

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

The most advanced technology has been used to photo­
graph and reproduce this manuscript from the microfilm
master. UMI film s the text directly from the original or
copy submitted. Thus, some thesis and dissertation copies
are in typewriter face, while others may be from any type
of computer printer.

The quality of th is reproduction is dependent upon the
quality of the copy submitted. Broken or indistinct print,
colored or poor quality illustrations and photographs,
print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a
complete manuscript and there are missing pages, these
will be noted. Also, if unauthorized copyright material
had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re­
produced by sectioning the original, beginning at the
upper left-hand corner and continuing from left to right in
equal sections with small overlaps. Each original is also
photographed in one exposure and is included in reduced
form at the back of the book. These are also available as
one exposure on a standard 35mm slide or as a 17" x 23"
black and w hite photographic print for an additional
charge.

Photographs included in the original manuscript have
been reproduced xerographically in this copy. Higher
quality 6" x 9" black and white photographic prints are
available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly
to order.

University M icrofilms International
A Bell & Howell Information C o m p a n y

3 0 0 North Z e e b R oad, Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6 USA
3 1 3 /7 6 1 -4 7 0 0 8 0 0 /5 2 1 -0 6 0 0

Order N um ber 9003133

F ault-tolerant in terconnection netw orks for m ultiprocessor
system s

Nassar, Hamed Mohamed, D.Eng.Sc.

New Jersey Institute of Technology, 1989

U M I
300 N. ZeebRd.
Ann Arbor, MI 48106

Fault-Tolerant Interconnection
Networks for Multiprocessor Systems

by

Hamed Nassar

Dissertation submitted to the Faculty of the G raduate School
of the New Jersey Institute of Technology in partia l fulfillment

of the requirements for the degree of
Doctor of Engineering Science

1989

Approval Sheet

Title of Thesis: Fault-Tolerant Interconnection Networks for Multiprocessor
Systems

Name of Candidate: Hamed Nassar
Doctor of Engineering Science, 1989

Thesis and Abstract Approved:
Dr. John Carpinelli 	 Date
Assistant Professor
Department of Electrical Engineering

Dr. Raj Misra 	 Date

Dr. Peter Ng 	Date

Dr. Anthony Robbi 	 Date

Abstract

Title of Thesis: Fault-Tolerant Interconnection Networks for Multiprocessor
Systems

Hamed Nassar, Doctor of Engineering Science, 1989

Thesis directed by: Dr. John Carpinelli

Interconnection networks represent the backbone of multiprocessor systems. A

failure in the network, therefore, could seriously degrade the system performance.

For this reason, fault tolerance has been regarded as a m ajor consideration in in­

terconnection network design. This thesis presents two novel techniques to provide

fault tolerance capabilities to three m ajor networks: the Baseline network, the Benes

network and the Clos network.

First, the Simple Fault Tolerance Technique (SFT) is presented. The SFT

technique is in fact the result of merging two widely known interconnection mecha­

nisms: a normal interconnection network and a shared bus. This technique is most

suitable for networks with small switches, such as the Baseline network and the

Benes network. For the Clos network, whose switches may be large for the SFT,

another technique is developed to produce the Fault-Tolerant Clos (FTC) network.

In the FTC, one switch is added to each stage. The two techniques are described

and thoroughly analyzed.

VITA

Name: Earned Mohamed Nassar.

Degree and date to be conferred: D.Eng.Sc., 1989.

Secondary education: Shebin El-Kanater Secondary School.

Collegiate institutions attended Dates Degree Date of Degree
Ain Shams University, Egypt 1974-79 B.S.E.E. May, 1979
New Jersey Institute of Technology 1983-85 M.S.E.E. May, 1985
New Jersey Institute of Technology 1985-89 D.Eng.Sc. May, 1989

Major: Electrical Engineering

Minor: Computer and

To my parents, and to Manal and little Nancy.

ii

Acknowledgements

Mere words are not enough to express my gratitude to my advisor, Dr. John

Carpinelli. His m astery of the subject m atter combined with a great deal of sin­

cerity, enthusiasm and dynamism, have made working on this dissertation the most

wonderful experience. Indeed, these qualities make him the kind of advisor every

student wishes for, but seldom finds.

Many thanks are due to the distinguished members of my committee: Dr. Raj

Misra, Dr. Peter Ng and Dr. Anthony Robbi. Their invaluable suggestions and

stim ulating discussions have considerably improved the quality of the dissertation.

I am really thankful to all the professors and staff of the Departm ent of Electrical

Engineering who have been helpful and supportive throughout the years I have spent

at NJIT. Special thanks are due to Dr. W arren Ball, Dr. Joseph Strano, Dr. Edwin

Cohen, Dr. Khalil Denno, and Ms. Brenda Walker.

I would also like to thank Dr. Roman Voronka, of the M ath Departm ent, who

has made me love mathematics, and Mr. Steve Keeton, of the Computer Services

D epartm ent, whose role was crucial in completing the computer work of the disser­

tation.

Last but not least, I would like to thank my immediate family. Many thanks

go to my parents, for their continuous prayers and encouragement, and to my wife,

Manal, and daughter, Nancy, for putting up with my study habits.

C o n ten ts

D ed ication ii

A cknow ledgem ents iii

1 In trod u ction 1
1.1 Parallel P ro c e ss in g ... 1
1.2 M ultip rocessors.. 4
1.3 Interconnection Networks and the Need for Fault T o le ra n c e 8
1.4 Outline .. 13

2 B asic C oncepts and N o ta tio n 15
2.1 Interconnection N e tw o rk s .. 15
2.2 Fault Tolerance for M I N s .. 19
2.3 Combinatorics .. 20

2.3.1 Perm utations (a rran g em en ts) ... 21
2.3.2 Combinations (se lec tio n s).. 23

2.4 Fundamentals of R e lia b ili ty ... 24
2.4.1 Probability of a simple e v e n t ... 24
2.4.2 Probability of a compound e v e n t ... 25
2.4.3 Reliability models ... 29

2.5 N o ta tio n ... 31

3 M IN Im p lem en tation s 33
3.1 The Baseline N e tw o rk .. 35

3.1.1 Routing the Baseline n e tw o rk ... 40
3.2 The Clos Network ... 42

3.2.1 Routing the Clos n e tw o rk .. 44
3.3 The Benes N etw ork ... 50

3.3.1 Routing the Benes n e tw o r k .. 51
3.4 Other MIN Implementations ... 53
3.5 The Crossbar S w itc h .. 54

4 Fault Tolerant M IN s 57
4.1 The Extra Stage C u b e .. 59

4.1.1 O peration and fault tolerance m o d e l .. 59
4.2 Augmented Shuffle-Exchange M I N ... 63

4.2.1 O peration and fault tolerance m o d e l .. 66
4.3 Fault Detection and L o c a tio n ... 70

iv

5 T he S im ple Fault Tolerant B aselin e network 71
5.1 Design of the SFTB .. 73
5.2 Routing the SFTB Under Faulty C onditions.. 77

5.2.1 Performance degradation under faulty co n d itio n s 78
5.2.2 Accessing the b u s .. 80

5.3 Design of the Enhanced SFTB ... 82
5.3.1 Perm utation realization capabilities of the enhanced SFTB . 83

5.4 Use of the Standby Bus Under Normal Conditions 96
5.5 Using the SFT technique in MINs with large s w i tc h e s 98
5.6 D iscussion .. 99

6 T he Fault-T olerant Clos N etw ork 102
6.1 Design of the F T C .. 102
6.2 Reconfiguration of the F T C ... 104
6.3 Routing the FTC .. 107
6.4 Reliability A nalysis .. 113
6.5 Generalization to More Than One Extra Switch per S ta g e 118
6.6 D iscussion ...122

7 C onclusions 123
7.1 S u m m a ry ... 123
7.2 The SFT Technique ...124
7.3 The Fault-Tolerant Clos (FTC) n e tw o rk .. 125
7.4 Open P ro b le m s ...125

B ibliography 127

List o f T ab les

4.1 Routing Tags for the E S C .. 62

5.1
5.2

Multiplexer and demultiplexer operation modes
Values of T>(2) and - p (°)nv and their ratio for some values of u

83
96

List o f F igu res

1.1 Basic multiprocessor a rc h ite c tu re .. 5
1.2 Multiprocessor system with a shared b u s ... 6
1.3 N x M crossbar switch ... 7
1.4 Basic configuration of interconnection n e tw o rk s 8
1.5 4 x 4 switch set to realize an arbitrary m a p p in g 9

2.1 Generalized M I N ... 18
2.2 Basic reliability m odels... 29

3.1 8 x 8 Baseline network with routing e x a m p le 36
3.2 Shuffling 8 o b j e c t s ... 37
3.3 8 x 8 Omega netw ork.. 39
3.4 Legal states of the binary s w i t c h .. 41
3.5 8 x 8 ordinary Clos n e tw o rk ... 43
3.6 Graph representation of perm utation P ... 49
3.7 8 x 8 Benes n e tw o r k .. 50
3.8 6 x 6 BBC n e tw o rk ... 54
3.9 Implementation of a binary s w i t c h ... 55

4.1 The Extra Stage Cube (E S C) ... 60
4.2 8 x 8 Baseline n e tw o rk ... 65
4.3 The Augmented Shuffle-Exchange Network (ASEN) 67

5.1 Baseline network of size 8 .. 72
5.2 The SFT equivalent of the Baseline network of Figure 5 . 1 76
5.3 The enhanced SFT equivalent of the Baseline network of Figure 5.1 . 84
5.4 Perm utation P realized with a PTU policy at all s w itc h e s 87
5.5 Same perm utation of Figure 5.4, realized with a PTU policy at all

switches except X (l , 0) 88
5.6 Subset structure of the Baseline network of Figure 5 . 1 92
5.7 The two types of blocking, assuming higher priority for the upper input 94

6.1 9 x 9 ordinary Clos n e tw o rk .. 103
6.2 The equivalent FTC of the network of Figure 6 . 1105
6.3 FTC reconfigured to accommodate faults in X (1 ,0), X (2 ,l) and

X (2 ,2) 108
6.4 The graph representation of both the ordinary network of Figure 6.1

and the FTC of Figure 6.3 as they realize perm utation P.........................112
6.5 Reliability vs. N for both the ordinary network and the FTC , for

r = 0 .9 8 ..116

vii

6.6 Reliability vs. N for both the ordinary network and the FTC , for
r = 0 .8 .. 117

6.7 Gain in reliability vs. N for various fault tolerant networks with r = 0.8119
6.8 Gain in reliability vs. N for various fault tolerant networks with

r = 0 .9 9 ... 120

viii

C h ap ter 1

In tro d u ctio n

1.1 P a ra lle l P r o cess in g

Fast computers are increasingly being required as sophisticated, com putation­

intensive applications continue to evolve. The search for a fast computer seems

endless as more and more speed is always demanded. This need for speed was

fulfilled in the early days of computers by advancements in technology. As tubes

were replaced by transistors and other discrete solid state components, the computer

became faster. Then came integrated circuits (IC) technology to make computers

even faster. This race came to the point where the component technology could no

longer catch up with the need for more speed. A drastic change in the architecture

of the computer was the place where an answer could be found. The change was in

the form of using parallel processing.

Early computers - the so-called von Neumann machines - used a single proces­

sor to fetch instructions from memory and execute them one at a time [57]. Parallel

systems, however, are based on the principle that more than one task can be per­

formed simultaneously. This concurrency can be realized either at the software level

or at the hardware level [56].

At the software level, parallelism is obtained by time-sharing the computer re­

1

sources among different programs. Here, the operating system divides [30] the CPU

time among the different programs so that no one program monopolizes the CPU

for a long time while others are waiting. This technique has been used on comput­

ers with a single processor to achieve parallelism in the form of multiprogramming,

multitasking, multiuser and time-sharing capabilities.

When parallelism is implemented at the hardware level, it can take place at the

computer level, at the sub-processor level, or at the processor level. Parallelism can

also be achieved by computers either having a single processor, uniprocessors, or

having more than one processor, multiprocessors.

Distributed computing [26] is the name used when parallelism takes place at

the computer level. Here the computation load is distributed among more than

one computer. These computers, which are connected by a communications net­

work, work totally independently and asynchronously. Communications between

the different computers take place in the form of passing messages to obtain data

or exchange results. The computers may exist in close proximity to each other, in

which case they are connected by a Local Area Network (LAN), or they may be

scattered over a wide geographic area, in which case they are connected by a Wide

Area Network (WAN). Computers in a distributed computing system are said to be

loosely coupled.

Computers can achieve parallelism at the sub-processor level in several ways.

One way is by fetching an instruction while another is being executed. Another

way is to overlap Central Processing Unit (CPU) and Inpu t/O utpu t (I/O) opera­

tions. Yet another way is by using pipelining [25]. In pipelined architectures, the

idea of assembly lines is utilized. In an assembly line, the job is divided into many

steps and each step is assigned to a specific worker along the line. This manu­

facturing technique has proven efficient, because all the elements of the line are

2

continuously busy. In a pipelined computer, a control unit divides the instruction

[42] into a number of phases and assigns each phase to a subunit in the main pro­

cessor. Each subunit performs its part and then sends the result to the next subunit

along the way. This makes each subunit continuously busy, therefore increasing the

throughput of the system [23,24]. At steady state, the flow of instructions into the

pipeline is equal to the flow of instructions out of the pipeline.

Undoubtedly, more parallelism can be obtained by having more than one pro­

cessor in the computer. In a multiprocessor computer [8], the different processors

cooperate to execute the instructions of a program. The program is divided into

different parts, each of which can be executed independently. The partial results

from the different processors are exchanged and the overall result of the program

can be obtained from them by a m aster processor or by a control unit. In a multi­

processor, all the processors access the same memory, which is usually divided into

interleaved modules for greater efficiency [74]. An array computer [51] is similar to a

multiprocessor computer except tha t the processors are replaced by Arithm etic and

Logic Units (ALU) which work synchronously under the supervision of a common

control unit. Moreover, in the array computer, each ALU is provided with a local

memory to make up a Processing Element (PE).

It was once possible to classify a parallel com puter as using one parallelism tech­

nique or another. Now, however, more than one technique may be used in the same

computer, making categorizing a particular computer a difficult task. For example,

some of the techniques used for parallelism in uniprocessors, such as pipelining, can

be used for the individual processors in a multiprocessor computer, giving rise to

greater execution speeds. Moreover, some software parallelism techniques can also

be used with that computer, giving rise to even greater speeds, and so on.

3

1.2 M u ltip rocessors

Clearly, using many processors in the same system yields more speed than using

one processor [36]. Recent advances in VLSI technology, coupled with the need for

fast computers, have made large-scale multiprocessor systems economically feasible.

In such systems, hundreds or even thousands of processors are used to carry out

the computations of a program concurrently, thereby speeding up the execution of

the program. Many applications can benefit from this enormous computing power.

Typical applications include simulation programs, such as weather forecasting, and

real-time programs, such as radar tracking.

The basic architecture of a multiprocessor system is shown in Figure 1.1. In this

configuration, the N processors carry out computations on data stored in the M

memory modules. For the interaction between the processors and memory, there

must be a communications mechanism to enable any processor to access any memory

module in the shortest possible time. This mechanism is of extreme importance,

as the efficiency of the system depends mainly on its ability to establish the re­

quired paths between its two sides. Many such mechanisms have been proposed

and explored in the literature.

At one extreme is the shared bus [46]. This is similar to the bus of the uniproces­

sor computer with a control unit to lim it the access to the bus to one processor at a

time. A multiprocessor system using a shared bus as its communications mechanism

is shown in Figure 1.2. A processor requiring access to memory puts the address

of the memory location it wants to access on the bus. The address is decoded and

used to enable the memory module where the target location is. As simple and

inexpensive as this mechanism is, it results in extremely poor performance when

N is large [58]. That is because only one processor can use the bus at a time. As

4

N Processors

N - 1

M — 1

Communications Mechanism

M Memory Modules

Figure 1.1: Basic multiprocessor architecture

N Processors

N - 1

Shared bus

M - 1

M Memory Modules

Figure 1.2: Multiprocessor system with a shared bus

a consequence, this mechanism has been ruled out for large-scale multiprocessor

systems, those with possibly thousands of processors. However, if the number of

processors is small enough, e.g. N = 2, the bus can be used as a simple, inexpensive

communications mechanism. (Actually, this is the principle behind the Simple Fault

Tolerance (SFT) technique presented in this thesis.) The possibility of having more

than one bus in the system has been explored [14,60] for relatively large values of

N . However, the work done in this direction indicates [29,50,83] th a t performance

still degrades as the ratio N / B increases, where B is the num ber of buses.

At another extreme is the crossbar switch, such as the one shown in Figure 1.3.

This is called an N x M switch because it has N inputs and M outputs. The crossbar

switch can be thought of as two rows of conducting bars placed on top of each other

without direct contact. Figure 1.3a shows this conceptual construction. There are

N horizontal bars and M vertical bars. To establish a connection between, say,

6

horizontal bar 0 and vertical bar 1, one only has to connect the two bars at the

point where they intersect (symbolized by the little circle in the figure.) Now if a

signal is put at input 0, the same signal will appear at output 1. That is, a path has

been created between input 0 and output 1. To remove this path, one only has to

disconnect the two bars again at the point where they intersect. This connection and

disconnection is implemented by a control unit attached to the switch. Moreover,

the actual switch is an electronic circuit, usually an IC, where there are no actual

bars. The crossbar switch is ideal in that it can be set to connect any x inputs,

x < N , to any y outputs, y < M , simultaneously and in a one-to-one fashion. Its

Inputs
0 --- ®----- Sr

J V - l

0
1

N - 1

) ••• M - 1
Outputs

a) Internal structure

0
1

M - 1

b) Representation

Figure 1.3: N x M crossbar switch

drawback, however, is that it becomes prohibitively expensive [15] for large values

of N or M . Figure 1.3b shows the symbolic representation of the crossbar switch.

This representation is used throughout the thesis to indicate crossbar switches.

Between the two extremes are multistage interconnection networks (MINs). These

networks are built from small crossbar switches arranged in stages, with each stage

being connected to the next stage through a set of links. The inputs to the network

are called inlets and the outputs of the network are called outlets. The words input

and output will be used only for the individual switches making up the network. A

path can be established between an idle inlet and an idle outlet by setting the indi-

7

0

1

2

3

Figure 1.4: Basic configuration of interconnection networks

vidual switches. A 4 x 4 MIN is shown in Figure 1.4. There are three stages, each

containing one switch, and the stages are interconnected by interstage links. The

network has 4 inlets and 4 outlets, and it can be seen how paths can be established

between inlets and outlets just by making appropriate connections of the inputs

and outputs of the individual switches. It should be noted th a t the figure does not

represent a real MIN, as each switch can perform all possible perm utations of the

inlets into the outlets. The figure is intended only to show how stages of switches

may be linked to form a MIN. Figure 1.5 shows how a switch can be set to realize

a given mapping. In fact, the switch is that shown in the first stage of the network

of Figure 1.4.

1.3 In terco n n ec tio n N etw ork s an d th e N e e d for
F ault T o leran ce

MINs were developed originally for use in telephone systems, long before the idea

of multiprocessor computer systems started to materialize. In telephony, MINs are

used in switching offices to link different callers by connecting their respective lines

8

Inputs
0
1
2-
3-

— p— 1)------ 5------9

) 2 3

e con tact

q no con tact

Outputs
a) Internal structure b) Representation

Figure 1.5: 4 x 4 switch set to realize an arbitrary mapping

together. In multiprocessors, they are used for communications between processors

and memory modules. Setting (or routing) a MIN is the process of setting the

individual switches so that the network can realize a mapping from the inlets into

the outlets. The network shown in Figure 1.4 is set to realize the mapping:

0 - > 2
1 -> 3
2 — > 0
3 —>• 1

Throughout this thesis, MINs will be discussed in the context of their use in

multiprocessors as defined in Section 1.2. In other words, no reference will be made

to other computer architectures th a t use MINs. This is done because the focus in

the thesis is on MINs, regardless of the operating environment or the architectural

organization of the computer where they are used. However, it should be noted that

MINs are also used in other computer architectures such as array computers, data

flow computers and vector computers. In all these architectures, there are more

than one processing unit connected together by a MIN.

Also in this thesis, the words multiprocessor, multiprocessor computer, multipro­

cessor system and multiprocessor computer system will be used interchangeably. It

is worth noting th a t the processors in a multiprocessor system are said to be tightly

coupled.

MINs may be classified according to the way they receive the mapping. Typi­

cally the processors connected to the inlets require access to the memory modules

connected to the outlets by generating a memory access request. This request must

contain the num ber of the particular outlet to which the memory module is con­

nected. If all processors send their requests at the same time to the network,

the network is said to work synchronously. A memory access cycle [69] is the time

needed to establish the path , plus the time it takes to read or write a memory word.

Thus in a synchronous environment, processors may send requests only at fixed in­

tervals equal to the memory access cycle. If, on the other hand, the network is able

to handle requests on an individual basis subm itted at any time by the processors,

then the network is said to work asynchronously. In any case, since the processors

work independently, it is likely that more than one processor will seek access to the

same memory module, causing a memory conflict. This problem is unrelated to the

MIN operation, and a solution to it can be achieved in the design of the operating

systems and memory management schemes of the multiprocessor system. As this

thesis is concerned with MINs, only network conflicts will be considered.

It is worth mentioning that realizing random permutations is the ultim ate figure

of merit for testing the connectivity of any MIN. That is because if a MIN can

realize any random perm utation, it can realize any mapping. For this reason, MINs

are normally designed and studied as permutation networks. MINs mentioned in

this thesis are all perm utation networks.

