Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

> Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

A MODEL FOR THE DETERMINATION OF MARKET BASED PRICING/OF TELECOMMUNICATION PRODUCTS


```
Thesis submitted to the Faculty of the Graduate School of
the New Jersey Institute of Technology in partial fulfillment of the requirements for the degree of Masters of Science in Management Engineering
May. 1988
```


APPROVAL SHEET

TITLE OF THESIS: A Model For The Determination of Market Based Pricing of Telecommunication Products

NAME OF CANDIDẢTE: Katherine J. Sullivan
Masters of Science in Management Engineering, 1988

THESIS AND ABSTRACT APPROVED:

Date
Dr. Carl Wolf
Industrial and
Management Engineering

$\triangle B \operatorname{STRACT}$

To Ken, Kenny, Katie, Ed and Jill
I. INTRODUCTION 1
II. MARKET STRUCTURES 7
A.. Perfect Competition 9
B. Monopoly 14
C. Oligopoly 19
D. Monopolistic Competition 21
III. DETERMINATION OF COSTS 26
A. Investment - Related Costs 27
B. Operating Expenses 28
C. Unit Cost 28
IV. DETERMINATION OE PRICE 33
A. Mechanical Extrapolations 33
B. Barometric Techniques 34
C. Opinion Polling 34
D. Econometric Models 34
E. Pricing Objectives 36
F. Market Characteristics and Competition 38
G. Test Prices 40
H. Additional Costs 41
I. Actual Demand 42
J. Choosing The Price 43
K. Telecommunication Product Pricing Model 44
V. CASE STUDIES 48
A. Case Study I - Small Business PBX - The HMS 49
B. Case Study II - The Local Area Data Set 59
C. Case Study III - Long Distance Service 71
VI. PRODUCT PEREORMANCE PLAN 76
A. Current Product Situation and Assumptions 76
B. Market and Competitive Analysis 79
C. Strategy Implementation Guidelines 79
D. Risks and Contingencies 81
E. Executive Summary 81
E. Recommended Product Line Strategy 83
G. Financial Analysis 85
VII. SUMMARY AND CONCLUSION 88
SELECTED BIBLIOGRAPHY 90

LIST OF TABLES

PAGE
I. MARKET STRUCTURE SPECTRUM 10
II. MONOPOLY - MARGINAL REVENUE 17
III. MARKET STRUCTURE CHARACTERISTICS 25
IV. UNIT COST TO PURCHASE 30
V. UNIT COST TO LEASE 31
VI. PRICING PROCEDURE 37
VII. TELECOMMUNICATION PRODUCT PRICING MODEL 45
VIII. LADS - UNIT COST 63
IX. LADS - PRICING MODEL 70
X. CURRENT PRODUCT SITUATION - EINANCIAL ANALYSIS. 78
XI. FINANCIAL ANALYSIS OF RECOMMENDED STRATEGIES 86
EIGURE PAGE
I. PERFECT COMPETITION - DEMAND CURVES 11
II. PEREECT COMPETITION - PROEIT MAXIMIZATION 13
III. MONOPOLY - DEMAND CURVES 15
IV. MONOPOLY - PROFIT MAXIMIZATION 18
V. MONOPOLY - REGULATED PRICING 20
VI. MONOPOLISTIC COMPETITION - DEMAND CURVES 23
VII. MONOPOLISTIC COMPETITION - PROFIT MAXIMIZATION. 24
VIII. HMS - INTEREST RATES VS. SALES 51
IX. HMS - REGRESSION LINE 54
X. HMS - ACTUAL VS. CALCULATED SALES 55
XI. HMS - PROJECTED SALES 58
XII. EINANCIAL SENSITIVITY ANALYSIS 82
XIII. FINANCIAL ANALYSIS OF RECOMMENDED STRATEGIES 87

```
    "If there is a substance to this thing called change in
oux changing society, it is unlikely that the trends of the
last sixty years will dominate the rest of the century...
Instead we can expect different and new txends to emerge and
different and new concerns to claim our attention."
                            Petex F. Drucker
    In January 1982, AT&T, the world's largest telephone
company, prepared for a corporate restructure brought about
by a number of complex forces, including changing public
policies encouraging more competition, computer and
communication technology mergers, and customer demand for
more sophisticated services.
    AT&T and its subsidiaries were regulated by state
authorities and the Federal Communications Commission (ECC)
in exchange for being the sole provider (monopoly) of
telephone service. Government antitrust lawyers always felt.
however, that AT&T had too much power. In 1949, the federal
government brought the first antitrust suit against AT&T,
and, in 1956, an agreement was reached whereby AT&T would
confine its activities to communications. In effect, AT&I
was allowed to retain its manufacturing subsidiary, Western
```

```
Electric, in exchange for not entering the new computer
industry. In 1968, the FCC ruled that non-Bell equipment
could be attached to the network, and, in 1969, MCI was
allowed to build a microwave long-distance system in
competition with AT&T.
    In the mid-1970's, private antitrust suits were
brought against AT&T by a number of telecommunication
companies claiming AT&T would not allow them to compete. The
major impetus for the massive restructure, however, was the
second antitrust suit filed by the Justice Department in
1974, charging that AT&T was keeping potential competitors
out of the equipment and long-distance markets. U.S.
District Court Judge Harold H. Greene tried the case. known
as Computer Inquiry II, and the terms were described in
January 1982 by AT&T Chairman Charles L. Brown. In brief,
the agreement contained the following major elements:
    1) The Detariffing (unregulated) of:
    a) customer premise equipment
            b) enhanced services, i.e. computerized
                information systems that do more than carry
            information
            2) The above items can only be offered through a
        fully separated subsidiary.
            3) Non-Bell companies must be given access to the
        network on the same terms as Bell companies.
```

```
In effect, AT&T agreed to give up the local telephone
companies (twenty-two Bell operating companies formed into
seven regional telephone companies) in exchange for the
ability to compete in markets that had been closed to the
company in 1956, namely the computer industry. AT&T retained
both Bell Laboratories (technology developer) and Western
Electric (technology manufacturex) along with long-distance
and international services.
    As a result of the break-up of AT&T, fiexce competition
between telecommunication companies began. Companies are
vying for the long-distance market, for the residential
market (plain old telephone sets, sophisticated answering
machines, cordless telephones), for the small business
market (key systems and mini-PBX's) and for the large
business market (integration of telephone and computer
equipment).
    Also, pricing methods are being reviewed and adjusted
for this new environment. Rates are no longer set under
regulatory scrutiny and consideration must now be given to
the competitive impact. Consumer demand for the product,
corporate pricing objectives and marketing strategies must
be incorporated into the pricing decision. This paper
proposes a method that is designed to consider these key
price determinants with the purpose of providing a decision
tool that enables the product manager to price properly.
```

The pricing procedure allows for the development of various pricing strategies that take into account the product test price, consumer demand for the product, the unit cost of the product, the cost of nonprice actions (such as advertising), and the cost of choosing one alternative over another (opportunity costs). The pricing model
simulates the effect of these strategies on the profitability of the firm and then identifies the product price that will maximize profit.

In Chapter II, primary market structures are defined and analyzed in terms of supply, demand and profit maximization. This analysis is fundamental for an understanding of the nature of demand for a product, the degree and kind of competition and also, for determining an appropriate method for pricing. By understanding the charactexistics of the maxket, a product manager can anticipate behavior for a particular product and will improve his chances of pricing the product so as to improve profit.

A necessary component for the proper pricing of a product is the specification of the minimum basic cost upon which the pricing decision should be based. Chapter III discusses the determination of these costs. The costs developed represent only those activities directly associated with the provision of the product to be priced and, as such, allows the effects of different product strategies to be easily assessed.

Key in a pricing decision is the product demand.

Forecasted demand quantities are necessary to determine if there is sufficient consumer demand to warrant introduction of the product. Demand quantities must also be forecasted for the various pricing strategies in order to analyze the effect of the product price on total revenues, costs and profit to the firm. The forecasting of demand quantities is not an exact science, however, techniques are available to aid the forecaster in lessening the degree of uncertainty. Chapter $I V$ describes the major forecasting techniques in use and discusses how product demand can be integrated into the pricing procedure.

To illustrate the application of the pricing procedure, three specific product cases will be presented in Chapter V. In two cases, the numerical determination of the product demand and price is documented. For the third example, the pricing model is used to identify profit levels as a result of the implementation of various marketing strategies.

Chapter VI presents a product plan that should be used to monytor the product performance once it has been introduced into the marketplace and allows for the formulation of alternative product strategies as the need arises.

The final chapter contains a summary of the points emphasized in this paper and concluding remarks.

```
    Competition - effective, aggressive competition - means
strife, industrial warfare; it means contention; it
oftentimes means taking advantage of or resorting to any
means that the conscience of contestants or the degree of
the enforcement of the laws will permit.
Theodore Vail
President, AT&T
1910
```


CHAPTER II

MARKET STRUCTURES

Through an understanding of the characteristics of market structures, one has the necessary knowledge for analyzing the nature of demand for a product, the degree and kind of competition and also, the method for pricing a product. This allows a marketing manager to anticipate market behavior for a particular product and improve his chances of pricing the product in order to maximize sales and profits.

Buying and selling occurs in a market, which is defined as the location in which a voluntary exchange of goods or services takes place. The amount of a commodity that customers will purchase at a particular price is called the demand for the commodity. The demand for a specific product is dependent on a number of factors which generally includes the price of the product, its usefulness, its appeal to the consumer, the size of the consumer population and the availability of competitive products.

