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ABSTRACT

Title of Thesis: Integrated Voice/Data Services on Multihop Radio Networks

Chialun Lu, Master of Science in Electrical Engineering, 1989

Thesis directed by: Irving Wang

Department of Electrical Engineering

Integrated voice/data is the first step toward Integrated Services

Digital Networks (ISDN). Various techniques have been proposed and

analyzed for multiplexing voice and data over a large bandwidth channel.

Network efficiency is what we are most concerned about. In this paper, we

address the problem of determining optimal access policies for a tandem

ISDN network by using Dynamic Programming. Computer simulation shows

that optimal policy minimizes the data delay.
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CHAPTER 1 INTRODUCTION

1-1 ISDN Evolution

Thousands of Data Communication Networks are deployed worldwide.

These systems range from small networks within a building to large ones

covering entire country or even spanning the globe. No matter how these

networks are operated, privately or publicly, they have the same object,

that is, to provide communication ability from users to others.

Some networks use packet-switched technology, in which blocks of

data called packets are transmitted from a source to a destination. Source

and destination can be any type of data communicating and/or data-

handling devices, such as user terminals, computers or printers.

Other networks use circuit-switched technology. 	 The most common

example is the telephone networks to which we are accustomed. In this

type of networks, which usually transmit voice or data, a private

transmission path is established between any pair or group of users and is

held as long as required. Integrated networks, which combines aspects of

both packet- and circuit- switched technology, are now beginning to be

deployed.
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Nowadays, the real-time voice transmission is still the main mode of

communication and all projections indicate that voice will continue to be

the heaviest user of communication facilities worldwide. In addition to the

voice traffic, the other types of traffic such as data, files, facsimile and

images, should also be considered for transmission as well. However, most

of the telephone networks are still designed for voice analog only; thus, data

signals must normally be converted to voice-type analog signals using devices

called modems. This limits the rate of transmission of data to at most

9600-bps, and then only using private, specially conditioned transmission

facilities. Typically, in the public telephone network, data bit rates can

only achieve 1200 bps or 2400 bps.

In early 1960s, American Telephone & Telegraph (AT&T) first

introduced a digital carrier system to the world and then the telephone

networks began a new era, in which the telephone network began to use

digital transmission and switching facility. Once telephone networks become

all digital., digital voice, digital images and data files could be transmitted

in the same network. At present time, telephone networks are partly

analog and partly digital, only providing analog voice transmission but

inadequate for data transmission, facsimile and video. Therefore, a new

system is necessary to provide all users with all types of traffic services.

Integrated Services Digital Networks (ISDN) is the new system

redesigned for the above purpose and this new advanced digital system is

expected to replace a major portion of worldwide telephone system by early

21 century. However, ISDN will not happen overnight because present

investment in current telephone system is so huge. 	 So, ISDN have to
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coexist with present analog system for many years. This reason has had a

major influence on final form of ISDN. Even when ISDN is a brand new

redesigned system, it still has to consider current voice telephone system.

The analog voice telephone system (the public switched network in

telephone jargon) originally sent all its control information in the same 4

kHz channel used for voice. Pure tones at various frequencies were used

for signaling by the system itself. This scheme, known as in-band signaling,

meant that in theory users could interfere with the internal signaling

system.

In 1976 AT&T built and installed a packet switching network

separate from the main public switched network. The network, called

Common Channel Interoffice Signaling (CCIS), ran at 2.4 kbps and was

designed to move the signaling traffic out-of-band and these signals used

dedicated signaling slots of Time Division Multiplexing (TDM) frame.

Another development that has been taking place since the mid 1970s

is the growth of packet switching networks, which are dedicated for data

and provide local terminal to access a remote database or time-sharing

system.

These facts mean that the early stage of ISDN was designed based

on the limitation of the existing public circuit switching networks, CCS

network and packet networks. The first step toward ISDN was to define

and standardize the user to ISDN interface. Next step was to slowly start

replacing existing end offices with ISDN exchanges that support the ISDN



interface as shown in Fig. 1-1 (a). Eventually the existing transmission and

switching networks will be replaced by an integrated one, as shown in Fig.

1-1 (b), but this will not occur until next century.

4

Figure 1-1(a) Initial stage of ISDN evolution

(b) Later ISDN
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The principal benefits of ISDN is that the users can be expressed in

terms of cost saving and flexibility. The integration of voice and a variety

of data on a single transport system means that the user does not have to

buy multiple services to meet multiple needs. The efficiency and economics

of scale of an integrated network allows these services to be offered at

lower cost than if they were provided separately. Further, the user needs

to bear the expense of just a single access line to those multiple service.

The ISDN will provide a variety of services supporting existing voice

and data application as well as providing for applications now being

developed. Table 1-1 shows the type of services that could be supported

by ISDN. These services fall into the broad categories of voice, digital

data, text and image.

1-2 Multiplexing and Switching Techniques

FDM

Frequency Division Multiplexing (FDM) is possible when useful

bandwidth of the medium exceeds the required bandwidth of signals to be

transmitted. A number of signals can be carried simultaneously if each

signals is modulated on to a different carrier frequency.

Fig. 1-2 shows how the voice-grade telephone channels are multiplexed

in FDM. 	 Filters limit the usable bandwidth to about 3 kHz per voice
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grade channel. 	 When many channels are multiplexed together, carrier

frequency allocate every 4 kHz will keep them separate well.

