Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other
reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other
reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any
purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user
may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order
would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to
distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

A Modified Extended Kalman Filter
As A Parameter Estimator

For Linear Discrete-Time Systems

by

Bruno Johannes Schnekenhurger

Thesis submitted to the Faculty of the Graduate School of
the New Jersey Institute of Technology in partial fulfillment of
the requirements for the degree of
Master of Science in Electrical Engineering

1988

APPROVAL SHEET

Title of Thesis: A Modified Extended Kalman Filter
As A Parameter Estimator
For Lincar Discrete-Time Systems

Name of Candidate: Bruno Johannes Schnekenburger
Master of Science in Electrical Engincering, 198K

Thesis and Abstract Approved: . . . _Date & //ff
Dr. Andrew U. Meyer
Professor
Electrical Engineering

Signature of other members o Date (,/\/M‘Xg

of the thesis committee. Dr. B. Tarik Orang

VITA

Name: Bruno Johannes Schnekenburger.
Permanent address:

Degree and date to be conferred: M.Sc., 1988.
Date of birth: .

Place of birth:

Secondary education: Technische Oberschule, Freiburg i. Br.,
West Germany, 198]

Collegiate institutions attended: Date Degree Date of Degree
New Jersey Institute of Technology 9/86-5/88 M.Sc Oct. 1988
Fachhochschule Offenburg 9/83-2/86 Dipl.-ing.(FH) Feb. 1986

Major: Electrical Engineering.

Publications: Schnekenburger, Bruno J. and Dahlmann, Horst
” Ringbus-System zur flexiblen Mefdalenerfassung,
Elektronik, vol. 24, December 1986, pp. 89-94.

Positions held: Teaching Assistant, New Jersey Inst. of Tech., Newark, NJ, 9/87-5/88

Research Engineer, Technologie Transfer Zentrum, Offenburg,
West Germany, 4/86-6/86

Trainee, Hewlett-Packard R&D, Waldbronn, West Germany,
8/84-2/85.

Skilled Worker, Fernmeldeamt Offenburg, West Germany,
9/77-9/79.

ABSTRACT

Title of Thesis: A Modified Extended Kalman Filter
As A Pararmeter Estimator
For Linear Discrete-Time Systems

Bruno J. Schnekenburger Master of Science, 1988
Thesis directed by: Prof. Dr. Andrew U. Meyer

Asst. Prof. Dr. B. Tarik Orang

This thesis presents the derivation and implementation of a modified
Extended Kalman Filter used for joint state and parameter estimation of
linear discrete-time systems operating in a stochastic Gaussian environ-
ment. A novel derivation for the discrete-time Extended Kalman Filter is
also presented. In order to eliminate the main deficiencies of the Extended
Kalman Filter, which are divergence and biasedness of its estimates, the
filter algorithm has been modified. The primary modifications are due to
Ljung, who stated global convergence properties for the modified Extended
Kalman Filter, when used as a parameter estimator for linear systems.

Implementation of this filter is further complicated by the need to ini-
tialize the parameter estimate error covariance inappropriately small, to
assure {ilter stability. In eflect, due to this inadequate initialization process
the parameter estimates fail to converge. Several heuristic methods have
been developed to remove the effects of the inadequate initial parameter
estimate covariance matrix on the filter’s convergence properties.

Performance of the improved modified Kxtended Kalman Filter is com-
pared with the Recursive Extended Least Squares parameter estimation

scheme.

Fiir meine Eltern

To my Parents

Acknowledgement

The author would like to express his appreciation to Dr. Andrew U. Meyer
of New Jersey Institute of Technology and to Dr. Halil O. Giilciir of Bospho-
rus University, Turkey, for their support, knowledge and insight, without
this work would not have been possible. He also would like to extend a
special thanks to Dr. B. Tarik Orang of New Jersey Institute of Technology

for his selfless dedication and generous support, far in excess of reasonable

expectations.

i

Contents

List of Tables vi
List of Figures vii
1 Introduction 1
1.1 Motivation and Objectives 1
1.2 Synopsis . - . o . o e e e e e e e e 2
1.3 Notation e e e e 3
1.4 Acronyms and Abbreviations 5
2 Theoretical Developments 6
2.1 Introduction e e e 6
2.2 The Discrete-Time Kalman Filter 7
2.2.1 Problem Statement 9
2.2.2 Kalman Filter Derivation 12
2.2.3 KF for Systems with Deterministic Inputs 23
2.24 Summary e e e e e e e e e e e e e e 25
2.2,5 Conclusiono 28
2.3 The Discrete-Time Extended Kalman Filter 29
2.3.1 Problem Statement 30
2.3.2 EKF Derivation 31
233 Conclusion e 41
2.4 The Extended Kalman Filter as a Parameter Estimator 42
2.5 A Modified Extended Kalman Filter 50
2.5.1 Conclusions e 53
3 Implementation of the MEKF 54
3.1 Introduction. 54
3.2 The Algorithm e 55
3.3 Filter Initialization 64
3.4 Noise-Sequences Used for Testing the Filter 66
3.5 An Example of the Present Method 68
3.6 Conclusions e e e 72
4 Investigation and Development of Various Methods to Improve
Stability and Rate of Convergence of the MEKF Based on Single
Parameter Case 73
4.1 Introduction. it i e e e e 73
4.2 Decelerated Convergenceof Ps 74
4.3 Addition of Noise Term to the Parameter Vector 79
4.4 Enlargement of the Kalman Gain Matrix 85
4.5 Rejection of Spurious Data Points 88

B
C
D
E

4.6 Keep 8in Do o o oo i
4.7 An Improved MEKF — Results
4.8 Conclusions oL e

Comparison of an improved MEKF with a RELS Filter
5.1 Introduction e e e e e e

5.2 The RELS Algorithm
5.3 Implementation of the RELS Method
54 Results. e e
Conclusions

6.1 Summary and Conclusions,
6.2 Recommendations for Future Work

Program Listing MEKF

A.1 Main Programo
A.2 Subroutines L e
Program Listing RELS

Program Listing Noise Generator

Properties of the Expected Value Operator E

Proof of the Matrix Inversion Lemma

Bibliography

149

151

152

154

List of Tables

NN NN
Ll OO B

Summary of the 2 phase Kalman filter algorithm -
Summary of the single phase Kalman filter algorithm

Summary of the 2 phase Extended Kalman Filter algorithm .

Summary of the single phase Extended Kalman Filter algorithm
Summary of the partitioned single phase Extended Kalman Filter
algorithm as a parameter estimator.

Autocorrelation function associated with noise sequence N.SEQ13

vi

25

35
36

49
67

List of Figures

3.1
3.2
3.3
3.4
3.5
3.6

B A 090
[SARC - SELRN U © 00 =3

=~
o

[N N N NS
bk ke ek (OO0 =

Beo—=C

5.1
5.2
5.3
5.4

Main Program MEKF Flowchart Part 1 58
Main Program MEKF Flowchart Part 2 59
Uniform Convergence of k' to dK/3¢° 61
Oscillatory Convergence of k' to dK/36* 61
Oscillatory Divergenceof ¥* 61
Subprogram P31COMPKAPPA Flowchart 63
Parameter Estimates Test A. 69
Variances of Parameter Estimates Test A 70
Parameter Estimates Test B. 71
Parameter Estimates Test C,Dand E 76
Variances of Parameter Estimates Test C, Dand E 76
Comparison of Parameter Estimates from Test Eand F 78

Comparison of Variances of Parameter Estimates from Test Eand F 78
Parameter Estimates for Diflerent Parameter Noise Covariances Test

Gand Test H 82
Parameter Estimates for Different Parameter Noise Covariances Test,

Hand Test 1 83
Variances of Parameter Estimates Test G and Test H. 83
Variances of Parameter Estimates Test H and Test 1 84
Parameter Estimates Test K (const. gf and Test L (variable gf) . .. 87
Variances of Parameter Estimates Test K and Test L 87
Parameter Estimates Test Aand Test J 91
Variances of Parameter Estimates Test A and Test J 91
Parameter Estimates Test M 94
Variances of Parameter Estimates Test M 95
Parameter Estimates for 1st Order System 102
Parameter Estimates for 2nd Order System 103
Variances of Parameter Estimates (1st Order System) 103
Variances of Parameter Estimates (2nd Order System) 104

vii

Chapter 1

Introduction

1.1 Motivation and Objectives

The application of modern control techniques to the control of today’s industrial
processes is gaining increasing importance. In order for the process control to be safe
and economic, the process needs to be fully known. Mathematical process models
allow the estimation of unmeasurable variables and process parameters. Many of
these modern techniques are computationally costly. However, recent advances in
hardware and software have made impressive computing power available at low cost,
and thus opened up new fields of potential applications.

A wide spread and well known method to estimate and monitor the parameter
process parameters, is the Extended Kalman Filter. It simultaneously estimates
the state and the parameters of the system it is applied to. The Extended Kalman
Filter, related to the well-known Kalman Filter, is an approximate filter, based on
local linearization of the state equations. Though easy to implement, the Extended
Kalman Filter tends to diverge, or gives biased estimates. Lennart Ljung disclosed
in [33] the causes of biasedness and divergence, using his own method to analyse the
asymptotic properties of recursive estimation algorithms. Ljung suggests a modi-
fication to the Extended Kalman Filter that converts the algorithm to a globally
convergent filter [33].

In this thesis an improved modified Extended Kalman Filter is implemented,

based on Ljung’s recommendations. Numerous Monte Carlo simulations show the
performance of this filter and the algorithms as developed by the author. To pro-
vide the reader with sufficient theoretical background, detailed derivations of both,
the discrete-time Kalman Filter and the discrete-time Extended Kalman Filter are

given.
1.2 Synopsis

Chapter 2 provides the necessary theoretical background, to provide a basis for the
material of the later chapters. Thisincludes derivations of the discrete-time Kalman
Filter and of the discrete-time Extended Kalman Filter. Chapter 2 closes with the
presentation of a modified Extended Kalman Filter.

Chapter 3 describes the different aspects associated with the implementation of
the Modified Extended Kalman Filter, which are mainly the filter software and the
filter initialization. Detailed information about the noise sequences used for testing
the filters are also given, because properties of the noise is a very crucial part in
system simulations.

In Chapter 4 several different methods intended to improve the rate of conver-
gence in the Modified Extended Kalman Filter are introduced. Most presentations
of these techniques are supplemented with reports on test outcomes of Monte Carlo
simulations, to show their effectiveness.

How the Modified Extended Kalman Filter performs relative to another popular
parameter estimator, namely the Recursive Extended l.east Squares method, is
examined in Chapter 5.

A summary of the thesis, along with concluding remarks and recommendations
for future work on this subject, are given in Chapter 6.

The program listings and material furnishing mathematical background, are

contained in the Appendices A-E.

1.3

Iy

Iy

Tk|j

Tk|j

Notation

Stale vector at time k

State vector at time k,

Estimate for state vector at time k& based on the set of measure-
ments Z;

State estimation error vector Iy; = T Iy
System matrix at time k

Measurement matrix al time k&
Measurement noise vector
Process noise vector

Indicates that z is normally distributed with mean m and covari-
ance P

Denotes the set {(zi, k) | k > ky}

Error covariance matrix at time k£ based on the set of measure-
ment Z;

Estimate for 2;;, where the estimate is conditioned on the knowl-
edge of Z,

Estimate for z;,, where the estimate is conditioned on the knowl-

edge of Z; and z,4,

Residual at time k& where the state estimate is based on the set
of measurements Z;

Error covariance matrix associated with the estimate 2y,
Error covariance matrix associated with the estimate 2,

Kalman gain matrix for updating the state vector (two phase

algorithm)

Kalman gain matrix for updating the state vector (single phase
algorithm)

Kalman gain matrix for updating the parameter vector
Nonlinear system matrix

Nonlinear measurement matrix

Rn

E{}
EXP|
MT

M1

M|
trace | M|
]

g.i

Mi

1
0

8

Linear term in Taylor series expansion of f(-) at

IS

Linear term in Taylor series expansion of h(-) at

Unconditional probability density function of z

Conditional probability density function of zy knowing that
Z, has occurred

Kronecker delta é;; is 1 for 1 = 7 and is zero otherwise

Denotes the set of measurement vectors z; starting from time
ky+ 1 up till time k; Z = {2,411, 2k, 120 " 2k}

Augmented state vector at time &

Minimum variance estimate of z

Short form for CkPkik,]CkT + Q5% (Kalman Filter case) or for
H(ze,) Pee-r (H(2ee)) 4 Q5 (EKF case)

Parameter vector

Linear vector space of dimension n
Expected value

el

Transpose of matrix M

Inverse of matrix M
Determinant of matrix M

Trace of matrix M

L2-Norm (length) of vector =
Denotes i-th element of vector x
Denotes i-th column of matrix M
Identity matrix

Lero vector

Identical (true for all k& > k)

1.4 Acronyms and Abbreviations

ARMAX
EKF
HOT
KF
MEKF
MIMO
MV
pd

pdf
RELS
RPE

Auto Regressive Moving Average eXogenous
Extended Kalman Filter

Higher order terms (in Taylor series expansion)
Kalman Filter

Modified Extended Kalman Filter

Multiple Input Multiple Output

Minimum variance

positive definite

probability density function

Recursive Extended Least Square

Recursive Prediction Error

Chapter 2

Theoretical Developments

2.1 Introduction

As mentioned in the introductory chapter, the objective of this thesis is the imple-
mentation of a modified Extended Kalman Filter used for parameter estimation.
This chapter is aimed to provide the reader with the theoretical background on
modern (ilter theory necessary to fully grasp the material contained in the subse-
quent chapters. It is assumed however, that the reader is already familiar with such
topics as matrix theory, state space techniques, probability theory and stochastic
processes.

The discrete-time' Kalman Filter (KF) is derived first, because the iwo other
filters, the Extended Kalman Filter (EKF) and a modified Extended Kalman Filter
(MEKF) introduced subsequently are mere variations of the KF. In Section 2.3 it is
shown, how Kalman IFilter theory can, through linearization, be applied to nonlinear
filtering problems and how this leads to the EKF algorithm. In Section 2.4 it is
discussed that parameter estimation is, even for linear systems, a nonlinear filtering
problem. How the EKF can be utilized to attack this problem, is also shown in

Section 2.4. In praclical applications the EKF tends to diverge or gives biased

estimates. A modified EKF algorithm (modification due to Ljung [33}) with general

YOnly filters, systems and models that are of discrele-tinie nature are treated here. The motiva-

tion for exclusion of continuous-time cases comes from the fact that in practical situations digital
computers are used to observe and control systems.

convergence properties is introduced in Section 2.5.

2.2 The Discrete-Time Kalman Filter

In 1960, R. E. Kalman [27] derived a linear, optimal estimator for the estimation of
state variables of linear, time-varying systems, operating in a Gaussian stochastic
environment. Optimal estimator here is referred Lo a computational algorithm that
processes measurements to deduce a minimum error covariance of the state of a

system combining all the information available, i.e.:
e knowledge of system and measurement dynamics
e assumed statistics of system noise and measurement errors

e initial condition information

Kalman Filter theory includes — contrary to the classical techniques — non-
stationary cases. A Kalman Filter (KF) is, under the Gaussian assumption, optimal,
i.e. better than any other filter, and is for all non-Gaussian cases the best linear es-
timator. Kalman Filters have simple recursive? structures that can be implemented
easily using digital computers.