The quantity of a commodity that a market is willing to sell at various prices is called the supply of the commodity. The main factor which determines the market supply of a product is price. The greater the price a consumer is willing to pay for a commodity, the more eager a firm will be to supply it. It is assumed, therefore, that
the supply curve has a positive slope.

```
    At the point of intersection (equilibrium point) of the
supply and demand curves, all goods supplied are sold and
all demand for them is satisfied. Past the equilibbrium
point, the excess quantity supplied above the quantity
demanded exerts a downward pressure on the price. If the
price is lower than the equilibrium price, the excess
quantity demanded will push the price upward. The
equilibrium price is the market price or the price at which
the amount voluntarily supplied and the amount voluntarily
demanded are equal.
    This condition only exists, however, when there is
perfect competition. Perfect competition occurs when a given
commodity is supplied by a large number of vendors, when
there is no restriction against vendors entering the market
and when there is perfect knowledge of the market. The
products are undifferentiated and there is assurance of
complete freedom on the part of both the buyer and seller
    In reality, markets do not exhibit these
characteristics. Various degrees of imperfect competition
exist. Variables that explain these imperfections are the
number of buyers and sellers, the differentiation
among products and the ease with which new firms can enter
```

```
the market. These variables make up the market structure.
The structural characteristics of the market determine the
degree and kind of competition and also the method for
pricing. On one end of the market structure spectrum there
is perfect competition, with many sellers, and at the other
end is monopoly, with one seller. Other conditions exist
between the two, for example, oligopoly and monopolistic
competition (See Table I).
    For any fixm, the ideal situation is one in which
profits are maximized. In order to maximize profits, a firm
must consider the supply and demand curves and the market
price in its own pricing decision. Since various degrees of
imperfection axe encountexed, the pricing decision will be
somewhat different in each market structure.
```


PERFECT COMPETITION

Perfect competition exists when a large number of buyers and sellers act independently to maximize their satisfaction or their profit from a certain product. No individual firm can control the supply or affect the market price. The individual firm sees its demand curve as a horizontal line at the prevailing market price (See Eigure I).

Although the firm has no control over the price of the product, it can control the quantity it produces. The firm

Oir seler	FEl gellems	many sellers	Large sellerg
H0ETRY	DIFITIII ETM	EASIER	$\begin{aligned} & \text { EASIEST } \\ & \text { EMTM } \end{aligned}$
H0wopat	digupay	monopolistic COMPITITOH	

TH
IDOTVITAL

PTITR I

E ETN
 D DETMD

MIMOML MUNTE

M M MOHAL OOT

MONOPOLY

```
    At the other end of the market structure spectrum is a
market condition called monopoly. A monopoly exists when
there is a single seller of a product or service. This
situation is usually due to the existence of a product that
is unique in its physical properties or of a service that is
recognized as being distinct and, as such, no one else can
compete in the marketplace. Legal restraints due to patents
and government franchises are a cause of monopolies. In the
case of local telephone service, the cause is a natural
monopoly where duplication of facilities could cause service
impairments.
    The demand curve for a monopoly is always a negatively
sloped curve. The slope is calculated as the change in
quantity divided by the change in price. Therefore, if the
price was to increase from $8 to #10, and the quantity
decreased from 6 units to 4 units, the slope would be -1,
likewise, if the price was to decrease from $10 to 韭8, the
quantity would increase from 4 to 6 units and the slope
would be -1. Figure III illustrates this negatively sloped
demand curve.
    As the only firm in the market, the monopolist faces
the entire demand curve and is free to choose any point on
it. Theoretically, therefore, the firm can charge any price
or supply any quantity that maximizes profits. As in the
```


$$
\begin{aligned}
& B I=8 \quad Q 1=6 \quad P 2=10 \quad Q 2=4 \\
& S I D P R \quad \frac{10-8}{4-6}=\frac{+2}{-2}=-1
\end{aligned}
$$

$$
\begin{aligned}
& P 1=10 \quad 01=4 \quad 82=8 \quad 0=6 \\
& \operatorname{sinPE} \frac{8-10}{6-4}=\frac{-2}{42}=-1
\end{aligned}
$$

```
case of perfect competition, this ocours when the marginal
revenue is equal to the marginal cost. Unlike perfect
competition, however, the marginal mevenue does not equal
the price of the product and, as output levels increase,
deviates further and further from the price. Table II
illustrates this phemomenon. Therefore, the point of
irtersection of the marginal revenue and marginal cost
curves identifies not omly the quantity of the product to
supply but the price to charge for the product as well.
    Figure IV illustrates the profit maximization concept
in a monopoly. When quantity Q1 is produced, marginal
revenue is equal to margimal cost and P1 is the price that
will result in maximum profit. The shaded region represents
the total profits to the firm.
    To prevent overcharging of the public, most monopolies
provide public service and are regulated by state and
federal authorities. The following paragraphs will explain
how pricing is done undex these conditions. Local telephone
service is one example of such a monopoly being regulated by
public utility commissions. These commissions historically
have tended to establish telephone rates at the point where
the average revenue is equal to the average costs, in other
words, under this policy monopoly profits are eliminated and
the firm receives normal or "fair" returns. The regulated
rate forces the telephone company to lower their price and
```


$[1 C$	quantity (0)	$\begin{aligned} & \text { Total } \\ & \text { REMENE (TR) } \\ & \text { (P) } \times(0) \end{aligned}$	marginal REVENUE (MR) ATR 0_{0}
10	1	\$10	\$10
9	2	18	8
8	3	24	6
7	4	28	4

Maide in

IT TIMGINL RETMNE
LC A HRRGE WOT
1 Cl MIMGINL COST

FIGTR IT

```
increase their output. As seen on Eigure V, maximum profits
are reached when Q1 is produced and the product price is P1.
Regulated rates, however, are set at price P2 and output is
forced to Q2. Some economists argue that the regulated rate
should be set at P3 or where the marginal cost curve
intersects the average revemue curve. This price, however,
is lower than the average cost and losses would be incurxed.
This loss would necessitate a govermment subsidy which would
require the collection of additional taxes, which in the
minds of many, outweighs the advantages of pricing at this
point.
```

OL IGOPOLY

An oligopoly describes a market where there are a few suppliers of a commodity. The products can be homogeneous as in the case of the steel industry or differentiated as in the case of the automobile industry. In either case, the products are substitutable, that is, your can purchase the product from any firm. A good example is the breakfast cereal industry. Taking the big three producers, Kellogg's, Post and Quaker Oats, one can see that the sellexs offer a large range of substitutable but differentiated products. Large scale production is already set up for the three companies, so if another company tried to enter the market. it would meet with fierce competition and probably be unsuccessful in its attempt.

AR APERGE PHYME

10 AMPRGE COST
IIC Mingind COST

PTIME T

Several economists have claimed oligopoly to be the prevailing market structure in the American economy. Economies of scale and mergers are part of the reason for this trend. There is no standard theory of behavior in the oligopoly market. Hence, each seller weighs the actions of others in determining price and output. Each new set of conditions results in a different pattern of behavior. Brand names, trademarks, service and advertising are methods used to shift competition away from price. Pricing in this market will be discussed in greater detail in Chapter IV.

MONOPOLISTIC COMPETITION

Monopolistic Competition exists when a large number of firms produce highly substitutable commodities and other firms are free to enter the market with a differentiated or similar product.(1) An example is milk. Anyone can produce milk products. Market entry is easy and products are differentiated on the basis of brand recognition and trademarks. Price competition is intense, since at a certain price, you will no longer care if the milk is packaged by Borden s or A\&P. This is even more evident with the introduction of "No-Frills" products at the supermarkets. The market demand curve is said to be elastic when the quantity demanded responds to changes in price and inelastic when quantity is not responsive. The price elasticity of demand is defined as the ratio of the pexcentage change in

```
the quantity demanded to a slight percentage change in the
price (ep-(P\DeltaQ)/(Q\DeltaP)), When the elasticity is greater
than one, the demand is elastic and when the elasticity is
less than one, the demand is inelastic. For the individual
firm, the elasticity is greater than one. If the price of a
product changes even a small amount, the quantity sold
changes greatly. Figure VI illustrates the demand curves.
    Monopolistic competition would like to maximize profits
by setting price and quantity at the point where the
marginal revenue and the marginal costs intersect. Due to
the elasticity of the demand curve, new firms enter the
market and reduce the existing firms demand curve and
profit. Nonprice competition, such as advertising, becomes
very important in holding onto market share. Figure VII
illustrates the shifting demand curve. Chapter IV will
discuss nonprice competition in greater detail. Table III
summarizes the points in this chapter.
(1) Haveman, Robert \(H\). and Knopf, Kenyon A., THE MARKET SYSTEM, John Wiley \& Sons, 1981, p. 30.
```