BW
64kbps

Wideband
(>64kbps)

TELEPHONE
Telephone
Leased Circuits
Information retrieval

Music

DATA Packet switched
Circuit switched
Leased circuits
Telemtary
Funds transfer

Information retrieval
Mailbox
Alarms

High speed
computer
communication

TEXT Telex
Videotex
Electronic mail

IMAGE Facsimile
Surveillance

TV conferencing
Teletex
Videophone
Cable TV
distribution

Table 1-1 Candidate Service for ISDN



Fig.1-2 Frequency Division Multiplexing

TDM

Time Division Multiplexing is possible when the achievable data rate

of the medium exceed the data rate of digital signals to be transmitted.

Multiple digital signals or analog signals carrying digital data can be carried

on a single transmission path by interleave portions of each signal in time.



Fig 1-3 Time Division Multiplexing (TDM).

Fig. 1-3 shows DS1 transmission format which multiplexing 24

channels.Each frame contains eight bits per channel plus a control bit for

24x8+1=193 bits. For voice transmission, each channel bandwidth is 4 kHz.

According to Nyquist's theory, sample rate must be no less than 8 kHz.

With a frame length 193 bits, we have a data rate 8kx193=1.5444 Mbps to

provide 24 voice channel services.

Circuit Switching

Communication via circuit switching implies that there is a dedicated

communication path between two users. That path is connected sequence of

links between nodes. On each physical link, a channel is dedicated to

connection. The most common example of circuit switching is the public

telephone network.

8



In circuit switching, before any data or voice can be transmitted, an

end-to-end circuit must be established. 	 The transmitting signals can be

digital or analog. 	 Channel capacity is dedicated for the duration of a

connection, even if no data are being transferred.

Packet Switching

There are no dedicated path in packet switching which only can

transmit packet data. Packets are stored until being delivered, and each

packet has a route, even if they have the same source and destination.

With packet switching, any unused bandwidth may be utilized by other

packets from unrelated sources going to unrelated destination, because

circuits are never dedicated.

1-3 Multihop Packet Radio Networks

Broadcast radio networks carry data between nodes equipped with

radio transceivers. If two end users are not within communication range,

intermediate radio will rebroadcast the data, thus creating a multihop radio

networks.

Various technology and routing protocol have been proposed to

establish reliable end-to-end path for maximum network throughput, or we

can say best sharing. Sharing can be occurred in three domains, frequency,

time and space.

9



One of the major problems in the multihop radio network is how to

assign the available channel capacity among the users in some optional or

efficient manner.

Multihop radio networks operating under random access protocol are

susceptible to two types of interference--primary conflict and secondary

conflict.

Primary Conflict

In the same channel, a node can not receive and transmit

simultaneously, nor can a node receive from more than one transmitter

simultaneously. As shown in Fig. 1-4, assume each link only has one

channel and the same frequency. If A transmits data to B, then C can

not transmit data to B or A; otherwise, it will cause primary conflict. A

line graph can be developed from Fig.l-4 shown in Fig. 1-5.

10

Fig 1-4 Primary Conflict 	 Fig 1-5 Line Graph



In the line graph, if any link is active (transmission and receiver), then its

neighbor link can not be active. For example, if AB link is active, no

matter A transmits to B or B transmits to A, link BC, AC and AE can

not be active.

Secondary Conflict

Frequently it is possible for a receiver to be blocked by cumulative

power of its transmitting neighbors. For a given link threshold, K, any

node that is in neighborhood of more than K active transmitter cannot

receive.

11

Fig 1-6 Secondary Conflict

In fig. 1-6, if threshold K=1, suppose link A-B is active, node A is

transmitting to B when C transmits to D or H transmits F will cause

secondary conflict.
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CHAPTER 2 MODEL DESCRIPTION

2-1 Fixed boundary and movable boundary scheme

Various techniques have been proposed and analyzed for multiplexing

(either in time or frequency) voice and data over a large bandwidth. In

general, there are two kinds of techniques used to multiplex voice and data:

fixed boundary scheme and movable boundary scheme.

In the fixed boundary scheme, the communication channels on each

link are divided into two groups, one of which is assigned to the voice and

the other one is dedicated to the data. Both voice and data are not

allowed to use the channels, no matter they are busy or not, that do not

belong to their own groups. However, in the movable boundary scheme,

data traffic is allowed to use idle channels of voice. But voice is still not

allowed to use the idle slots of data. 	 The frame structure suggested is

indicated in Fig. 2-1. 	 The blocking probabilities of voice calls remain the

same in either case. 	 Queueing delay of data packets are reduced in the

movable boundary scheme since advantage is taken by using the idle slot of

voice call to transmit more data packets. Detail descriptions of the

time-division-multiplexing frame structure for such scheme appear in [1] and [2].
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Fig. 2-1 Movable-boundary strategy