MINs may be classified according to the way they are routed [34]. Some MINs

have a central routing unit. This unit receives the mapping and runs an algorithm to

find how the individual switches should be set so that the mapping can be realized.

The settings are then sent to the individual switches for implementation by local

control units. This type of MIN is called centrally routed. By contrast, there are

10

self or distributed routed MINs. In a self-routed MIN a routing tag is placed on the

inlet to establish the required path to the outlet. One or more bits in the routing

tag are used to set the switch in the first stage, thereby allowing the remaining bits

to go one stage towards the destination. Again, one or more bits are used to set

the switch in the second stage, thereby allowing the remaining bits to travel one

more stage towards the destination. This process continues until a path is created

between the inlet and the target outlet. This thesis covers networks of both routing

types, central and distributed.

MINs may be classified according to whether every possible mapping of the inlets

into the outlets can be realized. If this is the case, the MIN is called non-blocking.

An example of a non-blocking MIN is the Clos network [28]. If, on the other hand,

one or more paths in the mapping cannot be realized, the network is called blocking.

An example of a blocking MIN is Omega network [51]. Typically, self-routed MINs

are blocking, and centrally routed MINs are not. This thesis covers MINs of both

types.

Blocking MINs may be classified according to the way partially completed paths

are treated [47]. Suppose a path gets blocked in a switch at a given stage between the

inlet and the outlet. The blocking switch, the switch where the path was blocked,

may send a signal to the preceding switches on the partially completed path to

dismantle the path. The MIN in this case is called unbuffered. If, on the other hand,

the partially completed path is kept, and the blocking switch stores the remaining

routing bits in a queue for possible completion in the next memory cycle, then the

MIN is called buffered [31]. This thesis deals only with unbuffered MINs.

Self-routed MINs may be classified as either circuit switched or packet-switched.

In circuit-switched MINs, the path from the processor to the memory module is

established before any da ta is sent by the processor. Moreover, the path is kept

11

for the entire duration of the memory cycle. Any “bare bones” MIN is circuit-

switched; to make it packet-switched, additional hardware is required. In packet

switched MINs [32], the processor sends a self-contained message, having its address

and the address of the destination, to the switch connected to it in the first stage.

The switch investigates the destination address of the packet and sends it to the

next switch along the way. Once a switch sends a packet to the next switch, it can

receive another packet and send it along. This operation mode allows for greater

throughput, but at the expense of a complicated switch design. Packet-switched

MINs are usually buffered for greater performance. The MINs studied in this thesis

are all of the circuit-switched type.

Finally, MINs may be classified according to their fault tolerance capabilities.

This is the topic of this thesis. Fault tolerance has been raised as an im portant

issue in designing MINs for multiprocessor systems. The reason stems from the fact

that these systems are likely to run im portant tasks where interruption could have

damaging effects. Since the network is at the center of such systems, a failure in the

network can seriously degrade the performance of the system. This is particularly

true in networks where the paths between in let/outle t pairs are unique, such as the

shuffle networks [87]. In such networks, if a switch needed to establish a path is

faulty, that path cannot be established until the fault is physically removed. Given

the sequential and dependent nature of computer programs, a memory word can be

vital to the completion of a program. If that word cannot be accessed, the program

cannot be completed. In a multiprocessor system, therefore, it is necessary to

maintain the ability of establishing communications paths between processors and

memory modules at all times. This entails tha t the interconnection network be fault

tolerant.

One cannot determine whether a network is fault-tolerant unless a fault tolerance

12

criterion is defined; a MIN can be fault-tolerant according to one criterion, but not

so according to another. Furtherm ore, a network may tolerate a given number of

faults of a specific type, but not a different number of faults or even the same

number of faults when they are of a different type. Therefore, a fault-tolerant MIN

design should specify a fault tolerance criterion, and the number and type of faults

to be tolerated. These three items make up the fault tolerance model.

In this thesis, a novel technique is described to provide fault tolerance to virtually

any MIN. The technique is dem onstrated on one type of MIN, the Baseline network,

where it can be used most efficiently. In the Clos network where the technique is

less successful, another technique is suggested. Together, the two techniques should

offer a comprehensive solution to the fault tolerance problem of an im portant class

of MINs.

1.4 O u tlin e

The rest of this thesis is organized as follows. Chapter 2 presents some mathematical

background needed to understand the work that is either mentioned or developed

in this thesis. In particular, a generalized model for m ultistage interconnection

networks is developed for use later in the thesis. Furthermore, the basics of fault

tolerance, combinatorics and reliability are presented. These basics are used quite

extensively in this thesis. Chapter 3, shows some popular implementations of MINs.

The construction, operation and routing of each MIN are discussed. Chapter 4 is

a survey of some of the work th a t has already been done on fault tolerance for

the class of MINs considered in this thesis. The advantages and shortcomings

of these techniques are highlighted. In Chapter 5, the Simple Fault Tolerance

(SFT) technique is introduced through implementation on a Baseline network. The

construction, operation, and routing of the Simple Fault-Tolerant Baseline (SFTB)

13

network under both normal and faulty conditions are described in detail. The

advantages and disadvantages of the SFT technique are discussed. It is shown why

this technique is not suitable for networks with large switches such as Clos networks.

Chapter 6 gives an alternative technique that is suitable for Clos networks. The

last chapter contains some concluding remarks on the work done in the thesis.

14

C h ap ter 2

B a sic C o n cep ts and N o ta t io n

In this chapter, the basic concepts needed to understand the work in this thesis

are introduced. These concepts include interconnection network modelling, fault

tolerance principles, combinatorics, and reliability theory. They all are used either

to explain work already done by others or to derive new results.

2.1 In terco n n ec tio n N etw ork s

Before, discussing the characteristics of MINs, some definitions will be introduced.

The definitions are adapted mainly from [37].

D e fin itio n 2.1 A function F from a set A into a set B is one-to-one if each element

in B has at most one element in A mapped into it. In other words, F is one-to-one

if a-yF = a 2 jF implies a-i = a^. Further, a function F is onto B if every element in

B has at least one element in A mapped into it. In other words, F is onto B if for

each h £ B there exists a € A such that aF = b. It should be noted that a function

on A by definition is defined for each a £ A.

D e fin itio n 2.2 A permutation of a set A is a one-to-one function F mapping A

onto itself. One may write this as

I f aF = a for all a € A, F is called the identity permutation.

To illustrate, consider the set A = {0,1,2, 3}. Suppose tha t a function F is given

by the mapping:
0 - > 2
1 —> 3
2 1
3 —► 0

It is obvious th a t F is one-to-one and onto and, thus, defines a perm utation. The

perm utation F can be written in a more standard notation as

0 1 2 3F = ,
V2 3 1 0

D efin itio n 2.3 Let ip and ip be two functions. I f <p maps element a into b, denoted

as ap — b, and ip maps element b into c, denoted as bip = c, then a(pip) = (ap)ip =

bip = c. pip is called the composition of p and ip.

T h e o re m 2.1 I f F\ and F2 are both permutations of the set A, then the composite

function F \F2 is also a permutation of A.

To illustrate Theorem 2.1, whose proof can be found in [37], consider the above

set A and perm utation F. Also consider the perm utation G, given by

0 1 2 3
G VI 3 2 0

Then the composite function FG is given by

0 1 2 3
FG \ 2 0 3 1

which is a perm utation according to Definition 2.2. It should be noted th a t FG ^ GF.

D efin itio n 2.4 Let N be the cardinality (number of elements) of the set A. Then,

the set of all possible permutations of A is called the symmetric group, denoted by

Stv- The cardinality of Tin is A!.

16

Figure 2.1 shows a generalized MIN. In this MIN there are N inlets, M outlets, u

stages, and Sj switches in each stage j , 0 < j < v — 1. In addition, stage j derives

all of its inputs from stage j — 1, stage 0 derives all of its inputs from the inlets of

the MIN, and the outlets are all derived from stage v — 1. All the MINs discussed

in the thesis fit in this generalized model unless otherwise stated. The MINs that

do not fit in the model will appear only at the end of Chapter 3 for the sake of

completeness.

Let 1 < j < v — 1 be the function realized by the set of links between stages

j — 1 and j , mapping the outputs of stage j — 1 onto the inputs of stage j . Further,

let F3j, 0 < j < v — 1, be the function, realized by the set of switches in stage

j , mapping the inputs of stage j onto its outputs. Finally, let Fj be the function,

realized by the set of links connecting the inlets to the inputs of stage 0, mapping

the inlets on the inputs of stage 0, and let Fo be the function, realized by the set of

links connecting the outputs of stage v — 1 to the outlets, mapping the outputs of

stage v — 1 on the outlets. Then a MIN is completely defined by the (2v + 3)-tuple

(1 ,0 , Fi, F0 ,Fh ,Fi2, . . . , Fi„_j, , F ai, . . . , T iv_x)

where T ai is the set of all mappings realizable by stage j of its inputs into its

outputs, and I and 0 are the sets of inlets and outlets, respectively.

In any MIN, for all j , 1 < j < u — 1, F , is a permanent perm utation of the

outputs of stage j — 1 into the inputs of stage j . However, for all j , 0 < j < v — 1, Faj

is a variable permutation that can be changed by setting the individual switches

of stage j . Throughout this thesis, the word mapping will indicate a one-to-one

mapping, unless otherwise specified.

17

M -lN - l

I Fj T 3o Fh F ai Fh Flv_x T ,v_x F0

Figure 2.1: Generalized MIN

18

Let 5jvm be the set of mappings of the N inlets into the M outlets realizable by

the MIN defined above. Then, it can be seen that

S m n = . . . Fiv_x!Fav_xFo- (2.2)

A MIN may or may not have N = M . All MINs in this thesis have M = N .

Such MINs are usually called perm utation networks. An ideal perm utation network

is one where Sjyjv =: Ejy. This is the case for non-blocking networks. Blocking

networks have «Sjvj\r C Sat.

2.2 F au lt T oleran ce for M IN s

Before designing a fault-tolerant MIN, a fault tolerance model [4,49] must be de­

fined. The fault tolerance model contains three elements: the fault model, the fault

tolerance criterion, and the fault tolerance size.

The fault model is the type of faults that can occur in the network. Implicitly,

the fault model specifies the type of faults that can be recovered from using the

proposed fault tolerance design. Different designs specify different fault models. A

good design, however, is one whose fault model includes as many fault types as

possible. To illustrate, a typical fault model is as follows.

1. Any network component can fail: MINs are made up of two types of compo­

nents: switches and links. This assumption then states that the switches and

links are likely to fail, and th a t the proposed design is capable of recovering

from any such fault. A link fails if it is open or short circuited. A switch

fails due to some internal malfunction. More details on switch failures can be

found in Chapter 5.

2. The extra hardware added to provide fault tolerance to the network cannot

fail: This assumption is usually made for two reasons. First, if the extra

19

hardware added to the network to make it fault tolerant could be assumed to

fail, then it would not be possible to propose any fault tolerance design. In

addition, this assum ption can be justified for MINs because these components

usually remain idle under normal conditions. Thus they can be expected to

have higher lifetime than the actively working components of the network.

The fault tolerance criterion is the condition that must be met in order for the

system to be called fault tolerant. The fault tolerance criterion for the networks sur­

veyed in this thesis is mainly full-access retention. That is, after a fault occurs, each

processor must still be able to communicate with any memory module. However,

the two fault tolerant designs introduced in this thesis can offer a higher criterion

- full recovery. Full recovery is the ability of the network to regain its pre-fault

connectivity after a fault occurs.

The fault tolerance size is the number of faults that the system can recover

from. T hat is, the num ber of faults that the system can have and still meet the

fault tolerance criterion imposed. All the fault-tolerant MINs in this thesis, whether

surveyed or developed, are single fault-tolerant. This means that the fault-tolerance

criterion can be met only if there is one fault anywhere in the network. If a fault-

tolerant network can tolerate i specific faults, i > 1, but not any arbitrary i faults,

it is called i-robust.

2.3 C om b in atorics

This section discusses the counting techniques necessary to evaluate the probability

of a given event. One is often faced with the question “In how many ways can this

event occur?” The answer starts with the Law of Composition which states:

20

If event A a can happen in n-± ways, event A 2 can happen in n 2 ways, . . . ,

and event A m can happen in n m ways, then the compound event (Ai
m

AND A 2 AND . . . AND A m) can happen in JJrz.,- ways.
t=i

E x a m p le 2.1 How many 3-digit numbers can be written in the three slots below,

given that each slot can be filled with a decimal digit i 6 { 0 ,1 , . . . , 9}.

The solution is obtained by applying the Law of composition. Label the slots from

left to right as 1, 2, and 3. Slot 1 can be filled with any one of the ten digits, and

so can slots 2 and 3. That is, there are ten ways to fill in each slot, for a to tal of

10 x 10 x 10 = 1000 ways. This answer is correct because in three positions, one

can have any number from 000 to 999, which are 1000 numbers in total.

Now there are two additional counting problems th a t are often encountered:

perm utations and combinations.

2.3.1 Perm utations (arrangem ents)

Here the num ber of ways k elements can be arranged is required. It should be noted

that order matters in perm utations, i.e. A B ^ B A .

E x a m p le 2.2 How many 3-letter words can be formed from the 5 letters A, B, C,

D, and E, without repeating any letters?

This example is solved again by drawing three slots as shown below.

Label the slots as in Example 2.1. In slot 1, one can put any one of the five

letters, leaving four letters for the remaining two slots. Slot 2 can be filled with one

of four letters, for each choice made for slot 1, leaving three letters to be used with

21

slot 3. Thus, the number of ways one can fill in the three slots, thereby creating 3-

letter words, is 5 x 4 x 3 = 60 words. The num ber 60 is the number of permutations

of 5 things taken 3 at a time. In general the number of perm utations of n things

taken k at a time, denoted as P (n ,k) , is

P(n, k) = n • (n - 1) • • • (n - k + 1) = -— (2-3)
\n — fcj!

In fact, this is the first k factors of n\.

In the above example, repetition was not allowed. (Implicitly it was assumed

th a t one copy of each letter was available.) In other words, words like AAA, AAB,

. . . etc. were not included in the number given. However, if repetition is allowed,

the equation for P {n , k) becomes

P (n ,k) = n k. (2.4)

Thus in the example above, if repetition was allowed, the total num ber of 3-letter

words would be 53 = 125, which can be verified by the slots method. It should be

noted that in Example 2.1 repetition was allowed. In general, one can tell easily

whether repetition is allowed or not from the context of the problem.

Of interest is the perm utations of n things taken n at a time, where the n things

are not distinct. Suppose that of the n things, n x are similar, n 2 are similar, —

etc., such that n x + n 2 + . . . + nu = n. Then the number of visible perm utations is

P (n ,n) = - ■ ------ 1 (2.5)
n1!n2! •••71*,!

This formula is very useful in dealing with binary numbers, as illustrated by Exam­

ple 2.3.

E x a m p le 2.3 How many 8-bit binary numbers can be formed from three 0’s and

five l ’s?

22

Applying Equation 2.7, one finds that the num ber of the 8-bit numbers is

P (8 ’8) = (3 i P) = 5 6 '

2.3.2 C om binations (selections)

Here the number of ways k elements can be selected is required. It should be noted

th a t order does not m atter in combinations, i.e., A B = BA . This would be the

situation for example in forming a team from a pool of players. Suppose that it is

required to form a team of three players from a pool of 10 players. Suppose that a

selection was made in which John was chosen first, Jack second, and Bill last. One

cannot say that another team can be formed by choosing Bill first, John second and

Jack last; it is the same team. This analogy should serve as a reminder tha t the

approach needed to tackle a combinatorial problem depends on the problem itself.

Since order does not m atter in combinations, it is expected that the formula for

the combinations of n things taken k at a time, C (n ,k) , will be the same as that

of the perm utations of n things taken k at a time, P (n ,k) , after eliminating the

“perm utations” within each selection. Since each &-item selection can be arranged

&! times, the formula for the combinations is obtained by dividing the permutations

formula by kl to get

c <re-*> = (^ n ; <2-6>
In fact, this is the first k factors of n! divided by A:!. Sometimes C(n, k) is written as

(£ j . The latter notation is the one adopted in the thesis for indicating combinations.

E x a m p le 2.4 How many 11-player teams can be formed out of 20 players ?

The number of 11-player teams is

(ll) = 167960-

23

2.4 F u n d am en ta ls o f R e lia b ility

The reliability of a system is defined as [68,82] the probability that the system will

perform a required function under stated conditions for a stated period of time t.

Mathematically, the reliability, R , of a system is

R = e~At, (2.7)

where A is a constant representing the failure rate (per unit time). To simplify the

analysis in this thesis, the time factor will be only implicit. In other words, when it

is said th a t the reliability of a switch is r, it will mean the reliability of the switch

over a given period of time t. This is done, because the focus will be on comparing

reliabilities, rather than obtaining the absolute reliability value. In comparing two

networks, for instance, the two networks should be under the same circumstances,

including the period of time, t, hence the omission of the time factor.

Predicting reliabilities usually involves dealing with probabilities. It stands to

reason then th a t an overview of probability theory be given before discussing the

fundamentals of reliability.

2.4.1 Probability o f a sim ple event

In an experiment of n equally likely outcomes, the probability that one event will

occur is 1 /n .

E x a m p le 2.5 What is the probability of obtaining 6 on a fair die?

Since the die is fair, it is equally likely that any one of its 6 sides will appear if

the die is thrown. The six events are {1,2,3,4,5,6}. Thus the probability of a 6

appearing, denoted as P r(6), is

P r(6) = 1/6.

24

2.4.2 Probability o f a com pound event

A compound event is a composition of simple events using two rules: AND and

OR. For example the event that one gets either a 6 OR a 4 on a die if thrown is a

compound event made up of the simple events 6 and 4 and the rule “OR” . Similarly

the event of getting 4 AND 6 on two different dies is a compound event made up

of the simple events 4 and 6 and the rule “AND”.

Let A 1 and A2 be two simple events. Then the two rules are defined as follows.

1. The probability tha t Ax OR A2 will occur, denoted as Pr{Ai U A 2), is

P r(A x U A 2) = P r(A i) + P r{A 2) - P r(A x D A 2) (2.8)

If the two events are mutually exclusive, the last term vanishes and the prob­

ability of the compound event becomes

Pr{A1 \JA 2) = P r{A l) + P r { A 2) (2.9)

In general, for any k mutually exclusive events, Ai, A 2, . . . , Ak, the probability

of the compound event Aj OR A 2 OR . . . OR Ak is

k
P r(A a U A2 U . . . U Afc) = 5 3 ^ . (2.10)

i = 1

The OR rule is used usually when words like “at least” or “either” are men­

tioned.

2. The probability th a t Ai AND A2 will occur, denoted as P r(A i fl A2), is

P r(A x n A2) = Pr(A x) • P t(A2 |Ax), (2.11)

where P r(A 2|Ai) indicates the probability that A2 occurs given tha t Ai has

occurred. If the two events are independent, the last term becomes P r(A 2)

25

and the probability of the compound event becomes

Pr(A i fl A 2) — P t(A \) • Pr(A2) (2 . 12)

In general, for any k independent events, Ax, A 2, . . . , Ak, the probability of

the compound event Ax AND A 2 AND . . . AND Ak is

k
P r(A 1 n a 2 n ... n A k) = n * - (2.13)

»=i

The AND rule is usually used when words like “all” or “both” are mentioned.

Simple as they are, these two rules, OR and AND, can be used to solve complex

probability problems by using them systematically.

E xam ple 2.6 What is the probability of having 2, 4, or 6 when throwing a die?

This compound event can be expressed as a composition of the simple events it

contains. Let getting a 2 on the die be denoted as Ax, and similarly let the two

events of getting 4 and 6 be denoted as A 2 and A 3, respectively. Then what is

required is Pr(Ax OR A 2 OR A3). Since Pr(2) = P r(4) = P r(6) = 1/6, and since

Ax, A 2 and A3 are m utually exclusive, then, by Equation 2.12, the probability of

getting 2, 4 or 6 is

Pr{Ax U A 2 U A 3) = 1 /6 + 1 /6 + 1 /6 = 1/2 .

E xam ple 2.7 What is the probability of getting a 4 or an even number when throw­

ing a die?

This is again a compound event involving the OR rule. Let the event of getting

a 4 be denoted as Ax and the event of getting an even number be denoted as A 2.

26

Clearly the two events are not mutually exclusive and therefore, Equation 2.10 must

be applied.

From Examples 2.5 and 2.61, Pr(Ax) = 1/6 and P r (A 2) — 1/2. The last term

in the equation denotes the intersection of the two events. Clearly, the two events

intersect in (have in common) the number 4 (which is again A \) whose probability is

1/6. Substituting in Equation 2.10 the probability of getting a 4 or an even number

is

Pr(Ax U A 2) = 1 /6 + 1 /2 - 1 /6 = 1/2.

E xam ple 2.8 What is the probability of getting at least 2 on a die?

Here we need to evaluate P r(2 OR 3 OR 4 OR 5 OR 6). These events are all

m utually exclusive, and therefore the solution is

P r(2 U 3 U 4 U 5 U 6) = 1 /6 + 1 /6 + 1 /6 + 1 /6 + 1 /6 = 5 /6 .

The same result could have been obtained by evaluating 1 — P r (l) , which is

obviously equal to 5/6. In general, problems involving at least can be best solved

by subtracting the probability of the complementary event (getting a 1, in Exam ­

ple 2.8), from unity.

E xam ple 2.9 Assuming that the probability of a child in a particular family being

male is 0.53, find the probability that in a family of 5 children,

1. the 3 oldest will be boys and the 2 youngest will be girls, and

2. there are three boys in the family and 2 girls.

