can not hope

to find a. filter which will be simultaneously optimal for all scales. The findings

of Campbell and Robson (1968), concerning the existence of separate spatial-

frequency channels in the human visual system, suggest that one should seek a

method of dealing with the changes occurring at different scales separately. As a

consequence, Marr and Hildreth [7] suggest that one first take some local average

of intensities at several resolutions, and then detect, the changes in intensities

that occur at each resolution. They determine both the optimal smoothing filter

and a. method for detecting intensity changes at a. given scale.

2.2 Choice of Filter

The optimal smoothing filter must satisfy two physical constraints. First, t he

filter is intended to reduce the range of scales over which intensity changes take

place. This suggests that the filter's spectrum should be band-limited. Second,

the aspects of an object which give rise to intensity changes are all spatially

localized. This suggests that the filter should perform an average over a small

localized portion of the image. These two requirements are in conflict and are

related by a. type of uncertainty principle. It has long been known that under

these circumstances, the optimal filter for minimizing band-width in space and

frequency is the Gaussian. Thus, the image I is initially convolved with a two



dimensional Gaussian operator C.

In two dimensions,

For each channel, the size of the operator C will vary. The filter C thus

provides the trade-off between the conflicting requirements.

Wherever an intensity change occurs, there will be a. corresponding peak

in the first directional derivative, or equivalently, a. zero-crossing in the second

directional derivative of intensity. In fact, we may define an intensity change

in this way, so that the task of detecting these changes can be reduced to that

of finding the zero-crossings of the second derivative D

2

 of intensity, in the

appropriate direction.

That is to say, we seek the zero-crossings in

where I(x, y ) is the image, and * is the convolution operator. By the derivative

rule for convolutions,

We can write the operator D 2G in one dimension

This operator is roughly band pass, therefore it examines a. portion of the

image spectrum.

The final thing left to do is to determine the direction in which the directional

derivative must be taken. A number of practical considerations (Maur and

12



Figure 2.1: Spatial and directional factors interact in the definition of edges.
(a) shows an intensity, and (h) (c) and (d) show values of the second directional
derivatives near the origin at various orientations across the change. In (b), the
derivatives are taken parallel to the x-axis, and in (c) and (d), at :30° and 60° to
it. There is a. zero-crossings line up along the y-axis. this is the direction that
is chosen. En this example, ii is also the direction that maximizes the slope of
the second derivative.

:3



Hildreth, 1979) led the initial operators not be directional in nature. IF this

is the case, then the operator to be used is the Laplacian, since it is the only

non-directional linear second derivative operator, v 2 . It was shown (Marr and

Hildreth 1979) that provided two simple conditions on the intensity function

in the neighborhood of an edge are satisfied, the zero-crossings of the second

directional derivative taken perpendicular to an edge will coincide with the zero-

crossings of the Laplacian along that edge. Then the form of the operator is

given be:

This is a rotationally symmetric function.

2.3 Window Size and Orientation

Tile cross-section of the Laplacian of a Gaussian operator is shown in Figure

2.2. Note that its central panel width, denoted by iv, and defined as the width

of the central negative region, is given by

Zero-crossings are obtained by scanning along each processed image line and

column, locating pairs of adjacent elements of opposite sights. Some results are

shown in the Appendix. The orientation 0xy  the zero-crossings is calculated

from the local gradients in the X and Y direction of the zero-crossings, which

are detected from the profile of the convolved image. The orientation at each

edge pixel is needed in the curve tracking algorithm and in the Generalized

Hough Transform evaluation. The local gradients in the X and direction are

14



Figure 2.2: The primal sketch operator. It shows a cross-section of the rotation-
ally symmetric two-dimensional operator. The size of the operator is determined
by the values of w 2-d . The operator size is limited to a window size of 1.8w 2-d
because the magnitude of the coefficients falling outside this window is very
small.

is



calculated by the following Sobel gradient operators:

Then the orientation is calculated by,

The gradient is calculated as,

2.4 Coarse-to-Fine Strategy

It is observed that the physical phenomena, that the intensity changes in the

images are spatially localized. Since these changes produce zero-crossings in

the filtered images, it follows that if a discernible zero-crossings are present in

a channel with central width w 0  there should be a. corresponding zero-crossing

at the same spatial location in the channels with the central widths w > w 0.

If this is true at some wavelength tot > w 0 , it will be for one or two reasons:

Either (a) two or more local intensity changes are being averaged together in the

larger channel. Situations of this kind can be recognized by small channels but,

not by larger ones. Or (b) two independent physical phenomena, are operating

to produce intensity changes in the same region of the image but at different,

scales. Situations of this kind can be recognized if the zero-crossings in the

larger channels are displaced relative to those in the smaller ones. If they have

the correct positions and orientations, the locations of the zero-crossings may

16



not contain enough information to separate the two physical phenomena, but,

in practice, this situation will be rare.

Provided that the zero-crossings from adjacent independent channels coin-

cide, they can be taken together. If they do not, they probably arise from dis-

tinct surfaces or physical phenomena, maybe the shadow or so. It follows that

the minimum number of channels required is two, and the two channels are

reasonably separated in the frequency domain, and their zero-crossings agree,

the combined zero-crossings can be taken to indicate the presence of an edge in

the image.

For the stereo images, the zero-crossings representations are obtained from

the coarsest filters with central width w 0 first. We suppose that the root dispar-

ity in a. region of the image is d 0 , which is an arbitrarily estimated value. For

a zero-crossing, in one image at (x, y), the search for a matching in the other

image is constrained to the region

Finally, once this matching has been performed for the coarsest channel, the

average disparity obtained can be used to realign the images, and the process

can be repeated at the next finer scale. Since the density of zero-crossings

increases as the size of the filter is decreased, this coarse-to-fine strategy allows

the matching of very dense image descriptions with greatly reduced false taxget

problems by using coarser resolution matching to drive the alignment process.

Details of the matching process are given in the following chapters.
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Chapter 3

Curve Tracking

3.1 Sequential Segmentation Methods

There are several segmentation methods for edge and curve tracking. Some of

them can be performed on pictures "in parallel ", i.e., at all points simultane-

ously. The processing of any point in the image is independent of the other

points. They can be implemented very efficiently on a suitable parallel com-

puter. In this thesis, we consider one kind of sequential segmentation methods.

