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ABSTRACT

Title of Thesis: Rays and Beams Near the Shadow Boundary
Weixing Gao, Master of Science, 1989
Thesis directed by: Associate Professor Dr. Edip Niver

Asymptotic  techmiques in wave propagation problems exhibit
attractive features in computational aspects compared to numerical
methods. However, they experience problems in complicated environments
due to the tramsition regions associated with them. The transition
region involving a shadow boundary in the downward refractive index
profile has been investigated. The ray paths were determined solving
the ray equation analytically. The Green’s function due to a line
source 1s constructed and evaluated wusing numerical integration
(reference  solution) and asymptotic techniques. Then, the field
produced by the source, is synthesized, using superposition of beams
generated from complex source point representation. The floating
parameters such as beam width, number of beams and the width of the
cone were tuned to get "optimum” solution which represented the total
field in a very broad region very accurately. However, difficulties
were encountered as the observer moved into the shadow region, the
search for complex saddle point was not successful. Another difficulty
is the numerical integration of the generalized ray integral for the
observer located close to the shadow boundary. It was difficult to
determine  the steepest descent path numerically, due to rapid growth
of the integrand. Over all it was demonstrated that the complex source
point generated beams could be used to construct the wave fields in the

inhomogeneous media.
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CHAPTER I INTRODUCTION

Problem arising in tropospheric or ionospheric communication
systems, underwater acoustics and seismology generally involve media
with varying parameters to characterize the propagation speed. Wave
propagation im such an inhomogeneous environment usually requires
sophisticated analytical or numerical procedures due to a complexity of
wave processes taken place. The ray method [1] is one of the commonly
used tools to predict response from source excited waves.

The popularity of the ray method stems from its applicability to
realistic environments where experimental data leads to numerically
specified profiles of refractive index or sound speed variations in
longitudinal as well as transversal directions. However, search for ray
paths connecting source and receiver may require many iterations to
achieve  specified accuracy. Though geometrical rays yield quite
accurate  information on trajectories of energy flow, amplitude
evaluation starts to fail within transition regions where interference
of two or more ray fields of different species occurs. Such transition
regions in the ray method exist quite often near shadow boundaries,
near critical refection, caustics, etc., where the number of ray
species on one side differs from that on the other. Discontinuities in
ray representations sometimes can be smoothed out with only partial
success by transition functions, e.g., Airy function to correct ray
fields near caustics.

One suggested alternative is to replace these transitional rays
with equivalent modes and remainders [2]. Furthermore, hybrid ray-mode

methods have been extended to an inhomogeneous medium to take



advantages of asymptotic ray theory where ever it applies and the
remaining spectral void is filled with modes and remainders [2]. This
scheme furnishes some basic insights into the propagation mechanisms
and works effectively in analytical test profiles. It remains to be
extended to more general environments, especially those specified
numerically instead of analytically. Recently, an asymptotic procedure
based on the superposition of the Gaussian beams for the computation of
wave fields in an inhomogeneous medium is proposed [3]. The attractive
features of the Gaussian Beam Method (GBM) are inherent in the uniform
nature of beam solutions in transition regions and the elimination of
the search for ray paths. GBM is based on shooting stack of beams from
the source in the direction of the receiver. The beam axis propagates
along the ray paths which now do not require a 2-point search. The
parabolic wave equation method gives solutions of the wave equation
concentrated close to these central rays in terms of the Gaussian
beams. The wave field is then determined at any point as a
superposition of individual Gaussian beams passing through the vicinity
of the receiver.

The parabolic wave equation was initially applied to radio wave
propagation problems by Fock and Leontonovich [5]. Later it was applied
to other wave problems, i.e., acoustics [6] and seismology [7]. It was
first applied to the solution of the wave equation concentrated close
to rays by Babich and his co-workers [8-10].

Babich and Pankratova [10] originally suggested to describe the
wave field in the high frequency region by means of an integral over
all beams concentrated close to the rays and wused this integral for
mathematical investigations. Based on this paper, Popov [12] suggested

a new method now known as the Gaussian Beam Method (GBM).



Results of the first attempts of using this method for computation
of seismic wave fields in a 2-D inhomogeneous medium was initiated by
Popov, Psencik and Cerveny [4]. Later on the method is extended to
other problems by Cerveny & Psencik [13], in Czechoslovakia and a group
of researchers in MIT [14-16]. The common deficiency in the published
results is that no systematic approach in determination of the various
parameters of the GBM exists.

