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ABSTRACT

Title of Thesis: K IN E M A T IC  S Y N T H E S IS  O F M E C H A N IS M S  

F O R  M U L T IP L Y  S E P A R A T E D  P O S IT IO N S

Hyoung Jun Kim, Doctor of Engineering Science, 1989 

Thesis directed by: Dr. Raj S. Sodhi

The rigid body motion is studied in a combination of finitely and in­

finitesimally separated positions in planar, spherical, and spatial kinematics. 

A general new method for determining the locations of points and/or lines 

in a rigid body moving through finitely and infinitesimally separated posi­

tions is developed. These points and /o r lines would satisfy the constraints of 

various types of binary links for planar, spherical, and spatial mechanisms.

A unified form of circle-point curve equation is derived for finitely and 

multiply separated position problems in planar and spherical motions. A 

graphical method to construct the circle-point and center-point curves and 

Ball point is also investigated for the PP-PP multiply separated positions 

problem in planar motion. Instantaneous geometric motion of a rigid body is 

studied in terms of the instantaneous screw axis for the infinitesimally sepa­

rated  positions in spatial kinematics. Also the finite spatial motion problem 

is recast in terms of determining the screw parameters directly.
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CHAPTER 1

IN T R O D U C T IO N

1 - 1 .  M ech an ism

The word ‘mechanism’ has many meanings. Originally a ‘contrivance’ 

or ‘device’ in a machine, an assemblage of working parts designed to produce 

some required effect, the word is now also attached to a phenomenon which 

can be explained by applying scientific logic or some other reasoning that 

we accept as logical. Thus, there is the ‘mechanism’ of catalysis, or a heat 

transfer through a boundary layer, and so on. In this study I take H unt’s 

interpretation of the mechanism. Hunt [1] has interpreted a ‘mechanism’ 

essentially classically, as a means of transmitting, controlling, or constraining 

relative movement. In this sense, Reuleaux’s [2] definition of a mechanism 

as a “combination of rigid resistant bodies so formed and connected that 

they move upon each other with definite relative motion,” can be helpful to 

understand the mechanism.

A mechanism is said to have N degree-of-freedom if an arbitrary infinites­

imal change in its position requires independent infinitesimal increments in 

N of its coordinates. Thus the traditional mechanisms, if modeled as a se­

ries of rigid bodies, are one degree-of-freedom since they depend on only 

one arbitrary input parameter. The types of the mechanisms can be gears, 

cams, links, or combination of them. Until recently one degree-of-freedom 

linkages have been used quite extensively in industry to obtain unusual mo­

tions because they are simple and cheap to build and provide good service as 

compared to cams which are much more difficult to manufacture. However, 

cams have the advantage of being much easier to design than the linkages.



As is well known, there is now a world-wide interest in open-loop linkages 

since these form the basic structure of mechanical manipulators, mechanical 

hands, walking machines, and other so-called robotic devices and sm art prod­

ucts. Open-loop linkages are inherently multi-degree-of-freedom mechanisms, 

and in addition there are many possible multi-degree-of-freedom closed-loop 

mechanisms. Such mechanisms require independent input devices and sophis­

ticated controllers which themselves demand efficient algorithms, suitably 

packaged software and computer back-up. Therefore one-degree-of-freedom 

mechanisms are more desirable than multi-degree-of-freedom mechanisms.

Because most actual mechanisms move with planar motion, the kine­

matics study has been biased toward two dimensions. On the other hand, 

theoretical developments in three dimensional kinematics have led to a sig­

nificant awareness of the potential use of spatial mechanisms. The use of 

spatial mechanisms, however, remains rather rare in practice, except in 

specific areas of gear technology, spatial cam-and-follower mechanisms, shaft 

couplings, swash- and wobble-plate devices, and other related items. The 

universal joint, a swivelling electric fan, and a pair of bevel gears show the 

practical use of spherical mechanisms which are one classification of spatial 

mechanisms. This study deals with the planar, spherical, and general spatial 

mechanisms.

1 - 2 .  S y n th es is  o f  M ech an ism s

The study of kinematics of mechanisms can be considered as two fun­

damental concepts. Firstly, the analysis process which includes the study 

of motion characteristics of all the points of the rigid bodies in an existing 

mechanism. The characteristics include such useful concepts as displacement,



velocity, acceleration, etc.. Secondly, the synthesis process in which a phys­

ical mechanism is to be designed to produce the desired motion. It is the 

reverse of the analysis process.

Kinematic synthesis of mechanisms is often stated as having three stages. 

First, the “type synthesis” regarding the selection of type of device used 

such as; gears, cams, linkages, or a combination of them. Secondly, the 

“number synthesis” which determines how many links and joints are to be 

used, and in what schematic pattern. Thirdly, the “dimensional synthesis” 

which determines the essential dimensions of the entire mechanism perform 

the desired motion.

If we choose the linkage type of mechanism as one degree-of-freedom 

closed loop, the dimensional synthesis of the mechanism can be catagorized 

by the kind of motion: 1) path synthesis is to move a point on the linkage 

through a series of prescribed points on a specified path, 2) position synthesis 

is to move a rigid body through a set of prescribed positions in plane or 

space, 3) function synthesis is to have a linkage where input and output are 

related by a function. As the synthesis of mechanisms is briefly catagorized 

in Figure 1-1, it can be said that the synthesis is the process of designing a 

mechanism, that is, coming up with suitable dimensions and parameters of 

the mechanism.

1 - 3. M u ltip ly  S ep arated  P o s itio n s

If any of the points in a moving body is displaced by a finite distance, the 

positions before and after the displacement can be called “finitely separated.” 

On the other hand, infinitesimally separated positions (ISP) are the limit of 

the finitely separated positions (FSP). If the displaced position approaches
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Figure 1-1. Synthesis of mechanisms
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the undisplaced one, the positions are called “infinitesimally separated.” The 

infinitesimally separated positions can be expressed in many different ways. 

These may be instantaneous center, instantaneous screw axis, curvature of 

the path, velocity state of the moving body, etc.. The concept of multi­

ply separated positions (MSP) involves various combinations of finitely and 

infinitesimally separated positions as shown in Figure 1-2.

There are three combinations for three multiply separated positions 

(PPP, PP-P, P-P-P), five combinations for four multiply separated positions 

(PPPP, PPP-P, PP-PP, PP-P-P, P-P-P-P), and seven combinations for five 

multiply separated positions (PPPPP, PPPP-P, PPP-PP, PPP-P-P, PP-PP- 

P, PP-P-P-P, P-P-P-P-P), where the symbol P represents a single position 

of the moving body, the combination P-P represents two finitely separated 

positions, and PP two infinitesimally separated positions. This notation was 

originally introduced by Tesar [3] and provides a shorthand notation to be 

used in discussing multiply separated positions.

This study develops the analytical and graphical methods for MSP prob­

lems. The infinitesimally separated positions are specified by locating the in­

stantaneous center (IC) in planar motion, the instantaneous rotational axis 

(IRA) in spherical motion, and the instantaneous screw axis (ISA) in spatial 

motion. The reasons for the interest in specifying the IC, IRA, and ISA are 

to enhance the rigid body motion at a  specified position, to make a point 

or a line in the coupler dwell at a specified position, and further to include 

dynamic effects in the synthesis.

1 - 4 .  A n a ly tica l S y n th esis  P ro ced u re

In dimensional synthesis, there are two ways to come up with a solu-



Instantaneous Center

Figure 1-2. Multiply separated positions
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tion linkage. One is to find the link lengths^and their possible variables. The 

other one is to locate the special points and/or lines in moving and fixed bod­

ies which is used on this study. The fundamental problem in the kinematic 

synthesis of mechanical linkages is to locate a point, or set of points, fixed 

in the moving rigid body that will pass through a series of points in space 

that satisfy geometrical constraints imposed by specific types of mechanical 

guiding links. For example, in the synthesis of planar four-bar linkages, the 

problem becomes one of locating a set of points in the moving plane which, 

as the plane assumes specified positions, will assume a series of positions that 

lie on a  circular-arc. The circular-arc constraint is a result of assuming that 

the guidance is to be provided by two rigid links, each with two pivots. One 

pivot of each link is to be attached to the rigid body and the second to a 

fixed reference member. In spatial mechanisms there are many more possibil­

ities for the geometric form of constraining links or link-pair combinations. 

The basic synthesis problem, however, remains the same, thus the general 

procedure is explained by taking a planar four-bar linkage as an example.

1). Specify the position of the moving body for the finite number of po­

sitions and the infinitesimal position by giving instantaneous center at 

the specified position. The maximum number of possible positions is 

determined by the type of guiding link being considered.

2). Select (rc,y) as the Cartesian coordinates of a point in a moving body 

a and as its ith  coordinates in a fixed system £. Let the first

position of a coincide with £  as shown in Figure 1-3.

3). Find the coordinates in £  of the point in zth moving body by using the



d X

Figure 1-3. Geometric constraint of crank
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following displacement matrix equations:

X; =  R ,x  4- T j,

where X,- =  ^  and x =  ^ h e  matrices R,- and T j are deter­

mined by the specified finitely separated positions.

4). Find the infinitesimal displacements for the infinitesimally separated po­

sitions by using the following displacement matrix equations:

d X j d R j dT j
   =  - x  -I -
d<f) d(j) d(j)

rfR, * rfTThe matrices -gjj- and are determined by the specified instantaneous

center or instantaneous screw axis at the specified position.

5). Establish the geometric constraint equations at each design position as 

imposed by the guiding link to be synthesized. If we take a planar four- 

bar linkage as an example, each of guiding cranks must satisfy a condition 

of constant length, as shown in Figure 1-3, where points Xj- and Xo are 

representative of a typical guiding link. This leads to following constraint 

equations for the finitely separated positions:

(Xj -  X „)T(Xj -  X„) =  (X , -  X„)T(X 1 -  X 0), i =  2 , 3 , n.

6). Establish the generated constraint equations for the instantaneous mo­

tion by differentiating the above geometric constraint equations:

( w ) T { X i - X o ) = 0-

9



7). Operate on the unknown coordinates in each design position using the 

displacement m atrix equations to eliminate all parameters except those 

that define the synthesized linkage in the design position. The constraint 

equations then become design equations.

8). Solve the resulting set of nonlinear design equations.

1 - 4 .  O b jec tiv es

There is little work done on the multiply separated positions problem in 

general three-dimensional kinematics, even though Tesar, Dowler, and their 

associates [3, 7, 21, 24] have extensively studied MSP problem for planar, 

spherical mechanisms. The purpose of this study is to develop a new m athe­

matical approach to solve the MSP problems for planar, spherical, and spatial 

mechanisms. There is no available graphical procedure for the PP-PP  case 

of MSP problem in planar kinematics. Thus another purpose of this study 

is to develop a graphical method for the PP-PP  case of the MSP problem 

in planar mechanisms. Specifically, in this study, the following aspects are 

considered.

1). A unified form of circle-point curve equation is derived for FSP and MSP 

problems in planar motion.

2). A unified form of the spherical circle-point curve equation is derived for 

FSP and MSP problems in spherical motion.

3). A graphical method to construct the circle-point and center-point curves 

and the Ball point is investigated for the PP-PP case of MSP problem 

in planar motion.