Let the event that a child will be a boy be denoted by b and the event that a

child will be a girl be denoted by g. Then,

Pr(g) = 1 - p r (b) = 1 - 0.53 = 0.47.

27

1. Let the probability that the three oldest will be boys and the two youngest

will be girls be denoted as P r (l) . Then P t’(I) can be written as (not the

order of the events)

P r (l) = Pr(b fl b fl b fl g Pi g).

Clearly, the sex of the new born child is independent from the sex of the

previous child. Thus one can write

P r (l) = Pr(b) • Pr(b) ■ Pr(b) ■ Pr{g) ■ P r(g) = (0.53)3(0.47)2 = 0.033.

2. Let the probability that there are 3 boys and 2 girls in the family be denoted

as P r(2). Then,

P r(2) = Pr([b n & n & n g n p j u f & n & n g ' n ^ n & J u . . .)

The probabilities of the compound events inside the brackets are all equal,

namely, they are equal to P t*(1) obtained in Part 1 of this example. Thus the

question is: In how many ways can one arrange 5 items (children) three of

which are similar (boys) and the remaining two are also similar (girls). This

is the perm utation problem discussed in Section 2.3.1, and the answer to the

question is ^ j . Although this answer is obtained from using perm utations, it

is the same as the number of combinations of 5 items taken 3 (or 2) at a time.

Thus,

Pr(2) = (3) Pr(1) = 2§! ' °'033 = °'33

This example illustrates the binomial distribution or Bernoulli trials. It is any

experiment whose outcomes must be one of two things (e.g. success or failure), and

whose next outcome is independent of the present one. Tossing a coin, for example,

is a Bernoulli trial, because the outcome is either heads or tails, and the outcome

28

this time does not affect the outcome next time. The binomial distribution is used

in this thesis in obtaining the reliability of the fault tolerant Clos network.

2.4.3 R eliab ility m odels

Once again, it will be shown th a t the A N D /OR rule is useful in evaluating the

reliability of a system. A system can be broken down from the reliability standpoint

into isolated blocks. For simplicity, suppose that a system can be broken down into

two blocks A and B. Then there are two situations possible.

If the system fails when either block fails, then the blocks are said to be in

series and the combined system reliability is the probability that both A AND B

are operational. This situation is depicted in Figure 2.2a. If the two blocks are

statistically independent, i.e. the failure of one is independent from the failure of

the other, then

R = R xR 2, (2.14)

where R is the reliability of the system, R x is the reliability of block A and R 2 is the

a) Series system b) Parallel system

Figure 2.2: Basic reliability models

reliability of block B. In general, for a series system of n statistically independent

blocks, the combined reliability of the system is

n

R = l [R i (2.15)
i= l

On the other hand, if the system fails if both blocks fail, then the blocks are said to

be in parallel and the combined system reliability is the probability that either A

OR B are operational. This situation is depicted in Figure 2.2b. If the two blocks

are statistically independent, i.e. the failure of one is independent from the failure

of the other, then

R — R\ -f- R 2 — R \ R 2. (2.16)

This expression can also be written as

R = l - (1 - R 1) (l - R 2). (2.17)

Recall that this form could have been obtained directly by considering the fact

th a t in a parallel system, the reliability of the system is the probability th a t at

least one block is operational (which is obtained by subtracting the probability that

both A AND B are inoperational from unity. In general, for a parallel system of n

statistically independent blocks, the combined reliability of the system is

n

R = l - n a - Ri) (2.18)
i=i

Just as the AND and OR rules can be used to solve complex probability problems,

the series and parallel reliability decompositions can be used systematically to find

the reliability of complex systems.

Sometimes, a system has n parallel blocks, but needs at least m of them to

remain operational. This problem is a binomial distribution. The reliability of the

system in this case can better be expressed as unity minus the probability of the

30

complementary event (that is, failure occurring from having between 0 and m — 1

operational blocks). The operational blocks are indistinguishable from each other,

and so are the non-operational blocks. Recall that the way to count the number of

ways these blocks can be arranged together is a combination problem (although it

is originally a perm utation problem.) Thus the reliability of the system is
»

•'(1 - R f - 1 (2.19)

This formula is used in the thesis to obtain the reliability of the fault-tolerant

Clos network in Chapter 6.

2.5 N o ta tio n

The following notation is used throughout the thesis.

i : general index, switch number in a network stage

j : general index, stage number in a network

X (i , j) : (crossbar) switch number i in stage number j

N : network size, number of inlets or outlets of a network

J : set of all inlets of a network

O: set of all outlets of a network

m : in a Clos network, num ber of inputs to a first-stage switch, or number of outputs

to a third-stage switch

n: in a Clos network, num ber of outputs of a first-stage switch or number of inputs

to a third-stage switch

x = i - Z R
1 = 0

31

k: in a Clos network, the number of inputs or outputs of a middle-stage switch

lg: log2, logarithm to the base 2

L&J: integer value less than or equal to the real number x, also called the floor of x

[V|: integer value grater than or equal to the real number x, also called the ceiling

of x

S', source inlet (integer value)

D: destination outlet (integer value)

(D)£: i^-bit binary representation of the integer D

a mod b: rem ainder after dividing the integer a by the integer b

i/: number of stages in a MIN

r: reliability of a switch over a given period of time

R: reliability of a network over a given period of time

P: perm utation

V: set or group of perm utations

e: identity perm utation

V $ ’. set of all perm utations blocked in exactly £ paths when realized on a network

of size N

symmetric group, the set of all perm utations of size N

|A|: cardinality of A , the number of elements in the set A

4>: empty set

32

C h ap ter 3

M IN Im p lem en ta tio n s

Over the past three decades, a large num ber of MINs have been proposed. The

MINs are mostly an implementation of the generalized MIN model defined in Chap­

ter 2. Since this thesis centers on MINs, a thorough understanding of their con­

struction, operation and routing is necessary before attem pting to enhance them

with fault tolerance capabilities. However, due to the large number of MIN imple­

m entations, it is difficult to cover all of them in this thesis. Instead, only the most

popular im plementations will be discussed.

In this chapter, the set of MINs discussed in the thesis will be presented. The

generalized MIN model given in Chapter 2 will be used systematically to introduce

and rigorously define these MINs. Moreover, the model will serve as a tool to

highlight the differences among the different MIN implementations. The model is

repeated here, as Equation 3.1, for convenience.

M I N = (1 ,0 , F j , F 0 ,F h ,F h ,Fao, F SI, . . . , (3 . 1)

where

• I and O are the sets of inlets and outlets, respectively,

33

• Fj is the perm utation realized by the set of links between the inlets and the

inputs of the first stage,

• Fo is the perm utation realized by the set of links between the outputs of the

last stage and the outlets,

• Fij is the perm utation realized by the set of links between stage j — 1 and j ,

1 < j < v — I , and

• J-aj is the set of all mappings F realizable by stage j , 0 < j < v — 1.

Recall that the model applies only to MINs where all the inputs of stage j , 1 <

j < v — 1 , are derived from the outputs of stage j — 1 , all the inputs of stage 0

are derived from the inlets and all the outlets are derived from the outputs of stage

v — 1. Incidentally, not all MINs have this characteristic; at the end of this chapter,

some of those MINs will be shown.

According to the generalized model, all MINs mentioned in this thesis, unless

otherwise specified, have

1. 1 = 0 and |I | = \0\ = N ,

2. v > 2,

3. switches in each stage are all of the same size,

4. for all j , 0 < j < v — 1, F3j is a perm utation (the implication here is that the

number of inputs of any stage is equal to the number of its outputs), and

5. for all j , 0 < j < u — 1, T Sj C S/y, where N is the MIN size (the implication

here is th a t there is more than one switch in any stage of the MIN).

34

From the first point above, it is no longer necessary to refer to the size of a network

as N x M , where N is the number of inlets and M is the number of outlets. Since

both numbers are now equal, a network of size N x JV, will be referred to simply as

a network of size N .

3.1 T h e B a se lin e N etw o rk

The Baseline network shown in Figure 3.1 is chosen in this thesis as representative

of a family of networks, called the shuffle family [80,87]. This family is characterized

by using the same switch structure and layout. More specifically, a network of size

N in this family must have v = \g N stages, with each stage having N /2 switches,

each 2 x 2 . Moreover, the switches of any stage j -f- 1 can be interchanged so that

the links between stages j and j 4-1, 0 < j < u — 1, form a 2-shuffle of the terminals

of one stage into the terminals of the other.

The c-shuffle of eg objects, where c and q are two positive integers, is formed

as follows [41]. Think of the cq objects as cards in a deck. Divide the cards into c

piles of q cards each. P u t the piles in a row, in any arbitrary order. Pick up the

top card of the first pile and put it as the first card of a new pile. Pick up the top

card of the second pile and put it on top of the first card of the new pile. Repeat

this process until the top card of each of the c piles is picked up. Now, visit the c

piles again in the same order picking up the top card of each pile and putting it in

the order it was picked up on top of the new pile. Every time the c piles are all

visited, c cards are added to the new pile. Repeat this process in a circular fashion

until the cards in the c piles are all picked up. Clearly, the new pile now has all cq

cards. The ordered cards of the new pile represent the c-shuffle of the original deck.

Figure 3.2a shows the 4-shuffle of 8 objects. The column on the left represents the

original 8 objects before shuffling. These objects are divided from top to bottom

35

4
5

6

7

4
5

6

7

stage 0 stage 1 stage 2

Figure 3.1: 8 x 8 Baseline network with routing example

36

into 4 sections. The arrows in the figure signify how the objects of each section

were interleaved in the manner described above to form the 4-shuffle. The column

on the right then is the 4-shuffle of the column on the left.

'O- O Jo- O

o-

2

3

4

5

6

7

a) 4-shuffle of 8 elements

O-

2

3

4

5

6

7

b) 2-shuffle of 8 elements

Figure 3.2: Shuffling 8 objects

If c = 2, the shuffle is called perfect. A perfect shuffle of 8 objects is shown in

Figure 3.2b. It should be noted th a t a c-shuffle is the inverse of a g-shuffle. That is,

if a c-shuffle is performed on N objects, the order of the N objects can be restored

37

by performing a g-shuffle, where cq = N , on the N objects. In other words,

(c — shuffle) x (q — shuffle) = e.

This identity is dem onstrated in Figure 3.2.

The 8 x 8 Baseline network shown in Figure 3.1 consists of three stages, each

having four 2 x 2 switches. For the purpose of this study, the stages will be labelled

from left to right as 0,1,2, and the switches in each stage will be labelled from top

to bottom as 0,1,2,3. A similar numbering scheme will be assumed for all MINs in

this thesis unless otherwise specified. Note also th a t for all MINs in this thesis, the

inlets will be on the left of the MIN, whereas the outlets will be on the right. In

general, a Baseline network of size N m ust have N /2 switches, each 2 x 2, in each

stage, and the number of stages must be v — lg N .

In reference to Equation 3.1, the Baseline network fits in the model as follows.

1. v = lgTV, where N is the network size

2. Fi — Fo = e, where e is the identity perm utation

3. W ithin any stage, the switches can be rearranged so tha t perm utations F],, . . . , Fiv

represent either a 2-shuffle or an iV/2-shuffle

4 T — F — — T
J so ------ J *1 ------ * * * ------ J *v — I

All networks in the shuffle family can be constructed from one another [86].

For example, consider the Baseline network of Figure 3.1. It can be seen that the

links between stages 0 and 1 form a perfect shuffle of the inputs of stage 1 into the

outputs of stage 0. Now, interchange switches 1 and 2 of stage 2. The result will

be a perfect shuffle from the inputs of stage 2 into the outputs of stage 1. If the

links between the outlets and the outputs of stage 2 can now be rearranged to form

a perfect shuffle from the outlets into the outputs of stage 2, and if the inlets are

used as outlets and the outlets are used as inlets, then the resulting network, shown

in Figure 3.3, is called the Omega network [51].

Figure 3.3: 8 x 8 Omega network

In reference to Equation 3.1, the Omega network fits in the model as follows.

1. u = \g N ,

2. Fi — 2-shuffle and Fo = e,

39

3. Fh = Fh = • • • = Fiv_1= 2-shuffle,

4. F 30 — - • ■ ■ — F av_x.

The fact that many networks can be developed from one shuffle network by

changing the link maps between the stages was recognized after many networks in

the shuffle family had been proposed. Examples of such networks are the Base­

line [85], Generalized Cube [77], Indirect Binary ra-cube [71], Omega [51], Shuffle-

exchange [81], STARAN™ flip [11] and SW-banyan (S = F = 2) [40] networks. These

networks seemed different at the beginning, but later they were proven to be topo­

logically equivalent [77,78,86]. Therefore, when one needs to speak about the shuffle

family, it is sufficient to speak about only one member of the family. As mentioned

earlier, the member selected in this thesis is the Baseline network.

It should be noted th a t the Baseline network is a special case of the delta network

[69], with a = b = 2 and 2-shuffle for the link maps between the stages. The delta

network is a generalization of the shuffle family. Its basic components are delta

elements, which are a x b crossbar switches, with c-shuffles between the stages.

3.1.1 R outing th e B aseline network

The Baseline network is built from 2 x 2 crossbar switches. Other names for 2 x 2

switches are beta elements, binary cells, binary switches, binary modules, in ter­

change boxes, and exchange boxes. The two names used in this thesis are the 2 x 2

switch and binary switch. A binary switch can assume one of two legal states,

shown in Figure 3.4. In the straight state, the upper input is connected to the up­

per output and the lower input is connected to the lower output. In the cross state,

the upper input is connected to the lower output and the lower input is connected

to the upper output. A switch assumes one of its legal states based on the routing

40

a) straight state b) cross state

Figure 3.4: Legal states of the binary switch

bits on its inputs.

An input is connected to one of the two outputs depending upon whether the

routing bit is 1 or 0. Normally, if the bit is 0, the input is connected to the upper

output; and if the bit is 1, the input is connected to the lower output. Therefore,

the upper output of a binary switch is sometimes referred to as the 0 output while

the lower output is referred to as the 1 output. A problem arises if the two inputs

of a switch have identical routing bits. In such a case the two inputs would be in

effect asking for the same output, giving rise to a conflict. Put differently, a conflict

occurs when trying to put the switch in both of its legal states simultaneously. Since

only one input can be connected to a given output, one of the two inputs will not

be connected to any output; it will be blocked. It is obvious then th a t the Baseline

network is a blocking network; not all sets of paths can be established between the

inlets and outlets. One can also easily verify from Figure 3.1 th a t the path between

any given inlet and any given outlet is unique.

Routing the Baseline network is carried out in a distributed fashion. To estab­

lish a path between inlet S and outlet D, one only has to send the ix-bit binary

representation of D on inlet S and let the individual bits control the switches they

41

traverse as they pass from one stage to another. Let (D)£ be the t'-bit binary

representation of the integer D. That is,

(■D)̂ = , o?„_2 ,. ■., d,Q.

Then bit di will be used to control a switch in stage v — 1 — i, 0 < i < v — 1. This

is called distributed routing, and is the main advantage of the Baseline network.

A dem onstration of this routing technique is shown in Figure 3.1. The thick line

represents a path established between inlet 0 and outlet 6 by putting the 3-bit binary

representation of 6, 110, on inlet 0. Each bit in this routing tag is shown next to

the switch it controls. The time complexity of the distributed routing scheme of

the Baseline network is 0 (lg N).

The disadvantage of the distributed routing, and hence the disadvantage of the

Baseline network, is th a t it cannot realize every perm utation in the symmetric

group, £ # ; only a family of permutations can be realized. This family has already

been identified and found [1] to include many of the perm utations often needed [53]

in parallel processing.

3.2 T h e C los N etw o rk

A Clos network of size 8 is shown in Figure 3.5. It has three stages, which can be

numbered 0, 1, and 2 from the input side to the output side, respectively. Stage 0

has four switches, each 2 x 2 , stage 1 has two switches, each 4 x 4 , and stage 2 has

four switches, each 2 x 2 .

Clos networks in general have three stages. A Clos network of size N must have

k = N / m switches, each m x n , in stage 0, and k = N / m switches, each n x m,

in stage 2. All three stages are connected by inter-stage links in such a way th a t a

switch in a given stage has access to all the switches in the next stage. Since there

42

Figure 3.5: 8 x 8 ordinary Clos network

43

is a link from each switch in stage 0 or stage 2 to every switch in stage 1, there are

exactly n switches, each k x k, in stage 1. It should be noted that in Clos networks,

n > m. In this thesis, the term ordinary Clos network, or just the Clos network,

will refer to the case where n = m. W hen n > m , some degree of fault tolerance is

obtained, a fact utilized by the work of this thesis.

In reference to Equation 3.1, the Clos network fits in the model as fellows.

1. u = 3

2. Fj = Fo = e

3. FixFi2 = e

4. F,a = F,2

5- F ^ F ^ F ^ F ^ F ^ = Ejv

3.2.1 R outing th e Clos network

In the Clos network, there is a central routing unit whose function is to receive a

mapping, usually a perm utation, and to find the proper setting for each individual

switch to realize th a t perm utation. This routing task turns out to be the main

drawback of Clos networks. Setting the switches of stages 0 and 2 first and then

trying to set the switches of stage 1 is not the right procedure, as conflicts will arise

in stage 1. The proper procedure is to start by setting the switches of stage 1, then

the switches of stages 0 and 2 can be set accordingly. However, finding the right

settings for the switches of stage 1 such that no conflict occurs is not a trivial task.

Three approaches have been explored in the literature for solving this problem: the

group theoretic approach [66], the direct m atrix decomposition approach [22], and

the graph theoretic approach [54]. The group theoretic approach has been found

44

[17] unfeasible and therefore will not be discussed here. The other two approaches

will be illustrated by way of an example.

Suppose it is required to realize on the Clos network of Figure 3.5 the following

perm utation

P = 0 1 2 3 4 5 6 7
4 3 2 1 5 0 7 6

The direct m atrix decomposition approach starts by constructing an N x N m atrix,

I , from the perm utation to be realized above as follows.

Tr • -1 — / ^ inlet i is to be routed to outlet j
[0 otherwise

where I \i , j] is the element of m atrix I in row i and column j , 0 < i , j < N — 1.

Thus for perm utation P above,

0 0 0 0 1 0 0 o'
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

The next step is to partition I into k x k quadrants, m x m each, and then

construct a k x k matrix, Hm, from I as follows.

Hm[i j j] = sum of the m x m entries in quadrant i , j of I.

Thus, for the example under consideration,

=

0 1 1 0
1 1 0 0
1 0 1 0
0 0 0 2

Decomposing the Hm m atrix into m matrices, k x k each, such that each row

or column in any of the m matrices has only one 1 and all the other entries are 0’s,

45

gives the proper settings for the switches of stage 1. For the example above, since

the m atrix is so small, this decomposition can be performed by inspection to yield

'0 1 1 O' '0 0 1 O' ‘0 1 0 O'
1 1 0 0 0 1 0 0 1 0 0 0
1 0 1 0 — 1 0 0 0 + 0 0 1 0

.0 0 0 2. .0 0 0 1. .0 0 0 1.

The two matrices to the right represent the settings of the two switches in stage

1 of the Clos network of Figure 3.5. A 1 in row i and column j , indicates that input

i of the switch is to be connected to output j of the same switch. The settings

resulting from decomposing Hm insure th a t no conflict will occur in stage 1 and

th a t all required paths specified by the perm utation will be accommodated. Once

the switches of stage 1 have been set, the switches of stages 0 and 1 can be easily set

to complete realization of the perm utation. Many algorithms have been proposed

to decompose Hm in the general case.

One such algorithm is Neiman’s algorithm [64]. Neiman’s algorithm consists of

the following two steps.

1. Starting with the leftmost column, m ark in each column of H m a non-zero

element, such th a t no two non-zero elements are marked in the same row. If

a column is encountered where no such an element can be marked proceed to

the next column. If k elements are marked this way, then the algorithm is

done; otherwise the second step below m ust be performed.

2. Assume there are x marked elements, x < k, from previous marking oper­

ations. Mark a non-zero element in the column where no element could be

marked before and unm ark the previously marked element in th a t row. Visit

the column where an element has just been unmarked and mark an element in

that column, in a row where there is no element marked. Keep this process of

marking and unmarking, following the rule that there cannot be two marked

46

elements in the same row or the same column and th a t rows and columns

cannot be revisited, until x + 1 elements are successfully marked.

It should be clear then that every time Step 2 is performed, one more element

is marked. Hence, Step 2 must be repeated until k elements are successfully

marked.

The k marked elements now represent the setting for one of the m switches of

stage 1. A marked element in row i and column j means th a t input i of the switch

is to be connected to output j of the same switch. Each marked element in Hm is

then decremented by one to obtain Then the algorithm is applied to Urn-i

to obtain the setting for another switch and also H m- 2 as before. This process is

repeated until Hi is obtained. Hi itself will represent the setting for a switch in

stage 1. Clearly, to obtain the settings for all the m switches of stage 1, the above

algorithm is performed m — 1 times (notice that the ruth time is not needed). An

analysis of Neiman’s algorithm shows that it runs in 0 (m k A) time [44]. This time

complexity is rather large, especially for large k.

Two other algorithms have been proposed to decompose Hm: Ram anujam ’s

algorithms [73] and Jajszczyk’s algorithm [44]. However, both of them were later

proven wrong [16,48]. The reason why the two algorithms fail has been identified

and a solution to make them succeed has been proposed [17].

