Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABETRACT

Title of Thesis: Thermal Decomposition of 1,1,2Trichloroethane in Hydrogen in Tubular Flow Reactors at Atmospheric Pressure

Chen-Chung Yeh, Master of Science in Chemical Engineering, in 1989

Thesis Directed by Dr. Joseph W. Bozzelli
The decomposition of 1,1,2-trichloroethane in a hydrogen gas bath was carried out at 1 atmosphere total pressure in three different surface to volume ratio flow reactors. Temperature ranged from 440 to $850{ }^{\circ} \mathrm{C}$ and the residence times studied were in the range 0.2 - 2.3 seconds. Application of the first order rate expression to this data yields a linear relationship for each temperature studied and thus global rate constants for loss of reactant were determined.

It was found that conversion of the reagent was a function of both temperature and residence time. The major products observed are 1,2-dichloroethylene (CHClCHCl), 1,1dichloroethylene $\left(\mathrm{CH}_{2} \mathrm{CCl}_{2}\right)$, vinyl chloride $\left(\mathrm{CH}_{2} \mathrm{CHCl}\right)$, chloroethane $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}\right)$, ethylene, and HCl , with methyl chloride $\left(\mathrm{CH}_{3} \mathrm{Cl}\right)$, dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, and benzene as minor products. Complete decay (96%) of the reagent occurs at $850{ }^{\circ} \mathrm{C}$ and 1.1 sec residence time, where the principal products are ethylene and HCl. Most of the chlorinated by-products have been destroyed at this reaction time at $850{ }^{\circ} \mathrm{C}$ except vinyl chloride (1.0%) and traces of chloroethane.

A detailed kinetic scheme was formulated considering all reaction products detected by GC. A kinetic reaction mechanism, composed of 73 elementary reactions and 37 species, was developed and used to model results obtained from the experimental reaction system. The detailed kinetic reaction mechanism was based on thermochemical principles and transition state theory. This mechanism is shown to fit the experimental results quite well.

Rate constants for the following reactions were determined by optimization of the reaction mechanism to the experimental data.
A (1/s) E (Kcal/mol)
$\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}--->\mathrm{CHClCHCl}+\mathrm{HCl} 9.5 \mathrm{E} 12 \quad 55.3(\triangle \mathrm{Hr}+41)$
$\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}--->\mathrm{CH}_{2} \mathrm{CCl}_{2}+\mathrm{HCl} 4.7 \mathrm{El2} 55.3(\triangle \mathrm{Hr}+41)$
$\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}-->\mathrm{CH}_{2} \mathrm{ClCHCl}+\mathrm{Cl} 2.6 \mathrm{El} 577.7$ ($\triangle \mathrm{Hr}$)
$\mathrm{CH}_{2} \mathrm{ClCHCl}_{2} \longrightarrow \mathrm{CH}_{2} \mathrm{CHCl}_{2}+\mathrm{Cl} \quad 1.6 \mathrm{El5} 81.4$ ($\triangle \mathrm{Hr}$)
$\mathrm{CH}_{2} \mathrm{ClCHCl}_{2} \longrightarrow \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{CHCl}_{2} \quad 4.2 \mathrm{El7} 89.1$ ($\triangle \mathrm{Hr}$)
For the reaction of $1,1,2$-trichloroethane to $\mathrm{CH}_{2} \mathrm{ClCHCl}$
+Cl , the energy of activation determined in this study
provides a bond energy for the $\mathrm{CH}_{2} \mathrm{CHCl}-\mathrm{Cl}$ bond of 77.7
kcal/mole.

THERMAL DECOMPOSITION

OF 1,1,2- TRICHLOROETHANE IN HYDROGEN IN TUBULAR FLOW REACTORS AT ATMOSPHERIC PRESSURE

BY
 CHEN-CHUNG YEH

Thesis submitted to the faculty of the Graduate School of the New Jersey Institute of Technology in partial fulfillment of the requirement for the degree of Master of Science in Environmental Science

1989

APPROVAL SHEET

Thesis and Abstract Approved:

,_-xom, ,

$$
\text { May } 10,1989
$$

Richard Parker
Professor
Dep. Chemical Engineering, Chemistry and Environmental Science
$5 / 10 / 89$
Piero Armenante
Assistant Professor
Dep. Chemical Engineering, Chemistry and Environmental Science

Name: Chen-Chung Yeh
Permanent Address:

Degree and Date to be conferred: Master of Science in Chemical Engineering 1989

Date of Birth:
Place of Birth:

Collegiate Institutions attended
Dates

77-82
B.S.Jul., 82

Taipei Institute of Technology

Major: Chemical Engineering

New Jersey institute of Technology $87-89$ M.S. May, 89
Major: Chemical Engineering

I appreciate to Dr. Joseph W. Bozzelli for his advice and patience. I am deeply indebted to him for the opportunities which he made available to me., I acknowledge the helpful corrections and productive comments by Dr. R. Parker and Dr. P. Armenante.

I am eternally grateful to my parents for their endless love and inspiration. I am glad to thank all of my colleagues at Kinetics Research Laboratory of the New Jersey Institute of Technology, especially, Dr. Javad Tavakoli and YangSoo Won for their support and guidance.

CONTENTS

page
I. Introduction 1
II. Previous Studies 5
III. Theory 12
A. Tubular Flow Reactor Theory 12
B. Decoupling of The Wall and Bulk Reaction Rate Constants 14
C. Rate of Reaction Predicted by the Theories 15
D. Prediction of Rate Constants for Radical Addition and Combination Reactions by Bimolecular QRRK Theory 20
IV. Experimental Method 29
A. Quantitative Analysis by Gas Chromatography 31
B. Temperature Control and Measurment 36
C. Hydrochloric Acid Analysis 38
D. Mechanism Modeling by CHEMKIN Program 40
V. Results and Discussion 43
A. Reaction of 1,1,2-trichloroethane with Hydrogen 43
B. Reagent Conversion and Product Distribution 52
C. Detailed Kinetic Mechanism and Modeling 65
. Kinetic Mechanism 65
. Quantum RRK 68
VI. Conclusion 95
VII. References 97
Appendix 101

LIST OF TABLES

1. Average Retention Time of Product 35
2. Relative Rresponse Factors for FID 37
3. Chlorine Material Balance 58
4. Product Maxima Formation Temperatures and Bond Energies between Carbon and Chlorine in This Reaction System 62
5. Carbon Material Balance 63
6. Detailed Mechanism for $\mathrm{CH}_{2} \mathrm{ClHCCl}_{2} / \mathrm{H}_{2}$ Reaction System 87
7. Sensitivity Analysis of Mechanism Reactions 85

LIST OF FIGURES

1. Energy Diagram for Pressure-dependent Reaction 23
2. Experimental Set Up 30
3. Injection of gas samples by means of a gas sampling valve.
4. $\underset{\substack{\text { Sample Chromatogram of } \\ \text { Decomposition }}}{\mathrm{CH}_{2} \mathrm{ClCHCl}_{2} / \mathrm{H}_{2}} 34$
5. Temperature Profile (axial) 39
6. Decay of $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$ vs Time for 1.05 cm ID Reactor 44
7. Decay of $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$ vs Time for 0.40 cm ID Reactor 45
8. First Order Decay Plot for $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2} / \mathrm{H}_{2}$ 1.05 cm ID Reactor
9. First Order Decay Plot for $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2} / \mathrm{H}_{2}$ 0.40 cm ID Reactor
10. Arrhenius Behavior of $\mathrm{k}_{\exp }$ for $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2} \quad 49$
11. Arrhenius Behavior of $k_{b} \& k_{w}$ for $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2} \quad 51$
12. Experimental Product Distribution versus Temperature in $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2} / \mathrm{H}_{2}$ at Time=1.1 sec.53
13. Experimental Product Distribution versus Time in $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2} / \mathrm{H}_{2}$ at Temp $=600{ }^{\circ} \mathrm{C}$
14. Experimental Product Distribution versus Time in $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2} / \mathrm{H}_{2}$ at $\mathrm{Temp}=630{ }^{\circ} \mathrm{C}$
15. $\mathrm{CHClCHCl}, \mathrm{CH}_{2} \mathrm{CCl}_{2}, \mathrm{CH}_{2} \mathrm{CHCl}$, and $\mathrm{CH}_{2} \mathrm{CH}_{2}$ Product Distribution versus Temperature
16. CHClCHCl Product Distribution versus Time at Temperatures 600,630 , and $660^{\circ} \mathrm{C}$
17. $\mathrm{CH}_{2} \mathrm{CCl}_{2}$ Product Distribution versus Time at Temperatures 600,630 , and $660^{\circ} \mathrm{C}$
18. Energy Level Diagram for $\left[\mathrm{CH}_{2} \mathrm{ClCHCl}\right]{ }^{\#}$ from $\mathrm{CHClCHCl}+\mathrm{H}$
19. Energy Level Diagram for $\left[\mathrm{CH}_{2} \mathrm{CHCl}_{2}\right]^{\#}$ from $\mathrm{CH}_{2} \mathrm{CCl}_{2}+\mathrm{H}$
20. Results of Activated Complex Theory Calculation for Reaction CHClCHCl +H 72
21. Results of Activated Complex Theory Calculation for Reaction $\mathrm{CH}_{2} \mathrm{CCl}_{2}+\mathrm{H}$ 73
22. Model Prediction: Product Distribution versus Temperature in $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2} / \mathrm{H}_{2}$ at Time $=1.1 \mathrm{sec}$. 77
23. Comparsion: Model Prediction \& Experimental Product Distribution versus Temperature in $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2} / \mathrm{H}_{2}$ at Time $=1.1 \mathrm{sec}$. 78
24. Model Prediction: Product Distribution versus Time in $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2} / \mathrm{H}_{2}$ at Temp $=600{ }^{\circ} \mathrm{C}$ 79
25. Model Prediction: Product Distribution versus Time in $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2} / \mathrm{H}_{2}$ at Temp $=630{ }^{\circ} \mathrm{C}$ 81
26. Comparsion: Model Prediction '\& Experimental Product Distribution versus Temperature in $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2} / \mathrm{H}_{2}$ at Time $=1.1 \mathrm{sec}$. 83

I. INTRODUCTION

The disposal of chlorinated hydrocarbons has become an issue of significant environmental concern, with special focus on species such as chlorinated plastics, PCB's, chlorinated dry cleaning solvents, flame inhibitors, and other chlorinated chemicals. Many chlorocarbons are thought to be toxic and in some cases carcinogenic. This includes 1,1,2-trichloroethane ${ }^{\langle 1\rangle}$. Long term exposure to even low level of these compounds may have significant health effects ${ }^{<2>}$.

A number of different technologies have been developed or are under development for effective and safe destruction of chlorocarbons. Incineration has been demonstrated in both field testing of operating incinerators ${ }^{<3>}$ and bench scale testing of turbulent diffusion spray flames ${ }^{<4>}$ as an effective technique for eliminating organic hazardous waste ${ }^{<1>}$. For chlorinated hydrocarbons, this technique may destroy all the initial parent species. However, the reaction products are not all converted to carbon dioxide, as these combustion facilities are often run in an oxygenrich environment where there is no stable and desirable end adduct for chlorine. If an incinerator with excess oxygen operates under less than optimum conditions, some chlorinecontaining carbon products can usually be found in the effluent. This includes partially decomposed and oxidized fragments of the initial chlorocarbon. For example, mixtures of chlorinated and nonchlorinated principal organic
hazardous constituents (POHCs) in the waste can lead to the formation of more diverse chlorinated compounds than are formed from a single chlorinated poHC such as carbon tetrachloride alone ${ }^{\langle 5\rangle}$.

It is important to note that, the $\mathrm{HO}-\mathrm{H}^{\prime}$ bond in water is stronger than the $\mathrm{H}-\mathrm{Cl}$ bond, therefore the $\mathrm{O}_{2}-r i c h$ conditions can limit hydrogen availability to cl . Another way of looking at the problem is that oxygen and $C l$ are both competing for the available fuel, i.e. hydrogen, and by limiting the H available to oxygen, chlorocarbons serve as flame inhibitors. The $c-C l$ bond is the next strongest when compared with other possible chlorinated products in an combustion environment such as $\mathrm{Cl}-\mathrm{Cl}, \mathrm{N}-\mathrm{Cl}$, or $\mathrm{O}-\mathrm{Cl}$ bonds. Consequently, c-cl may persist in an oxygen rich or hydrogen limited atmosphere ${ }^{\langle 6\rangle}$. This is one reason why emission of toxic chlorine-containing organic products persists through an oxygen-rich incineration, as carbon species are one of the more stable sinks for chlorine.

It might also be advantageous to utilize a reducing atmosphere containing excess hydrogen to destroy and detoxify chlorocarbons instead of an oxidizing atmosphere.

This would:

1. allow thermodynamically favorable paths to formation of HCl.
2. possibly reduce fuel requirements, because hydrocarbons (fuels) are product in this reaction system (HCl lost

HC's produced). In addition, the reactions may be made to run in an exothermic regime, and this scheme may also effectively recycle the carbon species for use as a fuel. This could act as an energy resource and eliminate the unnecessary dumping of additional' CO_{2} into the atmosphere.
3. provide much-needed kinetic parameters and reactionproduct information important to understanding the chemistry of the hitherto largely unexplored carbon/hydrogen/chlorine chemical systems.

The possible drawback to this process is the cost and availability of hydrogen. While acknowledging this, a study of these reactions could demonstrate what reaction products are formed and the feasibility of the chemical mechanism as a means of converting (detoxifing) chlorocarbons. This might also lead to use of less-expensive hydrogen sources such as water vapor ${ }^{\langle 6\rangle}$ or methane ${ }^{\langle 7\rangle}$.

More importantly, this study provides experimental and theoretical insights into the reactions mechanisms for this elementary carbon, chlorine, and hydrogen chemical system. The mechanisms and kinetic parameters determined are useful to flame, incinerator, and thermal reaction modeling studies as part of larger more complex systems. The current study also develops a detailed reaction model which includes Activated Complex Quantum Rice Ramsberger Kassel ${ }^{<33>}$ analysis on several important addition, beta .scission, and recombination reactions of hydrogen atom with radicals or
olefins. QRRK theory calculates probability of reaction vs. stabilization as a function of pressure and temperature. Thus activated complex QRRK analysis permits evaluation of reacting system over a wide range of temperatures and pressures.

The use of QRRK allows us to accurately treat combination reactions of atoms and radicals. plus addition reaction of atoms or molecules or radicals to unsaturates with a theory based upon fundamentals of thermodynamics, statistical mechanics and transition state kinetics. The fundamental bases allow use of the model well beyond the experimental calibration boundary conditions. In this study, three different reactor diameters $0.4,1.05$, and 1.6 cm were studied to vary reactor surface to volume ratio (S/V). This varied ratio allows one to decouple apparent wall and bulk phase decomposition rates using a plug flow assumption based upon the work of Kaufman ${ }^{\langle 8\rangle}$ for a pseudo-first order reaction system. We have performed detailed experimental studies on the 1,1,2-trichloroethane/hydrogen system (1:138 mole ratio, respectively). A detailed kinetic reaction mechanism was developed and used to model results obtained from the experimental reaction system.

II. Previous Studies

Thermal treatment has received a significant amount of attention for conversion of unwanted chlorinated hydrocarbons (ClHC) in the last decade. Several reports are found on gas phase reaction of chlorohydrocarbons in a reducing atmosphere of methane. Murgulescu and Weissman <910> studied the effect of methane on pyrolysis of chloroform and reported that production of vinyl chloride is increased by addition of CH_{4} to the system. Benson and Weissman <ll> investigated high temperature (1200-1300 ${ }^{\circ} \mathrm{K}$) reaction of methyl chloride and methane. They reported c_{2} hydrocarbons as the major products of their experiment. An overall review of the related and important investigations is presented in the following paragraphs.

Benson and Weissman <12> studied the pyrolysis of pentachloroethane to determine the kinetic parameters and elucidate elementary reactions. They reported different mechanisms for the inhibited (presence of excess toluene) and uninhibited reaction systems. Chain initiation for uninhibited pyrolysis of $\mathrm{C}_{2} \mathrm{HCl}_{5}$ was reported to be heterogeneous (wall) $\mathrm{C}-\mathrm{Cl}$ bond breaking:

$$
\mathrm{C}_{2} \mathrm{HCl}_{5}-\cdots \quad \mathrm{Cl}+\mathrm{C}_{2} \mathrm{HCl}_{4}
$$

While for inhibited reaction homogeneous $\mathrm{C}-\mathrm{Cl}$ bond cleavage is dominant and accounts for 50% of the reaction. The $\mathrm{C}-\mathrm{C}$ bond breaking and the molecular HCl elimination pathways were reported to have comparable rates to homogeneous $\mathrm{C}-\mathrm{Cl}$ bond cleavage and contribute to $\mathrm{C}_{2} \mathrm{HCl}_{5}$ consumption.

Barton and onyon<13> (1950) studied 1,1,1trichloroethane thermal decomposition in batch reactors in temperature range 635.7 to $707.0{ }^{\circ} \mathrm{K}$ and pressure range 10 to 120 mm Hg to give primary products 1,1 -dichloroethylene and HCl. They found that the decomposition rate'in a packed reactor was slower than in an empty reactor. They proposed that the packed reactor has a larger surface to volume ratio so the recombination of some radicals to terminate the chain reactions occured at a faster rate and slowed the overall process. The initiation steps suggested by Barton and Onyon follows:

Their results showed that the wall inhibited the decomposition reaction because the proposed "key" free radical $\mathrm{CH}_{2} \mathrm{CCl}_{3}$ was consumed faster at the wall. They reported that the first order rate constant for homogeneous unimolecular decomposition can be represented by 10 * EXP($54,000 / \mathrm{RT}$) sec^{-1}.

Benson and spokes ${ }^{<14\rangle}$ (1967), using the very low pressure technique, covered a high temperature range 890 to $1265{ }^{\circ} \mathrm{K}$ (so that the reactor was operated at gas flow rates from 10^{15} to 10^{16} molecules/sec. and most of the collisions made by reactant molecules were with the wall rather than with other gas molecules) to estimate the homogeneous rate constant of the thermal decomposition of 1,1,1-
trichloroethane at high pressure limit. The corresponding high pressure rate equation is $10^{13.8} \mathrm{e}^{(-51,700 / R T)} \mathrm{sec}^{-1}$.

Lee et.al.<15> studied thermal (800-1500 of) destruction rates of four organic compounds (yinyl chloride, ethyl acrylate, acrolein, and benzene) in air employing a 0.9 mm ID, 135 cm long quartz tube flow reactor. Compounds were run at 1000 ppm in air under uniform temperatures and reaction times of $0.1-1.8$ seconds. They $<15>$ reported that, at temperatures above $1450{ }^{\circ} \mathrm{F}, 99.8 \%$ of $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}$ was destroyed and no benzene was detected (i.e. more than 2 ppm). Higher temperature (1700-1800 ${ }^{\circ} \mathrm{F}$) was required for complete destruction of ethyl acrylate and accolein.

Louw et.al. <16> investigated thermal dechlorination of (poly) chlorinated organic compounds $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{p}\right.$ - and o$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2}, \mathrm{E}-\mathrm{CHCl}=\mathrm{CHCl}, \quad \mathrm{C}_{2} \mathrm{Cl}_{4}$, and $1,2-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$) in hydrogen atmosphere. Experiments were performed at 1 atm pressure, using a quartz flow reactor and a temperature range of 500$1000{ }^{\circ} \mathrm{C}$. They suggested the possibility of more than 99.9% conversion in an atmosphere of excess hydrogen within a few minutes (A long time relative to incineration residence times) in a plug flow reactor at $1000{ }^{\circ}{ }^{K}$. Major products, for residence times of 5.9 to 10.6 seconds and various hydrogen/chlorocarbon ratios) were found to be chlorine free hydrocarbons $\left(\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \quad \mathrm{C}_{6} \mathrm{H}_{6}\right)$ or parent compounds with a smaller number of chlorine atoms. They have also postulated mechanisms for methane formation by pyrolysis of benzene and chlorobenzene in an atmosphere of hydrogen with
relative concentration ratios for $\mathrm{C}_{6} \mathrm{H}_{6}: \mathrm{H}_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}: \mathrm{H}_{2}$ of about 1: $6^{\langle 17\rangle}$.

Chuang and Bozzelli<19-20> studied reactions of chloroform and 1,1,2-trichloroethane with hydrogen or water vapor in a tubular reactor, at atmospheric pressure, and a temperature range of 550 to $1100{ }^{\circ} \mathrm{C}$. Reagent loss and product formation were monitored by using an on-line gas chromatograph, where batch samples were analyzed by GC/mass spectrometry. The major products of reactions of 1,1,2trichloroethane with chloroform and hydrogen above $850{ }^{\circ} \mathrm{C}$ were observed as the thermodynamically stable species HCl , CH_{4}, and carbon (solid). The more stable chlorinated byproducts (chloromethane and vinyl chloride) were also observed at low concentrations, and higher temperatures were required for the subsequent decomposition of $\mathrm{CH}_{3} \mathrm{Cl}$ and $C_{2} \mathrm{H}_{3} \mathrm{Cl}$. Complete destruction of the parent reagent (chloroform and 1,1,2-trichloroethane) was observed at temperatures near $700{ }^{\circ} \mathrm{C}$ with residence times slightly over 1 second. The global activation energies were determined to be $48.6 \mathrm{kcal} / \mathrm{mol}$ for reaction of chloroform with hydrogen and $48.8 \mathrm{kcal} / \mathrm{mol}$ for reaction of $1,1,2$-trichloroethane with hydrogen.

Chang<21-22> investigated the reactor modeling, calculation of homogeneous bulk, and wall rate constants from a laminar flow reactor analysis on his experimental

temperature range 555 to $681{ }^{\circ} \mathrm{C}$. The activation energies of bulk and wall reaction were determined to be $50.6 \mathrm{Kcal} / \mathrm{mole}$ and $76.0 \mathrm{Kcal} / \mathrm{mole}$. A factors of $1.23 * 10^{13} \mathrm{~s}^{-1}$ and 5.01 * $10^{17} \mathrm{~s}^{-1}$ respectively were reported. The major products from the reaction were observed to be 1,1 -dichloroethylene, chloroform, 1,1-dichloroethane, trichloroethylene, dichloromethane, 1,1,1,2-tetrachloroethane, and HCl.

The thermal reaction of chloroform and trichloroethylene in a hydrogen atmosphere utilizing tubular flow reactor , ambient pressure, and a temperature range of 550-1000 ${ }^{\circ} \mathrm{C}$ was investigated by Mahmood ${ }^{<23>}$ in 1985 . He reported $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{CH}_{4}, \mathrm{HCl}$, and benzene as major products of the chloroform/trichloroethylene/hydrogen reaction system. No chlorinated hydrocarbons were observed in the effluent of the reactor above $850{ }^{\circ} \mathrm{C}$ for reaction time of less than one second.

Ritter<24> performed studies on the thermal decomposition of chlorobenzene in an atmosphere of hydrogen which report that complete destruction of chlorobenzene in a hydrogen environment can be achieved at a temperature of $1273^{\circ} \mathrm{K}$ and residence time of one second. The major products were identified as HCl , benzene, and $\mathrm{C}(\mathrm{s})$.

Tsao ${ }^{<25>}$ studied the thermal decomposition of dichloromethane with hydrogen over the temperature range of 700 to $950{ }^{\circ} \mathrm{C}$, using almost the same apparatus system we did. Activation energies of bulk and wall. reaction on hydrogen reaction with dichloromethane are $50.0 \mathrm{Kcal} / \mathrm{mole}$,
57.8 Kcal/mole A factors of $2.84 * 10^{10}$ and $2.65 * 10^{10}$ respectively were reported. The major products of the $\mathrm{CCl}_{4} / \mathrm{H}_{2}$ reaction were $\mathrm{CHCl}_{3}, \mathrm{HCl}$, and $\mathrm{C}_{2} \mathrm{Cl}_{6}$. Chlorine free hydrocarbons were not detected, except at temperatures over $800^{\circ} \mathrm{C}$ and one second residence time. Major products reported for the $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2}$ reaction system above $950{ }^{\circ} \mathrm{C}$ and one second residence time were $\mathrm{CH}_{4}, \mathrm{HCl}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$, and benzene.

The decomposition of dichloromethane/1,1,1trichloroethane mixture in a hydrogen bath gas carried out at 1 atmosphere total pressure in a tubular flow reactor was examined by Won ${ }^{<26\rangle}$ (1988). This study demonstrated that selective formation of HCl can result from thermal reaction of chlorocarbon mixtures and showed that synergistic effects of $1,1,1$-trichloroethane decomposition accelerate the rate of dichloromethane decomposition. There is strong interaction of decay products from 1,1,1-trichloroethane with parent dichloromethane. Results also suggest that radicals which are more easily produced from 1,1,1trichloroethane decomposition initiate dichloromethane decomposition. These radical reactions decrease the dichloromethane activation energy similar to the role of a catalyst. A detailed kinetic reaction mechanism was developed and used to model the result obtained from the experimental reaction system.

Reactions of methylene chloride diluted in methane and argon and a mixture of methylene chloride +
trichloroethylene diluted in methane and argon were studied by Tavakoli ${ }^{<7>}$ (1988). First order plug flow model was utilized to analyze the experimental data. In addition the homogeneous and wall rate constants were decoupled and separately evaluated. The following overall 'rate equations were found to fit the reaction systems studied:

Methylene Chloride in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{C}_{\mathrm{H} 4} / \mathrm{Ar}$:

$$
\begin{equation*}
k=1.166 E 09 * \operatorname{Exp}(-44.85 / R T) \tag{1/sec}
\end{equation*}
$$

Methylene Chloride in $\mathrm{C}_{2} \mathrm{HCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{C}_{\mathrm{H} 4} / \mathrm{Ar}$:

$$
k=8.11 E 08 * \operatorname{Exp}(-43.2 / R T)
$$

Trichloroethylene in $\mathrm{C}_{2} \mathrm{HCl}_{3} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{C}_{\mathrm{H} 4} / \mathrm{Ar}$:

$$
\mathrm{k}=1.13 \mathrm{E} 05 * \operatorname{Exp}(-30.67 / \mathrm{RT}) \quad(1 / \mathrm{sec})
$$

A detailed kinetic reaction mechanism was developed and used to model the reaction systems and fit the experimentally determined product distribution.
III. THEORY
A. Tubular Flow Reactor Theory

A comparison of the kinetic values found by plug flow analysis with values obtained by applying both the numerical and analytical solution of continuity equation for first order kinetics with laminar flow studied by chang and Bozzelli<22>. This study showed that the plug flow assumption for our experimental system is accurate to with in 5% to 7% for all temperatures where kinetic information was obtained.

The idealized model of the plug flow reactor assumes that an entering fluid element moves as a plug of material that completely fills the cross section. However, we will limit our discussion to the simplest possible model: the plug flow model. Nontheless, when we attempt to compare the results predicted by the model with what we observe in the real world, we should discuss the deviations from ideal behavior in three categories ${ }^{\langle 27\rangle}$:

1. There will be velocity gradients in the radial direction so all fluid elements will not have the same residence time in the reactor.
2. There will be an interchange of material between fluid elements at different axial positions by virtue of ordinary molecular diffusion and eddy diffusion processes arising from turbulence and/or the influence of any packing in the bed.
3. There may be radial temperature gradients in the reactor that arise from the interaction between the energy released by reaction and convective transport of energy.

To estimate the deviation of a tubular flow reactor with axial diffusion from the plug flow assumption, Reman ${ }^{<28>}$ has used Danckwerts solution of a differential equation which describes a plug flow reactor following first-order kinetics. He found that for $D / v l<0.1$ the reactor follows the plug flow assumption, and for $D / v 1>2.0$ the reactor behaves like a well-mixed one ${ }^{<29>}$. Here D is diffusion coefficient, v is mean velocity, l is reactor length. In addition, the ratio of actual reactor to plug flow reactor should approach 1 .

$$
\frac{\mathrm{v}_{\mathrm{act}}}{\mathrm{v}_{\mathrm{pf}}}=1+\mathrm{kt}-\frac{\mathrm{D}}{\mathrm{vl}}
$$

For our reactor, D / vl is always below 0.05 (3.4E-3 - 6.5E-3) and the highest value of the ratio $V_{a c t} / V_{p f}$ was 1.04 . This would be sufficient for the plug flow assumption to hold true if the Reynolds number were in the upper range of laminar flow when molecular diffusion effects in dispersion are negligible compared to the effect of the velocity ${ }^{<30>}$. This is, however, not true for our experiments (We are in the lower laminar flow range).