The GBM has been extended to underwater acoustics [16,17]
involving inhomogeneous profiles. Results were obtained using paraxial
Gaussian beams and clearly evident that further work was necessary to
put GBM into a systematic algorithm with a priori predictability.

The improvement developed in this thesis is to wuse beam
expressions obtained from complex source point representations [18-19]
rather than their paraxial approximations that were wused before.
Results are compared to the reference solution obtained by numerical
integration of the Green’s function for the downward sloping profile

which involves the shadow boundary if asymptotic ray method is used.



CHAPTER II. MODEL CONFIGURATION AND GEOMETRICAL
RAY PATHS
The inhomogeneous medium considered in this thesis will be based
on a strong downward refraction profile considered by Pedersen and
Gordon [21]. This profile exhibits strong de-focusing effects with
range and serves as a good example for a tramsition region involving
the shadow boundary. The numerical treatment of this profile using

paraxial Gaussian beams have been reported by Porter and Bucker [16].

A. WAVE EQUATION

The wave equation for an inhomogeneous medium is

Vi + konlr)u =20 @-1
where ko is the wave number in free space. n(r) is the refractive index
of the inhomogeneous medium. It is a nom-negative real function of
position.

In this thesis, two dimensionmal geometry is considered where
medium variation will depend on the coordinate y as

w(y) = NI + qy) (2-2)
where N . and ¢ are positive constants. Fig.1 shows the refractive index
profile when N1=1 , q=].4650><]0'3. The units are chosen according the
notation used by Porter and Bucker [16].

The 2-D wave equation now can be expressed as

3? 3* 2 a2 _
T+ — 4+ EN{I+g)u=20 2-3)
a2 3y’ 01
where the variable u may represent a pressure in an acoustic field or

an electric (magnetic) field intensity im an electromagnetic field

depending on the chosen polarization.
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B. GEOMETRICAL RAY PATHS

To get the ray trace in an inhomogeneous medium characterized by
nz(y) = NL;(] +qy), one can start from the ray equation [1].

Von(r) = L [S(r) n(r)] (2-4)
where

n(r)=n(y)=vI+qy

S(r) =gs
dr=%dx+%dy (2-5)
ds=vdx+dy = vI+(@) dx
One can get
Vayn(r) =Vayn(y) = Ve TF gy =04 — 4124
vI+qy
and (2-6)
A3 d[ Rdx+ydd
S(rin(r) | =5 22 (T+gy)
ds| sl gy
V1 +(E%) dx
Comparing equations in (2-5) and (2-6), one gets
4115y 4)=0p 2-7)
I+ ( % )?
which implies
YI*gy . | (2-8)
1+ (9
Further, simplification results in
c(1+qy)=(2P+1 (2-9)
which leads to
%=i¢c71+—q‘y‘)'-7 (2-10)
Final integration yields
T dy tdy
x= J = J (2-11)
vVe(l +qy)-1 veqy +c-1



Let a=cq , b=c-1 , then

tdy
x=f (2-12)
vay+o
So, for x>0 :
x= j 1/ad (ay “*‘b)-—-gmw +d (2-13)
vay+b
x= 2/ TFqy)1+d (2-14)
Then rearrangement yields
(x-d)2=-—2‘%{c(1 +qy)—]] (2-15)
cq
After simplification
2
c(1+qy)-1="41(x-a)
one obtains the ray trace expression for O<x <x , where x, is the

location of reflection from the boundary for a ray with a given initial

condition.
c,9 , (I-¢)
0

For O0<x <x , with initial conditions at x=xo=0 » Y=Y, 90 , one

can solve for constants <, and do as:

c, g (I-c)
Yo=2 d0+ g 2-17
_ dy _ €09 _Coq
tgeo_“ﬁ x=o_T(x'do)lx=o_Tdo (2-18)
then,
2tg6
d = 0
0 ¢, 4
and

2
co(l+qy0)—-tg 60+1
They further reduce to



_ 1
o T +qy Jcosd (2-19)

and ;
?—(}—(] +qy )sin28 (2-20)

Now, one can solve for x at y=0:
_ . 2
(xl—do)—j;E;-EI—Vco—l
Since x <d , (-) sign is chosen leading to

x =d -2 VT (2-21)