NiC Minginl 05

10 A APRRE COST

1) DMATI
d SHITTE DEIAD

PITHE TII

	MONOPOLY	OLIGOPOLY	MONOPOLISTIC COMPETITION	PEREECT COMPETITION
NUMBER OF SELLERS	ONE	EEW	MANY	VERY LARGE
PRODUCT	ONLY ONE	DIEEER- ENTIATED	DIFEER- ENTIATED	UNDIFEER- ENTIATED
EXAMPLES	UTILITY	STEEL, AUTO CEREALS	MILK. BREAD	A GRICULTURE
ENTRY OF NEW FIRMS	NONE	DIFFICULT	SOMEWHAT EASY	EASY
DEMAND CURVES				
PRICING	FREEDOM TO SET PRICES MAXIMIZE PROEIT	PRICE LEADERSHIP PRICE WARS	PRICE COMPETITION	NO CONTROL
PRICING INELUENCE	CORPORATE IMAGE CONCEPT	TRADEMARKS ADVERTISING SERVICE	DESIGN BRANDS ADVERTISING	NONE

TABLE III

CHAPTER III

DETERMINATION OF COSTS

Abstract

In order to price a product, it is necessary to develop a cost floox or minimum basic cost which must be recovered in the product price. The total cost of production for a firm is the combination of its total fixed costs (costs that are fixed regardess of output, such as executive salaries) and total variable costs (costs which are directly incurred as a result of producing a product or service, such as material cost and workers wages). For a pricing study, fixed costs are not relevant. Fixed costs do not change in total amount with changes in volume of output or activity of a product and since they can only be arbitrarily allocated to a particular product, the actual cost of the product can not be determined. Variable costs, on the other hand, are directly traceable to a particular product and vary directly by the volume of output. Since theses costs are demand sensitive, they reflect the differences in costs resulting from alternate courses of action. The rate of change in the variable cost with the volume of production is called the marginal cost, the cost of producing one additional unit. By using the variable cost approach in combination with an estimation of demand quantities, a price can be developed that will approach profit maximization (marginal revenue equal to marginal cost).


```
        The variable costs, in telecommunication costing
terminology, will be defined as resource costs or the total
direct costs associated with offering the product. Resource
costs can be further categorized as investment-related costs
and operating expenses. In order to simplify the cost
estimate, the resource costs are assumed to remain constant.
In reality, the costs tend to rise as a firm gains some
economies of scale, levels out for awhile and then rases
again.
```


INVESTMENT-RELATED COSTS

```
    Investment is defined as the total mnstalled cost of
the product which includes materials, engineering and
installation costs, and inventory costs. Material includes
the price of all components comprising the product and can
be obtained from the vendor's price list. Any freight costs.
sales taxes or supply experse charged by the vendor must be
obtained and included as part of the investment.
    Engineering and installation costs are the total direct
labor costs associated with plamning, designing, ordexing
and testing equipment plus any incidental expenses. The
hourly labor estimates are obtained from the xespective
department and multiplied by a foward-looking. directly
assigned hourly labor rate to arrive at the total labor
cost.
```

```
Inventory costs include charges for high volume and fast delivery options, field stock and refurbished stock. Inventory costs are based on the cost to order, warehouse and select material for shipment to the field. Stock levels are based on an estimate of demand. The inventory cost per unit is then developed.
```


OPERATING EXPENSES

```
    Operating expenses are current costs resulting from
daily operations of the firm. The major components of
operating expenses are maintenance, administration and
taxes. Maintenance is the cost incurred for maintenance
matexial (replacement and repair) and for matntenance labor
The administrative expense covers all the directly
assignable overhead items (commercial, accounting, etc.)
that are not otherwise specifically accounted for in the
cost study. A factor is applied to the total investment
costs to determine the expense. Property taxes in a resource
cost study are calculated by applying a factor against the
investment. All of the above items are calculated on a per
unit basis.
```

UNIT COST

The unit cost of the product is simply the total investment-related cost and the per unit operating expense. This unit cost is the minimum basic cost upon which a price

```
for a customer to purchase a product should be based. If,
however, the product is to be leased to the customer the
development of the unit cost changes. When a product is
leased, it becomes an asset to the firm. The capital costs
represent the repayment to the firm of investment dollars in
an asset in the form of annually recurring amounts over the
Iife of the product. Annual capital costs include
depreciation (capital repayment), cost of money (return on
investment) and federal income taxes (tax on return on
capital). All capital cost calculations are based on the
investment-related costs developed in the resource cost
study. Operating expenses are calculated to provide ammually
recurring per unit amounts. The anmual recurring capital
costs and operating expenses are combined to arrive at the
per unit cost. This cost is the minimum basic cost upon
which a price to lease a product should be based. Present
worthing techniques at the firm's cost of money interest
rate can be used to adjust the annual cost to appropriate
monthly unit costs for various lease arrangements. Tables IV
and V present a computer model that can be used to mechanize
the calculation of the product unit cost.
```

ITEM	DESCRIPTION	ALGORITHM
1	Material Price	Input *
2	Invoice Service Charge	Input \$
3	Inventory Costs	Input
4	Sales Tax	$(L 1+2+3)\left(s_{6}\right)$
5.	Supply Expense	Input \$
6	Transportation Expense	Input *
7.	Engineering Labor	Input \#
8.	Installation Labor	Input \#
9.	Total Investment Cost	$(L 1+\ldots+L 8)$
10	Maintenance Expense	Input \#
11	Administrative Expense	(L9) (Input\%)
12	Property Tax	(L9) (Input\%)
13	Miscellaneous Expense	Input \#
14.	Total Operating Expense	(L10+.. 1013)
15	Unit Cost	(L9+L14)

ITEM	DESCRIPTION AL	AL GOR ITHM
1.	Material Price	Input *
2	Invoice Service Charge	Input *
3	Inventory Costs	Input \$
4	Sales Tax	$(\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3)(\%)$
5	Supply Expense	Input \$
6.	Transportation Expense	Input *
7	Engineering Labor	Input \$
8.	Installation Labor	Input \$
9	Total Investment Cost	$(L 1+\ldots+L 8)$
10.	Economic Life	Input \#
11.	Cost of Removal	Input *
12.	Gross Salvage	Input \#
13	Net Investment Cost	* See Note 1
14.	Total Capital Costs	*See Note 1
15	Annual Repair	* See Note 2
16	Annual Maintenance Expense	Input \#
17	Annual Administrative Expense	L9 (Input \%)
18.	Ammual Property Tax	L9 (Input \%)
19	Annual Miscellaneous Expense	Input \$
20.	Total Annual Operating Expense	(L15+... L 19)
21.	Cost of Money Rate	Input \%
22.	Annual Cost To Lease	(L14+L20)
23	Monthly Cost of X-Year Contract	t See Note 3

*Note 1: Complex formulas based on development of Book Depreciation Reserve. Tax Reserve and calculation of depreciation, cost of money and federal income tax.
*Note 2: Based on cost of product repair and estimated annual failure rate.
*Note 3: Present worthing techniques at firm's cost of money interest rate.

CHAPTER IV

DETERMINATION OF PRICE

```
    Costs are only one factor that determines the prioing
decision. Demand quantities must be considexed as well.
Prior to the pricing of any product, a feasibility study
should be undertaken to determine whether or not sufficient
product demand exists to warrant introduction of the
product. Some questions to be asked are: "What market
segment are we interested in?"; "What market share is
available from our own cross-elastic products?" : and "What
market share is available from our competitors?". This
preliminary forecast gives an inaication of the availability
of a market for the product and answers the question whether
or not to continue with the pricing procedure.
    Forecasting is not an exact science. No one can predict
Euture activity with absolute certainty. There are, however.
many techniques available to the forecaster to lessen the
degree of uncertamnty. Some of the available methods are
lusted in the following paragxaphs.
```


MECHANICAL EXTRAPOLATIONS

Extrapolation techniques are distinguished from other
forecasting methods in that they are essentially mechanical and not closely integrated with relevant economic theory and statistical data. Basically, this approach says that the

```
future is an extension of the past. Past data is collected
over a period of time and analyzed. Statistical techniques.
such as correlation and regression analysis, are employed to
extend the past into the future. This method does not take
into account any changes that may take place in the future
which did not occur in the past.
```


BAROMETRIC TECHNIQUES

Barometric techniques are based on the idea that the future can be predicted from certain happenings in the present. Statistical indicators, selected time series which provide an indication of the direction in which the economy or particular industries are heading, serve as barometers of economic change.

OPINION POLLING
Opinion polling or sample-survey technique is a
subjective method of forecasting. It is based on the idea
that certain attitudes affecting economic decisions can be
defined and measured well enough in advance so that
predictions can be made. People who are directly involved
are asked about their expectations of future events.