On the other hand, the graph theoretic approach to finding the settings of the

switches of stage 1 starts by treating each switch in stages 0 and 2 as a vertex in

a m ultigraph G. Let the set of switches of stage 0 be denoted as Vq and the set

of switches of stage 2 be denoted as V2. Then, given a perm utation, P, an edge is

stretched between vertex i and vertex j if an inlet attached to switch i of stage 0

is to be routed to an outlet attached to switch j of stage 2. The result of this is

47

the bipartite m ultigraph G = (Vo,V2, E), where E is the set of edges between Vo

and V2. G is a m ultigraph since multiple edges between vertices are allowed, and is

bipartite since each edge in G is incident on two vertices, one in ko and the other in

V2. The degree of G (the number of edges incident on any vertex) is clearly m. The

graph theoretic approach then decomposes G into m subgraphs of degree 1 each.

Each such subgraph will represent the setting of one of the m switches of stage 1.

For the example above, the graph representing perm utation P is shown in Fig­

ure 3.6 with its two equivalent subgraphs. The two subgraphs in the figure represent

the settings for the two switches of stage 1 of the Clos network of Figure 3.5. An

edge in a subgraph between vertex i, i £ V0 and vertex j , j £ V2, indicates that

input i of the switch is to be connected to output j of the same switch. These

settings insure that no conflict will occur in stage 1 and that all required paths

specified by the perm utation will be accommodated. Many algorithms have been

proposed to decompose G in the general case.

One such algorithm uses matching [43] to extract the individual subgraphs. A

matching is a set of edges in G such that no two are incident on the same vertex.

This algorithm runs in 0 (k 2-5) time. Other algorithms also exist where techniques

such as edge coloring [18,84] and Euler partitioning [38] are used. The graph-based

algorithms are outside the scope of .this thesis.

The two routing approaches mentioned above have been discussed extensively

in the literature and the graph theoretic techniques have always been described as

more efficient. Recently, however, it has been found that both edge coloring and

direct m atrix decomposition approaches are equivalent [19]. This finding may well

lead to a new, unified routing algorithm that makes the Clos network particularly

suitable for processor interconnection in large-scale multiprocessor systems.

48

+

0 ------- 0

© = ® 0 0 0 0

Figure 3.6: Graph representation of perm utation P

49

3.3 T h e B en es N etw o rk

The Benes network can be developed from a Clos network with n = m = 2 and

k = 2‘, for some positive integer t > 1, by recursively decomposing the middle stage

into a 3-stage Clos subnetwork whose outer stages contain only 2 x 2 switches. If

this decomposition is continued until every switch in the network is of size 2 x 2 ,

the resulting network is called the Benes network [12,13].

Consider for example the Clos network shown in Figure 3.5. Replace each of

the two switches in stage 1 by a 3-stage Clos subnetwork. Then the resulting

network, shown in Figure 3.7, is called the Benes network. There are 5 stages in the

network, each containing 4 switches. In general, a Benes network of size N m ust

-2

-4

Figure 3.7: 8 x 8 Benes network

have v = 2(lgiV) — 1 stages, with each stage having N /2 switches, each 2 x 2 .

In reference to Equation 3.1, the Benes network fits in the model as follows.

•50

1. v = 2(lg N) - 1

2. F i — F o — fi

3- FijFiu_} = e, for all j , 1 < j < {u - l) /2

4. = . . . = ^rai/_1

It is interesting to note that the Benes network can be viewed as two back-

to-back Baseline networks, with one of the two middle stages eliminated. At the

beginning of this section, the relationship between the Clos network and the Benes

network was mentioned. It should, therefore, be obvious that the three networks

used in this thesis, the Baseline network, the Clos network and the Benes network,

are closely related.

3.3.1 R outing th e B enes network

Many algorithms have been proposed for routing the Benes network. In general two

methods can be applied: central routing or distributed routing.

The best known central routing algorithm is the looping algorithm [7,65]. It

uses the fact that at any stage j , 0 < j < (u — l) /2 , the stages between j and

2(lg N) — j — 2 form two Benes subnetworks of size N/2* each. The two subnetworks

between stages 0 and 4 of the Benes network of Figure 3.7 are enclosed in a dashed

box and denoted C0 and Cx for easy reference. If the proper paths are routed

through the proper subnetwork, no blocking will occur and random permutations

can be realized conflict free. To understand how the looping algorithm works, the

dual of a number is first defined. Given two integers a and b, a is said to be the

dual of b, denoted as a = b, if \a\ = [&_]• For instance, 0 is the dual of 1, and 7 is

the dual of 6, and so on. The looping algorithm says that if no two dual inlets or

dual outlets are routed through the same subnetwork, then any perm utation can be

51

realized on the network conflict-free. The algorithm starts by assigning an element

from the perm utation arbitrarily to either subnetwork, and then it divides all other

elements between the two subnetworks on the condition that no dual inlets or dual

outlets go through the same subnetwork. This will be illustrated by an example.

Suppose it is required to realize the same perm utation P as before. P is repeated

here for convenience.

p / 0 1 2 3 4 5 6 7\
\ 4 3 2 1 5 0 7 6 J ’

First, arbitrarily assign to C0. Since outlet 4 goes now through C0, its dual,

outlet 5, must go through C\. Thus ^ goes to C\. Now, since inlet 4 goes through

Ci, its dual, inlet 5, must go through C0. As a result, Q) is assigned to C\. This

procedure is repeated until all elements of the perm utation are processed. For the

example under consideration the elements of P will be divided between the two

subnetworks as follows.

/0 2 5 6 \ / 4 3 1 7
0 V 4 2 0 7 J 1 V 5 1 3 6

The two outer stages, stages 0 and 4, will be set according to the assignments made

to C0 and C\. This procedure is repeated until all the switches are set. The time

complexity of the looping algorithm is 0 (N lg N).

The Benes network can also be routed in a distributed fashion [63] in much

the same way as the Baseline is routed. The time complexity of the distributed

routing algorithm is 0 (lg N). The tradeoff, however, is that not every perm utation

in Ejv can be realized on a network of size N . T hat is, the Benes network becomes

blocking if routed in a distributed fashion. Recall tha t the same network is non-

blocking if routed centrally. It should also be noted th a t a group theoretic approach

has been suggested [20] to route the Benes network. The results are promising and

52

can eventually lead to a linear-time set up algorithm. If routing is performed on

a multiprocessor, as opposed to a uniprocessor as has been the case in the above

algorithms, a great deal of routing time can be saved [21].

3 .4 O th er M IN Im p lem en ta tio n s

Thus far three MIN implementations have been discussed in some detail: the Base­

line network, the Clos network and the Benes network. These three MINs will

be the focus of the thesis because of their popularity. A great deal of research

has been done to investigate their properties. Furthermore, these three MINs have

well-established routing algorithms and their area complexity is highly acceptable.

There are, however, many other types of MINs th a t can be found in the literature.

One such MIN is the BBC network [9].

A BBC network of size 6 is shown in Figure 3.8. In general, a BBC network of

size N m ust have N — 1 stages of one switch each. Each stage produces exactly one

outlet, except the last stage which produces two outlets. For this reason, the BBC

does not fit in the generalized MIN model which requires th a t all outlets be derived

from the last stage. The BBC realizes a perm utation P of size N one element at

a time throughout the network except at the last stage where two elements are

realized simultaneously. Consider for example the BBC of Figure 3.8 and consider

a size 6 perm utation. The first stage connects only one of the 6 inlets to outlet

0 and passes the rest of the perm utation to the second stage. The second stage

connects one of its inputs, according to the perm utation to outlet 1. This process

is continued until the perm utation is fully realized.

More details on the BBC and other MINs with regular geometries can be found

in [17].

53

4 — — 4

5 — — 5

3 —

0 —

1 —

Figure 3.8: 6 x 6 BBC network

3.5 T h e C rossbar S w itch

Evidently, the building block of any MIN is the crossbar switch. This switch has

been shown so far as a simple box. However, the switch is not as simple as it looks -

even for the smallest size, 2 x 2 . The complexity of the switch is due primarily to the

need for a control unit attached to the switch which can “talk” either to a central

routing unit, in the case of a centrally-routed MIN, or to switches in other stages, in

the case of a self-routed MIN. For this reason, most of the switch implementations

proposed in the literature have been for binary switches.

One such im plem entation [69] is shown in Figure 3.9. It consists of two blocks,

the DATA block and the CONTROL block. The bidirectional arrows connected to

the DATA block represent the data bus and Read/W rite control lines. It should

be noted tha t in distributed routing the data bus is used at the beginning of each

54

memory cycle to carry the routing tag of the destination. The DATA block is the

main element of the switch; this is the place where the data passes from the input

of the switch to its output. The inputs of the switch are connected to the outputs,

either in the straight or the cross state as explained earlier, based on information

received from the CONTROL block.

Connected to the CONTROL block are two sets of 1-bit control lines correspond­

ing to the two sets of data lines of the DATA block. These lines act as signaling

lines between neighboring stages to help set up a new path . There are three such

t o
do Tq
bo bo

CONTROL

Tl
d \ 7*!

Io Jo

INFO
Ji h

t : request
b: busy
d: destination

Figure 3.9: Implementation of a binary switch

signaling lines: request (r), busy (b) and destination (d). Lines of the same type

on each switch are connected to their counterparts in the previous and next stages.

The signaling lines on the input side of the switches of the input stage are connected

55

to the processors, and the signaling lines on the output side of the switches of the

last stage are connected to the memory modules. The operation of these signaling

lines is described below.

The binary switch described above operates in a network of v stages as follows.

All processors requiring memory access place a logic 1 on the request lines of stage 0

and place the address of the destination on the data lines. The request propagates

from one stage to another from the input side of the network to the output side.

Once the request signal reaches a switch, the switch investigates its destination

line. The destination line of a switch in stage j is connected to data line u — j — 1

of the data bus input to the switch. The switch is put in one of its legal states,

straight or cross, based on one of the two destination lines d0 and da (arbitration

is used if there is a conflict). Lines x and x carry the connection decision from

the CONTROL block to the DATA block. They are two lines, and not one, for

hardware considerations.

The busy line goes high if the connection requested for a data bus is denied by

the switch due to a conflict. This busy signal propagates backwards towards the

input of the network and finally to the processor requesting the connection. After

8u gate delays, the busy line attached to the processor is valid and the processor

can investigate it. If the busy line is 0, it means the route has been successfully set

up. On the other hand, if the busy line is 1, the processor must try again later, as

a conflict has happened somewhere on the way to the destination.

Another implementation of a binary switch is reported in [10], while a fault

tolerant implementation is given in [55]. In the la tter implementation, a built-in

fault detection capability through data bits checking is impeded at each switch. In

this implementation the switch ends up having 88 pins for a data bus of 16 bits,

because it uses more control lines than the one shown in Figure 3.9.

56

C h a p ter 4

F ault T olerant M IN s

In this chapter, an overview of some fault tolerance techniques that have ap­

peared in the literature for MINs will be presented. The advantages and shortcom­

ings of each design will be highlighted. This will help explain the problem of fault

tolerance, and thus will facilitate its solution.

In general, MINs can be made fault tolerant by adding extra hardware. An

obvious approach then is to fully duplicate the MIN (100% redundancy). Here two

MINs are put in parallel, with one being active and the other being standby. If a

fault occurs, the standby MIN is switched in and the faulty MIN is switched out,

and normal operation resumes. The advantage of this approach is that performance

remains the same under faulty conditions as under normal (no faults) conditions.

The disadvantage of duplication is the increased cost and size of the system. To

keep the cost and size of the system at a minimum, one m ust search for a solution

other than duplication. Adding extensive hardware usually decreases performance

degradation under faulty condition, but increases the cost and size. Adding little

hardware, on the other hand, increases performance degradation under faulty con­

ditions but keeps the cost and size down. As a consequence, a compromise m ust

be made where the tradeoffs are weighed carefully and the best design is reached.

A good fault tolerance technique is one that needs minimal hardware and causes

minimal performance degradation under faulty conditions. Needless to say, any

fault tolerance technique should cause no performance degradation under normal

conditions.

Recognizing the need for fault tolerance in multiprocessor systems, a number of

fault tolerant MINs have recently been suggested. The details of these techniques

depend mainly on the type of network and the fault tolerance model used. For

example, fault tolerance has been provided for the shuffle family by adding an extra

stage [2,3,33,88], by adding extra interstage links and using non-binary switches as

a result [27,45,67], or by adding intrastage links and modifying the switch design

[49]. Fault tolerance has also been provided for some other network architectures

[4,52,39,59,72,75,76] through various approaches. All these techniques offer some

level of fault tolerance to the MIN by avoiding the costly approach - duplication.

Unfortunately, most of the fault tolerant techniques cited above are MIN-specific.

Moreover, most of these techniques are suggested only for the shuffle family. Despite

an extensive search in the literature, it has not been possible to find any fault

tolerant work done for either the Clos or the Benes networks. If there is really no

such work, this thesis may well be the first attem pt in th a t direction. In this thesis,

a fault tolerance technique that is not MIN-specific is developed. As such, it can be

used with either Benes networks or Clos networks, or any network th a t can fit in

the generalized MIN model. The generalized technique, however, is m ost efficient

for MINs with small switch sizes, e.g. binary switches. Since the Clos network

is characterized by using large switches, the generalized technique becomes less

efficient. It is for this reason that another technique will be presented in Chapter 6

to provide fault tolerance for the Clos network. Together, the two techniques should

offer a reasonably comprehensive solution to the fault tolerance problem in a great

number of MINs.

58

W ith this in mind, two fault tolerant MINs that have recently been suggested

will now be presented. The construction of each MIN will be described as well as the

fault tolerance model used in its design and the recovery method. The advantages

and disadvantage of each MIN will also be examined.

4.1 T h e E x tra S tage C ube

The E xtra Stage Cube (ESC) has been suggested [2] for the shuffle family. It

is dem onstrated on a variation of that family, the Generalized Cube network, in

Figure 4.1. Stage 3 in the figure is the extra stage. It should be noted here that

the stage numbering scheme in this figure is from right to left, opposite to the

scheme adopted everywhere else in this thesis. The position of the inlets and outlets,

however, conforms with the convention adopted in this thesis, that is, to the left

and right of the MIN, respectively. The inlets are connected to 1 x 2 demultiplexers

(shown as little boxes). One of the two outputs of each demultiplexer is connected

to a switch in stage 3, and the other output is connected to a multiplexer on the

other side of the switch. The use of multiplexers and demultiplexers in fault tolerant

MINs seems inevitable. They can be looked upon as switches choosing one of many

target fines on one side at a time and connecting it to a single fine on the other side.

They are usually provided with selection (or control) fines to select a specific target

line. Thus in the ESC, stage 3 as a whole can be bypassed if the target lines chosen

by the demultiplexers and multiplexers are not those attached to the switches. This

is the idea behind the ESC - that a stage can be switched in or out at will.

4.1.1 O peration and fault tolerance m odel

It should be noted that the generalized cube generates its routing tag, T, as the

bit-wise exclusive-or of the two integers representing the source and destination.

59

d e m u x m u x d e m u x m ux

stage 3 stage 2 stage 1 stage 0

Figure 4.1: The E xtra Stage Cube (ESC)

Suppose it is required to establish a path between inlet S and outlet D. Then the

routing tag will be

T = S © D — tu~ i . . . ti^Oi

where u = lg N is the num ber of stages in the generalized cube. A switch in stage

i needs only examine U. If U = 0, the straight state of the switch is assumed. If

U = 1, the cross state is assumed. As is the case with any network in the shuffle

family, if the two inputs of the switch have routing bits th a t try to put the switch

in the two states simultaneously, only one will be given priority and the other will

be blocked.

The ESC, on the other hand, is normally set with stage u disabled (bypassed)

and stage 0 enabled. If a fault occurs in stage 0, stage 0 is disabled and stage u

is enabled. If a fault occurs in stage x, 0 < x < u, then both stages 0 and u are

enabled. It should be noted that stage 0 can also be switched in or out of the

MIN by adjusting the multiplexers and demultiplexers around that stage. Having

an extra stage in the network offers two paths between any inlet/outlet pair. One

path , the primary path , corresponds to the normal path that would otherwise be

established on the normal cube, and the other path , the secondary path is the one

used when stage u is enabled (in case a fault occurs in the network).

Since each bit in the routing tag controls a switch in the network, and since the

switches to be controlled change according to the location of the fault, a dynamic

(v + l)-b it routing tag, T, other than the normal T must be generated by the

processors for each path desired. Table 4.1 shows these routing tags for all possible

fault locations, where t„ is a dummy bit that can be assigned any arbitrary value.

It is evident that a processor must know the exact location (stage) of the fault

so that it can generate the proper routing tag. Thus once a fault is detected and

located, after running some test, all processors must be notified of the location of

61

Fault location Routing tag T
No Fault
Stage 0

Stage x, 0 < x < v

T — tvtv_i . . .
T = totu- i . . . t^to

f Ot„_i . . . Mo If prim ary path is fault free
1 lt„_i . . . Mo K prim ary path is faulty

Table 4.1: Routing Tags for the ESC

the fault. It is assumed that there is an external hardware unit that will enable

stage u if there is a fault in the network.

The fault model in the ESC is as follows.

1. Any network component can fail

2. Faulty components are unusable

3. Faults occur independently

4. Multiplexers and demultiplexers as well as links attached to them cannot fail

The fault size of the ESC is 1, and the fault tolerance criterion is full access

retention, that is, any inlet must remain capable of accessing any outlet after the

ESC recovers from a fault. The ESC is robust in the presence of multiple faults.

The main advantage of the ESC is ease of operation; the multiplexers and demul­

tiplexers have to be adjusted only once after a fault occurs. Another advantage is

that the ESC does not need specially designed switches; the normal binary switches

are still used. Other than links associated with the multiplexers and demultiplexers,

no additional links, interstage or intrastage, are needed.

The shortcomings of the ESC, however, can be summarized as follows. First,

for a MIN of size N , N /2 extra switches are needed in addition to 2N multiplexers

and 2N demultiplexers. It should be mentioned that the ESC was later modified

[3] where the demultiplexers at the input of the network were replaced by dual

62

input ports and the multiplexers at the output of the network were replaced by

dual output ports. Second, to enable stage v after a fault occurs, there must be

an external hardware unit to adjust all the multiplexers and demultiplexers around

the stage so th a t data is routed through stage v rather than around it. Third, the

ESC cannot realize a perm utation after it recovers from a fault in any stage except

stage 0. For example, if a switch in stage x fails, 0 < x < v — 1, the maximum

num ber of paths that can be realized simultaneously will be N — 2, where N is the

size of the network. Fourth, the Extra Stage technique is relatively MIN-specific;

it works only with networks of the shuffle family, or any network where the link

maps between the stages are the same or can be made the same by rearranging the

switches within the same stage. Fifth, after recovering from a fault, time is needed,

before generating a new routing tag, to find if the fault lies on the primary path or

not. This time constitutes performance degradation, as it slows down the system.

As a whole, the Extra Stage technique is one of the best fault tolerant MINs pub­

lished. It has been adapted for two other networks: the delta network (introduced

in Chapter 3) [33] and the gamma network [88] which is also a shuffle network.

4 .2 A u g m en ted S h u ffle-E xch an ge M IN

Before discussing this design, a word on the structural layout of shuffle networks is in

order. Shuffle networks are characterized by having switches in each stage forming

groups called conjugate subsets. Each conjugate subset of a stage leads to a unique

subset of outlets. The two outlet subsets reachable from two conjugate subsets

of a given stage are disjoint. To illustrate this, consider the Baseline network of

Figure 4.2. Outlets 0,1,2 and 3 can be reached from either switch X (0 ,1) or switch

AT(1,1) in stage 1. Therefore, switches X (0 ,1) and AT(1,1) belong to the same

conjugate subset. On the other hand, outlets 4,5,6 and 7 can be reached from

63

either switch X (2 ,l) or switch X (3 ,l) in stage 1. Therefore, switches Af(2,l) and

X (3 ,l) belong to the same conjugate subset. It is clear then that stage 2 is made

up of two conjugate subsets. Notice that the two subsets of outlets reachable from

these two conjugate subsets of switches are disjoint. Consider now stages 0 and 1.

Since all the outlets are reachable from any switch in stage 0, then all switches of

stage 0 belong to the same conjugate subset. On the other hand, stage 2 can be

easily seen to have 4 conjugate subsets, one switch each. It should be noted that

a conjugate subset in stage j , 0 < j < v — 2 has access to exactly two conjugate

subsets in stage j + 1. More about conjugate subsets can be found in Chapter 5.

The Augmented Shuffle Exchange Network (ASEN) is another MIN-specific fault

tolerance scheme proposed [49] for the shuffle family of network. It is dem onstrated

in Figure 4.3 on a network close to the generalized cube discussed in Section 1. Al­

though the ASEN published does not show explicitly the demultiplexers connected

to the inlets and the multiplexers connected to the outlets, they are implicitly

present. Therefore, they are explicitly shown in Figure 4.3. This will facilitate

performing comparisons between different design shown in this thesis.

The ASEN replaces the binary switches of a shuffle network by 3 x 3 switches,

which are similar in operation to the binary switch but with an auxiliary input and

an auxiliary output. The switches of any conjugate subset can always be recognized

as two groups, with each group having access to all the switches in the two conjugate

subsets in the next stage. The ASEN links together such a group using the auxiliary

terminals to form a loop as shown in Figure 4.3. For instance, switches X (0 ,0) and

X (1,0) of the only conjugate subset in stage 0 have access to the two conjugate

subsets of stage 1. Thus, these two switches are looped together as shown. In

stage 1, since each subset contains only two switches, each group will have only one

switch, and therefore there is no point in forming a loop around the same switch.