A more rigorous analysis that is applicable to our system is given in the paper by Poirier and Carr ${ }^{<31>}$. They solved the continuity equations for a tubular flow reactor with radial diffusion first-order kinetics. They propose
that if $D / k R^{2}$ (where R is the radius of reactor, k is the homogeneous rate constant) is equal to or greater than 0.5 , the plug flow approximation is satisfied.
B. Decoupling of the wall and Bulk Reaction Rate Constants

The decomposition of chlorinated hydrocarbons is not only a function of temperature and residence time but also of the radius of the reactor. This means that, the reaction at the wall in addition to the bulk reaction needs to be evaluated if one is occurring.

In order to simplify the formulation of governing equations for a reactor system in which both bulk and wall reactions are present, it is usually assumed that the two reactions are parallel and independent ${ }^{<32\rangle}$. Hence, for the first order reaction of species A one can write:

$$
\begin{align*}
& A----> \text { Products } \\
& \text { Rate }=-\frac{d[A]}{d t}=k_{b} *[A]+k_{W} *[A] *\left[A_{W}\right] \\
&=\left(k_{b}+k_{W} *\left[A_{W}\right]\right) *[A] \tag{1}\\
& k_{\exp }=k_{b}+k_{W} *\left[A_{W}\right] \tag{2}
\end{align*}
$$

Asuming a rapid radical diffusion, Aw can be written as ${ }^{<36>}$:

$$
\begin{equation*}
A_{W}=(S / V) \tag{3}
\end{equation*}
$$

where:

$$
\begin{aligned}
A_{W} & =\text { wall concentration } \\
S / V & =\text { surface to volume ratio } \\
& =2 / R \text { for a cylindrical reactor }
\end{aligned}
$$

From (2) and (3) one obtains:

$$
\begin{equation*}
K_{\exp }=K_{b}+K_{w} *(2 / R) \tag{4}
\end{equation*}
$$

In this equation k_{b} is the first order reaction rate constant for the bulk or homogeneous reaction and k_{w} is the rate constant for the wall or heterogeneous reaction. If we uses several reactors of different radius this equation allows kb and kw to be evaluated. The Arrhenius behavior of each rate constant can then be determined.

C. Rate of Reaction Predicted by the Theories

Experimental values for rates of reaction are generally either in the order of magnitude of, or are below, those predicted by collision theory. Thus collision theory may be used to estimate the upper bound to the expected rate of reaction. Once in a while a reaction is encountered with much higher rates than predicted. This suggests a complex reaction, frequently catalytic. Occasionally, for the elementary reaction between simpler molecules, enough information is available to allow prediction of the rates from transition-state theory. When available, these predictions usually agree more closely with the experiment than do the predictions of collision theory where references to this are presented by Levenspiel <32>.

1. Transiton-State Theory

For many reactions, particularly elementary, the rate expression can be written as a product of a temperature dependent term and a composition term.

A more detailed explanation for the transformation of reactants into products is given by the transition-state theory. The reactants combine to form unstable intermediates called activated complexes which then decompose spontaneously into products or back to reactants. It assumes that an equilibrium exists between the concentration of reactants and activated complex at all times. Further, it assumes the rate of decomposition of complex is the same for all reactions which is given by $k T / h$ where k is the Boltzmann constant and h is the Planck constant. For the forward elementary reaction of a reversible reaction.
we have the following conceptual elementary scheme:

$$
\begin{aligned}
& A+B<==\frac{k_{1}}{k_{-1}}==\Rightarrow \quad A B^{*}-k_{2} \quad A B \\
& K^{*}=\frac{k_{1}}{k_{-1}}=\frac{\left[A B^{*}\right]}{[A][B]}
\end{aligned}
$$

$$
k_{2}=\frac{k T}{h}
$$

The observed rate of the forward reaction is then

$$
\begin{align*}
r_{A B, \text { forward }}= & \begin{array}{c}
\text { (conc. of } \\
\text { activated complex) }
\end{array} \quad \begin{array}{r}
\text { (rate of decomposition } \\
\text { activated complex) }
\end{array} \\
& =-\frac{k T}{h}\left[A B^{*}\right] \\
& =\underset{h}{---1} K^{*} C_{A} C_{B}
\end{align*}
$$

By expressing the equilibrium constant of activated complex in terms of the standard free energy,

$$
\begin{align*}
& \Delta G^{*}=\Delta H^{*}-T \Delta S^{*}=-R T \ln K^{*} \tag{8}\\
& K^{*}=\operatorname{EXP}\left(-\Delta G^{*} / R T\right)=\operatorname{EXP}\left(-\Delta H^{*} / R T+\Delta S^{*} / R\right)
\end{align*}
$$

the rate becomes

$$
\begin{equation*}
r_{A B}, \text { foward }=\frac{k T}{h} \operatorname{EXP}\left(\Delta S^{*} / R\right) \operatorname{EXP}\left(-\Delta H^{*} / R T\right) C_{A} C_{B} \tag{9}
\end{equation*}
$$

Theoretically both ΔS^{*} and ΔH^{*} vary slowly with temperature. Hence, of the three terms that make up the rate constant in Eq. 9, the middle one, $\operatorname{ExP}\left(\triangle S^{*} / R\right)$, is much less temperature-senstive than the other two. We may take it to be constant. For the forward reaction, and the reverse reaction of Eq. 5, we have approximately

$$
\begin{align*}
& \mathrm{k}_{\mathrm{f}}=\mathrm{T} \operatorname{EXP}\left(-\Delta \mathrm{H}_{\mathrm{f}}{ }^{*} / \mathrm{RT}\right) \tag{10}\\
& \mathrm{k}_{\mathrm{r}}=\mathrm{T} \operatorname{EXP}\left(-\Delta \mathrm{H}_{\mathrm{r}}{ }^{*} / \mathrm{RT}\right)
\end{align*}
$$

where $\quad \Delta H_{f}{ }^{*}-\Delta H_{r}{ }^{*}=\Delta H_{R X N}$

2. Collision Theory

The collision rate of molecules in a gas can be found from the kinetic theory of gases. For the bimolecular collisions of like molecules A we have
where $d=$ diameter of molecule, cm
M = mass of molecule, gm
$\mathrm{N}=$ Avogadro's number
$C_{A}=$ concentration of A, mol/liter
$n_{A}=$ number of molecules of A / cm^{3}
$k=$ Boltzmann constant
For bimolecular collisions of unlike molecules in a mixture of A and B, the kinetic theory gives

$$
Z_{A B}=\left(-\left.\left.\frac{d_{A}+d_{B}}{2} \quad \frac{N^{2}}{-10^{6}}\right|_{-} ^{-} 8 \mathrm{kT}\left(-\frac{1}{M_{A}}+\frac{1}{M_{B}}\right)\right|_{A} ^{1 / 2} C_{B}\right.
$$

If every collision between reactant molecules results in the conversion of reactants into product, these expressions give the rate of bimolecular reaction. The actual rate is usually much lower than that predicted, and this indicates that only a small fraction of all collisions result in reaction. Suggesting that only more energetic and violent collisions, those involving energies in excess of a given minimum energy E, lead to a reaction. From the Maxwell Boltzman distribution law of molecular energies the fraction
of all bimolecular collisions that involve energies in excess of this minimum energy is given approximately by $e^{(-}$ E/RT), where E is usually much greater than RT. Since we are only considering energetic collisions, this assumption is reasonable. Thus the rate of reaction is given by

$$
\begin{aligned}
& \text { collision fraction of collisions invol- } \\
& \left.-r_{A}=k \quad C_{A} C_{B}=\text { (rate }\right) x(v i n g \text { energies in excess of } E \text {) } \\
& =z_{A B}-\frac{10^{3}}{N} e^{(-E / R T)} \\
& =\left(-\frac{d_{A}+d_{B}}{2}\right)^{2}-\left.\frac{N}{10^{3}}\right|_{-} ^{-} 8 k T\left(-\frac{1}{M_{A}}+\left.\left.\frac{1}{M_{B}}\right|_{-} ^{-1 / 2}\right|^{(-E / R T)} c_{A} C_{B}\right.
\end{aligned}
$$

A similar expression can be found for the bimolecular collisions between like molecules. For both, in fact for all bimolecular reactions, the above equation shows that the temperature dependency of the rate constant is given by $k=T^{1 / 2} e^{(-E / R T)}$
3. Comparison of Two Theories

It is interesting to note the difference in approach between the transition-state and collision theories. Consider A and B colliding and forming an unstable intermediate which then decomposes into product, or
$A+B$
$A B^{*}$
AB
collision theory views the rate to be governed by the number of energetic collisions between reactants. What happens to the unstable intermediate is of no concern. The theory
assumes that this intermediate breaks down rapidly enough into products so as not to influence the rate of the overall process. Transition-state theory, on the other hand, views the reaction rate to be governed by the rate of decomposition of intermediate. The rate of formation of intermediate is assumed to be governed by collisions plus thermodynamics.It is dependent on equilibrium concentrations at all times. Thus collision theory views the first step to be slow and rate-controlling, whereas transition-state theory views the second step combined with the determination of complex concentration to be the rate controlling factors.
D. Prediction of Rate Constants for Radical Addition and Recombination Reactions by Bimolecular QRRK Theory

The significant aspects of this thesis are the experimental results and the detailed chemical kinetic model, both of which are presented later on. The QRRK theory decribed below is very important to our model development research. A brief description of this theory from the article by Westmoreland and Dean ${ }^{<35>}$ is therefore, paraphrased below and treated as a quote.

Bimolecular QRRK (Quantum Rice Ramsperger Kassel)<35> analysis is a simple method for calculating rate constants of addition and recombination reactions, based on unimolecular quantum RRK theory. Input parameters are readily derived, and rate constants and reaction branching can be predicted with remarkable accuracy. Such predictive
power makes the method especially useful in developing mechanisms of elementary reactions ${ }^{\langle 33\rangle}$.
"Predictions by this method can be made quickly, in part because the input data are few and frequently are easy to obtain:

1. Preexponential factors and activation energies in the high pressure limit, A_{i} and $E_{\text {act }}$.
2. The number of vibrational degrees of freedom for the adduct, s.
3. The geometric mean of the adduct's vibrational frequencies, <v>.
4. Lennard Jones transport properties, sigma and e / k, for the adduct and for the third body gas.
5. The average energy transferred per collision with the third body gas, <Ecoll>, which has been experimentally evaluated for a variety of gases.

Obtaining A_{i} and $E_{\text {act }}$ may be the most difficult task. These parameters can come from literature data, from estimates by the methods of Benson $(1976,1983)$, from the generic rate constants of Dean <33> (1985), or from the equilibrium constant and the reverse rate constant (high pressure limit). References are in the Dean's paper ${ }^{<33>}$."

1. Unimolecular QRRK Equation
"Dean ${ }^{<33>}$ (1985) has presented equations for bimolecular rate constants based on the Quantum-RRK or QRRK unimolecular reaction theory of Kassel (1928), which
treats the storage of excess energy (relative to the ground state) as quantized vibrational energy.

In the simplest form of the theory, the assumption is made that the vibrations of the decomposing molecule can be represented by a single frequency v, usually a geometric mean <v> of the molecule's frequencies. Using a single geometric mean $\langle v\rangle$ to present all the v^{\prime} 's in a molecule is one approximation, and use of the arithmetic mean has been suggested by Thiele et.al.,1980. For the total energy variable E, the symbol n is used. For the number of quanta to the energy barrier to reaction Eo, the quantized energy is m quanta. The quantum level and the rate processes are illustrated in Figure la.

$$
\begin{gather*}
\text { The apparent } \mathrm{k}_{\mathrm{uni}}: \\
\mathrm{k}_{\mathrm{uni}}=\frac{1}{[\mathrm{~A}]} \mathrm{d}[\text { [Products }] \tag{11}\\
\mathrm{dt}
\end{gather*}
$$

then is evaluated by a sum over all energies, assuming pseudo-steady state for each energy level of $A *$ and collisional excitation or deexcitation with rate constants $\mathrm{k}_{\mathrm{exc}}$ and $\mathrm{k}_{\text {deexc }}$:

$$
\begin{align*}
& k_{\text {uni }}=-\frac{1}{[A]} \quad k_{r \times n}(E) \quad\left[A^{*}(E)\right] \\
& =\mathrm{k}_{\mathrm{rxn}}(\mathrm{E}) \quad \frac{\mathrm{k}_{\text {deexc }}[\mathrm{M}] \mathrm{K}(\mathrm{E}, \mathrm{~T})}{\mathrm{k}_{\text {deexc }}[\mathrm{M}]+\mathrm{k}_{\mathrm{rxn}}(\mathrm{E})} \tag{12}
\end{align*}
$$

where $K(E, T)$ is the thermal-energy distribution function ($k_{\text {exc }} / k_{\text {deexc }}$). Kassel assumed that if a .molecule were excited to an energy E, then $k_{r x n}(E)$ would be proportional

Figure 1. Energy diagrams for pressure-dependent reactions.
a. Unimolecular reaction
b. Bimolecular reaction with chemically activated pathway reprinted from reference ${ }^{\langle 35\rangle}$
to the probability that one of the s oscillators could have energy Eo or greater (sufficient energy to cause reaction); that is, m or more of the n total quanta. The energy-dependent rate constant can be written as:
$k_{r x n}(E)=A_{i} \quad \frac{n!\left(n-m_{i}+s-1\right)!}{\left(n-m_{i}\right)!(n+s-1)!}$
where A_{i} is the high pressure Arrhenius preexponential factor for reaction i, and m_{i} is the number of quanta ($E_{i} / h v$) corresponding to the energy threshold for the reaction i. Likewise, he derived the quantized thermal energy distribution $K(E, T)$ to be:
$K(E, T)=a^{n}(1-a)^{s} \frac{(n+s-1)!}{n!(s-1)!}$
where $a=e^{(-h<V>/ k T)}$.

In the present development, we have modified the theory to utilize the Gamma function in place of factorials. A collisional efficiency Beta has been applied to modify the traditional but incorrect strong-collision assumption that $\mathrm{k}_{\text {deexc }}=\mathrm{Z}[\mathrm{M}]$, where Z is the collision frequency rate constant. The strong-collision assumption implies that any collision between A^{*} and M would have to remove all the excess energy from A^{*}. Note that any species included as M would have to accommodate this energy content, regardless of its capacity for accepting the energy. Analyzing collisional energy transfer for master-equation methods, Troe (1977) fit most of the temperature dependence of Beta with the

equation:

$$
\begin{equation*}
\frac{\text { Beta }}{1-(\text { Beta })^{1 / 2}}=\frac{-\left\langle\Delta E_{\text {coll }}>\right.}{F(E) k T} \tag{15}
\end{equation*}
$$

where $\left\langle\mathrm{E}_{\text {coll }}>\right.$ is the average amount of energy transferred per collision and $F(E)$ is a factor, weakly dependent on energy, that is related to the number of excited states. Over the temperature range of $300-2500{ }^{\circ} \mathrm{K}$ for a series of reactions (Troe, 1977); $F(E)=1.15$ was observed as a median value. The value of Beta depends on the specific third-body molecule M through the value of $\left\langle\Delta E_{\text {Coll }}\right\rangle$.

2. Bimolecular QRRK Equations

The bimolecular QRRK equations follow (Dean, 1985) from unimolecular $Q R R K$ and the defintion of the chemical activation distribution function. Consider recombination or addition to occur via the sequence:

Here, k_{1} is the high-pressure-limit rate constant for forming adduct and $f(E, T)$ is the energy distribution for chemical activation:

$$
\begin{align*}
f(E, T)= & k_{-1}(E) K(E, T) \tag{16}\\
& \sum_{E=E_{-1}} k_{-1}(E) K(E, T)
\end{align*}
$$

where $K(E, T)$ is the QRRK thermal distribution from Eq. 14. Rate constants $k_{-1}(E)$ and $k_{2}(E)$ are calculated from the QRRK equation for $k_{r_{X n}}(E)$ (Eq. 13) using $m_{-1}\left(E_{-1} / h<v>\right)$ and $m_{2}\left(E_{2} / h<v>\right)$, respectively. A typical energy diagram for these reactions is shown in Figure 1-b.

To obtain the bimolecular rate constant for a particular product channel, a pseudo steady-state analysis is made as before. The rate constant for forming the addition/stabilization product $A^{*}(E)$ from $R+R^{\prime}$ is:

$$
\begin{equation*}
k_{a / s}=\sum_{\substack{E=E_{-1} \\\left(n=m_{-1}\right)}}^{\left.\frac{00}{k_{1,00}} \operatorname{Beta} Z[M]-T\right)} \operatorname{Beta} Z[M]+k_{-1}(E)+k_{2}(E) \tag{17}
\end{equation*}
$$

and, for forming the addition/decomposition product $\mathrm{P}+\mathrm{P}^{\prime}$:

$$
\begin{equation*}
k_{a / d}=\sum_{\substack{E=E_{-1} \\\left(n=m_{-1}\right)}}^{\underline{o o}} k_{2}(E) \text { Beta } Z[M]+k_{-1}(E)+k_{2}(E) \tag{18}
\end{equation*}
$$

If more decomposition channels are available, the $k_{r \times n}(E)$ for each channel is added in the denominator of Eqs. 17 and 18, and an equation in the form of Eq. 18 is written for each additional channel, substituting the respective $k_{r x n}(E)$ for $\mathrm{k}_{2}(E)$ as the multiplier term.
3. Low- and High-Pressure Limits

The low-pressure and high-pressure limits for these channels may be derived from Eqs. 17 and 18 ..As pressure changes, the rate constants change because of the relative
magnitutes of terms in the denominator, Beta*Z[M] vs. $\mathrm{k}_{-1}(E)$ and $k_{2}(E)$.

The low-pressure limit for addition/stabilization (or recombination) is derived from Eq. 17 to be

$$
\begin{equation*}
\lim _{[M] \rightarrow 0} k_{a / s}=[M] \sum_{\substack{E=E_{-1} \\\left(n=m_{-1}\right)}}^{\underline{00}} \text { Beta } Z \mathrm{k}_{1,00} \mathrm{k}_{-1}(E)+\mathrm{k}_{2}(E) \tag{19}
\end{equation*}
$$

sometimes written as [M]*ko (as a termolecular reaction), and the high-pressure limit reduces properly to k_{1}. At a given temperature, the falloff curve for stabilization can be plotted as $\log \left(k_{a / s}\right)$ vs. $\log (P)$ or $\log (M)$.

Note the presence of $\mathrm{k}_{2}(\mathrm{E})$ in Eq. 19. If chemically activated conversion of $A^{*}(E)$ is more rapid than decomposition to reactants $\left[\mathrm{k}_{2}(\mathrm{E}) \gg \mathrm{k}_{-1}(\mathrm{E})\right]$, then Eq. 19 shows that $k a_{a / s}$ will be divided by $k_{2}(E)$ rather than by $k_{-1}(E)$. Thus, ignoring the chemically activated pathway could give incorrect rate constants for "simple" addition.

Similar analysis of Eq. 18 implies that chemically activated decomposition has a falloff curve that is the opposite of addition/stabilization, with a rate constant that is pressure-independent at low pressure and inversely proportional to pressure at high pressure. From Eq. 18, the low-pressure limit for the chemically activated pathway to P and P^{\prime} will be

$$
\begin{equation*}
\lim _{a / d}=k_{1,00} \sum_{\substack{E=E_{-1} \\\left(n=m_{-1}\right)}}^{k_{-1}(E)+k_{2}(E)} \tag{20}
\end{equation*}
$$

and the high-pressure limit will be

$$
\begin{equation*}
\lim _{[M] \rightarrow>00} k_{a / d}=\frac{1}{[M]}-\frac{k_{1}, 00}{\operatorname{Beta} \frac{2}{2}-\sum_{\substack{E=E-1 \\(n=m-1)}}^{o o} k_{2}(E) f(E, T), ~} \tag{21}
\end{equation*}
$$

with an inverse pressure dependence. While this result goes against past intuition about low- and high- pressure limits, it is a natural consequence of physics when chemically activated reaction are recognized as possibilities. One consequence is that a reaction of the form $A+B-->C+D$ with a rate constant measured to be pressure-independent may be proceeding via addition."

IV. EXPERIMENTAL METHOD

A high temperature tubular flow reactor system, operated isothermally and at atmospheric pressure was used for this study. A block diagram of the entire system is shown in Figure 2.

Hydrogen gas, which acted both as reagent and carrier, was passed through a saturation bubbler filled with the reagent (1,1,2-trichloroethane), and was kept at zero ${ }^{\circ} \mathrm{C}$ using an ice-water bath. Before the hydrogen/1,1,2trichloroethane entered the reactor, the mixture was preheated to $150{ }^{\circ} \mathrm{C}$ by use of heating tape to help the reactor achieve uniform temperature profiles. Quartz reactor tubes of $4 \mathrm{~mm}, 10.5 \mathrm{~mm}$ and 16 mm were housed within a three zone Mellen clamshell type furnace, 2.25 inches I.D., and 18 inches long which was used for the reactor oven. Every zone was equipped with an independent Omega CN 300 PI digital temperature controller-indicator with a chromel-alumel TC.

When the inlet switching valves were properly selected, the 1,1,2-trichloroethane vapor would be transferrd directly from the bubbler to the GC sample inlet via a reactor bypass line. This was necessary to determine the GC peak area which corresponded to the initial input concentration (Co). Effluent from the reactor was filtered to remove solid carbon, by passing all gases through a pyrex wool plug. This limited contamination of the GC sampling loop. The loop was mounted on a six port stainless steel Valco hig̈h temperature gas sampling valve.

FIGURE-2 EXPERIMENTAL SET-UP

The reactor effluent was monitored using an on-line gas chromatograph equipped with a Flame Ionization Detector (FID). The lines between reactor exit and GC analysis were heated to $150{ }^{\circ} \mathrm{C}$ to prevent product (vapors) çondensation or loss. The bulk of the effluent, however, was passed through a sodium - bicarbonate flask before being released into the fume hood.

A. Quantitative Analysis by Gas Chromatography

The Hewlett Packard Gas Chromatograph was equipped with a flame ionization detector (FID) and controlled by a HP 18850C programmable terminal. The terminal also functioned as plotter and integrator. The GC used a 6 ft long by $1 / 8$ inch o.d. stainless steel column packed with 15% (wt) ov101 as a stationary phase on Chrompak-R.

The experimental conditions of the reaction of 1,1,2trichloroethane with hydrogen are listed below:

- Reactants ratio $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}: \mathrm{H}_{2}=1: 138$
. Reactor temperature $\left({ }^{\circ} \mathrm{C}\right): 440,470,500,530,570$, 600, 630, 660
. Effective reactor length : 40.7 cm
. Reactor Diameter (cm) : 0.40, 1.05, 1.60
. Residence time range (sec.) : 0.44-2.55 (i.d. $=1.60$) $0.20-2.31$ (i.d. $=1.05$) $0.20-2.11$ (i.d. $=0.40$)
. Operating pressure : 1 atm.

1. Regulation and Control

Carrier gases are obtained in a cylinder with 99.9%
purity at 2200 psi. A two-stage regulator is used for constant pressure at the cylinder. Gases were commercial grade from Liquid Carbon Company. The second stage of the regulator is usually set at 40-100 psi.
2. Flow Measurement

A soap-bubble flowmeter was used as a method for measuring gas flowrates in the GC primarily because of its simplicity and independence to the type of gas used. The high flow rates were measured by using a wet test meter (American meter co. 1 liter per revolation). The FID operated at $30 \mathrm{cc} / \mathrm{min}$ hydrogen and $300 \mathrm{cc} / \mathrm{min}$ air. Nitrogen at a flowrate of $30 \mathrm{cc} / \mathrm{min}$ was used as carrier gas.

Figure-3 Injection of gas samples by means of a gas sampling valve
3. Gas Sampling

Gas samples are best injected by means of a six port stainless steel Valco high temperature gas sampling valve, model 6UMT, as shown in Figure 3. Steady state conditions were achieved before each sample was injected into the online GC. Each sample analysis using the chromatograph took about 20 minutes.
4. Column Temperature

The column oven was programmed to hold at $50^{\circ} \mathrm{C}$ for 2 minutes, then rise to $160{ }^{\circ} \mathrm{C}$ at rate of $12{ }^{\circ} \mathrm{C} / \mathrm{min}$. The initial 2 minutes period allowed enough time for distinct separation of 1 ight hydrocarbons.
5. Qualitative Analysis

Qualitative analysis of reactor products was further performed by use of a Kratos MS-25 magnetic sector GC/Mass spectrometer using 25 cc batch samples collected at the reactor exit. A representative chromatogram is shown Figure 4 given in Table 1. with retention times and peak identification.
6. FID Calibration

Calibration of the flame ionization detector to obtain the appropriate molar response factor was done by injecting a known quantity of the relevant compound such as $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $\mathrm{CHCl}_{3}, \mathrm{C}_{2} \mathrm{HCl}_{3}$, and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Cl}_{2}$ etc., then measuring the corresponding response area. The relative response factor has been determined in this work for such compounds as shown

* Reaction Conditions: 0.86 sec under $600{ }^{\circ} \mathrm{C}$

Figure-4 Sample Chromatogram $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2} / \mathrm{H}_{2}$ Decomposition

Table 1

Average Retention Time of Products

Compound	Average Retention Time $($ min. $)$
CH_{4}	0.39
$\mathrm{CH}_{2} \mathrm{CH}_{2}$	0.43
$\mathrm{CH}_{3} \mathrm{CH}_{3}$	0.50
$\mathrm{CH}_{3} \mathrm{Cl}$	0.56
$\mathrm{CH}_{2} \mathrm{CHCl}$	0.63
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$	0.77
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1.12
$\mathrm{CH}_{2} \mathrm{CCl}_{2}$	1.39
$\mathrm{CHClCHCl}^{\mathrm{CH}_{3} \mathrm{CHCl}_{2}}$	1.70
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$	2.35
$\mathrm{C}_{6} \mathrm{H}_{6}$	2.77
$\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$	3.20

in Table 2. The respose factor for C_{1} compounds are close to each other, and the response factor of C_{2} compounds are nearly twice the response of C_{1} compounds. These results agree with the general principle of the flame ionization detector which is well known as a carbon counter ${ }^{\langle 34\rangle}$. Thus, the effect of chlorine in the relative response factor can be neglected for this flame ionization detector and the relative response factors being considered as corresponding to the number of carbons in the molecule were found accurate. Based on the experimentally verified relative response factors, the specific component peak area from each set of samples was converted to the equivalent of moles of each component.

B. Temperature Control and Measurement

This study was carried out with isothermal reaction at the desired temperature using a three zone furnace equipped with three independent Omega CN 300 PI digital temperature controller-indicators.

The actual temperature inside the tubular reactor was measured with a moveable thermocouple chromel-alumel K, which traversed the length of the reactor. Argon flowed through the reactor at rates of approximately $10 \mathrm{cc} / \mathrm{sec}$. during temperature measurement to minimize radiation effects and to obtain a temperature profile similar , to experimental conditions. An Omega type K Thermocouple Thermometer Model

Table 2

Relative Response Factor of Several Compounds

650, was used for temperature readings inside the reactor, taken at one inch intervals. Temperature profiles obtained as shown in Figure 5 for six different temperatures (500, 550, 600, 650,700 , and 750) were isothermal to within ± 5 ${ }^{\circ} \mathrm{C}$ for 80% of reactor length.
C. Hydrochloric Acid Analysis

Quantitative analysis of HCl product was performed for reactions in each diameter reactor for each residence time. The samples for HCl analysis were collected independent H from GC sampling as illustrated as Figure 2.

In this analysis, the effluent was bubbled through a two stage bubbler before being exhausted to the hood. Each stage contained 25 ml of standardized 0.01 M NaOH . The gas was passed through the two stage bubbler until the first stage solution reached its phenolphthalein end point. The time required for this to occur was recorded. At this point the bubbling was stopped, the aliquots were combined, and titrated to their end point with standardized 0.01 M HCl . Since the concentration and molar flow rate of chlorine as 1,1,2-trichloroethane mixture was known, Cl mass balance could be determined from the total HCl produced by reaction. The HCl produced was calculated by:

No. of mol of $\mathrm{NaOH}=(0.01 \mathrm{M}) *(0.05 \mathrm{l})=5.0 \mathrm{E}-4$ (mole)
No. of mol of HCl gas from reactor $=5.0 \mathrm{E}-4-\mathrm{X} * 1.0 \mathrm{E}-5(\mathrm{~mol})$
(X : Consumed titrated solution (ml))
5.0E-4 - X*1.OE-5 (mol)

Conc. of gas from reactor $=\frac{\text { Total flow (liter) }}{}$

FIGURE-5 TEMPERATURE PROFILE VS REACTOR LENGTH

D. Mechanism Modeling by CHEMKIN Program

The CHEMKIN computer program package is used in interpreting and integrating the detailed reaction mechanisms (models) of the systems studied.' The CHEMKIN program<41>, Flow diagram below, reads the user's description of the reaction mechanism, which in this case consists of 73 elementary reactions and 37 species. The thermodynamic data base, THERM has the appropriate thermodynamic information and mass for all species present in the mechanism in a format similar to the one used by the NASA complex chemical equilibrium code. The information on the elements, species, and reactions in the mechanism; and finally the CHEMKIN gas phase subroutines, can be called to return information on the reactions, equation of state, thermodynamic properties, chemical production rates, and derivatives of thermodynamic properties at any time in the integration. Generally the input to these subroutines are the state variables of gas pressure or density, temperature and species composition. All routines can be called with the species composition defined in terms of mass fractions or molar concentrations. Numerical calculations were carried out using the CHEMKIN computer code Lsode Integrator ${ }^{\langle 41\rangle}$.