2-2 Model assumption

Consider a 3-node 2-link network, illustrated in Fig.2-2, operating in

multihop radio environment. Frequency Division Multiplexing (FDM) scheme

is used to multiplex two types of digital packets, data and voice, into the

same communication links. A model similar to the one described in [3] is

adopted in this paper. Let Ni denote the number of channels available on

link i, i= 1 or 2. Each of these channels occupies the same amount of

bandwidth Ca which is the capacity required to serve one voice call and

assumed to be 1 for simplicity. Both links are assumed to operate at the

same frequency range, ie. if Ni ) N2 ( N1 (N 2), then link 2 ( link 1 )

channels are said to be subset of link 1 ( link 2 ) channels in terms of

frequency bandwidths. If N 1 = N 2, frequencies used on both links are

exactly the same.
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Fig. 2-2 A tandem communication networks

At each time instant, Ncl of the N1 channels are utilized to Ncl to

serve voice calls. To avoid the primary conflict in the radio network, Noy

channels of the same frequencies on link 2 have to be relinquished and stay

unused. Amount of channels on link 1 are also sacrificed due to the voice

call usage of channels on link 2. Therefore, only N1-Nc1-Nc2 and N2-Nc1-Nc2

channels are left for the data service on link 1 and link 2, respectively.

Primary conflict is, again, taken into consideration when data are sharing

these residual bandwidths. On each link, under the assumption in this

paper, simply one data message could receive service from all the remaining

channels, if there is any available, at any instance.



In the network of Fig. 2-2, both voice calls and data messages

transmitted from node A are destined for node C via node B. At node B,

more voice and data join the above communication bounded for C which is

a plain receiver. When a voice call occurs at node A or B, a decision has

to be made whether it is accepted or not. This is due to the attribute of

voice that it can endure a block, but not a delay. Two factors could

affect the decision: 1. if there are available channels, on both links, can

accommodate this voice call. 2. if the acceptance of the call would

seriously hamper the service of data. The cost function will be introduced

in the next section.

The arrivals of voice call and data message at node A, B follow the

Poisson process with average rate λc1, λmL, λc2 and λm2, respectively. The

exponentially distributed service times of data messages on link 1 and link

2 are of average rate µm1 and µm 2 . The average holding times of voice

calls on link 1 and 2 are 1/µc1 and 1/µc2, both of which also form

exponential processes.

Movable boundary scheme has overload problem [4]. When datas'

utilization (traffic intensity) is less than data slots N2 ( p2 ( N2), the

system will be in underload region and it will be stable. When p2 )N2,

the system will be in overload region and then data queue increase very

fast and large. If voice call continues, occupying the slots, the system will

be unstable [5].

15



In our model, the system avoids the overload region by blocking

calls. So the system always in stable state and will not have infinite

queue of data.

Dynamic Programming technique is employed in our model's control

to decide whether to block a arriving call or not. We will discuss this in

Chapter 3.

A tandem network with 2 links (2 hops) interconnects voice and data

users via Frequency Division Multiplexing (FDM). We assume that

available bandwidth C1 of link 1 is divided to N1 units. Co, each channel's

bandwidth, is equal to C1 divided by N I. Co also is capacity required to

serve a voice call.

We assume every call from link 1 must go through link 2. For the

reason of avoiding interference, any call in link 1 also has to occupy

another channel in link 2. Therefore, a call from link 1 to link 2 (or node

1 to node 3) could occupy 2 channels. And then a call from node 2 to

node 3 will only use one channel without any interference problems.

Link 1 may serve 	 calls, which 0≤2i1≤N1, at any time. Link 2

may serve ii and i2 calls, which 0≤2i1+i2≤N2.	 The data traffic will use

the remaining channels. 	 Each node has a very large (infinite) buffer for

data queue. So there is no blocking problem for data traffic.

16

When a call arrives, the system is either given a channel immediately

or blocked, decided by control equation. When a call is accepted at node



1 or node 2, the service rate for the data traffic is instantaneously

decreased by one or two units of channels.

In our model, we assume all call arrivals and departure are Poisson

distribution with the rate λclandµcl. Data traffic arrivals and departure

also form a possion distribution with the rate λ ml and λml.

Under these assumption, the number of messages in the system (or in

the node) and the number of calls being served, at any particular node,

constitute a state transition problem of this system. We can now formulate

the control problem, using the Markov decision processes and Dynamic

Programming to find an optimal solution for channel assignment.

17
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CHAPTER 3 CONTROL PROBLEMS AND
CONTROL EQUATION

3-1 Control problems

In this section, channel assignment problems, for either voice call or

data message, are studied in detail. When a message arrives at a node

and finds that there is no channel available, it will join the queue and wait

for the service based on the first-come-first-serve policy. This unavailability

could be due to the fact that all the channels are occupied by the voice

calls or that one data message is receiving service on the link. The queue

size is assumed infinite, therefore no data blocking problem will be

considered. At the time the data locate channels for its service, a decision

that how many it will grasp for its own use has to be made. This

decision should lead to the best benefits of the whole system.

When a voice call attempts a transmission from A to C, it will

immediately be granted two channels on link 1 and two channels on link 2

( one channel for transmission, the other one for avoiding primary conflict

), if it is accepted at A. If the call is from B to C, one channel on each

link is given for its use.



On the occasion that a voice call finishes its service, it releases the

channels it occupied and donates them to the data message at service.

Once a data message completes its transmission, the first one waiting in the

data queue takes over all the channels left behind immediately.

The voice call is said to have higher priority than the data message

in the sense that it can preempt channels from the data message at service.

But it has to be noted that the voice call would probably be blocked at

the entrance of a node because too many messages are waiting desperately

for the service in data queue.