64

4
5

6

7

4
5

6

7

stage 0 stage 1 stage 2

Figure 4.2: 8 x 8 Baseline network

65

The idea behind these loops is th a t if one switch fails in stage 1, say, then a route to

it from stage 0 can be sent through the loop to another switch in the group where

it can access again the original outlet. In reference to the ASEN of Figure 4.3,

suppose that switch X (1 ,0) wants to establish a route to outlet 3, but finds that

switch X (l , 1) is defective. Then switch X (1 ,0) can send the route through its

auxiliary output to switch AT(0,0). As can be seen switch X (0 ,0) has access to

outlet 3, and thus the route can still be establish despite the existence of a fault

along the original path. Routing the ASEN is described in more detail below.

The input and output stages, stages 0 and v — 1, respectively, are made fault

tolerant as usual by using multiplexers and demultiplexers. Each inlet has access to

two loops so that if one loop is defective, the inlet can route its connections through

the other. Similarly, each outlet is reachable from two distinct switches so th a t if

a switch fails, the outlet can be reached from the other switch. It should be noted

that this arrangement at the output side of the network eliminates the last stage of

switches, stage v. It is also interesting to note th a t the number of loops in stage j

is 2J+1. This means that the number of loops in stage — 2 is equal to the number

of switches of the stage (2"-1). This eliminates the need for having loops in stage

v — 2, as it would be meaningless to form a loop around the same switch.

4.2.1 O peration and fault tolerance m odel

Given its construction, the ASEN works as follows. A processor requests a path

by putting the routing tag for the destination on the inlet. For each switch j ,

0 < j < n — 2, the request may arrive on any of the three inputs. The switch

m ust use the proper routing bit in the routing tag to extend the path to the next

stage on one of its two normal inputs. If a switch cannot use one of its two normal

outputs because it receives a signal from the next switch indicating that it is busy

66

d e m u x

0 _
1 _ j n— 1

2- i
3_n

_2

3

5 - 4 l— 5

6_
7_ _7

stageO stagel stage2

Figure 4.3: The Augmented Shuffle-Exchange Network (ASEN)

67

or faulty, the switch routes the path on its auxiliary output. (The operation of the

ASEN depends on having switches capable of detecting faults in switches one stage

ahead.) This process continues until stage — 3 is reached. As mentioned earlier,

the switches of stage v — 2 are normal binary switches and behave as such. However,

if a switch in that stage finds th a t the demultiplexer it wants to use is defective

the route cannot continue. Clearly, the demultiplexers should be able to send a

busy signal back to stage v — 2 which can then be relayed back to the processor

requesting the path.

To illustrate with an example, consider the ASEN of Figure 4.3. Suppose now

that switch X (l , l) is faulty and it is required to establish a route from inlet 2 to

outlet 0. Under normal circumstances, this route would traverse switches X (1,0),

X (l , 1) and then through the demultiplexer connected to the upper output of switch

X (l , l) to the destination. But now since X (l , l) is faulty, switch X (1 ,0) will use

its auxiliary output to route the request to switch X (0 ,0). Now if switch X (0,0)

has its upper output vacant, it can route the request to switch X (0 ,1) and from

there it can go through the upper output to the destination.

The fault model in the ASEN is identical to that of the ESC. T hat is,

1. Any network component can fail

2. Faulty components are unusable

3. Faults occur independently

4. Demultiplexers cannot fail

The fault size of the ASEN is 1, and the fault tolerance criterion is full access

retention, th a t is, any inlet must remain capable of accessing any outlet after the

ESC recovers from a fault. The ESC is robust in the presence of multiple faults.

68

The advantages of the ASEN are as follows. First, no external hardware unit

is needed to control the network; every routing step remains distributed as in an

ordinary shuffle network. Second, the number of multiplexers and demultiplexers

are half th a t used by the ESC. Third, one stage of switches, stage — 1 is eliminated.

The shortcomings of the ASEN can be summarized as follows. First, specially

designed switches are needed to construct the ASEN. Unlike the ESC, the ASEN

requires 3 x 3 switches with intelligence built in each switch so that it can make a

decision as to which output it will route a request. Adding only one input and one

output to a binary switch, adds at least 50% to its hardware complexity. Second, in

the ASEN intrastage links are needed to form the loops, adding to the complexity

of the network. Recall th a t these links are not single lines; they are complete buses

incorporating data and signal lines as mentioned at the end of Chapter 3. Third,

the number of links connecting the network to the inlets and outlets is double that

in a normal shuffle network.

It is not clear in the ASEN what an outlet would do if it receives two requests.

This is particularly perplexing in a multiprocessor environment where the outlets are

connected to memory modules which normally have no intelligence. Also the ques­

tion is open as to how the multiplexers at the input side would resolve contention

in case two requests were received simultaneously. Clearly, these multiplexers are

not the same as the ones mentioned in the ESC. More likely they are intelligent

components which can make an autonomous decision. In the work developed in

Chapter 5, intelligent multiplexers will also be needed.

From the above overview of two fault tolerance techniques for MINs, it should

be obvious th a t the problem is not simple. It is difficult to present a design without

having some drawbacks. A good technique is one that tries to minimize those draw­

backs, rather than eliminate them. These guidelines will be utilized in developing

69

two fault tolerance techniques in the next two chapters.

4 .3 Fault D e te c t io n and L ocation

The work of any fault tolerant MIN depends on two things: fault detection and fault

location. Two techniques have been proposed in the literature for fault detection

and location. F irst, fault detection and location can be performed off-line through

applying prescribed test patterns to the inlets and comparing the output at the

outlets with the expected values [5,35]. Second, faults can be detected and located

dynamically online through either parity checking [79] or data bits checking [55]. As

good as the online techniques may sound, they require a special switch design with

built-in hardware to carry out the dynamic checking. This online fault detection and

location technique is the mechanism assumed by the ASEN. However, the ESC does

not require any particular mechanism; rather it requires only that the processors

be notified of the location of the fault, if any. For the work done in this thesis, it

is assumed th a t there is some mechanism to detect and locate faults and notify the

processors of the location of the fault.

70

C h ap ter 5

T h e S im p le F ault T olerant
B a se lin e n etw ork

As has been mentioned, fault tolerance has been provided for MINs by adding

extra hardware in the form of extra switches, extra interstage links, extra intrastage

links, or a combination of these components. In this chapter, a fundam entally

different approach to fault tolerance of MINs will be introduced: the Simple Fault

Tolerance (SFT) technique. The prim ary advantage of this technique is that it is

not MIN-specific. In fact, it can be used with any MIN that fits into the MIN

model of Chapter 2. The SFT will be dem onstrated below on a Baseline network to

construct the Simple Fault Tolerant Baseline (SFTB) network. The 8 x 8 Baseline

network of Figure 3.1 will be chosen for this demonstration, and is repeated here

as Figure 5.1 for convenience.

As its name implies, the idea behind the SFT technique is simple. In Chapter 1,

it was mentioned th a t the interconnection mechanism in a multiprocessor system can

be either a single bus or a MIN. The SFT technique combines these two mechanisms

in one, with the MIN being the prim ary mechanism and the bus being used only

after a fault occurs, and only by the processors affected by the fault. The resulting

network thus combines all the characteristics of the original MIN. In addition, the

71

4
5

6

7

4
5

6

7

Figure 5.1: Baseline network of size 8

72

resulting network has the fault tolerance capability at a low cost.

The philosophy behind the SFT technique is that faults exist only temporarily.

Therefore, drastic changes in the design of a MIN to make it fault tolerant are not

w arranted. On the one hand, those changes normally increase the cost of the MIN.

On the other, in some cases the changes tend to have negative impacts on MIN

operation under normal conditions. The latter point may not be apparent to the

designer, but it can be made clear as follows. If the fault tolerance capability is

impeded in the switches, the switches will be more complex. The direct consequence

of this complexity is th a t the propagation delay of the switch will increase. This

increase is of course unwanted, as it will decrease the throughput of the system.

The SFT technique, by using an external bus in parallel with the MIN, does not

change anything in the original MIN. The technique cannot cause negative impacts

on the operation of the MIN under normal conditions, as the bus is totally invisible

under those conditions.

5.1 D es ig n o f th e S F T B

For the SFTB, the fault model is defined as follows.

1. Any switch can fail: A switch can fail in several ways. For instance, the switch

can be stuck in one of its legal states, giving a proper connection only if tha t

happened to be the desired state. Also, a switch can be stuck in a partially

legal state, such as connecting only one input to one output. This perm anent

connection again may happen to be desired to establish a path. A switch can

be stuck in an illegal state, such as connecting the two inlets to each other

and the two outlets to each other, making it totally useless. In addition, a

switch may be responsive to its control unit but give sometimes or always the

73

wrong state. All these cases will be lumped as a switch failure, for which the

switch is totally useless and m ust be avoided.

2. Any link can fail: A link can fail if it is disconnected from a switch to which

it should be connected. In fact, an open circuit in a link disconnects commu­

nications between two switches. Although the SFTB, as will be shown, can

handle link failures, the discussion will mainly focus on switch failures for two

reasons. The first reason is brevity and clarity, as analysis of link faults will

only clutter the work without adding any new substance. The second reason

is that switch failures are more difficult to recover from and once a network

is able to recover from switch failures, it is trivial to adapt the results to link

faults.

3. The standby bus, demultiplexers, multiplexers, and external links cannot fail.

These items are the hardware that is supposed to provide fault tolerance to

the system. If it could be assumed to fail, then it would not be possible

to propose any fault tolerance design. In addition, this assumption can be

justified here because these components remain idle under normal conditions.

Thus they can be expected to have higher reliability than the actively working

switches.

It should be mentioned th a t faults are assumed to occur independently, and th a t

faulty components are unusable.

The fault tolerance criterion for the SFTB is full-access retention. That is, after

a fault occurs, each processor m ust still be able to communicate with any memory

module. It is worth noting th a t in the enhanced SFTB, to be presented later, a

higher level of fault tolerance criterion can be achieved - full recovery. Full recovery

is the ability of the network to regain its pre-fault connectivity after a fault occurs.

74

The fault tolerance size is the number of faults that the system can recover from.

The SFTB can tolerate as many faults as possible (all switches and all links fail). In

other words, if every component of the Baseline network fails, the communications

between the processors and memory can still be m aintained. One caveat, however,

is that the more faults tha t exist, the worse the performance of the SFTB will be.

For this reason, and to keep performance at almost the pre-fault level, the SFTB

network will be analyzed as a single fault tolerant network.

W ith that in mind, the SFTB can now be described. Starting with a Baseline

network, an external bus bypassing the network and connecting the processors to

memory is added. Each processor is connected to both the network and the bus

through a demultiplexer. Similarly, each memory module is connected to both

the network and the bus through a multiplexer. Under normal conditions, the

processors and memory will have connections only to the network. Since the bus

does not become active until a fault occurs, it is called a standby bus.

This technique is applied to the Baseline network of Figure 5.1 to create the

SFTB, shown in Figure 5.2. As can be seen, each inlet is connected both to the

ordinary network and to the standby bus through a 1 x 2 demultiplexer. The

demultiplexer can be looked upon as a switch connecting its input to only one of its

two outputs at a time, based on a control (selection) bit. If the demultiplexer is set

to connect the inlet to the network, it is said to be in the 0 position. Putting the

demultiplexer in the 1 position connects the inlet to the bus. Similarly, each outlet

is connected to both the network and the standby bus through a 2 x 1 multiplexer.

Here again, the multiplexer can be either in the 0 position, thereby connecting the

network to the outlet, or in the 1 position, connecting the bus to the outlet.

The SFTB operates as follows. Under normal condition, the multiplexers and

demultiplexers should be in the 0 position. This makes the SFTB functionally

75

d e m a x m a x

Figure 5.2: The SFT equivalent of the Baseline network of Figure 5.1

76

identical to the ordinary Baseline. It follows that under normal conditions, the

SFTB will use the routing algorithm of the ordinary network and therefore the

addition of the standby bus will not have any negative im pact on the operation of

the network.

5.2 R o u tin g th e S F T B U n d er F au lty C on d ition s

Upon the occurrence of a fault, the SFTB must be reconfigured to cope with the

fault. Thus, a mechanism for detecting and locating faults m ust be used to invoke

this configuration process.

As indicated earlier, the discussion will deal only with switch faults to avoid

cluttering the discussion unnecessarily. Assuming now th a t a switch has been iden­

tified as being faulty, the normal sequence of establishing paths will be modified as

follows.

1. At the beginning of each memory cycle, each processor requiring memory

access m ust find first if the defective switch is along the path it wants to

establish.

2. If the defective switch is along the path, the processor will have to access

memory using the standby bus instead of the network.

3. If the defective switch is not along the path , the processor starts the memory

cycle as it normally would under normal condition.

Step 1 above results in some performance degradation due to the time taken

by the processor to find if the defective switch lies along the path. The details of

this will be discussed later. Step 2 requires accessing the bus. Since more than

one processor, at most two, may try to access the bus simultaneously, a contention

77

problem may arise. This is particularly true in synchronous operation, where all

processors s tart their memory cycle at the same time. Some solutions to this prob­

lem are presented in Section 5.2.2. Step 3, establishing the path over the network, is

the ordinary Baseline procedure used under normal conditions, and therefore needs

no further explanation. After a fault occurs, all the processors except two will be

able to still use the same routing scheme they do under normal condition. This is

a principal advantage of the SFT technique.

5.2.1 Perform ance degradation under faulty conditions

As has been shown, using the SFT technique under normal conditions is completely

transparent; the performance of the SFTB is identical to th a t of the ordinary Base­

line network. However, when the network is faulty, some performance degradation

occurs due to the fact that at the beginning of each memory cycle, a processor

requiring access to memory must find out if the faulty switch lies on the path

to the destination. Suppose that processor S, 0 < S < N — 1 , needs a path to

destination D, 0 < D < N — 1, whose binary representation is d„_i, d„_2 , .. •, do-

Recall th a t the binary representation of D represents the routing tag needed to

establish the p a th from S to D. On a Baseline network, given the current switch

X (i , j) , and the routing bit one can find the next switch along the path

X (i , j + 1), 0 < i < (N / 2) — 1 , as follows.

■ _ / L*/2J + (« / 2)L</aj if = 0

\ [.72] + + a / 2 ^ du-i-j = 1

where a = and |_®J denotes the integer part in the real number x. Assume

now that switch X(a,b) is defective. Processor S can apply the above formula

recursively to find if X(a,b) is along the path to memory module D. Procedure

AVOID.NETWORK below utilizes this formula and must be used at the beginning

78

of the memory cycle by each processor requiring memory access. The procedure

adjusts a binary flag avoid. If avoid is set, it means th a t the defective switch is

along the path and therefore the processor must use the bus to establish the required

connection. If, on the other hand, avoid is reset, it means tha t the processor can

use the network as if there was no fault.

PROCEDURE AVOID_NETWORK (z/,a,6 ,JD)

BEGIN
IF {{b = 0 AND [5/2J = a) OR (b = v - 1 AND [D/2J = a)) THEN avoid <- 1

ELSE
BEGIN
avoid <— 0 , j *- 0 , z <— [5/2J
WHILE j < b DO

BEGIN
a «_
IF = 0 THEN % [z/2 j + a / 2 [i/a j
ELSE i <— |_z/2 j + a / 2 [z’/a j + a / 2

/

j <— j + 1 , i <— i
END {while}

IF i — a THEN avoid <— 1

END {else}
RETURN (avoid)
END {AVOID_NETWORK}

This procedure represents the difference between the operation of the SFTB

under normal and faulty conditions. As a result, the time it takes to execute the

procedure is the measure of performance degradation under faulty conditions. To

estimate this time, notice first th a t if the network has two stages, u — 2 , the

procedure will not enter the WHILE loop. For v > 2, the statem ents outside

the loop will be executed only once. Assume the time it takes to execute these

statem ents is T0, which is 0(1). As for the loop, in the worst case it will be executed

v — 2 times. It is obvious th a t the worst case is if the faulty switch happens to be

in stage v — 2. If the loop execution time is T/, then the worst case run time for the

79

procedure, Tp, is

Tp = T0 + (u — 2)2].

Note th a t 2] = 0 (1), hence Tp = 0(v) . This is an acceptable value, in view of

the fact th a t the alternative is to use hardware means to notify the processor that

the path cannot be established due to a faulty switch. That would be in the form of

a signal from the faulty switch back to the processor. Taking the worst case, a fault

at stage — 2 , it would take the signal twice the propagation delay time from the

processor to the faulty switch. That is, it takes 2(v — 1)TS, where T, is the switch

propagation delay which is estim ated [69] to be 8 gate delays.

In either case, software or hardware, the complexity of the delay time under

faulty conditions is 0 (u), but the software procedure has the advantage of not

requiring any specially designed switches or extra interstage signaling lines.

5.2.2 A ccessing th e bus

After finding that a path cannot be established on the network because of a fault,

the processor must use the bus to establish th a t path. If the fault is in a link, the

single processor affected can start using the bus with no problems. But if the fault

is in a switch, two processors will need to use the bus. If the two start using the bus

simultaneously, a conflict occurs. To avoid the contention, the bus is provided with

an extra line indicating whether the bus is currently available, the bus-busy line.

A processor wanting to use the bus must first sense the bus-busy line. If it is low,

the processor asserts it and starts using the bus. If the line is high, the processor

waits in a loop until it is low and then seizes it. A problem, however, can occur

if the two processors simultaneously test the line, find it low and try to seize it at

the same time. This will most likely be the case in a synchronous environment,

where all processors s ta rt accessing memory at the same time. For this situation,

80

a more elaborate mechanism m ust be devised. Below, two such mechanisms are

suggested and discussed: one depends on a Central Control Unit (CCU) and the

other is dynamic.

The CCU is a hardware unit th a t can be accessed by all processors. Its function

is to receive requests for the bus and grant access to one of the processors at a time.

A processor wanting the bus sends a request to the CCU giving its number and the

memory module number. The CCU identifies the multiplexer in question, puts it

in the 1 position, and sends an acknowledgement to the processor upon which it

can safely start using the bus. Notice th a t the demultiplexers can always be set

by the processors without the help of any hardware unit. The CCU will grant the

bus immediately to the processor th a t asks for it. But if the two processors submit

their requests at exactly the same time, a built in arbiter [70] must decide to which

processor it will grant the bus. The arbitration can be either random or prioritized.

At the end of the memory cycle, the CCU m ust put the multiplexer back in the 0

position, preparing for the next memory cycle.

Instead of relying on the services of a central control unit, the processors can

perform the services themselves dynamically. A processor wanting to communicate

over the bus can put its own demultiplexer in the 1 position. However, two problems

can arise: competing for the bus and setting the multiplexers on the other side of

the network. The bus contention problem can be solved using the bus-busy line

mentioned above in two ways together with a round robin scheme for the processors

to test that line. In the round robin scheme, a processor wanting to use the bus

counts a number of clock cycles equal to its number in the system before it tests

the bus-busy line. If the line is low, the processor asserts it and start using it on

the next clock pulse. If the line is high the processor keeps testing it continuously

until it goes low, when it asserts it and starts using the bus on the next clock pulse.

81

If the clock period is T, then the minimum wait time before seizing the bus is T,

for processor 0, and N T , for processor N — 1, with the average waiting time being

N T / 2. It should be noted here th a t T must be greater than rmax, the propagation

delay between processors 0 and N — 1 . Otherwise, processor i, 0 < i < N — 1 will

have to wait (z + l) r max instead of (z -f- 1)T, before it tests the bus-busy line.

Assuming now that the processor has seized the bus dynamically, it puts on

the bus the number of the memory module it wants to communicate with. This

number will be decoded and used on the other side of the network to both put the

multiplexer in the 1 position and enable the memory module. This procedure is

the mechanism adopted in uniprocessor systems with one bus. The processor can

proceed then talking to the memory module as in a uniprocessor. Once it finishes

communicating with the memory module, the processor should put the multiplexer

and demultiplexer back in the default, 0 , position.

5.3 D es ig n o f th e E n h a n ced S F T B

In some applications, full access retention only may not be enough as a fault toler­

ance criterion. Note that with a full-access retention only capability, the network

cannot realize any perm utation. If the network is used mainly to realize perm uta­

tions, then a higher fault tolerance criterion must be imposed, full recovery. This

allows the network to be able to realize after recovery any connection pattern it

was capable of before the fault. Such a criterion can be easily met for any network

using binary switches with the help of an enhanced version of the SFT technique.

The idea is to add two standby buses to the network instead of one. Recall that

the worst single fault in a network with only binary switches, such as the Baseline

network or the Benes network, prevents the realization of exactly two paths. W ith

two standby buses, these two paths can be implemented resulting in full recovery

82

Selection word Selection
0 0 inputs of network
0 1 standby bus No. 1

1 0 standby bus No. 2
1 1 unused

Table 5.1: Multiplexer and demultiplexer operation modes

of the system. The enhanced technique will be dem onstrated below on a Baseline

network, where the the advantages of this enhancement both under normal and

under faulty conditions will be illustrated.

The enhanced SFT equivalent of the Baseline network of Figure 5.1 is shown in

Figure 5.3. Using two buses, entails the use of demultiplexers and multiplexers of

size 1 x 4 and 4 x 1 , respectively. Each of the multiplexers or the demultiplexers

has two selection lines controlling the operation mode of their respective units as

shown in Table 5.1.

Some work on multiple bus systems has already been performed [61,62,83], where

solutions to the bus access problem are suggested. Basically, the techniques used for

accessing a bus in a multibus system are similar to those discussed for the SFTB,

with CCUs equipped with arbiters being the most recommended.