ECONOMETRIC MODELS

Econometric models are based on the idea that changes in economic activity can be explained by the relationship

```
between economic variables. Past economic activity and
predicted future activity are explained by mathematical
equations that express the most probable interrelationships
among a set of variables.
    All assumptions and sources of data should be
documented. It is the understanding and interpretation of
the data that lends credence to the forecast.
    Having determined a potential market for the product,
the pricing procedure can continue with the purpose of
identifying the price to select for the product. This
chapter describes the steps involved in the pricing process
and presents a model that can be used to numerically
identify the proper product price.
    The key determinants that should be considered when
selecting a product price are:
    1. Pricing Objectives
    2. Market Characteristics and Competition
    3. Unit Costs
    4. Test Prices
    5. Opportunity Costs
    6. Nonprice Eactor Costs
    7. Product Demand
The pricing procedure looks at a number of different product
test price strategies that takes into account these key
factors, simulates the various strategy effects on the
profitability of the firm and finally, identifies the
```

```
product price that maximizes profit. Table VI summerizes the
steps involved in the pricing procedure. The following
paragraphs explain the procedure in greater detail.
```

PRICING OBJECTIVES
If there is sufficient demand, the next requirement is
to identify the pricing objective for the product. Some
common pricing objectives are:
1. Seeking a target return on investment
2. Maximizing profit
3. Stabilizing prices or outputs
4. Maintaining market share
5. Increasing market share
6. Meeting or matching competition
The first three objectives can be considered
profit-oriented objectives and the product price is usually
calculated by using a cost plus mark-up pricing method. The
mark-ups are usually based on one or more of the following
executive goals: (2)
1. What is believed to be a "fair" or "reasonable"
return
2. Industry custom
3. A desire to equal ox better the company s recent
average return
4. What the company felt it could get
PRICING PROCEDURE


```
        5. Use of a specific profit target as a means
        of stabilizing industry prices
    The next two pricing objectives can be considered
sales-oriented objectives and emphasis is placed on the
demand for the product. Price is only one factor determining
a product's market share and attention must also be focused
on the nonprice factors affecting consumer demand, such as
service, quality and advertising.
    The final objective is status-quo. Prices are simply
set at those of the competitor whether through fear of
losing competitive status or fear of violating antitrust
laws concerning price discrimination. Usually, a corporation
prices to meet a number of these pricing objectives.
```


MARKET CHARACTERISTICS AND COMPETITION

Having specified the pricing objectives, the market characteristics and competition need to be considered. In the monopolistic competition marketplace, since there are so many competitors and entry is easy, products should be removed from price competition by differentiating the product. This can be accomplished by using an additional unique feature, new packaging or advertising to promote a different image.

Since there are only a few firms in the oligopoly marketplace, the firms practice leadership pricing and tend to price at the same level as their competitars. A price cut

```
by one firm is usually met with price cuts by competitors.
The result is no new sales ara gained and profits are
reduced. The price leader is usually a firm that has been
successful and whose judgement is accepted by the other
Eirms in the industry. The price leader sets a price.
dependent upon its own pxicing objectives, and all other
firms in the industry usually follow the leaders'
initiative. Reasons for this type of action may be:(3)
    1. A fear or desire on the part of the price
        follower to avoid provoking a price wax
    2. A belief by the follower that profits are
    larger in the long run under the refuge of
    the leaders price umbrella for the industry
    as a whole
    3. The follower finds it easier or more convemient
        to follow the leader
            4. Suppliers to the industry have raised their
        prices and a "justified" (cost-induced) price
        increase is merely initiated by the leader
        A fixm must analyze the characteristics of the market
segment the product will be in and combine those findings
with its pricing objectives in order to arrive at a product
pricing strategy.
```

TEST PRICES

```
    Test prices should be set within the range delineated
by the pricing objective, the market characteristics and the
unit costs. Each test price is a price associsted with a
specific product strategy based on those factors.
    For example, if the pricing objective is
profit-oriented and the product is in the monopolistic
competition marketplace, test prices could be set at:
    1. Cost plus mark-up according to executive goals
        regardless of the market price
    2. Price above the market price with intense
        nomprice actions to differentiate the product
    3. Cost plus mark-up to insure profits but below
        the market price
If this firm also wanted to increase market share, they
would not consider strategy 1. This strategy would not gain
many customers but might yield the highest profit. It is,
however, inconsistent with the sales-oriented objective and
would not be considered as a viable strategy.
    In the oligopoly marketplace, regardless of the pricing
objective, a firm usually prices at the same level as
competition. The firm can differentiate its product to gain
some additional market share or control costs to gain
```

```
additional profit. If the firm is a price leader, It oan set
prices at a level to maximize its profits or at a level to
maximize market share. Product differentiation becomes a
very important aspect of the pricing strategy in this
marketplace.
```


ADDITIONAL COSTS

```
    Before the pricing process can continue, costs
associated with nonprice actions and the opportunity costs
of the cross-elastic products must be identified. The costs
associated with the nomprice actions, if any, must be
calculated for each pricing strategy. The costs are the
total dollars to be spent for such activities as
advertising, promotions, packaging, sales, training, etc.
to achieve the strategy objective. Profit and demand are
directly affected by these actions.
    Opportunity costs are often overlooked even though they
have a bearing on both the profitability and demand for the
primary product. When a product is priced, it represents an
acceptable alternative. But in doing so, the rejected
alternatives either provide additional benefits
(complementary cross-elastics) or provide additional
sacrifices (substitute cross-elastics). These benefits and
sacrifices are defined as the opportunity costs of the
accepted alternative.
```

For a complementary cross-elastic product (a product Whose demand grows along with the primary product), gained opportunity can be realized by the firm. Since the demand for the complementary cross-elastic increases. the selected alternative, the pricing of the primary product, has a positive effect. If the revenue gained minus the cost incurred is greater than zero, gained opportunity results. The demand for a substitute cross-elastic product decreases as the demand for the primary product increases. When a substitute cross-elastic product is not sold as a result of the introduction of the primary product, lost opportunity results. All potential revenue is lost and no costs are incurred. If a product is taken out of service. revenue is lost, operating expenses are avoided and remaining capital costs are not recovered. If costs are greater than revenue, the opportunity is negative. The opportunity costs for each cross-elastic product for each year of each strategy are added together and the net opportunity cost per year per strategy results.

ACTUAL DEMAND

The next requirement in the pricing procedure is to forecast the product demand at the various assumed test prices and its corresponding strategy. This means that the forecast must take into account the effect the test price has on the total demand plus the effect nomprice factors.

```
cross-elastic products and competitors have on the demand as
well.
```


CHOOSING THE PRICE

```
    As discussed, the key determinants involved in pricing
are the unit costs, the test prices for various strategies,
the corresponding nonprice action costs. opportumity costs,
and demand forecasts. Next one must combine the
determinants, simulate the various strategy effects on the
profitability of the firm and finally, choose the product
price that maximizes profit.
    All of the pricing procedure components are incremental
(marginal) in nature; they only reflect the specific
activities having a bearing on the product strategies. An
incremental analysis is performed with the purpose of
determining what effect the various strategmes have on the
total costs and on the profitability of the product in the
future. The analysis shows the level of profit as a result
of a change in any of the determinants with the ideal
situation being where profits are maximized. A pricing model
will be presented to demonstrate the incremental pricing
analysis the procedure describes.
    Pricing can be based on either the long or short term.
Short term pricing, usually one to two years, is most
appropriate in the oligopoly marketplace when competitors do
not yet exist and when substitute products are not yet
```

```
available. Firms often wish to price high at the start and
reprice when competitors enter the marketplace.
    Long term pricing is apprapriate in marketplaces where
competitors already exist or where substitute products are
available. A period of three to five years is normally long
enough for the market as well as the firm to adyust to aryy
changes.
```

TELECOMMUNICATION PRODUCT PRICING MODEL

Table VII presents a spreadsheet format that and be utilized to mechanize the pxicing decision process. The following paragraphs present a line-by-line desoription of how to use the model.

The model is designed for a five year period. If the product is to be priced in the short term, only the firet or second years would be included and for the long term, years three to five would be included depending upon the plaming period.

The fixst component is the test price per unit. The test price is a per unit value since it is a demand sensitive component. Line 9 is the per unit test price corresponding to strategy 1 , line 10 corresponds to strategy 2 and so on. The number of product stxategies can be more or less then three. The test price is assumed to remain constant throughout the strategy planaing pertod.

	$I=I N P U T$		C-CALCULATION	E-SUM
YEAR \|	1987	1988	1989	TOTAL
TEST PRICE / UNIT\|	19	I9	I9	
Strategy 1	I10	I10	110	--
21	I 11	I11	I11	----
- 3				1
TOTAL DEMAND				1
Strategy 1	I13B	I13C	I13D	1 CE13
21	I 14B	I14C	I 14D	CE 14
31	I 15 B	I 15 C	I 15D	$\begin{aligned} & \text { CE14 } \\ & 1 \quad \text { CE15 } \end{aligned}$
UNTT cosT				1
Strategy 1	I18	I18	118	1
21	I 18	I18	I18	\|----
31	I18	I18	I18	1--.
NON-PRICE EACTORS\|				1
Strategy 1	I23B	I23C	I23D	CE23
2 \|	I24B	I 24 C	I24D	1 CE 24
3 \|	I 25B	I 25 C	I 25 D	1 CE25
OPPORTUNITY COSTS				1
Strategy 1	I28B	I 288 C	I28D	1 CE 28
2 \|	I29B	I29C	I29D	1 CE29
$3 \quad 1$	I 30 B	I 30C	I 30D	1 CE30
------------------1				1
TOTAL REVENUE \|				1
Strategy 1	(I9) X (I13B)	(I9) X (I13C)	(I9) X (I13D)	1 CE33
2 \|	(I10) X (I14B)	(I10) X (I14C)	(I10) X (I14D)	1 CE34
31	(I11) X (I15B)	(III) X (I15C)	(I11) X (I15D)	1 CE 35
$------------------\mid$				1
TOTAL COSTS \|				1
Strategy 1	$18(13 B)+23 B+28 B$	$18(13 C)+23 C+28 C$	$18(13 D)+23 D+28 D$	1 CE 38
2 \|	$18(14 B)+24 B+29 B$	$18(14 C)+24 C+29 C$	$18(14 D)+24 D+29 D$	1 CE39
. 3 -	$18(15 B)+25 B+30 B$	$18(15 C)+25 C+30 C$	$18(15 \mathrm{D})+25 \mathrm{D}+30 \mathrm{D}$	1 CE40
PROFIT	$D 33 \mathrm{~B}-\mathrm{D} 38 \mathrm{~B}$	D33C-D38C	D33D - D38D	CE43
Strategy 1	D34B-D39B	D34C-D39C	D34D - D39D	1 CE 44
2 \|	D35B - D40B	D35C - D40C	D35D - D40D	\| CE45
31				


```
calculation is repeated for each year of each strategy The
results for each year are combined to arrive at the total
cost for the strategy.
    Profit is total revenue less total cost. For each
strategy, the profit is calculated as the total revenue in a
year less the total cost in a year. For example, the profit
for strategy one, year one is line 33B (total revenue,
strategy one, year one) less line 38B (total cost, strategy
one, year one). The profit level for each year is added
together to arrive at the total strategy profit over the
planning period. The strategy with the maximum profit yields
the optimum price. Finally, the model summarizes the pricing
results. Chapter V will show the use of the pricing
procedure and the pricing model.
```