The input data requirement to run the CHEMKIN program Include:

Flow Diagram of the CHEMKIN operation reprinted from reference ${ }^{\text {41> }}$

- Detailed reaction mechanism of 73 elementary reactions.
. Mole fraction of all gases initially present in the reaction system.
- Pressure and temperature at which the reaction system is being studied.
- Time increment at which the concentration of species present in the system is to be reported.

A thermodynamic data base for species with $\mathrm{C} / \mathrm{H} / \mathrm{Cl}$ elements was developed at NJIT and used for modeling (input to CHEMKIN) the kinetics of the $1,1,2$-trichloroethane $/ \mathrm{H}_{2}$ reaction system investigated. For those species that thermodynamic information were not available in the data base, thermo data was generated utilizing the DBGEN program. This program requires heat capacities in the temperature range of interest, as input. Heat of formations and entropies, as well as heat capacities, were calculated by the group additivity method of Benson ${ }^{<42>}$ when not available in literature, using "THERM".

This computer work was executed using a Digital equipment corporation (DEC) VAX/VMS 11/785 computer at NJIT.

V. RESULTS and DISCUSSION

The experimental conditions of the reaction of $1,1,2-$ trichloroethane with hydrogen are listed below. Constant molar ratio $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$: H_{2} of 1 : 138 'was maintained through out the experiment.

- Reactor temperatures $\left({ }^{\circ} \mathrm{C}\right): 440,470,500,530,570$, $600,630,660$
. Effective reactor length : 40.7 cm
. Reactor Diameter (cm) : 0.40, 1.05, 1.60
. Residence time range (sec.) : 0.44-2.55 (i.d. = 1.60)
$0.20-2.31$ (i.d. $=1.05$)
$0.20-2.11$ (i.d. $=0.40$)
. Operating pressure : 1 atm.
A. Reaction of 1,1,2-trichloroethane with Hydrogen

Figure 6 and Figure 7 show the decrease in the normalized $1,1,2$-trichloroethane $\left(\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}\right)$ concentration (C / Co) as a function of the average residence time for several temperatures studied using the 1.05 cm i.d. and 0.40 cm i.d. reactors. Figure 6 shows decay plots of 1,1,2trichloroethane vs time for temperatures $570,600,630$, and $660^{\circ} \mathrm{C}$ in the 1.05 cm i.d. reactor. It is apparent from this figure that a conversion of $22 \%, 41 \%, 70 \%$ and 80% at 1.1 sec. residence time is obtained at the respective temperatures above. The 1,1,2-trichloroethane concentration consistently decreases with increasing reaction time for all temperatures shown in the each different i.d. reactor and

Figure-6 DECAY OF CHCl2CH2CI VS TIME FOR 1.05 cm ID REACTOR

FIGURE-7 DECAY OF CH2CICHCl2 VS TIME FOR 0.40 cm ID REACTOR

for constant residence times 1,1,2-trichloroethane conversion consistently increases with temperature.

Application of the first order rate expression to this data yields a linear relationship for each temperature studied. This demonstrates that the overall reaction obeys pseudo-first order kinetics (global reaction). Figure 8 illustrates the first order behavior obtained for several temperatures which were studied in the 1.05 cm i.d. reactor. Here a first order rate plot for decay of $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$ shows excellent linearity for all temperatures. Similar results were obtained for the 0.4 cm i.d. reactor as shown in Figure 9.

It is seen that for different values of temperature and reactor diameter, that the data fit the integrated first order rate equation well for reagent loss. Decomposition was most rapid with the 0.40 cm i.d. and slower with the 1.05 cm i.d. reactor as shown in Figure 6 and Figure 7. This trend is expected since observed reagent loss may be the result of two reaction paths, both contributing under our conditions. The homogeneous reaction occurs in the bulk of the gas mixture and a heterogeneous reaction occurs on the surface of the flow tube wall.

Activation energies and Arrhenius frequency factors for the reagent loss are found from Arrhenius plots such as shown in Figure 10. Global rate constants in Arrhenius form for different diameter reactors are listed below:

FIGURE-8 FIRST ORDER DECAY PLOT FOR CH2CICHCl2/H2 1.05 cm ID REACTOR

- $8600+8300$ * 6000 - 5700

FIGURE-9 FIRST ORDER DECAY PLOT FOR $\mathrm{CH} 2 \mathrm{CICHCl} 2 / \mathrm{H} 20.40 \mathrm{~cm}$ ID REACTOR

FIGURE-10 ARRHENIUS BEHAVIOR OF Kexp FOR CH 2 ClCHCl 2

$$
\begin{aligned}
& \mathrm{k}_{0.40 \mathrm{~cm}}=1.60 \mathrm{E}+4 * \operatorname{EXP}(-13,000 / \mathrm{RT})(1 / \mathrm{sec} .) \\
& \mathrm{k}_{1.05 \mathrm{~cm}}=6.58 \mathrm{E}+6 * \operatorname{EXP}(-29,200 / \mathrm{RT})(1 / \mathrm{sec} .)
\end{aligned}
$$

where T is temperature in ${ }^{\circ}{ }_{K}$ and R is gas constant in cal/mol- ${ }^{\circ} \mathrm{K}$. Previous studies have demonstrated that a change in the S / V ratio often directly affects the overall rate constants for these reactions $\left\langle{ }^{\langle 20-26\rangle}\right.$, because of wall reactions. Clearly the relative importance of the wall reaction in this system is greater when the surface to volume (S / V) ratio or relative extent of the wall surface is greater. This wall reaction is analyzed by plotting k against $2 / R$ and using $R_{\exp }=R_{b}+(2 / R) * R_{W}$, where R is the radius of the reactor in centimeters. The slope is k_{w} and the intercept k_{b}, as shown in Figure 11.

FIGURE-11 ARRHENIUS BEHAVIOR OF Kb \& Kw FOR CH2CICHCl2

B. Reagent Conversion and Product Distribution

Appreciable conversion (9.4\%) of 1,1,2-trichloroethane could be readily observed at reaction temperatures above 570 ${ }^{\circ} \mathrm{C}$ at times of 0.2 sec or longer. The destruction of $1,1,2-$ trichloroethane is shown in Figure 6 with increasing temperature and mean residence time, where 90% destruction of the reagent was observed at 2.2 sec and $660{ }^{\circ} \mathrm{C}$. Product distributions as a function of temperature at 1.1 sec residence time are shown in Figure 12, in addition to 1,1,2-trichloroethane loss. The major product distribution curves are shown in Figures 12 and 15 with temperature from $570{ }^{\circ} \mathrm{C}$ to $660{ }^{\circ} \mathrm{C}$ and with varied residence times, Figure 13 and Figure $14,0.2 \mathrm{sec}$ to 2.2 sec at $600{ }^{\circ} \mathrm{C}$ and $630{ }^{\circ} \mathrm{C}$ respectively. 1,2-dichloroethylene (CHClCHCl), 1,1dichloroethylene $\left(\mathrm{CH}_{2} \mathrm{CCl}_{2}\right)$, vinyl chloride $\left(\mathrm{CH}_{2} \mathrm{CHCl}\right)$, chloroethane $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}\right)$, and HCl are the main observed chlorinated species, with methyl chloride ($\left.\mathrm{CH}_{3} \mathrm{Cl}\right)$ and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ as minor products. The observation of considerable amounts of dichloroethylene (both isomers) strongly indicates that the first step in the reaction series at 570-660 ${ }^{\circ} \mathrm{C}$ is unimolecular decomposition of 1,1,2-trichloroethane to a corresponding dichloroethylene and hydrogen chloride. The same observation has been reported by Chuang ${ }^{\langle 20\rangle}$ in his study on gas-phase reactions of chloroform and 1,1,2-trichloroethane with hydrogen in a tubular flow reactor in 1986.

As illustrated in Figures 14-15, formation of non-

Figure-12 Product Distribution vs Temp CH2CLCHCL2/H2 at Time-1.1 sec.

Figure-13 Product Distribution vs Time $\mathrm{CH} 2 \mathrm{ClCHCl} 2 / \mathrm{H} 2$ at Time-600 C

Figure-14 Product Distribution vs Time $\mathrm{CH} 2 \mathrm{CICHCl} 2 / \mathrm{H} 2$ at Temp=630 C

Figure-15 Product Distribution vs Temp $\mathrm{CHClCHCl}, \mathrm{CH} 2 \mathrm{CCl} 2, \mathrm{CH} 2 \mathrm{CHCl}$, and CH 2 CH 2

chlorinated hydrocarbons are shown to increase with increasing temperature. The number of chlorine containing hydrocarbon products decreases with increasing temperature and residence time and HCl formation increases as shown in the chlorine material balance given in Table 3. Table 3 also indicates that excellent $C l$ material balance is achieved and thus no chlorine is lost into the soot (solid carbon) in this reaction system. Formation of ethylene is observed to increase with increasing temperature as well as formation of benzene (not shown in figures). At $850{ }^{\circ} \mathrm{C}$ and 1.1 sec residence time, the principal products are ethylene and HCl , most chlorinated by-products have been destroyed except vinyl chloride (1.0 \%) and traces of chloroethane. The vinyl chloride appears from these studies to be relatively more stable than any other C_{2} chlorocarbon and this is consistent with the bond strengths of $\mathrm{C}-\mathrm{Cl}$ bonds on chlorocarbons which increases with decreasing chlorination. It is interesting to note that very little C_{1} chlorocarbons are seen at the high temperature, above $850{ }^{\circ} \mathrm{C}$. This nonobservation of C_{1} chlorocarbons indicates that the carbon-olefinic bonds are relatively stable and persist longer in this reaction zone. Chuang's study ${ }^{<20>}$ also shows that very small amounts of c_{1} products are produced from 1,1,2-trichloroethane pyrolysis reaction in H_{2} above $850{ }^{\circ} \mathrm{C}$.

Formation of CHClCHCl and $\mathrm{CH}_{2} \mathrm{CCl}_{2}$ as two of the major products from $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$ increases with increasing temperature between $570{ }^{\circ} \mathrm{C}$ to $660{ }^{\circ} \mathrm{C}$ at 1.1 sec residence

Table 3

Material Balance for 100 Moles Chlorine

$$
\begin{array}{ll}
\text { Reactor Diameter : } 1.05 \mathrm{~cm} \\
\text { Residence Time } & : 1.1 \mathrm{seo} .
\end{array}
$$

Species (\%)	Temperature (${ }^{\circ} \mathrm{C}$)				
	570	600	630	660	850
$\mathrm{CH}_{3} \mathrm{Cl}$	ND	ND	0.085	0.110	ND
$\mathrm{CH}_{2} \mathrm{CHCl}$	1.696	4.354	5.801	7.247	3.30
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$	0.899	1.642	2.261	2.529	0.71
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2.369	3.631	3.422	2.877	ND
$\mathrm{CH}_{2} \mathrm{CCl}_{2}$	1.505	3.638	4.754	5.780	0.17
$\mathrm{CHClCHCl}^{2}$	4.583	8.391	8.998	10.480	0.42
$\mathrm{CH}_{3} \mathrm{CHCl}_{2}$	ND	ND	0.809	0.885	ND
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$	0.925	1.935	1.627	0.885	ND
$\mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	73.872	58.666	30.381	20.169	4.75
HCl^{2}	16.723	30.509	47.152	63.277	88.5
Total	102.571	112.765	105.290	114.240	97.85

Fig.-16 CHCICHCI Product Distribution vs Time at Temp=600,630, and 660 C

Figure-17 CH2CCI2 Product Distribution vs Time at Temp=600,630, and 660 C

time, 1.05 cm i.d. cm reactor, as shown in Figure 15. Concentration of these species then decreases with further increase in temperature; strongly indicating that CHClCHCl and $\mathrm{CH}_{2} \mathrm{CCl}_{2}$ are the initial stable product in unimolecular reaction of this mixture diluted in hydrogen. Figure 16 and Figure 17 specifically illustrate CHClCHCl and $\mathrm{CH}_{2} \mathrm{CCl}_{2}$ normalized concentration data versus residence time for three different temperatures, and demonstrate that CHClCHCl (1,2 DCE) and $\mathrm{CH}_{2} \mathrm{CCl}_{2}(1,1 \mathrm{DCE})$ concentration increases with increasing residence time under $600{ }^{\circ} \mathrm{C}$. It is valuable to note that CHClCHCl reaches a maxima of 20% initial 1,1,2trichloroethane while $\mathrm{CH}_{2} \mathrm{CCl}_{2}$ only reaches a maxima of 10%. This suggests that $1,1,2$-trichloroethane reacts to CHClCHCl about 2 times faster than to $\mathrm{CH}_{2} \mathrm{CCl}_{2}$ throughout our temperature range - assuming that both have similar (relatively high) stabilities. Formation of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ and $\mathrm{CH}_{2} \mathrm{CHCl}$ (vinyl chloride) also increase at temperatures under $600{ }^{\circ} \mathrm{C}$ then decrease similar to the 1,1 and 1,2 DCE. These trends may be due to a high formation rate of precursor products such as $\mathrm{CHClCHCl}, \quad \mathrm{CH}_{2} \mathrm{CCl}_{2}, \quad \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$, and $\mathrm{CH}_{3} \mathrm{CHCl}_{2}$, which are further dechlorinated to $\mathrm{CH}_{2} \mathbf{C H C l}$, $\mathrm{CH}_{2} \mathrm{CH}_{2}$, and $\mathrm{CH}_{3} \mathrm{CH}_{3}$ in subsequent reaction steps with increasing temperature.

The increase in formation of $\mathrm{CH}_{2} \mathrm{CHCl}$ and $\mathrm{CH}_{2} \mathrm{CH}_{2}$ with increasing temperature from $570{ }^{\circ} \mathrm{C}$ to $660{ }^{\circ} \mathrm{C}$ as shown in Figure 15. This indicates that the more stable compound, $\mathrm{CH}_{2} \mathrm{CHCl}$ is apparently formed from overall
reactions of $\mathrm{CHClCHCl}, \mathrm{CH}_{2} \mathrm{CCl}_{2}, \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$ and $\mathrm{CH}_{3} \mathrm{CHCl}_{2}$ with hydrogen, and that $\mathrm{CH}_{2} \mathrm{CH}_{2}$ and/or $\mathrm{CH}_{3} \mathrm{CH}_{3}$ is produced from further reactions of the $\mathrm{CH}_{2} \mathrm{CHCl}$. Formation of $\mathrm{CH}_{2} \mathrm{CH}_{2}$ is observed to increase with increasing temperature to 850 ${ }^{\circ}$ C. The less chlorinated hydrocarbons are clearly more stable in this reacting system. Won $\langle 26,37\rangle$ in 1988, showed the greater the carbon chloride bond energy, the higher the temperature required to observe reaction of the chlorocarbon, which we illustrate in Table 4. The maximum concentration (55\%) of $\mathrm{CH}_{2} \mathrm{CCl}_{2}$ was abserved at $620{ }^{\circ} \mathrm{C}$ and the maximum concentration (16\%) of $\mathrm{CH}_{2} \mathrm{CHCl}$ was abserved at $720^{\circ} \mathrm{C}$.

TABLE. 4
Product Maxima Formation Temperatures and Bond Eneregies Between Carbon and Chlorine in This Reaction System

Species	Max. Form. Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Bond Energy (Kcal/mol)
$\mathrm{CH}_{3} \mathrm{CHCl}_{2}$	540	78.15
$\mathrm{CH}_{2} \mathrm{CCl}_{2}$	620	88.59
$\mathrm{CH}_{2} \mathrm{CHCl}$	720	90.90
$\mathrm{CH}_{3} \mathrm{CCl}_{3}$	<570	73.20

Table 5 illustrates that a semi-quantitative product distribution of benzene is observed above $630{ }^{\circ} \mathrm{C}$. The

Table 5
Material Balance for 100 Moles Carbon
Reactor Diameter : 1.05 cm Residence Time : 1.1 sec.

Species (\%	$)$ Temperature (${ }^{\circ} \mathrm{C}$)				
	570	600	630	660	850
$\mathrm{CH}_{2} \mathrm{CH}_{2}$	0.425	2.219	7.163	19.246	85.24
$\mathrm{CH}_{3} \mathrm{CH}_{3}$	ND	0.190	0.317	0.832	ND
$\mathrm{CH}_{3} \mathrm{Cl}$	ND	ND	0.127	0.166	ND
$\mathrm{CH}_{2} \mathrm{CHCl}$	5.087	13.063	17.404	21.743	1.1
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$	2.697	4.925	6.782	7.594	0.27
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	1.777	2.723	2.567	2.158	ND
$\mathrm{CH}_{2} \mathrm{CCl}_{2}$	2.257	5.457	7.131	8.669	0.11
CHClCHCl	6.874	12.586	13.497	15.720	0.26
$\mathrm{CH}_{3} \mathrm{CHCl}_{2}$	ND	ND	1.214	1.327	ND
$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$	1.387	2.903	2.439	1.327	ND
$\mathrm{C}_{6} \mathrm{H}_{6}$	ND	ND	4.704	7.900	ND
$\mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	73.872	58.666	30.381	20.169	4.75
Total	94.376	102.731	93.726	106.851	90.74

formation of benzene may be due to pyrolysis of C_{2} hydrocarbons, followed by a ring closure mechanism with olefinic and acetylenic species as intermediates. A general commercial pathway to synthesis of benzene is pyrolysis and hydrogasification of paraffinic hydrocarbons ${ }^{\langle 38\rangle}$.

The overall reaction scheme based on analysis of major concentration products and thermochemical kinetics estimation will be discussed in the detailed mechanism section.

C. Detailed Kinetic Mechanism and Modeling

Kinetic Mechanism

A reaction mechanism for decomposition kinetics of $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$ in H_{2} has been developed.

The first step of this reaction system involves unimolecular decomposition of 1,1,2-trichloroethane. The possible reactions include:
A ($1 / \mathrm{s}$)
E (Kcal/mol)

1	$\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$	$>\mathrm{CHClCHCl}+\mathrm{HCl}$	9.5E12	55.3	$(\triangle H r+41)$
2.	$\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$	$\rightarrow \mathrm{CH}_{2} \mathrm{CCl}_{2}+\mathrm{HCl}$	4.7E12	55.3	$(\triangle \mathrm{Hr}+41)$
3	$\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$	$\rightarrow \mathrm{CH}_{2} \mathrm{ClCHCl}+\mathrm{Cl}$	2.6E15	77.7	($\triangle \mathrm{Hr}$)
4	$\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$	> $\mathrm{CH}_{2} \mathrm{CHCl}_{2}+\mathrm{Cl}$	1.6 El 15	81.4	($\triangle \mathrm{Hr}$)
5.	$\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$	$>\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{CHCl}_{2}$	4.2E17	89.1	($\triangle \mathrm{Hr}$)

It is observed using the above listing (also see dissociation reactions of parent $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$ in APPENDIX Table 1) that reactions (1) and (2) above dominate the other 112 TCE dissociation steps by more than on order of magnitude because of the low Ea's. This is fully consistent with our experimental results. $\mathrm{CHClCHCl}, \mathrm{CH}_{2} \mathrm{CCl}_{2}$ and HCl are the major products detected below $660^{\circ} \mathrm{C}$ and result from the first reaction step. Although reactions (3) and (4) are about fifty times slower than reactions (1) and (2), the intermediates $\mathrm{CH}_{2} \mathrm{ClC} . \mathrm{HCl}$ and $\mathrm{C} . \mathrm{H}_{2} \mathrm{CHCl}_{2}$ rapidly undergo beta scission reactions (6) and (7) because of the low E_{a} to Cl loss and one of the major products, $\mathrm{CH}_{2} \mathrm{CHCl}$, is produced.

$$
\mathrm{A}(1 / \mathrm{s}) \quad \mathrm{E}(\mathrm{Kcal} / \mathrm{mol})
$$

| 6. $\mathrm{CH}_{2} \mathrm{ClCHCl}$ | $--->\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{Cl}$ | 1.35 El 4 | 27.4 |
| :--- | :--- | :--- | :--- | :--- |
| 7. $\mathrm{CH}_{2} \mathrm{CHCl}_{2}$ | $--->\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{Cl}$ | 1.35 E 14 | 22.9 |

The $\mathrm{C}-\mathrm{C}$ bond is weaker than the $\mathrm{C}-\mathrm{H}$ bond and stronger than the $\mathrm{C}-\mathrm{Cl}$ bond, thus in considing reactions (1) to (5) breaking the $\mathrm{C}-\mathrm{C}$ bond requires more energy than needed to break the $\mathrm{C}-\mathrm{Cl}$ bonds. In the temperature range of $570{ }^{\circ} \mathrm{C}$ $660{ }^{\circ} \mathrm{C} \mathrm{CH}_{3} \mathrm{Cl}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and C_{1} compound are observed only as very minor products which are formed from $\mathrm{c}-\mathrm{C}$ bond cleavage of parent $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$ and further reaction with hydrogen as in (8) and (9) below.

A(1/s) E(Kcal/mol)
8. $\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{H}_{2}--->\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{H}$
$2.86 \mathrm{El2} 14.0$
9. $\mathrm{CHCl}_{2}+\mathrm{H}_{2}--->\mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{H}$
4.12E12 3.5

The formation of $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$ as one of the minor products at low temperature results from reaction of $\mathrm{CH}_{2} \mathrm{ClCHCl}$ radical with $\mathrm{H}_{2} . \mathrm{CH}_{2} \mathrm{ClCHCl}$ results from two reactions one the metathetical reaction (abstraction reaction (11)) by H atoms with $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$ and two a small but finite and very important amount of reaction (3). $\mathrm{CH}_{3} \mathrm{CHCl}_{2}$ is not produced at the low temperatures of $570{ }^{\circ} \mathrm{C}$ and $600^{\circ} \mathrm{C}$ because reaction (4) is much slower than reaction (3)-stronger $\mathrm{C}-\mathrm{Cl}$ bond required to break.

H is produced from reaction of Cl with H_{2} as follows:

A(1/s) E(Kcal/mol)
10. $\mathrm{Cl}+\mathrm{H}_{2}$
----> $\mathrm{H}+\mathrm{HCl}$
$4.8 \mathrm{E} 13 \quad 5.3$

The above three reactions are relatively fast and one sees that H radical plays a catalytic role in formation of $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$ which is a minor product in our experiments. $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$ reacts; it unimolecularly dissociates (APPENDIX Table 2) as follows:

				$A(1 / s)$	E (K	1/mol)
13.	$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$	$\mathrm{CH}_{2} \mathrm{CHCl}$	$+\mathrm{HCl}$	1.95 El 13	55.4	$(\angle \mathrm{Hr}+38)$
14.	$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$	$\mathrm{CH}_{2} \mathrm{ClCH}_{2}$	$+\mathrm{Cl}$	6.17 E 15	79.7	($\triangle \mathrm{Hr}$)
15.	$\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$	$\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{C}$	$\mathrm{H}_{2} \mathrm{Cl}$	3.13 El 7	88.7	$(\angle \mathrm{Hr})$

H radical plays a very important role in the loss of the major products CHClCHCl and $\mathrm{CH}_{2} \mathrm{CCl}_{2}$ as follows:

A(1/s) E(Kcal/mol)

$$
\mathrm{CHClCHCl}+\mathrm{H}<--->\left[\mathrm{CH}_{2} \mathrm{CLCHCl}\right]^{\#}
$$

where the activated complex can react to:
16.
$---\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{Cl}$
$2.05 \mathrm{E} 13 \quad 5.1$
17.
$-->\mathrm{CH}_{2} \mathrm{ClCHCl}$
$4.18 \mathrm{E} 09-2.57$
or back to reactants.

$$
\mathrm{CH}_{2} \mathrm{CCl}_{2}+\mathrm{H}<--->\left[\mathrm{CH}_{2} \mathrm{CHCl}_{2}\right]^{\#}
$$

18.

$-->\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{Cl}$
$3.01 \mathrm{E} 13 \quad 6.0$
19.
$\rightarrow-\mathrm{CH}_{2} \mathrm{CHCl}_{2}$
$6.50 \mathrm{E} 08-0.97$

| $\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{H}$ | $\longrightarrow-->$ | $\left[\mathrm{CH}_{2} \mathrm{ClCH}_{2}\right]^{\#}$ | |
| :--- | :--- | :--- | :--- | :--- |
| 20. | $--->\mathrm{CH}_{2} \mathrm{ClCH}_{2}$ | | |
| 21. | $-\cdots \mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{Cl}$ | 1.39 ElO | -2.4 |
| | | $8.51 \mathrm{El2}$ | 3.5 |

Quantum RRK

The reactions of atomic hydrogen with cHClCHCl, $\mathrm{CH}_{2} \mathrm{CCl}_{2}$, and $\mathrm{CH}_{2} \mathrm{CHCl}$ were all modeled by using the CHEMACT QRRK calculation. The details of the bimolecular QRRK method are summarized in the theory section. <33,39>

Energized Complex/QRRK theory as described by Westmoreland and Dean ${ }^{<39>}$ is used for the modeling of radical addition to unsaturates and combination reactions. This computer code has been modified by Ritter and Bozzelli< ${ }^{<40\rangle}$ to use gamma function in place of factorials. The computer code (CHEMACT) was used to calculate the energy dependent rate constants for all dissociation and stabilzation channels of the activated complexes formed by the above reactions. The code is important in accurate determination rate constants for the correct selection of the important reaction path from the activated complex as a function of temperature and pressure.

This QRRK analysis of the chemically activated system uses generic estimates or literature values for high pressure rate constants and species thermodynamic properties for the enthalpies of reaction. The results from the calculations are apparent rate parameters for our modeling calculations and are summarized in the APPENDIX B Table 6 to

Table 8. The calculations were performed for each of the above listed from reactions (16) to (21).

For the $\mathrm{CH}_{2} \mathrm{CCl}_{2}+\mathrm{H}$ system, the energy diagram is shown in Figure 19, where the following major reactions are important:

Atomic H adds to $\mathrm{CH}_{2} \mathrm{CCl}_{2}$ to form energized $\mathrm{CHCl}_{2} \mathrm{CH}_{2}$ radicals as shown above. The energy diagram of the reaction (22) and (23) is illustrated in Figure 19 and the calculation results are shown in Figure 21.

Atomic H is formed by
$\mathrm{Cl}+\mathrm{H}_{2} \quad----\mathrm{HCl}+\mathrm{H}$
$\mathrm{CH}_{2} \mathrm{ClCHCl}+\mathrm{H}_{2}---\mathrm{CH} \mathrm{ClCH}_{2} \mathrm{Cl}+\mathrm{H}$
The $\mathrm{CHCl}_{2} \mathrm{CH}_{2}$ complex is initially " Hot " since, in addition to the thermal energy, it contains energy resulting from formation of the new chemical bond and prior to stabilization it may unimolecularly isomerize, undergo a hydrogen shift, become a stabilized radical or undergo beta scission to $\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{Cl}$. The CHEMACT calculation results for temperatures of 773 to $933 \circ^{\circ} \mathrm{K}$ and the pressure range of 0.001 - 10 atm are shown in Figure 21 , and indicate that the rate constant for the $\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{Cl}$ channel dominates. The $\mathrm{CHCl}_{2} \mathrm{CH}_{2}$ stabilized channel becomes more important at the higher pressure 100 atm.

