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ABSTRACT

Title of Thesis: Rays and Beams Near the Shadow Boundary

Weixing Gao, Master of Science, 1989

Thesis directed by: Associate Professor Dr. Edip Niver

Asymptotic techniques in wave propagation problems exhibit

attractive features in computational aspects compared to numerical

methods. However, they experience problems in complicated environments

due to the transition regions associated with them. The transition

region involving a shadow boundary in the downward refractive index

profile has been investigated. The ray paths were determined solving

the ray equation analytically. The Green's function due to a line

source is constructed and evaluated using numerical integration

(reference solution) and asymptotic techniques. Then, the field

produced by the source, is synthesized, using superposition of beams

generated from complex source point representation. The floating

parameters such as beam width, number of beams and the width of the

cone were tuned to get "optimum" solution which represented the total

field in a very broad region very accurately. However, difficulties

were encountered as the observer moved into the shadow region, the

search for complex saddle point was not successful. Another difficulty

is the numerical integration of the generalized ray integral for the

observer located close to the shadow boundary. It was difficult to

determine the steepest descent path numerically, due to rapid growth

of the integrand. Over all it was demonstrated that the complex source

point generated beams could be used to construct the wave fields in the

inhomogeneous media.
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CHAPTER I 	 INTRODUCTION

Problem arising in tropospheric or ionospheric communication

systems, underwater acoustics and seismology generally involve media

with varying parameters to characterize the propagation speed. Wave

propagation in such an inhomogeneous environment usually requires

sophisticated analytical or numerical procedures due to a complexity of

wave processes taken place. The ray method [1] is one of the commonly

used tools to predict response from source excited waves.

The popularity of the ray method stems from its applicability to

realistic environments where experimental data leads to numerically

specified profiles of refractive index or sound speed variations in

longitudinal as well as transversal directions. However, search for ray

paths connecting source and receiver may require many iterations to

achieve specified accuracy. Though geometrical rays yield quite

accurate information on trajectories of energy flow, amplitude

evaluation starts to fail within transition regions where interference

of two or more ray fields of different species occurs. Such transition

regions in the ray method exist quite often near shadow boundaries,

near critical refection, caustics, etc., where the number of ray

species on one side differs from that on the other. Discontinuities in

ray representations sometimes can be smoothed out with only partial

success by transition functions, e.g., Airy function to correct ray

fields near caustics.

One suggested alternative is to replace these transitional rays

with equivalent modes and remainders [2]. Furthermore, hybrid ray-mode

methods have been extended to an inhomogeneous medium to take
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advantages of asymptotic ray theory where ever it applies and the

remaining spectral void is filled with modes and remainders [2]. This

scheme furnishes some basic insights into the propagation mechanisms

and works effectively in analytical test profiles. It remains to be

extended to more general environments, especially those specified

numerically instead of analytically. Recently, an asymptotic procedure

based on the superposition of the Gaussian beams for the computation of

wave fields in an inhomogeneous medium is proposed [3]. The attractive

features of the Gaussian Beam Method (GBM) are inherent in the uniform

nature of beam solutions in transition regions and the elimination of

the search for ray paths. GBM is based on shooting stack of beams from

the source in the direction of the receiver. The beam axis propagates

along the ray paths which now do not require a 2-point search. The

parabolic wave equation method gives solutions of the wave equation

concentrated close to these central rays in terms of the Gaussian

beams. The wave field is then determined at any point as a

superposition of individual Gaussian beams passing through the vicinity

of the receiver.

The parabolic wave equation was initially applied to radio wave

propagation problems by Fock and Leontonovich [5]. Later it was applied

to other wave problems, i.e., acoustics [6] and seismology [7]. It was

first applied to the solution of the wave equation concentrated close

to rays by Babich and his co-workers [8-10].

Babich and Pankratova [10] originally suggested to describe the

wave field in the high frequency region by means of an integral over

all beams concentrated close to the rays and used this integral for

mathematical investigations. Based on this paper, Popov [12] suggested

a new method now known as the Gaussian Beam Method (GBM).
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Results of the first attempts of using this method for computation

of seismic wave fields in a 2-D inhomogeneous medium was initiated by

Popov, Psencik and Cerveny [4]. Later on the method is extended to

other problems by Cerveny & Psencik [13], in Czechoslovakia and a group

of researchers in MIT [14-16]. The common deficiency in the published

results is that no systematic approach in determination of the various

parameters of the GBM exists.

The GBM has been extended to underwater acoustics [16,17]

involving inhomogeneous profiles. Results were obtained using paraxial

Gaussian beams and clearly evident that further work was necessary to

put GBM into a systematic algorithm with a priori predictability.