1 oc 0
oq

and the angle for reflection at x, is
¢,4q

_d _"o
’891"3% x=xl~T(xl_dO) (2-22)
Hence, x| and 91 will be the initial conditions for the reflected ray.
Now for X>x , one can express the reflected ray path as:
c.q ) (1 -cl)
Constants ¢, and dI are obtairied by letting y=0 and x=x
d=x +2 Ve=T
1 T1e g
and
¢ 94
% x=X =71-—(xl-dl)=tg01
1
Then
¢, =tg"6 +1=—1 (2-24)
cos” @
1
and
_ 1
dI =x +§szn2 01 (2-25)

By wusing equation (2-16), (2-19), (2-20), (2-21), (2-22), (2-23),
(2-24), (2-25), ome can evaluate the ray path in a 2-D space. Fig.2
shows the ray path for the source located at 1000 yards with initial

incident angle varying between 10° < 90 <80° , q=1.4650x 10",
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located at a depth

Fig.2 Ray paths for the source

of 1000 vyards.



CHAPTER III. GREEN’S FUNCTION FOR THE DOWN
REFRACTIVE LINEAR PROFILE

The line source is located at a distance Y=Y, from the boundary in
an inhomogeneous medium. This geometry could simulate the underwater
acoustic source in am ocean with the boundary corresponding to the
surface of the ocean, or may represent the TM polarized wave excited by
a magnoetic line source in a tropospheric antiduct. The electromagnetic
field can be determined via the Green’s function, which satisfies the
2-D time-harmonic wave equation (ej @' time variation is suppressed).
The following derivation for the linear profile is based on the

previous work of Jones [22].
[V LS kzny(y)} G(x,x0 ,y,yo) = - Jx - xo) oy - yo) (3-1)

where the Laplacian operator is
2 2
\vj 2 = _.(_3_2 + iz
ox dy
and refraction index varies linearly with depth,
n'(y) = Ni(1+gy)
By using Fourier transfer relation for J-function

k N

+oo jkNwx -jkNwx
5 - x) = onlj_m(e 0710y , o

dw (3-2)

The Green’s function can be represented in spectral domain as

+00 -jk(f}]\{ wx
G(x,xo,y,yn) = kN1 j-oog(y,yo,w) € dw (3-3)

Hence, the original 2-D representation of G(x,xo,y,y , may be
changed into 1-D spectral form of g(y,yo;w).
Further substitution of spectral representation (3-3) into the

wave equation (3-1) yields

10



d? 2.2 2 gk N wx,
[d RN (1 +qyw)] s(0.y,w) 2me )=-3(y-3,)
-ay

Let
-J'I‘:Oz’\\ﬁw_:c0

8,3 yw) = 8.y w) (21 e )
which leads to

C d 2

[__ + N (1+qy-w) ] = 50y,

dy’

Now, let

Y =a y-a,

then it follows
2 48 1{&]1
iy dy* @y

After observing

dy _ d 2
as}- ozl, Ey =al

d

and

2 2 % 9
1 1
Then (3-5) yields

[Z; + K N(]+qyw)]

Using the integral represcntation of the J-function

oy -y) = j J(y Yo ar

" ﬂ{ aljdt

-7

Further simplification leads to

11

a, g
2 a2 2 2

(3-4)

(3-5)



Then one can get:

k:N
4] !

d? 2 9 2 _
{————%———[I-é-a—q-&--&—}’—w]]gl——

ay* a?

and

Then,

2357203 13 __ 2/3
a1=k Nllq =Kk""q

and
o = (whe1)= [jf-"j‘} 1) = (wh-1)
27 g q
k N 2nf

01
where k¥ = =
q ¢,9

So, equation (3-4) can be written as:

-jk N wx

L y] ey ere 000 = - Lsyy
[ L + 7] ey (2me ) = - 5 90T,

ay*

where

2/3

Y=a1y—oz2=lc (1 +qy-w2)

and

and
o = 2 (wz_ 1)

If we let

-jkolexO
go(Y’Yo) =27rale g(Y,YO)

12



then one can get

2 ‘
[% + Y} g,(V.Y) = S(Y-Y) (-a <Y<ay-a )

where
Y=ozly—oz2 , Yo=aly-a2
Now, one can construct the Green's function g,

When Y¢YO
;—Y—,z- g, Yg0 =0

The possible solutions Ai(Ye™?), Ai(Yel™), Ai(Yé™) represent
outgoing, incoming and standing waves, respectively.