Figure-18 Energy Diagram for $\mathrm{CH}_{2} \mathrm{CCl}_{2}+\mathrm{H}$

Figure-19 Energy Diagram for $\mathrm{CHClCHCl}+\mathrm{H}$

Figure-20 Results of Activated Complex Theory Calc. for Reaction $\mathrm{CHCICHCl}+\mathrm{H}$

Figure-21 Results of Activated Complex Theory Calc. for Reaction $\mathrm{CH} 2 \mathrm{CCl} 2+\mathrm{H}$

$\mathrm{CH}_{2} \mathrm{CHCl}$ is therefore produced from further reaction of primary products $\mathrm{CHClCHCl}, \mathrm{CH}_{2} \mathrm{CCl}_{2}$ with H radical. $\mathrm{CH}_{2} \mathrm{CH}_{2}$ and $\mathrm{CH}_{3} \mathrm{CH}_{3}$ are then produced from further reaction of $\mathrm{CH}_{2} \mathrm{CHCl}$ with hydrogen atoms in this reaction system.

$$
\begin{aligned}
& \mathrm{CH}_{2} \mathrm{CCl}_{2}+\mathrm{H} \rightarrow\left[\mathrm{C} . \mathrm{H}_{2} \mathrm{CHCl}_{2}\right]--\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{Cl}(\Delta \mathrm{Hr}=-15.5) \\
& \mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{H} \rightarrow\left[\mathrm{C} . \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right]->\mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{Cl}(\Delta \mathrm{Hr}=-19.1)
\end{aligned}
$$

The formation of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ as one of the major products in the temperature range $570{ }^{\circ} \mathrm{C}-660{ }^{\circ} \mathrm{C}$ results from reaction of $\mathrm{CH}_{2} \mathrm{ClC} . \mathrm{H}_{2}$ radical with $\mathrm{H}_{2} \cdot \mathrm{CH}_{2}$ ClC. H_{2} results from abstraction reaction (24) below in addition to reaction (14). Reactions (24) and (25) show that H atom plays a catalytic role in the formation of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ which is one of the major products in our experiment. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ undergoes dissociation reactions as shown below and in APPENDIX A Table 4.

A(1/s) E(Kcal/mol)
 major concentration products and thermochemical kinetic estimations can be illustrated as follows:

Plus HCl or H atom is also produced in each step. It should be pointed out that this reaction scheme is not a complete detailed mechanism, with the actual mechanism obviously including a significant number of free radical reactions.

A detailed reaction model comprised of 73 elementary reactions is developed to describe the system of reactions studied. This mechanism appears in Table 6 and fits the experimental results well.

The kinetic schemes in Table 6 were formulated considering all reaction products detected by GC. Elementary reaction rate parameters for abstraction reactions are based upon literature values, comparison with similar reactions (generic), thermodynamic estimations, along with Transition State Theory and estimation methods of Benson ${ }^{\langle 42\rangle}$. QRRK calculations ${ }^{\langle 39,40\rangle}$, as described in the previous section, were used to estimate apparent rate parameters for addition, combination, and dissociation reactions at the (latm) experimental pressure, with H_{2} as
diluent.
Experimental pyrolysis data are compared with model predictions in Figure 24 and Figure 27 for reagent decomposition and product distribution between 570 and 660 ${ }^{\circ}$ C. Predictions for decay of parent 1,1,2-trichloroethane and product distributions for $\mathrm{CHClCHCl}, \mathrm{CH}_{2} \mathrm{CCl}_{2}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$, $\mathrm{CH}_{2} \mathrm{CHCl}$, and $\mathrm{CH}_{2} \mathrm{CH}_{2}$ match experiment well. Figure 25 and Figure 26 shows the calculated concentration of the parent reactant and above listed products versus reaction time at temperatures of $600{ }^{\circ} \mathrm{C}$ and $630{ }^{\circ} \mathrm{C}$ and show quite good agreement with the experimentally observed data in Figure 13 and Figure 14 for decay of reactants and formation of products.

Figures 23 and 12 show the small difference seen between calculated and experimental values for $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$, $\mathrm{CH}_{2} \mathrm{CHCl}, \mathrm{CH}_{2} \mathrm{CH}_{2}$, and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$ (reagent and products). At 1.1 sec residence time the model over predicts vinyl chloride between 580 and $660{ }^{\circ} \mathrm{C}$ by as much as 30% at 630 ${ }^{\circ}$ c. It also over predicts ethylene at the higher temperatures 600 and $630^{\circ} \mathrm{C}$. The model over predicts 1,1,2trichloroethane loss at long reaction times. The possible reasons for this difference can be explained as follows; First, the kinetic scheme does not include all possible products, specifically polyaromatic hydrocarbons and carbon (solid), which are observed in small amounts. Second, the detailed mechanism only considers gaseous phase reactions; heterogeneous reaction effects are not included. Third, the

Figure-23 Product Distribution vs Temp $\mathrm{CH} 2 \mathrm{ClCHCl} 2 / \mathrm{H} 2$ at Time-1.1 sec.

Figure-24 Product Distribution vs Temp CH2CICHCl2/H2 at Time=1.1 sec.

Figure-13 Product Distribution vs Time $\mathrm{CH} 2 \mathrm{ClCHCl} 2 / \mathrm{H} 2$ at Time-600 C

Figure-25 Product Distribution vs Time $\mathrm{CH} 2 \mathrm{ClCHCl} 2 / \mathrm{H} 2$ at Temp 600 C

Figure-14 Product Distribution vs Time $\mathrm{CH} 2 \mathrm{ClCHCl} 2 / \mathrm{H} 2$ at Temp-630 C

Figure-26 Product Distribution vs Time CH2CICHCl2/H2 at Temp-630 C

Figure-27 Product Distribution vs Temp CH2CLCHCL2/H2 at Time=1.1 sec.

kinetic parameters estimated for several elementary reactions are estimated based on best available thermodynamic and kinetic collision frequency data in the literature or for similar reactions.

A computer code "SENS" was utilized to determine the reactions important to the mechanism in this work and they are shown in Table 7 (Reactions important to nine principal species are listed for $600{ }^{\circ} \mathrm{C}$ and 1.0 sec residence time). Complete results from the sensitivity analysis on the 73 elementary reactions relative to the nine major species (0 to 2.0 sec residence time) with temperatures $600{ }^{\circ} \mathrm{C}$ and 660 ${ }^{\circ} \mathrm{C}$ are shown in APPENDIX D. These sensitivity results are very helpful for selecting the important reactions to optimize for better fits of experimental results to mathematical models.

Table 7 shows that reactions (1), (3), and (28) are very important and (2), (4), (5), (19), and (24) are important for $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$. We find that $\mathrm{Ea}=\Delta \mathrm{Hr}+40.8$ for reactions (1) and (2). Reactions (17) and (18), the succeeding steps from reactions (3) and (4), are not important reactions for $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$. The lack of sensitivity to Reactions (17) and (18) is because they are very fast in this study. They go immediately, via beta scission, because they are unimolecular and have low Ea's.

$$
\mathrm{A}(\mathrm{l} / \mathrm{s}) \quad \mathrm{E}(\mathrm{kcal} / \mathrm{mol})
$$

17. $\mathrm{CH}_{2} \mathrm{ClCHCl}=\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{Cl} \quad 1.35 \mathrm{E}+14 \quad 27.4$
18. $\mathrm{CH}_{2} \mathrm{CHCl}_{2}=\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{Cl} \quad 1.35 \mathrm{E}+14 \quad 22.9$

Sensitivity Analysis of Mechanism Reactions*

Temperature $\quad: 600{ }^{\circ} \mathrm{C}$ Residence Time : 1.0 sec.

Species Most Important Reactions by Number (see Table 6)

* Detailed results of sensitivity analysis are shown in APPENDIX D. Reaction numbers are identical to those in Table 6. Decreasing order of importance sensitivity value cut off 0.01. $(+)=$ increase, $(-)=$ decrease species concentration.

Reactions (1), (3), and (56) are important reactions for the major product CHClCHCl and reactions (2), (3), and (49) are important for $\mathrm{CH}_{2} \mathrm{CCl}_{2}$. Reactions (49) and (56) were both modeled by using the CHEMACT QRRK calculations. The high sensitivity to these reactions combined with the good model fit to the experimental data indicate the theory provides a reasonable method to determine these rate constants.

$$
A(1 / s) \quad E(k c a l / m o l)
$$

49. $\mathrm{CH}_{2} \mathrm{CCl}_{2}+\mathrm{H}=\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{Cl} 3.00 \mathrm{E}+13$ 6.0 (this work)
50. $\mathrm{CHClCHCl}+\mathrm{H}=\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{Cl} 2.00 \mathrm{E}+13$ 5.0 (this work) Optimization of the mechanism to fit the experimental data has allowed determination of several elementary reaction rate constants. These include:

$$
A(1 / s) \quad E(\mathrm{kcal} / \mathrm{mol})
$$

1. $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}=\mathrm{CHClCHCl}+\mathrm{HCl} 9.56 \mathrm{E}+12 \quad 54.9$ (this work)
2. $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}=\mathrm{CH}_{2} \mathrm{CCl}_{2}+\mathrm{HCl} 4.79 \mathrm{E}+12 \quad 54.9$ (this work)
3. $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}=\mathrm{CH}_{2} \mathrm{ClCHCl}+\mathrm{Cl} 2.60 \mathrm{E}+1577.8$ (this work)
4. $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}=\mathrm{CH}_{2} \mathrm{CHCl}_{2}+\mathrm{Cl} 1.73 \mathrm{E}+15$ 81.7 (this work) where the Arrhenius parameters given are the high pressure limits used as input to the DISSOC program. The rate constants were determined by DISSOC for our temperatures and pressure regime. $k / k_{o o}$ for our $T \& P$ ranges are 0.93 for reactions (3) and (4) and 0.80 for reactions (1) and (2).

Detailed Mechanism for $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2} / \mathrm{H}_{2}$ Reaction System

REACTION
\{ dissociation \}

1. $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}=\mathrm{CHClCHCl}+\mathrm{HCl}$	$\begin{aligned} & 9.56 \mathrm{E}+12^{\#} \\ & 9.50 \mathrm{E}+12 * \end{aligned}$	$\begin{aligned} & 54.9 \\ & 55.3 \end{aligned}$	$\begin{gathered} \text { a,** } \\ \text { DISSOC } \end{gathered}$
2. $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}=\mathrm{CH}_{2} \mathrm{CCl}_{2}+\mathrm{HCl}$	$\begin{aligned} & 4.79 \mathrm{E}+12^{\#} \\ & 4.72 \mathrm{E}+12^{*} \end{aligned}$	$\begin{aligned} & 54.9 \\ & 55.3 \end{aligned}$	$\begin{gathered} \mathrm{b}, \star * \\ \text { DISSOC } \end{gathered}$
3. $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}=\mathrm{CH}_{2} \mathrm{ClCHCl}+\mathrm{Cl}$	$\begin{aligned} & 2.60 \mathrm{E}+15^{\#} \\ & 2.57 \mathrm{E}+15^{*} \end{aligned}$	$\begin{aligned} & 77.8 \\ & 77.7 \end{aligned}$	$\begin{gathered} \text { c,** } \\ \text { DISSOC } \end{gathered}$
4. $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}=\mathrm{CH}_{2} \mathrm{CHCl}_{2}+\mathrm{Cl}$	$\begin{aligned} & 1.73 \mathrm{E}+15^{\#} \\ & 1.58 \mathrm{E}+15^{*} \end{aligned}$	$\begin{aligned} & 81.7 \\ & 81.4 \end{aligned}$	$\begin{gathered} \text { c,** } \\ \text { DISSOC } \end{gathered}$
5. $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}=\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{CHCl}_{2}$	$\begin{aligned} & 5.28 \mathrm{E}+17^{\#} \\ & 4.15 \mathrm{E}+17^{*} \end{aligned}$	$\begin{aligned} & 89.6 \\ & 89.1 \end{aligned}$	$\begin{aligned} & d, k, * * \\ & \text { DISSOC } \end{aligned}$
6. $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}=\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{HCl}$	$\begin{aligned} & 1.99 \mathrm{E}+13^{\#} \\ & 1.97 \mathrm{E}+13^{*} \end{aligned}$	$\begin{aligned} & 55.3 \\ & 54.7 \end{aligned}$	$\begin{gathered} \text { e,** } \\ \text { DISSOC } \end{gathered}$
7. $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}=\mathrm{CH}_{2} \mathrm{ClCH}_{2}+\mathrm{Cl}$	$\begin{aligned} & 6.65 \mathrm{E}+15^{\#} \\ & 6.17 \mathrm{E}+15^{*} \end{aligned}$	$\begin{aligned} & 80.7 \\ & 79.7 \end{aligned}$	$\stackrel{\mathrm{c}}{\text { DISSOC }}$
8. $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}=\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{CH}_{2} \mathrm{Cl}$	$\begin{aligned} & 4.26 \mathrm{E}+17^{\#} \\ & 3.13 \mathrm{E}+17^{*} \end{aligned}$	$\begin{aligned} & 88.6 \\ & 88.7 \end{aligned}$	$\begin{gathered} \mathrm{f}, \mathrm{k} \\ \text { DISSOC } \end{gathered}$
9. $\mathrm{CH}_{3} \mathrm{CHCl}_{2}=\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{HCl}$	$\begin{aligned} & 1.96 \mathrm{E}+13^{\#} \\ & 1.94 \mathrm{E}+13^{*} \end{aligned}$	$\begin{aligned} & 55.4 \\ & 54.7 \end{aligned}$	$\begin{gathered} \text { e,** } \\ \text { DISSOC } \end{gathered}$
10. $\mathrm{CH}_{3} \mathrm{CHCl}_{2}=\mathrm{CH}_{3} \mathrm{CHCl}+\mathrm{Cl}$	$\begin{aligned} & 3.92 \mathrm{E}+15^{\#} \\ & 3.75 \mathrm{E}+15^{*} \end{aligned}$	$\begin{aligned} & 76.2 \\ & 75.2 \end{aligned}$	$\stackrel{\mathrm{c}}{\text { DISSOC }}$
11. $\mathrm{CH}_{3} \mathrm{CHCl}_{2}=\mathrm{CH}_{3}+\mathrm{CHCl}_{2}$	$\begin{aligned} & 2.07 \mathrm{E}+17^{\#} \\ & 1.32 \mathrm{E}+17^{*} \end{aligned}$	$\begin{aligned} & 91.3 \\ & 90.9 \end{aligned}$	$\begin{gathered} \mathrm{g}, \mathrm{k} \\ \text { DISSOC } \end{gathered}$
12. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}=\mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{HCl}$	$\begin{aligned} & 3.24 \mathrm{E}+13^{\#} \\ & 3.03 \mathrm{E}+13^{*} \end{aligned}$	$\begin{aligned} & 56.6 \\ & 57.4 \end{aligned}$	$\stackrel{\mathrm{h}}{\text { DISSOC }}$
13. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}=\mathrm{CH}_{3} \mathrm{CH}_{2}+\mathrm{Cl}$	$\begin{aligned} & 9.80 \mathrm{E}+14^{\#} \\ & 9.26 \mathrm{E}+14^{*} \end{aligned}$	$\begin{aligned} & 84.1 \\ & 83.2 \end{aligned}$	$\begin{gathered} \mathbf{i}, \mathbf{k} \\ \text { DISSOC } \end{gathered}$
14. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}=\mathrm{CH}_{3}+\mathrm{CH}_{2} \mathrm{Cl}$	$\begin{aligned} & 1.34 \mathrm{E}+17^{\#} \\ & 1.08 \mathrm{E}+17^{*} \end{aligned}$	$\begin{aligned} & 90.3 \\ & 90.3 \end{aligned}$	$\begin{gathered} \mathbf{j}, k \\ \text { DISSOC } \end{gathered}$

15. $\mathrm{CH}_{3} \mathrm{CH}_{3}=\mathrm{CH}_{3} \mathrm{CH}_{2}+\mathrm{H}$	$\begin{aligned} & 1.25 \mathrm{E}+16^{\#} \\ & 6.18 \mathrm{E}+15 * \end{aligned}$	$\begin{array}{r} 100.1 \\ 98.8 \end{array}$	$\stackrel{1}{\text { DISSOC }}$
16. $\mathrm{CH}_{3} \mathrm{CH}_{3}=\mathrm{CH}_{3}+\mathrm{CH}_{3}$	$\begin{aligned} & 7.94 \mathrm{E}+16^{\#} \\ & 2.35 \mathrm{E}+18^{*} \end{aligned}$	$\begin{aligned} & 90.3 \\ & 98.1 \end{aligned}$	$\stackrel{1}{\text { DISSOC }}$
(Beta Scission \}			
17. $\mathrm{CH}_{2} \mathrm{ClCHCl}=\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{Cl}$	1.35E+14	27.4	3,0
18. $\mathrm{CH}_{2} \mathrm{CHCl}_{2}=\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{Cl}$	1.35E+14	22.9	3,0
19. $\mathrm{CH}_{2} \mathrm{ClCH}_{2}=\mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{Cl}$	1.69E+14	23.9	1
20. $\mathrm{CH}_{3} \mathrm{CHCl}=\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{H}$	$2.76 \mathrm{E}+13$	47.3	m
21. $\mathrm{CH}_{3} \mathrm{CH}_{2}=\mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{H}$	$5.01 \mathrm{E}+13$	40.9	1
22. $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}+\mathrm{H}$	$3.16 \mathrm{E}+12$	38.3	1
(Abstraction)			
23. $\mathrm{CH}_{2} \mathrm{ClCHCl}+\mathrm{H}_{2}=\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}+\mathrm{H}$	$5.00 \mathrm{E}+12$	18.0	n, p
24. $\mathrm{CH}_{3} \mathrm{CHCl}+\mathrm{H}_{2}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{H}$	$5.00 \mathrm{E}+12$	17.2	n,p
25. $\mathrm{CH}_{2} \mathrm{ClCH}_{2}+\mathrm{H}_{2}=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{H}$	4.00E+12	15.7	5, p
26. $\mathrm{CHCl}_{2} \mathrm{CH}_{2}+\mathrm{H}_{2}=\mathrm{CH}_{3} \mathrm{CHCl}_{2}+\mathrm{H}$	$5.26 \mathrm{E}+12$	15.0	6
27. $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{3}+\mathrm{H}_{2}=\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}+\mathrm{H}$	$5.00 \mathrm{E}+12$	18.0	n, p
(Abstraction)			
28. $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}+\mathrm{H}=\mathrm{CH}_{2} \mathrm{ClCHCl}+\mathrm{HCl}$	$2.00 \mathrm{E}+13$	4.8	q,o
29. $\mathrm{CH}_{3} \mathrm{CHCl}_{2}+\mathrm{H}=\mathrm{CH}_{3} \mathrm{CHCl}+\mathrm{HCl}$	$2.00 \mathrm{E}+13$	6.2	q,o
30. $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}+\mathrm{H}=\mathrm{CH}_{2} \mathrm{ClCH}_{2}+\mathrm{HCl}$	$3.00 \mathrm{E}+13$	6.5	r,o
31. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{H}=\mathrm{CH}_{3} \mathrm{CH}_{2}+\mathrm{HCl}$	$1.50 \mathrm{E}+13$	8.0	s,o
32. $\mathrm{CH}_{3} \mathrm{CH}_{3}+\mathrm{H}=\mathrm{CH}_{3} \mathrm{CH}_{2}+\mathrm{H}_{2}$	$6.61 \mathrm{E}+13$	9.7	-
33. $\mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{H}=\mathrm{CH}_{2} \mathrm{CH}+\mathrm{H}_{2}$	$1.91 \mathrm{E}+13$	10.3	\bigcirc
34. $\mathrm{CHCH}+\mathrm{H}=\mathrm{CHC}+\mathrm{H}_{2}$	$2.00 \mathrm{E}+14$	19.0	\bigcirc
35. $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}+\mathrm{Cl}=\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Cl}_{3}+\mathrm{HCl}$	$1.00 \mathrm{E}+13$	0.5	4
(1 carbon reactions)		.	
36. $\mathrm{CHCl}_{2}+\mathrm{H}_{2}=\mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{H}$	4.12E+12	3.5	1,0

37. $\mathrm{CH}_{2} \mathrm{Cl}_{2}=\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{Cl}$	$1.05 \mathrm{E}+16^{\#}$	80.2	Y, k DISSOC
38.	$\mathrm{CH}_{2} \mathrm{Cl}_{2}=\mathrm{CHCl}+\mathrm{HCl}$	$1.66 \mathrm{E}+14^{*}$	74.6

60.	$\mathrm{CH}_{2} \mathrm{CHCl}=\mathrm{CH}_{2} \mathrm{CH}+\mathrm{Cl}$	$4.08 \mathrm{E}+15$	87.6	12,k
61.	$\mathrm{CH}_{2} \mathrm{CHCl}=\mathrm{CHCH}+\mathrm{HCl}$	$3.55 \mathrm{E}+13$	68.7	13
62.	$\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{H}=\mathrm{CH}_{2} \mathrm{CH}+\mathrm{HCl}$	1.00E+13	6.5	p
63.	$\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{H}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	1.39E+10*	-2.4	QRRK 3
64.	$\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{H}=\mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{Cl}$	8.51E+12*	3.5	QRRK 3
65.	$\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{Cl}=\mathrm{CHClCH}+\mathrm{HCl}$	1.00E+13	3.0	4
66.	$\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{Cl}=\mathrm{CH}_{2} \mathrm{CCl}+\mathrm{HCl}$	1. $00 \mathrm{E}+13$	1.6	4
67.	$\mathrm{CH}_{2} \mathrm{CCl}+\mathrm{H}_{2}=\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{H}$	$6.16 E+11$	6.0	v
68.	$\mathrm{CHClCH}+\mathrm{H}_{2}=\mathrm{CHClCH}_{2}+\mathrm{H}$	4.10E+11	4.7	W
69.	$\mathrm{H}+\mathrm{H}+\mathrm{M}=\mathrm{H}_{2}+\mathrm{M}$	$1.00 E+17$	0.0	7
70.	$\mathrm{Cl}_{2}=\mathrm{Cl}+\mathrm{Cl}$	7.69E+08	55.6	7
71.	$\mathrm{HCl}=\mathrm{H}+\mathrm{Cl}$	$6.09 \mathrm{E}+08$	97.3	7
72.	$\mathrm{Cl}+\mathrm{H}_{2}=\mathrm{HCl}+\mathrm{H}$	4.80E+13	5.3	0,7
73.	$\mathrm{H}+\mathrm{Cl}_{2}=\mathrm{HCl}+\mathrm{Cl}$	4.57E+12	1.4	0,7

\# High pressure limit value

* Pressure dependent : rate expression given for 760 torr Temperature range : 773-933 ${ }^{\circ} \mathrm{K}$
** Reactions determined in this work by optimization.
DISSOC : . apparent rate constant by DISSOCIATION computer code analysis (APPENDIX).

QRRK : apparent rate constant by QRRK computer code analysis (APPENDIX) .
a. $A=10^{13.55} * 10^{(-4 / 4.6)} * 4=1.92 \mathrm{E}+13$
$\mathrm{Ea}=55.9(\triangle \mathrm{Hr}+40.8)$, This study $\mathrm{A}=1 / 2 \mathrm{~A}$
b. $A=10^{13.55} * 10^{(-4 / 4.6)} * 1=4.79 \mathrm{E}+12$
$\mathrm{Ea}=55.9(\triangle \mathrm{Hr}+40.8)$
c. A factor based upon entropy change for reverse.
A_{-1} taken as that for $\mathrm{CH}_{3} \mathrm{CCl}_{2}+\mathrm{Cl}=\mathrm{CH}_{3} \mathrm{CCl}_{3}(\mathrm{~A}=1.0 \mathrm{E}+13)$
$\mathrm{Ea}=\Delta \mathrm{Hr}$
d. A factor based upon entropy change for reverse. A_{-1} taken as that for $C C C .+C_{2} H_{5} \log A=12.9$ This study $A_{r}=1 / 2 * 1012.9 .{ }_{2} \mathrm{CC}_{2} \mathrm{H}_{5} \log \mathrm{~A}=12.9$ $\mathrm{Ea}=\Delta \mathrm{Hr}$
e. Weissman and Benson, I. J. of Chem. Kinetics, vol. 16, 1984, for $\mathrm{CH}_{2} \mathrm{CLCH}_{2} \mathrm{Cl}=\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{HCl} \log \mathrm{A}=13.6$. This study $1 / 2 \mathrm{~A}$ $\mathrm{Ea}=\angle \mathrm{Hr}+{ }^{2} 8$
f. A factor based upon entropy change for reverse.
${ }^{A}-1$ taken as that for $1-\mathrm{C}_{3} \mathrm{H}_{7}+\mathrm{CH}_{3} \quad(\mathrm{~A}=2.0 \mathrm{E}+13)$ $\mathrm{Ea}=\Delta \mathrm{Hr}$
g. A factor based upon ΔS for reverse A_{-1} taken as that for
$\mathrm{CH}_{3}+\mathrm{CH}_{3} \log \mathrm{~A}=13.4$,
$\mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{5} \log \mathrm{~A}=13.3$, $\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{C}_{2} \mathrm{H}_{5} \log \mathrm{~A}=12.6$,
This study $\mathrm{A}_{\mathrm{r}}=2 * 10^{13}$. $\mathrm{Ea}=\Delta \mathrm{Hr}$
h. $\quad \mathrm{Ea}=\triangle \mathrm{Hr}+39.4$ Benson, S.W.,"Thermochemical Kinetics", 2nd ed., John Wiley \& Son, (1976)
i. A factor based upon $\triangle S$ for reverse A_{-1} taken as that for $\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{CH}_{3} \log \mathrm{~A}=13.4$ $\mathrm{Ea}=\Delta \mathrm{Hr}$
j. A factor based upon entropy change for reverse. A-1 taken as that for $\mathrm{CH}_{2}+\mathrm{CH}_{3} \log \mathrm{~A}=13.4$
estimat $\mathrm{A}_{r}=2 / 3 * 10{ }^{13} .4$. $\mathrm{Ea}=\Delta \mathrm{Hr}$
k. Allara, D.L. and Shaw, R., J. Phys. Chem. Ref. Data, 9, 523, 1980

1. Dean, A.M., J. Phys. Chem., 89, 4600, 1985 ..
m. A factor based upon entropy change for reverse. A_{-1} taken as that for $\mathrm{CH}_{3} \mathrm{CCl}_{2}=\mathrm{CH}_{2} \mathrm{CCl}_{2}+\mathrm{H}(\mathrm{A}=1.6 \mathrm{E}+13)$
$\mathrm{Ea}=\Delta \mathrm{Hr}+2.0$
n. (A factor taken that for $2-\mathrm{C}_{4} \mathrm{H}_{9}+\mathrm{H}_{2}$)
o. Kerr, J.A. and Moss, S.J., "Handbook of Bimolecular and Termolecular Gas Reaction, Vol.I \& II", CRC Press Inc., 1981
p. Barat, R.B. and Bozzelli, J.W., "Reaction of Atomic Hydrogen with Vinyl Chloride", submitted to J. Phys. Chem. (1988)
q. A factor taken as $2 / 3$ that for $\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{H}=\mathrm{CH}_{3}+\mathrm{HCl}$ Ea from "Evans-Polanyi" plot as shown in APPENDIX C. ("Evans-Polanyi" plot for a set of abstraction reactions: This is a plot of Ea versus $\triangle \mathrm{Hr}$ from similar reactions using data of w. After completing the plot obtain the best slope and put into the form of the general equation for determination of Ea knowing only $\triangle \mathrm{Hr}$.
r. A factor taken as that for $\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{H}=\mathrm{CH}_{3}+\mathrm{HCl}$ Ea from "Evans-Polanyi" plot as shown in APPENDIX C.
s. A factor taken as $1 / 2$ that for $\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{H}=\mathrm{CH}_{3}+\mathrm{Cl}$ Ea from "Evans-Polanyi" plot as shown in APPENDIX C.
t. A factor taken as 2.4 that for reaction (62)
u. A factor taken as 1.2 that for reaction (62)
v. A factor taken as 1.5 that for reverse reaction (33) with $A=4.1$ E+11 Ea from "Evans-Polanyi" plot
w. A factor taken as 1.5 that for reverse reaction (33) with $A=4.1$ E+11 Ea from "Evans-Polanyi" plot
 Lee, T., Am. Chem. Soc., 89, 5799, 1985)
Y. A based upon $\angle S$ for reverse. A_{-1} taken as that for $C_{2} \mathrm{H}_{5}+\mathrm{CH}_{3}(\mathrm{~A}=2.0 \mathrm{E}+13)$ $\mathrm{Ea}=\Delta \mathrm{Hr}$
z. $A=10^{13.55} * 3$
$\mathrm{Ea}=\Delta \mathrm{Hr}+40$ (ref: same as X)
2. A factor taken as that for interpolation between $\mathrm{CH}_{3}+\mathrm{H}_{2}$ (1.6 E+12) and $\mathrm{CCl}_{3}+\mathrm{H}_{2}(5.37 \mathrm{E}+12)$ with chlorine number Ea from the "Evans-Polanyi" plot
3. A based upon $\angle S$ for reverse. A_{-1} taken as that for $\mathrm{CH}_{3}+\mathrm{CH}_{3}(\mathrm{~A}=2.5 \mathrm{E}+13)$ $\mathrm{Ea}^{1}=\angle \mathrm{Hr}$
4. A factor based upon entropy change for reverse. A_{-1} taken as that for $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{Cl}(\mathrm{A}=2.0 \mathrm{E}+13)$ $\mathrm{Ea}=\Delta \mathrm{Hr}+1.5$
5. $A=1.0 \quad E+13$
$\mathrm{E}=\triangle \mathrm{Hr}+0.5$
6. A factor taken as that for reaction $1-\mathrm{C}_{4} \mathrm{H}_{9}+\mathrm{H}_{2}$
7. $A=A_{85}+\angle A A=A_{C H C l 2+H 2}-A_{C H 2 C 1+H 2}$
8. Ritter, E., Bozzelli, J.W. and Dean, A.M.'s paper accepted in J. Phys. Chem. (1988)
9. A based upon $\angle S$ for reverse.
${ }_{\mathrm{Ea}_{-1}=\mathrm{Laken}}^{\mathrm{A}} \mathrm{Hr}$ as that for $2-\mathrm{C}_{4} \mathrm{H}_{9}+\mathrm{CH}_{3}(\mathrm{~A}=1.6 \mathrm{E}+13)$
10. $A=10^{13.55} * 2$
$\mathrm{Ea}=\Delta \mathrm{Hr}+45$ (ref: Skinner)
11. A based upon ΔS for reverse.
A_{-1} taken as that for $2-\mathrm{C}_{4} \mathrm{H}_{9}+\mathrm{CH}_{3}(\mathrm{~A}=1.6 \mathrm{E}+13)$
$\mathrm{Ea}=\angle \mathrm{Hr}$
12. $A=10^{13.55} * 2$ $\mathrm{Ea}=\Delta \mathrm{Hr}+45$ (ref: Skinner)
13. A based upon $\angle S$ for reverse. A_{-1} taken as that for $\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{CH}_{3}(\mathrm{~A}=2.0 \mathrm{E}+13)$
$\mathrm{Ea}=\angle \mathrm{Hr}$
 Chem Kin., 9, 651, 1977)

References of Thermochemical Properties

$<1\rangle$ JANAF Thermochemical Tables issued as supplement No.1, Vol. 14, (1985) J. Phys. Chem. Ref. Data
$<2\rangle$ Wagman, D.D. and Evans, W.H., The NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data, Vol. 11 (1982)
$<3>$ Pedley, J.B., Naylor, R.D. and Kirby, S.P., "Thermochemical Data of Organic Compounds", 2nd ed., Chapman and Hall, NY (1986)
$<4>$ Stull, D.R., Westrum, E.F. and Sinke, G.C., "The Chemical Thermodynamic of Organic Compounds", Robert Krieger Publishing Co. FL (1987)
$<5>$ Benson, S.W., "Thermochemical Kinetics", 2nd ed. John Wiley \& Son, NY (1976)
<6> Allara, D.L. and Shaw, R., J. Phys. Chem. Ref. Data, Vol.9, 523 (1980)
<7> Ritter, E. and Bozzelli, J.W., "Thermochemical Estimation of Molecule and Radical", computer code submitted to J. Phys. Chem. Ref. Data for publication.