The improvement developed in this thesis is to use beam

expressions obtained from complex source point representations [18-19]

rather than their paraxial approximations that were used before.

Results are compared to the reference solution obtained by numerical

integration of the Green's function for the downward sloping profile

which involves the shadow boundary if asymptotic ray method is used.
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CHAPTER II. MODEL CONFIGURATION AND GEOMETRICAL

RAY PATHS

The inhomogeneous medium considered in this thesis will be based

on a strong downward refraction profile considered by Pedersen and

Gordon [21]. This profile exhibits strong de-focusing effects with

range and serves as a good example for a transition region involving

the shadow boundary. The numerical treatment of this profile using

paraxial Gaussian beams have been reported by Porter and Bucker [16].

A. WAVE EQUATION

The wave equation for an inhomogeneous medium is

V + k n Tr) u = 0	 (2-1)

where ko is the wave number in free space. n(r) is the refractive index

of the inhomogeneous medium. It is a non-negative real function of

position.

In this thesis, two dimensional geometry is considered where

medium variation will depend on the coordinate y as

n²(y) 	 N²(1 	0)	 (2-2)

where N and q are positive constants. Fig.1 shows the refractive index

profile when N1 =1, q=1.4650x10-³ . The units are chosen according the

notation used by Porter and Bucker [16].

The 2-D wave equation now can be expressed as
n ²

[ 	
++
 8 ² k² N2 (1 + qy)] u = 0 	 (2-3)oax² ay

where the variable u may represent a pressure in an acoustic field or

an electric (magnetic) field intensity in an electromagnetic field

depending on the chosen polarization.
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B. GEOMETRICAL RAY PATHS

To get the ray trace in an inhomogeneous medium characterized by

n² (y) = N²1 (1+qy), one can start from the ray equation [1].

(2-10)

(2-11)
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Let a=cq , b=c-1 , then

Then rearrangement yields

one obtains the ray trace expression for 0<x<x , where x
1
 is the

location of reflection from the boundary for a ray with a given initial

condition.

c
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By using equation (2-16), (2-19), (2-20), (2-21), (2-22), (2-23),

(2-24), (2-25), one can evaluate the ray path in a 2-D space. Fig.2

shows the ray path for the source located at 1000 yards with initial

incident angle varying between
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CHAPTER III. GREEN'S FUNCTION FOR THE DOWN

REFRACTIVE LINEAR PROFILE

The line source is located at a distance y=y 0 from the boundary in

an inhomogeneous medium. This geometry could simulate the underwater

acoustic source in an ocean with the boundary corresponding to the

surface of the ocean, or may represent the TM polarized wave excited by

a magnetic line source in a tropospheric antiduct. The electromagnetic

field can be determined via the Green's function, which satisfies the

2-D time-harmonic wave equation (ej wt time variation is suppressed).

The following derivation for the linear profile is based on the

previous work of Jones [22].

where the Laplacian operator is

and refraction index varies linearly with depth,

By using Fourier transfer relation for 5-function

The Green's function can be represented in spectral domain as

Hence, the original 2-D representation of G(x,x0 ,y,y0) may be

changed into 1-D spectral form of g(y,y0 ;w).

Further substitution of spectral representation (3-3) into the

wave equation (3-1) yields

10



which leads to

Now, let

then it follows

After observing

Then (3-5) yields

Using the integral representation of the δ-function

Further simplification leads to
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then one can get

Now, one can construct the Green's function g o .

When Y=Y0

The possible solutions Ai(Yejπ/³), Ai(Ye-jπ/³), Ai(Yejπ) represent

outgoing, incoming and standing waves, respectively.

Then, one can assume the following combination for the Green's

function

with unknown coefficients A, B and Ru.

Applying boundary condition at Y=-a ² (which physically corresponds

to y=0)

Applying differentiation of (3-6) to (3-7)

one can define the reflection coefficient Ru as

13



Extending the continuity conditions at the source location

results in a set of simultaneous linear equations:

Solution for A yields

one can recognize the denominator as a Wronskian, hence

Applying Wronskian for Airy function of two different components

Then one can express

where

and

14



Following the notation for the spectral representation of the

Green's function for 0 < y <y

the explicit expression for U <y <y 0 becomes

Further substitution of the explicit expression for Ru into the

above integral results in

15



CHAPTER IV. EVALUATION OF THE GREEN'S FUNCTION

The terms in the spectral representation of the Green's function

in (3-9) represent direct and reflected wave fields in the downward

refractive medium. Numerical integration is not practical due to rapid

oscillations of the integrand along the real axis. However at higher

frequencies, the dominant contributions to the integral are mainly due

to wave interferences along the specific direction. This can be mapped

into w-plane as a stationary point in the phase of the integrand.