Then, one can assume the following combination for the Green’s

function
g,(1.Y) = A[ Ai(Ye™) + Ru Ai(re™) ] (-a,<¥Y<Y)

and (3-6)
g,(Y.Y) = B Ai(Ye™) (Y<Y)

with unknown coefficients A, B and Ru.
Applying boundary condition at Y =-a, (which physically corresponds

to y=0 )

ago

W |Y=-a, = ¢ -7

Applying differentiation of (3-6) to (3-7)
gl (-a,Y)=4 [Ai'(yei’m )€™ 4 Ry Ai'(YemB)emB} =0
one can define the reflection coefficient Ru as

_ejTL'IB AiI{K2/3(_I wz)e—jn’/3}
Y=-a, Ai" (P (1-w?) T3

Ail(Ye-j 71'/3) e-jﬂf/B

R‘ ==
" Ai'(YejnlB) ejT[/3

13



Extending the continuity conditions at the source location

| . = )

Soly=1% = &ly=¥;
and

dgO

Y=y, ~dy

dg0
dy

y=y =1
0
results in a set of simultaneous linear equations:

BAi(Ye™) =4 [Ai (Y& 37P) + Rudi(Y ™ )]
and

BAI’ (Y&™)-4 [Ai’(Yoe"mn)e'jm?'-}—RuAi’(Yoemm)ejm:’} =]
Solution for A4 yields
Ai(Y &7F)

e-j][/3 Ai,(YOe~j7f/3) Al(yoe)n'/3) - Ai(YGe‘jﬂ:'B) Ail(YoejTt/B) ej?I/S

one can recognize the denominator as a Wronskian, hence
- Ai(Y &)

A = : :
W { Ai(YOe"’m), Ai(YoeJ””) }

Applying Wronskian for Airy function of two different components
o TCI3 4ss -2T3vy ]
W{di(ze"™"), di(ze™"")} =1
where z=YOem yields the solution
A = 2mjdi(Y &™)

Then one can express
]kON N

&1 YY) = g &0T) (o, <¥<¥y)
1
=L . i3 . -TTI3
alAz(Yoe’ )[Az(Yoe )
1YY -jTI3 :
€ Ai' (-a e ) . ik N wx
4 ric 3 Ai(Ye‘n/E’)} g 0 10
Ai’(-ozleJ 3)

where
213 23, 2
a =K""q, a=K ! (w'-1)

and

14



2/3

- 2 2 ;
Y=ay-a,=x (T+qy-w') . Yo=ayya,=c"( ’*'qyg“wz)

Following the notation for the spectral representation of the

Green’s function for O0<y<y,

+o0 —jl%]\{ WX
G(x,x,y.5,) = J_oo gy w) e dw

the explicit expression for 0 <y<y becomes

kONIJ +o Lg 213 2y I3 s 213 2, -j7i3
G(x,xo,y,yo) =Wf_ ooAl {IC (] +qy0-w )e’ } [Al {K (] +qy-w )8 }
1

. -ik N w(x-x
+Ru Az{x2’3(1+qy-w2)e*"’3}] e O / dw

(3-8)

Further substitution of the explicit expression for Ru into the
above integral results in

Glxx 3.y, =
+ 00 . , L
K [Ai {32 (14 qy-wH) ™} 41 {1 (1 + qy-wH)e ™)
- 00
T3 g 2103 2y §T3 . ,
+€ A12 ;{1: (i-&-w‘y)te }Ai{x‘B(J!—%—qy —wé)e’mB}
At {2 (1+w? ) 7%
-JkOle(x—x O)dw

Ai {1 +qy-w2)e‘j”’3}] ¢ (3-9)

15



CHAPTER IV. EVALUATION OF THE GREEN’S FUNCTION

The terms in the spectral representation of the Green’s function
in (3-9) represent direct and reflected wave fields in the downward
refractive medium. Numerical integration is not practical due to rapid
oscillations of the integrand along the real axis. However at higher
frequencies, the dominant contributions to the integral are mainly due
to wave interferences along the specific direction. This can be mapped
into w-plane as a stationary point in the phase of the integrand.
Hence, the presence of a such stationary point will permit asymptotic
evaluation of the integral along the steepest descent path (SDP). The

two separate terms in the Green’s function will be treated separately
as
RV YRRy 20 JTBY  gig 203 2, TT/3
G =jx f Ai{x (1+qy, +w)e } Ai{x" (I+qy+w)e’" 7}
- Q0
TG (x-% ) 4 (4-1)
and

wart® emlsAi’{x 2/3(]-w2)e".7”3}!‘“

o Ai {1 )T
Ai{k? 3 (1+qy-w?)eiT I3y gIRW(EX) gy (4.2)

jwi3
T

G,=jx {x*"(1+qy -w')e

Here, the first term G1 represents the wave field corresponding to
the direct ray and the second term G, represents the wave field

contribution reflected form the boundary.