VI. CONCLUSION

The decomposition of $1,1,2$-trichloroethane in a hydrogen gas bath was carried out at 1 atmosphere total pressure in a tubular flow reactor. Temperature ranged from $440-850{ }^{\circ} \mathrm{C}$; and residence times studied were in the range from 0.2 - 2.3 seconds.

Decoupling of the wall and bulk reaction constant was achieved with the plug flow model, which was found to be valid under the conditions studied. Application of the first order rate expression to this data yields a linear relationship for each temperature studied. This demonstrates that the overall global reaction obeys a pseudo-first order kinetics. A first-order rate plot for the decay of $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}$ shows excelinenthinearity for all temperatures. The global activation energies were determined to be 29.2 Kcal/mol for the reactions of 1,1,2-trichloroethane with hydrogen in the 1.05 cm i.d. reactor.

The major reaction products include 1,2dichloroethylene (CHClCHCl), 1,1-dichloroethylene $\left(\mathrm{CH}_{2} \mathrm{CCl}_{2}\right)$, vinyl chloride $\left(\mathrm{CH}_{2} \mathrm{CHCl}\right)$, chloroethane $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}\right)$, ethylene, and HCl , with methyl chloride $\left(\mathrm{CH}_{3} \mathrm{Cl}\right)$, dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, and benzene observed as minor products. The observation of considerable amounts of dichloroethylene, both isomers, strongly indicates that the first step in the reaction series at $570-660^{\circ} \mathrm{C}$ is the primarily unimolecular decomposition of 1,1,2-trichloroethane to a ..corresponding dichloroethylene and hydrogen chloride. Complete decay (96
$\%$) of the reagent occurs at $850{ }^{\circ} \mathrm{C}$ and 1.1 sec residence time, the principal products are ethylene and HCl ; most chlorinated by-products have been destroyed except vinyl chloride (1.0 \%) and traces of chloroethane. The vinyl chloride appears from these studies to be relatively more stable than any other C_{2} chlorocarbon.

The method of CHEMACT QRRK calculations is shown to provide useful preditions for effects of pressure and temperature on the rate constant. A detailed kinetic reaction mechanism, composed of 73 elementary reactions and 37 species, was developed and used to model the experimental results obtained from the reaction system. This mechanism appears in Table 6 and fits experimental results quite well as shown in Figures 23-27.

Reaction rate constants determined in this research are:
A (1/s) E (Kcal/mol)
$\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}--\mathrm{CHClCHCl}+\mathrm{HCl}$
9.5E12 55.3 ($\triangle \mathrm{Hr}+41$)
$\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}--->\mathrm{CH}_{2} \mathrm{CCl}_{2}+\mathrm{HCl}$
$\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}--->\mathrm{CH}_{2} \mathrm{ClCHCl}+\mathrm{Cl}$
$\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}-->\mathrm{CH}_{2} \mathrm{CHCl}_{2}+\mathrm{Cl} 1.6 \mathrm{El5} 81.4$ ($\triangle \mathrm{Hr}$)
$\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}-->\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{CHCl}_{2} 4.2 \mathrm{El7} 89.1$ ($\triangle \mathrm{Hr}$)
For the reaction of $1,1,2$-trichloroethane to $\mathrm{CH}_{2} \mathrm{ClCHCl}$
+Cl , the energy of activation determined in this study
provides a bond energy for the $\mathrm{CH}_{2} \mathrm{CHCl}-\mathrm{Cl}$ bond of 77.7
kcal/mole.

VII. REFERENCES

<1> Sittig, M., Handbook of Toxic and Hazardous Chemicals and Carcinogens, Noyes Data Corporation (1985).
$<2\rangle$ Kebbekus, B.B., and Bozzelli, J.W., "Determination of Selected Toxic Organic Vapors in Air by Adsorbent Trapping and Capillary Gas Chromatography", J. Environ. Sci. Health, A17(5), 713, (1982).
<3> A. Trenholm, P. Gorman, B. Smith, D. Oberacker, "Emissions Test Results for a Hazardous Waste Incineration RIA," in Ninth Annual Research Symposium on Hazardous Waste, EPA 600/9-84-015, U.S. EPA, July 1984, P. 160.
<4> J.C. Kramlich, M.P. Heap, W.R. Seelcer, G.S. Samuelsen, "Flame-Mode Destruction of Hazardous Waste Compounds," in 20 th Symposium on Combustion, The Combustion Institute, pittsburgh, PA, 1985.
<5> W.P. Linak, J.A. McSorley, J.O.L. Wendt, J.E. Dunn, J. Air Pollut. Cont. Assoc. 37, 934 (1987).
<6> Chuang, S.C. and Bozzelli, J.W., Environ. Sci. Tech., 20, 568 (1986)
<7> Tavakoli, J. and Bozzelli J.W., Paper presented at the Central states Technolgy Meeting, The combustion Inst,itute, Argonne, IL, May 11 - 12 (1987)
<8> Kaufman, F., Progress in Reaction Kinetics, Vol. VI, Pergamon Press, NY (1961)
<9> Karra, S.B., Senkan, S.M. "Chemical Structure of Sooting $\mathrm{CH} 3 \mathrm{Cl} / \mathrm{CH} 4 / \mathrm{O} / \mathrm{Ar}$ and $\mathrm{CH} 4 / \mathrm{O} / \mathrm{Ar}$ Flame", Central States

Technical Meeting of The Combustion Institute, 1987. <10> Supelco Chromatography Supplies, Catalog 21, 1983, State college, Penn.
<ll> Benson S.W., Weissman, M., "Pyrolysis of Catalyzed polymerization of Methane," Int'l J. Chem. Kin., Vol. 16, 307 (1984).
<12> Benson, S.W., Weissman, M., "Mechanism of the Pyrolysis of C2HCl5, Molecular and Radical Steps," Int'l J. Chem. Kin., Vol. 14, 1287 (1982).
<13> Barton, D.H.R. and Onyon, P.F., J. Am. Chem. Soc. 72, 988 (1950)
<14> Benson, S.W. and Spokes, G.N., Symp. Comb., 11, 95 (1966)
<15> Lee, K.C., Jahnes, H.J., MaCauley, D.C., "Thermal Oxidation Kinetics of Selected Organic Compounds," J. Air Pollution Control Ass., Vol. 29, 7, 749 (1979).
<16> Louw, R.,Dijks, H., and Mulder, P., "Thermal HydroDechlorination of (Poly) Chlorinated Organic Compounds" Chemistry and Industry, 19, 759 (1983).
<17> Louw, R., Dijks, H. M., and Mulder, P., "Pyrolysis of Benzene and Chlorobenzene in an Atmosphere of Hydrogen; Formation of Methane", J. of the Royal Netherland Chemical Soc., 103/10, 271 (1984).
<18> Huang, S.H., M. Sc. Thesis, NJIT (1987).
<19> Chuang, S.C., M.Sc. Thesis, New Jersey Institute of Technology (1982).
<20> Chuang, S.C. and Bozzelli, J.W., Ind. Eng. Chem. Process Design and Development, 25, 317 (1986)
<21> Chang, S.H. and Bozzelli, J.W., AIChE J., 33, 1207 (1987)
<22> Chang, S.H., Doctoral Dissertation, New Jersey Institute of Technology (1985)
<23> Mahmood, M., M.Sc. Thesis, NJIT (1985)
<24> Ritter, E.R., M.Sc. Thesis, NJIT (1986)
<25> Tsao, H., M.Sc. Thesis, NJIT (1987)
<26> Won, Y.S. M.Sc. Thesis, NJIT (1988)
<27> Hill, C.G., Chemical Engineering Kinetics \& Reactor Design, John Wiley \& Son Inc., (1977).
<28> Reman, G.H., Chem. \& Ind., 46 (1955)
<29> Cremer, H.W. and Watkins, S.B., Chemical Enginering Practice, Vol. 8, Butterworth, London (1965)
$<30\rangle$ Butt, J.B., Reaction kinetics and Reactor Design, Prentice Hall (1980)
<31> Poirier, R.V. and Carr, R.W., J. Phys. Chem., 74, 1593, (1971)
<32> Levenspiel, 0., Chemical Reaction Engineering, 2nd ed., John Wiley \& Son Inc., NY (1962)
<33> Dean, A.M., J. Phys. Chem., 89, 4600 (1985)
<34> Leath'ard, D.A. and Shwrlock, Indentification Techniques in Gas Chromatography, Wiley, NY (1970)
<35> Kassel, L.S., "Studies in Homogeneous Gas Reactions II. Introduction of Quantum Theory," J. Phys. Chem., 32, 1065 (1928).
<36> Kaufman, F., Progress in Reaction Kinetics, Vol. VI, Pergamon Press, NY (1961)
<37> Won, Y.S. and Bozzelli, J.W., The American Society of Mechanical Engineers Annual Meeting, HTD-Volume 104, 131-135 Nov., 1988, Chicago, Ill.
<38> Viek, P.S., Chember, L.E. and Wosbcke, H.N., Advances in Chemical Series 131
<39> Westmoreland, P.R. and Dean, A.M., AIChE J., 32, 171 (1986)
<40> Ritter, E., and Bozzelli, J. W., and Dean, A.M., paper Accepted in J. Phys. Chem. (1988)
<41> Kee, R.J., Miller, T.H. and Jefferson, T.H., CHEMKIN: A Gereral-Purpose, Problem-Independent, Transportable, Fortran Chemical Kinetics Code Package, SANDIA (1980)
<42> Benson, S.W., Themochemical Kinetics, 2nd ed. Wiley, NY (1976)

APPENDIX A.

INPUT DATA

and
RESULTS

DISsoc
CALCULATION

Table 1-a

$$
\begin{array}{rll}
\mathrm{CH}_{2} \mathrm{ClCHCl}_{2} & ----> & \mathrm{CHClCHCl}^{2}+\mathrm{HCl} \\
& ---> & \mathrm{CH}_{2} \mathrm{CCl} 2+\mathrm{HCl} \\
& ---> & \mathrm{CH}_{2} \mathrm{ClCHCl}+\mathrm{Cl} \\
& ----> & \mathrm{CH}_{2} \mathrm{CHCl}_{2}+\mathrm{Cl} \\
& --->\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{CHCl}_{2}
\end{array}
$$

k	A	Ea	source
1	$9.56 \mathrm{E}+12$	54.9	a
2	$4.79 E+12$	54.9	b
3	$3.69 \mathrm{E}+15$	77.8	C
4	$1.73 \mathrm{E}+15$	81.7	C
5	$5.28 \mathrm{E}+17$	89.6	d
$\langle\mathrm{v}\rangle=678.7 / \mathrm{cm}$			e
Lennard-Jones	Parameters		f
sigma $=5.72$	${ }^{\circ} \mathrm{A}$	$e / k=498.9$	

a. $A=10^{13.55} * 10^{(-4 / 4.6)} * 4=1.92 \mathrm{E}+13$
$E a=55.9(\Delta \mathrm{Hr}+40.8)$, this study $\mathrm{A}=1 / 2 \mathrm{~A}$ above
b. $A=10^{13.55} * 10^{(-4 / 4.6)} * 1=4.79 \mathrm{E}+12$
$\mathrm{Ea}=55.9(\Delta \mathrm{Hr}+40.8)$
c. A factor based upon entropy change for reverse.
Ea_{-1} taken as that for $\mathrm{CH}_{3} \mathrm{CCl}_{2}+\mathrm{Cl}=\mathrm{CH}_{3} \mathrm{CCl}_{3} \quad(\mathrm{~A}=1.0 \mathrm{E}+13)$
d. A factor based upon entropy change for reverse.
A_{-1} taken as that for $\mathrm{CCC} \dot{1} .{ }_{9}^{+} \mathrm{C}_{2} \mathrm{H}_{5} \log \mathrm{~A}=12.9$
This study $A_{r}=1 / 2 * 10^{12.9}, \mathrm{Ea}^{5}=\triangle \mathrm{Hr}$ Allara, D.J. and Shaw, R., J. Phys. Chem. Ref. Data, 9, 523, 1980
e. Shimanouchi', T., Tables of Molecular Vibration Frequencies Consolidated Vol.I, Natl. Stand. Ref. Data Ser. (U.S. Natl. Bur. Stand.) 1972, NSRDS-NBS 39. (refer to $\left.\mathrm{CH}_{2} \mathrm{ClCHCl}\right)$
f. Activated complex $L-J$ parameters are estimated using critical property data tabulated in Reid, Prausnitz and Sherwood (The Properties and Gases and Liquids, 3rd ed.)

Table 1-b

APPARENT REACTION RATE CONSTANTS CALCULATED

 USING DISSOC| $\begin{gathered} \mathrm{P} \\ \text { (torr) } \end{gathered}$ | Reaction | $\begin{gathered} A \\ (\mathrm{Cc} / \mathrm{mol} \mathrm{~s}) \end{gathered}$ | | $\begin{gathered} \text { Ea } \\ (\mathrm{Kcal} / \mathrm{mol}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 7.6 | $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}=\mathrm{CHClCHCl}+\mathrm{HCl}$ | 8.11 | $E+12$ | 55.2 |
| 76.0 | | 9.22 | E+12 | 55.3 |
| 760.0 | | 9.50 | E+12 | 55.3 |
| 7.6 | $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}=\mathrm{CH}_{2} \mathrm{CCl}_{2}$ | 4.38 | E+12 | 55.2 |
| 76.0 | | 4.56 | E+12 | 55.3 |
| 760.0 | | 4.72 | E+12 | 55.3 |
| 7.6 | $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}=\mathrm{CH}_{2} \mathrm{ClCHCl}+\mathrm{Cl}$ | 2.25 | E+15 | 77.3 |
| 76.0 | | 3.16 | E+15 | 77.7 |
| 760.0 | | 3.57 | E+15 | 77.7 |
| 7.6 | $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}=\mathrm{CH}_{2} \mathrm{ClCHCl}+\mathrm{Cl}$ | 6.07 | E+14 | 80.8 |
| 76.0 | | 1.20 | E+15 | 81.3 |
| 760.0 | | 1.58 | E+15 | 81.4 |
| 7.6 | $\mathrm{CH}_{2} \mathrm{ClCHCl}_{2}=\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{CHCl}_{2}$ | 1.27 | E+17 | 88.3 |
| 76.0 | | 2.72 | E+17 | 88.8 |
| 760.0 | | 4.15 | E+17 | 89.1 |

Table 2-a

$$
\begin{array}{rll}
\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl} & ----> & \mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{HCl} \\
& ---> & \mathrm{CH}_{2} \mathrm{ClCH} \\
2
\end{array}+\mathrm{Cl},
$$

k	A	Ea	source
1	1.99E+13	55.3	a
2	$6.65 E+15$	80.7	b
3	4.26E+17	88.6	C
$\langle\mathrm{V}\rangle=797 . / \mathrm{cm}$			d
Lennard-Jones	Parameters		e
sigma $=5.12$	${ }^{\circ} \mathrm{A}$	$e / k=471.2$	

a. Weissman and Benson, I. J. of Chem. Kinetics, vol. 16, 1984, for $\mathrm{CH}_{2} \mathrm{CLCH}_{2} \mathrm{Cl}=\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{HCl} \log \mathrm{A}=13.6$, this study $1 / 2 \mathrm{~A}$. $\mathrm{Ea}=\angle \mathrm{Hr}+38$
b. A factor based upon entropy change for reverse.
A_{-1} taken as that for $\mathrm{CH}_{3} \mathrm{CCl}_{2}+\mathrm{Cl}=\mathrm{CH}_{3} \mathrm{CCl}_{3}(\mathrm{~A}=1.0 \mathrm{E}+13)$
$\mathrm{Ea}=\Delta \mathrm{Hr}$
c. A factor based upon entropy change for reverse.
A_{-1} taken as that for $1-\mathrm{C}_{3} \mathrm{H}_{7}+\mathrm{CH}_{3} \quad(\mathrm{~A}=2.0 \mathrm{E}+13)$
$\mathrm{Ea}=\triangle \mathrm{Hr}$
Allara, D.L. and Shaw, R., J. Phys. Chem. Ref. Data, 9, 523, 1980
d. Shimanouchi, T., Tables of Molecular Vibration Frequencies Consolidated Vol.I, Natl. Stand. Ref. Data Ser. (U.S. Natl. Bur. Stand.) 1972, NSRDS-NBS 39. (refer to $\left.\mathrm{CH}_{2} \mathbf{C l C H C l}\right)$
e. Activated complex $L-J$ parameters are estimated using critical property data tabulated in Reid, Prausnitz and Sherwood (The Properties of Gases and Liquids, 3rd ed.)

Table 2-b

APPARENT REACTION RATE CONSTANTS CALCULATED

 USING DISSOC| P
 (torr) | Reaction | A
 $(\mathrm{CC} / \mathrm{mol} \mathrm{s})$ | Ea
 $(\mathrm{KCal} / \mathrm{mol})$ |
| ---: | :---: | :---: | :---: |
| 7.6 | $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}=\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{HCl}$ | $1.59 \mathrm{E}+13$ | 54.6 |
| 76.0 | | $1.90 \mathrm{E}+13$ | 54.7 |
| 760.0 | | $1.97 \mathrm{E}+13$ | 54.7 |
| 7.6 | $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}=\mathrm{CH}_{2} \mathrm{ClCH}_{2}+\mathrm{Cl}$ | $3.52 \mathrm{E}+15$ | 79.3 |
| 76.0 | | $5.18 \mathrm{E}+15$ | 79.6 |
| 760.0 | | $6.17 \mathrm{E}+15$ | 79.7 |
| 7.6 | $\mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}=\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{CH}_{2} \mathrm{Cl}$ | $5.66 \mathrm{E}+16$ | 87.5 |
| 76.0 | | $1.73 \mathrm{E}+17$ | 88.3 |
| 760.0 | | $3.10 \mathrm{E}+17$ | 88.7 |

Table 3-a

$$
\begin{aligned}
\mathrm{CH}_{3} \mathrm{CHCl}_{2} & --->\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{HCl} \\
& -\cdots->\mathrm{CH}_{3} \mathrm{CHCl}+\mathrm{Cl} \\
& --->\mathrm{CH}_{3}+\mathrm{CHCl}_{2}
\end{aligned}
$$

k	A	Ea	source
1	$1.96 \mathrm{E}+13$	55.4	a
2	$3.51 \mathrm{E}+15$	76.1	b
3	$2.07 \mathrm{E}+17$	91.3	c
<V> $=797 . / \mathrm{cm}$	$\mathrm{e} / \mathrm{k}=471.2$	o_{K}	e
Lennard-Jones Parameters $:$			
sigma $=5.12$	o_{A}		

a. Weissman and Benson, I. J. of Chem. Kinetics, vol. 16, 1984, for $\mathrm{CH}_{2} \mathrm{CLCH}_{2} \mathrm{Cl}=\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{Cl}+\mathrm{HCl} \log \mathrm{A}=13.6$, this study $1 / 2 \mathrm{~A}$ $\mathrm{Ea}=\angle \mathrm{Hr}+38$
b. A factor based upon entropy change for reverse.
A_{-1} taken as that for $\mathrm{CH}_{3} \mathrm{CCl}_{2}+\mathrm{Cl}=\mathrm{CH}_{3} \mathrm{CCl}_{3}(\mathrm{~A}=1.0 \mathrm{E}+13)$
C. A factor based upon $\triangle S$ for reverse
$\begin{array}{ll}\mathrm{A}_{-1} \text { taken as that for } & \mathrm{CH}_{3}+\mathrm{CH}_{3} \log \mathrm{~A}=13.4 \text {, } \\ \mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{5} \log \mathrm{~A}=13.3 \text {, }\end{array}$
This study $A_{r}=2.0$ E13
$\mathrm{Ea}=\triangle \mathrm{Hr}$
Allara, D.L. and Shaw, R., J. Phys. Chem. Ref. Data, 9, 523, 1980
d. Shimanouchi, T., Tables of Molecular Vibration Frequencies Consolidated Vol.I, Natl. Stand. Ref. Data Ser. (U.S. Natl. Bur. Stand.) 1972, NSRDS-NBS 39. (refer to $\left.\mathrm{CH}_{2} \mathrm{ClCHCl}\right)$
e. Activated complex $L-J$ parameters are estimated using critical property data tabulated in Reid, Prausnitz and Sherwood (The Properties of Gases and Liquids, 3rd ed.)

Table 3-b

APPARENT REACTION RATE CONSTANTS CALCULATED

 USING DISSOC| P
 (torr) | Reaction | A
 $(\mathrm{cC} / \mathrm{mol} \mathrm{s})$ | Ea
 (KCal/mol) |
| ---: | :--- | ---: | :--- |
| 7.6 | $\mathrm{CH}_{3} \mathrm{CHCl}_{2}=\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{HCl}$ | $1.57 \mathrm{E}+13$ | 54.6 |
| 76.0 | | $1.87 \mathrm{E}+13$ | 54.7 |
| 760.0 | | $1.94 \mathrm{E}+14$ | 54.7 |
| 7.6 | $\mathrm{CH}_{3} \mathrm{CHCl}_{2}=\mathrm{CH}_{3} \mathrm{CHCl}+\mathrm{Cl}$ | $2.00 \mathrm{E}+15$ | 74.8 |
| 76.0 | | $2.93 \mathrm{E}+15$ | 75.1 |
| 760.0 | | $3.37 \mathrm{E}+15$ | 75.2 |
| 7.6 | $\mathrm{CH}_{3} \mathrm{CHCl}_{2}=\mathrm{CH}_{3}+\mathrm{CHCl}_{2}$ | $7.90 \mathrm{E}+15$ | 89.1 |
| 76.0 | | $5.18 \mathrm{E}+16$ | 90.2 |
| 760.0 | | $1.32 \mathrm{E}+17$ | 90.9 |

Table 4-a

k	A	Ea	source
1	$3.24 \mathrm{E}+13$	56.6	a
2	$9.80 \mathrm{E}+14$	84.1	b
3	$1.34 \mathrm{E}+17$	90.3	c
<v> $=1265.3 / \mathrm{cm}$	$\mathrm{e} / \mathrm{k}=621.1$	o_{K}	d
Lennard-Jones Parameters $:$			
sigma $=2.83$	o_{A}		

a. $\quad \mathrm{Ea}=\triangle \mathrm{Hr}+39.4$

Benson, S.W.,"Thermochemical Kinetics", 2nd ed., John Wiley \& Son, (1976)
b. A factor based upon ΔS for reverse
A_{-1} taken as that for $\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{CH}_{3} \log \mathrm{~A}=13.4$
$\mathrm{Ea}=\triangle \mathrm{Hr}$
Allara, D.L. and Shaw, R., J. Phys. Chem. Ref. Data, 9, 523, 1980
c. A factor based upon entropy change for reverse.
A_{-1} taken as that for $\mathrm{CH}_{2}+\mathrm{CH}_{3} \log \mathrm{~A}=13.4$ estimat $A_{r}=2 / 3 * 10^{13.4}$.
$\mathrm{Ea}=\Delta \mathrm{Hr}$
Allara, D.L. and Shaw, R., J. Phys. Chem. Ref. Data, 9, 523, 1980
d. Shimanouchi, T., Tables of Molecular Vibration Frequencies Consolidated Vol.I, Natl. Stand. Ref. Data Ser. (U.S. Natl. Bur. Stand.) 1972, NSRDS-NBS 39. (refer to $\mathrm{CH}_{2} \mathrm{ClCHCl}$)
e. Activated complex L-J parameters are estimated using critical property data tabulated in Reid, Prausnitz and Sherwood (The Properties of Gases and Liquids, 3rd ed.)

Table 4-b

APṔARENT REACTION RATE CONSTANTS CALCULATED USING DISSOC

P (torr)	Reaction	A $(\mathrm{CC} / \mathrm{mol} \mathrm{s})$	Ea $(\mathrm{KCal} / \mathrm{mol})$
7.6	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}=\mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{HCl}$	$9.82 \mathrm{E}+13$	56.1
76.0		$1.06 \mathrm{E}+14$	57.2
760.0	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}=\mathrm{CH}_{3} \mathrm{CH}_{2}+\mathrm{Cl}$	$5.03 \mathrm{E}+14$	57.4
7.6		$8.02 \mathrm{E}+14$	83.1
76.0		$9.26 \mathrm{E}+14$	83.2
760.0	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}=\mathrm{CH}_{3}+\mathrm{CH}_{2} \mathrm{Cl}$	$2.93 \mathrm{E}+16$	89.4
7.6		$7.11 \mathrm{E}+16$	90.0
76.0		$1.10 \mathrm{E}+17$	90.3

Table 5-a

$$
\mathrm{CH}_{3} \mathrm{CH}_{3}-\cdots \mathrm{CH}_{3} \mathrm{CH}_{2}+\mathrm{H}
$$

k	A	Ea	source
1	$1.25 \mathrm{E}+16$	100.1	a
2	$7.94 \mathrm{E}+16$	90.3	a
<v> $=1509 / \mathrm{cm}$	$\mathrm{e} / \mathrm{k}=246.8$	o_{K}	b
Lennard-Jones Parameters $:$	c		
sigma $=4.342 \mathrm{o}_{\mathrm{A}}$			

a. Dean, A.M., J. Phys. Chem., 89, 4600, 1985
b. Shimanouchi, T., Tables of Molecular Vibration Frequencies Consolidated Vol.I, Natl. Stand. Ref. Data Ser. (U.S. Natl. Bur. Stand.) 1972, NSRDS-NBS 39. (refer to $\mathrm{CH}_{2} \mathrm{ClCHCl}$)
c. Activated complex L-J parameters are estimated using critical property data tabulated in Reid, Prausnitz and Sherwood (The Properties of Gases and Liquids, 3rd ed.)