In this method, the criterion for accepting 1, point, part of an object can de-

pend on the information obtained from earlier processing of other points, and in

particular, on the natures and locations of the points already accepted as parts

of the objects. However, in the parallel approach, the same amount of compu-

tation must be performed at every point of the image, since our only basis for

accepting or rejecting a. given point is the result of its own computation. When

using the sequential approach, we can use simple and inexpensive computations

to detect possible object points. Once some such points have been detected,

more complex computations can be used to track the objects, but only at the

points that have been already detected. The squential segmentation computa-

tion is relatively cheap, since they only need to detect some points of any object

19



while rejecting non-object points.

Sequential segmentation methods have a potential advantage over parallel

methods, with respect to their computational cost on a. conventional, sequential

computer. And sequential methods are very flexible, and can be defined in many

different ways.

3.2 Feature Primitive

We choose curve-segments as our matching feature primitives because of their

three desirable characteristics. First, a. curve-segment can still be identified even

if it is partially occluded. Also, the figural continuity constraint is automatically

satisfied by using curve-segments. Finally, the problem of finding a. unique

match for a. curve-segment is much less ambiguous than for a. point target and

should produce fewer mismatches.

Another advantage of using curve-segments as a. feature primitive over edges

is that a graph can be formed for each image to represent the local properties or

the curve-segments as well as the relational (structural) properties of the curve-

segments. Consequently, a. graph matching technique (relaxation) may be used

to obtain a. global match between the curve-segments of the images. It is also

important, to note that the centroids of the curve-segments should satisfy the

epipolar constraint imposed on them by the camera's geometry.

To identify each curve-segment, the Generalized Bough Transform represen-

tation of the curve will be evaluated in the next chapter. This represents the

iconic property of the curve-segment and is used to identify the instance of the

same curve-segment in different images.

20



3.3 Raster Tracking

The detection and tracking criterion can involve local properties rather than

gray level. In this thesis, we use gradient as the reference. Note that the

gradient not only a degree of contrast, but also a. direction (of highest rate

of change of gray level at the point); in tracking, one could look for successive

points along the perpendicular direction, which should be the direction along

the curve being tracked.

Suppose that the objects to be extracted from the given picture are thin,

dark, continuous curves whose slopes never differ greatly from 90 0 . This is true

for our case because we use the zero-crossing profile as our search reference.

The zero-crossing profile is purely black and white picture. And for the edges,

the zero-crossings are continuous. The current tracking algorithm segments

the boundaries of the objects, i.e., zero-crossings in a scene into short curve-

segments.

We scan the gradient magnitude and orientation pictures of the image row by

row in the same manner as TV raster scanning, according to the zero-crossing

profile. Especially, in each row of the gradient, we accept, any point, whose

gradient level exceeds some relatively high threshold as the starting point, for

the tracked curve-segment. The relatively high level is an experimental value.

The optimal relatively high levels are different for different pictures . Once a

point (a:, y) on the yth row has been accepted as the starting point of a. curve-

segment, we accept a.ny neighbor of it on the (y — 1)th row, i.e., we accept,

any of the points (a: — y — 1), — 1), and (x + 1 , y — I), provided that it

has gradient level above the pre-defined low level and its orientation does not

differ by more than a pre-defined threshold from the previously tracked point

21



(x, y). The low level and the angle threshold are also experimental values. They

are defined experimentally. If the difference in the orientation between the two

tracked points exceed the angle threshold, or if the magnitude of the newly

tracked point dips below the low level, tile curve is broken off. This process

is recursively continued until the curve is broken off. If we used the high level

alone, or the low level alone, the curves would not be extracted correctly; but

when we combine the thresholds, in conjunction with row-by-row tracking, we

are able to extract the curves.

The proceeding remarks can be summarized in the following generalized

raster tracking algorithm.

1. On the first row (or line of the raster) accept all points that meet detection

criterion. Take each point to be the initial point of a curve C'ithat is to

be tracked.

2. On any current row other than the first row.

(i) For each curve C i currently being tracked, apply the appropriate track-

ing criterion to the points in its acceptance region; adjoin the result-

ing accepted points to We recall that this criterion may depend

on the distances and directions of these points from the end of Ci

or from some curve that extends Ci. If no new points are accepted

into Ci , the tracking of Ci is terminated. Note that a curve C i may

branch into two or more curves, in this case We must track them all;

or two or more curves may merge into a single curve, in this case, we

need only track that one from there on.

(1) In addition, apply the detection criterion to points that do not belong

to any accepting region; if any point meet this criterion, take it to
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be initial point of new curve Cj .

3. When the bottom row is reached, the tracking process is complete.

In the tracking algorithm, each curve-segment is labelled by a number, the

location of all the edge points forming the curve-segment are stored. Total

length of the curve-segment is also kept in the memory buffer, but relatively

very short curve-segments are discarded. It may change for different channels.

And the centroids of each curve-segment are calculated as,

where N is the length of the curve-segment and (x i , y i ) the coordinates t he

edge pixels. The above information is then used in the Generalized Hough

transform algorithm to generate the distinctive R-table of each curve. A set of

curve-segments is thus obtained for the left, central and right images.
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Chapter 4

Generalized Hough Transform

4.1 Introduction

To identify each curve-segment in one of the triple stereo images we must extract

and use some distinctive features of the curve. We use the Generalized Hough

Transform of the curve as a distinct property of the curve-segment. The Gen-

eralized Hough Transform is used because it, groups all the information about

the individual zero-crossings on the curve into a single table which uniquely

represents that curve-segment. The Generalized Hough Transform is very ro-

bust in finding a match for a curve-segment even when sonic part of the curve

is occluded, or when edge pixels are noisy and point-to-point matching is not

possible.

The Generalized Hough Transform algorithm uses edge information to define

a mapping from the orientation of an edge point to a reference point 0 the

shape. The reference point may be thought of as the origin of a local coordinate

system for the shape. In this thesis, we use the centroid of the curve-segment

as the reference of the curve-segment. Then there is an easy way of computing

a measure which rates how well points in the image are likely to be the origins

of the specified shape. A feature of this work is that it will work when the
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boundary is disconnected due to noise or occlusions. This is generally not true

for other strategies which track edge segments.

4.2 The Hough Transform for Analytic Curves

We consider analytic curves of the form f (x, a) = 0 where x is an image point

and a is a parameter vector. If we use directional information associated with

the edge, this reduces the parameter locus to a line. What happens is the

equation

It introduces a tern dy/dx which is known as

where φ(x) is the gradient direction. This suggest the following algorithm.

For a specific curve 1 . (x, a) = 0 with parameter vector a, form an array

A(a), initially set to zero. This array is called an accumulator array. Then for

each edge pixel x, compute all a such that f(x, = 0 and δf(x,a)/δx = 0

and increment the corresponding accumulator array entries:

After each edge pixel x has been considered, local maxima. in the array A cor-

responds to curves of J. in the image.