3-2 Markovian Decision

In this tandem network model, there exist two nodes and three

links. Under the assumption that the global information of voice call and

data message is known to each node, let st=(i 1,i2,j1,j2) be the state of the

system at time tϵ  [0,∞ ), where

number of calls being served at link 1. 1.1,2

j1: number of message being served at link 1. 1=1,2

and Ft E S

x{0,1,2,...}. Here S is the state space of the system.

The following operators which map s t into S are adopted in this paper:

19



Here A and D represent an arrival and a departure, respectively, and

subscripts ci, mi stand for the voice call and the data message on node i,

i=1 or 2.

Under statistical assumptions adopted in Chapter 2, s t is a four

dimensional continuous time Markov process. The transition rates out of a

nonboundary state are shown in Fig. 3-1.

20

Fig. 3-1 Transition rates
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Let Zi, in the range of [0,1], denote the probability that a call which

arrives at node i is blocked and the "total event rate" r be defined by

Also, let K1  and K2 represent the number of channels assigned to the data

in link 1 and link 2, respectively. Note that if N1 , the total number of

channels in link 1, is larger than N2, then N1=i1+i2+K1+K2 . For each

control value Z= (Z1 , Z2 ), the transition probability function can be written

as

Where 1(A) is the indicator function of the event A and y is the next

state of x. Our goal is to minimize the time delay of data messages and

blocking probability of voice calls.



3-3 Control Equation

Let (i 1 , i 2, j1, j 2 ) be the system state at time t, and (i1, 12, j1, j2)

be the state at t=0. 	 The instantaneous cost is given by

where Zl t is the probability of blocking a call that

originates at node 1 at time t and al is the corresponding weighting factor,

0≤ α1≤ ∞ . Let δ be a discount factor. Let τn denote the (random) time

at which the state st jumps for the n-th time. Then, the cost for a

control policy f over the random time interval [0, τn ) is

22

where expectation is taken with respect to the process generated by f when

starting at (i 1 , i 2 , j1, j 2 ) initially.

The cost given in (3-5) can be considered as the cost derived over n

time steps in a discrete time decision process with discount factor β , the

same state space S and action space A=[0,1]*[0,1]. The transition

are given belowprobability



(N1-K1)µm1. 	 For convenience, we may assume that r=1 and ignore the

constant factor; thus the expression (3-5) can be considered as the cost

incurred by policy f.

With the initial state (i 1 , i 2 , j1 , j 2), let Jn(i1 , i 2 , j1 , j 2 ) denote the

cost incurred at the n-th step by optimal policy. Then Jn(i1 , i2 , j1 , j 2) is

characterized by following Dynamic Programming Equation.

Dynamic Programming Equation:



From the above equation, two decisions can be made:

1) the acceptance of an arriving voice call with a similar expression for z2.

2) the number of channels assigned to the data message

In contrast to 2), an alternate assignment which looks more

instinctive is also brought to the simulation. The results are shown in the

next section.

A typical optional switching curve shown in Fig. 3-2. 	 Dynamic

Programming Equation partitions transition state into two regions by

switching curve. 	 Over the curve, Z 1 value=1, the Control Equation will

24
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block the arriving call.	 Under the curve, Z1=0, the Control Equation will

accept the arriving call.



Fig. 3-2 General form of the optional switching curve

26
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CHAPTER 4 SIMULATION RESULTS

4-1 The Alternate Data Channel Assignment Policy

Besides the decision of data channel assignment obtained from

Equation (3-8) and (3-9), an alternate policy is adopted in our simulation.

In this policy, the channel assignment depends on the ratio of J 1 and J2

which are the numbers of data waiting for the service at node A and node

B, respectively. If the queue length at node A is greater than that at

node B (J1)J2 )., then more channels in link 1 are apportioned for the service

of data at node A. By assuming that N1(N2, the equation can be written

explicitly as

Here N2-2i1 -i2 is the number of channels available for the data service in

link 2 and K1 is the number of channels allocated to the data at node A.

Then N2-2it-i2-K1 will be the capacity assigned for the service at node B.



For comparison, the movable boundary scheme is also introduced in

our simulation. Four channels in each link are allocated for voice call

service, i.e. if less than four voice calls are receiving service, the new voice

call attempt is accepted definitely. No decision-making for voice call is

needed in this scheme because its number can never exceed four. The data

message could steal the channel allocated to voice if it is not occupied.

The alternate assignment policy for data is used in this scheme. Under the

assumption that the four channels dedicated to the voice call starting at

node B have no duplicate frequencies in link 2 ( because N 1 (N 2 ), in the

worst case (four voice calls are being served in each link ), there is still

one available channel for data service in link 2.

Our simulation model is portrayed as following: link 1 and link 2

possess channel capacities of 9 and 14, respectively (i.e. N1=9 and N2=14).

At node A, λc1 , the arrival rate of voice call, is 0.03; µc1, the service rate

of voice call, is 0.008. At node B, µc2=0.035, µc2=0.008.

Decision tables are set up in node A and B according to the system

parameters given above. The simulation lasts for 5000 seconds and the

results, in terms of blocking probabilities and time delay, are shown below.