4). The finite three-dimensional motion problem is recast in terms of deter­

mining the screw or rotational parameters.

10



5). Instantaneous geometric motion of a rigid body is defined in terms of 

the instantaneous screw axis for the infinitesimally separated positions 

in spatial motion.

6). The infinitesimal screw or rotational parameters are determined using a 

new mathematical method for three-dimensional motion.

7). The RRSS spatial mechanism to move through the multiply separated 

positions is synthesized for illustrative purpose.

11



CHAPTER 2

A n a ly tica l S y n th esis  o f  P la n a r  F our-B ar M ech an ism s  

for M u ltip ly  S ep arated  P o sitio n s

2 - 1 .  In tro d u ctio n

The technique of synthesizing a planar four-bar linkage to carry a lam­

ina precisely through several given positions has been known for a long time. 

Basically, the problem of synthesizing a  four-bar mechanism to move its cou­

pler through a number of positions is simply that of locating points in the 

moving plane which lie on the same circle in all of the design positions. Such 

a point can be used as the moving pivot of a crank of the four-bar linkage. 

The center of the circle on which the positions of the point lie is the fixed 

pivot of the crank.

For three positions any point on the moving plane can be used as a pivot 

since a circle can always be drawn through three points. For four positions, 

the points whose positions all lie on the same circle are found to lie on a 

cubic curve, called the circle-point curve. If the circle is the locus for the 

moving pivot of a crank, then the fixed pivot lies at the center of tha t circle. 

Therefore, for each point on the circle-point curve there exists a point which 

represents the corresponding fixed pivot. The locus of these fixed pivots is 

also a cubic curve, called the center-point curve. Thus there is a one-to-one 

correspondence between points on these two curves. For five positions, the 

problem is solved by solving the four design position problem twice for two 

different sets of four out of the five design positions.

It is known that there are, at most, four points which lie on the same 

circle in all five of the design positions [4]. Thus there is a maximum of six 

linkages which may be designed for a five finitely separated position problem.

12



However, it may happen that none of these linkages is a desirable solution. 

Therefore the probability of a practicable solution for a five finitely separated 

position problem is greatly reduced from that of a four finitely separated 

position problem.

The finite four position problem has been studied very extensively be­

cause one can plot the circle-point curve by using Burmester’s methods. An­

alytical derivation of the curve can be found from several papers [4-5]. In the 

case of four multiply separated position problem, Tesar and his associates [7] 

provided initiative work.

This chapter of the study provides the analytical m ethod used to find 

the circle-point curve equations for the cases of PP-P-P, P-PP-P, P-P-PP, 

and PP-PP.

2 - 2. F in ite  an d  In fin ite s im a l D isp lacem en ts

Consider a moving system a in continuous motion relative to a fixed 

system S. We select a point P  fixed in a  represented by the constant position 

vector x, and X is the position vector of the coincident point of P  in E. Thus 

the transformation between the coordinates of a point P(.r, y) in the moving 

system and P (X , Y )  in the fixed system can be expressed as follows:

X =  R x  +  T , (2.1)

where

R = ( W  - s i n A  T = ( l ) .  
y sin <p cos <p J \ °  /

The transformation depends on the position parameters a,b,4> where (j) 

may be considered as the independent parameter of the constraint motion. 

The functions a = a(<f>) and b = b{(f>) represent the generalized constraints

13



provided between the moving and fixed systems by the mechanism. In addi­

tion, the motion is assumed to occur over any time interval so that <f> ^  f ( t ) .  

In the initial position of the motion, the relative position of the coordinate 

systems may be chosen arbitrarily. Generally, the systems are assumed to be 

coincident by requiring that oq =  b\ =  <j>i = 0  and

X j =  x. (2.2)

Thus equation (2.1) becomes for the finitely separated positions

X; =  R ;x  +  T,-, z =  2,3, . . . ,n  (2.3)

where

R  =  (  cos ^  “  sin ^ T  • =  (  ai ^
1 y sin (f)i cos (j>i J  ’ 1 \ b i  J  ’

and are the parameters governing the relative position of <r,- and

E. If the moving positions are given by a lamina, that is C,(X,-, Y)), 0,, the

param eters are determined as follows:

4>i = ei - 6 u  (2.4)

T , =  C 2 — R,-Ci. (2.5)

If we are interested only in the study of kinematic geometry of the motion 

of plane a  and we exclude the case of pure translation (i.e., <̂> =  constant), 

we may write the 1 st derivative of equation (2 .1 ) with respect to (j):

d X  d H  d T  
^ = # x + ^ -  ( 2 '6)

The instantaneous center at the j th  position is expressed by I j ( I xj, l y j )• 

And the vector i represents the corresponding points of Iy on the moving

14



system a .  Then we may write the following equations from the equations

(2.3) and (2.6)

Ij =  R /i  “H T j, (2.7)

d^-j _  dlEtj. d T j
d<j> d<f> +  d4>' 1 j

Since the vector Iy of the instantaneous center does not change in the fixed 

system at the instant of the j th  position, we may have

f  = °- (2-9>

Substituting equations (2.7) and (2 .8 ) into equation (2.9) yields

(2.10)

<iT •Now the is determined as follows

^  =  ( - ° i  o ) f t - T >)- (*■“ >

Thus the infinitesimal linear transformation at the j th  position can be written

as

dX j dR j
d(j> d<j)

where

+  (_ °1  (2 .12)

dRy =  / - s i n ^  - c o s  cf>j\ j . — ( Ixi
d(j) \  cos ()>j — sin <f>j )  ' 3 \  I yj

15



2 - 3 .  C on stra in t E q u ation s

The pinned crank is used as a constraint on a moving point which travels 

on a circular arc in the fixed plane. The equation of this circle can be written, 

in general, as

( X  -  X * ) 2 + ( Y - Y * ) 2 = R 2, (2.13)

where (X*, Y*)  and R  are the coordinates of the center-point and the radius 

of the circle respectively. And the derivative form of equation (2.13) is

( X - X ' ) ^  + ( Y - Y ' ) ^ = 0 .  (2.14)

Note that the derivatives of R , X * , Y *  vanish.

2 - 4 .  D eriva tion  o f  C ircle-P o in t E q u ation  for th e  C ase o f  P P -P -P ,  

P -P P -P , or P -P -P P

The rigid body motion is represented by the three finitely separated 

positions and one infinitesimally separated position. For the three finitely

separated positions, substitution of equation (2.3) into equation (2.13) yields

(.t cos cj>i — y sin <f>i +  cq — X * ) 2

+(a: sin (f>i 4 - y  cos </>,• + bj — Y * ) 2 =  i?2, z =  2,3, (2.15)

and from equation (2.2), equation (2.13) yields for the first design equation

(x — X * ) 2 + (y — Y* ) 2 =  R 2. (2.16)

Equating the left hand sides of equations (2.15) and (2.16) and rearranging 

yields

16



( —x  cos 4- y  sin (f>i +  x  — a ,)X * +  ( —x  sin <j>i — y  cos <j>i +  y  — bj )Y*

=  0,* =  2,3. (2.17)

For the one infinitesimally separated position at the y’th  finite position, sub

stitution of equations (2.3) and (2.12) into equation (2.14) yields

(x cos (f)j — y sin 4>j +  aj — X * ) (—x  sin <f>j — y cos (j>j +  I j y — bj)

+  (a: sin <f>j +  y cos (j)j +  bj — Y*)(x  cos <j>j — y sin <j)j — I j x +  aj) =  0. (2.18)

Rearranging equation (2.18) yields

(x sin <f)j + y cos <j>j — I j y -f bj)X* +  {—x cos 4>j +  y sin 4>j +  Ijx — aj)Y*

+  ^ ( —x sin 4>j — y cos (f>j ~  bj)Ixj +  (x cos ()>j — y sin (f)j +  aj)Iyj ' j  =  0- (2.19)

In order to simplify the equations, the following matrices are introduced, 

based on equations (2.17) and (2.19)

(2 .20)

(2 .21)

(
a 2 cos <p2 +  b2 sin (j>2 b2 cos <fi2 ~  a 2 sin cf>2 (a2 + 62 ) / 2  
a3 cos <f>z +  b3 sin <f>3 b3 cos — a 3 sin <j)3 +  b \ ) f 2

I xj  sin (f)j I I yj  cos I yj  $ j  I x j  cos (j)j b j l xj  | d j l yj

(2 .22)
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Thus equations (2.17) and (2.19) become

x \ /  x \  /  x
a  | y l x *  +  b [ y j r *  +  c U  1 = 0 . (2.23)

The above constraint equarions are linear in the X*  and Y*. Thus for the 

solution, we require

x
y

Equation (2.24) can be written

x
y

x
y o. (2.24)

where

3 3 3

E E E ^
2=1 7=1 fc=l

ijkx y 0 ,

Ajjk —
C Z l j  f e j j  C j , '

a2j b2j c2j
«3 fc b3k c3k

(2.25)

m  =  the number of l ;s among the i , j ,  k, 

n = the number of 2 's among the i , j ,  k, 

which upon expansion and rearrangement yields the circle point equation

4ma:3 + 4222y3 + (A n2 + A 121 + A 2i l )x2y 4- ( A 122 + A 2i2 + 4.22i):ry2 

+(̂ ■123 + 4132 + -42i3 + 4231 + 4312 + A 32i ) x y  + (An3 + Ai3i + A3n)a;2 

+ (A223 + A 232 + A 322)y2 4- (̂ 133 4- A313 +  ^3 3 1)2:

+(■̂ •233 4- -4323 4- 4 332)y +  4 333 =  0. (2.26)

18



The center point for the circle point can be determined by using any two 

equations in the equation set (2.23). For the four finitely separated positions, 

the circle-point equation has the same form of equations (2.25), (2.26) if we

use

1 — c o s  (f> 2 s i n  <j> 2 —02  
a  =  ( 1 c o s  (f>$ s i n  - a 3  | , (2.27)

1 — COS (j)4 s i n  (j)4 — « 4

s i n  (j) 2 1 — COS (f>2 — &2

b =  | — s i n ^>3 1 — cos</>3 — b3 J , (2.28)
s i n  <^4 1 — c o s  4>4 — 64

/  a 2  cos (j)2 -t- ^ 2  sin <j>2 b2 cos <j)2 — a2 sin <f)2 {a\ +  b\)/2
I a 3  cos 4>3 -f 6 3  sin 4>z 6 3  cos <j>3 -  a 3  sin <f>3 (af +  5 |)/2
\  a 4  cos <^ 4  +  6 4  sin ^ 4  6 4  cos < ^ 4  — a 4  sin 4>\ (a | +  6 | ) / 2 ^

(2.29)

2 - 5 .  E x am p le  for th e  case o f P -P P -P

An illustrative example for the Section 2-4 is to synthesize a planar four- 

bar linkage to pass through the specified three finitely separated positions 

and have an instantaneous center at a specified position. The data of desired 

motion is given in Table 2-1. By letting the first position of a coincide with 

E and using equations (2.4) and (2.5), we have

4i2  =  20°, < £ 3  =  65°,

0 2  — —62.72, a 3  =  27.71, 

b2 = -37.20, h  =  -12.07.