A. ASYMPTOTIC EVALUATION OF THE GREEN’S FUNCTION
To evaluate the Green’s function by asymptotic technique, the
integrand has to be expressed explicitly in terms of amplitude and

phase functions. One can wuse the asymptotic expressions for Airy

16



functions [23] for |z ] Ilarge.

‘ exp(—% 23/2)
di(z) = PYSYER
and o8, ., (largz]<m) (4-3)
. z exp (- 3z )
Al (Z) = 27':1/2

Then one can simplify the expression for Ru in (3-8) as
Ru=&"exp{jr4/3(1-w*)"}
Using the asymptotic representation, the integrand of the first

term in (4-1) simplifies into

j+o° JK{ -2/3(1+qy, -w? )3/2 + 2/3(1+qy-w P*- qw(x-x )}
= w
1 4 dr (I+qy0 W )1/4 (]-}-qy—W)““ (4-4)

Using the stationary phase method, the integral in (4-4) can be

approximated as

R e “-5)

where only the leading term is kept. Here, the phase function

Q, (w)={-2/3(1+qy -w')* +2/3(1+qy-w*)**-qw (x-x ok
has a stationary point determined by the condition

Q' (w )={2w (I+qyw *)'"2w (1+qy-w *)"-q(xx )} =0

The stationary point W corresponds to a saddle point located on
the SDP. The saddle point is determined numerically. Fig.3 clearly
indicates the presence of valley and mountain regions surrounding the

saddle point.

17
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The amplitude in (4-5) consists of

Qrw)={2(I+qy -w>)'"? 2w’ (1+qy-w?)""}
- {2 (1 +gy-w)' 2w (1 +gy-w)'P)
and )
F (W)= T
! 4n (1 +qy0-w )

174

(I+qy-w?)

Similarly, the reflected wave field can be evaluated as the direct
ray. The asymptotic evaluation of the integrand in (4-2) yields
oo jic{-2/3(1+qy, W P122/3(1 +qy-W PP +4/3(1-W ] -qw(x-x )
73 ”I (I+gy, ¥} (1+gy-w j" v

Again, by stationary phase method, ome gets the reflected ray

contribution as

= /E—QT(_} f”wz Fw) J*%0) (4-6)

where the saddle point W, is determined by
, _ ‘ 2,112 2,172 22y
Q' (w )={2w(l+qyw )" +2w (1+qy-w_ ) 4w _(I-w ')"-q(x-x )} =0

The phase and amplitude in (4-6) is determined by

Q,(w)={-2/3(1+qy -w")"*-2/3(1+qy-w’) +4/3(1-w*)*-qw (x-x )}

and
Qiw) = {2(1+qy w2t 2w2(1+qyo-w2)‘“2} + {2 (1+qy-wh'?
2R (1 +gy-wh) ) - {4 (1-wP) P aw? (1-w?) MY
and P o) = j
? 4n (1 +qy0—w2)”“(1+qy-w2)“ 4

Finally, the asymptotic expression of the Green’s function can be

expressed as a superposition of the direct and reflected rays

G(x,xo,y,y0)= F(w )e’KQ (w )+/ F(wsz)esz(wsz)
“4-7)

B. NUMERICAL INTEGRATION OF THE GENERALIZED RAY

Asymptotic Ray Theory (ART) represented by (4-7) begins to fail as

19



the observer starts to move toward the shadow boundary of Fig.2. The
region further away from the boundary experiences only the direct ray
where as the region between the shadow boundary and the source is being
illuminated by both direct and reflected rays. The failure of the ART
to represent the total field in the tranmsition region and beyond
requires an alternative approach. The reference solution to check the
validity of ART wherever it applies is to integrate the Green’s
function without referring to asymptotic approximations.

However, as was mentioned before, numerical integration along the
real axis is highly difficult and time consuming. The deformation of
the integration contour from the real axis will permit more efficient

evaluations due to rapid decay of the integrand along the SDP as shown

in Fig.4.

Im{w}
Complexw-plane

SDP

o
45

€ " Re{w}

Fig.4 Deformed integration comtour along the SDP.

Such a path can be found approximately [2] by employing asymptotic
approximations for the functions in the integrand as in (4-5) and
(4-6).