4-2 Simulation Results

Blocking Probability

28



In the decision-making scheme, the acceptance of voice calls depends

on the number of data messages j 1 and j 2. When j1 and j2 (queue length)

are large, voice call tends to be blocked. It is shown in Fig. 4-1 and 4-2

that when pi and p2, defined as the ratio of arrival rate over departure

rate, is increasing, the blocking probabilities in link 1 and link 2 are also

increasing. When p1≥6 or p2≥6, the system blocks all the arriving calls to

provide all channels for message transmission.

29

Fig. 4-1 Link 1 blocking probability



Fig. 4-2 Link 2 blocking probability

In the movable boundary scheme, voice calls can preempt data

packets occupying their allocated channels. Thus, no matter what the value

of p is and what the queue length is, the values of the blocking probability

always keep at the level which is much lower than those in the decision-

making scheme, especially when p is large.

Data Time Delay

In the decision-making scheme, it is possible that no voice call could

access the transmission facility if too many data messages are expecting

services. But data messages are always preempted in the movable boundary

scheme, even if the condition is critical. As expected, the time delay in

30



the movable boundary scheme increases abruptly when the utilization rate

reaches certain value. In link 1, as depicted in Fig. 4- 3, this value stands

at 1.5. In link 2, as illustrated in Fig. 4 -4, 3.5 is the threshold. When p

=4.5 or greater, the queue size will be greater than 50,000.

31

Fig. 4-3 Link 1 normalized time delay
decision-making scheme and
movable boundary scheme



Fig. 4-4 Link 2 normalized time delay
       decision-making scheme and

movable boundary scheme

It is shown, in Fig. 4-5 and 4-6, that data time delay will not be

affected much whether the decision is made from the dynamic programming

or from the alternate policy. But in link 2 the alternate policy still yields

better performance than the dynamic programming.

32



Fig. 4-5 Link 1 normalized time delay
dynamic programming equation
alternate policy (ratio) scheme

scheme

Fig. 4-6 Link 2 normalized time delay
dynamic programming equation scheme
alternate policy (ratio) scheme



Fig. 4-7 illustrates a real-time plot of voice calls and the

corresponding data queue length, as a function of time, for the movable

boundary scheme with p=3.5. During the intervals of time in which two or

fewer voice calls are present, the data queue is underloaded. When there

are more than two calls present in either link 1 or link 2, the data queue

is overloaded and the length increases steeply to several hundreds of

packets, as shown in Fig. 4-7(a), (b) (linkl). Since N2 is greater than N1 ,

data in link 2 have more channels available than those in link 1. Thus

the queue length is always shorter in link 2.

34

Fig. 4-7(a) Link 1 voice calls vs time



Fig. 4-7(b) Link 1 data queue length vs time

Fig. 4-7(c) Link 2 voice calls vs time



Fig. 4-7(d) Link 2 data queue length vs time

Fig. 4-8(a), (b), (c), and (d) show a real time plot of voice calls and

the corresponding data queue length, as function of time, for decision-making

scheme with p=3.5. Both of the queue length and time delay are much

smaller than those in the movable boundary scheme and no overload

situation ever occurred. As shown in Fig. 4-2, the attempt of minimizing

time delay and queue length will cause the increase of blocking probability.

Also from Fig. 4-8(a) and (c), intervals of time in which no call receives

service can be found.
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Fig. 4-8(a) Link 1 voice calls vs time
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Fig. 4-8(b) Link 1 data queue length vs time



Fig. 4-8(c) Link 2 voice calls vs time

38

Fig. 4-8(d) Link 2 data queue length vs time



CHAPTER 5 CONCLUSION

We have studied the dynamic access control problem in simple ISDN

networks. We also have adopted three different ways: the jumping mode,

the ratio mode and the movable boundary mode, to simulate in the same

tandem network, which enables us . to compare their performance.

In the jumping mode or the ratio mode, we adopted cost function (3-

7) to be a controller to decide whether to accept calls or not. We always

have lower time delay, but higher blocking probability than that of the

movable boundary mode at the same time.

The movable boundary mode, a totally different method to manage

available channels, can have a lower blocking probability for voice calls, but

has large time delay for data users. And it is also possible to let the

system go into overload (unstable) region.

According to those simulation results in Chapter 4, we can say that

it is a kind of "trade off." If we want to keep lower time delay and keep

the system stable, we have to lose call's successful rate (high blocking

probability). If we want to keep low blocking probability we may get more

time delay.
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APPENDIX

****************************************************************************
*Program One
*Dynamic Programing Equation*
**************************************************************************

#include (stdio.h)
#include (math.h)
float BETA=0.09, LAMDAc1=0.05, MUc1=0.01, ARFA1=28.5 ;
float J[5][10][10][10][10];
float ARFA2=36.8, LAMDAc2=0.04, MUc2=0.01;
float LAMDAm1=12.0, LAMDAm2=12.5;
float MUm1=10.0, MUm2=12.5, DELTA=0.0, N1=9.0, N2=13.0;
int Z1(), Z2(), OP();

main()

int 11, 12, 31, j2, n, k1;
float AB=0.0, BA=0.0;
float A=0.0, B=0.0, C=0.0, D=0.0, E=0.0, F=0.0, G=0.0, H=0.0, 1=0.0;

printf("Please input BETA, ARFA1 and ARFA2.\n");
scanf("%f %f %f", &BETA, &ARFA1, &ARFA2);
for (i1=0; i1(=9; i1++)

for (12=0; i2(=9; i2++)

for (j1=0; j1(=9; j1++)

for 02=0; j2(=9; j2++)