Table 5-b
APPARENT REACTION RATE CONSTANTS CALCULATED USING DISSOC

P (torr)	Reaction	A $(\mathrm{CC} / \mathrm{mol} \mathrm{s})$	Ea $(\mathrm{Kcal} / \mathrm{mol})$
7.6	$\mathrm{CH}_{3} \mathrm{CH}_{3}=\mathrm{CH}_{3} \mathrm{CH}_{2}+\mathrm{H}$	$1.77 \mathrm{E}+14$	97.0
76.0		$1.65 \mathrm{E}+15$	98.0
760.0		$6.18 \mathrm{E}+15$	98.8
7.6	$\mathrm{CH}_{3} \mathrm{CH}_{3}=\mathrm{CH}_{3}+\mathrm{CH}_{3}$	$1.23 \mathrm{E}+17$	96.7
76.0		$9.35 \mathrm{E}+17$	97.6
760.0		$2.35 \mathrm{E}+18$	98.1

APPENDIX B.

INPUT DATA
and
RESULTS

CHEMACT QRRK CALCULATIONS

Table 6-a

$$
\mathrm{CH}_{2} \mathrm{CCl}_{2}+\mathrm{H}<===\Rightarrow\left[\mathrm{CH}_{2} \mathrm{CHCl}_{2}\right]^{\#}-\cdots \mathrm{CH}_{2} \mathrm{CHCl}+\underset{2}{\mathrm{Cl}}
$$

k	A	Ea	source
1	$3.0 \mathrm{E}+13$	6.0	a
-1	$5.4 \mathrm{E}+13$	42.3	a
2	$3.3 \mathrm{E}+14$	21.9	b
Lv> $=736 / \mathrm{cm}$	$\mathrm{e} / \mathrm{k}=435.91 \mathrm{o}_{\mathrm{K}}$	C	
Lennard-Jones Parameters $:$	d		
sigma $=5.103 \mathrm{o}_{\mathrm{A}}$			

a

```
A factor taken as that for C2H4 + H (A=3.0E+13)
(ref: Kerr, J.A. and Moss, S.J., "Handbook of Bimolecular
and Termolecular Gas Reaction Vol. I & II," CRC Press
inc., 1981)
A-1 factor based upon }\Delta\textrm{S}\mathrm{ for reverse.
```

b
based upon (del S) for $\mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{Cl}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
with $A_{-2}=1.8 \mathrm{E}+13 \mathrm{cc} / \mathrm{mol} \sec$ (Ref: Kerr) $\mathrm{Ea}=\Delta \overline{\mathrm{H}} \mathrm{r}+1$
c
Shimanouchi, T., Tables of Molecular Vibration Frequencies Consolidated Vol.I, Natl. Stand. Ref. Data Ser. (U.S. Natl. Bur. Stand.) 1972, NSRDS-NBS 39.
d
Activated complex L-J parameters are estimated using critical property data tabulated in Reid, Prausnitz and Sherwood, (The Properties of Gases and Liquids, 3rd ed.)

Table 6-b

APPARENT REACTION RATE CONSTANTS PREDICTED

 USING BIMOLECULAR QRRK ANALYSIS| P
 (torr) | Reaction | A
 $(\mathrm{cC} / \mathrm{mol} \mathrm{s})$ | |
| ---: | :---: | ---: | :---: |
| 7.6 | $\mathrm{CH}_{2} \mathrm{CCl}_{2}+\mathrm{H}=\mathrm{CH}_{2} \mathrm{CHCl}_{2}$ | Ea
 $(\mathrm{Kcal} / \mathrm{mol})$ | |
| 76.0 | | $6.46 \mathrm{E}+06$ | -0.99 |
| 760.0 | | $6.46 \mathrm{E}+07$ | -0.98 |
| 7.6 | $\mathrm{CH}_{2} \mathrm{CCl}_{2}+\mathrm{H}=\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{Cl}$ | $3.00 \mathrm{E}+13$ | 6.00 |
| 76.0 | | $3.00 \mathrm{E}+13$ | 6.00 |
| 760.0 | | $3.01 \mathrm{E}+13$ | 6.01 |

a
A factor taken as that for $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}(\mathrm{A}=2.0 \mathrm{E}+13)$ (ref: Kerr, J.A. and Moss, S.J., "Handbook of Bimolecular and Termolecular Gas Reaction Vol.I \& II," CRC Press inc., 1981)
A_{-1} factor based upon $\Delta \mathrm{S}$ for reverse.
b
based upon (del S) for $\mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{Cl}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ with $A_{-2}=1.8 \mathrm{E}+13 \mathrm{cc} / \mathrm{mol} \sec (\mathrm{Ref}:$ Kerr) $E a=\Delta H r+1$
c
Shimanouchi, T., Tables of Molecular Vibration Frequencies Consolidated Vol.I, Natl. Stand. Ref. Data Ser. (U.S. Natl. Bur. Stand.) 1972, NSRDS-NBS 39. (refer to $\mathrm{CH}_{2} \mathrm{CHCl}_{2}$)
d
Activated complex L-J parameters are estimated using critical, property data tabulated in Reid, Prausnitz and Sherwood (The Properties of Gases and Liquids, 3rd ed.)

Table 7-b

APPARENT REACTION RATE CONSTANTS PREDICTED USING BIMOLECULAR QRRK ANALYSIS

P (torr)	Reaction	A $(\mathrm{CC} / \mathrm{mol} \mathrm{s})$	Ea $(\mathrm{Kcal} / \mathrm{mol})$
7.6	$\mathrm{CHClCHCl}+\mathrm{H}=\mathrm{CH}_{2} \mathrm{ClCHCl}$	$4.05 \mathrm{E}+07$	-2.65
76.0		$4.06 \mathrm{E}+08$	-2.65
760.0	$\mathrm{CHClCHCl}+\mathrm{H}=\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{Cl}$	$2.00 \mathrm{E}+13$	5.00
7.6		$2.00 \mathrm{E}+13$	5.01
76.0		$2.05 \mathrm{E}+13$	5.06
760			-2.57

Table 8-a

$$
\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{H}<===\Rightarrow\left[\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right]^{\#}-\ldots \mathrm{CH}_{2} \mathrm{CH}_{2}+\underset{\sim}{\mathrm{Cl}} \underset{2}{\mathrm{Cl}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl} \text { (Stab.) }
$$

k	A	Ea	source
1	8.0 E+12	3.3	a
-1	7.7 E+12	45.1	a
2	$1.0 \mathrm{E}+13$	22.7	b
$\langle\mathrm{V}\rangle=1265.3 / \mathrm{cm}$			C
LJ Parameters :			d
sigma $=4.898 \mathrm{~A}^{0}$	e/k	O_{K}	

a
A factor taken as that for $\mathrm{CH}_{3} \mathrm{CHCH}_{2}+\mathrm{H}$
A_{-1} factor based upon entropy change from reverse. (ref: Dean)
b
A factor based upon entropy change for reverse.
A_{-1} taken as that for $\mathrm{CH}_{3}+\mathrm{CH}_{2} \mathrm{CH}_{3} \quad(\mathrm{~A}=2.0 \mathrm{E}+13, \mathrm{Ea}=\Delta \mathrm{Hr})$ (ref: Dean)
c
see note (c) Table 5-a. (refer to $\mathrm{CH}_{2} \mathrm{CHCl}_{2}$)
d
see note (d) Table 5-a

Table 8-b

APPARENT REACTION RATE CONSTANTS PREDICTED USING BIMOLECULAR QRRK ANALYSIS

P (torr)	Reaction	A $(\mathrm{CC} / \mathrm{mol} \mathrm{s})$	Ea $(\mathrm{Kcal} / \mathrm{mol})$
7.6	$\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{H}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	$1.30 \mathrm{E}+08$	-2.57
76.0		$1.30 \mathrm{E}+09$	-2.55
760.0		$1.39 \mathrm{E}+10$	-2.36
7.6	$\mathrm{CH}_{2} \mathrm{CHCl}+\mathrm{H}=\mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{Cl}$	$7.97 \mathrm{E}+12$	3.29
76.0		$8.02 \mathrm{E}+12$	3.31
760.0	$8.51 \mathrm{E}+12$	3.49	

APPENDIX D.1-D. 4

D. 1 RESULTS OF SENSITIVITY ANALYSIS CALCULATIONS AT 1 ATM, $600{ }^{\circ} \mathrm{C}, 1.0$ SEC.
D. 2 RESULTS OF SENSITIVITY ANALYSIS CALCULATIONS AT 1 ATM, $660^{\circ} \mathrm{C}, 1.0 \mathrm{SEC}$.
D. 3 THERMO DATA IN THIS WORK
D. 4 RESULTS OF MECHANINFO CALCULATIONS AT 1 ATM, $800-1000{ }^{\circ} \mathrm{K}$.

Initial Conditions:

PRESSURE (ATM) $=1.0000 \mathrm{E}+00 \quad$ TIM $=0.0000 \mathrm{E}+00$
Temperature $(\mathrm{R})=8.7300 \mathrm{E}+02$
Density $(\mathrm{gm} / \mathrm{CC})=4.1349 \mathrm{E}-05$

Mole Fractions:

Time Integration:

$3 \mathrm{C} 2 \mathrm{H} 3 \mathrm{CLCr} 2=\mathrm{CH} 2 \mathrm{CLCHCL}$

30	$\begin{aligned} & \mathrm{C} 2 \mathrm{H} 4 \mathrm{CLCL}+\mathrm{H}=\mathrm{CH} 2 \mathrm{CLCH} 2+\mathrm{HCL} \\ & 3.000 \mathrm{E}+13 \quad 2.031 \mathrm{E}-07 \end{aligned}$	$1.875 \mathrm{E}-07$	$1.677 \mathrm{E}-07$	-1.242E-06	-2.061E-06	4.561E-05	2.684E-06	4.377E-05	-5.587E-02
3	$\mathrm{C} 2 \mathrm{H} 5 \mathrm{CL}+\mathrm{H}=\mathrm{C} 2 \mathrm{H} 5+\mathrm{HCL}$								
	$1.500 \mathrm{E}+13$ I.714E-04	$1.574 \mathrm{E}-04$	1.386E-04	-5.865E-04	-9.603E-03	-5.028E-04	-3.133E-04	4.656E-02	-6.750E-04
32	$\mathrm{C} 2 \mathrm{H} 6+\mathrm{H}=\mathrm{C} 2 \mathrm{H} 5+\mathrm{H} 2$								
	$6.610 \mathrm{E}+13-2.854 \mathrm{E}-03$	-2.621E-03	-2.307E-03	$9.764 \mathrm{E}-03$	2.508E-02	3.867E-03	$8.772 \mathrm{E}-03$	2.176E-01	$1.124 \mathrm{E}-02$
33	$\mathrm{C} 2 \mathrm{H} 4+\mathrm{H}=\mathrm{C} 2 \mathrm{H} 3+\mathrm{H} 2$								
	$1.910 \mathrm{E}+13-1.174 \mathrm{E}-04$	-1.090E-04	-9.701E-05	4.037E-04	$1.026 \mathrm{E}-03$	2.671E-03	3.621E-04	3.456E-03	4.599E-04
34	$\mathrm{C} 2 \mathrm{H} 2+\mathrm{H}=\mathrm{C} 2 \mathrm{H}+\mathrm{H} 2 \mathrm{C}$								
	$2.000 \mathrm{E}+14-2.941 \mathrm{E}-16$	-2.930E-16	-2.725E-16	$1.055 \mathrm{E}-15$	2.564E-15	2.642E-15	$9.385 \mathrm{E}-16$	4.205E-15	$1.142 \mathrm{E}-15$
35	$\mathrm{C} 2 \mathrm{H} 3 \mathrm{CLCL} 2+\mathrm{CL}=\mathrm{C} 2 \mathrm{H} 2 \mathrm{CL} 3+\mathrm{HCL}$								
	$\begin{aligned} & 1.000 \mathrm{E}+13 \\ & 2=\mathrm{CH} 2 \mathrm{CL} 2+\mathrm{H}\end{aligned} 2.931 \mathrm{E}-03$	2.771E-03	2.523E-03	-1.016E-02	-2.552E-02	-2.521E-02	-9.092E-03	-4.075E-02	-1.142E-02
	$1.070 \mathrm{E}+14$ 3.927E-11	6.384E-10	$1.044 \mathrm{E}-09$	-1.121E-09	3.355E-09	-5.900E-09	-7.647E-10	-1.677E-09	1.077E-09
37	$\mathrm{CH} 2 \mathrm{CL} 2=\mathrm{CH} 2 \mathrm{CL}+\mathrm{CL}$								
	1.660E+14-4.876E-07	-4.551E-07	-4.074E-07	$1.680 \mathrm{E}-06$	4.257E-06	4.154E-06	1.507E-06	$6.746 \mathrm{E}-06$	$1.906 \mathrm{E}-06$
38	CH2CL2=CHCL +HCL								
	$1.200 \mathrm{E}+14 \quad 0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 E+00$	$0.000 \mathrm{E}+00$				
39	$\begin{gathered} \mathrm{CB} 2 \mathrm{CL} 2+\mathrm{H}=\mathrm{CH} 2 \mathrm{CL}+\mathrm{HCL} \\ 1.100 \mathrm{E}+13 \mathrm{~S} 546 \mathrm{E}-08 \end{gathered}$	5.271E-08	4.921E-08	-1.904E-07	-4.663E-07	-4.774E-07	9.774E-07	-7.587E-07	-2.031E-07
40	$\mathrm{CH} 2 \mathrm{CL}+\mathrm{H} 2=\mathrm{CH} 3 \mathrm{CL}+\mathrm{H}$								
	$2.860 \mathrm{E}+12-2.901 \mathrm{E}-06$	-2.775E-06	-2.576E-06	1.008E-05	$2.519 \mathrm{E}-05$	2.507E-05	9.008E-06	4.046E-05	$1.105 \mathrm{E}-05$
41	$\mathrm{CH} 3 \mathrm{CL}=\mathrm{CH} 3+\mathrm{CL}$								
	$1.270 \mathrm{E}+14-8.120 \mathrm{E}-09$	-7.576E-09	-6.774E-09	2.797E-08	$7.094 \mathrm{E}-08$	6.917E-08	$2.508 \mathrm{E}-08$	1.123E-07	3.176E-08
42	$\mathrm{CH} 3 \mathrm{CL}=\mathrm{CH} 2+\mathrm{HCL}$								
	$4.750 \mathrm{E}+13 \quad 0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$							
43	$\mathrm{CH} 3 \mathrm{CL}+\mathrm{H}=\mathrm{CH} 3+\mathrm{HCL}$								
	$3.720 \mathrm{E}+13$ 3.905E-08	4.071E-08	4.041E-08	-1.405E-07	-3.247E-07	-3.604E-07	5.071E-07	-5.527E-07	-1.440E-07
44	$\mathrm{CH} 4+\mathrm{H}=\mathrm{CH} 3+\mathrm{H} 2$								
	$5.000 \mathrm{E}+12-6.648 \mathrm{E}-08$	-6.222E-08	-5.562E-08	2.293E-07	$5.796 E-07$	5.684E-07	$2.056 \mathrm{E}-07$	$9.200 \mathrm{E}-07$	$2.597 E-07$
45	CR2CCL2=CH2CCL+CL								
	9.340E+15 -2.316E-05	-2.161E-05	-1.964E-05	$7.987 \mathrm{E}-05$	$2.024 E-04$	$1.974 \mathrm{E}-04$	$7.156 \mathrm{E}-05$	3.205E-04	9.057E-05
46	CH2CCL2=C2HCL+HCL								
	3.550E+13 -1.691E-06	-1.580E-06	-9.437E-05	3.470E-06	$1.330 E-05$	1.284E-05	1.422E-05	2.228E-05	6.654E-06
47	CH2CCL $2+\mathrm{HmCHCL} 2 \mathrm{CH} 2$								
	CH2CCI $\begin{gathered}6.500 \mathrm{E}+\mathrm{H}=\mathrm{CH} 3 \mathrm{CCL} 2\end{gathered}-1.311 \mathrm{E}-06$	-1.207E-06	-1.246E-04	4.158E-05	4.140E-05	4.085E-05	$1.715 \mathrm{E}-05$	4.364E-05	5.391E-06
	$\mathrm{CH} 2 \mathrm{CCL} 2+\mathrm{H}=\mathrm{CH} 3 \mathrm{CCL} 2$ $4.300 \mathrm{E}+09 \quad 2.057 \mathrm{E}-03$	1.942E-03	$1.736 \mathrm{E}-03$	-7.118E-03	-1.790E-02	-1.767E-02	-6.373E-03	-2.856E-02	-7.993E-03
49	$\begin{gathered} \mathrm{CH} 2 \mathrm{CCL} 2+\mathrm{H}=\mathrm{C} 2 \mathrm{H} 3 \mathrm{CL}+\mathrm{CI} \\ 3.010 \mathrm{E}+13-1.112 \mathrm{E}-03 \end{gathered}$	-1.026E-03	-1.038E-01	3.471E-02	$3.465 \mathrm{E}-02$	3.421E-02	$1.435 \mathrm{E}-02$	$3.663 \mathrm{E}-02$	4.564E-03
50	$\begin{aligned} & \mathrm{CH} 2 \mathrm{CCL} 2+\mathrm{H}=\mathrm{CH} 2 \mathrm{CCL}+\mathrm{HCL} \\ & 6.000 \mathrm{E}+12-3.077 \mathrm{E}-05 \end{aligned}$	-2.843E-05	-2.752E-03	$9.244 \mathrm{E}-0$	$9.298 \mathrm{E}-04$	9.180E-04	3.843E-04	9.891E-04	1.247E-04
51	$\mathrm{CH} 2 \mathrm{CCL} 2+\mathrm{CL}=\mathrm{HCL}+\mathrm{CCL} 2 \mathrm{CH}$								
	$1.000 \mathrm{E}+13-6.948 \mathrm{E}-09$	-8.246E-09	-6.881E-09	2.660E-08	5.213E-08	7.170E-08	$2.450 \mathrm{E}-08$	$1.027 \mathrm{E}-07$	-1.226E-08
52	$\mathrm{CCL} 2 \mathrm{CH}+\mathrm{H} 2=\mathrm{CH} 2 \mathrm{CCL} 2+\mathrm{H}$								
	4.100E+11 -4.308E-08	-4.033E-08	-3.551E-08	$1.486 \mathrm{E}-07$	$3.763 \mathrm{E}-07$	3.680E-07	$1.332 \mathrm{E}-07$	5.972E-07	$1.670 \mathrm{E}-07$
53	$\mathrm{CHCLCHCL}=\mathrm{CHCLCH}+\mathrm{CL}$								
	$9.340 \mathrm{E}+15-2.079 \mathrm{E}-05$	-1.954E-05	-1.735E-05	$7.169 \mathrm{E}-05$	$1.817 \mathrm{E}-04$	$1.772 \mathrm{E}-04$	$6.424 \mathrm{E}-05$	$2.877 \mathrm{E}-04$	$8.130 \mathrm{E}-05$
54	CHCLCHCL $=\mathrm{C} 2 \mathrm{HCL}+\mathrm{HCL}$								
	$3.500 \mathrm{E}+13-1.025 \mathrm{E}-08$	-9.132E-05	-3.523E-08	-5.314E-06	-3.353E-06	-3.351E-06	$1.738 \mathrm{E}-05$	-2.348E-06	-2.018E-08
55	$\begin{aligned} & \text { CHCLCHCL }+\mathrm{H}=\mathrm{CH} 2 \mathrm{CLCHCL} \\ & 4.180 \mathrm{E}+091.443 \mathrm{E}-05 \end{aligned}$	-1.978E-03	$1.189 \mathrm{E}-05$	1.123 E	$8.254 \mathrm{E}-0$	8.265E-04	3.708E-04	$6.178 \mathrm{E}-04$	$1.376 E-03$
56	$\mathrm{CHCLCHCL}+\mathrm{H}=\mathrm{C} 2 \mathrm{H} 3 \mathrm{CL}+\mathrm{CL}$					8	3.708E-04		1.376E-03
	$2.050 \mathrm{E}+13 \quad 8.515 \mathrm{E}-04$	-1.166E-01	$7.014 \mathrm{E}-04$	$6.619 \mathrm{E}-02$	4.863E-02	4.870E-02	2.185F-07	२. $6307-03$	-2019003

PRENDIX D. 2 (1 ATM, $660 \mathrm{C}, 1.0 \mathrm{SEC}$)

```
        PROGRAM SID
Version 1.4
```

Double PreCision

Sensitivity analysis will be performed.
analysis will be performed
WORKING SPACE REQUIREMENTS
WORKING SPACE REQUIREMENTS
PROVIDED
REQUIRED
$\begin{array}{cc}\text { PROVIDED } & \text { REQUIRE } \\ 40000 & 6109\end{array}$

Integer	40000	6109
Real	400000	47746

Temperature is held Constant.

Initial Conditions:
PRESSURE $(A T M)=1.0000 E+00 \quad$ TIM $=0.0000 E+00$
Temperature $(K)=9.3300 \mathrm{E}+02$
Density $(\mathrm{gm} / \mathrm{CC})=3.8690 \mathrm{E}-05$

Mole Fractions:

Time Integration:

$3 \mathrm{C} 2 \mathrm{H} 3 \mathrm{CLCL} 2=\mathrm{CH} 2 \mathrm{CLCHCL}+\mathrm{CL}$
$4 \mathrm{C} 2 \mathrm{H} 3 \mathrm{CLCL} 2=\mathrm{CHCL} 2 \mathrm{CH} 2+\mathrm{CL}$.
5 czascccc
$6 \mathrm{C} 2 \mathrm{H} 4 \mathrm{CLCI}-150 \mathrm{E}+17-6.951 \mathrm{E}-02$
C2H4CLCL=C2H3CL+HCL
7 C2H4CLCL=CH2CLCH2+C
8 C2H4CLCL $6.170 \mathrm{E}+15 \quad-5.409 \mathrm{E}-0$
$3.130 \mathrm{E}+17 \quad-2.111 \mathrm{E}-06$
C2H4CL2=C2H3CL +HCL $1.920 \mathrm{E}+13$ 5.838E-06
$10 \mathrm{C} 2 \mathrm{H} 4 \mathrm{CL} 2=\mathrm{CH} 3 \mathrm{CHCL}+\mathrm{CL}$
3.370E +15 3.376E-03
$11 \mathrm{C} 2 \mathrm{H} 4 \mathrm{CL} 2=\mathrm{CH} 3+\mathrm{CHCL} 2$ $1.320 \mathrm{E}+17-8.630 \mathrm{E}-08$
$\mathrm{C} 2 \mathrm{H} 5 \mathrm{CL}=\mathrm{C} 2 \mathrm{H} 4+\mathrm{HCL}$ $3.030 \mathrm{E}+1$
$13 \mathrm{C} 2 \mathrm{H} 5 \mathrm{CL}=\mathrm{C} 2 \mathrm{H} 5+\mathrm{C}$
$14 \mathrm{C} 2 \mathrm{H} 5 \mathrm{CL}-\mathrm{CH} 3+\mathrm{CH} 2 \mathrm{CL}$
$15 \mathrm{C} 2 \mathrm{H} 6=\mathrm{C} 2 \mathrm{H} 5+$
$\begin{array}{ll}1.2 \\ 6.180 E+15 & -2.885 E-03\end{array}$
C2H6-2CH3
$2.350 \mathrm{E}+18-8.622 \mathrm{E}-04$
$17 \mathrm{CH} 2 \mathrm{CLCHCL}=\mathrm{C} 2 \mathrm{H} 3 \mathrm{CL}+\mathrm{CL}$
$1.350 \mathrm{E}+14 \quad 1.150 \mathrm{E}-05$
$18 \mathrm{CHCL} 2 \mathrm{CH} 2=\mathrm{C} 2 \mathrm{H} 3 \mathrm{CL}+\mathrm{CL}$
$1.350 \mathrm{E}+14-1.520 \mathrm{E}-07$ CH2CLCH2 $=\mathrm{C} 2 \mathrm{H} 4+\mathrm{Cl}$ 1. $690 \mathrm{E}+14$
$20 \mathrm{CH} 3 \mathrm{CHCL}=\mathrm{C} 2 \mathrm{H} 3 \mathrm{CL}+\mathrm{H}$ $2.760 \mathrm{E}+13$
$21 \mathrm{C} 2 \mathrm{H} 5=\mathrm{C} 2 \mathrm{H} 4+\mathrm{H}$
$5.010 \mathrm{E}+13 \quad 1.172 \mathrm{E}-01$
$\mathrm{C} 2 \mathrm{H}_{3}=\mathrm{C} 2 \mathrm{H} 2+\mathrm{H}$
$3.160 \mathrm{E}+12-8.028 \mathrm{E}-05$
$23 \mathrm{CH} 2 \mathrm{CLCHCL}+\mathrm{H} 2=\mathrm{C} 2 \mathrm{H} 4 \mathrm{CLCL}+\mathrm{H}$
5.000E+12 -9.285E-06
$24 \mathrm{CH} 3 \mathrm{CHCL}+\mathrm{H} 2=\mathrm{C} 2 \mathrm{H} 5 \mathrm{CL}+\mathrm{H}$
$25 \mathrm{CH} 2 \mathrm{CLCH} 2+\mathrm{H} 2=\mathrm{C} 2 \mathrm{H} 5 \mathrm{CL}+\mathrm{H} \quad 2.090 \mathrm{E}-03$
26 CHCL2CH2+ $4.000 \mathrm{E}+1212.605 \mathrm{E}-02$
$27 \mathrm{C} 2 \mathrm{H} 2 \mathrm{CL} 3+\mathrm{H} 2=\mathrm{C} 2 \mathrm{H} 3 \mathrm{CLCL} 2+\mathrm{H}$
$3+\mathrm{H} 2=\mathrm{C} 2 \mathrm{H} 3 \mathrm{CLCL} 2+\mathrm{H}$
$5.000 \mathrm{E}+12 \quad 6.550 \mathrm{E}-05$
$8 \mathrm{C} 2 \mathrm{H} 3 \mathrm{CLCL} 2+\mathrm{H}=\mathrm{CH} 2 \mathrm{CLCHCL}+\mathrm{HCL}$
$2.000 \mathrm{E}+13-7.849 \mathrm{E}-01$
$29 \mathrm{C} 2 \mathrm{H} 4 \mathrm{CL} 2+\mathrm{H}=\mathrm{CH} 3 \mathrm{CHCL}+\mathrm{HCL}$
$2.000 \mathrm{E}+13 \quad 1.425 E-06$
$-1.966 \mathrm{E}-01$
$-1.643 \mathrm{E}-02$
$-6.791 \mathrm{E}-02$
$4.246 \mathrm{E}-06$
$-5.122 \mathrm{E}-06$
$-1.997 \mathrm{E}-06$
$5.433 \mathrm{E}-06$
$-1.907 \mathrm{E}-01 \quad-9.392 \mathrm{E}-02$
$-1.594 \mathrm{E}-02-7.847 \mathrm{E}-03$
$7.304 \mathrm{E}-0$
$-1.594 \mathrm{E}-02$
$-6.588 E-02$
3.870E-06
$-4.700 \mathrm{E}-06$
-1.830E-06
4.890E-06 6.065E-06
$3.239 \mathrm{E}-03 \quad 3.030 \mathrm{E}-03 \quad 1.611 \mathrm{E}-03$
$-8.107 \mathrm{E}-08$
$-7.349 \mathrm{E}-08$
1.959E-02
$-7.132 E-04-6.382 E-04 \quad-3$
$-2.703 \mathrm{E}-03$
$2.843 \mathrm{E}-01$

$$
-8.038 \mathrm{E}-04
$$

2.628E-01
-7.209E-04
$1.049 \mathrm{E}-05$
$-1.419 \mathrm{E}-07$ -
4.134E-07 3.758E-07
1.220E-02
$1.122 \mathrm{E}-01$
-8.196E-05
$-8.865 E-06$
$1.271 \mathrm{E}-03-8.304 \mathrm{E}-06 \quad 3.642 \mathrm{E}-06$
$1.271 \mathrm{E}-03 \quad 9.759 \mathrm{E}-05 \quad-1.330 \mathrm{E}-02$
$1.514 \mathrm{E}-02$
4.805E-07
$-1.061 \mathrm{E}-05$
$0.132 \mathrm{E}-01-1.342 \mathrm{E}-04$
$2.132 \mathrm{E}-01$ - $2.226 \mathrm{E}-04$ $-2.132 \mathrm{E}-01$ $1.340 E-06$
2.594E-01 $1.238 \mathrm{E}-01 \quad 2.238 \mathrm{E}-01$
1.509E-01
1.261E-02
5.183E-02
$1.782 \mathrm{E}-06$
3.213E-06
1.230E-06
$4.789 \mathrm{E}-05 \quad-6.239 \mathrm{E}-04 \quad 1 . \mathrm{B28E}-04 \quad 2.985 \mathrm{E}-05 \quad 6.889 \mathrm{E}-05 \quad-1.686 \mathrm{E}-04$
2.238E-01