Using equation (2.25) the circle-point equation becomes

19



Table 2 -1 . Design data  for P-PP-P in planar motion

1st position c x ( 37, 6)  , 02= 70°

2nd position c 2 (--30, 4 6 )  , ® to II VO o 0

3rd position c 3 (-- 2 7 , 2 4 )  , ©3=135°

instantaneous center I2 (-30, 10)
at 2nd position

20



Figure 2-1. The circle-point curve and a solution linkage for the pre­

scribed P-PP-P planar motion
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(;x2 +  y2)(15.92a: -  9.23y) -  2001.57x2  +  341.79y2

+2059.15.-cy +  69646.54a: +  36931.05y +  778796.51 =  0,

and the circle-point curve is drawn in Figure 2 -1 . Choosing two points, one 

for the driving crank the other for the driven crank, a four-bar linkage is 

synthesized as shown in Figure 2-1.

2 - 6 .  D e riv a tio n  o f  C irc le -P o in t E q u a tio n  for th e  C ase o f P P - P P

The rigid body motion is represented by the two finitely separated po­

sitions and the two infinitesimally separated positions. For the two finitely 

separated positions, substitution of equation (2.3) into equation (2.13) for 

the second position yields

(x cos <j) 2  — y sin fa  +  a2 — X * ) 2 +  (x sin fa  +  y cos fa + b2 — Y*)2 = R 2, (2.30)

and from equation (2.2), equation (2.13) yields for the first design position

[x — X * )2 +  (y — F * ) 2  =  R 2. (2.31)

Equating the left hand sides of equations (2.15) and (2.16) and rearranging 

yields

( ~ x  cos fa +  y sin fa + x -  a2)X* + ( - x  sin fa -  y cos fa  +  y -  b2) Y *

/  a2 _|_ J, 2  \
+  ( X’(a 2  cos<^2 +  & 2 sin<^2)+  y ( ^ 2  cos ^ 2  -  sin<^2) + —- )  = 0 .  (2.32)

For the two infinitesimally separated positions, substitution of equations (2.3) 

and (2.12) into equation (2.14) yields
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(x  cos <f)j — y sin 4>j +  aj — X * ) (—x sin (f>j — y  cos 4 +  Ijy ~  bj)

4- (x sin 4>j +  V cos 4>j -f- bj — Y*)(x  cos </>j — y  sin 4>j — Ijx 4- aj) — Oj (2.33)

3 =  1,2.

Rearranging equation (2.24) and considering cq =  fq =  4>\ =  0 yield

(y -  I i y)X*  +  ( - x  +  I l r )Y* +  ( —ylxi  +  x l yl) = 0 (2.34)

and

(x sin fa + y  cos fa -  fay +  b2)X*  +  (—x cos fa + y sin fa  +  fax -  a2)Y*

+  ^ (—z sin f a —y cos fa — b2)Ix2 +  (x cos fa — y sin fa  4- a2)Iy^ j  =  0. (2.35)

In order to simplify the equations, the following matrices are introduced 

based on equations (2.32), (2.34), and (2.35)

1  — cos fa  sin fa —a2 
a  =  | 0  1  - I ly J , (2.36)

sin fa cos fa b2 — f a y

— sin fa  1 —cos < ^ 2 ~b2
b =  | —1 0 fax | , (2.37)

— cos fa sin fa fax — a2

a2 cos fa + b2 sin (f)2 b2 cos fa — a2 sin fa  (a | +  b\)f2
C =  | I y \  Ix  1 0

—fa 2  sin (j) 2  +  I y 2  cos <f> 2  — I y2 sin fa — I x2 cos 4> 2 —b2fa2 4- a2I y2

(2.38)
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Thus equations (2.32), (2.34), and (2.35) become

X  \  f  X  \  f  X

a ( y j x *  +  f c l y j F *  +  c f y  | =  0. (2.39)

The above constraint equations are linear in X*  and Y*. Thus for the solu­

tion, we require

x
y

X

b  I y
x

C I y =  0 .

Equation (2.40) can be written

3 3 3

E E E ^ a * =  o,
i=l j= 1 k=l

where

A%jk —
a,[i bn cu
0.2 j  b 2j  C2 j

«3fc ^3fc c 3Jfc

(2.40)

(2.41)

m =  the number of l ;s among the i , j ,  k, 

n = the number of 2 's among the i , j ,  k, 

which upon expansion and rearrangement yields the circle point equation

Amx-3 + A 222y3 + { A i i 2 + 4̂.121 + A 2\ \ ) x 2y +  { A \ 2 2 + ^-212 + A 22i ) x y 2

+  (4-123 +  4 132 +  4-213 +  4 23i +  4 3i2 +  4 32i)x y  +  ( 4 n 3  +  4 i3 i  +  4 3n ) x 2

+  ( 4 223 +  4 232 +  4 322)y2 +  (4i33 +  4 313 +  4 33i )x

+ ( 4 233 +  4 323 +  4 332)y +  4 333 =  0. (2.42)
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The center point for the circle point can be determined using any two 

equations of the equation set (2.39).

2 - 7 .  E xam p le  for th e  case o f  P P -P P

An illustrative example for the Section 2-6 is to synthesize a planar four- 

bar linkage to pass through the specified two finitely separated positions and 

have two instantaneous centers at the specified positions. The data of desired 

motion is given in Table 2-2. By letting the first position of o coincide with 

£  and using equations (2.4) and (2.5), we have

<f>2 = - 6 8 °, a2 =  9.256, b2 = 11.694.

Using equation (2.41) the circle-point equation becomes

(x2 +  y2)(14.44a; -  4.91y) -  1005.50a;2 +  217.52*/2

+1283.74sy +  20235.01s -  15354.31y -  124800.81 =  0,

and the circle-point curve is drawn in Figure 2 -2 . Choosing two points, one 

for the driving crank the other for the driven crank, a four-bar linkage is 

synthesized as shown in Figure 2 -2 .
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Table 2 -2 . Design data  for PP-PP in planar motion

1st position Cx (25, 36) , ® H II O
O

2nd position C2 (52, 2) , CO
II 1 as CO

O

instantaneous center 
at 1st position * 1 ( 40, 0)

instantaneous center 
at 2nd position I2 (-22, 22)
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Figure 2-2. The circle-point curve and a solution linkage for the pre­

scribed PP-PP planar motion
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CHAPTER 3

G raphical S y n th esis  o f  P lan ar F our-B ar M ech an ism s  

for M u ltip ly  S ep arated  P o s itio n s  

3 - 1 .  In tro d u ctio n

Burmester used the concepts of poles, image poles, circle-point and 

center-point curves to develop geometric methods for synthesizing mecha­

nisms. These ideas were later extended by Alt [8 ], Beyer [9], and Hain [10].

A pole is the point in the fixed plane about which the moving lamina 

rotates for a pair of design positions. The image pole is the pole as seen 

relative to the moving plane. Figure 3-1 shows the poles and the image poles 

for the three finitely separated positions.

Muller [11] developed numerous synthesis methods for infinitesimally 

separated position problems. For infinitesimally separated position problems, 

the desired motion of a rigid body can be given by the instantaneous center. 

The instantaneous centers are found by locating the intersection of the normal 

to the path tangent for each end of the coupler. And the instantaneous centers 

can be handled in the same manner as a pole for finitely separated positions 

problem.

When the finitely separated position problem and infinitesimally sep­

arated position problem are combined, they are called multiply separated 

position problems. Previous work in this area using an analytical numeri­

cal approach is tha t of Tesar and his associates [3,7]. Graphical solutions 

to the multiply separated position problems have been presented by Volmer 

[1 2 ], Dijksun [13], Hain [10] and Waldron [14]. Tesar and Carrero [15] have 

developed graphical solutions to FSP, ISP, and MSP problems.
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Figure 3-1. Poles and image poles for three finitely separated positions
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Since there is no work done the PP-PP case of the MSP problems, the 

objective of this chapter is to review the conventional methods for the solution 

of the problem of the P-P-P-P case, apply the method to the PP-P-P and 

PP-PP MSP cases, and find the simpler method for construction of both the 

circle-point and center-point curves for the PP-PP case of MSP problems.

3 - 2 .  C ircle-p o in t and C en ter-P o in t C urves for P -P -P -P , P P -P -P ,  

and P P -P P

Before the MSP problem is considered, the four FSP problem is reviewed. 

If we consider the four specified finitely separated positions of a moving body, 

the four positions of an arbitrary selected point belonging to that body will 

not, in general, fall on a circle. However, some points whose four positions 

do fall on circles can be obtained. Such points would be suitable locations 

for crank-pins, with crank pivots at the circle centers, for guiding the body 

through the specified positions.

In Figure 3-2, let point A  be a point belonging to a moving body and so 

chosen that its four positions, A \ , A 2, A 3, A4, fall on a circle with center A c. 

In dealing with the four positions, six poles are involved: P i 2 , P i 3 , P 1 4 , P2 Z1 

-F2 4 , P 3 4 . In Figure 3-2, if we draw the line l \ 2  which is the perpendicular 

bisector of A 1 A2 , the pole P 1 2  is on the line l\2 - Similarly we can locate all 

the lines which pass through the poles. Then these lines all pass through a 

point A c.

By studying the angles between the various lines in Figure 3-2, we see 

that the angle between the lines /1 4 , 124  and the angle between the lines /j 3 , l2 3  

are equal or else differ by 180 degree. And for the lines ?2 4 > h i  and the lines 

? 1 2 , h 3 ) we have same condition as for the lines /14, h i  and the lines Z13, l23 .

Now with these ideas, the center point A c can be located by using the
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Figure 3-2. Angles between the various pole lines for the four finitely 

separated positions
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poles. As an example, we take the poles P 1 2 , P 2 3 ? P\t,  -P3 4  as shown in Figure

3-3. By choosing the point C which is on the perpendicular bisector of P i 2  

P 2 3  as chord, the point C' is located to make similar triangle (TP 1 4 P 3 4  to 

C'Pi2 P 2 3 - Then the point A c is at the intersections of two circles which have 

centers C,C'  passing through the points P i 2 ,P 2 3  and P i 4 ,P 3 4  respectively, 

because the angles a, a' and angles /3, /3' are equal or differ by 180 degree. 

For the additional points of the center-point curve, we choose the other point 

C  on the perpendicular bisector of the chord.

But with these four poles, the entire curve is not completed. In order 

to select another set of poles, we use the following terminologies. Two poles 

whose subscripts do not contain a common numeral are called “opposite 

poles.” For example, P 12 and P 3 4  are opposite poles. Two pairs of opposite 

poles form an “opposite pole quadrangle”. “Adjacent poles” are those whose 

subscripts do contain a common numeral such as P 1 2  and P 2 3 . The “sides” 

of an opposite pole quadrangle are the lines joining adjacent poles. Figure

3-4 shows the several configurations of the opposite pole quadrangles.

In order to complete the center-point curve, we take the other pair of 

sides of the opposite pole quadrangle or another configuration of opposite 

pole quadrangle.

If the moving plane is considered as the reference frame, the fixed pivot 

is observed to  move through four different positions relative to  an observerer 

on the moving plane. Then the moving pivot becomes a fixed pivot at the 

center of the four apparent positions of the fixed pivot as seen by the observer. 