After locating the saddle point, search in the vicinity for region

in complex w-plane where in the integrand decays. Starting from a

20



saddle point, a simple 3-step search mechanism is employed with initial
directions chosen as §’ =45° s 500, 40° along a short segment. The search
is continued in the same manner from the end point of that segment
where on the magnitude of the integrand has a minimum value.

Numerical evaluation of the integral along each segment is
performed using variable with Romberg quadrature [24]. The process
continues until the last segment is J0® of the total sum. The

integration is then stopped.
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CHAPTER V. THE GAUSSIAN BEAM REPRESENTATIONS

In the conventional Gaussian Beam Method, the fields radiated by
the source are stacked along ray paths which serve as trajectories for
paraxial Gaussian beams. The paraxial beam fields are computed via the
parabolic equation method which yields beam like solutions of wave
equation -conccntrated in the vicinity of these central rays. The total
wave field at any observation point is then determined as the discrete
superposition of individual Gaussian beams which have traversed the
propagation environment on their way from the source to the observer. A
major advantage of Gaussian beam method is the use of dynamic ray
tracing without regard to transition regions such as caustics [25] and
shooting of beams eliminates exhaustive search for the ray paths.

However, the application of the GBM to the inhomogeneous medium
[25] revealed that for the chosen parameters such as beam width, number
of beams and the width of the cone stacked by beams for a given
observation point, starts to fail as the observer moves along the
range. This effect is more pronounced as the beams begin to experience
more reflections from the boundary depending on the location of the
observer. Hence, GBM requires the adjustment of these parameters each

time as the observer changes its location.

A. THE COMPLEX SOURCE POINT FIELD

An alternative approach to paraxial beam summation (GBM) is to
obtain beam like expressions using Huyghen’s principle to continuously
distributed source points on a complex initial surface. For numerical
implementation, the integration is discretized, each discrete element

generates the complete beam solution, without paraxial approximation.
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The conventional Gaussian beam method, on the other hand, relies on the
paraxial approximation of each complex ray.

To generate an incident Gaussian beam, a z-directed line source
with unit strength and suppressed time dependence ¢TI0t 1s assumed to
be located at the complex source point § with coordinates [19]

§0=x0—jbsina , §o=yo+jbcosa b>0 , ¥,>0 (5-1)
in a complex (X,y) coordinate space, with the tilde denoting a complex
quantity. Interpreted in the real (x,y) coordinate space, b is the beam
width parameter, (xo,y 0) is the location of the beam waist center, and

a specifies the direction of the beam axis (see Fig.5).

.
s(xo,yo) i\ ~—Incident Beam
b—

N R Complex Source Point
5(x,,y,)

Fig.5. Physical configuration of the complex-source-point
representation.

At a real observation point P(x,y) with x,y>0, the direct and
reflected complex ray fields following (4-1) and (4-2) can be
represented respectively as

+00 : :
(";1(x,y) =jlc”3f Ai{x2/3 (1 +q5'vo-w2) eﬂm} Ai{lc2/3(1 +qy-w2)e"m3}
- 0
e TKY (x-fo) dw (5-2)

and
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1/3‘+O°ejn,3Ai'{K 2/3{]-%)2)6-“”:/3} Ai{xzw(l‘*‘qf’ _wz)ejnn}
2173 EINREIE 0
. oo Ai" {K (1-w )¢ }

Ai{x?"? (1+qy-w?)el™} e-jicqw(x-ig) dw (5-3)

G,xy)=jx

Again one can evaluate these integrals by numerical integration
along steepest descent path or asymptotic methods. The asymptotic
evaluation of the complex source point direct ray field in (5-2) is
(n;l(x,y)E/jn_plms!)e—jx{-ﬂ.?(] +q3’10-w2)3’2+2/3(1 +qy—w2)—qw(x-fo)}

k QW ) (5-4)

where W~ is the saddle point and is  determined from

P R Y N 2012 N D2 R
Qt(wsl)—{2wsl(1+qyo-wsl) 2% (1+qy-w ) "-q (x-% o)}—0

The second derivative of the phase function is

Q;'(W)={2(1+q5,0_w2) “2-2w2(1+q530-w2 )t

{2 (I+qy-w* ) '? - 2w (1 +qy-w?) 7}
and the term in the amplitude is given as

i/4

Fl(w)= 2 l{
dn (1+q5 )" (1+qy-w')