There are many different ways to derive the KF algorithm. Kalman’s origi-
nal derivation of the discrete-time KF?* [27] is based on the orthogonal projection
method?. Another way to deduce the KF algorithm is to first assume the estimator
to be linear and then to optimize it, by minimizing the length of the estimation error
vector. These and other derivations of the KF can e.g. be found in |2/, [25], [23],

|7) or [39]. The basis for the derivation given in this work are Bayes’ techniques,

“Recursive filters do not require the storage of past measurements, yet the present estimates are

based on all data up to the present time.
“Kalman and Bucy derived in 1960/61 the continuous-time conntertype to the KF|28], in the

literature known as Kalman-Bucy-Filter or just KF.
4See |1] and [25] for further informations about. orthogonal projection.

as described in [39]°. Bayes’ techniques will be used to propagate the conditional
probability density function (pdf) of the state from one time instant to another.

Before going into the mathematical details of the derivation some thought will
be given to what the Kalman Filter is about. In order o monitor a process, apply
proper control signal or detect errors, the state of a system has to be known. An
estimator is needed, wherever the states of a systern are not directly accessible, but
merely some noise corrupted measurements are available. It will be shown later
that the state vector is Gaussian distributed at all discrete time instances, provided
that system noise, measurement noise and intial state vector are Gaussian. Kalman
Filter theory combines all the information available, to deduce the optimal estimate.
The term optimal is used, because there is no other filter algorithm that results,
on an average, in a smaller estimation error. The Kalman filter also computes an
error covariance matrix for each estimate. This is as important as producing the
estimate itself, because the state estimate is of little value if it is not known, how
certain one can be about it.

To get a notion of how the KF operates, think of a simple example with only one
state variable. Suppose, an estimate of this state variable and its associated variance
are given at a certain time instant, say k. From this and the information about
the system dynamics, the KIF predicts (estimates) what the state will be at time
k + 1. This estimate is less certain (the covariance is larger) than the previous one,
because of the process noise present, that drives the system state randomly. At each
step in time, noise corrupted measurements become available. These measurements
are utilized by the KF, to improve the quality of the state estimate, i.e. decrease
the variance. If the measurement noise is large, the KI' gives little weight to the
measurement data, and modifies the estimatc only a little; if the measurement

noise is small, the new estimate is determined largely by the measurement data. In

“The derivation given in |39] served as one of the prime sources for the one presented here.

any case, whether the measurement noise is small or large, the measurement data
contain some new information, that leads to a smaller variance, i.e. a state estimate,

with greater certainty.

2.2.1 Problem Statement

Assume that a physical system® that generates the set of measurement vectors

Zi o {Zkyt1r ko 424+ > Zkn+i), 15 adequately described by the following state space

equations:
Tie1 = ApTp + v (2.1)
Zk = Yk ter
= Crxp + e (2.2)
where:
k> ky k; is initial time instant
Ty € R™ is system stale vector
zy C R™ is measurement vector
ve € R™ is process noise vector
e, ¢ R™ is' measurernent noise vector
Ay ¢ R™"™® s system matrix (in general time varying)

Cy € R™*" is measurement matrix (in general time varying)

A and C, are known matrices. zy, 2, Yk, e and v, are random vectors of which
only z, is known. Scalars shall be included as special cases, so notation-wise no
distinction will be made between vectors and scalars. The symbol {z,} stands
for the set {(zx,k) | k > ko}; {zx} takes on the value z; at time instant k. The
meanings of {e,}, {vk}, {yc} and {2} are analogous. The reader might have noticed
that the model (2.1), (2.2) is without a deterministic input. This does not make
the derivation less general, because a known input shifts the mean of the state

vector, but has no effect on the shape of its distribution. The derivation is carried

“The underlying physical system can be of continuous-time type. A proper discretization as
described in [25] or |2] will produce an équivalent discrete-time model.

9

out with this simpler system, solely to keep the equations involved more compact
and easier to survey. Following the Kalman Filter derivation for systems without
known inputs, it will be shown that the developed estimation algorithm can easily
be modified to admit systems with deterministic inputs.

The filtering problem associated with the system described by equations (2.1)
and (2.2) is to generale an optimal” estimate Z, for the state vector z; at all
tiine instants k utilizing the set of measurements Z;. Without making certain
assumptions about the initial state z, and the noise processes involved, very little

can be done to produce this optimal estimate.

The following assumptions are made:
The initial state z, is assumed to be a Gaussian random vector. It thus suffices to

know its mean %, and its covariance matrix FPy:

E{zo} = %o (2.3)
To = To~— Zo (2.4)
E{zzf} = P (2.5)
where:
T, € R™ is mean of initial state vector
Iy € R™ is initial error vector

Py, € R™*"® js error covariance matrix of Z

Remark: P, is merely required to be positive semidefinite instead of being positive
definite (pd). This permits the case where some of the initial states are known
precisely. Note also that the trace of P is related to the length of the error vector

z, as:
lrace {})l = E{(El)z i (5-2)2 Foeee k (&nz)2}

= E{||z)*} (2.6)

"What exactly is meant with optimal esttmate will be explained at a later point in this section.

10

where &' denotes the ith element of # and lz|| stands for the length of vector z.

Further assumptions are that the noise processes {v.}, {ex} are white, Gaussian,

zero mean sequences with statistics:

E{v} = 0 (2.7)

E{e) = 0 (2.8)
E{vew]} = Qb (2.9)
E{ece]} = Qiby (2.10)

where:
@, 1s a symmetric positive semidefinite matrix
@ Is a symmetric positive definite (pd) matrix
bej is 1 for k = j and is O otherwise

The initial state and the two noise sequences are uncorrelated:

E{zov)} = 0 (2.11)
E{zel} = 0 (2.12)
E{viel} = 0 (2.13)

Some of the assumptions given here, can be relaxed, and an optimal linear estimator
can still be derived to solve the estimation problem. However, the above problem
formulation is considered is gencral enough for the scope of this thesis.

The filtering problem is to find the optimal estimate Zy, for the state vector z;,

taking into account all the available measurements Z. The estimate §7k|k3 is defined

as:

T = E{ze| Zi}

1 0o 400] ne
= / / Tk Pay|zy ATy - - - AT (2.14)
- 00 -00

where:

8This type of estimate is known as maximum a posteriori {MAP) estimate

11

Ze ={z1,22,...,2} s the set of all measurements up to time k

Poiize” is the probability density function of r; condi-
tioned on the knowledge of Z,

Tk is the estimate of z; where the latest available
measurement has already been incorporated.
is called the measurement-updated estimate.

Tipk is the estimate of z; at time k£ where the mea-
surement vector z; has not yet been considered.
Zj)k-1 15 known as the time-updated estimate.

2.2.2 Kalman Filter Derivation

For the system (2.1), (2.2) is assumed that at time k (k > ky) the latest measurement
zx has been processed, i.e. the measurement-updated state estimate Z, is available.
Assume further that p,, |z, is Gaussian with conditional mean) and conditional

error covariance Py.

1

Puizy, = = EXP {_% (zx - z,c,k)T Por (= iklk)] (2.15)
(27) ® IPk|k]

Thus, at time k, the statistic of the state vector zj is completely known. But
what is the value of this information at future time instances ¢ (1 = k) 7 It should
be intuitively clear, that for (i k) large, the density p,,z, is of little value for
estimation of the current state x;. Therefore, the conditional probability density
function p needs to be propagated, to produce the statistics of the state r at any
time ¢ > k. The problem to propagate p,,|z, to the next time instant k + 1, can be

broken up into two distinct phases:

Phase 1: Time-update p,,;z, to obtain the density function p,,_ iz, the time-

updated state estimate ;4 and the time-updated error covariance matrix

°In order to make the notation simple, dummy variables are omitted here; e.g. for pez (o] Z)
simply p,z is written.

12

Py

Phase 2: Measurement-update p,,, |z, i.e. incorporate z;,; in the conditional
density to generate the conditional probability density function p iz, , the
measurement-updated state estimate Z;,;x4, and covariance matrix Py jxq)

associated with Ty, 16y 1.

Phase 1: From equation (2.1) onc gets the state vector zy.,. The important
question that arises here is, whether the density Pryyi|Ze 18 still Gaussian. Since z;41
is a linear combination of z, and and the system noise vector v, the conditional
density p,,,, 1z, Will be Gaussian, if the conditional density py, .|z, is Gaussian'®,
By Bayes’ rule:

Pz, koL
Pz,

Pzi,Zi Puglzi, 2k

Pz,

Pz v | 2,
(2.16)
In the problem statement it is assumed that v, is independent of zx and Z. There-

fore, the conditional probability density function (pdf) p,, z4,2, equals the uncondi-

tional pdf , p,,. This allows to rewrite the numerator of equation (2.16):

Pz,,2, Pu
pz,,,u;,le - SISk Nk (2.17)
Pz
One further application of Bayes’ rule gives:
ka,Ukle - pzkizk puk (2.]8)

Both, p,, |z, and p,, are Gaussian, by assumption. Probability theory states'! that
the product of two Gaussian densities is also Gaussian, provided that the associated
random processes are independent. This answers the question stated above: p,, , |z,

is a Gaussian density. The mean Z, % (optimal time-updated estimate) of Pziy |2,

'"See e.g. [43) for proof of this statement,
HGee e.g. |12] or [43] for an introduction in probability theory and stochastic processes

13

Ty = E{zge | Zi}
= E{(Arze+) | 2}

= Ay E{.Tk | Zk} + E{Uk I Zk} (2.]9)

In equation (2.19) £ {v | Zx} is equal to zero because vy, Z) are independent and
{vc} is a zero mean sequence. Hence, the time-propagated state estimate Zpyyk is
given by:

Zegape = A Tip (2.20)

The conditional covariance matrix Py associated with Zx, | is defined as:

Peyap = E{(iku - ik+1|k) (zisr — 2y llk)T \ Zk} (2.21)

If 24, is replaced by Ag 2 + v (eqn. 2.1) and Ay Zi is used for Z,, (eqn. 2.20),

P11k becomes:

= K { (Ak [Ik - lilc|k] + ’Uk> ([ij - ﬁ:k!k]’r AZ + ’UZ) | Zk} (222)

Now, let Ty, be the estimation error vector at time k, based on the set of mea-
surements Z,. Also, define — as in equation (2.5) — Py as the conditional error

covariance matrix associated with the time-updated state estimate Tyj.

.’itk|k = X :%klk (223)

Pee = E {ikuc Zy | Zk} (2.24)

14

The two equations above (2.23) and (2.24) allow to rewrite (2.22), as:

Pk-flllc — E{(A;c -'Ekllc -+ ’Uk) (5’{|k AZ + ’UZ) \ Zk}
— M E{mgev] | Zef 4 B ozl | Ze) AL

+ Ak E{Ee 20 | Zef AT + B {veo] | Ze] (2.25)

The first two terms on the right hand side of equation (2.25) are zero, because vy is
independent of z;; and Z4, i.e. its conditional mean equals its unconditional mean,
which is zero by assumption (egn. 2.7). The last term equals Q} (eqn. 2.9) for the

same reason. The final expression for Py is:

Peyrje = Ak Pup A + Q3 (2.26)

Now that the conditional mean I, and the conditional covariance!? Py have
been evaluated and that p,,,,;z, has been proven to be Gaussian, the conditional

density p,,,,|z, is completely known and can be expressed by:

1
Prii112y e EXP|] (2.27)

(2”)%’ \/ka+1|kl

1
EXP|] [__

T
- 5-1 -
($k+1 - Ik+||k)],H”k (-’Ekn - J?kﬂ]k)]

[3V

This completes phase 1 of the derivation; the measurement-update problem is

treated next.

Phase 2: The next task is to incorporate zx,; in the conditional density p;, .z,

to generate the measurement-updated pdf p,,,,z,,,- With Bayes’ rule as a tool,

!2From the defining equation for Py yj (2.21) it follows that Py 4 is also the conditional error
covariance matrix associated with the error vector Ty = Zr41 — Fpq i

15

Pziy11ze.; Will be expressed in terms of three easier-to-evaluate probability density

functions.
p v 112 s £
Priy1Zis EEDTEL) (2'28)
Pz,
szn,Zk“ R sz 1 kzk4
T Py lme 0,2k Py 2k
Poyyileny 1.2k Prrgi| 2 P24 (2.29)
Pz, = PazgiZi
sz,[Zk PZk (2.30)
Substituting (2.29) and (2.30) into (2.28) gives:
Prpyi|Ziyy ™ PeveilonsinZi Proyi|2, (2'31)

pzk+»x|2k

where p;, |z, is already known from phase 1 and p., _ |s,,, z, is the pd[of the latest
measurement vector 2,4, conditioned on knowledge of Z, and z.4; (!). The fact
that the state vector zx4; is assumed to be known, might puzzle the reader and
give rise to the question on how z,;, can be assumed to be known, whereas il was
stated earlier, that the system states are not directly accessible. The answer to
this question is, that the state vector z,4; is assumed to be known only for some
intermediate steps , and that in the final filter algorithm z,,; does not appear.

From equation (2.2) it is known that the measurement vector 2,4, is given by:
zer1 = Chp1 Teg1 + €kt (2.32)

The measurement matrix Ci,; and the state vector x,,; are assumed to be known.

So, the product Ci,1 T4y is a fixed vector and therefore z;,; has the same!® type

!3The addition of a constant to arandom variable does not change the shape of its density function,
but merely shifts its mean by that constant.

16

of distribution as ex4;. The only difference is that the pdf of ex4; is zero mean (by
assumption), whereas the mean of 2,4, denoted by z;,, is Ciry1 ZTk41. The results of

this discussion put in equation form yields:

o E {zk+1 } Lkt Zk}
= E{Clc+l Tetr 1 ke | Ikﬂ,zk}
E{Ck+1 Tkt1 'xku,zk} 1 E{eIHl | Ti+1, Zk}

= Ok-H Try1 + 0 (233)

where the 0 follows from the fact that egy; is independent of z,41, 2, and that {e;}

is zero mean. The error covariance matrix V%, associated with z;,, is:

Via, = E{(Zkﬂ - 3;“) (zk-il . z}:+l)T ‘ Tk+1s Zlc}

{ Cry1Zrin + k1 Crp1Tegr) (Cra1ZTir1 + €ksr — Ck+11k+1)T |-’L‘k+1,2k}
= {€k+1"k41 |Tk11,Zk}

{ekﬂeh }

= Q% (2.34)

As a result of the discussion above p, . |z, ,.z, is known to be Gaussian, so it is

exactly described by:

Peprlze, 2 = ***“"‘I-'“ o EXPH (2.35)
277 \/erﬂl

EXP|| = [-l (ze1 - 20) (@) (20 Ziﬂ)}

The last pdf to be evaluated on the right hand side of (eqn. 2.31) is I
The measurement vector zz,; is obviously a lincar combination of ery; and z44,

(cf. eqn. 2.32), so Pz, 1z, Will be Gaussian if the conditional density p,,,z,,,z, is

17

Gaussian'®.

By Bayes’ rule:

Persi muinnZe
Pz,
pek-HJﬂ'_—Ll V2 pzk+1,_:_;£
Pz,

ptx+|.ﬂ5k+x|zk

(2.36)

Pek+i'zk4 1Lk Pmk,,}zk

As stated above, ex,; is independent of xz,,; and Zi. Therefore, its conditional

pdf equals its unconditional (Gaussian) pdf. It was proven earlier, that p;, 7

is also Gaussian. In other words, ex;; and zx,, are — conditioned on the set of

measurements Z, — independent, normally distributed random vectors. Hence, the

product of their conditional densities p,, |z, .2, and p,,,, 1z, is a Gaussian density.