In Figure 3-5, the point A q is the inverted point of A 0. Since image poles 

are inverted from the poles, the circle-point curve can be plotted using the 

image poles by the same way as the center-point curve.
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Figure 3-3. Construction for finding points of the circle-point curve
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Figure 3-4.

opposite poles
34 23

Pv.

23 34

adjacent poles

24

23

sides

Some possible configurations of opposite pole quadrangles

34



Figure 3-5. Inversion of center point A 0 on the first moving plane
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There is one special circle point on the circle-point curve. This is the 

Ball point B. It is the circle point whose four positions lie on a line. That 

is, the radius of the circle on which its positions lie has become infinite. It 

is the point which is used as the pivot between coupler and slider if it is 

desired to use a slider-crank rather than a four-bar linkage. The graphical 

location of the Ball point is as follows. Any three image poles which have 

only three distinct subscripts between them are called a ‘closed set’ of poles. 

For example, P\2, -P13, P^3 is a  closed set since only 1, 2, and 3 appear as 

subscripts. We choose any two closed sets of image poles and construct two 

circles on which each of these sets lie. One of the two intersections of the 

circles will be at an image pole. The other is the Ball point B.

For the PP-P-P case of the multiply separated positions, A 1B i , A2I?2, 

A 3B 3, are specified as the three finitely separated positions, and the instan­

taneous center I\ is specified as an infinitesimally separated position at the 

first position of the lamina as shown in Figure 3-6. Thus it is considered that 

the positions 1 and 4 are the ISP and Ii =  P 14. And since positions 1 and 

4 are same, P24 =  -P21, anc  ̂ -̂ 34 =  - ^ 3 1  ? and we have four distinctive poles 

which make one configuration of opposite pole quadrangle.

Figure 3-7 shows the PP-PP case of MSP, consisting of two finitely sep­

arated positions, A \B \ ,  A2I?2, and two infinitesimally separated positions, 

I i , I 2 which are the instantaneous centers of positions 1 and 2 respectively. 

It is considered that positions 1 and 4 are the ISP and Jj =  P 14. Similarly 

for the position 2 and 3, we have J2 =  -P23. Since positions 1 and 4 are the 

same, and also the positions 2 and 3 are the same, P\2 — P\z — -P2 4  — P$a • 

Thus we have three distinctive poles which can make a pair of opposite sides. 

Since these sides shares the common pole, the curve can be completed by
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Figure 3-6. An opposite pole quadrangle for PP-P-P
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Figure 3-7. An opposite pole quadrangle for PP-PP
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only that sides.

3 - 3 .  S im p ler  M eth o d  for C o n stru ctio n  o f  B o th  C irc le-p o in t and  

C en ter -P o in t C urves for P P -P P

Section 3-2 showed one of the several construction methods [9,38]. This 

section will show another simpler construction m ethod for the case of PP-PP.

Figure 3-8 shows two finitely separated positions, A iB i ,  A 2B 2, and two 

infinitesimally separated positions described by I i , / 2  which are the instanta­

neous centers at the positions 1 and 2  respectively. The two finitely separated 

positions 1 and 2  define a pole P i2. We define the lamina’s angular displace­

ment (j)i2 as angular motion between the two positions of the moving plane 

about the pole. If we draw the line l\ on the 1st moving plane position which 

passes through the pole P i2, its 2 nd position / 2  on the fixed frame can be 

drawn by rotating the line li by (j>i2 about P 1 2  as shown in Figure 3-8. If 

there is a circle point A\  on the line /i, the the 2nd position A2  of the circle 

point is on the line l2 with the condition P i 2 Ai =  P\2A 2. Constant link 

length of the crank makes the center point A c lie on the center line lc which 

is the bisector line of L A \P \2A 2. Thus line A2 AC is the mirror image of the 

line A i A c about lc. And the instantaneous centers, I\ and I2, are located 

on the link lines, A cAi  and ACA2, respectively. If we make the mirror image 

instantaneous center I2 of I 2 about the center line lc, the points Ac, A j, Jj, 

I'2 are on the same line. Thus the circle point Aj is the intersection of the 

lines l\ and I i l 2 and the center point Ac is the intersection of the lines lc and 

h  I't

Figure 3-9 shows how to locate the Ball point. Since line joining I \ I 2 is 

parallel to line /c, the center point is located at infinity. Thus the Ball point
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Figure 3-8. A straight line on which A \ , A c, Ii  and I'2 are located
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is a t the intersection of lines and / j  I2. Because the distance between the 

point I\ and the line lc and the distance between the point I'2 and the line lc 

are same, the center point line lc for the Ball point is the line joining P 1 2 B  

where the point B  is located by making a parallelogram IxP v th B .

Figure 3-10 shows a way to plot the points on the center curve and circle 

curve, given two laminae and two instantaneous centers. The procedure is as 

follows:

1 . Locate a pole P\2 -

2 . Measure the lamina’s angular displacement (j>\2.

3. Locate a point B  by making a parallelogram

4. Draw a line lc passing through the pole P12 and B.

5. Draw a line l\ by rotating the line l\ by — about the pole P\2-

6 . Locate a mirror image instantaneous center I 2 of I 2 about the line lc.

7. Draw a line I \ I 2 passing through the points Ii and I 2.

8 . The lines l\ and I\V2 intersect at the Ball point B.

9. Rotate the line lc about the pole P \ 2 and follow the steps 4, 5, 6 , 7.

10. The lines l\ and I\P2 intersects at the circle point A\ and the lines lc 

and I\P2 intersects at the center point A c.

1 1 . As many additional points of the curves as desired can be plotted by 

drawing additional lines l\ .

3 - 4 .  D esign  E xam ple

In order to design a four-bar linkage capable of assuming the desired 

positions, in principle, one has only to select two points from either cubic 

curve and locate the corresponding points on the remaining cubic curve. 

But this procedure does not always guarantee that the resulting linkage can
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Figure 3-10. Construction of the circle-point and center-point curves
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perform the desired motion. As is well known, this technique produces three 

types of defective solutions. One of these is a solution linkage which will not 

traverse all the design positions without being disconnected and reassembled 

in a different configuration. The appearance of this type of defective solution 

is concerned with the appearance of two distinct branches of the coupler 

curve in the linkage. For this reason, the elimination of this type of defective 

solution is referred to as the branch problem.

The second type of defective solution arises if the linkage is required to 

have a crank capable of complete rotation. It is frequently necessary to drive 

the linkage by means of a continuously rotating motor. Since Grashof’s rules 

are used to distinguish linkage types which have at least one continuously 

rotating crank, the problem of identifying such solutions is referred to as the 

Grashof problem.

The third type of defective solution is also a result of the requirement 

for a continuously rotating driving crank. When the crank is driven in a uni­

form direction it may happen that the coupler of the linkage moves through 

the design positions in the wrong order. The classification of solutions that 

move through the design positions in wrong order is referred to as the order 

problem.

No convenient solution of the Grashof problem is yet available, although 

Beyer [9] and Filemon [16] have done useful work on it graphically. Geometric 

solutions of the branch and order problem for four finitely separated positions 

are now available through the work of Filemon [16] and Waldron [13]. Kim 

and Sodhi [18] solved these three problems by using the computer graphics 

techniques.

Waldron [19] studied the problem of PP-P-P  MSP case by solving the
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branch and order problems. Since there is no available solution for the prob­

lem of PP-PP, an example is presented here to show the designing process 

using the generated cubic curves. Unless the rotational directions of the lam­

ina about the instantaneous centers are required, the order problem is not 

significant. But it is noteworthy that, even in this rather trivial two finitely 

separated positions case, the branch problem can still arise. Figure 3-11 

shows a solution of the PP-PP problem in which the two design positions 

can not be reached from one another without disconnecting the linkage. This 

is indicated by the change in sign of the angle ip between the two positions. 

For the two FSP and two ISP, any point on the circle-point curve can be cho­

sen as the driven crank circle point. The corresponding center point can be 

located on the center-point curve by using the graphical method developed 

in Section 4-3. In principle, any other point on the circle-point curve can be 

chosen as the driving crank circle-point. However, there is a portion of the 

cubic curve for which driving crank circle-points will give solution linkages 

which must change branch to move between the two finitely separated posi­

tions. This portion is in the shaded region in Figure 3-12. The construction 

used was first applied by Filemon [16] to the 4FSP case. It has been discussed 

in references [17,19] and will, therefore, not be further treated here. Figure

3-13 shows an alternative solution to the problem of Figure 3-11 which does 

not require a change of branch.
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Figure 3-11. Branch problem in PP-PP
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V>i c,

Figure 3-12. Region which has the branch problem
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Figure 3-13. A solution linkage for PP-PP without branch problem
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CHAPTER 4

A n a ly tica l S y n th esis  o f  S p h erica l M ech an ism s  

for M u ltip ly  S ep arated  P o s itio n s

4 - 1 .  In tro d u c tio n

In 1988, Chiang [20] published Kinematics of Spherical Mechanisms. 

This book shows several examples of spherical mechanisms, such as the uni­

versal joint, a swivelling electric fan, and a pair of bevel gears, and examines 

the spherical counterparts of well-known theorems in plane kinematics.

The spherical four-bar linkage, being analogous to the four-bar linkage 

in plane mechanisms, is the basic form of all spherical mechanisms. A typical 

spherical four-bar linkage A 0A B B 0 is shown in Figure 4-1.

Spherical motion is defined as the motion of a rigid body which moves 

about a fixed point O, all points in the body thus being constrained to lie on 

a system of spheres all concentric about O. Spherical motion is sometimes 

examined by the movement of one spherical shell which slides on a fixed 

reference shell, the two shells being concentric and of the same radius. Thus 

the position of the rigid body is determined by specifying the two points C 

and D on the shell, provided that O, C, and D  are not collinear.

As a counterpart of an instantaneous center in plane kinematics, an 

instantaneous rotational axis (IRA) is used for an infinitesimal motion of the 

rigid body. Similarly a pole axis is equivalent to a pole. Since the body moves 

about a fixed point O, it is sufficient to specify only the coordinates of the 

point I  on the shell in order to locate the IRA as shown in Figure 4-1.

Generally the concepts of plane kinematics for the rigid body guidance 

problem hold for spherical kinematics. The three FSP problems were in-
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Figure 4-1. Spherical four-bar linkage
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vestigated by Hain [9] in a quite similar way in plane kinematics. General 

equations for the three MSP problem have been derived by Dowler et al. 

[2 1 ]. For the four FSP problem, it is possible to establish a geometric rule, 

similar to th a t in plane kinematics, for the locus of the circle-point, which we 

call the spherical circle-point curve. However, as it is quite impracticable to 

carry out graphical construction on the spherical surface, algebraic methods 

are used to find the locus of the spherical circle-point [22,23]. All five cases 

of three MSP and all seven cases of four MSP are treated by Dowler et al. 

[24]. However, their method was not applied to general spatial kinematics.

This chapter deals with the four MSP problems in the spherical four- 

bar linkages. This method is different from Dowler’s and can be applied to 

general spatial kinematics which will be seen in Chapter 5.