Similarly, the reflected complex source point saddle point

contribution of the integral in (5-3) is

/.._.._ P W) X (5-5)
K

JK{-2/3(1+47 W 2/3(1 +qy-w')?+4/3(1-w')-qw (x-% )}

where ﬁ'zsz , the complex saddle point is determined by

O: @ )={2W_(1+45 - " +2% (1+qy-w )40 (1-% ) -q(x-% )} =0

remaining quantities are defined as

Orwy={2(1+q5 ,-w') 2w (1+q5 -w? )"} + {21 +qy-w')
_2w2 (1+qy_w2)~1/2} _ {4(1_‘w2)1/2_4w2(1_w2)-1/2}
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and

Fow= J

47‘: (]+q§,0_w2)1/4 1/4

(1+qy-w')
B. COMPLEX HUYGHEN’S PRINCIPLE - GAUSSIAN BEAM STACKING

To implement the complex Huyghen’'s synthesis of the field G{x,y)
of a real source located at (xo,y 0), one can consider complex sources
to be distributed along a complex cylindrical wavefront with complex
radius (s+jb), with s,b real. The location of each complex source is
expressed as

J"an=xo-(s+jb)sina, S'zoa=y0+(s+jb)cosa O<a=<2n (5-6)
where the surface parameter « is the beam-axis angle measured clockwise
from the negative y-axis in real space, s is the radius of the
wavefront in real space and b is the beam width parameter as shown in
Fig.5. One now can express the real line source field G(x,y) by the
complex source distribution, each element of which generates a spectral
amplitude &

Gx,y)=[ % & ()da (5-7)

-7

The discretized and windowed version for numerical evaluation of

(5-7) becomes

o2
G(x,y)sz DG ()da , < <a <n, dacl (5-8)
al

One can see if b=0, & (a) takes the form of @l(x,y) or C“}Z(x,y) in
(5-2) or (5-3). Hence, one can evaluate (“}(a) in the same way described
in section A.

C. EVALUATION OF SPECTRAL AMPLITUDE &

By using Gaussian beam stacking algorithm, one must first evaluate

the weighting factor & in (5-7) or (5-8). The weighting factor could be

determined if one is able to approximate integrals in (5-2) and (5-3)

25



with their approximate paraxial beam expressions. An alternative
approach to evaluate the weighting factor @ is to consider numerical
integration.

From (5-8) ome can get

a2 a2

Gy =) ase;(ama=asz G () de
xl a1

Applying (4-3),(4-5) and (5-4),(5-5), one can get

G(x,y)=G (x.y)+G,(x,y) (5-9)
and
(8 74 a2 a2
asz G(a)Aa=&52 <"}1(x,y)Aa+ ) Gl(x,y)Aa (5-10)
(531 al «l

Comparison of (5-9) and (5-10) yields

G (x,y) G, (x,y)
P = ! = 2 (5-11)

2 2
& () &, x.y)

RIIR
ROIR

1 1
Hence, the direct and reflected ray fields can be expressed as
stacks of isolated Gaussian beams. The superposition of beams in a

given spectral interval replacing the direct ray field field becomes
a2

G xy=) B (x,y)Aa

«xl

and similar superposition applied to the reflected ray field
a2
G =] &6, ryda

The Gaussian beams ﬁal(x,y) and %Gz(x,y) weighted with spectral
amplitudes corresponding to beam width (b=1.04) and (b=3.0A) have been
evaluated numerically and plotted in Fig.6. The physical parameters are
chosen as x =0, y,=I000ys, x=500res, y=400ysrs, -100° <a=< +100°,
q=1.4650 X 10”yaxasis, f=2000wz and c =1677.3319ysresis.
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CHAPTER VI NUMERICAL RESULTS

Computer codes have been developed to evaluate the wave fields in
the linear profile shown in Fig.1. The methods of evaluation extend
from numerical integration to asymptotic evaluation of the ray fields.
Saddle points have been determined numerically using falsi regula
method. For a real saddle point onme has to specify two possible
approximate values on both sides of that point to be determined. Hence,
the method increments up to a pre-specified accuracy converging on the
saddle point. Complex saddle points arising in complex source point
method were determined using Newton’s method. The initial values for
the Newton’s method are the corresponding values when the source point
is real. Airy functions were evaluated using standard routines that are
capable to handle complex arguments.

The reference solution in this thesis is obtained using numerical
integration of the generalized ray integral. Detailed explanation has
already been presented at the end of Chapter IV. In numerical
evaluation, a starting point has been chosen at a pre-determined saddle
point. The steepest descent path has been searched. However, knowledge
of the saddle point does not guarantee the convergence in numerical
integration. A solid line in Fig.7-Fig.11 represent the reference
solution. As the observer approaches the shadow boundary, a difficulty
was encountered in determination of the steepest descent path and hence
for a number of points in range, numerical integration of the Green’s
function was not computed.