Let %:,; be the mean and V., be the variance associated with the conditional

density function p,, . |z,

Skt

vkﬂ -

E{zii | 2k}

E{Ceor Teir 1 e | i}

E{Cii1 Teyr | Ze} + E{exsr| 2k}

Ceiin E{zei1) Zi} + E {ers1}

Cort ey (2.37)
E{(r?;cn) (eer - Een) | Zk}

E{(Ck+l [IIHI - 5~'k+1|k] + €k+1) ([ﬂ:n - ik-ﬁ-l]k]TC'E«fl + ffﬁ) , Zk}
Cei [{(- ie) (2 = Beo) | 2o L,

+C,H]E{(mk+| - :i,ﬁ.,lk) e,a, | Zk}

w;{em ENE ik“,k)T | zk}c,'{,, 1 E{errel,, | Zi} (2.38)
Cur B {(zx01 = Bae) (zear = o) | 2o} L

1Ce E{zenel,y | Zep + Elecixh,, | Ze} €],

~C 7 T 7 T - | AT T
Ci+1 Ik*‘”kE{ekﬁrl 1 *-k} -k {ekn] *’vk} Tis ik Cean

"*Notice the similarity to the evaluations made in section phase 1 on page 13.

18

‘|—E{6k+16;€+] ’ Zk} (2.39)

The first term on the right hand side of equation (2.39) above is recognized!® to be
Crs1Per1kCL, 1. As mentioned earlier, ex is independent of Zj, zxy; and {ex} is
zero mean. Therelore, the terms 2, 3, 4 and 5 are all zero. The last term in (2.39)

equals Q%,,. The measurement covariance matrix V;,; can now be written as:
"t T e
Visr — Cieit Py Cryy + Qs (2.40)

The Gaussian density is explicitly given by:

1
Poiilze = *,“_“" e XPl (2.41)
(2” : \/'Ckﬂpkﬂu(/k“ 1 Qk“\
] [1 4 - ol
EXP|] - [5 (2ke1 = 2k41)" ((/kﬂl)lcil[kcz‘-rl + Qicﬂ) (241 = Zk41)

At this point, all densities on the right hand side of equation (2.31) are evaluated

and the density p;,, |z,,, can now be expressed by:

-1
\/Pk+1|k (0k+1 }lu |kck+1 + QIH) (Q7c+l) ‘ _
Pepoi|Zpy, = T - (En)'fl - - FXP ll (2.42)
v 1 R .
EXP|| = {2 (IIHI - xkﬂtk) PIHll]k ($k+1 - :r.knlk)

-t
P2kt — Cesrziin)” (Ql“) (ze+1 — Crs1 Tkq1)

-1

I T , .
(2ki1 - Zria) (Ckfl])klﬂkck-u 1 QZ“) (Zk41 = 2k41)

It is possible to transform equation (2.42) into a quadratic standard form for Gaus-
sian densities, from which it can be concluded that p;, ., ,|z,,, indeed is Gaussian.
Because this step is tedious and requires intensive use of algebra, it is left out

and just the resulting equation is given here. The interested reader is referred to

!Refer to eqn. (2.21)

19

Maybeck (|39] page 213fT).

1

p$k+1|2k+l = " T
‘ 5 5}
(2m) lf k+1\k+]]

EXP[| =

EXP|] (2.43)

—
\
B

7
A > -] 4
. (ZCH] - Ik4l|k+1)]/H 1k+1 ($k+1 $k+1|k+1)]

where Pyyqki1 is the measurement updated covariance matrix, which is calculated

as:

T
Peiier: = E {(Ikﬂ - Ik+1|k+1) ($k+1 - Ik+wk+1) I Zk+1} (2.44)
~T L 1 B
= [(’kﬂ (Qiu) Crpr Pk-}l|k}
and the mean (measurement updated state estimate) Zyy ey is given by:

Teeripsr = E{Teqr | Zeer} (2.45)

1
r S | . 1
~T I y-1 v e 31 R
{Clﬁl (Qk“) Cs1 Ikﬂ|k] [*kﬂ (Qk--r]) Zkr1 1 }k+1|k$k+llk}

The equations derived so fare solve the estimation problem as given in section
Problem Statement and one could stop here. However, the KF algorithm in this form
is not the most efficient one. The reason for this is, that the equations above require
inversions of nz-by-nz'® matrices, whereas it is possible to transform the equations
(2.44) and (2.45) into equivalent representations that require only inversions of
ny-by-ny'? matrices. This yields an algorithm that is computationally less costly,
because for most systems is the number of states larger than the number of outputs.
The Matriz Inversion Lemma'® (eqn. 2.46) shall be used to convert (2.44) and (2.45)
into the desired forms:

'nx is the number of states
'Tay is the number of outputs
!8See Appendix F for proof of this lemma

20

Substituting (2.44) into (2.46) immediately yiclds the proper expression for the

time-updated error covariance matrix FPiyqjp4i:

; NS
Peivesr = Peype - Perae C';Z‘“ (Ck-ilPk+1|k Clot QH]) Ciry1Pesi|k
(2.47)
Next, (2.46) is substituted into (2.45), which gives:'?
-1
Frenn = |P—PCT(CPCT 4 Q.) CP} [Pz + CTQ; "] (2.48)

= 2-PCT(CPCT Q) Ct

+pC? [Q;‘ - (creT Q) ' CPGTQ;'] z
= &-PCT(CcPCT 1 Q.) Ci
1PCT (CPCT + Q) [(cPCT + Q) QT cPCTQ;]
; -1
- £-PCT(CPCT 1 Q) Ci+ PCT(CPCT+Q.) Iz
where | denotes the identily matrix. Factoring out PCT (C'PC’T + Qe)‘ " and rein-

troducing the time indices yields:

-1
ikn;ku = ik«l[k + Pk-l ik CIHI (Ck41Pk+1[kCZ+l + er}l) (2-49)

.
X (an - Ck+lIk+1|k)

KExploiting common terms in (2.47) and (2.49) to further simplify the algorithm

gives:

. . 1

Kl = PeaeCLy (CoitPeoeCryy 4 Q4y) (2.50)
i:k+1|k+l = ik+l]k+h’f+1 (Zk+1 Ck+153k+1|k) (2.51)
PkHlk-H = (] - Klf-{»lckJrl) Pk ‘ (2.52)

1 order to keep the algebra tractable, time indices on the right hand side will be dropped for
this step. It is understood, that ! means Cyyy, PP means Py, 2 means zeyy, & means By gk
and @, means @,

21

where K[, , is the Kalman Filter gain matrix at time k + 1.

What has been shown so far, is how to propagate p;,|z, from time instant k
to time instant k + 1 and how 1o incorporate the new measurements, that become
available at time k + 1, into the densily to generate Pziyy|Ziy,- It has been proven
that il p;, |z, is Gaussian, so is p;,,,z,,,- This is true for any k (k > k;), in
particular for k = k. Because p,,|z, is assumed to be Gaussian, all p, 7, (1 > ko)
will be Gaussian, which completes the proof.

The state estimate, generated by the derived algorithm, is optimal in many
ways. One criteria of optimallity, that is of special interest for the developments on
the EKF, is the minimum variance (MV) criteria. It shall be shown that % is also
a minimum variance estimate.

Recall that the error covariance matrix is defined as:
p - p{ix"}
100 1 00 T | nz
/_ /_ (z-n)(z—n) pyzdz---dz} (2.53)

where 7 is the minimum variance state estimate. As expressed by equation (2.6),
the square root of {race|P| equals the expected length of the error vector (z - 7).
Thus, minimizing the trace of P leads to an estimate, that is best in a mean square
sense. The problem is to identify this » that minimizes trace[P|. Let J - trace|P|
and consider J as a function of n. As usual, the minimum of J is found by setting

the derivative of J, with respect to 1, 1o zero (necessary condition).

aJ 8 l
o = - [trace[PH
) 1 00 oo §
- ('(,7 [lrace [/ / 71)7 Paiz dz! -- 'dIZz]]
i e T 1 nz
T ooy [/m[w (-) (z n)pyzdr,---dz}] (2.54)

Exchanging the order of integration and differentiation in equation (2.54) yields:

+00 too o T | nz
RN IR BN o) CRRVCRD EELE R

22

+00 +o0 o9
= / / —a— T :r—nT:c—:cTn+nTn]px|zdx}c...dz:f-
oo 07

+ 00
= / / 0—z —z+2n|pyzday---dz}”

4 o0 + 00
= 2n - 2/ / T pyz day - - - da}” (2.55)

The last line of (2.55) clearly shows that the gradient ’ai is only zero if n equals the
conditional mean, i.e. equals . Hence, the KF state estimate is aJso the minimum

variance estimate?®".

Note that for the MV estimale, no assumption about the
nature of the conditional probability density function p,; were made; it is sufficient
to know its mean.

It should be pointed out, that the covariance matrix update equations (2.26) and
(2.47) do not depend on the actual measurements z;. Therefore, covariance matrix P
and Kalman gain matrix K can be computed prior to the actual application time.

The necessary on-line computations are, for finite-time processes, reducible to just

updating the state estimate.

2.2.3 KF for Systems with Deterministic Inputs

The KF algorithm derived above does not account for known inputs. Now it will
be shown that only little changes in the algorithm are necessary to make the KF
applicable for the broad class of systems with known inputs.

The system that generates the sel of measurement vectors Z; is adequately

described by the following state space equations:

Try1 = ApTp A Brug 1 vg (2.56)
Zk T Ykt o€k
Cirzy + e (2.57)

where By is a n.r-by~nu input distribution matrix and u, is the known input vector

"To complete the proof one wou]d also have to show that the sufficient condition is also satisfied,

i.e. the Hessian of J is positive semidefinite. It can readily be shown that this holds for 3';,’

23

of dimension nu. All assumptions about initial state, noise sequences etc. are as
before (sec equations 2.3-2.13).

The difference between (2.1) and (2.56) is that in the latter equation a known
vector Biuy is added to zxi3. It is stated earlier {see footnote 13 on page 16)
that this changes only the mean of the state vector z,; but not the shape of its
density function. So the covariance maltrices associated with z,,; are not affected.
Therefore, it is sufficient to consider only the estimate update equations here and
derive how they have to be changed to account for known inputs. The optimal
time-updated state estimate Z, for the system as described by (2.56) and (2.57),

is calculated as:

5Jk+1|k - E{mkﬂ | Zk}
= E{(Ak:rkJeruk—l-vk) | Z}
Ay E{.’Bk | Zk} 4 Brug + E{‘U;c | Z}c}

= Ay ik|k + By ug (2.58)

where z,,; has been substituted by (2.56). The next question one has to ask is,

whether the measurement-update equation (2.51) nceds to be changed.
A I . F v A I
Tit+1lk41 ~ Tkl = K (zkﬂ - CIc+l$k+1|k) (2-09)

where the right hand side is the updating vector by which Z is corrected, when the
new measurements 24,1 become available. Substituting (2.56), (2.57) and (2.58)

into equation (2.59) yields:

-F
Tkt = Trgie = Kepr (ConiArTe 1 Cryi Beug + Crg Ve + €6

=CriArZige + Ciy lBkuk)

K::}] (Ckﬂ (Aka Alci:k“c) + ek+1) (2.60)
So clearly, a deterministic input has no effect on the measurement update. The

24

Table 2.1: Summary of the 2 phase Kalman filter algorithm

B 2 Phase’KF Algorithm
Phase 1: time-update equations

ffk+1!k = Ak£lc|k + Biug (2.61)
Poyne = Ax Puge AT 4 @ (2.62)

' Phase 2: measﬁrement-update equations

-1
Kf, = Peik CLyy <Ck-i 1Pk Crpr + QZH) (2.63)
Teert — Zreae + KL (Zk+1 - Ck+1§3k+11k) (2.64)

])k+l|k+] = (1 - K}qu-]("ki])])k+]llc (2.65)

KF algorithm is suited for system with deterministic input, if equation (2.20) is

replaced by equation (2.58).
2.2.4 Summary

To show the order, in which the individual equations of the derived KF algorithm
has to be computed, a summary of the algorithm is given in Table 2.1.

Phase 1 and phase 2 have Lo be executed recursively; with phase 1 the filter ”jumps”
in time from time instant k to time instant & + 1, where phase 2 is performed, as
soon as zx;; becomes available and so on.

There are situations, where it suffices to singly compute either the time-updated
state estimate I,y ;, or the measurement-updated state estimate Z;. For these
cascs, it is desirable to convert the 2 phase KF algorithm into a single phase algo-
rithm, because the latter one is computationally more efficient. Ljung choose for his
paper [33] on the asymptotic behavior of the EKF, a filter algorithm that generates

only the time-updated estimates. So, in preparation of the evaluations about 133],

it is shown next how the derived KF algorithm can be converted into a single phase
algorithm, which computes the time-updated state estimate Zy.; and the with
this estimate associated covariance matrix Pg.;. To start this transformation,

substitute equation (2.64) for Zyy into (2.61):

Teoe Ak (i‘kucq + Kf (2 — Ck{tk]k»‘])) + Bruy

w0 A1t AkK] (zk — CrBre-1) 4 Bk (2.66)
Let:
S = CkPepCF 1 Q4 (2.67)
and redefine the Kalman gain matrix K to be:

- [-1
K, = Ak])k}k—lclzn (Okpklk—log‘ t+ Qlc+l)

AePye-, CT 87 (2.68)
With (2.67) and (2.68) equation (2.66) can be rewritten:
'53/” e = Akiklk—l + Bkuk + Kk (Zk - C‘k."i?”k_]) (269)

To gel a similar expression for the covariance matrix, substitute (2.65) and (2.63)

into equation (2.62) which yields:

Peove AePip (] Kfck) Pee- 1 AL 1 Q)
= AgPup AL - KiCxP 1 AL 1 Q)
B 5} T N v- 1,y) T v
; [k Ay KiSeS, (/kfkuc 1 A Q)
— T v
A Prix Ap ~ KiSi (AkPk]k»-l Ci S, l) t Qp

,, > T > T v
- Aklklk Ak - }‘kSkKk "I’ Qk (270)
212 Phase because the propagation of conditional mean % and covariance P is broken up into two
plases, time-update and measurement-update
2285, is pd, so its inverse exists

26

For further reference, the complete single phase KF algorithm is summarized in

Table 2.2

Table 2.2: Summary of the single phase Kalman filter algorithm

... Single Phase KF Algorithm
Filter equations:

Sk = CyPup-1CY + Q5 (

Ki = AP, CrS! (
Tevie = Arfep 1+ Beug + Ky (Zk - Crfgpe 1) (2.73)
Pep = AeDipor Ay - KieSoKD 4 Q) (

One of the requirements for successful application of the KF as a state estimator
is that the systermn has to be known completely. In practical cases however, the
system is often not fully known from the very beginning of operation, or il is time-
varying in an unpredictable way, caused e.g. through wear of some parts. These
unknowns about the system can be included in the model as parameters, which can
be regarded as random variables with known a priori statistics. Assume there are
np such parameters combined into a vector ¢. In general all system matrices are

dependent on 8. If A, B and C are otherwise time-invariant, one gets the following

model description:

Tiyr A(g).'l:k + 1)’(0)’&!.;c + vg (2.75)

z - C(@)ze + e (2.76)

The states of the system and these parameters are both not directly accessible.

Hence, an obvious thing to do, is to extend the state vector £ by the parameter

27

vector 8 to form an augmented state vector, denoted z4.

A _ Tk ‘
T, = [8,] (2.77)
As before, the filtering problem is to estimate the (augmented) state vector. The

question that arises here is: Can one still use the KF to attack this filtering problem?

The state equation for the augmented system as given below, yields the answer to

this question.

x,’?H = f (:z:f,uk) + { 186] (2.78)
zk = h (:cf:‘) | ek (2.79)
where:
/ (xf,uk) = [A8r) = ; B(0) u] (2.80)
h(zf) = C(0k) (2.81)

From the equation (2.80) it is obvious that the system is not linear in z# (z# can not
be factored out). Hence, the KF is not the proper tool to be applied for parameter

estimation, because it does not account for nonlinearities.

2.2.5 Conclusion

Two Kalman filter algorithms suitable for estimating the state of linear discrete-time
multiple-input/multiple-output systems have becn derived.