Hence, the presence of a such stationary point will permit asymptotic

evaluation of the integral along the steepest descent path (SDP). The

two separate terms in the Green's function will be treated separately

as

Here, the first term G 1 represents the wave field corresponding to

the direct ray and the second term G² represents the wave field

contribution reflected form the boundary.

A. ASYMPTOTIC EVALUATION OF THE GREEN'S FUNCTION

To evaluate the Green's function by asymptotic technique, the

integrand has to be expressed explicitly in terms of amplitude and

phase functions. One can use the asymptotic expressions for Airy

16



Then one can simplify the expression for Ru in (3-8) as

Using the asymptotic representation, the integrand of the first

term in (4-1) simplifies into

Using the stationary phase method, the integral in (4-4) can be

approximated as

where only the leading term is kept. Here, the phase function

Q (w)= -2/3(1 +qy0-w²)³/²²) ³/² +2/3(1 +qy-w ²
)

3/2-qw (x-x0)}

has a stationary point determined by the condition

The stationary point w s1 corresponds to a saddle point located on

the SDP. The saddle point is determined numerically. Fig.3 clearly

indicates the presence of valley and mountain regions surrounding the

saddle point.
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The amplitude in (4-5) consists of

Similarly, the reflected wave field can be evaluated as the direct

ray. The asymptotic evaluation of the integrand in (4-2) yields

Again, by stationary phase method, one gets the reflected ray

contribution as

where the saddle point w 	 determined by

The phase and amplitude in (4-6) is determined by

Finally, the asymptotic expression of the Green's function can be

expressed as a superposition of the direct and reflected rays

B. NUMERICAL INTEGRATION OF THE GENERALIZED RAY

Asymptotic Ray Theory (ART) represented by (4-7) begins to fail as

19



the observer starts to move toward the shadow boundary of Fig.2. The

region further away from the boundary experiences only the direct ray

where as the region between the shadow boundary and the source is being

illuminated by both direct and reflected rays. The failure of the ART

to represent the total field in the transition region and beyond

requires an alternative approach. The reference solution to check the

validity of ART wherever it applies is to integrate the Green's

function without referring to asymptotic approximations.

However, as was mentioned before, numerical integration along the

real axis is highly difficult and time consuming. The deformation of

the integration contour from the real axis will permit more efficient

evaluations due to rapid decay of the integrand along the SDP as shown

in Fig.4.

Fig.4 Deformed integration contour along the SDP.

Such a path can be found approximately [2] by employing asymptotic

approximations for the functions in the integrand as in (4-5) and

(4-6).

After locating the saddle point, search in the vicinity for region

in complex w-plane where in the integrand decays. Starting from a

20



saddle point, a simple 3-step search mechanism is employed with initial

directions chosen as 0' =45° , 50° , 40° along a short segment. The search

is continued in the same manner from the end point of that segment

where on the magnitude of the integrand has a minimum value.

Numerical evaluation of the integral along each segment is

performed using variable with Romberg quadrature [241. The process

continues until the last segment is /0 -3 of the total sum. The

integration is then stopped.
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CHAPTER V. THE GAUSSIAN BEAM REPRESENTATIONS

In the conventional Gaussian Beam Method, the fields radiated by

the source are stacked along ray paths which serve as trajectories for

paraxial Gaussian beams. The paraxial beam fields are computed via the

parabolic equation method which yields beam like solutions of wave

equation concentrated in the vicinity of these central rays. The total

wave field at any observation point is then determined as the discrete

superposition of individual Gaussian beams which have traversed the

propagation environment on their way from the source to the observer. A

major advantage of Gaussian beam method is the use of dynamic ray

tracing without regard to transition regions such as caustics [25] and

shooting of beams eliminates exhaustive search for the ray paths.

However, the application of the GBM to the inhomogeneous medium

[25] revealed that for the chosen parameters such as beam width, number

of beams and the width of the cone stacked by beams for a given

observation point, starts to fail as the observer moves along the

range. This effect is more pronounced as the beams begin to experience

more reflections from the boundary depending on the location of the

observer. Hence, GBM requires the adjustment of these parameters each

time as the observer changes its location.

A. THE COMPLEX SOURCE POINT FIELD

An alternative approach to paraxial beam summation (GBM) is to

obtain beam like expressions using Huyghen's principle to continuously

distributed source points on a complex initial surface. For numerical

implementation, the integration is discretized, each discrete element

generates the complete beam solution, without paraxial approximation.
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The conventional Gaussian beam method, on the other hand, relies on the

paraxial approximation of each complex ray.