$-1.052 \mathrm{E}-0$
$-1.360 \mathrm{E}-03$
-9.610E-06
$-6.193 \mathrm{E}-03$
$1.624 \mathrm{E}-07-7.989 \mathrm{E}-09$
3.790E-02 5.810E-03
$1.480 \mathrm{E}-03-4.116 \mathrm{E}-05$
5.482E-03 -2.255E-04
-5.491E-01 4.204E-02
1.651E-03-4.832E-05
$-5.383 E-06-7.773 E-01$
$2.914 E-07-1.041 E-08$
8.214E-07-2.329E-07
3.701E-02 -7.068E-02
$1.673 \mathrm{E}-01$ 1.739E-02
-4.662E-02
$3.748 \mathrm{E}-05 \quad-2.810 \mathrm{E}-05$
4.610E-06 5.381E-01
$-6.590 E-04-4.470 E-03$
2.116E-02 4.380E-03
$-7.668 \mathrm{E}-07 \quad 1.331 \mathrm{E}-07$

8.350E-02	3.809E-01	-4.088E-02
6.976E-03	3.182E-02	-3.519E-03
2.863E-02	1.312E-01	-1.464E-02
1.122E-06	-4.901E-06	-8.597E-01
2.101E-06	$1.015 \mathrm{E}-05$	-6.654E-04
8.142E-07	3.951E-06	-2.606E-04
-1.052E-06	-9.610E-06	1.604E-06
-1.360E-03	-6.193E-03	5.643E-04
3.271E-08	1.624E-07	-7.989E-09
1.2B2E-02	$3.790 \mathrm{E}-02$	5.810E-03
2.827E-04	$1.480 \mathrm{E}-03$	-4.116E-05
$1.083 \mathrm{E}-03$	5.482E-03	-2.255E-04
-1.178E-01	-5.491E-01	4.204E-02
$3.183 \mathrm{E}-04$	$1.651 \mathrm{E}-03$	-4.832E-05
-3.237E-07	$-5.383 E-06$	-7.773E-01
$5.778 \mathrm{E}-08$	$2.914 \mathrm{E}-07$	-1.041E-08
8.099E-08	8.214E-07	-2.329E-07
8.907E-03	3.701E-02	-7.068E-02
-4.662E-02	$1.673 \mathrm{E}-01$	1.739E-02
$3.701 \mathrm{E}-05$	3.748E-05	$-2.810 \mathrm{E}-05$
$7.408 \mathrm{E}-07$	4.610E-06	$5.381 E-01$
$3.478 \mathrm{E}-04$	-6.590E-04	-4.470E-03
$2.000 \mathrm{E}-03$	$2.116 \mathrm{E}-02$	4.380E-03
-1.113E-07	-7.668E-07	$1.331 \mathrm{E}-07$
2.985E-05	$6.889 \mathrm{E}-05$	-1.686E-04

1.090E-01 -5.280E-02 4.387E-01

30	$\begin{array}{r} \mathrm{C} 2 \mathrm{H} 4 \mathrm{CLCL}+\mathrm{H}=\mathrm{CH} 2 \mathrm{CLCH} 2+\mathrm{HCL} \\ 3.000 \mathrm{E}+13 \quad 6.879 \mathrm{E}-06 \end{array}$	6.561E-06	6.097E-06	-8.082E-06	-1.014E-05	4.281E-06	4.313E-09	4.352E-06	-2.492E-01
	$\mathrm{C} 2 \mathrm{H} 5 \mathrm{CL}+\mathrm{H}=\mathrm{C} 2 \mathrm{H} 5+\mathrm{HCL}$								
	$1.500 \mathrm{E}+13$ 1.236E-02	1.182E-02	$1.100 \mathrm{E}-02$	$5.763 \mathrm{E}-03$	-5.501E-02	-1.155E-02	-2.937E-03	$1.556 \mathrm{E}-02$	$2.350 \mathrm{E}-03$
32	$\mathrm{C} 2 \mathrm{H} 6+\mathrm{H}=\mathrm{C} 2 \mathrm{H} 5+\mathrm{H} 2$								
	$6.610 \mathrm{E}+13-1.884 \mathrm{E}-01$	-1.791E-01	-1.655E-01	-8.986E-02	$1.276 \mathrm{E}-01$	-2.741E-02	$7.420 \mathrm{E}-02$	6.404E-01	-2.653E-02
33	$\mathrm{C} 2 \mathrm{H} 4+\mathrm{H}=\mathrm{C} 2 \mathrm{H} 3+\mathrm{H} 2$		6.335E-04	3	-	3.885E-04	-2.871E-04	$6.849 \mathrm{E}-04$	
34	$\mathrm{C} 2 \mathrm{H} 2+\mathrm{H}=\mathrm{C} 2 \mathrm{H}+\mathrm{H} 2 \mathrm{Cl}$					3.			
	2.000E $+14-8.850 \mathrm{E}-13$	-8.350E-13	-7.691E-13	-4.292E-13	8.188E-13	$2.473 \mathrm{E}-13$	$3.378 \mathrm{E}-13$	1.133E-12	-8.657E-14
35	C2H3CLCL $2+\mathrm{CL}=\mathrm{C} 2 \mathrm{H} 2 \mathrm{CL} 3+\mathrm{HCL}$								
	$1.000 \mathrm{E}+13-3.399 \mathrm{E}-06$	7.786E-05	$2.080 \mathrm{E}-04$	-1.531E-05	$5.934 \mathrm{E}-04$	-2	5	4	
	$1.070 \mathrm{E}+14-2.700 \mathrm{E}-08$	-2.906E-08	-3.134E-08	-1.078E-08	-3.504E-08	4.237E-08	1.404E-08	4.479E-08	-1.478E-08
37	$\begin{aligned} & \mathrm{CH} 2 \mathrm{CL} 2=\mathrm{CH} 2 \mathrm{CL}+\mathrm{CL} \\ & 1.660 \mathrm{E}+14-3.384 \mathrm{E}-05 \end{aligned}$	-3.180E-05	-2.8B6E-05	-1.660E-05	3.324E-05	1.712E-05	1.282E-05	$6.453 \mathrm{E}-05$	-2.852E-06
38	$\begin{array}{rlr} \mathrm{CH} 2 \mathrm{CL} 2=\mathrm{CHCL}+\mathrm{BCL} & \\ & 1.200 \mathrm{E}+14 & 0.000 \mathrm{E}+00 \end{array}$	$0.000 \mathrm{E}+00$	$0.000 E+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$				
39	$\begin{gathered} \mathrm{CH} 2 \mathrm{CL} 2+\mathrm{H}-\mathrm{CH} 2 \mathrm{CL}+\mathrm{HCL} \\ 1.100 \mathrm{E}+13 \\ 5.004 \mathrm{E}-06 \end{gathered}$	4.732E-06	4.313E-06	2.474E-06	-5.038E-06	-2.460E-06	1.296E-05	-9.720E-06	4.025E-06
40	$\begin{array}{rr} \mathrm{CH} 2 \mathrm{CL}+\mathrm{H} 2=\mathrm{CH} 3 \mathrm{CL}+\mathrm{H} \\ 2.860 \mathrm{E}+12-4.925 \mathrm{E}-07 \end{array}$	-9.861E-07	-1.687E-06	-1.987E-07	-3.092E-06	1.821E-06	5.592E-07	$2.038 \mathrm{E}-06$	-5.584E-06
41	$\begin{aligned} & \mathrm{CH} 3 \mathrm{CL}=\mathrm{CH} 3+\mathrm{CL} \\ & \\ & 1.270 \mathrm{E}+14-2.044 \mathrm{E}-06 \end{aligned}$	-1.919E-06	-1.739E-06	-1.005E-06	2.076E-06	1.001E-06	7.708E-07	3.915E-06	-1.606E-07
42	$\begin{array}{rl} \mathrm{CH} 3 \mathrm{CL}=\mathrm{CH} 2+\mathrm{HCL} \\ 4.750 \mathrm{E}+13 & 0.000 \mathrm{E}+00 \end{array}$	$0.000 \mathrm{E}+00$	$0.000 E+00$						
43	$\begin{aligned} \mathrm{CH} 3 \mathrm{CL}+\mathrm{H}=\mathrm{CH} 3+\mathrm{HCL} \\ 3.720 \mathrm{E}+13 \quad 4.499 \mathrm{E}-07 \end{aligned}$	5.176E-07	5.370E-07	$2.561 \mathrm{E}-07$	$7.186 \mathrm{E}-08$	-4.839E-07	1.010E-05	-1.039E-06	2.045E-06
44	$\begin{array}{r} \mathrm{CH} 4+\mathrm{H}=\mathrm{CH} 3+\mathrm{HI} 2 \\ 5.000 \mathrm{E}+12 \end{array}-3.385 \mathrm{E}-07$	-3.719E-07	-4.147E-07	-1.435E-07	-3.173E-07	4.576E-07	$1.758 \mathrm{E}-07$	$6.685 \mathrm{E}-07$	-1.786E-07
45	$\begin{aligned} \mathrm{CH} 2 \mathrm{CCL} 2=\mathrm{CH} 2 C C L+C L \\ 9.340 E+15-7.032 E-04 \end{aligned}$	-6.618E-04	-6.125E-04	-3.414E-04	$6.752 \mathrm{E}-04$	$3.644 \mathrm{E}-04$	2.674E-04	$1.340 \mathrm{E}-03$	-6.239E-05
46	$\begin{aligned} & \text { CH2CCL2=C2HCL+HCL } \\ & 3.550 \mathrm{E}+13-7.323 \mathrm{E}-06 \end{aligned}$	-8.237E-06	-1.502E-03	-1.140E-04	-4.301E-05	-3.171E-05	$7.196 \mathrm{E}-05$	-6.476E-06	-7.383E-06
47	$\begin{gathered} \mathrm{CH} 2 \mathrm{CCL} 2+\mathrm{H}=\mathrm{CHCL} 2 \mathrm{CH} 2 \\ 6.500 \mathrm{E}+08 \quad 1.547 \mathrm{E}-05 \end{gathered}$	$1.468 \mathrm{E}-05$	-4.284E-04	8.784E-05	5.130E-05	5.053E-05	2.647E-05	2. $264 \mathrm{E}-05$	2.488E-05
48	$\begin{array}{r} \mathrm{CH} 2 \mathrm{CCL} 2+\mathrm{H}=\mathrm{CH} 3 \mathrm{CCL} 2 \\ 4.300 \mathrm{E}+09 \quad 3.964 \mathrm{E}-04 \end{array}$	4.159E-04	4.466E-04	1.952E-04	-1.272E-04	-3.105E-04	-1.799E-04	-8.737E-04	1.233E-04
49	$\begin{gathered} \mathrm{CH} 2 \mathrm{CCL} 2+\mathrm{H}=\mathrm{C} 2 \mathrm{~B} 3 \mathrm{CL}+\mathrm{CL} \\ 3.010 \mathrm{E}+13 \quad 1.667 \mathrm{E}-02 \end{gathered}$	$1.583 \mathrm{E}-02$	-4.620E-01	9.474E-02	5.538E-02	5.449E-02	2.855E-02	2.445E-02	$2.684 \mathrm{E}-02$
50	$\begin{aligned} & \mathrm{CH} 2 \mathrm{CCL} 2+\mathrm{H}=\mathrm{CH} 2 \mathrm{CCL}+\mathrm{HCL} \\ & 6.000 \mathrm{E}+12 \quad 5.014 \mathrm{E}-04 \end{aligned}$	4.760E-04	-1.394E-02	2.858E-03	1.672E-03	$1.645 \mathrm{E}-03$	8.623E-04	7.410E-04	7.892E-04
51	$\begin{aligned} & \mathrm{CH} 2 \mathrm{CCL} 2+\mathrm{CL}=\mathrm{HCL}+\mathrm{CCL} 2 \mathrm{CH} \\ & 1.00 \mathrm{E}+13-4.220 \mathrm{E}-08 \end{aligned}$	-4.010E-08	-3.738E-08	-2.191E-08	5.953E-08	1.162E-08	$1.498 \mathrm{E}-08$	$9.043 \mathrm{E}-08$	-3.170E-07
52	$\begin{gathered} \mathrm{CCL} 2 \mathrm{CH}+\mathrm{H} 2=\mathrm{CH} 2 \mathrm{CCL} 2+\mathrm{H} \\ 4.100 \mathrm{E}+11 \quad 1.971 \mathrm{E}-07 \end{gathered}$	1.842E-07	1.651E-07	9.588E-08	-1.824E-07	-1.058E-07	-7.441E-08	-3.666E-07	-2.017E-08
53	$\begin{aligned} & \text { CHCLCHCL-CHCLCH }+ \text { CL } \\ & 9.340 \mathrm{E}+15-6.336 \mathrm{E}-04 \end{aligned}$	-6.015E-04	-5.433E-04	-3.074E-04	6.018E-04	3.314E-04	2.413E-04	1.207E-03	-5.754E-05
54	$\begin{aligned} & \mathrm{CHCLCHCL}=\mathrm{C} 2 \mathrm{HCL}+\mathrm{HCL} \\ & 3.500 \mathrm{E}+13-1.002 \mathrm{E}-05 \end{aligned}$	-1.460E-03	-1.070E-05	-2.352E-04	-9.075E-05	-7.269E-05	$1.273 \mathrm{E}-04$	-2.509E-05	-2.301E-05
55	$\begin{aligned} & \text { CHCLCHCL+H-CH2CLCHCL. } \\ & 4.180 \mathrm{E}+09 \quad 4.274 \mathrm{E}-04 \end{aligned}$	-6.155E-03	3.796E-04	2.379E-03	1.495E-03	1.409E-03	$7.401 \mathrm{E}-04$	6.884E-04	$7.432 \mathrm{E}-03$
56	$\begin{aligned} & \mathrm{CHCLCHCL}+\mathrm{H}=\mathrm{C} 2 \mathrm{H} 3 \mathrm{CL}+\mathrm{CL} \\ & 2.050 \mathrm{E}+13 \quad 3.347 \mathrm{E}-02 \end{aligned}$	-4.820E-01	$2.973 \mathrm{E}-02$	$1.863 \mathrm{E}-01$	1.171E-01	$11 n a r-n 1$	E romen		

APPENDIX D3-Thermo Data

SPECIES	HF (298)	S (298)	CP 300	CP500	CP800	CP1000	CP1500	CP2000	COMMENTS		ELEM	IENT						
AR	-0.01	36.95	4.97	4.97	4.97	4.97	4.97	4.97		C	0	H	0	CL	0	AR	1	G
C (S)	0.00	21.83	2.06	3.50	4.74	5.15	5.65	5 5.89	J 3/61	C	1	0	0	0	0	0	0	S
c	170.88	38.31	4.98	4.97	4.97	4.97	4.97	5.01	J 3/61	C	1	00	0	00	0	00	0	G
CL	2B.90	39.50	5.20	5.40	5.35	5.30	5.24	3.40		CL	1	0	0	0	0	0	0	G
H2	0.00	31.21	6.90	6.99	7.10	7.21	7.72	8.17		H	2	0	0	0	0	0	0	G
H	52.10	27.36	4.97	4.97	4.97	4.97	4.97	4.97		C	0	H	1	CL	0	0	0	G
H20	-57.80	29.78	8.02	8.41	9.25	9.85	11.23	12.20	Ј 3/61	H	2	0	1	00	0	00	0	G
H2O2	-32.53	69.07	10.42	12.35	14.29	15.21	16.85	17.88	L 2/69	\#	2	0	2	0	0	0	0	G
CH	142.00	29.05	6.97	7.03	7.40	7.78	8.74	9.36	512/67	C	1	H	1	0	0	0	0	G
HCL	-22.07	44.60	6.96	6.99	7.29	7.56	8.10	8.40		c	0	H	1	CL	1	0	0	G
CL2	0.00	53.30	8.10	8.59	8.91	8.99	9.10	- 9.16		CL	2	0	0	0	0	0	0	G
C302	-22.38	116.09	16.07	19.32	22.14	23.34	24.93	25.76	J 6/68	c	3	0	2	0	0	0	0	G
CH2	92.35	46.32	8.28	8.99	10.15	10.88	12.22	13.00	512/72	c	1	H	2		0		0	G
CH3	35.12	46.38	9.26	10.81	12.90	14.09	16.26	17.56	J 6/69	C	1	H	3	0	0	0	0	G
CH4	-17.90	44.48	8.51	11.10	15.00	17.20	20.61	22.61	J 3/61	C	1	H	4	00	0	00	0	G
C2H	132.00	49.58	8.88	10.22	11.54	12.16	13.32	14.11		C	2	H	1	CL	0	0	0	G
C2H2	54.19	48.01	10.60	13.08	15.31	16.29	18.31	19.57	J 3/61	C	2	H	2	00	0	00	0	G
C2H3	67.10	56.20	10.89	13.87	17.16	18.73	21.34	23.20		c	2	H	3	CL	0	0	0	G
C2H4	12.54	52.39	10.28	14.91	20.03	22.45	26.21	28.35	J 9/65	c	2	H	4	00	0	00	0	G
C2H5	28.36	57.90	12.26	17.13	22.85	25.74	30.54	33.31		C	2	H	5	CL	0	0	0	G
C2H6	-20.24	54.85	12.58	18.68	25.80	29.33	34.91	38.37	L 5/72	C	2	H	6		0		0	G
C3H2	106.65	117.98	12.96	16.94	20.26	21.59	23.85	25.59		C	3	H	2					G
C3H3	77.26	89.99	14.05	18.28	22.39	24.24	27.23	28.88		C	3	H	3					G
C*C*C	45.79	79.49	14.72	19.73	24.96	27.31	31.63	34.12		C	3	H	4					G
C3R5	41.00	62.09	14.75	21.68	28.44	31.53	36.44	39.44	012/77	C	3	H	5		0		0	G
c*cc	4.91	63.89	15.26	22.67	30.51	34.32	40.48	43.87	T12/81	C	3	H	6		0		0	G
ccc	-24.79	64.62	17.63	27.01	37.11	41.88	49.27	53.43		C	3	H	8		0	0	0	G
CC. C	22.30	69.24	15.73	23.98	32.85	37.31	44.26	48.30		c	3	H	7					G
C3H7	24.02	69.17	16.85	25.39	33.87	37.11	44.58	48.61		C	3	H	7	CL	0	0	0	G
C\#CC	44.35	59.39	14.56	19.71	25.06	27.64	31.85	34.00		C	3	H	4	CL	0	0	0	G
C3H3	83.33	56.99	14.06	18.27	22.33	24.19	27.21	28.85		C	3	H	3	CL	0	0	0	G
C4	232.02	54.62	12.05	15.06	17.50	18.39	19.55	20.14		C	4							G
CCCC	-30.11	74.26	23.31	35.36	47.98	54.03	63.68	69.66		C	4	H	10	CL	0	0	0	G
C\#Cc*	108.29	126.53	17.12	21.87	25.25	26.47	28.79	30.27		c	4	H	2					G
C\#CC*C	* 62.84	98.86	17.64	24.11	30.44	33.20	37.66	39.90		c	4	H	4					G
C*CC*C	34.97	123.08	18.81	26.39	35.17	39.30	45.45	49.16	T12/82	C	4	H	6		0		0	G
Ccc*	-0.13	83.45	20.51	30.79	41.82	46.85	55.10	58.89	T 6/83	c	4	H	8		0		0	G
C5	234.00	138.26	14.70	18.97	22.23	23.48	25.05	25.85	J12/69	C	5	0	0	0	0	0	0	G
C6H	233.20	167.88	21.67	27.63	31.84	33.20	35.59	37.07		C	6	H	1					G
C6H2	162.61	133.69	21.42	28.87	34.59	36.75	40.66	42.84		C	6	H	2					G
CC6H6	19.82	64.32	19.70	32.80	45.10	50.20	57.30	61.11		C	6	H	6		0		0	G
C*CC*CC*C	37.95	79.13	28.11	36.35	50.44	58.05	66.38	74.10		C	6	H	8	CL	0	0	0	G
C6R9	50.85	87.74	27.73	36.89	52.44	60.88	70.59	79.59		C	6	H	9	CL	0	0	0	G
CC6H7	56.05	44.94	27.42	35.43	49.17	56.53	64.28	71.40		C	6	H	7	CL	0	0	0	G
CC6H8	25.86	46.76	23.26	33.10	50.20	59.16	67.11	74.19		C	6	H	8	CL	0	0	0	G
CC6H9	41.36	76.65	25.45	35.64	53.03	62.41	72.71	82.19		c	6	H	9	CL	0	0	0	G
C8H	287.40	217.28	26.38	35.08	41.21	43.17	46.28	48.30		C	8	H	1	CL	0	0	0	G
CBH2	216.83	209.94	28.65	38.25	44.79	46.89	50.67	52.92		C	8	H	2	CL	0	0	0	G
CC6H5C6H5	37.90	106.45	35.73	59.45	81.17	90.06	96.67	103.62		C	12	H	10	CL	0	0	0	G
CHCL	71.00	56.17	8.80	10.13	12.11	13.22	14.78	14.96		C	1	H	1	CL	1	0	0	G

CCL	103.29	53.64	7.72	8.28	8.69	8.81	8.98	9.07
CH2CL	29.10	59.60	9.32	11.14	14.10	15.83	18.31	18.93
CCL2	38.98	48.94	11.09	12.52	13.61	14.09	15.41	15.84
CHCL2	25.70	67.40	13.11	14.68	16.83	17.98	19.80	21.20
CCL3	19.00	71.01	15.25	17.53	18.89	19.14	19.56	19.69
CH3CL	-19.59	56.01	9.77	13.20	17.02	18.87	21.80	23.40
CH2CL2	-22.80	64.59	12.26	15.88	19.36	20.81	22.90	24.00
CRCL3	-24.20	70.66	15.77	19.31	21.96	22.82	24.21	24.60
CCL4	-22.90	74.22	19.90	23.00	24.60	25.00	25.51	25.80
C2CL	125.99	59.33	11.51	12.43	13.50	14.04	15.01	15.90
C2HCL	46.90	58.10	13.17	15.18	16.88	17.55	18.80	19.55
C2CL2	39.87	63.96	15.79	17.42	18.76	19.23	19.90	20.10
CHCLCCL	58.63	70.65	17.52	22.16	25.74	26.90	28.60	29.86
CCL2CH	58.20	68.88	17.52	22.16	25.74	26.90	28.60	29.86
C2CL3	56.47	78.91	20.90	25.21	28.10	28.80	29.70	30.50
C2H3CL	8.40	63.09	12.33	17.73	22.47	24.26	26.88	28.80
CHCLCHCL	1.14	69.25	15.81	20.56	24.68	26.19	28.21	29.60
CH2CCL2	0.57	69.25	15.81	20.56	24.68	26.19	28.21	29.60
CHCLCH	61.83	64.46	11.39	16.35	21.23	23.38	26.87	28.80
CH2CCL	60.40	64.46	11.39	16.35	21.23	23.38	26.87	28.80
C2HCL3	-1.44	77.52	19.22	23.75	26.80	27.60	28.98	30.10
C2CL4	-3.40	81.48	22.73	26.72	29.27	30.04	30.52	31.79
CH2CLCH2	17.51	67.31	14.10	19.79	25.42	27.99	32.50	34.70
CH3CHCL	16.80	67.31	14.10	19.79	25.42	27.99	32.50	34.70
CH3CCL2	13.40	73.60	17.28	22.86	28.09	30.18	33.09	35.01
CH2CLCHCL	11.40	75.80	16.81	22.56	27.67	29.75	33.21	34.50
CHCL2CH2	15.90	74.30	17.35	22.95	28.03	30.29	33.07	34.55
C2H2CL3	9.66	82.98	20.21	25.68	30.14	31.77	34.50	36.10
CCL3CH2	12.10	82.90	20.21	25.68	30.14	31.77	34.50	36.10
C2HCL4	9.46	89.16	23.89	28.93	32.65	33.84	35.80	36.40
C2CL5	7.45	92.04	27.59	32.22	35.37	36.12	36.87	37.30
C2H5CL	-26.72	66.03	15.06	21.67	28.43	31.47	36.27	39.17
C2H4CL2	-31.05	72.89	18.29	24.81	30.87	33.44	37.80	40.16
C2H4CLCL	-31.01	73.78	18.99	24.74	30.32	33.06	38.79	40.77
CH3CCL 3	-30.90	78.60	22.52	28.45	33.70	35.73	38.91	41.60
C2H3CLCL2	-31.40	81.50	21.01	27.67	33.26	35.36	38.91	41.60
C2H2CL4	-37.25	85.86	25.23	31.32	36.05	37.59	39.82	41.10
C2HCL5	-34.00	90.97	28.24	34.36	38.55	39.82	40.51	41.10
C2CL6	-33.86	94.58	32.69	38.24	41.38	42.05	44.17	46.20
PHCL2	7.11	81.45	27.76	40.24	50.56	54.64	56.08	59.53
CC6H5CL	12.35	74.78	23.26	36.50	47.90	52.45	82.72	226.25
PHPHCL	38.39	113.80	39.89	63.19	83.83	92.05	140.20	366.27
PRCLPHCL	38.88	121.14	44.05	66.98	86.49	94.04	144.90	390.72

[^0]APPENDIX D4. "MECHANINFO"
$\mathrm{P}=1.00 \mathrm{ATM}$ KEQ IN MOLE CC UNITS

[^1]DELTA $S(T=800 . K)=3.386 E+01 \mathrm{CAL} / D E G / M O L E$ DELTA H $=0.15 \Delta \mathrm{~F}+0 \mathrm{O}$

T	$E F-E R E V$	LN AF/AREV	KEQ	KEQ FIT	K FORWARD	K REVERSE
800.	$0.157 E+05$	$0.495 E+01$	$0.728514 E-02$	$0.73 E-02$	$0.14 E-01$	$0.20 E+01$
900.	$0.154 E+05$	$0.479 E+01$	$0.216333 E-01$	$0.22 E-01$	$0.32 E+02$	
1000.	$0.151 E+05$	$0.463 E+01$	$0.508558 E-01$	$0.51 E-01$	$0.15 E+00$	$0.30 E+03$

REACTION \quad C2H4CL2=C2F3CL+HCL
DELTA N - 1 DELTA H(T $=800$ R) $=1.726 E+04$ CAL/MOLE
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE)

DELTA $S(T=B 00 . K)=3.474 E+01 \mathrm{CAL} / D E G / M O L E$
DELTA H $=0.154 \mathrm{E}+05$

$H=0.154 E+05$		
KEQ EIT	FORWARD	R REVERSE
$0.12 E-01$	$0.22 E-01$	$0.19 E+01$
$0.34 E-01$	$0.10 E+01$	$0.29 E+02$
$0.80 E-01$	$0.21 E+02$	$0.27 E+03$

REACTION 10 C2H4CL2=CH3CHCL+CL
DELTA $N=1$
DELTA $H(T=800 . K)=7.688 E+04$ CAL/MOLE
(TAERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE)
VIOUS LINE HAVE 1 ATMSTANDARD STAI
$T(K)=\begin{array}{ccc}800 . & \text { TO } 1000 \text { DELTA } S / R \\ T & . . & \text { EF-EREV }\end{array}$

DELTA $S(T=B O O . K)=3.432 E+01$ CAI/DEG/MOLE
DELTA $\mathrm{H}=0.751 \mathrm{E}+05$
KEQ FIT
$0.47 \mathrm{E}-18$
$0.90 \mathrm{E}-16$

K FORWARD	K REVERSE
$0.96 \mathrm{E}-05$	$0.20 \mathrm{E}+14$
$0.18 \mathrm{E}-02$	$0.20 \mathrm{E}+14$
$0.12 \mathrm{E}+00$	$0.20 \mathrm{E}+14$

REACTION 11 C2H4CL2=CH3+CHCL2
DELTA $N=1$ DELTA H $=1 T=800 . K)=9.213 E+04$ CAL/MOLE DELTA $S(T=800 . K)=4.190 E+O 1 C A L / D E G / M O L E$
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE)
$T(K)=800$. TO 1000. DELTA $S / R-D E L T A ~ N=0.882 E+01$
DELTA $H=0.903 E+05$

T	$E F-E R E V$	LN AF/AREV	KEQ
800.	$0.905 E+05$	$0.900 \mathrm{E}+01$	$0.145626 \mathrm{E}-20$
900.	$0.902 \mathrm{E}+05$	$0.880 \mathrm{E}+01$	$0.809576 \mathrm{E}-18$
1000.	$0.899 \mathrm{E}+05$	$0.863 \mathrm{E}+01$	$0.124823 \mathrm{E}-15$

REACTION * 12 C2H5CI $=\mathrm{C} 2 \mathrm{H} 4+\mathrm{HCL}$
DELTA $N=1$ DELIA $H(T=800 . K)=1.724 E+04 \mathrm{CAL} / \mathrm{MOLE}$
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE)
$T(K)=800$. TO 2000. DELTA $S / R-$ DELTA $N=0.350 E+01$