If only the equation f(x, a) = 0 is used, the cost of the computation is

exponential in the number of parameters minus one.
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Figure 4.1: Geometry for Generalized Hough Transform

4. 3 The Hough Transform for Non-Analytic
Curves

To generalize the Hough algorithm to non-analytic curves we define the following

parameters for a generalized shape:

where a = (x r , y r ) is a reference origin for the shape, 0 is an orientation, and

s = (sx, sy) describes two orthogonal scale factors.

The key to generalizing the Hough algorithm to arbitrary shape is the use of

directional information. Directional information. besides making the algorithm

faster. also greatly improves the accuracy.

Consider an arbitrary shape, for each point x on the boundary with gradient
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Figure 4.2: Construction of R-table

direction φ , we increment a point a = x r, where a is the reference point and

the r is the distance between the point x and the reference point a, which varies

in an arbitrary way. Then the R-table is easily constructed by examining the

boundary points of the shape. The construction of the table is accomplished as

follows.

Algorithm for constructing a R-table. Choose a reference point a for the

shape. For each boundary point x, compute the gradient direction φ(x) and

r = a — x. Store r as a function of 0. Notice that the representation of R-table

is vector-valued and, in general, an index 0 may have many values of r. Tile

R-table is used to detect instances of the shape in an image in the following

manner.

For each edge pixel x in the image, increment all the corresponding points
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x r in the accumulator array A where r is a table entry indexed by 0, i.e.,

r(0). Maxima in A corresponds to possible instances of the shape.

If we use the strategy of incrementing the accumulator array by unity, then

the contents of the accumulator array are approximately proportional to the

perimeter of the shape that is detectable in the image. This strategy is bi-

ased toward finding shapes where a large portion of the perimeter is detectable.

Several different incrementation strategies are available, depending on the dif-

ferent quality of image data. If shorter, very prominent parts of the perimeter

are detected, as might be the case in partially occluded objects, then an alter-

native strategy of incrementing by the gradient modulus value might be more

successful, i.e.,

Of course the two strategies can be combined, e.g.,

where c is a constant.

Another possibility is the use of local curvature information in the

incrementaion function. Using this strategy, neighboring edge pixels are e xamined

to calculate approximate curvature, K. This requires a more complicated op-

erator than the edge operator we have considered, and complicates the table.

Now along with each value of r the corresponding values of curvature must be

stored. Then the incrementation weights informative high local curvature edge

pixels as follows:

In this thesis, the table is constructed by calculating the orientation 0 .,„ of

each pixel (ems, e,) of the current curve-segment Ii i and the vector distance be-
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tween the centroid c i=(cxi, ciy) of the curve-segment and the edge pixel location.

This distance R iisgiven by (rx

i , r i

y) = (cxi- e ix, cyi- eiy).In the R-table, these

distances (rx

i

, r

i

x ) are listed as a function of θx y . This table is used to detect

instances of the same curve segment in the other image, with the additional

constraint that the difference in the locations of the matching centroids is only

a horizontal shift. This difference in locations is a result of the parallel axis

camera. geometry. A curve-segment in one image is said to be matched with a.

curve-segment in the other images if their R-tables are approximately the same.
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Chapter 5

Matching Process

5.1 Introduction

The tracking algorithm produces a set of curves with distinct local characteris-

tics, stored in the R.-tables of the curves. The curve stereo matching problem

may now be considered as a. point matching problem between a set, of points

from one of the triple images and a. set of points from the other images. Slice the

number of centroids is much less than the number of edge pixels, the matching

is easier and faster. Also sophisticated matching techniques exist in which the

relationships among the curve centroids may be used to obtain a. global match

between a. set centroids in the triple stereo images.

A multi-channel technique is proposed to obtain a. global match between

curve-segments in one of the images and those in the other images. In this tech-

nique, three graphs are formed in each channel where the graphs represent the

structural relationships and the local properties of the centroids of tin' images

respectively. The curve-segments from different, images which have the same. or

similar properties are matched ones.
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5.2 Multi-Channel Graph Matching

The input to the matching algorithm is sets of curve-segments extracted from

the images. Each curve-segment is identified by a number, the location of

its centroid, its R-table representing the properties of the curve-segment, its

curve-length and the location of each edge pixel belonging to the curve. Using

the centroids and the R-table of the curve-segments, a relational graph can be

formed for each image. The nodes of the graph represent the location of the

centroids of the curve-segments and the arcs represent, the relationship between

the centroids. The R-table of the curve-segment

Let graphs L(Ni , F1, E 1 , a), M(N„,., Pm , Em,, a) and R(.1V,., Pr , Er , (7) repre-

sent symbolically the left, the central and right images respectively where N

represents the number of nodes (curve-segments), P a. set of local properties

of the nodes, E a. set, of relations between the nodes, a.nd a representing the

channel. In our matching algorithm, the IT-table of each cu•ve-segment• is the

local property of the corresponding node.

For instance, if by a similarity measure the local properties Pt . of a. node NI

in graph L approximately match the local properties P,j. of node IV
11L in graph Al,

then this pair of nodes (N/, N4) is said to form a. node assignment, provided

the epipolar constraint on the •entroids is also approximately satisfied. The

measure of local similarity for node assignment, in our matching algorithm is

then given by the ratio

where Aj represents the Hough accumulator value (number of edge pixels that

are matched) obtained when the R-table of the curve-segment in .E7' the left,

image is compa.red with the P-table of the curve-segment L ;'. in the central
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image and Li  represents the curve length of E.

5.3 Details of the Algorithm

Starting at the coarsest channel for each curve-segment E jlin the left, image a.

matching curve-segment Em'jis sought in the central image in order to form a,

node assignment. Due to the camera's geometry, the location of the c

entroidCil= (cim,cim)of the left curve-segment is displaced by a disparity value in the

central image. Ideally, the disparity value is simply a. horizontal shift, i.e., the

centroids should be on the same epipolar line. However, due to the geometrical

distortion, imperfections in the tracking algorithm, a,nd partial occlusion, the

centroids of the corresponding curves may not be exactly on the same epipolar

line. Nevertheless, for most of the corresponding curve-segments their centroids

will just fall within a, few scan lines apart. The horizontal displacement between

the centroid of the curve-segment in the left image and that of the corresponding

curve-segment in the central image is called the centroid disparity.

For instance, to find the node assignment for a, given curve-segment J in the

left image, all nodes (centroids) in the central image that are within a 2-1) search

window, which size is Wσ  x 15 by 24, around the point (cix, ciy + di)are (onside! ed

as candidates. Here, (cix

,

ciy ) is the location of the node of the curve-segment in

the left image and di is the average disparity around the curve-segment which

is obtained from the previous channel disparity calculation. For the coarsest

channel, the value is an eliminated one.