The filters are not the mosi general ones possible, but sufficient for the needs in
this work. If necessary, the Kalman filter algorithms can be modified to include cases
where measurement and process noise are correlated, where the noise sequences are
non-zero mean (biased) or where some of the measurements are noise {ree. Kalman
filtering yields an state estimate, that is — based on the assumptions made —

satlisfying many optimality criteria. In real applications the initial state and the

28

initial error covariance matrix are generally not known. However, the algorithm
will still converge to its ‘best’ for some large (k- ko).

It has been shown that the KF is not suited for parameter estimation, as this
is inherently a nonlinear filtering problem. An extension of the KF, known as the
Extended Kalman Filter (EKF) can be used instead. This filter is described in the

next section.

2.3 The Discrete-Time Extended Kalman Filter

The Kalman filter, introduced in the previous section is an optimal state estimator
for linear systems that are completely known. Real systems however, are often
nonlinear and/or there are some uncertainties about it. In case the system under

consideration belongs to this group, there are two ways to proceed:

e using nonlinear filter theory (which provides solutions only for some special

cases)

e lincarize (approximate) the problem and then apply linear filter theory.

Extended Kalman filtering is based on the latter method. At each step, the state
equalion has to be linearized, which is done by expanding it into a Taylor series,
evaluated about an state estimate and truncated after the linear term. Hence the
extended Kalman filter is an approximate filter, based on first order linearization.

Better approximations are achieved by including higher order terms in the ex-
pansion. Filters, based on this method, where in the Taylor series expansions the
quadratic terms are included, are referred to as 2nd Order Extended Kalman Filter.
Another method?®* to get betler state estimates Z; is o repeatedly calculate z,, Ki
and P each time about the most recent estimate.

Good descriptions of the extended Kalman filter and the other methods men-

tioned here are e.g. given in [14,{25] and |40].

23This method is known as lterated Extended Kalman Filter.

29

2.3.1 Problem Statement

Assume that the nonlinear time-invariant®* system, from which the measured output

data are obtained, is adequately described by the following state space equations:

Tipr = Sz, uk) + vk (2.82)
Ze - h (Ik) + € (283)
where:
k > ky k is the initial time instant
Tk c R™ is the system state vector
up, € R™ is the (known) input vector
Zk < R is the measurement vector
Vi I is the process noise vector
€k ¢ R™ is the measurement noise vector
f(:) ¢ R™*"* is the in z nonlinear system matrix

h(-) < R™*™ isthe in z nonlinear measurement, matrix

J(-) and h (-) are fully known. z, 2k, uk, ex and v, are random vectors of which only
z¢ and u, are known. For this derivation, it is assumed that there is a deterministic
input signal present.?® As in the case for the KF, some assumptions about initial
state and the noise sequences involved have to be made, such that extended Kalman

filtering becomes applicable.

A 1: Mean and covariance of the initial state vector zy are known

A 2: The two noise sequences {vy} and {e;} are white Gaussian, zero mean se-

quences with statistics:

E{w} ~ 0 (2.84)
Ef{e,} = 0 (2.85)
E{w!} - Q16 (2.86)
E{eel} = Q6 (2.87)

24This will be relaxed later on to the case of systems with are slowly time-varying
2% Any accessible input signals belong to this group, e.g. known disturbances, control inputs etc.

30

where:
@, Is a symmetric positive semidefinite matrix
@} is a symmetric positive definite (pd) matrix
0cj is 1for k = j and is 0 otherwise

A 3: Initial state and noise sequences are uncorrelated:

E{x(,v?:} = 0 (2.88)
E{zel} = 0 (2.89)
E{vef} = 0 (2.90)

The filtering problem is to deduce estimates for the states of the system, utilizing
all the information available, which includes state space equalions, noise statistics
and initial conditions. Because extended Kalman filtering is, as noted earlier, an
approximate method, the resulting state estimates are no longer optimal, but the

best one can get applying a linear estimator.

2.3.2 EKF Derivation

- There are many different ways to derive the EKF algorithm. Here, the author
outlines two diflerent approaches: the first one is less rigorous and primarily shows
how through linearization, the problem can be converted in an approximately linear
filtering problem. This linear problem can then be solved using the KF. In the
second approach it is shown how the three constraints:

1.) that the estimate has to be unbiased
2.) that the estimation variance is minimal
3.) that the estimator is linear

lead to an algorithm, that is similar to the KI'" algorithm.

First Approach:
Assume the system under consideration is at time k (k > ky) and that the latest
measurement z; has already been processed, so that estimate Z); and conditional

error covariance matrix Py are available. Based on this, the first step is to generate

31

the time-updated state estimate Zj.q)x and the covariance matrix associated with
this estimate. Recall from the Kalman filter derivation, that the optimal time-

updated estimate for x4y, is the mean of p,, ,/z,. Hence, Z; ¢ is given by:

ilﬁllk = E{xk-fl] Zk}
= E{f(:z:k,uk) + vk | Zk}
= E{f(ze,ux) | Zx} + E {ve | Z&} (2.91)

where E {v; | Z,} is zero, because {v,} is a zero mean sequence and v, is indepen-

dent of Zx. So, Ttk can be rewritten as:

e - E{f(reue) | Zi} (2.92)

To solve equation (2.92) precisely, one would have to know p,, . |z,, but there is
little justification to assume p;,, iz, to be Gaussian; even if z; would be normally
distributed, r,;; would not, because f(:) is nonlinear in z. A practical thing to do,
is to expand f(zi,ux) in a Taylor series about a vector, say z, truncated after the
linear?® term. The quality of this approximate method depends to a great extend
on how close, in a mean square sense, T is to the state vector z. But how can such
a vector = be gencrated? All the information available about z is represented by z,
which is the best guess for z. So naturally, the Taylor series expansion of f(z,ux)
is done about Zy, which is (hopefully) so close to z,, that the truncation error is

small with respect to remaining terms. Therefore, Z;,1x can be computed as:

. . . of
e — I {f(xklkauk) I+ Y

. (Ik - ik|k) + HOT t Zk} (293)
ke

e Eepk

= J(Eueour) + E{F(zue) (z — Zep) + HOT

Ze) (2.94)

where F'(Zy,ux) is the nz-by-nx matrix of partial derivatives, evaluated along Zy.

Neglecting the higher order terms (HOT) and assuming that the state estimate is

2¢This is motivated by the idea to apply linear estimation theory to this class of filtering problem.

32

unbiased®” (E{z - &} = 0), equation (2.94) simply becomes:
Tevie = f(Zkpke w) (2.95)

Let Iy, be the time-updated error vector associated with Zgyqk, and Ty be the

measurement-updated error vector:

i/c+1|k BT N 53k+1|k (2-96)

ek = Th— Tgp (2.97)
Substituting (2.97), (2.95) and (2.82) into equation (2.96) yields:

Tepie (f(iklkauk) + F(Zppk we) (26 — Zipe) + vk) ~ S(Zkjks i)

F(ik|k1 ‘U,k) 531:|k + v (298)

where f(rg,ux) is replaced by the truncated Taylor series as given in (2.93). It
is interesting to note, that equation (2.98) is linear in Z. The vector Z is random
and can - under the given assumptions®® — still assumed to be (approximately)
Gaussian distributed. Substituting (2.96) and (2.97) into equation (2.98) yields

another interesting relation:

Tepr — Zepap — F(Zreoun) (26~ i) + v
Tror = Tequpe t F (T ve) (Th — Zegp) + vk
A F(Zgpe, k) Do + F(Zep,) (Te — Tep) + vk

F(Zppe, i) Tp 1 vk (2.99)

which is identical with equation (2.1), except that Ay is replaced by F(Zj,us).
The question thal arises here is, whether applying the linearization method to the
measurement equation (2.83) will result in an equation that is of the same type as

(2.1), because then the problem could be solved with the KF. To get a linearized

*TThis assumption will be verified later on.
“BParticularly that % is a good estimate of z, which is only true if all | v* | are small.

33

measurement equation, expand h(zy) into a Taylor series evaluated along the time-

updated state estimate Zy.

h(:l‘.k) - h‘(:;:kﬂc- 1) + ”'I“' (mk - .'i'.k“c_]) ‘+ H()Tw (2]00)

Zp=Ek[k-1

The higher order terms in (2.100) can be neglected, without causing a significant
error, provided that zy - Zg-; is small in a mean square sense. The linearized

measurement equation is computed as:
Zp = h(ik[k»]) —+ H('%Hk‘ 1) (rk - ik|lc—1) =+ €k (2.10])

where H (Zy.) is the ny-by-nz matrix of partial derivatives evaluated along Zy-;.

Taking the expectations on both sides of (2.101) yields:
2 = h(Zep-1) (2.102)

because E{z; — Zxi. 1} - 0 and {ex} is a zero mean sequence.

Let:

R (2.103)

and substitute equations (2.101) and (2.102) into (2.103):

Zy = h{(Fepe 1) ¥ H(Zee o) (26— Tege- 1) + ek — A(Zkp)

]](:%Hk— |) 53[;|k~ 11 ex (2]04)

Recall, that in the lincar case, the residual Z; is given by:

Z 2k - Z
- Crxpd e~ Ce Ty o)
Ck ik[k% + €k (2105)

which is identical with (2.104) except for the fact that C is replaced by H(Zy-1).

What can be concluded from this is that, the KF is applicable to the linearized

34

system. The formal differences between the KF and the EKF are, that for the latter
filter algorithm, A and C are replaced by F and H, respectively. The algorithm for

the 2 phase Extended Kalman Filter is summarized in Table 2.3.

Table 2.3: Summary of the 2 phase Extended Kalman Filter algorithm

2 Phasg_VE"KFAlgorithr_rrl,

hlt"hasé l: tifﬁo—ubdate equations T

Teae = S(Tkpes we) (2.106)
~ ~ T v

Pesie = FlEeeowe) Per (Flaepowe)) + Q) (2.107)

Phase 2: measurement-update equations

KLy = P H (Zr k)
X [11(5k+1|k)Pk+1|kIf(ik+1|k) + Qiﬂ]_] (2.108)
Tepiesr = Zeop + K [Zka-l — h(Zpy llk)] (2.109)
[= KL\ H(zkere)] Pesiie (2.110)

i!

Pkt

Definitions:

. Of(zi,u
F(Zepe,ur) = i%"—") (2.111)
Tk Ti=Egk
. Oh(z
Hipenp) ~ sl (2.112)

EPNNES JESTN

It is possible to convert the 2 phase EKF algorithm into a single phase EKF
algorithm. For the KF case, this transformation led to an equivalent algorithm,
i.e. the time-updated?” covariances and state estimates of single phase and 2 phase
algorithm, are identical. This is not the case for the Extended Kalman Filter

algorithm. As the derivation above has shown, the nonlinear system matrix needs

2°0nly those are available in the single phase algorithm

35

to be expanded in a Taylor series, in order to make a linear estimator applicable
The expansion is carried out around the most recent estimate, the measurement-
updated state estimate Ijx. This estimate is not available in the single phase
algorithm, so the time-updated estimate Iy, is used instead. It is expected, that
Iy is the better estimate, i.e. is closer to r; in a mean square sense, because i
is based on all the information Zyy. ; is based on, plus the information about the
latest measurement z,. What can be concluded from this is that, the 2 phase EKF
algorithm should work better than the single phase algorithm, because the errors
made by neglecting the higher order terms in the Taylor series expansion of f(-) are
smaller. Because the procedure to convert the 2 phase EKF algorithm into a single
phase algorithm is so similar to the one applied in the KF case, it is omitted here

A summary of the single phase EKF algorithm is given in Table 2.4.

Table 2.4: Summary of the single phase Extended Kalman Filter algorithm

- _ ___ Single Phase EKF Algorithm =~
Filter equations:
Se = H(Eee 1) Poe H (Fri 1) 1 Qf (2.113)
Ke = F(Zrg-sru) Peer H (2o 1) S§ (2.114)
Iepie = S(Zepp-1,uwi) + K [Zk P k)k. 1)] (2.115)
A T
Pesie = F(Zxp 15 we) Pege (F(Iklk nuk))
- KeSeKT 1 @ (2.116)
DefiTions e e o e
Af(x,
Floge) = 2/G0) 217
T . -
I Zgpk o
Oh(zy)
H (&g SUATRL 2.118
(zk[k l) Oz T Frpp-n ()

36

In this first approach, it is rather loosely shown, how the nonlinear system equa-
tions can be linearized and converted into a form, that allows to formally apply the
Kalman filter structure. The EKF is more rigorously derived using the MV optimal-

ity criteria and other constraints. The derivation given below follows this methods.

Second Approach:

To gain better insight and decper understanding of the KKF algorithm, another,

more rigorous filter derivation is given here. This derivation is achieved by forc-

ing the filter to have the same linear structure as the KF. In order to keep the

evaluations compaci, references to the first approach will be made, where possible.
The first step is to find the time-update equations for the error covariance matrix.

The state estimate time-update equation is derived in the previous section (cf. eqn.

2.95). The time-updated estimation covariance is by definition:
Perk = B {Zeope 35, | Zi) (2.119)

where the time-updated error vector Z.q is given by equation (2.98). Therefore,

Pyy1k can be expressed as:

- . - T
Pk L {(F(-T'k]ka”k) Tile + vk) (F($k|k, Uk) ik 1 Uk) \ Zk}
F(i Edape it | Zebt FT(zep) 1 E Tz 2.120
(:rk“c,uk)) xklk Ik|k Lk (Jlk!k YUV, | prays (.)
h =T T(a qA B T | =
+E {‘Hk xk|k | Zk} F (Ik|k,uk) 4 F (.Tk“.,‘u.k) F {T-k|k Ve l Lk}
The last two terms in the equation above are zero, because the system noise vector
vk is independent of error vector Iyx and measurement set. Zx and because {vk} is
a zero mean sequence. The second term in (2.120) is the system noise covariance

matrix Q} (cf. Chapter 2.3.1). Finally, substituting the defining equation for the

measurement updated covariance matrix Py
P = E{Zus £y | Za) (2.121)

37

into equation (2.120) yields:

Pevie = F(Zapowr) Pepe F(Zapoue)” + Q (2.122)

The time-updating of the state estimate is now completed. The next step is to
take into account the new measurements, i.e. to oblain the measurement-update
equations for the state estimate T and the with Z associated covariance matrix. Led
by the desire to retain a linear filter structure, the measurement updated estimate
Tiy1k41 is forced to be a linear function of the measurement vector z,4;. Therefore,

let Zx,qk4+1 be given by:
Tipiksr = Gpyr + Kf+]zk+l (2.123)

where the vector ay;) and the matrix K are to be determined. Substituting (2.123)

and (2.83) into equation (2.97) yields:
Tepiesr = Grr + Kigy (R(Zee1) + k1) + Zaape =~ Tt e (2.124)
Taking the expectations on both sides, yields:

0 - aer 4 K¢ E{h(zi1} - Zeqape

Substituting equation (2.125) back into (2.119) gives:

Eevrerr = Eepe + Kl (2 E{h(zen)}) (2.126)

It is impractical to compute the conditional mean of h(zx), as given in (2.125),
hecause this requires the knowledge of the conditional probability density function
Ph()|z,- An expansion of h(zk4 1) into a Taylor series, evaluated about the most
recent state estimate, does circumvent this obstacle. The series is truncated after

the linear term in order to preserve a linear filter structure. QOmission of the higher

38

order terms is justified by the assumption that, the state estimate Z is close (in a

mean square sense) 1o the system state z at any time instant k.