(2) Seo, K.K. and Wingex, Bernard J., MANAGERIAL ECONOMICS, Richaxd D. Irwin. Inc., 1979, p. 292
(3) Ibid, p. 290

CHAPTER V

CASE STUDIES

This chapter presents three case studies that
demonstrate how the pricing procedure and model discussed in the previous chapters, are to be used as a decision tool for pricing a product. The first case study, Small Business PBX - The HMS, examines a firm that wishes to introduce a new product to a select market segment. The case demonstrates the first step required in the pricing procedure; a feasibility study to determine if product demand warrants the introduction of the product.

The second case, the Local Area Data Set (LADS). demonstrates the pricing of the product from the development of costs all the way thxough to the selection of the product price.
The final case, Long Distance Telephone Service, looks
at an exception to the rule, a product where the pricing
procedure objective is not to identify the product price
that maximizes profit, but rather to identify product
prafitability as a result of the implementation of various
marketing strategies.

CASE STUDY I - SMALL BUSINESS PBX - THE HMS

The PBX is a telephone switching system that is usually located on the customer premises and provides for internal communication within the customers organization as well as facilities for connecting these telephones to the outside telephone network. A firm wishes to introduce a new product, the HMS, to fill a need for a product in the small line size hotel/motel market segment. There is tough competition with many vendors already selling low priced reliable systems. These characteristics lead the firm to believe the product will be sold under monopolistic competition market conditions. At the same time, the firm feels that customers will perceive this product as different because of its unique features such as automatic wake-up service and single digit dialing.

The first step in the pricing procedure is to determine if there is a need for this product in the small line size hotel/motel market segment. An econometric model was used to determine whether there was enough demand to warrant introduction of the product. The following is a step-by-step process for determining the demand potential.

Aftex extensive analysis of the factors affecting demand in this market segment, it was determined that intexest rates determined what purchases were made. Small hotel/motel establishments must compete for investment funds, are high

```
risk and pay well above the prime rate. Fixed costs and
provisioning expenses, such as food and beverages, continue
to rise with inflation, leaving little capital for major
investments.
    A plot of the interest rates, obtained from the Federal
Reserve Board, and past demand for communication systems in
the hotel/motel segment similar to the HMS is shown in
Figure VIII. Visual inspection of the plot points out there
is an inverse relationship between the variables. As
interest rates rise, the demand for systems decline.
```


interest rates

The statistical method of least squares is used to determine the regression line. The following is a mathematical derivation of the regression equation:

TIME	INTEREST RATE (X)	SALES (Y)	$(X)(Y)$	$\times 2$	y2
Yr 1:1	5.25	12	63	27.6	144
: 2	5.25	12	63	27.6	144
: 3	5.42	12	65	29.38	144
: 4	5.93	11	65	35.16	121
Yr 2: 1	6.46	10	65	41.74	100
: 2	6.78	10	68	45.97	100
: 3	7.50	8	60	42.25	64
: 4	9.09	6	55	82.63	36
Yx 3:1	9.50	5	48	90.25	25
: 2	9.50	5	48	90.25	25
: 3	10.21	4	41	104.24	16
: 4	11.92	2	24	142.09	4
Total 12	91.81	97	665	759.15	923
	$\vec{x}=7$.		-8.08		

$Y=a+b X$
$b=\underline{\sum x y-n \bar{X} \bar{Y}}=\underline{655-12(7.65)(8.08)}=-1.35$ $2 x 2-n \bar{x} 2 \quad 759.15-12(58.52)$
$a=-b \bar{X}+\bar{Y}=-(-1.35)(7.65)+8.08=18.41$

```
The equation for the regression line is y = 18.41 - 1.35x.
Figure IX is a graphical representation of the regression
Iine drawn on the scatter diagram of the variables.
    To see whether or not this equation does indeed provide
the "best fit" for the data, the standard error of estimate
is calculated. Sales values (y) are calculated using the
regression equation with the actual interest rates (X). The
calculated sales values are compared to the actual sales
values (Y) and the square root of the squares of the
deviations (Y - y) is divided by the number of observetions.
The standard error of estimate is , 64. This means that
approximately 68% of the forecasted future sales, based on
interest rates, will be within + or - . 64 of the actual
sales and 95.5% wlll bewithin +ox - 1.28 of the actuals.
The results are satisfactory for this analysis. Eigure X is
a plot of the actual versus calculated sales.
    In addition to the graphical representation of the
"fit" of the regressiom line, statistical methods can be
used to determine the validity. One method is the
coefficient of determination, r2. The mathematical equation
1s: r2=1-E(d2)
    \sum(y2)-(&y)2/m
```


HMS -INTEREST RATES vs SALES
 REGRESSION LINE

HMS - ACTUAL vS CALCULATED SALES

The calculation is as follows:
ACTUAL (Y)
CALCULATED (y)
$d=(Y-y)$
d2

12	11.32	.68	.46
12	11.32	.68	.46
12	11.09	.91	.83
11	10.40	.60	.36
10	9.70	-.30	.09
10	8.29	-.14	.59
8	6.14	-.59	.08
6	5.59	-.59	.35
5	5.59	-.63	.35
5	4.63	2.37	
4			-.37

97
4.09
$r 2=1-4.09$
$923-(97)^{2} / 12$

The coefficient of determination is equal to. 97 or 97%.
This means that 97% of the variations in the demand for the product are in fact explained by the interest rates.

The model appears to be valid and will be used to determine whether or not to introduce the HMS. Interest

```
rates for the next four quarters are collected and using the
regression equation, the anticipated sales are calculated.
Eollowing are the calculations:
    y=18.41-1.35x
    TIME INTEREST RATES (X)
    SALES (Y)
Year 4:1
12.53
    1.5
    12.53
    1.5
    10.23
    4.6
    10.53
    4.3
Figure XI plots the results.
```

```
    As a result of this analysis, lt was decided not to
```

 As a result of this analysis, lt was decided not to
 intraduce the HMS at this point in time. Interest rates were
intraduce the HMS at this point in time. Interest rates were
not stable and were not expected to drop enough to justify
not stable and were not expected to drop enough to justify
the introduction of the product. The pricing procedure stops
the introduction of the product. The pricing procedure stops
at this point.

```
at this point.
```

HMS-ACTUAL \& PROJECTED SALES

- ACTUAL
 -- PROJECTED


```
CASE STUDY II - THE LOCAL AREA DATA SET (LADS)
The Local Area Data Set (LADS) is a variable speed. limited distance data set designed to transmit and receive data at 2400, 4800, 7200, 9600 or 19,200 bps over Series 90002 or 4 wire non-loaded channels. Provided on two point chanels between locations in a serving wire center, the LADS provides an ideal answer to data communications in applications where the user data processing function is concentrated in a localized area. These needs occur in industrial and governmental sites as well as large office complexes. Other typical applications are hospital environments and campus-type locations. This product provides a low cost alternative to long haul data sets. The LADS \(1 s\) designed and engineered for maximum reliability and uptime. System performance is easily monitored through system status and mode indicators (LED's) which are front panel monitored. LADS incorporates simple test routines and diagnostics which permit verification of normal operation and fast, simple fault isolation. LADS provides capabilities for local loopback selftest and remote digital loopback selftest which can be performed on an umattended remote LADS. These tests provide positive verification that both local and remote LADS and the
```

```
connecting telephone lines are functioning properly. The
question remaining to be answered is. should the product be
introduced?
    A customer pre-survey imdicates that LADS is an
excellent product. Some concerns raised by potential
customers are planned obsolescence and adaptability, and
need and availability of additional services. Price is a
factor in relation to available alternatives.
    Further analysis indycates there is an available
market. Competitive products are not yet available. Office
complexes are being built in the area and the majorityy will
be using localized data communications. It is feasible to
introduce the product.
    The next step is to determine the unit cost for the
product. The matexial price is obtained from the vendor's
price list and includes all components meeded for the
complete installation of the product. The material cost for
LADS 1s 100.00. Other charges required by the vendor are an
order invoice service charge of 2.54% of the material price
or #2.54. Transportation expense for the product is $10.00
and miscellaneous supplies cost $5.00.
    Inventory costs are considered next. These costs are
developed by setting an objective level of stock, based on
ordering intervals, demand guantities, stocking faciluties
and product cost. The objective stock level is 1.6% or a cost
of $16.00. A sales tax of 6% 1s levied against the meterial
```

```
cost, invoice service charge and inventory cost for a total
cost of $7.11.
    Engineering labor consists of planning. designing and
ordering equipment. Installation labor consists of obtaining
and installing the product. Labor hours are estimated by the
appropriate departments by either using the technical
specifications, performing a test installation or by using
labor hours from a comparable product. The estimated labor
hours are multiplied by directly assignable. foward-looking
hourly labor rates to arrive at the total labor cost. The
engimeering labox for LADS is 1 hour at an hourly rate of
#44.60. The installation labor is 1.5 hours at an hourly
rate of 弗28.15 for a total cost of ##42.23.
Maintenance expense is estimated in the same manner as
engineering and installation labor. Technical
specifications, tests or similar products are used to
estimate any miscellaneous materials or labor needed to keep
the product in service. Maintenance labor is estimated to be
1/2 hour at $28.15 per hour. Miscellaneous material is
#2.31. Total maintenance expense is 非16.38.
Admınistrative expense and property tax are developed factors applied to the investment cost. The factors are developed through extensive studies that consider the type of product and the directly assignable expenses usually incurred by that type of product. The administrative factor is .0242 and the property tax factor is .0153.
```

Administratian costs are 6.25 and the property tax is * 3.95 .