5.3.1 Perm utation realization capabilities o f the enhanced
SFT B

As indicated earlier, an N x N Baseline network cannot realize every perm utation

in the symmetric group, E/y [37]. Only a class of perm utations can be realized, and

this class has been already identified [1]. As will be proven later, if there is blocking

while a perm utation is being realized on a Baseline network, the minimum number

of blocked paths is 2. If a perm utation is blocked in exactly 2 paths, it can be

realized blocking-free on the SFTB by realizing the two blocked paths on the two

83

d e m u x m u x

Figure 5.3: The enhanced SFT equivalent of the Baseline network of Figure 5.1

84

standby buses. A perm utation, P, of a set of elements A, A = { 0 ,1 , . . . , N — 1 }, is

a one-to-one function mapping A onto itself, such that

P = {Pi : i, Pi E A}

where P, = Pj if and only if i = j , for all i , j £ A. Realizing perm utation P on a

MIN means connecting inlet i to outlet P{ for all i, Pi € A , where A in this case is

the set of all inlets (or outlets). A perm utation is also sometimes called a bijection

[37]. The size of a perm utation is the cardinality of the set it acts on. A size-N

perm utation is one that maps a set of cardinality N. In this section, a perm utation

with £, 0 < £ < TV, unrealizable elements will be called a perm utation with £ blocked

paths. The switch where a conflict occurs is called a blocking switch.

The enum eration of perm utations of different numbers of blocked paths on the

Baseline network will be performed by counting the connection patterns on the

network which should be unique for distinct permutations. A connection pattern

can be looked upon as a “snap shot” of the settings of the switches and the location

and type of the blocking. It turns out, however, that with the same perm utation,

one can see more than one connection pattern unless some consistency is adopted.

Specifically, a fixed arbitration policy must be maintained for all switches in case

a conflict occurs. A conflict occurs if the two inputs of a switch ask for the same

output. The switch may give priority to the upper input, in which case it is said

to adopt a Priority To Upper (PTU) Policy, or it may give priority to the lower

input, in which case it is said to adopt a Priority To Lower (PTL) policy. Assigning

a fixed priority policy to each switch throughout the counting process is necessary

to achieve a one-to-one relationship between each perm utation and the connection

pattern resulting from its realization on the network. It should be noted, however,

that in practice a switch may change its priority policy adaptively. Once this

85

consistency is achieved, one can easily count the number of perm utations of every

blocking class, taking one pattern to represent one unique perm utation. To show

that changing the arbitration policy of a switch can create more than one connection

pattern for the same perm utation, consider the perm utation

p _ / 0 1 2 3 4 5 6 7 \
^ 2 1 4 6 7 3 0 5] '

Realizing this perm utation on the 8 x 8 network of Figure 5.1, with all switches

having a PTU policy, results in two blocked paths and 6 conflict-free paths, as

shown in Figure 5.4.

The two blocked paths are Q) and ^ . The two inlets associated with these

two paths are marked in the figure. Shown also are the two blocking switches with

arrows inside. The arrow shows the original direction of the blocked path and how

the path was blocked. The goal now is to take a “snap shot” of the pattern in

Figure 5.4, including the blocking switches and the arrows inside, and consider it

one perm utation, namely P above.

Now, consider perm utation P again. Only this time assign switch X (l , 0) a PTL

policy. The resulting connection p attern is shown in Figure 5.5. It can be seen that

the pattern is different from that of Figure 5.4. It can also be seen th a t although

this is still a perm utation with two blocked path , the two blocked paths are different

from the previous realization; in Figure 5.5, the two blocked paths are and .

Besides having only one pattern for each perm utation, to be able to calculate

the perm utations with £ blocked paths, the converse should also be true. That

is, there should exist only one perm utation for each connection pattern . This last

requirement is evidently true.

Although the focus here is on perm utations with exactly two blocked paths,

some interesting results on the capability of the Baseline network to realize random

86

X

X

X

X
4
5

6

7

Figure 5.4: Perm utation P realized with a PTU policy at all switches

87

4
5

6

7

Figure 5.5: Same perm utation of Figure 5.4, realized with a PTU policy at all
switches except X (1 , 0)

88

perm utations will be presented.

Let v)tP be the set of all perm utations of size N th a t, when realized on an N x N

Baseline network, have exactly £ blocked paths, 0 < £ < N , and N — £ conflict-free

paths. Then, it is obvious that

N
>(«E r a 1 = JV!>

«=o

where denotes the cardinality of the set .(«

T h e o re m 5.1 In a permutation P £ Pffi, let the number of blocking switches be

donated as if. Then if = £.

Proof. The theorem will be proven in two steps. F irst, if ft £ is proven by contra­

diction. Assume that if < £. This means that there are k switches, 1 < k < £/2,

each blocking two paths. This implies that a switch can be in a state where neither

of its two inputs can get through. Obviously, this is not true because, from the way

the switches operate, at least one input must get through. The second part is to

prove th a t if £. This again will be proven by contradiction. Assume that if > £.

This entails th a t a path can be blocked in more than one switch. But by definition,

if a path is blocked at a switch, it stops there; it does not go to another switch

where it may be blocked again. Thus the second assum ption is also wrong and the

theorem is proven. □

T h e o re m 5.2 For any N x N Baseline network, < p (°) = 21/211

Proof. From the uniqueness of path property of the Baseline network, realizing

a perm utation should result in a unique connection pattern . Arbitrarily put each

switch in the Baseline network in one of its two legal states, shown in Figure 3.4. The

pattern resulting will represent one size-N perm utation. By changing the settings of

89

all the switches, one at a time, different patterns will appear, with each representing

a conflict-free perm utation. In any Baseline network the number of switches is

n N / 2 — v2t/~1. Since each switch can have one of two states, the to tal number of

patterns th a t can be created by changing the states of the switches is

□

7?(°) = 2 1' 2 "

T h eorem 5.3 For any N x N Baseline network, 'pC1) = 0 .

Proof. To prove this theorem, it is required to prove that once there is a blocked

path , there is at least one other blocked path. Consider th a t the path between inlet i

and outlet o is blocked. Then there is a path between i and the wrong outlet o. This

means th a t i is missing its right outlet, i.e. a missing path. But a perm utation by

definition, is a one-to-one and onto mapping of N elements onto themselves. Thus,

outlet o m ust have an inlet in the perm utation to which it should be connected.

This means th a t o is missing its right inlet, i.e. another missing path. T hat is, one

-pf1) = 0. □cannot have a perm utation blocked in exactly one path, or

It should not be inferred, however, that blocked paths occur in pairs, because

overlapping is possible for more than two blocked paths. In other words, it is possible

to see a pair of blocked paths satisfying the above theorem, and another pair also

according to the theorem, with one path in common with the two pairs, resulting in

a to ta l of three blocked paths. The theorem is dem onstrated in Figures 5.4 and 5.5,

where the two blocked paths are shown. It can be seen tha t when a path is blocked,

the inlet can still reach an outlet, but the wrong one.

It has been proven [6] that the minimum number of conflict-free paths is 2 ^ 2h

This translates in the notation developed here as

= 0

90

for all £, N - 2 ^ /2l < £ < N .

From the Baseline network of Figure 5.1, it can be seen that the set of outlets

accessible to switch X (i , j) depends on both i and j . For example, any switch in

stage 0, can access any outlet. A switch in stage 1 has access only to half the outlets.

For instance, switch X (2 ,l) has access only to outlets 4 through 7. Let Cl be the

set of all outlets, and let Sj be the set of all switches of stage j . Also, let Suj C Sj

be the subset of all switches X (i , j) that have access to the same subset of outlets

^ u,j ^ fl- Then, if and only if u = u.

5(u, j) is called a conjugate subset of switches [49]. It can be seen that each Sj

is divided into 7 j disjoint subsets Suj , 0 < u < j j — 1 , such that

7 > - l

U ~ ‘-bf>
u= 0

and

Suj fl S&j — | ^

where <f> denotes the empty set. It can be easily verified that for all jf, 0 < j < v — 1 ,

_ J Suj if u = u
otherwise

where 0 < u < 7 ̂ — 1 , and

E |s«jl = ISjl = n /2.
u = 0

Considering the subset structure of the Baseline network, a new representation

for the network can be arrived at, the subset representation. For the Baseline

network of Figure 5.1, the subset representation is shown in Figure 5.6. Subset SUij

at stage j , 0 < j < v — 2 has access to exactly 2 subsets in stage j + 1 , namely,

S 2u,j~t-i and 5 2u + i , j + i - These two subsets are complementary in the sense that if an

91

stage 0 stage 1 stage 2

Figure 5.6: Subset structure of the Baseline network of Figure 5.1

92

input of a switch in subset Suj cannot reach one of them because of a conflict, it will

by default reach the other. This observation will be utilized in the next theorem.

(21T h e o re m 5.4 In a permutation P e let the two blocking-switches be X { i , j)

and X (i , j) . Then j = j , and X (i , j) , X (i , j) E Suj , where u = [i / 7 iJ = \ } h j \ -

Proof. From the subset structure of the Baseline network, a switch at subset Suj , 0 <

j < v — 2, has access only to the two subsets S^uj+i, ^ u + ij+ i- Suppose one of the

two inputs of switch X (i , j) E Suj wants to go to subset S 2U,j+i but cannot enter

because of a conflict. Then that input will be connected incorrectly to S^u+ij'+i-

This wrong connection will be of course at the expense of a right connection which

will incorrectly go to -Shu+ij+i from another switch. T hat is, the two switches,

from which wrong connections emanate, have access to the two subsets S2uj.fi and

■S,2u+i,j+i) and both are one stage before j + 1 . These two switches can only exist in

one unique subset in the network, Suj . □.

By looking at Figures 5.4 or 5.5, one can recognize two types of blocking: the

first is when the Two inputs Request the Upper (TRU) output and the second when

the Two inputs Request the Lower (TRL) output. These two types of blocking are

shown in Figure 5.7. The arrow indicates the direction in which the lower input

wanted to go but could not because of a conflict with the upper input which has a

higher priority.

(2)
T h e o re m 5.5 In a permutation P € V t f , i f one of the two blocking switches has

a TRL-type blocking, the other must have T R U type of blocking, and vice versa.

Proof. The proof follows again from the subset structure of the network and from

the definition of a perm utation. The requests of a given subset m ust be divided

exactly in half between the next two subsets. If two inputs of a switch ask for the

93

a) Two R equest U pper (TR U) b) Two R equest Lower (T R L)

Figure 5.7: The two types of blocking, assuming higher priority for the upper input

lower subset (TRL), then the two inputs of the other switch must be asking for the

upper subset (TRU). By the same token, the converse is also true. □

The above theorems and discussion will be used to find the num ber of per­

m utations with exactly two blocked paths, . F irst, from Theorem 5.1, there

are exactly two blocking switches. For each position assumed by the two blocking

switches, one can arbitrarily set the remaining switches, with each setting repre­

senting one perm utation with exactly two blocked path. Let B be the num ber of

perm utations P € VN caused by blocking in two specific switches having two spe­

cific blocking types. It is obvious that there is a perm utation for each time the state

of one of the remaining v2v~x — 2 switches is changed. Thus,

B = 2 1' 2’' ' 1- 2 (5.1)

Now, let C be the number of ways in which the two blocking switches can appear

in the network. Then the total number of perm utations with exactly two blocked

path can be found as

V {̂ \ = B C (5.2)

Recall from Theorem 5.5 that the two blocking switches always have opposite (or

94

complementary) types of blocking. Therefore the two switches are distinguishable

and in finding C, perm utations, rather than combinations, must be used. Recall

further from Theorem 5.4, that the two switches cannot assume any arbitrary loca­

tions in the network, but they must be in the same subset. Let C, and Cj be the

num ber of ways the two switches can appear in subset S uj and stage j , respectively.

Then,

C , = p (\ S ^ \ , 2) = p (2 - i - \ 2) (5.3)

where p (2 ''- J - 1 , 2) = is the perm utations of 2l'~^~1 things taken 2 at a

time.

Since there are 7 j subsets in stage j , then

Cj = 7 jC,

= w (2 ~ i - ‘ ,2) (5.4)

Substituting 2J for 7 j and writing p(2U~^~1,2) explicitly in the above equation gives

C j = 2 j 2 u~j - 1 (2 v - j - 1 - l)

= 2*'- 1 (2u~j - 1 - l) (5.5)

The number of perm utations with exactly two blocked paths associated with block­

ing in stage j is obviously BCj. Since perm utation blocking can occur in any stage

but stage u — 1 , the to tal number of permutations with exactly two blocked paths

in any Baseline network is

v - 2

= Y . B C ,
j = 0

u - 2

= Y , 2 l/2U~l - 22 ‘" 1 - l)
j = 0

_ 2v2''~l+u~3 Y - l)
j= 0

95

N V l-Pw'l
4 2 16 8 0.5
8 3 4096 16384 4

16 4 4.23 x 109 9.49 x 1010 2 2

32 5 1 . 2 x 1 0 24 1.26 x 1 0 26 104
64 6 6.28 x 1 0 57 2 . 8 6 x 1 0 6° 456

Table 5.2: Values of <T>(2) rN and - p (°)rN and their ratio for some values of v

- 2 V

' v - 2

2 - 1 - (■ ' - I)
■̂=o

(5.6)

v - 2
The factor ^ 2 ; is a finite geometric series whose sum is 2 — Substituting

; = °
in Equation 5.6, and with some algebraic manipulation, one can find that

p (2)
N (5.7)

Equation 5.7 represents the number of all the size-N permutations which when

realized on a Baseline network, result in exactly two blocked paths. W ith an en­

hanced SFTB, if these two paths are realized on the two standby buses under normal

conditions, then the equation gives the number of extra perm utations th a t the en­

hanced SFTB can realize. Table 5.2 summarizes these results for some values of

N .

5 .4 U se o f th e S ta n d b y B u s U n d er N orm a l C on ­
d itio n s

It has been shown tha t the two buses of the enhance SFTB can be used under

normal conditions to enhance the network capability of realizing perm utations. In

addition, there are two more functions that both the SFTB and its enhanced ver­

sion can perform under normal conditions. These two functions are broadcasting

96

and establishing critical connections that cannot otherwise be established over the

Baseline.

Broadcasting has been suggested [79] as a useful operation in multiprocessor

systems. A processor may want to access all the memory modules at once and

write to them simultaneously. Providing this capability on the ordinary Baseline

network requires specially designed switches that can connect one of their inputs

to the two outputs simultaneously. It turns out th a t providing this capability adds

considerably to the complexity of the switch. However, with a standby bus having

access to all memory modules, the broadcast function is readily available. W ith a

CCU, a processor can ask it to put all the multiplexers in the one position. W ith the

dynamic access situation, the multiplexers can be made to understand a broadcast

“b it” which throws them immediately in the 1 position. One more advantage of

implementing broadcasting on the bus, rather than on the network, is speed. The

time needed to establish a broadcast connection on the bus, Tg, is the time needed

to access the bus added to the tim e needed to put the multiplexer in the 1 position

(assuming that the propagation delay on the bus is negligible). Clearly, Tb is at

most as large as the propagation delay of one switch, Ts, which is estimated [69]

to be 8 gate delays. Thus broadcasting on the bus is at least u times as fast as it

would be on the network.

The other function that the bus can perform under normal conditions is estab­

lishing connections that are needed urgently but cannot be established over the

Baseline network. Suppose that a processor critically needs to establish a path to

a given memory module, but the path is blocked. W ith the SFTB, one such con­

nection can be established at a time, while with the enhanced version two can be

established at the same time.

97

5.5 U sin g th e SF T tech n iq u e in M IN s w ith large
sw itch es

In this section, the performance of an SFT network under faulty conditions will be

examined. In the analysis below, only the ordinary SFT technique (that is, only

one standby bus) will be considered; the results can be easily adapted to other

variations of the technique.

It should be evident that the main problem in the SFT technique is tha t only one

processor can access the bus at a time. Two approaches were specified to resolve

contention for the bus: the CCU approach and the dynamic approach. In both

approaches, a processor waits at most a period of time, ^maximum w ait’ before it

takes control of the bus. Clearly,

^maximum wait = (^ — l)^c + ^misc (5-8)

where

1 . fi is the number of processors competing for the bus,

2. Tc is the memory cycle duration, and

3. Tm;gr is time waited by the processor due mainly to propagation delays. In

the CCU scheme, for example, r m;sr is the time taken in communicating with

the CCU and the arbitration time. In the dynamic access scheme, Trn;sr is

the time taken in counting before testing the busy line. In both schemes,

Tjnisc includes the time needed to set one multiplexer and one demultiplexer.

The second term of Tmaxjmum wajt, ^m isc’ m ay seem independent of ji but

careful examination reveals that it is indeed dependent on /x, regardless of which

access scheme is used. Moreover, the first term of ^maximum wait depends linearly

98

on p. It is therefore the value of pi tha t determines the efficiency of the SFT scheme

for any network. The larger the value of p i is the less efficient will be the network.

The value of pi is determined by the number of inputs or outputs of the largest

switch used in the MIN. For instance, if a network has x switches, one of which of

size 8 x 8 and the remaining x — 1 switches of size 2 x 2 , th a t network will have

pi = 8 . In such network, the efficiency of the SFT technique will be much less than

with a binary network, such as the Baseline network, where p. = 2. Therefore,

binary networks are the best candidates for the SFT techniques. O ther techniques

must be devised for networks with large switch sizes. Such technique is introduced

in Chapter 6 for the Clos network.

5.6 D iscu ss io n

In this chapter a novel technique to add fault tolerance capabilities to MINs has

been introduced, the Simple Fault Tolerance (SFT) technique. In this technique,

an external bus is used to offer an “emergency link” between the inlets and outlets

of the network, in case a fault occurs. Under normal conditions, the processors use

the network as normal, with the bus totally invisible. Under faulty conditions, the

processors affected by the fault use the bus, while the unaffected ones continue using

the network. The SFT network, thus, incorporates two interconnection mechanisms,

the original network and the bus, both of which have been thoroughly analyzed in

the literature for use in multiprocessor systems. The advantages and shortcomings

of each have been pointed out: the bus is simple but cannot support a large number

of processors, while the network can support a large num ber of processors but its

hardware is complex. Thus if the bus can be guaranteed to serve a small number of

processors, it can give both simplicity and good performance. This is the principle

behind the SFT technique, as the number of processors affected by a fault in a MIN

99

is much less than the total number of system processors.

Although this technique can be applied to virtually any MIN, it works best

with binary networks, those with 2 x 2 switches such as the Benes and Baseline

networks. In these networks, a single fault affects at most only two processors. In

such a case the performance of the bus will be nearly as high as th a t of a bus in a

uniprocessor system. In this chapter, the technique is applied to design the Simple

Fault Tolerant Baseline (SFTB) network. The design is described and the perfor­

mance is examined. The SFTB is shown to have five advantages. F irst, there is

no performance degradation under normal conditions. Second, it allows immediate

full-access retention to affected processors under faulty conditions. Third, it uses

the same binary switches of the ordinary Baseline; no specially designed switches are

required. Fourth, it uses the same number of switches and stages as the ordinary

Baseline. Finally, the SFTB uses the same distributed routing algorithm as the

ordinary Baseline both under normal and faulty conditions. Only those processors

affected by the fault (at most 2) use a different algorithm. A by-product feature of

the SFTB is that it can implement quickly and easily broadcast connections on the

bus under normal conditions, thus increasing the system efficiency. The control of

the SFTB is extremely easy. Several control schemes are suggested and examined.

An enhanced SFTB can be developed by adding another bus. W ith this addition,

an ultim ate criterion of fault tolerance is achieved, complete recovery. Moreover, the

two extra buses can be used to relieve blockage under normal conditions. Here, if

all the switches are operational but a path cannot be realized due to a conflict, tha t

path can be established on the bus, thereby improving the throughput of the system.

The number of the extra permutations realizable in this manner is calculated. In

the context of this calculation, some new and interesting results on blocking in the

Baseline network are presented.

100

It has been seen th a t the number of processors affected by the worst case failure

event, determines the amount of performance degradation under faulty conditions

of networks using the SFT technique. In any MIN, the worst case failure event is

switch failure. It is clear then th a t as the size of the network switches increases, the

performance of the SFT technique will decrease.

Clos networks are characterized by using non-binary switches. In fact, there

is no limit on the size of a switch in the Clos network. Thus, a fault tolerance

technique suitable for the Clos network is worth developing. This point, coupled

with the fact that the literature does not seem to have any fault tolerant design

for Clos networks, have been the motivation behind a fault tolerant Clos network

presented in the next chapter.

101

C h ap ter 6

T h e F au lt-T oleran t C los N etw o rk

Clos networks inherently have the full access retention property if the fault is

in a middle stage switch. This is due to the fact that each outer stage switch is

connected to all middle stage switches. But with this inherent fault tolerance, one

cannot realize a perm utation that was realizable before the failure of the middle-

stage switch. Moreover, a fault in one of the two outer stages cannot be tolerated by

the network. In either case, the ability of the network to realize perm utations will be

impaired until the fault is physically removed. The design of a Fault-Tolerant Clos

(FTC) network presented in this chapter offers the complete recovery capability

which of course includes full access retention.

6.1 D e s ig n o f th e F T C

For the FTC, the fault model is defined as follows.

1. Any switch can fail.

2 . Any interstage link can fail.

3. External links and multiplexers/demultiplexers cannot fail.

102

0_
1_
2 _

3_
4_
5_

_ 4
_ 5

6_
7_
8_

_ 7

_ 2

stage 0 stage 1 stage 2

Figure 6.1: 9 x 9 ordinary Clos network

It should be mentioned th a t faults are assumed to occur independently, and that

faulty components are unusable.

The fault-tolerance criterion of the FTC is complete recovery, that is, regaining

pre-fault connectivity after a fault occurs. The fault tolerance size of the FTC is 1 .