N oh .
h(zii1) — h(Zepre) py (Tesr ~ Fege)
z=Ep 41k
= h(Zeprpe) + H(Zernpe) (Zesr — Zegagr) (2.127)

Applying the expected value operator on hoth sides generates:
E{h(zk1)} = h(Zei1k) (2.128)
Substituting (2.127) into (2.83) produces:
zisr = h(Eeyie) + H(Zeyap) (Terr = Zeg) + €k — A{Zep-1) (2.129)
With (2.128) and (2.129) equation (2.126) can now be rewritten:
Teqier1r = Zppap t K/f‘n (H(xkﬂ;k)(l'kﬂ ~ Zpya) + f—’k+1)
Eee 4 K 2 (2-130)
where for the last step, equation (2.104) is used.
Teinkit ~ Thyipe — Kfn Zei 1k (2.131)

The gain matrix K, in (2.130) has yet to be determined. To do so, one further con-
straint on xz . is imposed. The measurement-updated state estimate Thitjks1 1S
desired to be a minimum variance estimate. Recall from the previous section, that
a MV estimalte is equal to the conditional mean no matter what the underlying dis-
tribution is. The mecasurement-updated error covariance matrix Piijes is defined
as:

Py = 15{5%111':“51‘“;“1} (2.132)

Let Ji,y denote the trace of Pritjk+1, that is:
Jei1 - trace _Pk+1|/c+l]
o o
-~ trace .b {Ik+”k+1 Thy1ike }]

)))) o r
irace E{(:c“”k Kf+]zk11|k> (:I:k“lk~ }\fﬂzk““c) }] (2.133)

39

From the evaluations about minimum variance estimates (cf. Chapter 2.2.2) it is
known, that minimizing Ji,; yiclds the desired MV estimate. The minimum is

found, by setting the partial derivative of J,; with respect to KH,, to zero.

ey

B T _ =xT(1F F3=T F3sT (g F\T
OKE, OKF [troce B{zz" - 237 (KT)" - K22" + K237 (k)]

(2.134)

Exchanging the order of integration and differentiation in equation (2.134) yields:

0Jk+1.
OK[,,

O [asT _ osT(peF Fy=T FysT(pcF

= trace E {(—;]%F [I.’IJ — Iz (K) - K + K"z (K)]
Irace E { [Q T 73T 4 ZKFEET] }

~ 2 xtrace [KTE{2:"} - B {2:"}] (2.135)

The right hand side of (2.135) is in general zero, if the expression within the brackets

is zero. Therefore:

{z2"} (2.136)

E
K = El#7) (E{z)) (2.137)

Using the equations for the time-updated covariance Piyqx (2.119) and for the
output error z, . (2.104), the expectation operations in the equation above are

readily carried out. Recall also, that e,y is not correlated to Zpyipx and Zpyqk.

Elae il) - E{ik“,k (‘Tch[/c (H (20s1)) " em)}
E {xk+1|k$k“|k (H(zew) } 4B {#heensi)
Perie (H(ze) 40 (2.138)
Elseedl,) E{(H(zm,k)imw +esn) (H(ze i) Bae +ek+1)T}
= H(aew E {Zeindl) (HEeene) " + B {enel))
+ B {erZh, i) (H(iw}k))T 1 (Bes1k) B {Zesreeny |

. . T .
= H(Zeop) Pevae (H(Zp) 1 Qg (2.139)

40

So, the gain matrix that minimizes the variance of the state estimate Zy,,; is given

by:

-1

T T
Keio = Pew (H(Eeop)) (H(@HM)PWM (H (2s1e)) +Qz+l)
(2.140)

The measurement-update equation for the covariance matrix P is:

P i i Feaw i (KE)~ KE % 5T
killetl 7 LY Thtalk Trgrik "kt 1k et 1]k k+1 k+1%k+1{k Lt 1)k
. T
F ~ =T -F
+Kir 1241k Zeg gk (]‘kﬂ) }
P, -~ KI' E{3 T - Eiz T KF)
k+ 1]k k41 211k Teya)k Tk+1|kZk41]k k+1
T

-F AN Y ~T r
PR B {Zkﬂlk Zk+1|k} (Kk+l) (2.141)
Recalling that K[, is such that equation (2.136) holds, the last two terms in (2.141)
cancel out. The second term can also be expressed by:
; . AT N - - ~T ~T
KEGE {2l e) = Kbk {H (Zesie)Fasnpe 2o €t 1Tk 1k)
= Kfﬂ]{(ikﬂw)])k;uk (2~142)

Substituting these results back into (2.141) yields the covariance measurement-

update equation.
Pk Pesve ~ KE G H(Fe 1) Peae
[1 - KEH (&)] Peone (2.143)
The second Extended Kalman Filter derivation is now complete. The algorithm
obtained via this approach, is identical with the one derived before. Summary of

the EKF algorithms for the 2 phase filter and for the single phase filter are given

in Table 2.3 and Table 2.4, respectively.

2.3.3 Conclusion

When comparing the EKF algorithm with the KF algorithm, one gets the impres-

sion, that the differences between them are insignificant. (Just replace A and B in

11

the KF algorithm, by F and If to get to the EKF algorithm.) There are however,
substantial differences. The matrices F and H are random, because the Taylor
series is evaluated around the most recent state estimate, which itself depends on
the observed output data. Therefore, error covariance matrix P and Kalman gain
matrix A can non longer -- contrary to the KF — be precomputed, since they are
dependent on the actual measurements taken. Also, the data might be such, that
covariance P becomes singular, and appropriate heuristic methods might become
necessary, in order to keep I’ positive definite.

Note, that the EKF algorithm works only, if the errors made in truncating the
Taylor series, are indeed negligible. This will be the case, when good initial state
estimates are available, i.e. F, is small, and when the process noise is not too large,
such that all state estimates Z are close to the system state vector . Any large ||vgl|
can bring the algorithm out of the linear region3® and probably cause the algorithm
to diverge. In any casc, Monte Carlo simulations are essential to assure satisfactory
performance of the EKF in a particular application.

At the end of Chapter 2.2.4 it is discussed whether parameter estimation prob-
lems could be attacked using the KF. It is shown there, that parameter estimation
is a nonlinear filtering problem, so the Kalman filter is not the right choice. The
EKF, on the other hand, is suitable to treat such problems. In the next section
it is shown, how uncertain parameters of linear systems can be estimated by the

application of Extended Kalman Filter theory.

2.4 The Extended Kalman Filter as a Parameter
Estimator

Up till now, it was assumed, that state space equations that describe the observed

input/output data adequately, are available. In practical cases however, one often

SUWith linear region is meant the nz-dimensional region where the higher order terms in the series
expansions are much smaller than the linear term

42

can only — by exploiting the physical laws governing the process — determine the
structure of the system, but not all its coeflicients. Another problem one frequently
encounters in practice is, that the system under consideration is time-varying in an
unpredictable way, e.g. caused by aging, wear or changes in the environment. In any
case, where it is desired to apply optimal control inputs, to estimate the system state
or 1o detlect errors in the system, a complete description is essential. It is natural to
model these unknown coefficients as parameters in the state space equations, and
then estimate the system states and the parameters simultaneously. 1t was shown
is Chapter 2.2.4 that this is a nonlinear filtering problem, for which the KF in not
applicable. The EKF, derived in the previous section, is suited for attacking this
problemm. How this can be done, is shown next. Note, that the presentation of the
EKF algorithm given here, is taken from [33]; the only differences are that more
intermediate steps are shown here, and that the algorithm is corrected by a few

misprints that appeared in [33].

Consider a linear, time-invariant, discrete-time system, adequately described by:

Thr1 = AoTit+ Boup + vk (2.144)
zy = C,xp+ e (2.145)
where:
k> k ky is initial time instant
T, ¢ R™ is system state vector
zp € R™ is measurement vector
v € R™ is process noise veclor
ey ¢ R™ is measurement noise vector

A, € R™X g gystemn matrix
B, & RM*™ s input distribution matrix
C, ¢ R™*" is measurementl matrix

The time-invariant matrices A, B and C is given the subscript “o” to indicate, that
they describe the input/output behavior of the system optimally, i.e. there is no

other set (A, B, C) that describes the measured data better.

43

As in the case for the KF, the intial state is assumed to be Gaussian, zero-mean
random vector with covariance I1,. Further assumptions are that the noise processes

{vr}, {ex} are white, Gaussian, zero mean sequences with statistics:

E{v) = 0 (2.146)

Efe} = 0 (2.147)
E{vew]} - Qiéy (2.148)
E{ee]} = Qiby (2.149)

where:
@, 1s a symmetric positive semidefinite matrix

Q; is a symmetric positive definite (pd) matrix
6k; is 1 for k = 7 and is O otherwise

Initial state and noise sequences are uncorrelated, that is:

E{zuvk} = 0 (2.150)
E{zel} = 0 (2.151)
Elvief} = 0 (2.152)

Suppose, that the structure of the system is known, but the information about the
matrices A, B, C is incomplete, i.e. not all of their entries are completely known.
These uncertainties can be included in the model as parameters and — just like
the states be regarded as random variables. Assume, there are np parameters,
combined into a parameter vector, say 6. In gencral it has to be assumed, that all
of the system matrices are dependent on this parameter vector 4. So, the system

(2.144), (2.145) is adequately modelled by:

Teyr = A(@)ze + B(0)ur + vk (2.153)

zp = C(O)zkA e (2.154)

As stated earlier, an obvious thing to do, is to extend the state vector = by the

44

parameter vector # o form an augmented state vector z4.

o - [g:} (2.155)

where:
nr T - .
Ty € R 1s systemn state vector

6, ¢ R™ is parameter vector
rd € R™ is augmented state vector

Estimation of z# is a joinl parameter and state estimation problem. The system is

assumed to be time-invariant. Hence, the parameter vector is best modeled by:
Bis1 = 0 (2.156)

Combining cquations (2.153), (2.154), (2.155) and (2.156) allows to rewrite the

model state space equations in terms of z4:

= [A(Ok)zk ;kB("k)“k] 4 l Z"] (2.157)
2y = C(ak)xk-l- €k (2.]58)
Let:
flzg,ue) = [Al)z ;B("k)“"] (2.159)
}L(Iﬁ) = C(ﬁk)mk (2160)

With (2.159) and (2.160) the state equations for the augmented system (2.157),

(2.158) become:

Vi

| f(:r,f,ruk) ¥ [0] (2.161)

ze = h(z) + e (2.162)

From the above equations it is observed that estimation of the unknown parameter
vector # is a nonlinear filtering problem. A comparison of the above two equations,

along with the nonlinear state space equations (2.82) and (2.83) reveals, that the

EKF algorithm as given in Table 2.4, is directly applicable to this problem. The

single phase EKF algorithm for this problem is:

Se = H(&dy 1) Peer HN (20 1) + Q5 (2.163)
Ne = F(&fe g ue) Pop-r HT (20 ,) Sy (2.164)
o = T w4 Ne [z h(B)] (2.165)

~ Af A T A v q
Priipe F(Ifﬁk 1 k) D1 (1'(If|k 1»uk)) -~ NeSeNE 4 Qy (2.166)

where:
N af(l'f’uk)
Pl youe) -~ Shoertd
dmk “f:iﬁk-;
0 [A(Ok)zi + B(0i)us
81‘,’2 ak zA._.iA
kT klk—1
_ [% [AOk)zk + Bl 5 [A0k)ze + Bl6e)us]]
= 3 3
52, Ok a6, O S T
A(@ka,) M(ék[k~~hik|kv 15 Uk) (2.167)
0 1
R oh(z})
HGt =)
e Lpeay,
i) v a Y
[E) |C(0k)x4)| a0, 1€ (0k))| ”“,_;,“k_l
[C"(éklk])])(9);“:],ik|k 1)] (2]68)
— U 0 ‘
ko= 2.169

The structure of the matrices F and /I, as revealed by equations (2.167), (2.168)
suggests to rewrite the EKF algorithm in a partitioned, computationally more ef-
ficient, form. To keep this step tractable and compact, a short form notation is

introduced next.

Py~ Py

By

|
oo
—
)
o
Ed
|
—
~——

~

Ce = C(Okp-1)
M, = M(ék|k—laik|k-lauk)

Dy = D(ak|k—]s§:k|k-l)

The gain matrix Ny is naturally subdivided into:

| K
N, [L] (2.170)

where:

K. ¢ R™™ is the state update Kalman gain matrix
L, ¢ R™ ™ s the parameter update Kalman gain matrix

The covariance matrix Py is partitioned into:
P1, P2
) .
P = { PeT P3 J (2.171)
where:

P1, € R™*"* s the stale estimate covariance matrix
P2, ¢ R™™ isthe parameter/state estimate cross-covariance matrix
P3 ¢ R™W ™ s the parameter estimate covariance matrix

Substitution of (2.171) into equation (2.163) yields:

. Py, Pal[cr] .
Se - [Cc D] {P.@,}" Ps?k] [I)f L

Pi.cl+ PaD! |
[Cx D] {Pag’c,;" L psDT | @k

CeP1,CT 4 CP2 D!+ DeP2IC) + DiP3D + @ (2.172)

The Kalman gain matrices are given by:

Kel [A Mo][P Pac|[C0 oy
Ly o P2 P3 pr 7K

[Ay M| [Pl +PaDl | g1
L Q] I)»QkTCkT ‘* PSkaT k

— AP 1 CkT * AkP'?kaT + MkPQkTOkT + MkPSkaT x !
rerel + PaDl k

Ki - (APRCT+ APRD] + MPLCT + M P2.D]} x 5" (2.173)

Le = (Palcl+ PaD]) x ;" (2.174)

47

With (2.159), (2.160) and (2.170) the estimate update equation (2.165) becomes:

Tk+1lk
0k+1[k

A <+ B K
{ kTklk-1 T Dl] + { Lk] X [zk - Ck$k|k~l]
k

Orik-1
Testle = Ak1k|k—] + Biuy + Ky [Zk - Cklfk“c-l] (2.]75)
Ociie = Ok + L [Zxc = CrZik 1] (2.176)

The last equation of the EKF algorithm to be partitioned, is the covariance matrix

update equation (2.166):
T
Pleyr P2y _ Ae My |
P2r, PSu) P3k 0 I
[K S, K @, 0
L k 0 0
P, AT + P&MT P2] ~

L
-] [P?kTAk “Jr PSkMk P'?k
KkSkhT QY KiSiLT]

| LeSeK[LeSiLT
Ply, - APL AT+ APRMT + M P2TA] + M PSM,
~KeSe KT + Q) (2.177)
P2, = AP + M.P3 - K.S. L] (2.178)
PSi; — P8 — LiScL]! (2.179)

A summary of this partitioned EKF algorithm, is given in Table 2.5. The order
in which the computation of the individual equations necds to be done, corresponds
to their locations in Table 2.5. To start the algorithm, estimates for the state
vector and for the parameter vector as well as the with these estimates associated

covariances have to be available.

48

Table 2.5: Summary of the partitioned single phase Extended Kalman Filter algo-
rithm as a paramecter estimator

L Partitioned Single Phase EKF Algorithm
The system:

Tty = Az + Bour + vk (2.180)
zr = O,xp + eg (2.]81)

Filter equations:

Se = CePICT 4 CP2D! + DPETCl +
DyPD] + Q; (2.182)
Ki = (MAPRCT + AP2D] + M PLC +

M P2D + QF) x ;! (2.183)

Le = (Pgl¢] + PaD]) x 5, (2.184)

0k’+ e = 0k]lc~]‘ + Lk [Zk o Ckiklk. 1] (2185)

Tevie = AkZee 1+ Brue + Ky [zk = CZpp 1] (2.186)
Pl = AePLAL + APRMT 1 M P2TAT

MP3 M KSeK! 1+ Q) (2.187)

P2y = AP2 1 M P8 - K S L/ (2.188)

P8y = P38 - LySiL] (2.189)

49

2.5 A Modified Extended Kalman Filter

As stated in Chapter 2.3, the EKF algorithm (c[. Table 2.5) is likely to give biased
or divergent estimates. Lennart Ljung |31}, [32| developed a general method to
analyse the asymptotic properties of recursive identification algorithms. The basis
for this method is to find a differential equation associated with the identification
algorithm, whose stability properties are related to the convergence properties of
the identification algorithm. In [33]| Ljung applies this method specifically to the
EKF, which is being used as a parameter estimator. The article shows the causes
for divergence and biasedness of the EKF. Ljung also suggests in [33] a modifica-
tion to the EKF algorithm that improves the convergence behavior of parameter
estimator considerably. Because the theory behind Ljung’s convergence analysis
is rather demanding and mathematically involved, it is not covered in this thesis.
The interested reader is referred to [31], [32], [33], [34] or [35]. This section merely
tries to give the reader some intuition on the suggested modification in the EKF
algorithm and shows how the algorithm needs to be changed.