$H=0.9$		
KEQ FIT	K FORWARD	R REVERSE
$0.15 E-20$	$0.19 E-07$	$0.13 E+14$
$0.80 E-18$	$0.11 E-04$	$0.14 E+14$
$0.13 E-15$	$0.18 E-02$	$0.14 E+14$

REACTION * 18 CHCL $2 \mathrm{CH} 2=\mathrm{C} 2 \mathrm{H} 3 \mathrm{CL}+\mathrm{CL}$
DELTA N $=1$ DELTA $H(T=800 . R)=2.144 E+04$ CAL/MOLE
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE) $T(R)=800 . T O 1000$. DELTA $S / R-D F L T A N=0.208 F+\cap 1$

DELTA $S(T=800 . K)=2.841 E+01$ CAL/DEG/MOLE

T	EF-EREV	LN AF/AREV	KEQ	KEQ EIT	K FORWARD	K Reverse
800.	$0.198 E+05$	$0.220 \mathrm{E}+01$	0.342969E-04	0.34E-04	$0.75 \mathrm{E}+08$	$0.22 \mathrm{E}+13$
900.	$0.196 E+05$	$0.206 \mathrm{E}+01$	$0.136324 \mathrm{E}-03$	$0.14 \mathrm{E}-03$	$0.37 \mathrm{E}+09$	$0.27 E+13$
1000.	$0.194 \mathrm{E}+05$	$0.193 \mathrm{E}+01$	$0.405503 \mathrm{E}-03$	$0.41 \mathrm{E}-03$	$0.13 E+10$	$0.33 \mathrm{E}+13$

REACTION 20 CH3CHCL=C2H3CL+H
DELTAN $=1$ DELTA $H(T=800$. K) $=4.505 E+04$ CAL/MOLE
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE) $T(K)=800 . T O$ 1000. DELTA $S / R-D E L T A N=0.946 E+00$

DELTA $S(T=800 . K)=2.592 E+01$ CAL/DEG/MOLE DELTA $H=0.435 E+05$
 $T(K)=800$. TO 1000. DELTA $S / R-D E L T A N=0.247 E+00$

T	EF-EREV	IN AF/AREV	KEQ	KEQ FIT	K FORMARD	K REVERSE
800.	$0.360 E+05$	$0.241 E+00$	0.185641E-09	0.19E-09	$0.34 E+03$	$0.18 E+13$
900.	$0.360 \mathrm{E}+05$	$0.244 \mathrm{E}+00$	0.230108E-08	$0.23 \mathrm{E}-08$	$0.58 E+04$	$0.25 \mathrm{E}+13$
1000.	$0.360 E+05$	$0.234 \mathrm{E}+00$	$0.172335 \mathrm{E}-07$	0.17E-07	$0.58 \mathrm{E}+05$	$0.33 E+13$

$T(K)=800$. TO 1000. DELTA $S / R-D E L T A N=-0.353 E+00$

T	EF-EREV	LN AF/AREV	KEQ
800.	$0.396 \mathrm{E}+05$	-0.410E+00	$0.101583 \mathrm{E}-10$
900.	$0.397 E+05$	$-0.352 \mathrm{E}+00$	$0.162270 \mathrm{E}-09$
1000.	$0.397 \mathrm{E}+05$	-0.316E+00	$0.149616 \mathrm{E}-0$

DELTA $H=0.397 E+05$
KEQ EIT
$0.10 E-10$
$0.16 E-09$
$0.15 E-08$
K FORNARD
$0.11 E+03$
$0.16 E+04$
$0.13 E+05$

K REVERSE
$0.11 E+14$
$0.97 E+13$
$0.90 E+13$

DELTA $S(T=800 . K)=-5.640 E+00 \mathrm{CAL} / D E G / M O L E$
DELTA $N=0 \quad 0$ DELTA $H(T=800$. K) $=9.810 E+03$ CAL/MOLE
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE $T(K)=800 . T O$ 1000. DELTA $S / R-D E L T A N=-0.280 E+01$

T	$E F-E R E V$	$L N$ AF/AREV	KEQ
800.	$0.981 E+04$	$-0.284 E+01$	$0.121790 \mathrm{E}-03$
900.	$0.987 E+04$	$-0.280 \mathrm{E}+01$	$0.242320 \mathrm{E}-03$
1000.	$0.997 \mathrm{E}+04$	$-0.275 \mathrm{E}+01$	$0.421971 \mathrm{E}-03$

DELTA H $=0.988 E+04$

KEQ FIT	K FORWARD	K REVERSE
$0.12 \mathrm{E}-03$	$0.60 \mathrm{E}+08$	$0.50 \mathrm{E}+12$
$0.24 \mathrm{E}-03$	$0.21 \mathrm{E}+09$	$0.88 \mathrm{E}+12$
$0.42 \mathrm{E}-03$	$0.58 \mathrm{E}+09$	$0.14 \mathrm{E}+13$

[^2]| T | $E F-E R E V$ | LN AF/AREV | KEQ | KEQ FIT | K FORNARD | K REVERSE |
| ---: | :---: | :---: | :---: | :---: | ---: | ---: |
| 800. | $0.859 E+04$ | $-0.265 E+01$ | $0.318269 E-03$ | $0.32 E-03$ | $0.10 E+09$ | $0.31 E+12$ |
| 900. | $0.869 E+04$ | $-0.259 E+01$ | $0.582012 E-03$ | $0.58 E-03$ | $0.57 \mathrm{E}+12$ | |
| 1000. | $0.880 E+04$ | $-0.253 E+01$ | $0.949052 \mathrm{E}-03$ | $0.95 E-03$ | $0.87 E+09$ | $0.92 \mathrm{E}+12$ |

REACTION 28 C2H3CLCL2+H=CH2CLCHCL+HCL
DELTA N = 0 DELTA H(T $\quad 800$ R) $-3.288 E+04$ CAL/MOLE
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE)$T(K)=800$. T0

800. TO	1000. DELTA	S / R	- DELTA N	LNAF/AREV	$0.416 E+01$
T	$E F-E R E V$	KEQ	DE		
800.	$-0.329 E+05$	$0.434 E+01$	$0.745244 E+11$		
900.	$-0.332 E+05$	$0.415 E+01$	$0.739675 E+10$		
1000.	$-0.335 E+05$	$0.398 E+01$	$0.114483 E+10$		

DELTA $S(T=800 . K)=8.623 E+00 \mathrm{CAL} / D E G / M O L E$
$\mathrm{Hm}-0.332 \mathrm{E}+05$
KEQ FIT
$0.75 \mathrm{E}+11$
$0.73 \mathrm{E}+10$
$0.11 \mathrm{E}+10$

K FORWARD	K REVERSE
$0.98 E+12$	$0.13 E+02$
$0.14 E+13$	$0.18 E+03$
$0.18 E+13$	$0.16 E+04$

REACTION $\# 29$ C2H4CL2+ $\mathrm{H}=\mathrm{CH} 3 \mathrm{CHCL+HCL}$
DELTA N $=0 \quad 0$ DELTA $\mathrm{H}(\mathrm{T}=800 \mathrm{~K})=-2.779 \mathrm{E}+04$ CAL/MOLE
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE)
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE)
$\mathrm{T}(\mathrm{K})=$

DELTA $\mathrm{H}=-0.281 \mathrm{E}+05$

KEQ FIT
$0.34 E+10$
$0.47 E+09$
FORWARD
$0.40 \mathrm{E}+12$
$0.62 \mathrm{E}+12$
VERSE
-
$0.426 E+01$
$0.473749 E+09$
$0.88 E+12$
$0.13 E+04$
$0.90 \mathrm{E}+04$
REACTION * $30 \quad$ C2H4CLCL+H=CH2CLCH2+HCL
DELTA $N=006 E+O 4 C A L / M O L E ~$
(THERMO VAIUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE) $T(R)=800 . T 01000$ DEITA S/R - DETTA N $=0$ 2PFELO1

REACTION * 35 C2H3CLCL $2+C L=C 2 H 2 C L 3+H C L$
DELTA N $-0 \quad$ DELTA H (T $=800$ K) $=-1.013 E+04$ CAL/MOLE
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE) $T(K)=$ 800. TO 1000. DELTA $S / R-D E L T A N=0.311 E+01$

T	EF-EREV	LN AF/AREV	KEQ	KEQ FIT	K FORWARD	K Reverse
800.	-0.101E+05	$0.318 \mathrm{E}+01$	$0.140908 \mathrm{E}+05$	$0.14 \mathrm{E}+05$	$0.73 E+13$	$0.52 \mathrm{E}+09$
900.	$-0.102 E+05$	$0.311 E+01$	$0.691299 \mathrm{E}+04$	$0.69 \mathrm{E}+04$	$0.76 E+13$	$0.12 \mathrm{E}+10$
1000.	$-0.104 E+05$	$0.304 \mathrm{E}+01$	$0.388301 E+04$	$0.39 \mathrm{E}+04$	$0.78 \mathrm{E}+13$	$0.20 \mathrm{E}+10$

REACTION * 36 CHCL2+ $2=\mathrm{CH} 2 \mathrm{CL} 2+\mathrm{H}$
$D E L T A N=0 \quad D E L T A H(T=800 . K)=3.229 E+03 \mathrm{CAL} / \mathrm{MOLE} \quad \mathrm{DELTA} S(T=800 . \mathrm{K})=-7.646 E+00 \mathrm{CAL} / D E G / M O L E$
(THERMO VAIUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE)
$T(K)=R O \cap T O$ IONO

T	EF-EREV	LN AF/AREV	KEQ	KEQ FIT	K FORWARD	K REVERSE
800.	$0.323 E+04$	-0.385E+01	0.279071E-02	0.28E-02	$0.12 \mathrm{E}+14$	$0.42 \mathrm{E}+16$
900.	$0.328 \mathrm{E}+04$	-0.382E+01	0.350296E-02	$0.35 \mathrm{E}-02$	$0.15 \mathrm{E}+14$	$0.43 \mathrm{E}+16$
1000.	$0.333 E+04$	-0.379E+01	$0.421401 \mathrm{E}-02$	0.42E-02	$0.18 \mathrm{E}+14$	$0.44 \mathrm{E}+16$

REACTION * 41 CH3CL=CH3+CL
DELTA N $=11$ DELTA $1(T=800 . \mathrm{K})=8.495 E+04$ CAL/MOLE
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE)
$T(R)=800 . T O$ 1000. DELTA $S / R-D E L T A N=0.440 E+01$

T	EF-EREV	LN AF/AREV	KEQ
800.	$0.834 E+05$	$0.445 \mathrm{E}+01$	$0.140947 \mathrm{E}-20$
900.	$0.833 \mathrm{E}+05$	$0.439 \mathrm{E}+01$	$0.478037 \mathrm{E}-18$
1000.	$0.831 \mathrm{E}+05$	$0.432 \mathrm{E}+01$	$0.502352 \mathrm{E}-16$

DELTA $S(T=800 . K)=3.286 E+01 \mathrm{CAL} / \mathrm{DEG} / \mathrm{MOLE}$
DELTA $\mathrm{H}=0.833 \mathrm{E}+05$

KEQ EIT	K FORWARD	K REVERSE
$0.14 E-20$	$0.21 E-07$	$0.15 E+14$
$0.48 E-18$	$0.56 E-05$	$0.12 E+14$
$0.50 E-16$	$0.48 E-03$	$0.96 E+13$

$0.96 E+13$
REACTION * 42 CH3CL $m \mathrm{CH} 2+\mathrm{HCL}$
DELTA $N=1$ DELTA H $(T=800 . K)=9.108 E+04 \mathrm{CAL} / \mathrm{MOLE}$
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE)
$T(K)=800$. TO 1000. DELTA $S / R-D E L T A N=0.682 E+01$
DELTA $S(T=800 . K)=3.778 E+01 \mathrm{CAL} / D E G / M O L E$

REACTION * 46 CH2CCL $2=C 2 H C L+H C L$
DELTA N $\quad 1 \quad$ DELTA H(T $=800$. K) $=2.495 E+04$ CAS/MOLE
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD SIATE) $T(K)=800$. TO 1000. DELTA $S / R-$ DELTA $N=0.548 E+01$

T	EF-EREV	LN AF/AREV	KEQ
800.	$0.234 \mathrm{E}+05$	$0.562 E+01$	$0.115338 \mathrm{E}-0$
900.	$0.231 \mathrm{E}+05$	$0.547 \mathrm{E}+01$	$0.585399 \mathrm{E}-0$
1000	$0.228 \mathrm{E}+05$	$0.531 \mathrm{E}+01$	0.211327E-0

DELTA $S(I=800 . K)=3.520 E+01 \mathrm{CAL} / D E G / M O L E$ DELTA $H=0.231 E+05$

KEQ EIT	K FORWARD	K REVERSE
$0.12 E-03$	$0.47 E-05$	$0.41 E-01$
$0.58 E-03$	$0.59 E-03$	$0.10 E+01$
$0.21 E-02$	$0.2 B E-01$	$0.13 E+02$

REACTION * 47 CH2CCL2+H=CHCL2CH2
DELTA N = -1 DELTA H(T $=800$ K) $-3.798 E+04$ CAL/MOLE
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE)
$T(K)=800$. TO 1000. DELTA $S / R-D E L T A N-0.393 E+00$

T	$E F-E R E V$	$L N A F / A R E V$	KEQ
800.	$-0.364 E+05$	$-0.425 E+00$	$0.575719 E+10$
900.	$-0.363 E+05$	$-0.388 \mathrm{E}+00$	$0.452707 \mathrm{E}+09$
1000.	$-0.362 \mathrm{E}+05$	$-0.340 \mathrm{E}+00$	$0.594510 \mathrm{E}+08$

ELTA $\mathrm{H}=-0.363 \mathrm{E}+05$

$H=-0.363 E+05$	K FORWARD	K REVERSE
KEQ FIT	$0.12 \mathrm{E}+10$	$0.21 \mathrm{E}+00$
$0.58 \mathrm{E}+10$	$0.11 \mathrm{E}+10$	$0.25 \mathrm{E}+01$
$0.45 \mathrm{E}+09$	$0.11 \mathrm{E}+10$	$0.18 \mathrm{E}+02$
$0.59 \mathrm{E}+08$		

REACTION * 48 CH2CCL $2+\mathrm{H}=\mathrm{CH} 3 \mathrm{CCL} 2$
DELTA $N=-1$ DELTA $H(T=800 . K)=-4.050 E+04 \operatorname{CAL} / M O L E \quad D E L T A S(T=800 . K)=-2.562 E+01(C A L / D E G / M O L E$

T	$E F-E R E V$	LN AF/AREV	KEQ	KEQ FIT	K FORWARD	K REVERSE
800.	$-0.389 E+05$	$-0.800 E+00$	$0.193146 E+11$	$0.19 E+11$	$0.10 E+12$	$0.52 E+01$
900.	$-0.389 E+05$	$-0.766 E+00$	$0.127326 E+10$	$0.13 E+10$	$0.55 E+02$	
1000.	$-0.388 E+05$	$-0.720 E+00$	$0.145181 E+09$	$0.15 E+09$	$0.50 \mathrm{E}+11$	$0.53 E+11$

REACTION * 49 CH2CCL $2+\mathrm{H}=\mathrm{C} 2 \mathrm{E} 3 \mathrm{CL}+\mathrm{CL}$
DELTA N $=0 \quad 0 \quad$ DELTA H $(T H=800, \mathrm{~K})=-1.655 E+04 \mathrm{CAL} / \mathrm{MOLE}$ (THERMO VAIUES IN PREVIOUS IINE HAVE I ATMSTANDARD STATE) $T(R)=800$. TO

DELTA $S(T=800 . \mathrm{K})=3.537 \mathrm{E}+00 \mathrm{CAL} / \mathrm{DEG} / \mathrm{MOLE}$ DELTA $H=-0.167 E+05$

$H=-0.167 E+05$		
$K E Q$ FIT	FORWARD	K REVERSE
$0.20 E+06$	$0.69 E+12$	$0.35 E+07$
$0.61 E+05$	$0.11 E+13$	$0.17 E+08$
$0.24 E+05$	$0.15 E+13$	$0.61 E+08$

DELTA N $=0 \quad$ DELTA $H(T=800$. $K)=-1.532 E+04 \mathrm{CAL} / \mathrm{MOLE}$
(THERMO VALUES IN PREVIOUS ITNE HAVE 1 ATMSTANDARD STATE)
(THERMO VALUES IN PREVIOUS IINE HAVE 1 ATMSTANDARD STATE)
$T(R)=800$ TO 1000 DELTA $S / R-2$

T	EF-EREV	LN AF/AREV	KEQ
800	-0.153E+05	$0.523 E+01$	$0.289337 \mathrm{E}+07$
900	-0.154E+05	$0.518 \mathrm{E}+01$	$0.987902 \mathrm{E}+06$

$\begin{array}{cccc}900 . & -0.154 E+05 & 0.518 \mathrm{E}+01 & 0.987902 \mathrm{E}+06\end{array}$
$0.155 \mathrm{E}+05 \quad 0.516 \mathrm{E}+01 \quad 0.416567 \mathrm{E}+06$

DELTA $S(T=800 . K)=1.040 E+01 \mathrm{CAL} / D E G / M O L E$ DELTA $\mathrm{H}=-0.154 \mathrm{E}+05$

$H=-0.154 E+05$		
$K E Q$ FIT	K FORWARD	K REVERSE
$0.29 E+07$	$0.15 E+11$	$0.53 E+04$
$0.99 E+06$	$0.30 E+11$	$0.30 E+05$
$0.42 E+06$	$0.50 E+11$	$0.12 E+06$

DELTA $S(T=800 . K)=7.897 E+00 \mathrm{CAL} / D E G / M O L E$
DELTA $\mathrm{H}=0.852 \mathrm{E}+04$

KEQ EIT	K FORNARD	K REVERSE
$0.30 \mathrm{E}+00$	$0.11 \mathrm{E}+12$	$0.38 \mathrm{E}+12$
$0.54 \mathrm{E}+00$	$0.19 \mathrm{E}+12$	$0.35 \mathrm{E}+12$
$0.86 \mathrm{E}+00$	$0.28 \mathrm{E}+12$	$0.32 \mathrm{E}+12$

DELTAS $(T=800 . K)=-6.985 E+00 \mathrm{CAL} / \mathrm{DEG} / \mathrm{MOLE}$
DELTA N - 0 DELTA H(T $=800, \mathrm{~K})=-7.291 \mathrm{E}+03 \mathrm{CAL} / \mathrm{MOLE}$

T	EF-EREV	LN AF/AREV	KEQ
800.	$0.825 E+04$	$0.397 \mathrm{E}+01$	$0.296578 \mathrm{E}+00$
900.	$0.855 E+04$	$0.415 \mathrm{E}+01$	$0.533358 \mathrm{E}+00$

0. $0.884 \mathrm{E}+04 \quad 0.431 \mathrm{E}+01 \quad 0.867311 \mathrm{E}+00$
$0.30 E+00$
$0.86 \mathrm{E}+00$
$0.86 \mathrm{E}+00$
(THERMO VALUES IN PREVIOUS IINE HAVE 1 ATMSTANDARD STATE)

ELTA $\mathrm{H}=-0.758 \mathrm{E}+04$

REACTION \# 53 CHCLCHCL=CHCLCH+CL
DELTA $N=1$ DELTA $H(T=800$. $K)=9.020 E+04$ CAL/MOLE
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE)
$T(K)=800 . T O 1000$. DELTA $S / R-D E L T A N=0.599 E+01$ DELTA H=0.887E+05

| T | $E F-E R E V$ | LN AF/AREV | KEQ |
| ---: | :---: | :---: | :---: | :---: |
| 800. | $0.886 E+05$ | $0.597 E+01$ | $0.238645 \mathrm{E}-21$ |
| 900. | $0.886 \mathrm{E}+05$ | $0.598 \mathrm{E}+01$ | $0.117183 \mathrm{E}-18$ |
| 1000. | $0.887 \mathrm{E}+05$ | $0.600 \mathrm{E}+01$ | $0.166811 \mathrm{E}-16$ |

REACTION \# 54 CHCLCHCL=C2HCL+HCL
DELTA $N=1$ DELTA $=1(T=800 . K)=2.438 E+04$ CAL/MOLE
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE)

$H=-0.758 E+04$		
$K E Q E I T$	FORWARD	K REVERSE
$0.29 E+01$	$0.21 E+11$	$0.73 E+10$
$0.17 E+01$	$0.30 E+11$	$0.17 E+11$
$0.11 E+01$	$0.39 E+11$	$0.34 E+11$

DELTAS $S T=800 . \mathrm{K})=3.590 \mathrm{E}+01 \mathrm{CAL} / \mathrm{DEG} / \mathrm{MOLE}$

KEQ EIT	K FORWARD	K REVERSE
$0.24 E-21$	$0.24 E-08$	$0.10 E+14$
$0.12 E-18$	$0.13 E-05$	$0.11 E+14$
$0.17 E-16$	$0.20 E-03$	$0.12 E+14$

$0.10 E+14$
$0.11 E+14$
$0.12 E+14$

T	$E F-E R E V$	$L N A F / A R E V$	KEQ	REQ FIT	R FORNARD	K REVERSE	
800.	$0.228 E+05$	$0.562 E+01$	$0.165078 E-03$	$0.17 E-03$	$0.28 E-01$		
900.	$0.225 E+05$	$0.547 E+01$	$0.805131 E-03$	$0.80 E-03$	$0.46 E-05$	$0.58 E-03$	$0.72 E+00$
1000.	$0.222 E+05$	$0.531 E+01$	$0.281532 E-02$	$0.28 E-02$	$0.28 E-01$		

REACTION \# $55 \quad$ CHCLCHCL $+\mathrm{H}=\mathrm{CH} 2 \mathrm{CLCHCL}$
DELTA $N=-1 \quad$ DELTA $H(T=800$ R $=1$

REACTION : 56 CHCLCHCL+H-C2H3CL+CL
DELTA N $=0$ DELTA H(T 0 BOO R) $=-1.712 E+04$ CAL/MOLE
(THERMO VALUES IN PREVIOUS LINE HAVE I ATMSTANDARD STATE)

T	$E F-E R E V$	$L N A F / A R E V$	KEQ
800.	$-0.171 E+05$	$0.178 E+01$	$0.282606 E+06$
900.	$-0.173 E+05$	$0.167 E+01$	$0.848796 E+05$
1000.	$-0.175 E+05$	$0.159 E+01$	$0.321163 E+05$

DELTA $S(T=800 . K)=3.537 E+00 \mathrm{CAL} / \mathrm{DEG} / \mathrm{MOLE}$ DELTA $\mathrm{H}=-0.173 \mathrm{E}+05$

KEQ FIT	K FORWARD	F REVERSE
$0.28 E+06$	$0.83 E+12$	$0.29 E+07$
$0.85 E+05$	$0.12 E+13$	$0.14 E+08$
$0.32 E+05$	$0.16 E+13$	$0.49 E+08$

REACTION $=0 \quad 0 \quad$ CELTA $\mathrm{N}=\mathrm{T}=800 \mathrm{~K})=-1.446 \mathrm{E}+04 \mathrm{CAL} / \mathrm{MOLE}$
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE)
THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE
$T(K)=$

DELTA N $=0$
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE) $T(R)=800 . T O$ 1000. DELTA $S / R-D E L T A N=0.503 E+01$

| 800. TO | 1000 DELTA | $S / R-\operatorname{DELTA} N=0.503 E+01$ | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T | $E F-E R E V$ | LN AF/AREV | KEQ |
| 800. | $0.811 E+04$ | $0.486 E+01$ | $0.789256 E+00$ |
| 900. | $0.841 E+04$ | $0.504 E+01$ | $0.140555 E+01$ |
| 1000 | $0.871 E+04$ | $0.520 E+01$ | $0.726780 E+01$ |

ELTA $\mathrm{H}=0.838 \mathrm{E}+04$

$$
\begin{aligned}
& K E Q E I T \\
& 0.79 \mathrm{E}+00
\end{aligned}
$$

K FORWARD

K FORWARD	K REVERSE
$0.87 E+11$	$0.11 E+12$
$0.15 E+12$	$0.10 E+12$

0.10E+12
$0.99 \mathrm{E}+11$
REACTION 159 CHCLCCL+H2=CHCLCHCL+H
DELTA N = 0 DELTA H $(T=800, \mathrm{~K})=-7.151 E+03 \mathrm{CAL} / \mathrm{MOLE}$
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE) $T(K)=800$. TO 1000. DELTA $S / R-D E L T A ~ N=-0.458 E+01$

| T | $E F-E R E V$ | LN AF/AREV | KEQ |
| :---: | :---: | :---: | :---: | :---: |
| 800. | $-0.715 E+04$ | $-0.441 E+01$ | $0.109745 E+01$ |
| 900. | $-0.746 E+04$ | $-0.459 E+01$ | $0.658611 E+00$ |
| 1000. | $-0.776 E+04$ | $-0.475 E+01$ | $0.430314 E+00$ |

DELTAS $(T=800 . K)=-8.754 E+00 \mathrm{CAL} / D E G / M O L E$ DELTA H=-0.744E+04

KEQ FIT	K FORWARD	K REVERSE
$0.11 E+01$	$0.14 E+11$	$0.13 E+11$
$0.65 E+00$	$0.22 E+11$	$0.33 E+11$
$0.43 E+00$	$0.30 E+11$	$0.70 E+11$

REACTION 60 C2H3CL=C2H3+CL
DELTA $N=1$ DELTA H $=1 T=800 . K)=8.827 E+04$ CAL/MOLE
(THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE)
$T(K)=800 . T O$ 1000. DELTA $S / R-$ DELTA $N=0.506 E+01$
DELTA $S(T=800 . K)=3.430 E+01 \mathrm{CAL} / \mathrm{DEG} / \mathrm{MOLE}$

T	EF-EREV	LN AF/AREV	KEQ	KEQ FIT	R FORWARD	K REVERSE
800.	$0.958 \mathrm{E}+03$	$0.459 \mathrm{E}+00$	$0.866165 \mathrm{E}+00$	$0.87 \mathrm{E}+00$	$0.17 \mathrm{E}+13$	$0.20 E+13$
900.	$0.945 \mathrm{E}+03$	$0.451 \mathrm{E}+00$	$0.925714 \mathrm{E}+00$	$0.93 \mathrm{E}+00$	$0.25 \mathrm{E}+13$	$0.27 \mathrm{E}+13$
1000.	$0.942 \mathrm{E}+03$	$0.450 \mathrm{E}+00$	$0.975864 \mathrm{E}+00$	$0.98 \mathrm{E}+00$	$0.33 \mathrm{E}+13$	$0.34 \mathrm{E}+13$
(Thermo values in previods inne mave 1 atmstandard state)						
$\mathrm{T}(\mathrm{K})=800 . \mathrm{TO}$	1000. DELTA	- delta $\mathrm{N}=0.110 \mathrm{e}+01$ delta ho-0.460E+05				
T	EF-EREV	LN AF/AREV	KEO	KEQ FIT	K FORWARD	K reverse
800.	-0.458E+05	$0.117 \mathrm{E}+01$	$0.108137 \mathrm{E}+14$	$0.11 \mathrm{E}+14$	$0.19 \mathrm{E}+13$	$0.18 \mathrm{E}+00$
900.	-0.460E+05	$0.110 \mathrm{E}+01$	$0.436871 E+12$	$0.44 \mathrm{E}+12$	$0.21 E+13$	$0.48 \mathrm{E}+01$
1000.	-0.461E+05	$0.104 \mathrm{E}+01$	$0.333102 \mathrm{E}+11$	$0.33 E+11$	$0.23 \mathrm{E}+13$	$0.68 \mathrm{E}+02$
ND						

[^0]: 6
 12
 12

 OUAOHNWWAAUOHNNWWWAAOHNNNNWOHFOHOOHNWOFONO

 -00
 0 G

[^1]: REACTION * $6 \quad$ C2HACLCL=C2H3CL+HCL
 DELTA N = 1 DELTA H (T $=800 . \mathrm{R})=1.728 E+O 4$ CAL/MOLE
 (THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE) $T(R)=B 00 . T O$ 1000. DELTA $S / R-D E L T A N=0.480 E+01$

[^2]: REACTION * 24 CH3CHCL+H2=C2H5CL+H
 DELTA N $=0 \quad 0 \quad$ DELTA $H(T=800 . \mathrm{K})=8.586 \mathrm{E}+03 \mathrm{CAL} / \mathrm{MOLE} \quad$ DELTA $S(T=800 . \mathrm{K})=-5.262 E+00 \mathrm{CAL} / \mathrm{DEG} / \mathrm{MOLE}$ (THERMO VALUES IN PREVIOUS LINE HAVE 1 ATMSTANDARD STATE) $T(K)=$ 800. TO 1000. DELTA $S / R-D E L T A N=-0.259 E+01$