Since the FTC is single-fault tolerant, complete recovery is possible if only one fault

occurs. In the FTC, one switch in each stage can fail with the network remaining

fully functional; therefore it can be called 3-fault robust.

A Clos network of size 9 is shown in Figure 6.1. In stage 0, each crossbar switch

has 3 inputs and 3 outputs, hence its size is 3 x 3.

Recall form Chapter 3 that a Clos network of size N , must have k = N / m

switches of size m x n in stage 0, and k = N / m switches of size n x m in stage

2. The switches of stage 1 must be of size k x k. Furthermore, there are exactly n

switches in stage 1. It should be noted that in Clos networks, n > m. An ordinary

Clos network has n = m. When n > m, some degree of fault tolerance is obtained,

103

a fact utilized in the design of the FTC.

An FTC of size N is formed from an ordinary Clos of size N as follows. First,

use switches with n = m + 1 in the outer stages. Second, add one extra switch

to each of the three network stages. Each switch must be of the same size as the

switches of the stage to which it is added. Third, connect the network inlets to the

inputs of the first stage switches via 1 x 2 demultiplexers, and the network outlets

to the outputs of the th ird stage switches via 2 x 1 multiplexers. As an example,

the FTC equivalent of the network of Figure 6.1 is shown in Figure 6 .2 . It should

be noted that using switches with n = m + 1 in the outer stages automatically

adds an extra switch to the middle stage. As will be seen later, this provides fault

tolerance to the middle stage. W hat remains then is to make the outer stages also

fault-tolerant; tha t is why one extra switch is added to each of these two stages

as shown. In the FTC, each inlet is connected by a demultiplexer to two distinct

switches in stage 0. Also, each outlet is connected by a multiplexer to two distinct

switches in stage 2. These multiplexers and demultiplexers serve as a fault recovery

system in the case of a fault in either of the two outer stages. This type of fault as

well as faults in the middle stage, stage 1 , will be described later.

6.2 R econ figu ra tion o f th e F T C

The major feature of the FTC is its ability to be reconfigured such tha t pre-fault

connectivity is totally regained. At any given time, there are three unused switches

in the FTC, one per stage. Let these three switches be X (f o,0), X (f 1, 1) and

X (f 2, 2), where / 0, f i and / 2 are the unused switch numbers for the first, second

and third stage, respectively. The configuration of the FTC at any time is a function

of the present values of / 0, f \ and / 2.

In general, the reconfiguration of the FTC can be performed through one or

104

d e m u x

D— 6

means unused

Figure 6.2: The equivalent FTC of the network of Figure 6.1

105

more of the following operations:

1 . Changing the state of the multiplexers and demultiplexers

2. Terminal relabelling

3. Perm utation translation

As will be seen below, the value of f i affects operation 2, while the values of f 0 and

f ’l affect operations 1 and 3.

The multiplexer/demultiplexer state change operation is performed if an outer

stage switch fails. When the FTC is not faulty, one switch in each stage will be

unused. This unused switch can theoretically be any switch, but for convenience

it will be assumed to be the last switch in each stage, i.e. X (k , 0), X (n — 1,1),

and X (k , 2). This choice is convenient because it makes the multiplexers and de­

multiplexers remain in state 0 under normal conditions until a fault occurs; then

they switch to state 1 , thereby avoiding the defective switch. Suppose for example

that _X"(1 , 0) in Figure 6 . 2 fails during normal operation. Then the demultiplexers

attached to that switch will change their state to state 1. This gives the resources

attached to (1,0) access to the network through -A(3, 0) instead. Realize now that

X (1 , 0) is the unused switch in stage 0 , which confirms the fact th a t at all times

there is one unused switch in each stage.

Perm utation translation is also performed if an outer stage switch fails. Let

P = {Po: Pi, ■ ■ ■, P n - i} be an arbitrary perm utation of {0 , 1 , . . . , N — 1 }. In the

actual network, Pi is the outlet to which inlet i is to be connected. In an ordinary

Clos network, P goes directly to the central routing unit where the settings of the

individual switches are extracted and delivered to the switches for implementation.

In the FTC, the same steps are to be taken with the exception th a t perm utation P

is translated before it goes to the central routing unit.

106

Terminal relabelling is performed if a middle-stage switch fails. As mentioned

above, / j affects the labelling of the outputs of switches X (z , 0), and the inputs of

switches X (z , 2), 0 < 2 < k + 1 . Let these outputs and inputs be referred to as the

inward terminals of the outer stages or just the inward terminals. In each of these

switches, only m out of the n inward terminals will be used, and will be referred

to as the active terminals. Each active term inal will have two labels: a local one,

to be used by the switch’s control unit, and a global one, to be used by the central

routing unit. The local label is an integer z, 0 < z < m, and the global label is

also an integer Z , 0 < Z < m (k + 1). The active terminals will be labeled from

top to bottom locally, with respect to the switch, as the sequence 0 , 1 , . . . ,m — 1 .

Globally, the active terminals that were labelled locally will be labelled from top to

bottom , with respect to the stage, as 0 ,1 , . . . , m (k + 1) — 1. This labelling is shown

in Figure 6.2, for / 1 = 3. In Figure 6.3, AT(2,1) is faulty, i.e. f i = 2. Therefore, the

active terminals have been changed to exclude the third inward terminal in each

switch. The new labels are shown in the figure.

The labels are updated always after a fault occurs, and the current labels are

the ones used to implement the routing information received from the control unit.

Realize th a t leaving out one inward terminal in each switch in stages 0 and 2 sums

up to leaving out 2k inward terminals. If these 2k terminals in each of the two

stages are chosen to have the same position with respect to the individual switches,

then one middle stage switch will be left out. This switch is the unused switch

under normal conditions and the defective switch under fault conditions.

6.3 R o u tin g th e F T C

The FTC is still required to perform the same function as the ordinary network -

realization of permutations. For an ordinary Clos network, a perm utation is sent

107

y/ means unused

Figure 6.3: FTC reconfigured to accommodate faults in X (l , 0), X (2 ,l) an d X (2 ,2)

directly to the routing algorithm where the proper switch settings to realize the

perm utation are found. However, for the FTC the perm utation cannot be subm it­

ted to the routing algorithm as is, for n ^ m . Instead, a new perm utation Q is

generated from P as described below. This perm utation translation is a flexible

routine th a t can easily accommodate faults in the switches of the input or output

stages. Together with adjusting the right demultiplexers and /o r multiplexers, this

routine can keep the network running after the occurrence of a fault in either or

both of the outer stages.

Given perm utation P = {P0, P i , . . . , P/v_ 1 }, perm utation Q = {Qo, Qi , • • ., C?jv+m-i}

can be created as follows.

If \ i /m \ /o and |P j/m J ̂ f 2 then Q, = Pi.

If It/m J /o and [P;/m J = f 2 then Qi = N + (P» mod m).

If [i/m \ = /„ and [P»/m J 7 ̂ h then Qn+{< mod m) = Pi-

If [i/m \ = f 0 and [Pi/m\ = f 2 then QN+{{ mod m) = JV + (Pi mod m).

The m remaining elements in Q are formed by arbitrarily mapping the m labeled

outputs of X (/o ,0) onto the m labeled inputs of X (f 2, 2).

To illustrate with an example on the FTC shown in Figure 6.2, consider the

perm utation
/ 0 1 2 3 4 5 6 7 8 \
^ 3 4 8 7 6 1 2 5 0 / '

The realization of the element Q,.) means that inlet i is to be connected to outlet

Pi on the actual network.

Initially, let the unused switches be X (3,0), X (3 ,l) and X (3 ,2) in the three

network stages, as shown in Figure 6.2. Recall that this is the configuration sug­

gested to be used under normal conditions. Then perm utation Q, according to the

109

rules set forth above will be

Q =
0 1 2 3 4 5 6 7 8 9 10 11
3 4 8 7 6 1 2 5 0 ® x x

Where x £ {9,10,11} and the m apping is one-to-one and onto. The condensed

m atrix representation of P is

Hz =
0 2 1
1 0 2
2 1 0

On the other hand, the condensed m atrix representation of Q is

H , =

o to

1—1 0 ■
1 0 2 0
2 1 0 0

1--- o 0 0

---1
CO

It is obvious th a t the size of the m atrix increases by exactly one row and one column.

This is because of the two unused switches X (3 ,0) and X (3,2).

Using Neim an’s algorithm for routing, it can be seen th a t the new perm utation

does not complicate decomposing the m atrix. That is because the algorithm uses

the condensed m atrix representation of the network and proceeds by selecting a non­

zero element from a row (or a column) at a time. Problems arise in this algorithm

if there are rows or columns with more than one non-zero element. But since the

condensed m atrix of the FTC introduces a row and a column with each having only

one non-zero element, the algorithm will be forced to choose this element every pass

of the decomposition process. It is obvious tha t the new condensed m atrix is not

easier to decompose than the old one either.

To give another translation example, assume tha t switches X (1 ,0), X (2 ,l) and

X (2 ,2) of Figure 6.2 suddenly failed. This situation is depicted in Figure 6.3. Then,

the new values for the unused switches will be /o = 1, f \ = 2 and fa = 2. Due to

110

the failure of X (2 , 1), the inward terminals of stages 0 and 1 should be relabelled.

Specifically, inward term inal number 2 of each switch should be left out in assigning

the numbers. The failure of AT(1, 0) and X (2 , 2) affects the perm utation translation.

Perm utation P given before is translated according to the rules laid down above to

/ 0 1 2 3 4 5 6 7 8 9 10 11 \
y 3 4 1 1 a : x s 2 5 0 10 9 1 j ’

where, x € {6,7,8} and the mapping is one-to-one and onto. The routing result

will be implemented by all the switches except the ones that are defective, namely,

X (1,0), X (2 ,l) and X (2 ,2). The m atrix representation of perm utation Q above is

' 0 2 0 1 '

0 0 3 0
3 “ 2 1 0 0 '

. 1 0 0 2 .

Again, if Neiman’s algorithm is used, the new element in H 3, namely H3(2,3),

will neither complicate nor facilitate the algorithm. Notice th a t the element added

to Hm is always Hm(fo + l , / 2 + 1) = m. The time complexity of routing for an

interconnection network is an im portant measure of the efficiency of the network.

It is shown below that if Neiman’s algorithm is used, the time complexity of routing

an FTC is equal to th a t of routing the ordinary Clos network.

The time complexity of Neiman’s algorithm is

0 {T) = 0(m k*).

The FTC has one extra switch in the outer stages, i.e, k + 1 switches in each

outer stage. So if k + 1 is substituted in the above expression for k, then

0 (T) = 0 (m x (f c + l) 4)

= 0 (m (k 4 + 4&3 + 6k2 + 4A: + 1))

= 0 (m k 4)

111

Likewise, if a graph-based algorithm is used, it can be shown that the time com­

plexity for routing remains the same.

Using a graph-based algorithm, the new row and column added to the con­

densed m atrix represent two vertices in the bipartite graph. These two vertices are

connected by m edges, where m is as defined above. Figure 6.4 shows the graph

representation of both the ordinary Clos network of Figure 6.1 and the FTC of

Figure 6.3 as they realize perm utation - ^ = ^ 3 4 g y g ^ 2 5 o) '

Since m = 3, three edges, shown as dark lines in Figure 6.4b, will be stretched

between the two extra vertices. It can be seen th a t edge-coloring the new graph is

a) Ordinary network b) FTC

Figure 6.4: The graph representation of both the ordinary network of Figure 6.1
and the FTC of Figure 6.3 as they realize perm utation P

neither easier nor more difficult than for the original graph. T hat is because three

112

colors will be chosen and assigned to the edges such th a t no two edges incident

on the same vertex have the same color. It is easy to see th a t in the new graph,

each of the three added edges will be assigned a color in a straightforward manner.

In fact, any algorithm with a polynomial tim e complexity will have the same time

complexity on the FTC as on the ordinary Clos network.

The discussion so far has dealt only with switch faults. Link faults can be easily

handled as follows. If a link between switches X{i.tj) and X (a , j -f 1), 0 < j < 1,

fails, the case is treated as if the two switches have failed, and the procedures

discussed above are applied. Recall that the FTC is capable of tolerating more

than one simultaneously faulty switch provided that there is only one such switch

per stage. This solution has the advantage of keeping the reconfiguration process

as simple as possible. More elaborate solutions can be designed but will complicate

the ability of the network to reconfigure itself easily.

6.4 R e lia b ility A n a ly s is

Here the reliability [82] of both the ordinary Clos network and the FTC are exam­

ined. First, define the reliability, r , of a single switch as the probability that the

switch does not fail over a period of time r . Then, / = (1 — r) is the probability

tha t the switch fails in the same period r . Similarly, define the reliability R of the

network, ordinary or FTC, as the probability th a t the network does not fail over a

period of time r . Then F = (1 — R) is the probability th a t the network fails in the

same period r . A switch fails if it cannot realize, partially or completely, a mapping

of its inputs onto its outputs. Similarly, a network fails if it cannot realize, partially

or completely, a mapping of its inlets onto its outlets.

Evidently, for the ordinary Clos network to be fully operational over the period

of time r , all of its switches must be operational over the same period of time r . For

113

simplicity, assume th a t all the switches have the same reliability r. Therefore, the

reliability of the ordinary network, assuming statistical independence (independent

failure events), is

R o rd in a ry = T 2k+ m (6.1)

where 2k + m is the number of switches in the ordinary Clos network.

For the FTC, the network will remain fully operational if up to one switch

in every stage fails. Let R 0, R-i and R 2 be the reliabilities of stages 0, 1, and

2, respectively. Clearly, the three stages are statistically independent. Thus the

reliability of the network is

R f t c = R 0 R 1 R 2 (6 -2)

The reliability of the first stage, R 0, is the probability that at least k out of the

k + 1 first stage switches, will be operational. Alternatively, if F0 is the probability

th a t the first stage fails, then

Ro = 1 — F0 (6.3)

For stage 0 to fail, given that there is one extra switch, at least two switches

will have to fail. This is a case of binomial distribution or Bernoulli trials [68], for

which Fq can be written as

Jc-l

jt-i£
i=0

i r k + l —i

= £ I 7 ’•‘(i - <6-4)

(k + 1 \
where I I is the combination of k -f 1 taking i at a time.

Substituting in Equation 6.3 and realizing th a t R 0 = R 2 due to symmetry, it

follows that

JJo = R 2 = 1 - ‘f ; (k t 1) r*(l - r)1*1-' (6.5)
i=0 \ '

114

A similar analysis shows that the reliability of the middle stage is

■Ri = 1 - I] (m ,+ 1) >-‘(1 - r)” +I- i (6.6)

Substituting Equations 6.5 and 6.6 in Equation 6.2 yields,

R f t c = j l - £ (* 7 1) r‘(l - r)‘+ '-‘} | l - E (m 7 1) r‘(1 - '■r+1' i }

(6.7)

Equations 6.1 and 6.7 thus represent the reliabilities of the two networks, the

ordinary and the fault tolerant. They are plotted in Figure 6.5 for m = 6 and

r = 0.98. The reliability of both networks drops as N increases. This is due to the

fact that m is constant and therefore a larger N implies a larger number of switches

in the network (at least in the two outer stages). Intuitively, the more components

the network has, the less reliable it is. It is, therefore, understandable why the

reliability of both networks falls as N increases. However, it can be seen that for

the same IV, IV > 0, the reliability of the FTC is higher than that of the ordinary

Clos network.

It can also be seen from Figure 6.5 that as N increases, the reliability of the SFT

becomes considerably higher than that of the ordinary network. That is because,

the higher the number of switches of the network is, the higher is its vulnerability

to failure. The existence of one more switch in the FTC makes a single failure in

the network insignificant. Therefore, the FTC is recommended for networks where

there are a large number of switches.

To see the effect of the reliability of the individual switch on the reliability of the

ordinary network, and on the need for an FTC, Equations 6.1 and 6.7 are replotted

in Figure 6.6 for r = 0.8. Notice that the horizontal axis is different from that of

Figure 6.5. It can be seen, first, th a t the reliabilities of both networks are much less

115

Reliability, R
1.0 -+

0.9 —

0 .8 -

0.7 -

0.6

nr, —

0.4 —

0.3 —

0.2 —

0.1 —

o

o

o

o

r = 0.98, m — 6

» F au lt to le ran t ne tw ork

q O rd in a ry netw ork

O
O
O

O
o

o

• •

i r t -
0 100 200 300 400 500 600 700

No. of Inlets or Outlets, N

800 900 1000

Figure 6.5: Reliability vs. N for both the ordinary network and the FTC, for
t- = 0.98

116

Reliability, R
1 .0 ->

0.9 -

0 .8 —

0.7 -

0.6

0.5 —

0.4 -

0.3 -

0 .2 -

0.1 -

O •
o •
o •
o •
o •
o •
o •
0 •
o •
o •
o •
O I
o

r = 0.8, m rs 6

F au lt to le ran t ne tw o rk

O O rd in a ry ne tw ork

i — i i i--------- 1--------- r~
0 25 50 75 100 125 150 175 200 225 250

No. of Inlets or Outlets, N

Figure 6.6: Reliability vs. N for both the ordinary network and the FTC , for r = 0.8

117

than those of Figure 6.5. That is understandable because the switches represent

the building blocks for the network, and the reliability of the network is determined

mainly by the reliability of its switches. Second, notice th a t the reliability of the

FTC is greatly higher than that of the ordinary network over a wider range of N

than the case in Figure 6.5. Indeed, the FTC is more beneficial for networks with

poor switch reliabilities. In the limiting case, r = 1, there is clearly no need for any

fault tolerance (recall that what is being said about switches, includes in fact both

switches and links).

6.5 G en era liza tion to M ore T h an O ne E x tra S w itch
p er S tage

W hen more than one switch is added to every stage, in the same manner described

for the FTC, greater reliability is expected. To verify th a t, Equation 6.7 will be

generalized to the case where x switches are added to each of stages 0 and 2, and y

switches are added to stage 1.

Using the same procedure used to derive Equation 6.7, it can be shown tha t the

reliability of the new network, Rmorei is

im -t-y-i

(6 .8)

This equation is used in Figures 6.7 and 6.8 to show the ratio of the reliability

of a fault tolerant Clos network and the reliability of its ordinary version. First,

Figure 6.7 shows the reliability ratio for four cases, namely, when 1, 2, 3, and 4

extra switches per stage are used (that is,a: = y = 1, 2, 3 and 4). In all cases

the reliability of the individual switch is r = 0.8. Since m is fixed, the horizontal

118

-^F.T./-^Ordinary
io9 —

io8

io7

io6 -

io5 -

io4 -

io3

io2

10 -

r = 0.8, m = 12

A : 4 e x tra sw itches p e r s tag e

B : 3 e x tra sw itches p e r s tage

C: 2 e x tra sw itches p e r s tage

D : 1 e x tra sw itches p e r s tage

. A

. B

. . c

• •
D

 1 r~
0 100 200

T T T
300 400 500 600 700

No. of Inlets or Outlets, N

I I T
800 900 1000

Figure 6.7: Gain in reliability vs. N for various fault tolerant networks with r = 0.8

119

iZpT./-^Ordinary

4 —

3 —

2 —

. A

. - B
r = 0.99, m = 12

A : 3 e x tra sw itches p e r s tage

B : 2 e x tra sw itches p e r stage

C : 1 e x tra sw itches p e r stage

n i i i i i r
100 200 300 400 500 600 700

No. of Inlets or Outlets, N

800 900 1000

Figure 6.8: Gain in reliability vs. N for various fault tolerant networks with r = 0.99

120

axis really represents the number of switches in the network. It can be seen how

the reliability of the Clos networks can be increased by many orders of magnitude

just by adding a few switches. The gain in reliability monotonically increases as

N increases as concluded before. However, this increase tends to saturate as N

becomes higher and higher. It can be also seen tha t as the number of extra switches

per stage increases, the gain in reliability always increases. At N = 0 there is no

gain in reliability regardless of the number of extra switches, because N = 0 means

there is no network.

It was mentioned earlier that if the reliability of the individual switch increases,

the reliability of the network, ordinary or fault tolerant, increases. This fact is

dem onstrated in Figure 6.8, which is similar to Figure 6.7 except th a t r = 0.99. It

can be seen that if r is so large, the addition of more than one switch per stage is

unwarranted. Unlike the case in Figure 6.7, where the addition of one more switch

increased the overall reliability of the network by orders of m agnitude, the addition

of one more switch in Figure 6.8 increases the gain only slightly. In fact, the curve

for the network with x = y = 4 could not be drawn here because it coincided with

curve for the network with x = y = 3 throughout the range of N in the figure. The

figure also shows that for small N , adding any number of extra switches per stage

yields the same gain in reliability. Therefore, it can be concluded th a t when the

reliability of the individual switches is high, there is no need for adding excessive

hardware, especially when TV is small.

It is obvious from Figures 6.5 through 6.8 that adding more switches per stage is

more advantageous when the number of switches in the network is large. For Clos

networks with a small number of switches (implied by small IV), the addition of one

switch per stage would be sufficient. Adding more switches per stage can be seen

to increase the overall reliability of the network. However, reconfiguration of the

121

network would be more difficult and time consuming. Moreover, the extra switches

would increase the hardware of the network and complicate its design.

6 .6 D isc u ss io n

This chapter shows the design and performance of a fault-tolerant Clos network,

the FTC. Clos networks are used mainly to realize permutations. W ithout any fault

tolerance, if a switch in the network fails, the network is rendered inoperative and

the system has to be interrupted to put the network back to work. W ith the fault

tolerance introduced here, the network can continue its work uninterrupted with the

presence of a fault. T hat is possible simply because the FTC can reconfigure itself

dynamically, by changing the settings of the multiplexers and demultiplexers and

using the adaptive perm utation translation scheme presented. The defective item

can then be repaired during the time at which the system is unused. Besides the fault

tolerance the FTC provides, the reliability of the network is greatly enhanced. High

reliability means more system availability (the time of an uninterrupted operation).