Ljung’s approach to analyze the EKF parameter estimation algorithm is to
keep the model parameter vector constant at, say @, and then examine the process
produced by (2.182-2.189). To hold f constant, replace equation (2.185) by 9k+1|k =

4. In

33] it is shown, that for k -- k, large, the matrices P3 and P2 then tend to
zero, whereas the matrices P1, S and K approach there steady state values P1, S

and K given by the solutions of:

P1(0) AD)P1(0)AT(8) 1 Q° K(0)S(6)K™ (6) (2.190)
S(8) - C@O)P1()CT() +Q (2.191)
K(0) - [A@)P1(6)CT@)]s '(8) | (2.192)

Define I as the estimates obtained for this constant parameter vector 6.

Zepipe = A(0)Zpk-r + B(0)ur + K(0), (2.193)

50

with:
Zk = 2k — C(?)EWC-] (2.194)

ljung interprets in [33} the EKF as an

...attempt to minimize the erpected value of the squared residual asso-

ciated with model ¢.

He seeks to minimize:
V(9) = E{a} | (2.195)
It is reasonable that in order to achieve minimization of (2.195), the parameter

vector should be asymptotically adjusted in a negative gradient direction of V().

The negative gradient of V(@) is given by:

- g—V(é) - -2x E { (%‘gf) zk} (2.196)

Carrying out the operations on the right hand side of equation (2.196) leads to an
updating scheme that is almost identical to the one of the EKF algorithm, as given
in Table 2.5. The only differences are that the S™! term in (2.184) is replaced by an
ny-dimensional identity matrix, and that the [8}?(6)/35] € term is added to the
M-matrix as given by (2.167). One might expect to obtain an EKF with improved
convergence propertics, when the modifications just mentioned, are included in the
EKF algorithm. An approximation of the term [87?(0)/80] ¢x can be obtained from

the equations (2.190 2.192). Define:

- OKO " (2.197)
a0
é) A§ 0 It
ol ,_,,_(7) Yk 1 (2.198)
a0 g
OP1(0 2
n:;) — -__7;(_) T ;CIIC 1 (2.199)
o0

The (z)’s in the equations above denote that the derivatives are taken with respect

to the i-th entry in the parameter vector §. Note, that AdK(0)/30 is an array of

51

dimension nz x ny x np and that the term [a’K‘(E)/aB] €x IS a nT X np matrix,
compatible with M.
Substitute the equations (2.190-2.192) into (2.197 2.199), respectively, and let

P1., Ki, Sk, Ax and C be defined as in Table 2.5. Then:

i B
ol = lewri@cT@) + @]
BY, i,
9 .7 T | v)T > 9t
= |- Ze@Pncl 4 e nie! 4 ¢ P1-~ CT(0) (2.200)
o8 06 6 =fi
klk—1
| d B AT T
) = S (APIE)CT@) 5 0)]|
00 ""'l:éku-» 1
0 . T (i) ~T Ry ~1
AP IO, + ATYC, 4 AP L CT(0) X S
()0 da F?——-aklk_l
Kko,(:)Sk 1 (2.201)
i d] K(@O)S(6)K (8
n 2 [A0)P1(8) AT (6) + Q" - KOS ()K" (8)]|
0 o=
a T (i) AT 9 15
= | A0)P1 A, + AJIMAL + AyP1— A" (0) -
0 80 §=§k|k_1
) T i 7
ch’bkhl B Kkol(c)Kg‘ _ KkSkfcg) (2.202)

Equations (2.200), (2.201) and (2.202) are coupled matrix Riccati equations. They

(4)

have to be executed recursively at each step in time, till the sequence &'’ converges,*

to yield a good approximation for the term dK /d6*. Ljung has proven in |33] that
if:
1. the matrix M, is replaced by M}, whose 7-th column is given by:
M = M+ k) (2 - Cugp) (2.203)

2. the matrix S, ' in equation (2.184) is replaced by an identity matrix
$10ne iteration might be enough, if the difference between the old parameter estimate and new
parameter estimate is sufliciently small.

52

the estimates 8 converge with probability 1 to a minimum of (2.195). This assertion
holds only, if “..the algorithm vs complemented with a projection facility to keep é

tn a compact subset of
Ds = {6 |(A(0),C(0)) detectable and (A(0), Q") stabilizable}”
2.5.1 Conclusions

Ljung’s convergence analysis |33] shows the possible causes of divergence and bias
in the EKF algorithm. The reason for divergence can be traced down to the fact
that there is no coupling term between the Kalman gain and the parameter vector
#. With other words, a change in the parameter vector # has no direct effect
on the Kalman gain K, but the optimal Kalman gain does in general®? depend
on 8. To overcome this problem, Ljung suggests a modification in the algorithm.
The modification assures that the parameter estimates will converge to a local
minimum of V (8) (see eqn. 2.195), provided that the algorithm is complemented
with a projection facility that guarantees 8 to stay within Ds. A disadvantage of
the MEKF is the high computationally load imposed by the requirement to solve
three coupled matrix Riccali equations (2.200-2.202) at each step in time. Further
problems associated with the MEKF are the questions, on how the algorithm can
be complemented with the required projection facility to keep f in Ds, and how the
set. Dy can be determined for any kind of state space model.

What can be concluded from the discussion above is, that the suggested mod-
ification is quite promising, but also that the MEKF, as given in |33}, is not a
ready-to-apply filter algorithm and that some work is needed to implement this
modified Extended Kalman Filter. The author has made the step to implement
the MEKF. How this has been done, the difliculties and problems encountered, are

described in the next chapter.

32 Applications have shown that the EKF algorithm converges to the true parameter vector when
K is independent of 6.

53

Chapter 3

Implementation of the MEKF

3.1 Introduction

The use of the EKF as a on-line parameter estimator for linear, discrete-time sys-
tems is well known and widely spread. Yet, the EKF algorithms has a major
disadvantage: the filter is likely to diverge or give biased estimates. Lennart Ljung
suggesls in [33] a modification in the EKF algorithm, that promises to improve the
convergence behavior of the filter considerably. Motivated by Ljung’s results, the
author implemented this encouraging filter algorithm, in order to gain experience
with the modified EKF and to explore for applicability of this parameter estimator.

The algorithm is implemented in a FORTRAN software package, described in
the next section. Before the identification process can be started at time k;, several
matrices and vectors necd to be initialized. How this initial values should be chosen,
for the filter to perform satisfactory is described in Chapter 3.3. The input/output
data for the parameter estimator is generated by a simulated linear, discrete-time
system, randomly excited by process noise. The noise corrupted output signal of
the simulated system is fed into the MEKF. The developments in |33| are based on
correct noise assumptions. Therefore, special care has been taken, to assure that the
noise sequences used for testing the filter were ideally white, normally distributed
sequences. Chapter 3.4 is devoted to this subject. Finally, in Chapter 3.5 of results

of performance tests of the MEKF on simple systems are presented.

54

3.2 The Algorithm

This section describes the computer programs for parameter estimation of linear,
discrete-time systems based on the MEKF algorithm (see Chapter 2.5). DBefore
going into the details of the more important routines, the main features of the

developed software shall be listed:

e All routines are strictly modular, i.e. they consist of small subroutines, to

enhance flexibility and simplify debugging.

o The routines are preceded by headers, that describe the function of the par-

ticular program.

e In order to improve readability, all subroutines are given self explanatory

names.
e The programs are written in FORTRAN 77.

e The software package is device independent, i.e. it does not use any other

packages, libraries! etc.
g

e A broad class of systems that range from scalar SISO systems, up to MIMO

systems with ten inputs and ten outputs, can be treated.
e To enhance numerical stability, all operations are executed in double precision.

For the performance tests reported in this thesis, the estimation programs were
installed an a VAX9900 computer. Most routines of the software developed do not
necd any further description; they are simple and self explanatory. There are how-
ever three exceptions to this, that deserve special consideration. The first one is

the main program MEKF, and the second one is the subroutine P32MMODIFY

'The main reasons for not using other software packages were availability and the desire to
maintain device independency.

which modifies the M* maltrix, as suggested by Ljung. To change the M* matrix,
/65:) (cf. egn. 2.203), the solution of the three coupled matrix Riccatli equations
(2.200)-(2.202) needs to be computed. This computationally most costly problem

is solved by P31COMPKAPPA; so this routine shall find special consideration here.

The main program MEKF

The program MEKF consists of two main parts. In the first part, the system
state vector, the estimated state vector, the estimated parameter vector, as well
as the covariances P1, P2 and P3 are initialized. This is done by the subroutine
UO2INITI. Under normal operation, this part is executed only once, at the startup
of the estimation process. All other data, required to run the parameter estimation
routines, are contained in “data” lines in the preamble of the main program. To
set the program up for a different system, these “data” lines need to be changed
accordingly. The following information is needed:

- number of system states

- number of inputs

- number of outputs

- number of parameters

- entries of system matrices A, B and C

- entries of model matrices A(#), B(6) and A(0)
- entries of system noise covariance matrix)

- entries of measurement noise covariance matrix °

The second part of the main program produces the outputl data of the simulated
system, and simultancously generates estimates for state vector and parameter vec-
tor. This part is executed recursively, till the program is terminated by a stopping
rule, which consists in the simplest case of a loop-counter to marimum-number-of-
tterations comparison.

Before the program MEKF can be applied to parameter estimation problem,
the user has to decide on a parameterization, which constitutes the interrelation

betwcen the parameter dependent matrices A, B, C' and the parameter vector 6.

56

The following subroutines are dependent on the type of parameterization chosen

and therefore need to be changed, accordingly.

U04DDERI computes the matrix D, where D) is defined be equa-
tion (2.168)

U0OSMDERI computes the matrix M (not M*), where M is defined
be equation (2.168)

U06CDERI computes the derivative of matrix C with respect to the

1th parameter
UOTADERI computes the derivative of matrix A with respect to the
1th parameter

UOSUPDATE ABC updates A(#), B(8), C(8) so that they correspond to
the new parameter estimate

After the utility routines above are recoded, to account for the parameterization
chosen, the program is prepared for joint state vector and parameter vector esli-
mation. The flow charts of the main program (see Figure 3.1 and Figure 3.2) show

that, due to modular programming, a simple structure is maintained. -

The subroutine P32MMODIFY
The subroutine P32MMODIFY modifies the M matrix, as suggested by Ljung |33].

The “new” M-matrix M* is given by:

M/:(') — MIE:!) + fci (Zk - C(aklk;_l)iklkul) (3.])
where: M,:(i) denotes the 1th column of the modified M matrix
M,El) denotes the 1th column of the original M madtrix,

as compuiced by the subroutine UOSMDERI

is the approximate solution of the three coupled
matrix Riccali equations (2.200) (2.202), where
all derivatives have been taken with respect to
the i1th parameter, evaluated at the current esti-
mate

(z;c - C(@)klk_ 1)£k|k_,) is the residual, or one-step-ahead-prediction error
vector at time k

57

Start)
UOZ2INITIALIZE

>

Y

UO3READNOISE

Y

P210UTPUT }

A

P1ISTATETIMEUPDATE

R

UO4DDERI

L |

3

UOSMDERI

Y

P23SMATRIX

I

P13DMATINV

e

P32MMODIFY

(1) (1)

Figure 3.1: Main Program MEKF Flowchart Part 1

58

® 7

[P24KALGNPAR
|

L

P25KALGNSTATE

:]

y
P29PARAEST
P30STATEEST

A

{ P26P1UPDATE

o

P27P2UPDATE J

N S

P28P3UPDATE

UOSABC.UPDATE

-
/// \\‘\,
no " Stopping Rule 7.

—

=

e Satisfied ? o

- T~ /"‘

1 yes
[siop)

Figure 3.2: Main Program MEKF Flowchart Part 2

59

P32MMODIFY computes first the residual (zk - C(@Hk_,])i'm_l) and then calls
the subroutine P31COMPKAPPA, which calculates x*. This second step has to be
executed separately for each entry in the parameter vector; P32MMODIFY sets the
parameter pointer appropriately. The 7th column of the M matrix is changed, as
soon as a new ' becomes available. The subprogram P32MMODIFY is terminated

after all columns M*) (¢ -~ 1,... np) have been computed.

The subroutine P31COMPKAPPA

The subroutine P3ICOMKAPPA generates the solutions of the three equations
(2.200)- (2.202). In the tests conducted by the author it was observed that it is in
general not sufficient to compute the three coupled matrix equations, as suggested
by Ljung, only once per step in time. If the difference between the previous and the
current parameter estimates is large,” the algorithm (2.200)-(2.202) takes approx-
imately ten® iterations to converge. Although the matrix ' is sufficiently close to
the term |@ K /96| after just one iteration, if the changes in the parameter estimates
are minute, the number of iterations per step in time is kept constant at eleven.

If the covariance matrix P1 is ill conditioned, i.e. the relations between the
eigenvalues of P38 are large, the algorithm (2.200)-(2.202) shows either very slow
convergence or even divergence. In these cases, the computed &' is of no value and
one wants Lo discard i, that is leave the corresponding 7th column of the M matrix
unchanged. This is readily achieved by setting «* 1o zero, whenever divergence has
been detected. The question that arises here is, how divergence can be detected.
To discuss this, consider for simplicity that &' is scalar valued. When &' converges
uniformly to the optimum value 9K /36", one simply has to check, whether the
increments (or decrements) of the k' sequence are descendent. Unfortunately,

however, the solutions of the matrix equations (2.200)-(2.202) do often not converge

2This will usnally be the case at the startup of the estimation process
3This could be observed for the small scale estimation problems reported in this thesis, but this
rule of thumb might not hold for other problem classes.

60

T T
1 2 3 4 5 6 7 8 9 10 11

iter.
Figure 3.3: Uniform Convergence of k' to 0 K /96"
7 §
9K
. a1k
. /
® [J L J
________ —— — — — ———— — — —
° o
®
T T T T T T T T T T >
1 2 3 4 5 6 7 8 9 10 11 iter.
Figure 3.4: Oscillatory Convergence of ' to 9K /36
A
IK
Py .
i . /
L} L]
________ .___.._._____—..._.._.__—_.___
[]
' °
T T T T | T T T T T >
1 2 3 4 5 6 7 8 9 10 11 iter.

Figure 3.5: Oscillatory Divergence of «*

61

uniformly (if they converge at all), but in form of a damped oscillation, as shown
in Figure 3.4. To differentiate between oscillatory convergence and divergence! a
more sophisticated convergence check is needed.

The program P31COMPKAPPA detects divergence by comparing sum of the
increments for the first six iterations HALFSUM, with the respective sum for all it-
erations. If the latter sum is larger than two times HALFSUM, P31COMPKAPPA
considers this as an occurrence of divergence and consequently sels k' io zero,
so that the respective column in M remains unchanged. To avoid numerical un-
der/overflow, the algorithm is complemented with a boundary check. The subpro-
gram P31COMK APPA discards k' and terminates, whenever one of the entries in «’,
o' or II* is beyond certain limits. There is no guarantee that the implemented con-
vergence check leads to correct decision, in all cases. However, it worked sufficiently
well in the tests undertaken. For additional information about this subprogram, a

flow chart of P31COMKAPPA is given with Figure 3.6.

“Note, that in both cases the increments, or decrements, are increasing for the first few iterations.