The R-table of each candidate is compared with that of the curve-segment

in the left image. Whenever a, pair of nodes with a. node assignment, score above

a threshold which is also an experimental value, we accept the curve-segment

Ejmin the central image.
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To compare the R-table of the one curve-segment with that of another curve-

segment in the other image, each θjxy entry of the R.-table of curve-segment a is

compared with all the θjxy entries of the R-table of curve-segment b in the other

image. If the orientations are approximately the same, i.e., their orientation

difference |θixy - θjxy| is below the threshold 10°, which we defined in the tracking

algorithm, and rix = rjx, riy = rjy, the Hough accumulator is incremented

by one. Let the value Aj represents the Hough peak obtained from the curve-

segment j. Then the local node assignment score is calculated by

Repeating the above steps, we try to find node assigments for the curve-

segment Ejm in the central image in the right image within the window (W, x 15

by 24) around the point (cjx , cjy.+ dj).If we are not able to find a match, we

go back to the previous step and try to find another node assignment. Once

we obtain a match with Ekr, we use the curve-segment, Ekrin right, image to

calculate the node assignment with the E/ in the left image. Ii the assignment,

is below the threshold, we also have to go back to the previous matching steps.

This criterion restricts the false targets significantly. If the assignment is above

the threshold, we say the three curve-segment in the triple stereo images are

matched. Disparities are calculated for the matched curve-segments.

Then we go back to match the next curve-segment, in the left image. This

procedure won't stop until all the curve-segment are matched.
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Figure 5.1:
Flow Chart for Matching Algorithm



Figure 5.2: Flow Chart for Node Assignment
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Chapter 6

Discussion

6.1 Introduction

This presented stereo vision technique has been implemented on Sun Worksta-

tion. Some results are discussed here. The stereo images were taken by a SONY

CCD camera which is mounted on a. platform. Moving the camera horizontally,

we obtain a set of related stereo images. In the following examples, three pic-

tures were taken for each object. Each picture is of resolution 512 x 480 and S

bit gray level.

Main steps of the simulation algorithm:

• Zero-Crossing Extraction by a Gaussian of Laplacian Operator.

• Curve Tracking According to the Gradient. Information of the Zero-Crossings.

• Generalized Hough Transform against the Curve Segments of Each Image.

• Matching Process Based on the Multi-Images.

6.2 Zero-Crossings

The zero-crossings were extracted after convolving the images with va2G for

three σ2 values between 10 to 30. This range of σ2 does not represent the actual
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size of the channels in the Human Visual System, but is adequate for experimen-

tal demonstration of the algorithm. Actually we use FFT to do the convolution

instead of convolution using a mask or a window. There is an obvious advan-

tage of this. As we increase the variance of the Gaussian filter, the convolution

window will be larger. It will result of losing a lot of information on the margin

pixels of the image. The bigger the variance is, the more information we are

losing. FFT will avoid this kind of defection happening. Zero-crossings were de-

tected where there were positive to negative, or negative to positive changes in

the array processed by the Gaussian of Laplacian operator. They were marked

as 255 in the zero-crossing array, others zero. Figure B.1 to Figure 13.3 repre-

sent the stereo images of three objects, tab, jack, srewdriver. Figure 13.1, Figure

13.8, Figure B.12, Figure 13.16, Figure 13.20, Figure 13.24, Figure. 13.28, Figure

B.32, Figure B.36 show the zero-crossings of the objeacts respectively at several

different a' values, 30, 20, 10.

The magnitude and orientation of the gradient of the zero-crossings were

obtained by convolving the Sobel operator with the original images according

to the zero-crossing file of each image. We scan the zero-crossing array row by

row, then column by column. Whenever we meet a. positive-negative change

in the zero-crossing array, we use the X-direction and Y-direction Sobel filters

to convolve the corresponding pixel in the original image array. With the two

values, we are able to calculate the magnitude and the orientation of gradient

of the edge pixels using the equation 2.10 and 2.11. These information were

used in the tracking algorithm and the Generalized Hough Transform. The

orientations of the zero-crossings are shown in Figure 13.5, Figure B.0, Figure

B.1:3, Figure B.17, Figure B.21, Figure B.25, Figure B.29, Figure B.:34, Figure

B.38. As the low acuity of the printout, we can not distinguish the gray level
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differences in the orientation pictures. However, you can easily tell the gray

level changes on the screen. We translate the dynamic range of the orientation

and the magnitude of the gradient to 0 255. Because the magnitude of the

gradient of the noise is very low, we are even not able to see them on the screen.

Here no magnitude pictures of the gradient are shown in the thesis.

6.3 Curve Segment and Hough Transform

The details of the curve tracking algorithm were introduced in Chapter 3. Figure

13.6, Figure 13.10, Figure 14, Figure B.18, Figure 13.22, Figure 26, Figure 13.30,

Figure B.31, Figure 38 show the curve-segments extracted from the triple stereo

images of each object respectively. It is seen from the pictures that most cen-

troids, which is represented by the crossmarks in the pictures, are approximately

on the same horizontal line for different pictures. There is a small vertical dis-

parity between the pictures clue to the camera. misalignment.. Because imperfect

lighting, we lose some details of the edges of the objects.

In the tracking algorithm, we defined the tracking high threshold of the

magnitude of the gradient as 64 and the low 32. And the orientation difference

threshold was defined as 10°. We are able to update this threshold to 3° 6°

which will also work perfectly in the algorithm for these particular pictures.

Choosing the gradient magnitude thresholds is very important. So far it, can

only be chosen by experiments. Different thresholds will produce completely

different results. Sometimes you are even not able to detect any curve segments.

Sometimes you obtain a lot of noise in the pictures. More time is needed on the

realization on the sophisticated tracking algorithm, the simulated technique in

the thesis is not always effective and sometimes it will produce broken curve-

segments. It may be caused by the lighting and/or the threshold choosing.
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To identify each curve-segment, the Generalized Hough Transform repre-

sentation of the curve is evaluated. This represents the iconic property of the

curve-segment and is used to identify the instance of the corresponding curve-

segments in the other two images. Other image properties such as curvature or

slope density function could have been used to represent the iconic properties

of the edge pixels. The Generalized Hough Transform can easily be extended

to include other properties of the curve, such as the average gray level, gra-

dient, curvature, color, end point location of the curve-segment, or the type

of junctions terminating the curve-segment. In the thesis, we use the distance

between the centroid of the curve-segment and the edge pixel location and the

orientation of the edge pixels to construct the R-table.