4 - 2. F in ite  R o ta tio n a l D isp lacem en ts

A displacement of the moving sphere can be regarded as a rotation about 

an axis through O. The linear transformation of the finite rotational displace­

ment can be expressed by selecting (x , y , z) as the Cartesian coordinates of a 

point in a moving system a and (X, Y ,Z )  as its coordinates in a fixed system 

E. Let <7 ,- denote the ith  position of a , and (Xj-,Yi,Z2) the coordinates in 

E of the zth position of the point (x , y , z ) in cr. Knowing the position of a,- 

relative to E, we can express (X,-, Y), Zi) in terms of (x , y, z):

X,- =  R jX ,  (4 .1)

where the m atrix R,- is function of the parameters governing the relative 

position of cr,- and E. If we let the 1st position of a coincide with E, the 

displacement to cr,- may be described as a rotational displacement which is
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equivalent to a rotation about an axis which is parallel to the unit vector 

Uj(ui,Vi,Wi) and passes through a point O. In this case we have

/  uf vers<j>i +  cos <f){ u,-Ujvers^>; — W{ sin 4>i u,'u;,vers^,- +  u,- sin </>* \
R t =  I UiVivevstpi +  Wi sin <f>i v fver s^ i+ co s^ i  u,ta,-vers^i — iq sin 4>i 1 

\  uijWjvers^i — V{ sin (f>i u,iu,vers^j +  «,• sin <f>i wfversfa +  cos 4>i J

(4.2)

where vers^i, =  1  — cos

The m atrix R,- is orthogonal. This can be shown by the inversion of the 

rotational m atrix which can be formed in terms of the reverse displacement, 

achieved by replacing the angle by its negative

4 - 3 .  D e te rm in a tio n  o f R o ta tio n a l P a ra m e te rs

The rotational parameters for two given finitely separated positions can 

be found by several methods [22,37]. Here a direct method to find the rota­

tional parameters is introduced.

It is sometimes sufficient to examine the relative movement of one spheri­

cal shell sliding on a fixed reference shell, the two shells being concentric and 

of the same unit radius. In order to locate the shell on the sphere, it is 

enough to specify two points on the sphere. If we are given two positions, 

position 1 and position j ,  in terms of two points say C, D on a sphere then 

the rotational param eters can be determined as follows. As shown in Figure 

4-2, we consider the displacement from position C\D\  to C\Di as one where 

by C\D\  rotates about $,• to position C,D,-. The $,-, is defined as rotational

axis and is perpendicular to the two vectors, C\C{ and D\D{. The following 

vector equations are obtained:

CjCi • u,- =  0, (4.3)
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Figure 4-2. Finite spherical motion
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where

j D i A - u , - = 0 ,  (4.4)

u, • u , =  1. (4-5)

Solving equations (4.3), (4.4), (4.5) for the scalar components (Ui , Vi , Wj ) we

get

 /  (be1 — cb1)2 \ 2
% \ ( a b ' — ba')2 +  (be1 — cb')2 +  ( c a ' — ac1)2 )  ’

ca 1 — ac'
( 4 ' 7 )

afc' — ba' .
Wi =  (4-8)

Q   Cxi C x 1 } -- -D2,2 D x\ ,

b — Cyi i  ̂ =  ^ y i  ^ y l  i

c — C zi — Cj;i, b' — D zi — D zi .

In order to find the rotation angle about the rotational axis, the point S,  

which makes the plane C\ SCi perpendicular to the axis, is located on the 

axis. Then

S =  (C i • Uj)u,' =  (C,- • Uj)u2'• (4.9)

From the two vectors, SC\  and SCi,  the rotation angle </>,■ becomes

S C !  ■ S C i4>i =  COS ---^------ =;---------- =;------=;------- . (4-10)
(SC! ■ S C ^ ^ i S C i -  SCi)1/2

Since the sphere has the unit radius, substituting equation (4.9) into (4.10) 

yields
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C ,  ■ C f -  ( C ,  • u,')2 

*  = cos " 1 - ( C ,  ■„,•)* - (4-u )

The direction of the rotational angle (/>{ is determined by using the cross 

vector property

sign =  Uj • {SC\ x S C i ) — u; • (Cx x C;). (4-12)

If sign is negative value, is negative.

4 - 4 .  D e rm in a tio n  o f  In fin ite s im a l R o ta tio n a l P a ra m e te rs

Infinitesimal displacements of a rigid body may be described by a series 

of successive infinitesimal rotational displacements. Consider a moving sys­

tem a in continuous motion relative to a fixed system S. We select a point 

P  fixed in <r which is represented by the constant position vector x, and X 

is the position vector of a coincident point P  in S. Thus we may express 

equation (4.1) as follow:

X =  Rx. (4.13)

If we are interested only in the study of kinematic geometry of space, we may 

write the first derivative of equation (4.13) with respect to (j>:

H  =  w -  (4-14)

The instantaneous rotational axis (IRA) at the j th  position is located by 

describing a unit vector Vy passing through the origin in the fixed system S . 

The corresponding vector in the moving system a is expressed by v. Then 

we may write following equations from equations (4.13) and (4.14)

V j  =  R ,V . (4 .15)
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d V  j d R j
a t =  ~ j f v - (4'16)

Since the vector V j  of IRA does not change in fixed system at the instant of 

the given position, we may have

d V  ■
w = ° -  <4-17>

Substituting equations (4.15) and (4.16) into equation (4.17) yields

dR,- -

W R j V i  =  0 -  ( 4 ' 1 8 )

In order to determine the for the given position and unit vector V  j of 

IRA, the m atrix is written as follows:

=  +  H 3^  H 4^ ) ,  (4.19)

where

Uj2 sin (j>j — sin <f>j UjVj sin (pj — wj  cos <pj UjWj sin <j>j +  vj cos cpj 
H i =  1 UjVj sin 4>j +  wj  cos (f>j v j2 sin (pj — sin <f>j vjwj sin 4>j — uj  cos 4>j 

UjWj sin 4>j — Vj cos <pj VjWj sin <pj +  Uj cos <pj Wj2 sin <f)j — sin 4>j

(4.20)

2uj{l  — cos (f)j) 0  0  \
Vj(l — cos (j>j) Uj(l — cos 4>j) sin <pj I , (4-21)
u>j(l — cos <pj) — sin <f>j Uj( 1 — cos <!>j) J

sin 4>j

sin <j)j

u y ( l - c o s ^ )
2vj(l  -  cos (f>j) 0 j ,  (4.22)
W j (1 — COS (pj)
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/  Wj(l  — cos (j>j) sin 4>j uj( 1
H 4 =  I —sin cf>j Wj{l — cos <j>j) v j ( l  

\  0 0 2wj ( l

Substituting equation (4.19) into equation (4.18) we have

H .R jV ,. =  — ( H 2^  H 3 ^  H 4^ . ) R j V j .  (4.24)

Solving equation (4.24) for using the partition m atrix property in Ap­

pendix II, we have

^  =  - ( ( R J V ^ H j  +  (R .JV j)j,H 3  +  (4.25)

Then can be determined by equation (4.19).

4 - 5 .  C on stra in t E q u ation s for R -R  Link on a  S p h ere

Two spherical links, as shown in Figure 4-1, connected between each 

of a pair of spherical circle points and corresponding spherical center points 

which lie on axes passing through the origin and the center of the circular 

arcs, would guide the moving body through a series of prescribed positions. 

The constraint equations are based on the constant link length of guiding 

links. The coordinates of the spherical center point are Xo =  (Xo, Yq, Zo). 

Then we have

(Xi -  X 0)T(Xi -  Xo) = R 2 i =  1 ,2 ,..., n. (4.26)

The coordinates of the points X,- =  (X i,T i,Z ,) are determined in terms of 

1 st position of moving body from the finite rotational displacement equation

(4.1). And the derivative form of equation (4.26) is
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(Xi - X 0)r ^  =  0. (4.27)

Note that the derivatives of X 0, R  are zeros. The infinitesimal displacement 

is dertermined from the infinitesimal rotational displacement equation 

(4.14).

4 - 6 .  D e riv a tio n  o f  S pherica l C irc le -P o in t E q u a tio n  for th e  C ase  o f 

P P -P -P , P -P P -P , o r P - P - P P

The rigid body motion is represented by the three finitely separated 

positions and the one infinitesimally separated position. For the three finitely 

separated positions, substitution of equation (4.1) into equation (4.26) yields

(RjX — X 0)T(RiX — X 0) =  R 2, i = 2,3. (4.28)

For the first design position, equation (4.26) becomes

(x — X 0)T(x — X 0) =  R 2. (4.29)

Since the m atrix Rf is orthogonal, equating the left hand sides of equations

(4.28) and (4.29) and rearranging yields

x r (R i -  I )TX 0  =  0 . * =  2,3 (4.30)

For the one infinitesimally separated position at the j th  finite position, sub­

stitution of equations (4.1) and (4.14) into equation (4.27) yields

( R i x - X o)T ^ - x  =  0. 

58

(4.31)



Rearranging equation (4.31) with the orthogonal matrix property shown in 

Appendix III yields

x (4.32)

In order to simplfy the equations, the following matrices are introduced based 

on equations (4.30) and (4.32)

a = (R-3 -  I ) 1

/ d R j  \ 1
\  d<f> /

(4.33)

b  =
(R2 - I ) 2 
(R-3 -  I)2 

\  d<(> /

(4.34)

c =
( R 2 - I ) 3 
(R-3 -  I)3

\  dtf> )

(4.35)

where the superscipts 1, 2, 3 of the matrices are the first, second, third rows 

of the matrices respectively. Thus equations (4.30) and (4.32) become

x \  /  x \  /  x
a | yJ-Xo + b l y j F o  + cly | Z 0 =  0. (4.36)

The nontrivial solution of equation (4.36) requires

x
y

x
y

X

y =  0 , (4.37)
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Equation (4.37) can be written in a tripple sum polynomial form as:

3 3 3

(4.38)
2 =  1 7 =  1 fc=l

where

A-ijk —
® l i  ^1 i C i i

° 2 i  b 2j  C2 j

03Jfc &3jfc C3fc

(4.39)

I =  the number of l/s  among the z, j ,  fc, 

m  =  the number of 2 's among the z, j , fc, 

n =  the number of 3's among the i , j ,  fc. 

which upon expansion and rearrangement yields the circle-point equation

A lllX 3 +  A 222y 3 +  A.33323 

+(■'4-112 +  4̂-121 +  A 2n )a:2y +  ( i n 3 +  4 131 +  A 3n ) x 2z  

+  (■'4-122 +  ^212 +  ^221 ) z y 2 +  (^133 +  4 313 +  A ^ i ) x Z 2 

+ ( A 2 2 3  -f -4.232 +  A 322)y 2z  +  (-A2 3 3  +  4 323 +  4 332)y z 2 

+(■4-123 +  4-132 +  4.213 +  4 23i +  4 3i2 +  A ^ 2\ ) x y z  =  0. (4.40)

Equation (4.39) is a spherical cubic cone which, together with equation x 2 +  

y 1 +  z 1 =  1  of the unit sphere, represents the spherical circle-point curve. 