62

(Cstart)
o

— T o~
//// First call of ™~ _ no
< - ~ ” e o
P‘f\] COMPKAPP;“\/
\‘\\ /'/
yes

~ Initialize the 3-
dimensional array

MULTPAY that contains

the np T1* matrices

K

Restore MU LT PAY? — TT*

e R

Compute o' (eqn. 2.200)
Compute x' (eqn. 2.201)
Compute I1' (egn. 2.202) |

T

" Are all - __

~—_limits? __—

yes

Compute SUM and HALFSU;/[—‘

T

T T~
no L Is this \‘

<+——< the last iteration >

~~— {4
~—— /_/
yes

< SUM « 2 HALFSUM ? im0
o o

- P
~ o
- -
~—

e

no

<\e‘mries of o, k, 11 wit.hi/n:_;?-————————ﬁ

no

- - e — Yy
[Store 11"+ MULTPAY 1 \ Set k! to zero
R - ;

4

(E:turro

Figure 3.6: Subprogram P31COMPKAPPA Flowchart

63

3.3 Filter Initialization

In the introduction to this chapter, it is stated that prior to the startup of the
identification process, several matrices and vectors need to be initialized. These are
specifically:

P11 state estimate covariance matrix

P2 state estimate/parameter estimate crosscovariance matrix

P3 parameter estimate covariance matrix

6 parameter vector estimate

ek

system state vector estimate

The question of how to initialize the filter, is quite different for practical cases, then
it is for testing the algorithm in a laboratory environment. If the filter is to be
applied to physical systems, one often knows a good deal about the initial system
state and parameter vector, e.g. such as the range a particular parameter can lay
in. So, if information of this type is available, or can be obtained, it should be used
and the covariances and the estimation vectors initialized, accordingly.

Ljung suggests in [33] that for cases where no a priori information is available,
to choose the initial parameter estimate 9‘, to be zero and the assoclated error
covariance matrix I’3, to be 100 - (variance of z). The author does not quite agree
to this rule of thumb, because whether a zero initial parameter estimate is a good
choice or not, depends on the parameterization chosen. It might be that By = 0is
not an element of the compact subset Ds (cl. Chapter 2.5), i.e. violates one of the
constraints of the MEKF. A better choice should be, to initialize the parameter
estimale 6 such that it lies close to the “center” of Dy. One method to find such an
interior point of D¢, is to randomly select three 8 € Dg to form an triangle, and to
set 0, to their center of mass. This method produces an initial parameter estimate
which lies inside the subset Dg, provided that the topology of Dg is “sufficiently”

moderate.

64

Regarding Ljung’s other suggestion, to initialize P3 with 100 - (variance of z),
the author does not know what the reasoning behind this rule is and why it should
be a “... good choice”. However, for the performance tests of the MEKF conducted
by the author, it turned out to be an inadequate choice. The initial covariance P 3,
for which the filter worked best, was in magnitude about three powers of ten smaller
than the one advised.

The problematic nature of the filter initialization is quite different for applica-
tions of the MEKF to simulated systems — as used for this thesis — because one
actually has complete knowledge about system states, parameters and covariances
and it is thus possible to initialize the filter ideally. This, however, would not reflect
practical cases. So, the question is how much or little one should pretend to know.
The author did not assume any information about the system states. Hence, a
good choice for the initial state estimate is Z, = 0. The filter proved to be rather
insensitive towards the choice of the covariance matrix associated with initial state
estimate. Values in the range from 1 to 100 for the diagonal® entries of P1; worked
best.

The choice of the initial parameter estimates is, as discussed above, dependent,
on the selected parameterization. For the tests reported in this thesis, the parame-
terization is in general such that 8, = O is permissible. So, unless stated otherwise,
the initial parameter estimate is set to zero.

Because both the parameter estimate and the state estimate are chosen ran-
domly, there is no justification to assume the corresponding error vectors other
than uncorrelated. Therefore, the crosscovariance matrix P2 is initially set to zero.

The last matrix to be initialized, is the parameter estimation covariance matrix
P 3. The diagonal entries have to be chosen undesirable small (0.0001 — 0.025), be-

cause for larger values covariance matrix P 3 became singular, after a few iterations.

“All off-diagonal entries are set Lo zero, as initially the individual states are assumed to be
uncorrelated.

65

It is not obvious from the MEKF algorithm why this can happen. The author ob-
served in tests, that a “large” covariance P3$ produces via equation (2.188) a large
P2, that in turn leads to a large gain matrix L (cf. eqn. 2.184 in Table 2.5). From
equation (2.189) it is observed that the updated covariance P8 ,; is given by P3,
minus the term LS, LY, which can become larger than P38, for some k, if the initial
covariance P38, was large. On the other hand, to choose. the covariance P8, very
small, is not a remedy to this problem, because this “tells” the filter that 8, is
a good estimate for the parameter vector § that needs only minor changes. This
results in a slow convergence of the algorithm to the true parameter vector, that is
in general not acceptable. Hence, the only critical part of the filter initialization is
the choice of covariance P8, which requires fine tuning to find values that result
in both, fast convergence and a stable filter algorithm. Unfortunately, for many
cases it is not possible 1o find such a initial covariance matrix P3;. In Chapter 4
the author suggests some modifications to the filter algorithm, to overcome this

problem.

3.4 Noise-Sequences Used for Testing the Filter

Ljung stated in

33| that the parameter estimates the MEKF produces will only
converge to the system parameters if the noise assumptions are correct. Also, the
performance of the MEKF as a parameter estimator can not, due to the randomness
of the estimation process, be judged from the results of a single test run. Valid
conclusions about the filter performance can be drawn from the outcome of Montle
Carlo simulations, which are performed by letting the identification process rerun
n-times" with different noise sequences, but under otherwise identical conditions.
This clearly states, that to test the filter algorithm, a set of independent, zero-mean,

white noise sequences is needed.

9n should be at least. 15-25 for the simulation to produce valid results

66

The author experimented with different random number generators. The best
results were achieved with the noise generator RANDUGEN, the program listing
of which is given in the Appendix C. The random number generator RANDU-
GEN, initialized with SEED’ = 824064364 and SIG = 1.0, was used to generate
30000 samples, randomly split up into fifty files to 600 samples each. These noise
sequence files are named N SEQ10,...,N SEG59.

The computation of the means and the variances of these noise sequences re-
vealed that they were not exactly zero-mean and their variances were slightly off,
from one. Subtracting the mean of a particular sequence from each number of that
file, results in ideally zero-mean sequences. In addition, the variance of each num-
ber sequence was normalized to one by multiplying each number with the factor
\/I/g)', where (% is the variance of the particular sequence, prior to the normaliza-
tion process. This yields zero-mean sequences with variance one. To determine the
whiteness of the number sequences estimates for the autocorrelation sequences were

also computed utilizing the following formula:

GO0~ |m|- 1
A

1
Cnn(m) = oo .y > nHNGm) (3.2)

70
where the n’s stand for the numbers of a particular noise sequence. Representative

for all other number sequences, the first six values of the autocorrelation function

associated with N.SEG13 are given in Table 3.1.

Table 3.1: Autocorrelation function associated with noise sequence N SEQ13

m | cun(m)
0] 11.003
1§ 40.013
21 -0.028
3 | +0.001
4 | +0.009
51 -0.030

Ideally, one would expect the autocorrelation function to be one for m = 0, and to

67

be zero for m # 0. Similar results were achieved for the crosscorrelation functions,
where the ideal value is zero, for all m.

The data files modified in this way N_.SEQI10,... ,N_.SEQ59 constitute fifty noise
sequences that are a good match to the noise assumptions made in the derivation

of the MEKF.

3.5 An Example of the Present Method

Now that the filter algorithm is implemented (Chapter 3.2), the question on how to
initialize the filter is answered (Chapter 3.3) and (almost) ideal noise sequences are
generated (Chapter 3.4), the MEKF is ready for Monte Carlo simulations. Natu-

rally, one starts with a simple estimation problem.

TEST A:

The simulated system is given by:

Trr1 = 05z + up + v, (3.3)

2y = 20xi + e (3.4)

with noise statistics:
Ve -~ N(O, 0.5)
€r ~ N(O, 05)

Assume everything, but the A matrix (here a scalar) is known about the system.
The uncertainty about A is modeled as:
Teyyr - 0 zp + up + vy (35)

2z 2.0z 1 e (3.6)

where 0 is a parameter to be estimated, using the MEKF. The filter is initialized

as follow:
P1, = 20| Iy = |0.0] Q' = [0.5]
P2 = [00] by = [0.0] Q° = [0.5]
P8, = [0.015

68

where P3, has to be chosen undesirably small (recall discussion in Chapter 3.3
concerning this problem), because for larger initial values, covariance P38 becomes
singular, at some time instant k. The choices for 0, and %, following directly from
the reasoning in Chapter 3.3. As explained in Chapler 3.4, the filter performance
can, due Lo the randomness of the estimation process, not be judged from the results
of a single run. Hence, the parameter estimation process was restarted 25 times,

using the following noise sequences:

Runs | System Noise | Measurement Noise

Run 1 N_SEQ10 N_SEQ11
Run 2 N.SEQ12 N_SEQ13

Run 3 N . SEQI4 N .SEQ15

Run25] N.SEQ58 __N.SEQ59

Figure 3.7 shows the averaged parameter estimates of these 25 runs.

0.6

o5

/

0.3 -

TEST A

Parameter Retimates

0.8

0.1 —

0.0 T ! 1 T T
o e00 400 800

Numbear of Iterationa

Figure 3.7: Parameter Estimates Test A (Average of 25 Runs)

69

In order to examine how sensitive the algorithm is towards the system and
measurement noise sequences, the variances for all parameter estimates from Run

1 up to Run 25 were computed; the results of which are given with Figure 3.8. A

o.ona
0.024 —
0.028 -
0.020
0.018 —
o018

0.014 —
0.018 TEST A

0.010
0.008
0.008
0.004 -j \'\“’\\\\—\‘

0.008 - -

Variances of the Estimates

0.000 T T T T T

Number of Tterationa
Figure 3.8: Variances of Parameter Estimates Test A

large variance at a certain time instant k indicates, that the corresponding estimate
(cf. Figure 3.7) is inconsistent.

It is observed from Figure 3.7 that the filter performance is far from being sat-
isfactory. The parameter estimates are even after 600 iterations, not close to the
true parameter value of 0.5. This filter behaviour is mainly due to the choice of
initial covariance P3,, that “tells” the filter, that 0, = 0 is a good estimate for
6, that does not need much change. Consequently, the Kalman gain factor L, for
updating the parameter estimates, becomes after just a few iterations so small,
that the parameter estimates practically “freeze” at a certain value. The param-

eter estimate error covariance for the given problem can not be initialized with a

70

value larger than 0.015, because otherwise P 3; becomes singular for some k&, which
results in a numerical blow-up of the estimation algorithim. The author suspected
that yet another reason could cause the parameter estimates to being off the true
value: the MEKF inherently produces biased estimates. To find out if this is one
of the reasons for the MEKF to perform poorly, the author conducted another tes!.

(TEST B), very similar to the previous one. The only difference is that this time B,

0.8

a6 N e = ——

0.4 -

TEST B
0.8 -

08 —

Parametar Estimates

0.1 -

0.0 T T T T L

Figure 3.9: Parameter Estimales Test B (Average of 25 Runs)

is initialized with the true parameter value of 0.5. If the filter inherently produces
biased estimates, one would expect the estimates of TEST B to be biased. From

Figure 3.9 the reader can observe, that this is not the case.

71

3.6 Conclusions

In this chapter, the actual implementation of the modified Extended Kalman Filter
has been discussed. General facts about the developed software, as well as detailed
information about some of the more important routines, are given in Chapter 3.2.
The reader has learned about the filter initialization and the preparation of the
noise sequences uscd in this thesis, in Chapter 3.3 and Chapter 3.4, respectively.
Finally, convergence results of a Monte Carlo simulation for a single parameter case
are presented in Chapter 3.5.

The results of the simulations conducted were rather unsatisfactory. The filter,
though stable, showed very slow convergence and the parameter estimates stayed
biased. From the results of a further test, it could be concluded, that the MEKF
does not inherently produce biased estimates, but that the slow convergence is
attributed to the small initial parameter covariance P3;, necessary for the filter
algorithm to be stable. Because a parameter estimator with properties as shown
by the MEKF is useless, the author experimented with several heuristic method, to

improve the filter’s behavior. The next chapter is devoted to this topic.

Chapter 4

Investigation and Development of
Various Methods to Improve

Stability and Rate of Convergence
of the MEKF Based on Single

Parameter Case

4.1 Introduction

The application of the MEKF to a simple parameter estimation problem, has shown
that the “plain” filter algorithm, as presented in |33], does not meet the requirements
of a parameter estimator. What is desired, is an estimator that produces unbiased
estimates, converges fast o the true parameter values and shows little variation in
its estimates with respect to system and measurement noise. To upgrade the filter
performance, several heuristic methods were applied to the MEKF algorithm. Most
of the methods presented in this chapter, were developed by the author; some were
adopted from the literature and tailored to meet the specific requirements of the
MEKF. None of this techniques is based on any theoretical developments. They are
all based on heuristic discussions.

The methods to improve the MEKF properties are applied to the single param-
eter case from Chapter 3 (TEST A). The reason for doing so, are threefold: first,

it makes the results comparable, secondly, it simplifies the implementation of the

73

developed techniques, and third it enhances the clearness of the methods applied.
The fact, that these methods are only applied to first order systems, does not mean
that their usefulness is limited to single parameter cases. It is expected that they

prove to be equally eflective when applied to higher order problems.

4.2 Decelerated Convergence of P;

In Chapter 3 it is discussed that the poor convergence properties of the MEKF might
mainly be atiributed to the small initial parameter estimates covariance matrix P $,.
Such a small P&, “tells” the filter that the initial guess 6, for the system parameter
is of high quality, i.e. already so close to the true value 6, that no large changes
in the estimate are needed nor desired. As a result of this, the filler “freezes”
the parameter estimates, before they converged to the value of the system para-
meter. One way to circumvent this problem, is to slow down the convergence of
the covariance matrix P8, because it is this matrix that reflects the quality of the
parameter estimates. By doing so, the parameter updating process is kept active for
more iterations, in compensation for the inadequate initialization of covariance P3.

Recall, that the updating equation for P38 is given by:
’})3),.*1“: — P3k|k41 - Lk Sk L,;T : (4])

So, it is the term Ly Sy LT that diminishes the covariance £°3." To slow this process
down, the paramecter update gain matrix L should be rescaled with a reduction
factor rf (|rf| > 1.0), at least for the first few iterations. However, the parameter

update equation is still given by:
éIcl e = alttllc—l - Lk (Zk . C(ék]k . |)Ii’k|k~1) (42)

As a result of the modification in the update equation for covariance P 3, one also

expects, that P3, can be chosen larger, than in the case of the original update

'Note that LSLT has only positive entries for all L, because the matrix S is p.d.

74

equation. In order to examine, whether this heuristically developed method works
in practice, Monte Carlo simulations with different reduction factors (r/) were per-
formed. The initial covariance P8; was, as in the previous tests, set to the highest
value possible, for the filter algorithm to be stable. The sirnulated system is given
by equations (3.3) and (3.4). Noise statistic and noise sequences used for the in-
dividual runs, are as before. The system is modeled by equations (3.5) and (3.6),
where the parameter f is to be estimated using the MEKF algorithm of Chapter 2.5,

but where the P38 covariance update equation is given by:

ngi_”k = P‘?k(k»»l - “&Ski (43)
f [

TEST C, TEST D and TEST E

The reduction factor for test C was arbitrarily chosen to be:
i, =12 Vk, k=1,...,600

The filter is initialized as follow:

PIg = ‘20] I:I() = lOO] Qv = IOS]
.P?g o I0.0] 0() - I0.0] Qe = IO.S]
P3, - [0.02]

which is almost identical with the initialization for TEST A. The only difference is
that covariance P§ could be initialized with a slightly larger value. From Figure 4.1
it is observed that, the method to decelerate the convergence of P8 does have the
desired effect on the filler’s convergence properties.