J[0][i1][i2][j1][j2]=j1+j2;
}

}

}

}
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for (n=0; n(=3; n++)

for (i1=0; i1(=6; i1++)

for (i2=0; i2(=6; i2++)

for 01=0; j1(=8; j1++)

for ( j2=0; j2(=8; j2+-1-)

AB=(1-Z1(n,i1,i2,j1,j2))*BETA*LAIVIDAcI*J[n][i1+11[i2J[j1](j2];

BA=(1-Z2(n,i1,i2,j1,j2))*BETA*LAMDAc2*J[n][ill[i2+1][j1][j2];

k1=0P(n,i1,i2,j1,j2);

DELTA=(N1-i1)*MUcl+(N242)*MUc2+(2*i1+i2+k1)*MUm2+(N1-
k1)*MUm1;

A=ARFA1*Z1(n,i1,12,j1,j2)+BETA*LAMDAcl*Z1(n,i1,i2,j1,j2)*J[n][ii]gp
1[j2]+AB;

B=ARFA2*Z2(n,i1,12,j1,j2,)+BETA*LAMDAc2*Z2(n,i1,i2,j1,j2)*J[n][il][i2]1j1i[j2]+BA,

C=BETA*LAMDAml*J[n][i1][i2][j1+1][j2];

D=BETA*LAMDAm2*J[n][il][i2][j1][j2+1];
if (i1(=0)

E=0.0;
else

E=BETA*i1*MUc1*J[n][i1-1][12]U1][j2];
if (12(=0)

F=0.0;
else

F=BETA*i2*MUc2*J[n][i1][i2-1][j1][j2];
if 01(=0)

G=BETA*k1*MUm1*j1;
else

G=BETA*k1*MUml*J[n][i1][i2][j1-1][j2+1];
if 02(=0)

H=BETA*(N2-i2-i1-k1)*MUm2*j2;
else

H=BETA*(N2-i2-i1-k1)*MUm2*J[n][i1][i2][j1][j2-1];

I=BETA*DELTA*J[n][i1][i2][j1][j2];

J[n+1][i1] [i2jU1j[2]=j1+j2+A+B+C+D+E+F+G+H+I;

}
}
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printf("%d ", Z1(n,0,0,0,0));

	 printf 10000=%3.2f j10 	 20001=%3.2f \n", J{(11 .0.-p ,0: , 	 [21101101 -. 01i;
printf "3 1 10000=%3.2f j 1 2000 =%3.2f \n", J 10'1 ' 0 0 , J 1 2 0 0 

	

printf "j 2 10000=%3.2f j 2 	 2000 =%3.2f \n", J 2 1 "0 	 J 2 2 0 0 	 ;

	

printf "j 3 10000=%3.2f 3 3 	 2000 =%3.2f \n\n\n", 	 0:[0][01,
J[3][2] 0] 0}[0]);
for (i1=5; i1)=1; i1--)

for 01=0; 31(=6;

	

printf("Z1=%d 	 ", Z1(1,i1,0,j1,0));

putchar('\n');
}

putchar('\n');
putchar('\n');
for (i1=5; i1)=1; i1--)

for 01=0; j1(=6; j1++)

	 printf("Z1=%d 	 ", Z1(2,i1,0,j1,0));

putchar('\n');
putchar('\n');putchar('\n');

}

Z1(x,a,b,c,d)
int x,a,b,c,d;

int q=0;
if ((ARFA1-BETA*LAMDAc1*(J[x][a+1][b][c][d]-J[x][a][b][c][d]))(0)

q=1;
else

q=0;
return q;

Z2(xx,aa,bb,cc,dd)
int xx,aa,bb,cc,dd;

int q=0;
if ((ARFA2-BETA*LAMDAc2*(J[xx][aa][bb][cc][dd]-J[xx][aa][bb][cc][cld]))(0)

q=1;
else

q=0;
return q;

OP (al,a2,a3,a4,a5)
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int al, a2, a3, a4, a5;
{

int k1=0;
float A, B, C;

A=MUm1*J[a1][a2],a3][a4-1][a5+1];M
B=Um2*J[a1][a2][a3j[a4-1][a5-1];

C=(MUm2-MUm1) J[a1][a2][a3][a4][a5];
if (A-B+C(0.0)

k1=N1-2*a2-a3;
else

k1=0;
return k1;
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***************************************************************************

*Program Two
*Simulation Program for Jumping Mode
* 	 *
***************************************************************************