6.4 Matching Process

The tracking algorithm produces a set of curves with distinct, local characteris-

tics, stored in the R-tables of the curves for different, pictures. 'Phis curve Stew()

matching problem is considered as a point matching problem among the sets

of nodes or centroids from different pictures. Since the number of centroids is

much less than the number of edge pixels, the matching is easier and faster.

Especially, because the multi-positioned camera criterion was used, sophisti-

cated matching technique will also simplified. Figure B.7, Figure 11, Figure

15, Figure 13.19, Figure 23, Figure 27, Figure B.31, Figure 35, Figure :39 show

the disparity images of the "triple" stereo images. All the curve-segment are

perfectly matched.

In the algorithm, the size of the searching window that is allowed was in-

vestigated by Marr-Poggio iii [8] and Nasrabadi in [25]. As the centroids iii

vertical direction are not likely to be displaced, this istrue iii the results, we use
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24 instead of 15 x as the vertical window size.

To obtain the actual pixel disparities between the pixels of matched curve-

segments, we simply subtract the y-coordinates of the corresponding pixels, i.e.,

pixels that have the same y-coorclinates. There are two cased where it is difficult

to form a one-to-one pixel correspondence. The first is when part of the curve

is occluded. The second is when several pixels on a curve have the same

coordinates as in horizontal lines. In these cases, we set the pixel disparities

equal to the curve's centroid disparity. This is an advantage of the technique

compared to the local stereo matching techniques where horizontal lines are

ignored.

Mismatch Point Matching Curve Matching Current Tech
Tab

<20%
<0.0001%  <0.0001%

Jack <1% <0.01%
Screwdriver <1%  <0.01%
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Appendix A

Original Simulation Program
Listing

A.1 Definitions DEF.H and DMASK.H

A.1.1 DEF.H
#define NDIM 	 2
#define DIME 	 512
#define RDIME 	 480
#define GREY 	 256
#define DEAD 	 64
#define MD 	 3
#define VARI 	 30.0
#define HGATE 	 64.0
#define LGATE 	 32.0
#define ANGLE 	 10.0*3.1415926535897932*255/180.0
#define ANGLES 	 6.0*3.1415926535897932*255/180.0
#define PI 	 3.1415926535897932
#define SHORT 	 32
#define MAX SEG 1024
#define LENGTH 1024
#define DIPAT 	 32
#define DIPAJ 	 32
#define DIPAS 	 32
#define SIMS 	 10

typedef struct{
float real;
float imag;

}complex;

float image[DIME] [DIME];
int 	 head[HEAD];
float img[DIME][DIME];
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float grad[DIME] [DIME];
float orie[DIME] [DIME];
int 	 sl[MAX_SEG][3][LENGTH];
int 	 sm[MAX_SEG][3][LENGTH];
int 	 s[MAX_SEG][3][LENGTH];
int 	 segnl, segnm, segn;

float *vector();
int 	 *ivector();
float absl();
short sign();
float com();

A.1.2 DMASK.H
float m x[MD][MD]={

{ 0, 0, 0},
{ 1, 2, 1}

I;

float m_y[MD][MD]={
{-1, 0, 1},
{-2, 0, 2},
{-1, 0, 1}

1;

float m_l[MD][MD]={
0,-i, 0-,

{-1, 4,-1},
0,-1, 0.

1;

A.2 Main Simulation Program

A.2.1 VZOVIS.0
#include <stdio.h>
#include <math.h>
#include <fcntl.h>
#include "def.h"

main(argc,argv)
int argc;
char *argv[];
{

int *nn;
complex *data, *data_tmp, *filter;
float tmp[DIME] [DIME];
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float mask[MD][MD];

int i,j;

FILE *fp, *fopen();

/* read the original image file into */
/* array 'image'. */
fp = fopen(argv[1],"r");
filerw(fp, 'r', image);

/* initializing */
nn 	 = ivector(0,NDIM);
data 	 = (complex *) vector(0,DIME*DIME*2);
data_tmp = (complex *) vector(0,DIME*DIME*2);
filter = (complex *) vector(0,DIME*DIME*2);
init(data,filter);
nn[0] = DIME;
nn[1] = DIME;

/* FFT of image file and the Laplacian of Gaussian filter */
/* ( img' is the profile of the convoled image */
fourn(data,nn,NDIM,1);
fourn(filter,nn,NDIM,1);
multiply(data,filter,data_tmp);
fourn(data_tmp,nn,NDIM,-1);
cmpl_int(data_tmp,img);

/* convolution using the window of 	 */
/* Laplacian of Gaussian filter 	 */
/*initmask(mask); 	 */
/*convl(mask,image,img);*/

/* zero-crossing generator using 'img' */
zero();
fp = fopen(argv[2],"w");
filerw(fp, 'w', img);
printf("Zero-Crossing Done ...\n");

/* gradient and direction of the edges */
grad_orie();
fp = fopen(argv[3],"w");
filerw(fp, 'w', grad);
fp = fopen(argv[4],"w");
filerw(fp, 'w', orie);
rintf ("Gradient Done ...\n");

}.

filerw(fp, frw, imgp)
char frw;
float imgp[DIME] [DIME];
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FILE *fp;
{

int i, j, m;

if(frw=='r'){
for(i=0; i<HEAD; ++i){

head[i] = getc(fp);
}

for(i=0; i<DIME; ++j){
for(j=0; j<DIME; ++j).{

if (i<RDIME) {
m = getc(fp);
imgp[i][j] = (float) m;

}else{
imgp[i][j] = 0.0;

}
}

}

}else{
for(i=0; i<HEAD; ++i){
putc(head[i],fp);
}

for(i=0; i<RDIME; ++i){
for(j=0; j<DIME; ++j){

m = imgp[i][j] + 0.5;
putc(m, fp);

}

}
}

fclose(fp);
}

A.2.2 VZ0VIS1.0
#include <stdio.h>
#include <math.h>
#include <fcntl.h>
#include "def.h"

main(argc,argv)
int argc;
char *argv[];
{

int i,j;