To generate an incident Gaussian beam, a z-directed line source

with unit strength and suppressed time dependence e+jωt is assumed to

be located at the complex source points with coordinates [19]

in a complex coordinate space, with the tilde denoting a complex

quantity. Interpreted in the real (x,y) coordinate space, b is the beam

width parameter, (x0 ,y0) is the location of the beam waist center, and

a specifies the direction of the beam axis (see Fig.5).

Fig.5. Physical configuration of the complex-source-point
representation.

At a real observation point P(x,y) with x,y >0, the direct and

reflected complex ray fields following (4-1) and (4-2) can be

represented respectively as

23



Again one can evaluate these integrals by numerical integration

along steepest descent path or asymptotic methods. The asymptotic

evaluation of the complex source point direct ray field in (5-2) is

where 	 w s1
	

is 	 the 	 saddle 	 point 	 and 	 is 	 determined 	 from

The second derivative of the phase function is

and the term in the amplitude is given as

Similarly, the reflected complex source point saddle point

contribution of the integral in (5-3) is

where w , the complex saddle point is determined by
s²

remaining quantities are defined as

24



B. COMPLEX HUYGHEN'S PRINCIPLE - GAUSSIAN BEAM STACKING

To implement the complex Huyghen's synthesis of the field G(x,y)

of a real source located at (x y ), one can consider complex sources
0 0'

to be distributed along a complex cylindrical wavefront with complex

radius (s+jb), with s,b real. The location of each complex source is

expressed as

=x -(s+jb)sina, 	 =y0 +(s+jb)cosα 	 (5-6)0α 	 0α
where the surface parameter a is the beam-axis angle measured clockwise

from the negative y-axis in real space, s is the radius of the

wavefront in real space and b is the beam width parameter as shown in

Fig.5. One now can express the real line source field G(x,y) by the

complex source distribution, each element of which generates a spectral

amplitude
+ π

G(x,y)= f 	 (a)da 	 (5-7)

The discretized and windowed version for numerical evaluation of

(5-7) becomes
α2

G(x,y)(a)IL1a , 	 π<α1<α2 < , Δα«1 	 (5-8)

One can see if b=0, 	 (a) takes the form of 	
1 	 ²
(x,y) or 	 (x,y) in

(5-2) or (5-3). Hence, one can evaluate 	 (a) in the same way described

in section A.

C. EVALUATION OF SPECTRAL AMPLITUDE

By using Gaussian beam stacking algorithm, one must first evaluate

the weighting factor in (5-7) or (5-8). The weighting factor could be

determined if one is able to approximate integrals in (5-2) and (5-3)

25



with their approximate paraxial beam expressions. An alternative

approach to evaluate the weighting factor 	 is to consider numerical

integration

(5-9)

Hence, the direct and reflected ray fields can be expressed as

stacks of isolated Gaussian beams. The superposition of beams in a

given spectral interval replacing the direct ray field field becomes

and similar superposition applied to the reflected ray field

The Gaussian beams 	 1(x,y) and 	 ²(x,y) weighted with spectral

amplitudes corresponding to beam width (b =1. 04 and (b=3.0)) have been

evaluated numerically and plotted in Fig. 6. The physical parameters are

chosen as x0 =0, y0 = /00a,— .y ards, X =500yards, y = 400yards, -100° 	+100°,

q=1.4650 x 10-³ yards/s, f=2000Hz and c0 =1677.331 0o 9yards/s
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CHAPTER VI. 	 NUMERICAL ' SULTS

Computer codes have been developed to evaluate the wave fields in

the linear profile shown in Fig.l. The methods of evaluation extend

from numerical integration to asymptotic evaluation of the ray fields.

Saddle points have been determined numerically using falsi regula

method. For a real saddle point one has to specify two possible

approximate values on both sides of that point to be determined. Hence,

the method increments up to a pre-specified accuracy converging on the

saddle point. Complex saddle points arising in complex source point

method were determined using Newton's method. The initial values for

the Newton's method are the corresponding values when the source point

is real. Airy functions were evaluated using standard routines that are

capable to handle complex arguments.

The reference solution in this thesis is obtained using numerical

integration of the generalized ray integral. Detailed explanation has

already been presented at the end of Chapter IV. In numerical

evaluation, a starting point has been chosen at a pre-determined saddle

point. The steepest descent path has been searched. However, knowledge

of the saddle point does not guarantee the convergence in numerical

integration. A solid line in Fig.7-Fig.11 represent the reference

solution. As the observer approaches the shadow boundary, a difficulty

was encountered in determination of the steepest descent path and hence

for a number of points in range, numerical integration of the Green's

function was not computed.