It is seen from the analysis that using this fault tolerance approach is most beneficial

when

1. the reliability of the individual switches is poor

2. the num ber of switches in the network is large

As far as reliability is concerned, adding more than one switch per stage is recom­

mended to a certain num ber of extra switches. This number depends on the number

of switches in the network and the reliability of the individual switch, and can be de­

termined for an optim um value. However, putting a large number of extra switches

per stage adds significantly to the network hardware and routing complexity.

122

C h ap ter 7

C on clu sion s

7.1 S u m m ary

This thesis has focused on fault tolerance for interconnection networks in general,

and for three networks in particular. The three networks are: the Baseline network,

the Benes network and the Clos network. These three networks have found wide

interest in the past three decades. Fault tolerance has become a consideration only

recently, after large-scale multiprocessor started to become a reality.

The thesis started by defining a generalized MIN model which was later used

systematically to put in perspective the MINs considered in the thesis. This rig­

orous foundation was a key step to understanding how a given MIN can be made

fault-tolerant. In devising fault tolerance techniques for MINs, one should meet two

common criteria. First, the fault tolerance mechanism should not add significantly

to the hardware complexity of the system. Second, the mechanism should not sig­

nificantly degrade performance under both normal conditions and faulty conditions.

The two fault tolerance techniques presented in this thesis meet the above men­

tioned criteria. The two add to the wealth already in the literature. However, they

both have features which are unique to them. Taken together they offer a reasonable

solution to the fault tolerance problem in a large number of MINs.

123

Fault tolerant MINs developed according to one of the two techniques suggested

possess these im portant features:

• Using the same switches: The fault-tolerant networks are constructed from

the same basic switches the ordinary networks use.

• Using the same routing algorithms: The fault-tolerant networks use the same

routing algorithms as the ordinary networks.

• Having the same hardware and routing time complexities: The hardware and

routing complexity of the fault-tolerant networks are the same as those of the

ordinary ones.

7.2 T h e SF T T echn iq ue

The prim ary advantage of the SFT technique is that it is not MIN-specific. This

means th a t it can be applied to any MIN with characteristics similar to those of the

generalized MIN model. As has been shown, the SFT technique is useful not only

under faulty conditions, but also under normal conditions. Among the functions

that a bus in an SFT network can perform are broadcasting and blockage relief.

These two functions are im portant in multiprocessor operation. It was shown that

if two buses are added to the system in an SFT network, and if the two buses

are used under normal conditions to relieve blockage, more perm utations can be

realized with the help of the two buses than on the original network. Also in this

enhanced SFT network, the full recovery property is possible on networks with

binary switches.

The cost of the SFT technique is minimal, as it does not require any switch

design. Moreover the bus is totally invisible under normal conditions, which causes

no negative impacts on routing while there are no faults.

124

7.3 T h e F au lt-T oleran t C los (F T C) n etw ork

The FTC is suggested as an alternative to using the SFT technique on Clos net­

works. The main reason is that switch sizes in Clos networks can be so large that

using the SFT technique would result in a severely poor performance under faulty

conditions. The FTC is characterized by ease of operation and by using little addi­

tional hardware. It is shown how the addition of only three switches to the network

considerably increases the reliability of the network. Another advantage of the FTC

is full recovery. This is particularly im portant in Clos networks, as the Clos network

is primarily a perm utation network. Having only the full access capability as a fault

tolerance criterion would not be acceptable for a Clos network.

7.4 O p en P ro b lem s

On the way to solving any problem, one often sees problems that were not noticeable

before. In the case of the work done in this thesis, some problems have been

observed, and as such they can make good research areas. First, the SFT technique

was extended only to two standby buses. A possible SFT approach for networks

th a t use large switches, would be in the form of using more than two standby buses.

The optimum number of buses for a given network can be found. Controlling access

to such large num ber of buses, as well studying the performance of the system as

a whole would be of interest. Developing such a scheme for the Clos network and

comparing it with an FTC of the same size would clarify which approach is more

appropriate.

Another extension th a t can be made to the SFT technique is to make it tolerate

more than one fault. This again can be done by increasing the number of buses to

be larger than the num ber of processors affected by at least two worst case failures.

125

Aside from the fault tolerance problems, some other problems have been ob­

served. In Chapter 5 for example, the number of perm utations blocked in a Baseline

network in exactly £ paths, Vj$\ was calculated for £ = 0, 1,2. It is interesting to

calculate for all other values of f, namely, 3 < f < N — 2 ^ 2̂ .

One last problem concerning the FTC, presented in Chapter 6, is to develop

a new routing algorithm that takes advantage of its extra paths available under

normal conditions. Such an algorithm could run in less time than those mentioned

in Chapter 6, because of the flexibility resulting from the extra paths.

126

B ib lio g ra p h y

[1] M. Abidi and D. Agrawal. “On Conflict-free Perm utations in M ulti-stage In ter­
connection Networks” , Journal of Digital Systems, vol. V, Summer 1980, pp.
115-134.

[2] G. Adams and H. Siegel. “The Extra Stage Cube: A Fault-Tolerant Intercon­
nection Network for Supersystems” , IEEE Transactions on Computers, vol.
C-31, no. 5, May 1982, pp. 443-454.

[3] ------------------“Modifications to Improve the Fault Tolerance of the Extra Stage
Cube Interconnection Network” , Proceedings of the 1984 International Confer­
ence on Parallel Processing, 1984, pp. 169-173.

[4] G. Adams, D. Agrawal and H. Siegel. “A Survey and Comparison of Fault-
tolerant M ultistage Interconnection Networks” , Computer, June 1987, pp. 14-
27.

[5] D. Agrawal. “Testing and Fault Tolerance of Multistage Interconnection Net­
works” , Computer, April 1982, pp. 41-53.

[6] ------------------“Graph Theoretical Analysis and Design of M ultistage Intercon­
nection Networks” , IEE E Transactions on Computers, vol. C-32, no. 7, July
1983, pp. 637-648.

[7] S. Andresen. “The Looping Algorithm Extended to Base 2* Rearrangeable
Switching Networks” , IEEE Transactions on Communications, vol. COM-25,
no. 10, October 1977, pp. 1057-1063.

[8] J. Baer. “Multiprocessing Systems” , IEEE Transactions on Computers, vol.
C-25, no. 12, December 1976, pp. 613-641.

[9] S. Bandyopadhyay, et. al. “A Cellular Perm uter Array” , IEEE Transactions
on Computers, vol. C-21, no. 10, October 1972, pp. 1116-1119.

[10] G. Barnes and S. Lundstrom . “Design and Validation of a Connection Network
for Many-Processor Multiprocessor Systems” , Computer, December 1981, pp.
31-41.

[11] K. Batcher. “The Flip Network in STARAN™”, Proceedings of the 1976 In ­
ternational Conference on Parallel Processing, 1976, pp. 65-71.

[12] V. Benes. “On Rearrangeable Three-Stage Connecting Networks” , The Bell
System Technical Journal, vol. XLI, no. 5, September 1962, pp. 1481-1492.

127

[13] ----------------- - Mathematical Theory of Connecting Networks and Telephone
Traffic, New York, Academic Press, 1965.

[14] L. Bhuyan. “A Combinatorial Analysis of Multibus Multiprocessors” , Proceed­
ings of 1984 International Conference on Parallel Processing, August 1984, pp.
225-227.

[15] ------------------“Interconnection Networks for Parallel and Distributed Process­
ing” , Computer, June 1987, pp. 9-12.

[16] C. Cardot. “Comments on A Simple Algorithm for the Control of Rearrangeable
Switching Networks” , IEEE Transactions on Communications, vol. COM-34,
no. 4, April 1986, p. 395.

[17] J. Carpinelli. Interconnection Networks: Improved Routing Methods for Clos
and Benes Networks, Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY,
August, 1987.

[18] ------------------“Applications of Edge-Coloring Algorithms to Routing on Paral­
lel Com puters” , Proceedings of the 3rd International Conference on Supercom­
puting, May, 1988.

[19] J. Carpinelli and Y. Oru$. “On the Equivalence of Edge Coloring and Ma­
trix Decomposition Algorithms for Routing in Clos Networks” , Submitted for
publication

[20] ------------------“Some Group Theoretic Results Towards a Linear-Time Set Up
Algorithm for Benes Networks” , Proceedings of the 20th Annual Conference on
Information Sciences and Systems, March, 1986.

[21] ------------------“Parallel Set-Up Algorithms for Clos Networks Using a Tree-
Connected Com puter” , Proceedings of the 2nd International Conference on
Supercomputing, May, 1987.

[22] “M atrix Decomposition Algorithms for Dynamic Topology Re­
configuration in Parallel Com puters” , Proceedings of the 4th International Con­
ference on Supercomputing, April, 1989.

[23] J. Carpinelli, C. Lin and M. Singh. “APAP: The Arithmetic Pipeline Analysis
Package” , Proceedings of the 19th Annual Pittsburgh Conference on Modeling
and Simulation, May, 1988.

[24] _____________“APAP: A Computer-based Tool for Analyzing D ata Flow in
Arithmetic Pipelines” , Proceedings of the 1988 Frontiers in Education Confer­
ence, October, 1988.

[25] T. Chen. “Parallelism, Pipelining, and Computer Efficiency” , Computer De­
sign, vol. 10, no. 1, January 1971, pp. 69-74.

[26] W. Chu. Advances in Computer Communications and Networking, Artech
House, Dedham, Ma., 1979.

128

[27] L. Ciminiera and A. Serra. “A Connecting Network with Fault Tolerance Ca­
pabilities” , IEEE Transactions on Computers, vol C-35, no. 6, June 1986, pp.
578-580.

[28] C. Clos. “A Study of Non-blocking Switching Networks” , Bell Systems Tech­
nical Journal, vol. 32, no. 2, March 1953, pp. 406-424.

[29] C. Das and L. Bhuyan. “Bandwidth Availability of Multiple-Bus Multiproces­
sors”, IEEE Transactions on Computers, vol. 0-34, no. 10, October 1985, pp.
918-926.

[30] W. Davis. Operating Systems: A Systematic View, 2nd Edition , Addison-
Wesley, Reading, Ma., 1983.

[31] D. Dias and J. Jum p. “Analysis and Simulation of Buffered Delta Networks” ,
IEEE Transactions on Computers, vol. C-30, no. 4, pp. 273-282.

[32] ___________ “Packet Switching Interconnection Networks for M odular Sys­
tems”, Computer, December 1981, pp. 43-53.

[33] ___________ “Augmented and Pruned iVlogiV Multistage Networks: Topol­
ogy and Performance” , Proceedings of the 1982 International Conference on
Parallel Processing, 1982, pp .10-11.

[34] T. Feng. “A Survey of Interconnection Networks” , Computer, December 1981,
pp. 12-27.

[35] T. Feng and C. Wu. “Fault-Diagnosis for a Class of Multistage Interconnection
Networks” , IEEE Transactions on Computers, vol. C-30, no. 10, October 1981,
pp. 743-758.

[36] M. Flynn. “Very High-Speed Computing Systems” , Proceedings of the IE E E ,
vol. 54, December 1966, pp. 1901-1909.

[37] J. Fraleigh. A First Course in Abstract Algebra, Reading, MA, Addison-Wesley,
1967.

[38] H. Gabow. “Using Euler Partitions to Edge Color B ipartite M ultigraphs” , In ­
ternational Journal of Computer and Information Science, vol. 5, 1976, pp.
345-355.

[39] I. Gazit and M. Malek. “Fault Tolerance Capabilities in M ultistage Network-
Based M ulticomputer Systems” , IEEE Transactions on Computers, vol. 37,
no. 7, July 1988, pp 788-798.

[40] G. Goke and G. Lipovski. “Banyan Networks for Partitioning M ultimicropro­
cessor Systems” , Proceedings of the 1st Annual Symposium on Computer A r­
chitecture, December 1973, pp. 21-28.

[41] S. Golomb. “Perm utation by Cutting and Shuffling” , SIAM Review, vol. 3,
October 1961, pp. 293-297.

[42] T. Hallin and M. Flynn. “Pipelining of Arithmetic Functions” , IEE E Transac­
tions on Computers, vol. C-21, no. 8, August 1972, pp. 880-886.

129

[43] J. Hopcroft and R. Karp. “An n 2 Algorithm for Maximum Matchings in Bi­
partite Graphs”, SIA M Journal on Computing, vol. 2, no. 4, December 1973,
pp. 225-231.

[44] A. Jajszczyk. “A Simple Algorithm for the Control of Rearrangeable Switch­
ing Networks” , IEEE Transactions on Communications, vol. Com-33, no. 2,
February 1985, pp. 169-171.

[45] M. Jeng and H. Siegel. “A Fault-Tolerant M ultistage Interconnection Network
for the Multiprocessor Systems Using Dynamic Redundancy” , Proceedings of
the 6th International Conference on Distributed Computing Systems, 1986,
pp .70-77.

[46] L. Kinny and R. Arnold. “Analysis of a Multiprocessor System with a Shared
Bus” , Proceedings of the 5th Annual Symposium on Computer Architecture,
April 1978, pp. 89-95.

[47] C. Kruskal and M. Snir. “The Performance of M ultistage Interconnection Net­
works for Multiprocessors” , IEEE Transactions on Computers, vol. C-32, no.
12, December 1983, pp. 1091-1098.

[48] M. Kubale. “Comments on Decomposition of Permutation Networks” , IEEE
Transactions on Computers, vol. C-31, no. 3, March 1982, p. 265.

[49] V. Kumar and S. Reddy. “Augmented Shuffle-Exchange M ultistage Intercon­
nection Network”, Computer, June 1987, pp. 30-40.

[50] T. Lang, M. Valero and I. Algre. “Bandwidth of Crossbar and Multiple-Bus
Connections for Multiprocessors” , IEEE Transactions on Computers, vol. C-
31, no. 12, December 1982, pp. 1227-1233.

[51] D. Lawrie. “Access and Alignment of D ata in an Array Processor” , IEEE
Transactions on Computers, vol. 24, no. 12, December 1975, pp. 1145-1155.

[52] J. Lilienkamp, D. Lawrie and P. Yew. “A Fault Tolerant Interconnection Net­
work Using Error Correcting Codes”, Proceedings of the 1982 International
Conference on Parallel Processing, 1982, pp. 123-125.

[53] J. Lenfant. “Parallel Perm utations of Data: A Benes Network Control Algo­
rithm for Frequently Used Perm utations”, IEE E Transactions on Computers,
vol. 27, no. 7, July 1978, pp. 637-647.

[54] G. Lev, N. Pippenger and L. Valiant. “A Fast Parallel Algorithm for Routing
in Perm utation Networks”, IEE E Transactions on Computers, vol. C-30, no.
2, February 1981, pp. 93-100.

[55] W. Lin and C. Wu. “Design of a 2 x 2 Fault-Toler ant Switching Element” ,
Proceedings of the 9th Annual Symposium on Computer Architecture, 1982,
pp. 181-189.

[56] H. Lorin. Parallelism in Hardware and Software, Prentice-Hall, Englewood
Cliffs, N.J., 1972.

130

[57] M. Mano. Computer System Architecture, 2nd edition, Prentice-Hall, New Jer­
sey, 1982.

[58] M. M arsan, G. Bibo, G. Conte and F. Gregoretti. “Modelling Bus Contention
and Memory Interference in a Multiprocessor System”, IEEE Transactions on
Computers, vol. C-32, no. 1, January 1983, pp. 60-72.

[59] R. McMillen and H. Siegel. “Performance and Fault Tolerance Improvements
in the Inverse Augmented Data M anipulator Network” , Proceedings of the 9th
Annual Symposium on Computer Architecture, April 1982, pp. 63-72.

[60] T. Mudge, J. Hayes and D. Winsor. “M ultiple Bus Architectures” , Computer,
June 1987, pp. 42-48.

[61] T. Mudge et al. “Analysis of Multiple Bus Interconnection Networks” , Pro­
ceedings of the 1984 International Conference on Parallel Processinq, August
1984, pp. 228-232.

[62] T. Mudge and H. Al-Sadoun. “A Semi-Markov Model for the Performance of
Multiple-Bus Systems” , IEEE Transactions on Computers, vol. C-34, no. 10,
October 1985, pp. 934-942.

[63] D. Nassimi and S. Sahni. “A Self-Routing Benes Network and Parallel Per­
m utation Algorithms”, IEEE Transactions on Computers, vol. 30, no. 5, May
1981, pp. 332-340.

[64] V. Neiman. “Structure et Command Optimales de Reseaux de Connexion sans
Blocage” , Annales des Telecommunications, vol. 24, July-August 1969, pp.
232-238.

[65] D. Opferman and N Tsao-Wu. “On a Class of• Rearrangeable Switching Net­
works, P art I: control Algorithm”, Bell Systems Technical Journal, vol. 50, no.
5, M ay-June 1971, pp. 1579-1600.

[66] Y. O ru5 . Interconnection Networks: Group Theoretic Modeling, Ph.D . Thesis,
Syracuse University, Syracuse, NY, 1983.

[67] K. Padm anabhan and D. Lawrie. “A Class of Redundant P ath M ultistage
Interconnection Networks”, IEEE Transactions on Computers, vol C-32, no.
12, December 1983, pp. 1099-1108.

[68] A. Pages and M. Gondran. System Reliability: Evaluation and Prediction in
Engineering, Springer-Verlag, New York, 1986.

[69] J. Patel. “Performance of Processor-Memory Interconnections for Multiproces­
sors” , IEE E Transactions on Computers, vol. C-30, no. 10, October 1981, pp.
771-780.

[70] R. Pearce, J. Field and W. Little. “Asynchronous Arbiter M odule” , IEE E
Transactions on Computers, vol. 24, no. 9, September 1975, pp. 931-932.

[71] M. Pease. “The Indirect Binary n-Cube Microprocessor Array” , IEEE Trans­
actions on Computers, vol. 26, no. 5, May 1977, pp. 458-473.

131

[72] C. Raghavendra and A. Varma. “INDRA: A Class of Interconnection Networks
with Redundant P a ths” , Proceedings of the 1984 Real Time Systems Sympo­
sium, 1984, pp. 153-164.

[73] H. Ramanujam. “Decomposition of Perm utation Networks” , IEEE Transac­
tions on Computers, vol. C-22, no. 7, July 1973, pp. 639-643.

[74] B. Raw. “Program Behavior and the Performance of Interleaved Memories” ,
IEEE Transactions on Computers, vol. C-28, no. 3, March 1979, pp. 191-199.

[75] S. Reddy and V. Kumar. “On Fault Tolerant M ultistage Interconnection Net­
works” , Proceedings of the 1984 International Conference on Parallel Process­
ing, 1984, pp. 155-164.

[76] J. Shen and J. Hayes. “Fault-Tolerance of Dynamic-Full-Access Interconnection
Networks” , IEEE Transactions on Computers, vol. C-33, no. 3, March 1984,
pp. 241-248.

[77] H. Siegel and S. Smith. “Study of Multistage SIMD Interconnection Networks” ,
Proceedings of the 5th Annual Symposium on Computer Architecture, April
1978, pp. 223-229.

[78] H. Siegel. “Interconnection Networks for SIMD Machines”, Computer, vol. 12,
June 1979, pp. 57-65.

[79] H. Siegel and R. McMillen. “The Multistage Cube: A Versatile Interconnection
Network” , Computer, December 1981, pp. 65-76.

[80] H. Stone. “Parallel Processing with the Perfect Shuffle” , IEEE Transactions
on Computers, vol. C-20, no. 2, February 1971, pp. 153-161.

[81] S. Thanawastien and V. Nelson. “Interference Analysis of Shuffle/Exchange
Networks” , IEEE Transactions on Computers, vol. C-30, no. 8, August 1981,
pp. 545-556.

[82] P. Tobias and D. Trindade. Applied Reliability, Van Nostrand Reinhold, New
York, 1986.

[83] M. Valero, et. al. “A Performance Evaluation of the Multiple-Bus Network for
Multiprocessor Systems” , Proceedings of AC M Conference Performance Eval­
uation, August 1984, pp. 200-206.

[84] V. Vizing. “On an Estim ate of the Chromatic Class of a p-graph” , Diskret.
Analiz., no. 3, 1964, pp. 25-30.

[85] C. Wu and T. Feng. “On a Class of Multistage Interconnection Networks” ,
IEE E Transactions on Computers, vol. C-29, no.8, August 1980, pp. 694-702.

[86] ____________ “The Reverse-Exchange Interconnection Network” , IEE E Trans­
actions on Computers, vol. C-29, no.9, September 1980, pp. 694-702.

[87] -------------------- “The Universality of the Shuffle-Exchange Network” , IEE E
Transactions on Computers, vol. C-30, no. 5, May 1981, pp. 324-332.

[88] K. Yoon and W. Hegazy. “The Extra Stage Gamma Network” , Proceedings of
the 13th Annual Symposium on Computer Architecture, 1986, pp. 175-182.

132

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Approval Sheet
	Abstract
	Vita
	Dedication Page
	Acknowledgements
	Contents (1 of 2)
	Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Basic Concepts and Notation
	Chapter 3: MIN Implementations
	Chapter 4: Fault Tolerant MINs
	Chapter 5: The Simple Fault Tolerant Baseline Network
	Chapter 6: The Fault-Tolerant Clos Network
	Chapter 7: Conclusions
	Bibliography

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