Using a computerized cost model, as developed in Chapter III and shown in Table VIII, the unit cost to purchase a LADS is determined to be $\$ 24.06$.

The next step is to determine the pricing objective for the product. As stated at the beginning of the case, a customer pre-survey indicated that price is a factor. if alternatives are available at a lower price. LADS is designed to provide a low cost alternative to the higher priced long haul data sets. The company wants to keep the price low and gain as high a market share as possible. It is the belief of product management that once the target market is penetrated, the customers will be likely to continue to puxchase data and communications products exclusively from the firm

There are numerous vendors in the data set market. The LADS, however, is differentiated from other data products through its design and application, and, in addition, the market is limited to those complexes where the data processing function is concentrated in a localized area. The company expects only a few competitors to market a similar product very quickly and at a comparable price level. Therefore, the LADS should be priced under oligopoly condttions.

ITEM DESCRIPTION

1	Material Price	\%100.00
2	Invoice Sevice Charge	2.54
3	Inventory Costs	16.00
4	Sales Tax	7.11
5	Supply Expense	5.00
6	Transportation Expense	10.00
7	Engineexing Labor	74.60
8	Installation Labor	42.23
9	Total Investment Cost	\$257.48
10	Maintenance Expense	16.38
11.	Administrative Expense	6. 25
12	Property Tax	3.95
13	Miscellaneous Expense	00
14.	Total Operating Expense	\# 26.58
15.	Unit Cost	\$284.06

```
The test price range is set on the lower end by the LADS unit cost of 284.06 and at the high end by the price of a comparable long haul data set of \(\$ 830.00\). A number of test prices can be set within this range. Product management determined from the customer pre-survey that the price of LADS had to be at least \(25 \%\) lower than the long haul sets in order to be considered as a viable alternatyve. Therefore. the high end of the test price range is reduced to \(\$ 698.00\). Within this range, test prices consistent with the pricing objective and market considerations are developed.
The first test price is a cost plus \(30 \%\) mark-up or a \$370.00 price. Advertising and sales force expenditures will be kept to a minimum with emphasis placed on the price comparison to alternative products. A \(30 \%\) mark-up is customary in the marketplace, if competitoxs entex the market, they will probably enter within that price range.
A second test price is \#485.00. This price is approximately midway between the high and low ends of the pricing range with a \(70 \%\) mark-up over costs. Advertising expenditures will be high with emphasis placed on the innovativeness of the product, especially as a viable low cost alternative to present modes of data transmission, and on the reliability and adaptability of the product. The sales force will actively seek customers, reemphasize the advertising clatms and calm customer fears about planned obsolescence and availability of additional services. With
```

```
this test pitce, the company feels it can make a substantial
profit while still meintaining a price considerably less
than any of the available alternative products, thus gaining
the desired market share. Competitors are expected to follow
this example and set prices either at or slightly below this
level.
A third test price is \(\$ 570.00\) which is double the cost
of the product but still below the price of altermatives.
Advertising will be the same as in the test price 2
strategy. Sales force expenditures will be increased so that
more customers can be reached in a shorter period of time.
The strategy here is to capture as much market share as
possible at the higher price and to lower the price if
necessary as competitors enter the market.
    A fourth test price could be set at the high end of the
price range or at $698.00. At thys price, however, most
customers would not consider LADS. Any number of test prices
could be developed within the pricing range, however, it is
impossible to Eorecast demand for such slight changes in
price. The three test prices are sufficient for this
amalysis.
```

The annual cost of advertising and sales force
expenditures is calculated for each of the test price
strategies. These costs represent only the additional costs

incurred by the firm as a result of introducing LADS. The
company currently spends approximately 2% of its data
product sales dollars on advertising and employs a data
sales force of 100 representatives. Each time a new product
is introduced, the representatives attend a one day training
seminar at the corporate training center. The relationships
between consumer demand and advertising dollars spent and
between consumer demand and sales force expenditures are
continually analyzed so that correlations can be made. This
data is used to estimate expenditures for LADS.
For test price 1, advertising dollars spent will be
惐1000.00 each year. This figure is based upor the minimum
amount necessary to provide additional print ads for the
product. The existing sales force will sell LADS through
normal channels at no additional cost to the firm.
For test price 2, the firm wants to increase the amount
of ads and provide promotional items, such as coffee mugs
and key rimgs, at trade expositions. From past analyses, the
cost to achieve this is $\$^{4} 8000.00$ in the introductory year
and \$5000.00 each year after. The sales force will contact
potential customers by phone. Past data indicates that by
using this method, 100 sales can be made by a sales rep in
the introductory year and 250 sales once the product is
accepted in the marketplace. The force will require
adaitional training, concentrating on the technical design
and application of the product. The cost for this training

is 125.00 per representative (the cost of a technical instructor and educational materials). Based on the desired demand, this equates to a total cost of 2500.00 (2000units/100sales $x \$ 125.00)$ in the introductory year and $\$ 1250.00$ each year after.

For test price 3 , the advertising expenditures will be the same as strategy 2. The sales force will actively seek out customers and contact them in person. Aggressive sales techniques are necessary to compensate for the higher price. Past data indicates that by using this method. 50 sales per representative can be made the first year and 125 sales each year aftex. Again, the force will require additional training at.a cost of 125.00 per rep. In addition, another $\$ 125.00$ per sales rep will be incurred for transportation and miscellaneous client entertainment expenses. Based on the desired demand, the total sales force expenditures will be $\$ 5000.00$ in the first year and $\$ 2500.00$ each year after.

Cxoss-elastic effects must be considered next and the opportunity costs calculated. There are no complementary cross-elastic products, since all long haul data sets are considered to be substitute products. Based on the cross-elasticity of demand formula, $e_{D}=P_{k} \Delta y / y \Delta P_{X}$, the decrease 1 in demand for the long haul data sets (y) can be calculated relative to the price of LADS (x). The opportunity cost is the long haul data sets estimated future demand less the calculated decrease in demand times

The forecasted product demand for each strategy is as follows:

Strategy	Year 1	Year 2	Year 3
1	2630 units	2850 units	3000 units
2	1820 units	2300 units	2450 units
3	930 units	1125 units	1300 units

The concluding step in the pricing procedure is to enter the data into the model and evaluate the results. Table IX presents the model and results.

The strategy with the maximum profit is strategy 2 . specifying a price of $\$ 485.00$ per unit. This is the price that the firm should charge a customer for this product. Although strategy 1 will create the highest demand for the product and is consistent with the pricing objective of attaining the highest maxket share possible, it will lead to negative profit for the firm. Strategy 2 allows for the optimum level of market share and profit.

	$\mathrm{I}=$ INPUT	C-CALCULATION	EmSUM	
YEAR	1987	1988	1989	TOTAL
TEST PRICE / UNIT\|	370	370	370	\|--------
Strategy 1	485	485	485	1
2	570	570	570	1-------
3				1
-----------------1				1
TOTAL DEMAND \|				1
Strategy 1 \|	2630	2850	3000	8480
2	1820	2300	2450	6570
31	930	1125	1300	3355
-----------------1		*		1
UNIT cost				1
Strategy 1	285	285	285	1-------
2	285	285	285	---------
3	285	285	285	\|-------
------------------1				
NON-PRICE EACTORS।				
Strategy 1	1000	1000	1000	3000
2	10500	6250	6250	123000
3 1	13000	10000	10000	133000
-----------------1				
OPPORTUNITY COSTS\|				I
Strategy 1	231000	317000	417000	1965000
2	115000	159000	208000	1482000
$3 \quad 1$	87000	119000	156000	1362000
---------------1				
TOTAL REVENUE \|				I
Strategy 1	973100	1054500	1110000	13137600
2	882700	1115500	1188250	13185450
$3 \quad 1$	530100	641250	741000	11912350
------------------1				
TOTAL COSTS \|				,
Strategy 1	981550	1130250	1273000	13384800
2 1	644200	820750	912500	12377450
31	365050	449625	536500	11351175
-------------------1				
PROEIT \|	-8450	-75750	-163000	1-247200
Strategy 1	238500	294750	275750	1809000 漟
2 \|	165050	191625	204500	1561175
31				