The asymptotic evaluation of the Green's function for real source

coordinates was satisfactory up to the shadow boundary. Beyond this
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boundary the reflected asymptotic ray contribution disappears. This

results in a discontinuity of the total field because of a sudden

disappearance of the reflected ray field. The location of this boundary

depends on the depth of the observer location. The discontinuity of the

physical field across such a boundary is a clear evidence of the

deficiency in ART. The continuity has been corrected using paraxial

beams by Porter and Bucker [16]. However, in this thesis since a

numerical difficulty has been encountered in determining the complex

source point contribution due to reflected wave field, this aspect of

the problem still requires further effort.

The complex source point evaluation seems to posses validity and

could be further employed to resolve the voids of paraxial beams.

Though numerically evaluated paraxial beams [16,17] have simplicity in

computations, they become inadequate under various circumstances [17].

One such circumstance was a failure in simulating the wave field if a

ray will experince more reflections depending on the observer location.

Complex source point solutions in that case correspond to rigorous

representations and are not expected to fail in such circumstances.

Further, numerical testing has to be performed to assess the validity

of the complex source point representations under more severe

conditions.

The "free" parameters in the complex source point representations

are the width of the cone 'D' stacked with beams, 'M' is the number of

beams and 'b' is the width of the beam in terms of wavelengths.

For the case of a narrow beam, b=0.31, the magnitude of the

Green's function in the region close to the shadow boundary when the

source is located at y0=1000yards and an observer depth is Y=400yards y

the magnitude of the Green's function is much smaller than the

29



reference (see Fig.7.1). The positie effect of increasing the number of

beams can be observed in Fig.7.2 and Fig.7.3. However, for accurate

representation it is more practical to increase the width of the

individual beams keeping the number of beams relatively high. This

trend could be tracked down through Fig.8.1 to Fig.8.3. The "optimum"

beam parameters in Fig.3 are representing the Green's function very

accurately. The entire region from the source to the observer have been

evaluated and only the transition region have been depicted in

Fig.8.3(a) for the magnitude and in Fig.8.3(b) for the phase of the

Green's function.

The reference solution starts to fail as the observer approaches

the shadow boundary within the transition region. However, the beam

summation still is in good agreement with art solution until the

boundary beyond which the reflected ray does not exist. The Reflected

ray character is clearly apparent in the region before the shadow

boundary. Beyond the shadow boundary, the tracking of the reflected

wave field contribution was not achieved with the numerical code that

has been developed in this thesis. The results presented are only due

to the direct ray, which exhibits the progressive wave character.

Fig.9.1 to Fig.9.3 show results for much wider beams b=5.0λ and with

the parameters chosen, the "optimum" parameters even if the frequency

has been decreased by a factor of 10, to f=200Hz. If the observer

location has been changed and moved closer to the boundary, the

"optimum" parameter in the complex source point representation may

require slight tuning, which is based on observation of the results

given in Fig.11. In this figure the observer was kept 50 yards away

from the boundary. In all numerical results there was a consistent

agreement of the evaluated Green's function by all different methods.
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CHAPTER VII. 	 CONCLUSIONS

The transition region involving the shadow boundary in the

linearly increasing refractive region may occur in an anti-duct where

on one side of the boundary the field consists of direct and surface

reflected contributions while beyond the boundary the asymptotic ray

field due to the reflection disappears. Though, the field in the shadow

region is not represented in asymptotic ray expression, and

discontinuity in the number of rays occurs, its physical effect has to

be taken into account. Previous work by Porter and Bucker dealing with

paraxial beams has removed this discontinuity and produced a smooth

transition. Here, in this thesis an alternative approach using complex

source point representation for the beam fields is attempted. Accurate

solutions were obtained in terms of summation of complex source

generated beams in a wide region between the source and the shadow

boundary. However, further work has to be carried out to track the

total field through the entire transition region. It had been

encountered with a numerical difficulty in determining the steepest

descent path for the numerical integration which is used as a reference

solution, as the observer was placed in the immediate vicinity of the

shadow region. Similar numerical problem arose in determining the

complex saddle point due to evanescent wave field contribution. The

complex source point approach in general has been successful in

tracking the wave field in the inhomogeneous medium. The spectral

amplitude factor due to a line source has been determined numerically,

though it seems that it will be possible to determine it with an

additional analytical effort.
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