# include (stdio.h)
# include (math.h)
int A1=1, A2=1, D1=0, D2=0;
int deltan1=2, deltan2=2, N1=9, N2=13;
int seed1, seed2;
float SCALE=65536.0;
float lamdam1=9.96, lamdam2=6.8, mum1=11.8, mum2=12.5;
float ckal[101], cka2[101];

float lamdacl, lamdac2, muc1, rnuc2;
float ilck[20], i2ck[20];

int blockz1 [6] [6] [8] [8], blockz2[6] [6] [8] [8];
FILE *in, *result;

main()

float TIMEOUT=0.0;
float infinite=500000.0, AD=0.0;
float ckd1, ckd2, ckaa2=2500.0, ckd22;
int counter=0, m1=0, m2=0, b2=0, mm2=0;
float ck0=0.0, AA, BB, AC, AE;
float RDD1(), RDD2(), RDD3(), RDD4();
int DECO;
extern float lamdam1, lamdam2, mum1, mum2;
extern int A1, D1, A2, D2, seed1, seed2;
extern int deltan1, deltan2, N1, N2;
float DELTAW1=0.0, DELTAW2=0.0, WAIT1=0.0, WAIT2=0.0;
int i1=0, i2=0, j1=0, j2=0;
float SER1=0.0, SER2=0.0, deltas1=0.0, deltas2=0.0;

extern float lamdac1, lamdac2, muc1, muc2;
float cki1, cki2;
int c1, c2, k1, k2;
int blocki1, blocki2, Z1, Z2, calli1, calli2;
float RD1(), RD2O;
float prob1, prob2;



float p1, p2;

int v1, v2, di, d2;

printf("How many seconds you want to simulate? \n" );
scanf("%f", &TIMEOUT);
printf("Please input seed1 and seed2.\n");
scanf("%d %d", &seed1, Szseed2);
printf("Please input lamdam1, lamdam2, mum1 and mum2. \n");
scanf("%f %f %f %f", &lamdam1, &lamdam2, &mum1, &mum2);

printf("Please input lamdac1, lamdac2, muc1 and muc2. \n")-
'scanf("%f %f %f %f", &lamdac1, &damdac2, &mucl, &muc2);

SCALE=pow(2.0, 31.0)-1;

/*** read switch curve Martix ***/

in=fopen("data.out","r");
result=fopen(" final.out" ,"w" );

for (v1=0; v1(=5; v1++)

for (v2=0; v2(=5; v2 -F.+)

for 01=0; d1(=6; dl++)

for (d2=0; d2(=6; d2++)
fscanf(in,"%3d", &blockz1[v1] [v2] [di] [d2]);

fscanf(in," \n" );

fscanf(in," \n");
}

}

fscanf(in," \n");
fscanf(in," \n" );

for (v1=0; v1 (=5; v1++)

for (v2=0; v2(=5; v2++)

for (d1=0; d1(=6; dl++)

for (d2=0; d2(=6; d2++)
fscanf(in,"%3d", &block2[v1][v2][d1][d2]);

fscanf(in," \n");

fscanf(in," \n");

}
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fclose(in);
fclose(result);

cka1[0]=0.0+RDD1(lamdam1);
ckdl=cka1[0]+RDD3(mum1);
ckd2=RDD2(lamdam2);
cka2[0]=0.0+ckd1;
cka2[1]=cka2[0]+RDD2(lamdam2);
ckd22=cka2[0]+RDD4(mum2);

ckil=0.0+RD1(lamdac1);
ilck[0]=ckil+RD2(muc1);
cki2=0.0+RD1(lamdac2);
i2ck[0]=ckil+RD2(muc2);

printfrckal[0]=%2.3e ckdl=%2.3e An", ckal[0], ckd1);
do

/** set clock ck0 **/
ck0=ck0+0.001;

/*** call it ***/
if (cki1(= ck0)

ckil=cki1+RD1(lamdac1);
if (i1).6 II i2)=6	 j1)=7(1 32)=7)

Z1=1;
else

Z1=blockz1[i1][i2][j1][j2];
if (2*il)=N1+1)

Z1=1;

if (Z1==1)

blocki1=blocki1+1;
ckil=cki1+RD1(lamdac1);

else

calli1=calli1+1;
i1ck[c1]=ck0+RD2(muc1);

c1=c1+1;
if (c1)=20)

c1=0;
}

i1.0;
for (k1=0; 1:1(=19; k1++)

if (i1ck[k1])ck0)
it =i1+1;

}

}

if (cki2(=ck0)	 /*** call i2 ***/
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cki2=cki2+RD1(lamdac2);
if (i1)=6	 i2)=6|| j1)=7|| j2)=7)

Z2=1;
else

Z2=blockz2[il][i2][j1][j2];
if (2*i1+i2)=N2+1)

Z2=1;

if (Z2==1)

blocki2=blocki2+1;
cki2=cki2+RD1(lamdac2);

else
{

calli2=calli2+1;
i2ck[c2]=ck0+RD2(muc2);c2=c2+1,

if (c2)=20)
c2=0;

}

12=0;
for (k2=0; k2(=19; k2++)

if (i2ck[k2])ck0)
i2=i2+1;

}

}

/*** DATA1 ARRIVAL ***/

deltan2=N2-2*i1-i2-deltan1;
if (ck0(TIMEOUT)

if ck0)=cka1[m1])

ckal[m1+1]=ckal[m1]+RDD1(lamdam1);
A1=A1+1;

m1=m1+1;
if m1) =100)

ckal [0] =ckal [100];
m1=0;

}

}

}

/*** DATA1 DEPARTURE ***/
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if (D1)=A1)
ckaa2=infinite;

else

if (ck0)=ckd1)

deltan1=DEC(i1, i2, j1 , j2); 	 /*** DELTAN1=0 ? ***/
deltan2=N2-211-i2-deltan1;