CASE STUDY III - LONG DISTANCE TELEPHONE SERVICE

```
    When AT&T had a monopoly on long distance telephone
services, rates were continually scrutinized by state and
federal regulators. Charges were set under a complex system
referred to by AT&T as "nationwide average pricing" and
"separations". AT&T priced its long distance services
relatively high in order to subsidize local service to
residential customers. AT&T's system of pricing kept the
cost of basic telephone service low for the average custamer
and provided "universal service" or the ability for everyone
who needed phones to have one.
    In the m土d-70's, the U.S. Appeals Court allowed full
long distance competition by approving MCI's Execunet
service. AT&T was still burdened, however, with providing
universal service and maintaining the nation s wire and
cable telephone network. MCI was able to build a microwave
network between selected cities and capture some of AT&T's
largest business customers by charging lower prices. MCI
could not afford, however, to build a network to all
locations. In 1978, AT&T and MCI worked out an agreement
called ENFIA (Exchange Network Eacilities for Interstate
Access). MCI had to rent access from the Bell operating
companies to their local exchanges. MCI agreed to pay $235
per line, per month.
```

Other companies soon entered the market. About 400 or so discount carriers chipped away at AT\&T's overwhelming market share. Each paid the access fee to the Bell operating companies and AT\&T still kept its long distance prices at the higher level to subsidize other services. The growth potential of the discount carriers was limited, however, by the inferior connections provided to them by the local bell operating companies. Subscribers to the alternate carriers had to dial a computer and then punch in an access code up to 6 digits. Many customers continually received busy signals if the carxier had not rented enough lines and many found the extra numbers an inconvience. Many potential customers were lost because of the inconviences and many of the carriers left the business.

In 1982, when the restructure of the Bell system took place, AT\&T retained long distance service. It was no longer burdened with the local network and long distance service was finally truly competitive. A process called equal access was initiated. Each discount carrier was to receive the same superior access to the local network that AT\&T had received and each had to help pay for maintaining the network as AT\&T had previously done. AT\&T had been paying well over 韭 600 per Iine, per month while MCI and others had been paying 235 . With equal access, the discount carriers price rose to \$330 per line, per month while AT\&T's decreased to 强 330 . The carriers cost advantage over AT\&T had been artificial. The

```
cost adyantage over AT&T merketad to customers by companies
such as MCI and Sprint, no longer existed. The superior
access marketed to customers by AT&T no longer existed.
Price wars began.
    For the next few years after the break-up, thexe was
cut throat competition to sign up long distance customers.
Competitors knew it would be tough to gain customers awey
from AT&T but they did not expect AT&T to matoh their
marketing strategies. When MCI offered prospective customers
an hour of free service for signing up for its services,
AT&T and Sprint matched their offer. When AT&T cut its rates
by 6.1%, MCI droppped its rates by 6%. Competitors started
to slash xates and engage in expensive maxketing tactics
such as special promotions and expensive advertising
campaiggns.
    Since the basic strategy was to gain market shaxe and
gain as much as possible and as quickly as possible, profit
considerations were secondary. These marketing strategies
became so expensive some companies were losing more moneyy
than they were making from new customers. Consequently, many
were forced to drop out of the market.
    For the carriers that remain, the marketimg battle is
expected to. continue. New high tech competitoxs have entered
the market and are building their own networks. This could
result in further price reductiors since there will be more
```

```
capacity than expected demand (AT&T can alxeady handle all
of the nation's phone traffic). Many companies feel.
however, that demand will cetch up with supply as new uses
for phone channels, such as videoconferencing and data
communications, develop. Again, emphasis will be on
attracting market share with expensive marketing tactics and
profit margins may be low, especially for those compandes
that must pay for local access.
    Although the objective in this case is to maximize
market share rather than profit, the pricing procedure oan
be utilized to identify the profit level for the various
maxketing strategies. The key determinants (costs, price ancl
demand) must be developed and considered, however, emphasds
is placed on the nomprice actions and the effect they have
on product demand. Instead of implementing a market strategy
that results in maximum market share but minimum profit, the
firm can analyze the profit levels for the various
strategies and choose the one that provides an acceptable
level of both sales and profit.
    It is anticipated that long distance service will begin
to exhibit the characteristics of a normal consumer product
once the competition is weeded out and the maxket
stabilizes. Competition will distinguish their product by
stressing bxand recognition, quality and service. At this
point, profit margins can once again be considered in the
pricing decision.
```

```
        To date. AT&T still maintains more than 80% of the long
distance revenues, even in areas where competitors have
aggressively sought out customers. AT&T has almost ninety
million customers while MCI, In second place, has only two
million. There is a fear by some industry laaders that by
the end of the century, AT&T will again be the sole provider
of long distance service and companies that invested more
than $6 billion dollars in plant and employed over 350.000
people will be out of business. The outcome of this
marketing war is yet to be determined.
```


PRODUCT PEREORMANCE PLAN

```
    As indicated in the preceding text and exhibits, the
market (external factors) plays a major role in the pricing
of telecommunication products and services. The marketplace
is dynamic and the product price and product strategies must
respond accordingly. Once a pricing strategy has been
selected for a product, a product performance plan should be
developed. The purpose of the plan is to aid the product
manager in implementing the selected strategy and also, for
defining objective levels of market performance that can be
used to monitor the product's success or failure and allow
for the development of alternative strategies as the need
arises.
```

CURRENT PRODUCT SITUATION AND ASSUMPTIONS

The first item in the plan should be a brief and specific description of the product strategy. For example. The existing LADS strategy is to gain market share. This will be accomplished with a price that is lower than any of the available alternative products. Advertising expenditures will be high and the sales force will actively seek out customers.

Key milestones should be used to track the success of a product strategy. For example. The sales goal for LADS is 100 sales per representative in the introductory year and 250 sales each year after.

A financial analysis for the pricing strategy (the results of the incremental analysis performed in the pricing procedure) should be included. The analysis allows the product manager to focus attention on critical factors affecting the product s success (See Table X).

The estimates used in developing the pricing strategy costs are the performance obyectives for the product and must be included in this section.

Any product assumptions that affect the pricing strategy should be listed. Some examples are interest rates and residence/business population trends. Unique product assumptions include competition, customer reaction and technical engineering considerations. In the case of LADS, the pricing strategy is only valid under the assumption that the price of long haul data sets will remain higher than the LADS price.

```
UNITS SOLD
TOTAL REVENUES
EXPENSES:
    Maintenance
    Administration
    Taxes
    Myscellaneous
TOTAL EXPENSES
Investment:
    Material
    Inventory
    Labor
    Miscellaneous
TOTAL INVESTMENT
STRATEGY COSTS:
    Nomprice Actions
    Opportun土ty
TOTAL PROFIT
RATIOS:
    Revenues Per Unit
    Expense Per Unit
```


MARKET AND COMPETITIVE ANALYSIS

```
Here, the market is defined in terms of customex characteristics and needs, maxket trends, market segment size and market growth forecasts. Competitoxs are identified as to the extent to which they meet or will meet market needs and trends. The firm s own product or service is analyzed as to its effectiveness in meeting customers needs. its strengths and weaknesses relative to competitors. its opportunities to serve existing markets and its opportunities to expand to new market segments.
The significant market trends are summarized and the forecasted demand quantities set forth in the pricing strategy are the objective level for demand.
```


STRATEGY IMPLEMENTATION GUIDELINES

This section concentrates on what specifically meeds to take place in order to achieve the strategy described in the preceding sections. Resources and expenditures must be committed by other departments in order to implement the product plan. The strategy must be translated into step-by-step activities to be performed by the departments impacted. The description must include:

1. Definition of the program
2. Schedule for implementation with both long and short term emphesis
```
    3. Organizations responsible for implementation
    4. Critical dates
    5. Budget and force impacts
    6. Cziteria for tracking and evaluation
The interaction between product managers and other
departments will facilitate input, understanding and
acceptance of the product strategy and will ensuxe that the
product strategy is met.
A description of how the progress of the product strategy will be evaluated by the product manager should be developed. Key activities, milestones and performance measurements for the implementation phase of the product strategy must be tracked as well as the overall success of the strategy for the product. Measurements must provide a clear picture, both qualitative and guantitative, of the impact of the strategy on the product. Basic financial data, such as incremental revenue, expense and capital can be used as measurement tools. Unit based measurements, such as capital/unit, revenue/unit and utilization levels can also be used. An initial set of objectives for each performance measurement should be included in this section for the evaluation of achieved versus desired results during the plaming pexiod. Modifications of strategies will result from analysis of performance measurements.
```


RISKS AND CONTINGENCIES

```
            Here, the product strategy risks are identified and
contingency plans developed to minimize the impact of those
risks. A financial sensitivity analysis can be used to
prioritize the necessity of developing contingency plans for
the most probable risks. For example: Risk- There were plans
to order equipment from a specific vendor. This vendor has
increased its prices substantially and without warning in
the past. A sensitivity analysis has shown that a price
increase of over 15% will substantially reduce profits
because of the capital intensive nature of the offering;
Contingency Plan- Identify altermate suppliers of
compatible equipment and their oxdering intervals so that an
order can bë placed with
the alternate vendor without a time consuming search of the
marketplace (See Figure XII).
```


EXECUTIVE SUMMARY

The executive summary informs upper management of the key points $\pm n$ the product plan. It summarizes, as completely as possible, how the product will carry out its strategy in light of market opportunities, threats, risks and its own capabilities. It indicates financial performance and strategic obyectives of the product over the planning horizon. Finally, it provides a summary of resource

BEHENES EXPENSE MND GROS MARELN


```
requirements for capital and other expenditures necessary
for the programs recommended for the product.
    Brief and concise statements accompanied by graphs is
the best form of presentation. A one paragraph summery of
the significant market trends and critical planning
assumptions for the product can be acoompanted by a
graphical presentation of sales forecasts (the firm,
competitors and total market) over the planning horizon. The
product strategy can be summarized in one paragraph which
identifies those critical items necessary for the successful
deployment of the stxategy. And finally, a table listing
organizations responsible for strategy implementation, the
financial impact on that organyzation and key dates should
be presented.
```


RECOMMENDED PRODUCT LINE STRATEGY

The product plan just described sets forth the pricing strategy in a clear and concise manner and provides abjective levels of performance so that the product manager can monttor the product success. Once the product has been Introduced to the market and actual data can be collected, the plan can be used to compare the objective levels of performance to the actual levels. If discrepencies arise, the manager can formulate new product strategles.