The spherical center point for the spherical circle point can be determined 

using first two equations of equation (4.36).
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For the four finitely separated positions, the cubic cone equation has the 

same form of equation (4.38) (4.40) if we use

/ ( R a - I A  
a = (R3 - I ) 1 ,

\ ( R 4 - I ) V

/  (r 2 - 1)2 \  
( R 3 - I ) 2 ,

V(r4 - i ) V

/  (R 2 -  I )3 \  
c =  (R 3 - I ) 3 ,

\ ( R 4 - I ) 3 /

where the superscipts 1, 2, 3 of the matrices are the first, second, third rows 

of the matrices respectively.

4 - 7 .  E xam p le  for th e  case o f  P -P P -P

An illustrative example for the Section 4-6 is to synthesize a spherical 

four-bar linkage to pass through the specified three finitely separated posi­

tions and have an instantaneous rotational axis at a specified position. The 

data  of the desired motion is given in Table 4-1. By letting the first position 

of a coincide with E and using the method developed in the previous sections, 

we have

0.92534 -0.29529 0.23781
0.31693 0.94669 -0.05770

-0.20809 0.12876 0.96960

' 0.51414 -0.73249 0.44623 N
0.40360 0.66567 0.62768

-0.75681 -0.14261 0.63788 /
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d K  /-0 .3 8 7 1 4  -0.54479 0.82995 \
- j -  =  I 0.63102 -0.20015 0.18219

^ \ -0.76047 0.22218 -0 .1 9 2 7 1 /

Using equation (4.40) the circle-point equation becomes

-0.005698a;3 +  0.012970y3 +  0.012669z3 -  0.023788x2y -  0.034149a;2z

-0.028458a;y2 -  0.006383a;z2 -  0.024042y2z +  0.005746yz2 +  0.010665zyz =  0.

W ith a:2 + y 2 -l-z2  =  1 , the circle-point curve is drawn in Figure 4-3. Choosing 

two points, one for the driving crank the other for the driven crank, a spherical 

four-bar linkage is synthesized as shown in Figure 4-3 with

A i =  (-0.61608, -0.02373, 0.78733), A 0  =  (-0.30000,0.10000,0.94868),

B 1 = (0.43939,0.16852,0.88235), B 0 =  (0.10000,0.70000, 0.70711).

4 - 8 .  D eriv a tio n  o f  Sp h erica l C irc le -P o in t E q u ation  for th e  C ase o f  

P P -P P

The rigid body motion is represented by the two finitely separated po­

sitions and the two infinitesimally separated position. For the two finitely 

separated positions, substitution of equation (4.1) into equation (4.26) yields

(R 2x -  X 0 )t (R 2x -  X 0) =  R 2. (4.44)

For the first design position, equation (4.26) becomes

(x  — X 0)T(x  — X 0) =  R 2. (4.45)

Since the m atrix R* is orthogonal, equating the left hand sides of equations

(4.28) and (4.29) and rearranging yields



Table 4-1. Design data for P -PP-P  in spherical motion

1st position clx
Dlx

=-0.59588, 
=-0.25878, cly

DlJ
=-0.55331, 
=-0.19157, Clz

Dlz = 0.58204 
0.94675

2nd position c2x
°2x

=-0.24959, 
= 0.04226, c2y

D2y
=-0.74626, 
=-0.31801, C2 Z 

D 2 z

= 0.61710 
0.94715

3nd position C 3 X
D 3 X

= 0.35866, 
= 0.42975, C3y

D3y
=-0.24349, 
= 0.36229, C 3 Z

° 3 Z

= 0.90115 
0.82708

IRA
2nd

at
position V 2 X =-0.01836, v2y = 0.76483, V2z = 0.64398
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Figure 4-3. The circle-point curve and a solution linkage for the pre­

scribed P-PP-P spherical motion
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x t (R 2  -  I )TX 0  =  0. (4.46)

For the two infinitesimally separated positions, substitution of equations (4.1) 

and (4.14) into equation (4.27) yields

j d  .

(R i x - X 0)T^ - x  =  0, i  =  1,2. (4.47)

Rearranging equation (4.47) with the orthogonal matrix property shown in 

Appendix III yields

x T ( ^ )  Xo =  0’ > = 1' 2 (4.48)

In order to simplfy the equations, the following matrices are introduced based 

on equations (4.46) and (4.48)

a = ( m i . ) 1V d<f> )
( 4 E 2 . ) 1\  V d<j> )

(4.49)

b =

c =

( (R 2 - 1)2 
(<m± ) 2
\  d<f> )

\
^(R2 - I ) 3

( m i . ) 3V d<t> )  

( ^ ) 3

(4.50)

(4.51)

where the superscipts 1, 2, 3 of the matrices are the first, second, third rows 

of the matrices respectively. Thus equations (4.46) and (4.48) become
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X  \  /  X \  /  X
a | y l X o  +  b f y j F o  +  c l y  | Z 0 =  O. (4.52)

The nontrivial solution of equation (4.35) requires

x
y

x
b  I y

x
y o, (4.53)

Equation (4.53) can be written

3 3 3

E E E ^ * x V " 2 n =  °,
2 =  1 j =  1 fc= l

(4.54)

where

d j j  6 i,- C j j
Cl2 j  b 2j  C2j

<3-3 fc &3fc C3 fc

(4.55)

I =  the number of l/s among the i , j ,  fc, 

m  — the number of 2 *s among the i , j ,  k , 

n =  the number of 3^  among the fc. 

which upon expansion and rearrangement yields the circle-point equation

^ l l l ^ 3 +  -^222y3 +  ^333^3

T ( j 4 i 1 2  +  -'4-121 +  A 2u ) x 2y  +  (-d-113 +  ^ 1 3 1  +  ^ 4 3 1 l)2 ;2 ^

+  (^4-122 +  ^-212 +  -422l)-'K y2 +  (-d-133 +  ^ 3 1 3  +  ^ 3 3 1  ) x z 2
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+  (^223 +  -'4-232 +  A$22)y2 Z +  (A 2 3 3  +  A3 2 3  +  -'4-332 )yz2

+  (̂ 4-123 +  -'4-132 +  - '4 2 1 3  +  - 4 2 3 1  +  -4312 +  -4321 )x yz — 0. (4.56)

Equation (4.56) is a spherical cubic cone which, together with equation x 2 + 

y2 + z2 =  1  of the unit sphere, represents the spherical circle-point curve. 

The spherical center point for the spherical circle-point can be determined 

using first two equations of equation (4.52).

4 - 9 .  E x a m p le  for th e  case o f  P P -P P

An illustrative example for the Section 4-8 is to synthesize a spherical 

four-bar linkages to pass through the specified two finitely separated positions 

and have two instantaneous rotational axes at the specified positions. The 

data  of desired motion is given in Table 4-2. By letting the first position of 

cr coincide with E and using the method developed in the previous sections, 

we have

r 2 =
0.79816 -0.55624 0.23136N
0.32617 0.72188 0.61032

-0.50650 -0.41168 0.75761,

' 0 . 0 0 0 0 0 -0.64398 0.76483
0.64398 0 . 0 0 0 0 0 0.01836

v-0.76483 -0.01836 0 . 0 0 0 0 0

' 0.34782 0.75856 0.62381
-0.53031 0.82428 -0.69154

. 0.20661 0.42045 0.36660

d R 2  

d(j)

d f t 2
d<j>

Using equation (4.37) the circle-point equation becomes

0.122a; 3  +  0.765y3 +  0.260z3 +  0.477a:2y -  0.881a;2z
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+0.309x y 2 — 0.661 x z 2 — 0.197 y2z  +  0.023y z 2 — 0.772xyz  =  0.

W ith x 2 + y 2  +  z 2 =  1, the circle-point curve is drawn in Figure 4-4. Choosing 

two points, one for the driving crank the other for the driven crank, a spherical 

four-bar linkage is synthesized as shown in Figure 4-4 with

A j =  (-0.37584, -0.26315,0.88853), A 0 =  (-0.30000,0.10000,0.94868), 

B i =  (0.56665,0.24788,0.78579), B 0 =  (0.10000,0.70000,0.70711).
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Table 4-2. Design data for PP-PP in spherical motion

1st position SlxDlx
=-0.24959, 
= 0.04226, Cly

Dly
=-0.74626, 
=-0.31801, Clz

D l Z

= 0.61710 
= 0.94715

2nd position c2x
D 2 x

= 0.35866, 
= 0.42975, c2y

°2y
=-0.24349, 
= 0.36229, C2z

D 2 z

= 0.90115 
= 0.82708

IRA
1st

at
position v lx =-0.01836, v iy = 0.76483, V 1 Z = 0.64398

IRA
2nd

at
position V2x =-0.49569, v2y = 0.01321, V 2 Z = 0.86840
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Figure 4-4. The circle-point curve and a solution linkage for the pre­

scribed PP-PP  spherical motion
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CHAPTER 5

A n a ly tica l S y n th esis  o f  Sp atia l M ech an ism s  

for M u ltip ly  S ep arated  P o sitio n s

5 - 1 .  In tro d u ctio n

Position synthesis of spatial mechanisms involves the determination of 

mechanism dimensions which will move a rigid body through a series of pre­

scribed positions. These positions could be finitely separated, infinitesimally 

separated or a combination of both finitely and infinitesimally separated. 

Instead of determining the mechanism dimensions directly, the dimensional 

synthesis process is performed by locating the points or lines in a rigid body 

moving through finitely and infinitesimally separated positions.

Synthesis of spatial mechanisms under a series of finite displacements 

has been extensively studied [25-29]. The problems of finite displacements 

are not concerned with the manner in which the motion takes place and the 

only consideration for the synthesized mechanism is reaching the position 

before and the position after the motion. For such a mechanism, transition 

of the rigid body between the two positions can not be predicted. On the 

other hand, specifying two design positions infinitesimally separated from 

one another is equivalent to specifying a position of the rigid body and the 

velocity state of that body as it moves through that position. The spatial 

instantaneous motion of a rigid body can be prescribed by specifying the 

instantaneous screw axis (ISA) at a position. Synthesis for infinitesimally 

separated positions has been studied by several researchers [30-34].

Little research has been done on the synthesis of spatial mechanisms for 

multiply separated positions [35-36]. In this paper, the objective is to perform
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the synthesis of spatial mechanisms for combined finitely and infinitesimally 

separated positions using screw axes.

In this Chapter, the instantaneous geometric motion of a rigid body 

is studied in terms of the instantaneous screw axis for the infinitesimally 

separated positions. Thus the multiply separated positions are defined by 

specifying the several finitely separated positions and their Instantaneous 

Screw Axes. Equations are developed to locate special points or lines in the 

rigid body moving through the specified motion. These point or lines would 

satisfy the constraints of various type of links for spatial mechanisms. Spatial 

RRSS mechanism is synthesized for illustrative purpose.