/*** ckd1!=infinite ***/

if (ckd1(=ckal[m2+1])

ckd1=ckal[m2+1];DELTAW1=0.0;
}

else
DELTAW1=ckd1-cka1[m2+1];pl=((float)deltan1)*muml1;

deltas1=RDD3(p1);
SER1=SER1+deltas1;
ckd1=ckd1+deltas1;

ckaa2=ckd1;

cka2[b2+1]=ckaa2;
counter=counter+1;
b2=b2+1;
if (b2)=100)

cka2[0]=cka2[100];
b2=0•
}

D1=D1+1;
WAIT1=WAIT1+DELTAW1;

m2=m2+1;
if (m2)=100)

m2=0;

}

/*** DATA2 ARRIVAL ***/

/*** kill ckd2=infinite ***/

if (ck0)=ckd2)

cka2[b2+1]=cka2[b2];
cka2[b2] =ckd2;
ckd2=ckd2+RDD2(lamdam2);
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A2=A2+1;
b2=b2+1;
if b2)=100)

cka2[0]=cka2[100];b2=0;
}

}

/*** DATA2 DEPARTURE ***/

if (ck0)=ckd22 )

/*** ckd1 skip ***/

if (ckd22(=cka2[mm2+1])

ckd22=cka2[mm2+1];
DELTAW2=0.0;

}

else
DELTAW2=ckd22-cka2[mm2+1];

p2=(float)deltan2*mum2;
deltas2=RDD4(p2);
SER2=SER2+deltas2;

ckd22=ckd22+deltas2;
D2=D2+1;

WAIT2=WAIT2+DELTAW2;
mm2=mm2+1;

if (mm2)=100)
mm2=0;

}

j1=A1-D1;	 /*** il,i2 decide by cal103.c ***/
j2=A2+D1-D2;

} while (D2(Al+A2 || ck0(= TIMEOUT);
/*** ck0 ***/

printf("A1=%d D1=%d.\n", A1, D1);
printf("A2=%d D2=%d. \n", A2, D2);
WAIT1=WAIT1-DELTAW1;
WAIT2=WAIT2-DELTAW2;
AC=(WAIT1+SER1)/D1;
AE=(WAIT2+SER2VD2;
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AD=(WAIT1+WAIT2+SER1+SER2)/(A1+A2);
printf "Total Data are %d and %d.\n", Al, A2);
printf "Total Waiting Time is %2.3e and %2.3e.\n"
, WAIT1, WAIT2);
printf("Total Service Time is %2.3e and %2.3e.\n"
, SER1, SER2);

printf "NODE1 Average Time Delay is %2.4e.\n", AC);
printf "NODE2 Average Time Delay is %2.4e.\n", AE);
printf "Average Time Delay is %2.4e.\n\n\n", AD);

/***AA=(1/mum1)/(1-lamdam1/mum1);***/
printf("NODE1 Average Time Delay Should be %2.4e\n", AA);

/***BB=(1/mum2)/(1-(lamdam2+lamdam1)/mum2);***/
printf "NODE2 Average Time Delay Should be %2.4e\n\n", BB):
printf " counter=%d. \n'_ ,' counter);
printf "clock stop at %2.4e.\n", ck0);

prob1=(float)blocki1/((float)blocki1+( float) calli1);
prob2=(float)blocki2/((float)blocki2+ float calli2);
printf "Trunk 1 blocking prob. is %2.3f. n", prob1);
printf "Trunk 2 blocking prob. is %2.3f.\n", prob2);
printf " current it is %d	 i2 is %d.\n", il,i2);
printf "Total call it is %d i2 is %d \n", calli1, calli2);
printf "Total block II is %d i2 is %d \n", blockil, blocki2);

}	 /*** main ***/

int DEC(a, b, c, d)
int a, b ,c, d;
{

int k1;
float kk;
extern float mum1, mum2;
extern int N1;

kk=(muml*d)-(mum2*c);
if (kk)=0.0 if 2*a+b)=N1-2)

k1=1;
else

k1=N1-2*a-b;
return k1;
}

float RDD1(lamda)
float lamda;
{

float x, y;
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extern seed1;

seed1=seed1+12;
srandom(seed1);
y=random()/SCALE;
x=(-log(y))/lamda;
return x;
}

float RDD2(mu)
float mu;
{

float x, y;
extern seed2;

seed2=seed2-3;
srandom(seed2);
y=random()/SCALE;
x=(-log(y))/mu;
return x;
}

float RDD3(lamda3)
float lamda3;
{

float x, y;
extern seed1;

seed1=seed1 +42;
srandom(seed1);
y=randomO/SCALE;
x=(-log(y))/lamda3;
return x;
}

float RDD4(mu4)
float mu4;
{

float x, y;
extern seed2;

seed2=seed2+23;
srandom(seed2);
y=random()/SCALE;
x=(-log(y))/mu4;
return x;

/*** delete blockz1() ***/

/*** delete blockz2() ***/
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float RD1 (lam)
float lam;
{

float x, y;
extern seed1 ;

seed1 =seed1 +22;
srandom(seed1);
y=random() /SCALE;
x=(-log(y))/lam;
return x;
}

float RD 2 (mu22)
float mu22;
{

float x, y;
extern seed2;

seed2=seed2-1;
srandom(seed2);
y=random() /SCALE;
x=(-log(y))/mu22;
return x;
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