This section synthesizes the comparisons of objective and actual product performance and describes any changes to

```
the strategy that has been set for the product. The product
strategy is a logical conclusion drawn from the analysis of
all the information that has been previously developed.
Eollowing is a brief example of the way the data collected
can be used to logically develop a product strategy:
    1) Market Factors
        - Market research indicates that small customers
                consider our product to be obsolete
            - Large customers are actively seeking alternatives
    2) Competitive Eactors
        - No competitor currently provides a state of the
                art replacement product
            - Several competitors have recently increased their
        R&D budgets
    3) Product Eactors
        - In service volume is not increasing
        - No enhancements have been provided in several
        years
    4) Financial Factors
    - Investment is substantial
    - Profit has not been growing
The strategy developed from this data might be to begin to
withdraw the product, to develop and market a replacement
product or to enhance the existing product. The decision
belongs to the product manager.
```

FINANCIAL ANALYSIS

The purpose of this section of the product plan is to summarize the financial impact of the recommended strategy. The analysis contains a baseline view (product performance without any change in strategy) vexsus the incremental view Cchange in the base view as a result of recommended strategy implementation). Table XI and Figure XIII present a sample financial analysis.

Again, a financial sensitivity analysis should be used as input for the risks and contingencies section.

The comparison of objective levels of performance to actual results is an ongoing process. When the results are significantly different, alternative courses of action can be recommendea.

EINANCIAL ANALYSIS OE RECOMMENDED STRATEGIES

$Y E A R$	1	2	3	4	5	6	7

UNITS SOLD

Baseline View

Incremental Strategy 1

Incremental Strategy 2
Total Unyts

REVENUES

Baseline View

Incremental Strategy 1

Incremental Strategy 2
Total Revenues

EXPENSES

Baseline View

Incremental Strategy 1

Incremental Strategy 2
Total Expenses

INVESTMENT

Baseline View

Incremental Strategy 1

Incremental Strategy 2

REVENUES PER INVESTMENT

Baseline View

Incremental Strategy 1

Incremental Strategy 2
TABLE XI

Win mideyl

\square nday?

FIGURE XIII

CHAPTER VII

SUMMARY AND CONCLUSION

The pricing procedure presented in this paper applies microeconomic theory and recognizes the fact that cost is not the only factor in the prieing decision but serves as the starting point or minimum basic price. Incremental costs, or only those costs directly associated with the product under study, are used so that alternative strategies can be analyzed. By allowing for the development of yarious pricing strategies, this model considers pricing objectives and the nature of the maxketplace.

Product differentiation, the nonprice actions that are important to marketing strategies, is recognized as a factor affecting the demand and as a cost affecting the profitability. Opportunity costs are included as well. Again, demand and profitability of one product or alternative are directly affected by other products or alternatives and must be considered in the process.

The pricing model recognizes the importance of demand.

The demand reflects the effect of the prioe, product differentiation, cross-elastics and competition. The calculated profit levels for various strategies reflect the effect of estimated demand quantities on costs and revenues.

```
    Further, they also represent the differenoe between the
incremental or marginal costs. the inoremental ox marginal
revenues and the cost of nomprice ections and oross-elastid
effects. The test price with the maximum profit over the
planning period is the price to choose for the product. This
price reflects the maximum demand for the produot given that
#ncremental revenues cover the incremental costs.
    Finally, it is important to note that product
management does not end once a product is priced. The
marketplace is dynamic and the product strategy followed
must be adaptable to the ohanging environment. A product
performance plan enables the product managex to monitor
specific product performance objectives and to develop
alternative strategies as the need arises.
    Regardless of the amount of data available for pricing
and monitoxing a product, it is necessary that skilled
product managers are available to make product market
assumptions and to predict future market trends with
acouxacy. It is the validity of the assumptions and the
interpretation of the data that ultimately, emables the
product manager to bring the right product at the right
price to the marketplace.
```


SELECTED BIBLIOGRAPHY

```
"A Marketing Blitz to Sell Long Distance Telephone
    Service", BUSINESS WEEK, July 2. 1984. P 86.
Allen, Lee Clark, THE FRAMEWORK OE PRICE THEORY,
    Wadsworth Publishing Company, Inc.. 1976.
AT&T, ENGINEERING ECONOMY, AT&T, 1982.
Buell, Victor P.. HANDBOOK OF MODERN
    MARKETING, McGraw Hill Company, 1970.
Cataldo, Larry, DEMAND ANALYSIS TECHNIQUES,
    AT&T, 1982.
Coll, Steve, THE DEAL OF THE CENTURY,
    Collier MacMillian Canada. Inc., 1986.
Cook, William J. and Ma, Christopher,
    TELESHOCK, Simon & Schuster. Inc., 1985.
Dorfman, Robert, THE PRICE SYSTEM,
    Prentice - Hall, Inc.. 1974.
Dorfman, Robert, PRICES AND MARKETS,
    Prentice - Hall. Inc., 1976.
Fexber, Robert, HANDBOOK OF MODERN MARKETING RESEARCH,
    McGraw Hill Company, 1974.
Haveman, Robert H. and Knopf, Kenyon A.,
    THE MARKET SYSTEM, J. Wiley & Sons, 1981.
Heilbroner, Robert L., UNDERSTANDING MICRO-
    ECONOMICS, Prentice - Hall, 1968.
Hill, Richard M., MARKETING STRATEGY,
    AT&T, 1982.
Holloway, Robert J. and Hancock, Robert S.,
    MARKETING IN A CHANGING ENVIRONMENT,
    J. Wiley & Sons, 1973.
Levenson, Albert M., OUTLINE OF PRICE THEORY,
    Holt, Reinhart and Winston. Inc., 1978.
McCarthy, E. Jerome, BASIC MARKETING.
    Richard D. Irwin. INC., 1978.
```

```
Moore. Carl L. and Jaedicke. Robert K.,
    MANAGERIAL ACCOUNTING. South Western Co.. 1976.
New Jersey Bell Journal, Volume 4. Summer 1981.
Robertson, Thomas S.. MARKETING SEMNINAR,
    AT&T, 1982.
Samuelson, Paul A. and Nordhalls, William D..
        ECONOMICS, McGraw Hill, Co.. 1985.
Seo, K. K. and Winger. Bernard J.,
        MANAGERIAL ECONOMICS, Richard D. Irwin. Inc., 1979.
SERVICE COSTS MANUAL, NJB, 1980.
Wynns, Peyton L., THE CHANGING TELEPHONE INDUSTRY,
        Congress of the U.S., 1984.
```

Dr. Carl Wolf
New Jersey Institute of Technology
Dr. Wolf.
I have read Katherine Sullivan's paper "A Model For the Determination of Market Based Pricing of Telecommunication Products" with great interest. As a District Manager with AT\&T I have had responsibilities over the past twelve years in the areas of cost development, profitability analysis and pricing development for telecommunication products. I am currently a product manager with responsibilities for service offerings.

I found Ms. Sullivan's document to be a comprehensive analysis of the various factors involved in the development of pricing strategies and price levels for telecommunication products in a competitive environment. Her paper reflects an understanding of the interrelationships of the environment, costs, demand and pricing considerations which support the successful introduction and management of a new product.

Ms. sullivan's work details the basis for pricing decisions and outlines an appropriate pricing model which would provide an excellent guide to anyone in this field.

Lori Walsh
District Manager AT\&T
P.O. Box 2019

Morristown, N.J.
07960

Dr. Carl Wolf.

This is in regard to Katherine Sullivan"s thesis "A Model Eor The Determination of Market Based Pricing of Telecommunication Products". Over the years. I have worked for New Jexsey Bell as a cost analyst. sales represertative. and in the rate department. I currently work for Bell Atlantic in the Embedded Analysis Study Group analyzing the total costs and revenues for the firm. I am familiar with the various costing methods and the one presented in Mrs. Sullivan s paper is a good description of the method that should be used in product pricing.

Having also worked in the rate department. I have had experience with product teams and the various factors that must be considered in the pricing deciston. Mrs. Sullivans paper presents a clear and concise method that considere those factors and also expands on them to include the competitive environment. Her procedure and model present a suitable method to be used for pricing telecommunication products.

Rosann Cali

Service Cost Analyst

EAS Group
$649-3574$