FILE *fp, *fopen();

fp = fopen(argv[1],"r");
filerw(fp, 'r', grad);
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fp = fopen(argv[2],"r");
filerw(fp, 'r', orie);
tracking();
fp = fopen(argv[3],"w");
filerw(fp, 'w', img);
hough();
conver(sl,&segnl);

fp = fopen(argv[4],"r");
filerw(fp, 'r', grad);
fp = fopen(argv[5],"r");
filerw(fp, 'r', orie);
tracking();
fp = fopen(argv[6],"w");
filerw(fp, 'w', img);
hough();
conver(sm,&segnm);

fp = fopen(argv[7],"r");
filerw(fp, 'r', grad);
fp = fopen(argv[8],"r");
filerw(fp, 'r', orie);
tracking();
fp = fopen(argv[9],"w");
filerw(fp, 'w', img);
hough();

for(i=0; i<RDIME; ++i){
for(j=0; j<DIME; ++j){

image [i] [j] = 0;
}

}

sim(sl,segnl,sm,segnm);
sim(sl,segnl,s,segn);
sim(sm,segnm,s,segn);
org();
fp = fopen(argv[10],"w");
filerw(fp, 'w', image);

}

A.3 Fast Fourier Transform VZ1FFT.C
#include <math.h>
#include "def.h"

init(data, filter)
complex *data, *filter;
{

int i,j,idx;
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float m;

for(i=0; i<DIME; ++i){
for(j=0; j<DIME; ++j){

idx = j+i*DIME;
data[idx].real = image[i][j];
data[idx].imag = 0;
m=((float)((i-DIME/2.)*(i-DIME/2.)+(j-DIME/2.)

*(j-DIME/2.)))/VARI;
filter[idx].real = (m-2.0)*exp(-m/2.0);
filter[idx].imag = 0;

}

}
}

int *ivector(n,nh)
int n,nh;

int *v;

v = (int *)malloc((unsigned)(nh-n+1)*sizeof(int));
return v-n;

}

float *vector(n,nh)
int n,nh;

float *v;

v = (float *)malloc((unsigned)(nh-n+1)*sizeof(float));
return v-n;

}

multiply(a,b,c)
complex *a, *b, *c;

int i,x,y,z,ntot;
float *data_tmp;

for(y=0; y<DIME; ++y){
for(x=0; x<DIME; ++x){

z = y+x*DIME;
c[z].real = (a[z].real*b[z].real-a[z].imag*b[z].imag)

*cos(PI*x)*cos(PI*y);
c[z].imag = (a[z].real*b[z].imag+a[z].imag*b[z].real)

*cos(PI*x)*cos(PI*y);
}

}

ntot = DIME*DIME;
data_tmp = (float *) c;
for(i=0; i<ntot*2; ++i){

50



data_tmp[i] *= ntot;
}

}

#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr

fourn(data,nn,ndim,isign)
complex *data;
int nn[] ,ndim,isign;
{

int i1,i2,i3,i2rev,i3rev,ipl,ip2,ip3,ifp1,ifp2;
int ibit,idim,k1,k12,k2,k21,n,nprev,nrem,ntot;
float tempi,tempr,*data_tmp;
double theta,wi,wpi,wpr,wr,wtemp;

ntot=1;
for(idim=1;idim<=ndim;idim++)
ntot *= nn[idim - 1];

nprev=1;
for(idim=ndim;idim>=1;idim--){

n=nn[idim-1];
nrem=ntot/(n*nprev);
ip1=nprev * 2;
ip2=ip1*n;
ip3=ip2*nrem;
i2rev=1;

for(i2=1;i2<=ip2;i2+=ip1){
if (i2<i2rev) {
for(i1=i2;11<=(i2+ip1-2);i1+=2){
for(i3=i1;i3<=ip3;i3+=ip2){

i3rev=i2rev+i3-i2;
SWAP(data[i3/2].real,data[i3rev/2].real);
SWAP(data[i3/2].imag,data[i3rev/2].imag);

}
}

}
ibit=ip2/2;
while((ibit >= ip1) && (i2rev > ibit)){

i2rev -= ibit;
ibit = ibit/2;

}
i2rev += ibit;

}

ifp1=ip1;
while(ifp1 < ip2){

ifp2=ifp1 * 2;
theta=((-isign) * 2 * M_PI)/(ifp2/ip1);

/* PI in last line was M_PI originally. */
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wtemp=sin(0.5*theta);
wpr= -2.0*wtemp*wtemp;
wpi=sin(theta);
wr=1.0;
wi=0.0;
for(i3=1;i3<=ifp1;i3+=ip1){

for(i1=i3;i1<=i3+ip1-2;i1+=2){
for(i2=i1;i2<=ip3;i2+=ifp2) {

k1=i2;
k12=k1/2;
k2=k1+ifp1;
k21=k2/2;
tempr=wr*(data[k21].real)-wi*(data[k21].imag);
tempi=wr*(data[k21].imag)+wi*(data[k21].real);
(data[k21].real)=(data[k12].real)-tempr;
(data[k21].imag)=(data[k12].imag)-tempi;
(data[k12].real) += tempr;
(data[k12].imag) += tempi;

}
}
wtemp=wr;
wr =wr*wpr-wi*wpi+wr;
wi=wi*wpr+wtemp*wpi+wi;

}
ifp1=ifp2;

}

nprev *= n;
}
if(isign==1){
data_tmp =(float *)data;
for(i1=0;i1<(ntot*2);++i1) data_tmp[i1] /= ntot;

}
}

A.4 Function Group VZ2SUB.0
#include <math.h>
#include "def.h"
#include "dmask.h"

conver(st,seg)
int st[MAX_SEG] [3][LENGTH];
int *seg;
{

int i,j,k;

*seg = segn;
for(i=0; i<segn; ++i){

st [I] [0] [0] = s [i] [0] [0] ;
st [i] [1] [0] = s [i] [1] [0] ;
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st [i] [2] [0] = s[i] [2] [0] ;
for(j=1; j<=st[i][2][0]; ++j)

for(k=0; k<3; ++k)
st [i] [k] [j] = s [i] [k] [j] ;

}

}

convl(mask,img_i,img_o)
float mask[MD] [MD];
float img_i[DIME][DIME],

img_o[DIME][DIME];

int i, j, ipn, ipp, jpn, jpp;
int mi, mj;
int is, js;
float sum;

for(i=0; i<DIME; ++j){
defl(i,&ipn,&mi);

defh(i,&ipp);

for(j=0; j<DIME; ++j){
defl(j,&jpn,&mj);

defh(j,&jpp);
sum=0.0;
for(is=ipn; is<=ipp; ++is){
for(js=jpn; js<=jpp; ++js){

sum += mask[is-ipn+mi][js-jpn+mj]*img_i[is][js];
}

}
img_o[i][j]=sum;