5 - 2 .  F in ite  S crew  D isp la cem en ts

It is well known that a displacement in spatial motion, regardless of 

how a motion actually occurs, may always be regarded as a rotation about 

a screw axis and a translation along the axis. In order to obtain the explicit 

expressions for the linear transformation of the finite screw displacement, we 

select (x , y , z) as the Cartesian coordinates of a point in a moving system a 

and (X, F, Z)  as its coordinates in a fixed system E. Let cr2- denote the j th  

position of <r, and (Xj, Ŷ , Z 2) the coordinates in E of the j th  position of the 

point (x , y, z) in a. Knowing the position of relative to E, we can express 

(X 2, Yi, Z {) in terms of (x , y, z):

Xj =  Rj-x +  T j, (5-1)

where the matrices R 2 and T 2 are functions of the parameters governing 

the relative position of cr2 and E. If we let the first position of o coincide 

with E, the displacement to cr2- may be described as a screw displacement
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which is equivalent to a translation d2 along, and a rotation (pi about an axis 

which is parallel to the unit vector u 2 (m2, u2, it>2) and passes through a point 

S{(Sxj, S yj , S zj)  in E. In this case we have

ufvers<f>i +  cos 4>i u 2 u2vers< ^ 2 — u>2 sin (pi w2 u>2vers< ^ 2 +  u2 sin (pi
R 2 =  j UiVjVerscfti -f W{ sin (pi vers0, +  cos < ^ 2 u,u;2 vers<^2- — u 2 sin (pi

WiUiverscpi — Vj sin </», u2 uqvers< ^ 2 +  u 2 sin < ^ 2 wf  vers^ 2 -1- cos < ^ 2

and

where vers<̂ >2- =  1  — cos

(5.2)

^xj  \  \  i  ^xj
T« =  s vi +C?M Vi _ R * s vi (5-3)

5 - 3 .  D e te rm in a tio n  o f Screw  P a ra m e te rs

The problem at this stage is to find the screw parameters for two given 

finitely separated positions. Bottem a and Roth [37] have used Rodrigues 

equation to find screw parameters. Suh [22] has used homogeneous transfor­

mation using four non-coplanar points. We introduce here a direct method 

to find the screw parameters.

If we are given two positions, position 1 and position j ,  in terms of three 

non-collinear prescribed points say, C, D, E, then the screw param eters can be 

determined as follows. As shown in Figure 5-1, we consider the displacement 

from position C \D iE \  to C 2 D 2 E 2 as one where by C \D iE i  first translates 

parallel to the screw axis $ 2 to position C tD tE t and then rotates about $2- to 

position CiDiEi.  Thus the displacement between C iD tE t and C{DiEt is a 

pure rotation about $2-, therfore we have
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Pi

Figure 5-1. Finite screw motion
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( C -  C ‘) • u, =  0 , (5 .4 )

(D, -  D*) • u, =  0, (5.5)

(E; -  E*) • u,- =  0. (5.6)

We take d, as the screw translation along the screw axis, which carries 

C \D \E i  to position C tD tE t, then we can express

C 1 =  Cj +  dim, (5.7)

D* =  Di 4- diUj, (5.8)

E* =  E x 4- diU{. (5.9)

Combining equations (5.4)-(5.6) and (5.7)-(5.9) we get

( ( C i - C O - f D i - D O j - u ^ O ,  (5.10)

((Cj — C ,)  — (E,* — E i)) • Uj =  0. (5.11)

Solving equations (5.10), (5.11) with u,- • Uj =  1  for the scalar components

(ui, Vi,W{) we get

/  ( be' — cb')2 \  2
* \ ( a b '  — ba' )2 4- (be1 — cb')2 +  ( c a 1 — ac ' )2 )  ’ ^

ca' — ac'
t’i =  b d = * u "  ( 5 - 1 3 )

ab' ~  ba'
Wi =  m " "  ( 5 ' 1 4 )
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where

a,  =  ( C x j  C x i )  ( E x j  D x l ) ,  a  =  ( C x j  C x \ )  ( E x j  E x \ ) ,

b =  { C y j  ~  Cyl)  — ( D y j  —  D y l ) ,  b =  (Cyj — Cyl)  ~  ( E y j  ~  E y \ ) ,

c  =  ( C z j  - C z l ) -  ( D z j  -  D z l ) ,  c '  =  ( C z j  - C z l ) ~  ( E z j  -  E z l ) .

In order to determine the screw translation dj, we consider the equations 

(5.4) and (5.7)

(C,- -  C i +  d ,u ,) • Uj =  0, (5.15)

Solving equation (5.15) for d,-

d,- =  (C,- — C i) • u,. (5.16)

We choose the point S i  on the screw axis which satisfies the following equa­

tion:

(Ci -  S i )  • u, =  0. (5.17)

Since C i  is obtained from C l  by only rotation around the screw axis, we have

(Ci -  Si) • (Ci -  Si) =  (Cj +  diUi -  Si) • (Ci +  diUi -  Si). (5.18)

And for D \  and D, we get

(D,- — Si) • (D,- — S,) =  (Di -f d,u,- — S,) • (D,- +  d,Ui — S,). (5.19)

Solving equations (5.17), (5.18), (5.19) for the components ( S x j ,  S y j ,  S ~ j )  of



Rotation angle (f>i may be obtaind by two vectors S , C i  and S,CU:

?li =  cos (  (C , -  s . . ) . (C . -  S..) ) ’ (5-21>

Direction of (j>i is defined by cross product property:

sign =  u,- • [(Cj +  djUj -  Sj) x (Cj -  Sj)]. (5.22)

If sign is negative, 4>i is negative.

5 - 4 .  S p a tia l In s ta n ta n e o u s  M o tio n

When two positions of the lamina become infinitesimally apart in planar 

motion, the pole Pl2 becomes the instantaneous center P. By prescribing the 

instantaneous center at the specified position, the motion can be directed at 

least in the manner as illustrated in Figure 1-2.

Similarily, the istantaneous screw axis helps instantaneous motion in 

three dimensions. But there is a translation motion as well as a rotation 

motion. Thus we have to consider the instantaneous translation motion. 

The instantaneous pitch plays that role and is defined by

As shown in the above equation, the instantaneous pitch is defined from the 

time dependent properties, and it turns out a geometric propertiy. But h 

in the above equation cannot give visual geometric motion. In order to give 

more specific geometric motion, the instantaneous pitch angle 9 as shown in 

Figure 5-2 is introduced as follows.
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Figure 5-2. Instantaneous pitch angle
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9  =  tan  1 ( y )  (5.24)

So the instantaneous spatial motion can be given by the location of the in­

stantaneous screw axis as well as the instantaneous pitch or the instantaneous 

pitch angle.

5 - 5 .  In fin ites im al Screw  D isp la cem en ts

Infinitesimal displacements of a rigid body may be described by a  series 

of successive infinitesimal screw displacements. Consider a moving system 

a in continuous motion relative to a fixed system E. We select a point P  

fixed in a  which is represented by the constant position vector x, and X is 

the position vector of the coincident point of P  in a. Thus we may express 

equation (5.1) as follow:

X =  R x  +  T. (5.25)

If we are interested only in the study of kinematic geometry of space and we 

exclude the case of pure translation (i.e., (j) = constant), we may write the 

1st derivative of equation (5.25) with respect to (j>\

dX  _  dR d T
d(j) d<f> d(j)

5 - 6 .  D e te r m in a t io n  o f  Infin itesim al S crew  P aram eters

The ISA at the j t h  position is located by describing a position I j  (I xj ,

I yji I zj ) and its unit vector V  j .  If we take two points I j and Ij  +  V j in the 

fixed system E, we may have the vectors i and i +  v  for the coresponding

79

(5.26)



points on the moving system a. Then we may write following equations from 

equation (5.25)

Ij =  R ji  +  T j, (5.27)

I  j  +  Vj- =  B,y(i “t- v) +  By, (5.28)

and from equation (5.26)

dlj  d H j . dT*
—-  =   - i  H 3-
d<f> d<j) d(f>

dcf) d<{>

(5.29)

__ d~R.j d T j
 dj,-----   ~ d f (l +  V) +  I f '  (5'30)

Equations (5.27) and (5.28) give

V j  =  RjV. (5.31)

Also Equations (5.29) and (5.30) give

d V  j d l t j
-v. (5.32)

Since the vector V j  of ISA does not change in fixed system at the instant of 

the given position, we may have

dVi
- g  =  ° . (5.33)

Substituting equations (5.31) and (5.33) into equation (5.32) yields

^ R j v y =  0. (5.34)
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In order to determine the for the given position and unit vector V j of 

ISA, the m atrix is written as follows:

j p
^ f  =  H 1 +  ( H 2^  H s ^  H U * * ) ,  (5.35)

where

/  Uj2 sin <j)j — sin <f>j ujvj sin >̂j — Wj cos <f)j UjWj sin <f>j +  vj cos <j)j
H j =  I UjVj sin 4>j +  Wj cos <f>j Vj2 sin <j>j — sin 4>j VjWj sin <j>j — Uj cos 4>j 

\  UjWj sin 4>j — vj cos <f>j VjWj sin (f>j +  Uj cos <j)j w j2 sin <pj — sin <f>j

(5.36)

2uj ( l  — cos <f>j) 0 0 \
H 2  =  ( vj ( l  — cos 4>j) uj { \  — cos 4>j) sin(f)j I ,  (5.37)

Wj{ 1 — cos 4>j) — sin (f)j Uj{ 1 — cos (f>j) /

V j ( l - c o s ^ j )  Uj{l — cos<j>j) —sin <j>j \
H 3 =  j 0  2v j ( 1  — cos 0  , (5.38)

sin 4>j Wj(1 — cos <;bj) vj(  1 — cos (f>j) J

Wj(l  — cos c/>j) sin (f)j uj { l  — cos <j)j) \
sin (f)j Wj{l — coscjij) V j { l —cos4>j) I -  (5.39)

0  0  2wj{l  — cos <f>j))

Substituting equation (5.35) into equation (5.34) we have

=  H 3^  H 4 | * ) R - 1 V i . (5.40)

Solving equation (5.40) for using the partition m atrix property in Ap­

pendix II, we have

duj  /  x _1
dcj) =  - ( ( K j V  j )xU 2 +  ( R f V j ) yH 3 +  ( R j V j ) ,H 4)  H iR ? V j. (5.41)
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Now can be determined by equation (5.35). Using equations (5.27) and

dT *(5.29) by defining the instantaneous pitch hj  of the ISA, the is determined 

as follows:

=  ( 5 ' 4 2 )

5 - 7 .  C on stra in t  E q u ation s  for S-S and R -R  B in a ry  Links

Refering to [22,36], since there are many possibilities for the geometric 

form of constructing links or link-pair combinations, an almost infinite vai'iety 

of spatial mechanisms can be formed to guide a rigid body through a series 

of specified positions in space. The number of possible positions that can be 

prescribed depends on the constraints provided by the guiding link used. In 

this section, I will show the constraint equations for a couple of the binary 

links, R-R and S-S, to proceed to the next section which will demonstrate 

the foregoing method to synthesize a RRSS mechanism.

T h e  Sphere - Sphere (S -S ) B in ary  Link The sphere-sphere link is 

shown in Figure 5-3. The S-S link must satisfy the constant length condition 

only. Assuming a fixed pivot X 0 and corresponding moving pivot X , this 

leads to the S-S link finite displacement constraint equation.

(X i - X 0)T(X, - X [l) =  ( X 1 - X „ ) r (X 1 - X 0) j  =  2 ,3 , (5.43)

The S-S infinitesimal displcement constraint equation is found by differenti­

ating the above equation to give

( Xi ) T ( X j  -  X„) =  0. 
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Figure 5-3. S-S Binary link
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Figure 5-4. R-R Binary link
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T h e  R e v o lu te  - R ev o lu te  (R -R )  B in ary  Link The R-R link shown 

in Figure 5-4 must satisfy all the constraint equations for the S-S link plus 

three additional requirements. The spherical joint becomes a revolute joint 

when it is restricted to rotation in a plane that is perpendicular to the axis 

u0 of the revolute joint. One point on the revolute axis must be specified.