The asymptotic evaluation of the Green’s function for real source

coordinates was satisfactory up to the shadow boundary. Beyond this
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boundary the reflected asymptotic ray contribution disappears. This
results in a discontinuity of the total field because of a sudden
disappearance of the reflected ray field. The location of this boundary
depends on the depth of the observer location. The discontinuity of the
physical field across such a boundary is a clear evidence of the
deficiency im ART. The continuity has been corrected using paraxial
beams by Porter and Bucker [16]. However, in this thesis since a
numerical difficulty has been encountered in determining the complex
source point contribution due to reflected wave field, this aspect of
the problem still requires further effort.

The complex source point evaluation seems to posses validity and
could be further employed to resolve the voids of paraxial beams.
Though numerically evaluated paraxial beams [16,17] have simplicity in
computations, they become inadequate under various circumstances [17].
One such circumstance was a failure in simulating the wave field if a
ray will experince more reflections depending on the observer location.
Complex source point solutions in that case correspond to rigorous
representations and are not expected to fail im such circumstances.
Further, numerical testing has to be performed to assess the validity
of the complex source point representations under more severe
conditions.

The “free” parameters in the complex source point representations
are the width of the cone D’ stacked with beams, M’ is the number of
beams and ’b’ is the width of the beam in terms of wavelengths.

For the case of a narrow beam, b=0.31, the magnitude of the
Green’s function in the region close to the shadow boundary when the
source is located at y0=]000yards and an observer depth is yp=400ynrds,

the magnitude of the Green’s function is much smaller than the
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reference (see Fig.7.1). The positie effect of increasing the number of
beams can be observed in Fig.7.2 and Fig.7.3. However, for accurate
representation it is more practical to increase the width of the
individual beams keeping the number of beams relatively high. This
trend could be tracked down through Fig.8.1 to Fig.8.3. The “optimum”
beam parameters in Fig.3 are representing the Green’s function very
accurately. The entire region from the source to the observer have been
evaluated and only the transition region have been depicted in
Fig.8.3(a) for the magnitude and in Fig.8.3(b) for the phase of the
Green’s function.

The reference solution starts to fail as the observer approaches
the shadow boundary within the transition region. However, the beam
summation still is in good agreement with art solution until the
boundary beyond which the reflected ray does not exist. The Reflected
ray character is clearly apparent in the region before the shadow
boundary. Beyond the shadow boundary, the tracking of the reflected
wave field contribution was not achieved with the numerical code that
has been developed in this thesis. The results presented are only due
to the direct ray, which exhibits the progressive wave character.
Fig.9.1 to Fig.9.3 show results for much wider beams b#=5.04 and with
the parameters chosen, the ”“optimum” parameters even if the frequency
has been decreased by a factor of 10, to f=200u.. If the observer
location has been changed and moved closer to the boundary, the
"optimum” parameter in the complex source point representation may
require slight tuning, which is based om observation of the results
given in Fig.11. In this figure the observer was kept 50 yards away
from the boundary. In all numerical results there was a consistent

agreement of the evaluated Green’s function by all different methods.
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CHAPTER VII. CONCLUSIONS

The transition region involving the shadow boundary in the
linearly increasing refractive region may occur in an anti-duct where
on one side of the boundary the field conmsists of direct and surface
reflected contributions while beyond the boundary the asymptotic ray
field due to the reflection disappears. Though, the field in the shadow
region is not represented in  asymptotic ray expression, and
discontinuity in the number of rays occurs, its physical effect has to
be taken into account. Previous work by Porter and Bucker dealing with
paraxial beams has removed this discontinuity and produced a smooth
transition. Here, in this thesis an alternative approach using complex
source point representation for the beam fields is attempted. Accurate
solutions were obtained in terms of summation of complex source
generated beams in a wide region between the source and the shadow
boundary. However, further work has to be carried out to track the
total field through the entire transition region. It had been
encountered with a numerical difficulty in determining the steepest
descent path for the numerical integration which is used as a reference
solution, as the observer was placed in the immediate vicinity of the
shadow region. Similar numerical problem arose in determining the
complex saddle point due to evanescent wave field contribution. The
complex source point approach in general has been successful in
tracking the wave field in the inhomogeneous medium. The spectral
amplitude factor due to a line source has been determined numerically,
though it seems that it will be possible to determine it with an

additional analytical effort.
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