}
}

}

pconvl(mask,i,j,tmp)
float mask[MD][MD];
float *tmp;
int *i,*j;
{

int ipn, ipp, jpn, jpp;
int mi, mj;
int is, js;
float sum;

defl(*i,&ipn,&mi);
defh(*i,&ipp);
defl(*j,&jpn,&mj);
defh(*j,&jpp);
sum=0.0;
for(is=ipn; is<=ipp; ++is){
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for(js=jpn; js<=jpp; ++js){
sum += mask[is-ipn+mi] [js-jpn+mj]*image[is] [is] ;

}

1

*tmp=sum;
}

cmpl int(data,tmp)
complex 	 *data;
float tmp[DIME][DIME];
{

int i, j, idx;

for(i=0; i<DIME; ++i){
for(j=0; j<DIME; ++j){

idx = j+i*DIME;
tmp[i] [j] = data[idx].real;

}

}
}

zero ()
{

int i,j;
float tmp[DIME][DIME];

for(i=0; i<DIME; ++i) {

for(j=0; j<DIME; ++j){
trnp[i] [j] = 0;

}
}

for(i=0; i<DIME; ++i) {

for(j=0; j<(DIME-2); ++j){
if(img[i][j] == 0) continue;
if(sign(img[i][j],img[i] [j+1],img[i][j+2]) == 1){
tmp[i][j] = 255;

}

}
}

for(j=0; j<DIME; ++j){
for(i=0; i<(DIME-2); ++i){

if(img[i][j] == 0) continue;
if(sign(img[i][j],img[i+1][j],img[i+2][j]) == 1){

tmp[i][j] = 255;
}

}
}

for(i=0; i<DIME; ++i){
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for(j=0; j<DIME; ++j){
image DJ [j] = img [l] [j] ;
img[i] [j] = tmp [i] [j] ;

}

}

}

short sign(x,y,z)
float x,y,z;
{

if (x>0 && y<0){
return 1;

}else if(x<0 && y>0){
return 1;

}else if(x>0 && y==0 && z<0){
return 1;

}else if(x<0 && y==0 && z>0){
return 1;

}else{
return 0;

}

}

grad_orie()
{

int i,j;
double g,o,m,mm,n,nn,tmp;
float maxo,maxg,tt;

for(i=0; i<DIME; ++i){
for(j=0; j<DIME; ++j){

grad[i] [j]=0.0;
orie[i][j]=0.0;

}
}

mm = 0.0001;
nn = 300000.0;
for(i=0; i<DIME; ++i){
for(j=0; j<DIME; ++j){

if(img[i][j] == 0) continue;
pconvl(m_x,&i,&j,&tt);
grad [i] [j]=tt;
pconvl(m_y,&i,&j,&tt);
orie[i][j]=tt ;
m = grad[i][j] ;
if (m>=0 && m<mm) m = mm;
if(m<0 && m>-mm) m = -mm;
n = orie[i][j];
if(absl(n/m)>nn) tmp=nn;
else tmp = n/m;
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o = atan(tmp)+PI/2.0;
g = sqrt(m*m+n*n);
grad [i][j] = g;
orie[i][j] = o;

}
}

maxo = 0.0;
maxg = 0.0;
for(i=0; i<DIME; ++i){

for(j=0; j<DIME; ++j){
if (orie Li] [j] >maxo) maxo=orie 	 [j] ;
if (grad [i] [j] >maxg) maxg=grad[i] [j ;

}

}

for(i=0; i<DIME; ++i){
for(j=0; j<DIME; ++j){

orie[i][j]=255.0*orie[i][j]/maxo;
grad Li] [j] =255. 0*grad [i] [j] /maxg;

}
}

}

defl(i,l,m)
int i,*1,*m;
{

if((i-1)<0){
*1=0;
*m=1-i;

}else{
*1=i-1;
*m=0;

}
}

defh(i,h)
int i,*h;
{

if((i+1)>=DIME){
*h=DIME-1;

}else{
*h=i+1;

}
}

float absl(x)
float x;
{

if(x>0){
return x;

}else{
return -x;
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}
}

gray(tmp)
float tmp[DIME] [DIME];
{

int i,j;
float max,min;

max=64;
min=0;

/*
for(i=0; i<DIME; ++i){
for(j=0; j<DIME; ++j){

if (tmp [l] [j]>max) max = tmp [i] [j] ;
if(tmp[i][j]<min) min = tmp[i][j];

}
}

*/
for(i=0; i<DIME; ++i){
for(j=0; j<DIME; ++j){
tmp[i][j] = 255.0*(tm[i][j]-min)/(max-min);
if(tmp[i] [j]>255) tmp[i][j]=255;

}

}
}

snr(orig,proc)
float orig[DIME] [DIME];
float proc[DIME] [DIME];
{

int 	 i,j;
float snr,m;

snr=0.0;

for(i=0; i<DIME; ++i){
for(j=0; j<DIME; ++j){
m = orig [i] [j] -proc [i] [j] ;
snr+=m*m;

}
}
snr = log10(((GREY-1)*(GREY-1)/snr)*DIME*DIME);
printf("SNR = %.8.3f(dB)\n",snr);

}

initmask(mask)
float mask[MD][MD];
{

float m;
int i,j;
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for (i=-MD/2 ; i<=MD/2; ++i){
for(j=-MD/2; j<=MD/2; ++j){

m = ((float) (i*i+j*j) ) / VARI;
mask [i+MD/2] [j+MD/2] = (m-2 .0)*exp (-m/2 . 0) ;

}}

A.5 Curve Tracking VZ3SEG.0
#include "def.h"

tracking()
{

int i,j,idx;
int *p,*cx,*cy ;
int ii;

p = (int *) malloc(sizeof(int));
cx = (int *) malloc(sizeof(int));
cy = (int *) malloc(sizeof(int));

for (i=0 ; i<DIME; ++i){
for (j=0 ; j<DIME; ++j

img[i] [j] = 0;
}

}

idx = 0;
f or (i=0 ; i<DIME; ++i){

for(j=0; j<DIME; ++j){
*p = 1;
*cx = 0;
*cy = 0;
if (grad [i] [j]<HGATE) continue;
s [idx] [0] [*p] = i ;
s [idx] [1] [IT] = j ;
++*p ;

move(i,j,idx,p,cx,cy);
if(*p> SHORT){
s[idx][0][0] = (int) (*cx/(*p)+0.5);
s[idx][1][0] = (int) (*cy/(*p)+0.5);
s [idx] [2] [0] = *p ;

img Es [idx] [0] [0] ] Cs [idx] [1] [0] = 255 ;
img Es [idx] [0] [0]+1] [s [idx] [1] [0]-1] = 255;
img[s [idx] [0] [0] - 1] Cs [idx] [1] [0] +1] = 255;
img [s [idx] [0] [0]+1] Cs [idx] [1] [o] +11 = 255;
img[s [idx] [0] [0] -1] [s [idx] [1] [0]-1] = 255;
for(ii=1;ii<=*p;++ii){
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img[s[idx] [0] [ii]] [s[idx] [1] [ii]] = 255;
}