We will arbitrarily specify a point Xo that lies at the intersection of the

plane of rotation of the spherical joint and the revolute axis Uo- The angle of 

twist between the fixed axis Uo and the moving axis u must remain constant 

during a displacement, since both axes are fixed in the R-R link. In addition 

we require a second plane equation that takes note of the fact that point Xo

must have a relative rotation about the moving axis u,-. This constrains Xo

to lie in a plane perpendicular to u, at all times. Hence, the R-R link finite 

displacement constraint equations can be written as follows.

(u0)T(X,- — X 0) =  0, j  = 1 ,2 ,3 , (5.45)

(u;)T(Xi -  X 0) =  0, j  =  1 ,2,3, (5.46)

(u0)T(u0) =  1, (5.47)

(u i)T(u i)  =  l ,  (5.48)

(X,- -  X 0)T(Xi -  X 0) =  (Xj -  X 0)T( X 1 -  X 0), j  = 2,3 (5.49)

((X; 4- u;) — (X 0 +  u0))r ((X,- 4- u,) — (X 0 4- uo))

=  ((X i 4  Ui) — (X 0 4- u0))T'((X1 4- Uj) — (X 0 4- u 0)). (5.50)

The R-R infinitesimal displcement constraint equation is found by differen­

tiating the above equation to give
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( u 0 ) t ( X 7-) = 0, (5.51)

( x x j f i X j  -  Xo) +  (iij)T( X j )  = 0 , (5.52)

( X j f i X j  -  X 0) =  0 , (5.53)

(Xy -f Uj)r ((Xj +  Uj) — (Xo +  Uo)) =  0. (5.54)

5 - 8 .  N u m e ric a l E x am p le

There are many possible spatial mechanisms. By choosing RRSS mech­

anism, we illustrate the analytical procedure in which the foregoing results 

can be applied to the synthesis process.

Refering to Suh [22], an R-R link, for three prescribed positions has no 

free choice of the parameters and an S-S link has seven positions with no free 

choice of param eter as the maximum limit in synthesis. Therefore, an RRSS 

mechanism is possible for a maximum of three positions with no free choice 

of param eter in synthesis. When the maximum number of positions of three 

is imposed, then one may have a unique solution for the R-R link but, to 

find the S-S link, we can choose four parameters arbitrarily from the six S-S 

parameters.

In the synthesis example, the RRSS mechanism as shown in Figure 5- 

5 is to pass through the three specified multiply separated positions. These 

consist of two finitely separated positions and an ISA at one specified position. 

The data  of desired motion is given in Table 5-1.

Using the method developed in this study, we get following linear trans­

formations.

X j =  x, (5.55)
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Figure 5-5. RRSS Mechanism
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Table 5-1. Design data  for P-PP in spatial motion

1st position clx = 0.9303, Dlx = 0.0229, 
Elx =-0.0224,

Clv = 0.7365, 
Dly =-0.3289, 
EXy = 0.4179,

Clz = 0.8576 
Dlz = 0.6529 
E^2 = 1.8532

2nd position
C2x = 1.0000, 
D2x = O'0 0 0 0 , 
E2x = 0*0000»

c2y = 1.0000, 
D 2 V  =  0 * 0 0 0 0 /
E2y = 1 . 0 0 0 0 ,

c2z = 1.0000 
d 2z = 1.0000
E2z = 2.0000

ISA at V2x = 0.7992, V2y = 0.3786, V2z = 0.4669
2nd position I2x = 1.0532, I2y = 1.1467, I2z = 0.0000

h2 =-0.9596
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/  0.9990 -0.0368 0.0262 \  /  -0.0145 \
X 2  =  I 0.0385 0.9969 -0.0681 x +  ( -0.0618 , (5.56)

\ -0.0236 0.0690 0.9973 /  \ -0.0899 /

dX  /-0 .0 2 2 1  -0.4197 0.2547 \  /  -0.1189 \
—j -  = I 0.4569 -0.0765 -0.8618 ) x  +  I -0.6284 . (5.57)

^ \ -0.1917 0.8812 -0 .0 6 5 5 / \ -1 .2 1 8 3 /

From equation (5.43) and (5.44), S-S link constraint equations form a set of 

two synthesis equations with six variables.

(X 2  -  X 0 )r (X 2  -  X 0) =  (X! -  X 0 )T(X 1 -  X 0), (5.58)

(X 2 )t (X 2 - X 0) =  0, (5.59)

where equation (5.59) is the derivation form of equation (5.58) with respect 

to (f>. X 0x, X 0y, Xoz  and X iz are specified and designated by an astrisk in 

the results. W ith initial guesses,

X 0' =  (0.4000*, 0.3000*, 0 .0 0 0 0 *),

X /  =  (0 .1 0 0 0 *, 0 .0 0 0 0 , 0 .0 0 0 0 ), 

program BROWN converged in six iterations to the solution

X 0' =  (0.4000*, 0.3000*, 0 .0 0 0 0 *),

X /  =  (0.1000*,-0.1155, 0.4446).

From equations (5.45)-(5.54), R-R link constraint equations form a set of 12 

synthesis equations in 1 2  variables with no free variables.

(uo) 7 "(X1 — X 0) =  0, 
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(u0)T(X2 - X 0) =  0, (5.61)

(u 1)T(X 1 - X 0) =  0, (5.62)

(u2)r (X 2 - X 0) =  0, (5.63)

(u0)T(u 0) =  1, (5.64)

(Ul)T(Ul) =  l ,  (5.65)

(X 2 -  X 0)r (X 2 -  X 0) =  (Xj -  X 0)r (X 1 -  X 0), (5.66)

((X 2 -f u 2) — (Xo -1- Uo))r ((X 2 4- u 2) — (X 0 4- uo))

=  ((Xi +  u i) — (Xo 4- Uo))T'((Xi 4- u j)  — (Xo 4- Uo)), (5.67)

( u 0) T ( X 2) =  0, (5.68)

(u2)r (X 2 -  X 0) 4- ( u 2) t ( X 2) =  0, (5.69)

(X 2)t (X 2 — X 0) =  0, (5.70)

(X 2 4- u 2 ) t ( ( X 2 4- u2) — (Xo 4- uq)) =  0, (5-71)

where equations (5.68)-(5.71) are the derivation forms of equations (5.60)- 

(5.67) with respect to <j>. W ith initial guesses,

X 0  =  (1.0000,1.0000,0.0000),

X j =  (0.9000,0.4500,0.7500),

u0 -  (1.0000,-0.2000,0.0000),

uj = (0 .6500 ,-0 .6000 ,-0 .4000),
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program BROWN converged in seventeen iterations to the solution

X 0 =  (1.0020,1-0770,0.0327),

X i =  (0.8825,0.4526,0.7430), 

u 0 =  (0.9852,-0.1706,0.0159), 

ui =  (0.6488, -0.6224, -0.4378).
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CHAPTER 6

C O N C L U S IO N S

In this dissertation, a new mathematical approach has been developed 

for multiply separated positions synthesis problem. This m ethod has been 

consistently applied to planar, spherical, and spatial mechanisms. A graphi­

cal m ethod for PP-PP case of the multiply separated positions problem has 

also developed for the first time.

In Chapter 2 , using the developed analytical method, the unified form 

of the circle-point curve equations has been derived not only for the multi­

ply separated position problem but also for the finitely separated position 

problem.

In Chapter 3, one of conventional graphical methods is reviewed for 

application to the multiply separated position problem. A new graphical 

method for the PP-PP case of multiply separated position problem is de­

veloped to plot the Ball point and the circle-point and center-point curves 

simultaneously. Since this graphical method uses only straight lines, the con­

struction time for the curves has been much reduced in comparison with the 

conventional methods.

In Chapter 4, using the developed analytical m ethod the unified form of 

the cubic cone equations has been derived for not only the multiply separated 

position problem but also the finitely separated position problem for the 

spherical four-bar mechanisms.

In Chapter 5, the geometric instantaneous motion of a rigid body has 

been defined by specifying both the instantaneous screw axis and the instan­

taneous pitch or the instantaneous pitch angle. Using the developed ana­
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lytical method, a RRSS mechanism to move through the multiply separated 

positions is synthesized for the illustrative purpose for the first time.

It is believed that the new mathematical approach developed in this 

dissertation will be a significant contribution to the art of planar, spherical, 

and spatial mechanism design. It is also expected that this work will generate 

further interest in the instantaneous kinematics of mechanisms.
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A P P E N D IC E S



A p p en d ix  I

{----------------------------------------------------------------------------------------------------------------- }

( }{ This program computes the constants A_ijk for the }
{ unified form of Burmester curve equations to solve }
{ FSP, MSP problems of planar and spherical motions. }
{ }
{ }{ Hyoung Jun Kim April 22, 1989. }
{ }
{------------------------------------------------------------------------------------------------------------------}

{ ){ Determinant is the pre-declared function }
{ to calculate 3X3 determinants. }
{ }

Type
matrix3 3 =array[1..3,1..3] of real; 
matrix333=array[1..3,1..3,1..3] of real;

Var
a,b,c : matrix33; 
aaa : matrix333;

Procedure Constant(a,b,c:matrix33 var aaa:matrix333); 
var

temp : matrix33;
i,j,k,l,t : integer; 

begin
for i:=l to 3 do 
for j:=l to 3 do 
for k:=l to 3 do 

begin
for 1:=1 to 3 do 

begin
if 1=1 then t:=i;
if 1=2 then t:=j;
if 1=3 then t:=k;
temp[l,l]:= a[l,t]; 
tempt 1,2]:= 
temp[1,3]:= c [1,t ]; 

end;
aaa[i,j ,k]:=Determinant(temp); 

end;
end;
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A p pend ix  II

If Ax, A 2, A n are n x  n  matrices, x  is n x 1 matrix, and u2 1 •••» un are 

the elements of the n x 1 matrix u, then we have the following partition 

m atrix property

(Axx A 2x . . .  A nx ) u  =  ^ y ~ \ j A j ^ x

P ro o f

Let a.ijtk be the element of a m atrix A*, and Xj be the j th  row element of 

the m atrix x. If we take the ?th row of above equation, the left side of the 

equation, using the following summation rule

n /  n \  n /  n \
^  ^   ̂djj,kx j J Uk = y  A y  ] u kdjj,k \ x ji
&=1 \  j= 1 /  7=1 \Jfc=l /

equals to the right side of the equation.
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A p pend ix  III

An orthogonal matrix A and any vector x  have the following property

P ro o f

The basic property of the orthogonal matrix

A t  A  = I.

Differentiation of above equation is

/  d A  \  T T d A
\ d $ )  +  ~d$ =

Since

x r ( t ) T A x = ( x T ( t ) TA x) r = x r A T t x ’

we have

2 x r ® r A x  =  x T ® TAx +  x T A T ® x

=  x T ( ( t ) T A  +  A r t | x  =  a

Therefore
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