++idx;
if(idx-1 > MAX_SEG){
printf("Too many segments!\n");
exit(0);

}

}
}

}
segn = idx;

}

move(i,j,idx,p,cx,cy)
int i,j,idx;
int *p,*cx,*cy;
{

int is,js;
int ish,jsl,jsh;
int m;

defl(j,&jsl,&m);
defh(i,&ish);
defh(j,&jsh);
for(is=i; is<=ish; ++is){

for(js=jsl; js<=jsh; ++js){
if(is==i && js<=j) continue;
if(grad[is][js]<LGATE II

absl(orie[is] [js]-orie[i][j])>ANGLE)
continue;

s [idx] [0] [*p] = is ;
*cx += is;
s [idx] Ell [*p] = j s
*cy += js;
grad[is] [js] =0; /* IMPORTANT */
++41);

if(*p > LENGTH){
printf("Too many points in the segment!\n");
exit(0);

}
move(is,js,idx,p,cx,cy);
break;

}

}
}

A.6 Generalized Hough Transform VZ4HOU.0
#include "def.h"
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hough()
{

int cx,cy;
int idx,p;
int len;

for(idx=0; idx<segn; ++idx){
cx = s[idx] [0] [0] ;
cy = s [idx] [1] [0] ;
len = s[idx][2][0];
for(p=1; p<=len; ++p) {

s [idx] [2] [p] = orie [s [idx] [0] [p]] [s [idx] 	 [p] ;
s [idx] [0] [p] -= cx;
s [idx] [l] [p] -= cy;

}

}

A.7 Matching Process VZ5SIM C
#include "def.h"
#include <stdio.h>

sim(sma,sem,ss,ses)
int sma[MAX_SEG][3][LENGTH], sem;
int ss[MAX_SEG][3][LENGTH], ses;
{

int hbuf;
int cenxm, cenym, cenxs, cenys;
int idxm, idxs, lenm, lens;
int lmp, lsp;
int 	 , j ;
int tmpx, tmpy;

for(idxm=0; idxm<sem-1; ++idxm){
cenxm = sma [idxm] [0] [0] ;
cenym = sma [idxm] [1] [0] ;
lenm = sma [idxm] [2] [0] ;
for(idxs=0; idxs<ses-1; ++idxs){

hbuf = 0;
cenxs = ss [idxs] [0] [0] ;
cenys = ss [idxs] [1] [0] ;
lens = ss [idxs] [2] [0] ;
if(absl(cenxm-cenxs)>15*sqrt(VARI)

absl(cenym+DIPAT-cenys)>15*sqrt(VARI)) continue;
for(lmp=1; lmp<=lenm; ++lmp){
for(lsp=1; lsp<=lens; ++lsp){

if (absl (sma [idxm] [2] [imp] -ss [idxs] [2] [lsp]) >ANGLES )
continue;
tmpx = cenxm+smalidxm][0][lm0-ss[idxs][0][lsp];
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tmpy = cenym+sma [idxm] [1] [imp] -ss [idxs] [1] [lsp] ;
if(absl(tmpx-cenxm)<1 && absl(tmpy-cenym)<1)
++hbuf;

}
}

if(hbuf/lenm>SIMS){
for(lmp=1; lmp<=lenm; ++limp)

image[cenxm+sma[idxm][0][lmp]]
[cenym+sma[idxm][1][lmp]] = 255;

for(lsp =1; lsp<=lens; ++lsp)
image [cenxs+ss [idxs] [0] [isp] ]

[cenys+ss [idxs] [1] [lsp]] = 255 ;
}

}

}
}

61



Appendix B

Simulation Results
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Figure B.1: Original Image of Tab
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Figure B.2: Original Image of Jack
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Figure B.3: Original Image of Screwdriver
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Figure 13.4: Zero-Crossings of Tab at (3-2 = 30
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Figure B.5: Orientation of Tab Zero-Crossings at σ2= :30
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Figure 13.6: Curve-Segmnets of Tab at σ 2  = 30
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Figure B.7: Disparity Picture of Tab at U 2 = :30



Figure B.8: Zero-Crossings of Jack at a' = :30



Figure B.9: Orientation of Jack Zero-Crossings at a 2 	30



Figure B.10: Curve-Segmnets of Jack at a 2 :30
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Figure B.11: Disparity Picture or Jack at (3-2 = 30
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Figure 13.12: Zero-Crossings of Screwdriver at o = :30



Figure

Orientation of Screwdriver Zero-Crossings at a2 = 30
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figure_ B.14: Curve-Segmnets or Screwdriver at σ2 = 30
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Figure B.15: Disparity Picture of Screwdriver at a' 	 30



Figure B.16: Zero-Crossings of Tab at (7 2 = 20



Figure B.17: Orientation of Tab Zero-Crossings at o = 20



Figure B.18: Curve-Segmnets of '
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Figure B.19: Disparity Picture of Tab at o-2 20
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Figure B.20: Zero-Crossings of Jack at a.' = 20
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Figure B.21: Orientation of
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Figure B.22: Curve-Segmnets of Jack at σ2= 20



Figure B.23: Disparity Picture of Jack at σ 2 = 20
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Figure B.24: Zero-Crossings of Screwdriver at σ 2 = 20
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Figure B.25:

Orientation of Screwdriver Zero-Crossings at σ 2 = 20
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Figure B.26: Curve-Segmnets of Screwdri
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Figure B.27: Disparity Picture of Screwdriver at σ 2 = 20
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Figure B.28: Zero-Crossings of Tab at o -2 = 10



Figure B.29: Orientation of Tab Zero-Crossings at 0 -2 	10



Figure B.30: Curve-Segmnets of Tab at σ  2 = 10
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Figure B.31: Disparity Picture of Tab at a-2 	10
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Figure B.32: Zero-Crossings of Jack at a2 	10



Figure B.33:

Orientation of Jack Zero-Crossings at o -2 	[0
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Figure B.34: Curve-Segnmets of Jack at σ2 = 10
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Figure B.35: Disparity Picture of Jack at a.2 = 10
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Figure B.36: Zero-Crossings of Screwdriver at σ 2 = 10



Figure B.37:

Orientation of Screwdriver Zero-Crossings at a' = 10
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Figure B.38:

Curve-Segmnets of screwdriver at σ .2 = 10
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Figure B.39: Disparity Picture of Screwdriver at o.2	10
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