Motivated by this feSUIt, the author conducted several additional simulations
operating with different reduction factors. The results for two of these simulations
(TEST D, with a constant rf of 1.7, and TEST E, with a constant rf of 2.2) are also
given in Figure 4.1. As one can observe from Figure 4.1, a larger reduction factor
causes the filter to converge faster, but also causes the variance in the estimation

process to increase (see Figure 4.2), which is undesirable. Recall, that the reduction

75

Parameter Estimates

Variancas of the Estimates

0.8

0.6

0.4

03

.8

Q0.1

0.0

0.088
0.024
0.022
0.020
0.018
a.0148
0.014
0.012
0.010
0.008
¢.006
0.004

0.000

TEST E

- TEST D
TEST C

U T T 1 T

o 200 400 s00
Number of Iterations
Figure 4.1: Parameter Estimates Test C, D and E
TEST E
TEST D
- TEST C
0.008 - W o,

T 1 1 i T

0 200 400 800

Number of Iterations

Figure 4.2: Variances of Parameter Estimates Test C, D and E

76

factor was introduced, to compensate for the initial parameter estimate covariance
P3, that had to be chosen smaller than desired in order to prevent P8 from be-
coming singular. Hence, it should be sufficient to operate with a large reduction
factor only for the first few iterations, and to decrease rf for later iterations, where
the covariance P 3 is small, independent of the initial value. So, in order to achieve
fast convergence of the parameter estimates without trading this property in for a
high sensitivity towards the noise sequences, the reduction factor should be large at
the beginning of the estimation process and decrease during time to a value slightly

larger than one. To verify this argument a for this method a final test (TEST F)

was carried out.

TEST F

System, model, noise sequences and filter initialization are as in the previous tests.

The reduction factor rf is chosen to be:

2.2 Jor k <9
rfy = { 2.2-0.02k for 10 < k < 60
1.0 for k > 60

Comparing the resulting parameter estimates and associated variances given in Fig-
ure 4.3 and Figure 4.4, respectively, with the outcomes of TEST E, where rf was
kept constant at 2.2, reveals, that the reasoning above was correct, although the

variances are almost the same.

Conclusions

A comparison of the results obtained by applying the “plain” MEKF algorithm (see

Chapter 3.5), with the ones achieved using the described method, clearly shows the

77

a.a

6.5 DAy _hM

\ | \ TEST F

a4

a.3 -

Parameter Estimates

0.2 —

0.1 —

0.0 T T T T T
o 200 400 800

Number of Itarations

Figure 4.3: Comparison of Parameter Estimates Gained for const. rf (TEST E) and
for time-varying rf (TEST F)

0.0%6
0.084
0.088 -
0.020
0.018 -
0.018
0.014 -
0.01%
0.010

0.008 -

Variancea of the Bstimatas

0.008
0.004 ~

0.008

TEST F
0.000 T T T T 1

Number of Itarations

Figure 4.4: Comparison of Variances of Parameter Estimates from Test E and F

78

usefulness, that lies in a decelerated convergence of covariance P%. The author does
not claim to have found the optimal method with the few simulations conducted.
Further tests, supplemented with theoretical developments will be necessary, before
this method can be applied to field problems. It should also be mentioned, that
for large reduction factors the estimation algorithm became unstable. The reason
for this instability is atiributed to the fact, that the parameter estimates were such
that the (A(@),Q”) was no longer stabilizable, i.e. the parameter estimates were
no longer elements of D, (see Chapter 2.5). So, to fully exploit the fast convergence
this method can provide, the algorithm needs to be complemented with a facility
to keep the parameter estimates inside of D,.

Rather than elaborating on a single method in detail, the author emphasized
on development and test of several different techniques to improve the MEKF. One
further method to keep the estimation process active is introduced in the next

section.

4.3 Addition of Noise Term to the Parameter Vec-

tor

In the introduction to the current chapter, it is discussed that the insufficient per-
formance of the MEKF as a parameter estimator is attributed to the initialization
of covariance P23. The paraméter estimate covariance P8 has to be chosen small,
because otherwise the matrix becomes singular for some k. It is this inadequate
initialization, that causes the parameter estimates 0 to “freeze”, before they can
converge to the system parameter value. A method which effectively prevents the
“freczing” of the estimates, is presented in the section above. The method is based
on a technique that changes the rate of convergence of the parameter estimate

covariance P8. Here, the author introduces a different technique to improve the

MEKF algorithm, which also directly effects the covariance P3, and is thus some-

79

what similar to the previous method.
Recall from Chapter 2.4, where it is shown how the EKF can be utilized for

parameter estimation problems, that the system parameter vector is modeled by:
0/c+l = 0k (4.4)

which is appropriate, because a time-invariani system is assumed. That the pa-
rameter estimates of the MEKF can “freeze”, is due to the fact that there is no
dynamics in the parameter system (4.4). Suppose, one does model a time-invariant
system as being time-varying, although it is not. This would keep the update pro-
cess of the parameter estimates active for all k, because of the assumed dynamic
in the parameter system. This approach has two advantages: first, the parameter
estimates produced by the MEKF can no longer “freeze”, and secondly, it broadens
the field of possible applications to systems, which are slowly time-varying. The
MEKF can be used to keep tracking of parameters, that vary in an unpredictable

fashion. A time-varying system parameter is readily modeled by:
Ori1 = 0k + wy (45)
where wy is a Gaussian noise vector with statistics:

E{wk} = 0 (46)

]f{wkwf} = QY bk, (4.7)

From the equations for the augmented systemn (2.155-2.166) it follows, that Q|

(2.169) is now given by:

—u 0
Qr = [%k ét] (4.8)

Substituting this @} back into equation (2.169), and partioning the augmented error

covariance matrix P4, yields for the parameter covariance update equation:
P3k+1 = P8 - L; S L[—’r Q:) (49)

80

As in the previous method, where one had to choose a proper reduction factor, the
question is how to select a parameter noise covariance matrix Q“, that optimizes
the filter’s performance in a particular case. A practical thing to do is to start with
very small Q¥ (|P3| > 100 |Q*|) and gradually increase Q*, for different runs,
while recording the filter’s performance, till an optimum is reached. Possibly, a

time-varying parameter noise covariance matrix @} should be selected.

TEST G, TEST H and TEST 1

The MEKF algorithm, complemented with the described method, is applied to the
single parameter case from the previous chapter. System, model, noise sequences
and filter initialization, are precisely as in Chapter 3.5. The parameter error co-

variance P3 is updated via equation 4.9, where the noise covariance is chosen to
be:
TEST G: Q¥ = { 2.0 x 1075 for all k

TEST H: Q¢ = { 20x10°* for all k

2.0x 101 for k < 50
TESTI: QY = | 2.0 x 107%(150 — k) for 50 < k = 140
2.0x10°° for k > 140

Discussion of the Results

Modeling the time-invariant system as being slowly time-varying considerably in-
creases the rate of convergence of the parameter estimates o the system parameters.
The larger the parameter noise covariance matrix @, the faster do the estimates
converge. However, there are limits to this. It can be observed from Figure 4.7
that for a Q¥ of 0.0002 the variances in the estimation process are already so large
that the parameter estimates become inconsistent. As discussed earlier, it is suffi-

cient to enlarge the covariance P38 only for the first few iterations, to account for

81

the improper initialization. This idea was pursued with TEST I, where the covari-
ance Q" is decreased to one tenth of its initial value, during the iterations 50-140.
Figure 4.6-4.8 show that, although the rate of convergence is still the same, the vari-

ance in the estimation process is reduced substantially, due to the time-varying Q.

o8

Parameter Estimates

G-D 14 T T ¥ 1
1] ' 200 400 a0o

Number of Ttarations

Figure 4.5: Parameter Estimates for Different Parameter Noise Covariances Test G
and Test N

82

Parameter Xatimates

0.0 T T T T T
0 200 400 400

Numnber of Iteratioms

Figure 4.6: Parameter Estimates for Different Parameter Noise Covariances Test H
and Test 1

c.0%e
0.024 —
0.02 —
0.080 -
0.018 -

0.018 - TEST H

G.014
018 - TEST G
0.010 ~

0.008 —

0.00G- *A
0.004 - T¥ o

d.008

Variances of the Estimates

0.000 \— T T T T
1] 204 400 800

Number of Itarations

Figure 4.7: Variances of Parameter Estimatles Test G and Test H

83

Variances of the Estimates

0.088

0.024 -
0.028 -
0.0R0
0.018 -
G.018 —
C.014
a.012 -
0.010 -
0.008
0.008 -
0.004

0.00R -

0.000

TEST 1

TEST H

T T
o 200

aoo

Nurmber of Itarationa

Figure 4.8: Variances of Parameter Estimates Test H and Test |

84

4.4 Enlargement of the Kalman Gain Matrix

So far, two different methods to improve the convergence properties of the MEKF
have been introduced. Both methods prevent the parameter error covariance ma-
trix P& from decreasing at its normal pace, in order to compensate for the inade-
quate initialization of P3. A different approach to neutralize the improper covari-
ance P3,, is to enlarge the parameter Kalman gain matrix L by a certain factor,
say gf. Because one merely wants to change the step size in the parameter updating
process but not affect the updating direction, each entry of L has to be multiplied
by ¢f (cf. equation 2.185). The update equations for covariances P2 (2.188) and P2
(2.189) remain unchanged. To examine the effectiveness of the method described,
two simulation resulls are given next.

The two simulations are executed under identical conditions to that of TEST A,
l.e. system, model, noise sequences and filter initialization are precisely as in
TEST A. However, the parameter update equation of the plain MEKF is modi-

fied as:

ékﬂ]k = 9;:{1:—1 + of p X Lk (Zk - C(éklk—z)fklk—z) (4.10)

TEST K

For this test a constant gain factor gf is selected.

of =22 Vk k=1,...,600

TEST L

Following the reasoning of the previous two sections, a time-varying gain factor gf

was chosen.
2.5(0.985)*" 1 for k < 50
1.2 for k > 50

9/ =

85

The results of these two tests are given with Figure 4.9 for the averaged parameter
estimates and with Figure 4.10, which shows the respective variances, associated
with the estimates.

The smoothness of the graphs of Figure 4.9, which show the averaged parameter
estimates, is striking. As revealed by Figure 4.10, the variance in the estimation
process is better than in any of the other tests considered so far. This phenomenon is
explained by the fact, that this technique — contrary to the methods of the previous
two sections — does notl have a strong eflect on the time history of covariance P3.
The parameter covariance matrix does still decrease rapidly to very small values,
so that there is very little variation in the parameter estimates for later iterations,
which is comparable with the behavior of the plain MEKF algorithm. On thé other
hand, due to the larger parameter gain, the estimates do approach the system
parameter value, in relatively few iterations. 1t is observed from Figure 4.9, that
the larger gain factor results in slightly inferior convergence properties. This is
due to the large parameter updating gain which puts the parameter estimates to
high values during the first few iterations, from which they can not return, because
of the fast decreasing covariance P3. The author experimented with even larger
gain factors. The resulls of these experiments was that the filter algorithm became
unstable, because some of the parameter estimates were larger than one (see also

Section 4.6).

86

Parameter Estimates

Variances of the Estimaates

a8

0.6

0.4
TEST K TEST L
0.3

0.2 -

0.1 —

0.0 T - ' . -
o 200 400 800

Number of Itarations

Figure 4.9: Parameter Estimates Test K (const. gf and Test L (variable gf)

0.088
0.024
0.028
0.0e0
a.018
0.014
0.014
a.012 —

0.010

0.008 TEST K TEST L

0.008 -1

0.004 -

0.002 L

0.000 , : r e
o 200 400 800

Number of Iterations

Figure 4.10: Variances of Parameter Estimates Test K and Test L

87

4.5 Rejection of Spurious Data Points

It has been mentioned earlier, that covariance P& should be initialized with the
largest value possible, for the filter algorithm to be stable. Initialization of the filter
with a slightly larger P:?»does not cause the algorithm to diverge for all runs; it
usually results in one or two “bad” runs, out of 25. But what is it, that makes the
algorithm work in some cases, and causes the algorithm to fail, in others? To answer
this question, the author examined the noise sequences involved, at and prior to
the point, where the filter started to diverge. It turned out, that those numbers
of the noise sequences, where the divergence started out, were particularly large in
magnitude. As pointed out in the derivation of the EKF (Section 2.3), any large
noise term can bring the algorithm out of the linear region? and cause the algorithm
to diverge. This explains the observed interrelation between the large noise terms
and the divergence of the algorithm, following the processing of these samples. In
order to maintain a stable algorithm, one rather suppresses spurious data points,
than endanger the stability of the estimation process, by processing them.? But how
can spurious data points be detected, and where should one draw the borderline
between “good” and “bad” measurements? To answer the first question, recall
that the residual (z — C(f)%) is the difference between expected measurement 3
and aclual measurement z, where a large difference indicates a spurious data point.
These diflerences are readily qualified, using the prediction error covariance V,

which is defined as:

Vie 1 = E{(ze C0) T 1) (26 ~ C(0)Exu-1)") (4.11)
It is shown in Chapter 2, that the above equation can be rewritten as:

Vige-1 = C(0) Pup-1 C(8) + Q4 (4.12)

2See footnote 30 on page 42
Suppression of spurious data points is also suggested by Maybeck [39] for a different application.

88

Because the measurement matrix C is in general assumed to be dependent on the
parameter vector 8, which is not precisely known to the filter, an approximation of

(4.12), given with equation (4.13), has to be used, instead.
Vije-1 = C(Biji-1) Pepe-1 CBapes) + Q% (4.13)

Maybeck suggests in [39] to reject measurements, whenever the square of the resid-
ual exceeds three times the corresponding autocovariance factor in V.

It turned out, that the suggested limit is too large for the MEKF to improve
the filters stability at the startup of the estimation process. On the other hand, the
limits can not be chosen extremely small, because this results in rejecting too many
data points, and thus slow down the estimation process. Ii is reasonable, to choose
the rejection limit small for the first few iterations, where the MEKF is highly
sensitive towards “bad” data. For later iterations, the limit should be gradually
increased, to make use of all the information contained in the measurements. Once
the parameter estimates have converged to the system parameter and are “frozen”
there, the rejection limit can be dropped completely, without risking the filter to
diverge, because the MEKF has transformed itself into a KF, with all its properties.

The idea pursued here, is to reject spurious measurement, and thus being able
to initialize covariance P38 with a larger value, that should increase the rate of
convergence in the parameter estimation process. An appropriate rejection limit,
that is neither not too large (no measurements would be rejected and thus make the
method useless), nor too small (this would cause the loss of valuable information
needed, for the algorithm to converge). The author experimented with numerous,
constant and time-varying rejection limits. Unfortunately, none of them would
improve the filter’s performance substantially. In most cases, the performance of the
filter was worse than for the plain MEKF algorithm. With a high rejection limit, the
method showed no effect at all, and with a low rejection limit, the rate of convergence

was slowed down. The increase in the initial value for covariance P8, made possible

89

by suppression of spurious measurements, was more than outweighed by the loss of
information due to the “throw-away” of output data. For completeness, an example

of the described method is given below.

TEST J

System, model, noise sequences and filter initialization arc as in TEST A, with the
exception of P8, which could be set to 0.017, a value slightly larger than in TEST

A. An approximation for the residual covariance is for the particular problem given

by:

Vi 1 = C(éklk-J) P C(aklk—l) + Q%

= A4 P3k|k—l + 0.5

Measurements were rejected, i.e. not processed by the filter, whenever the residual

RES was in magnitude larger than:

|RES| > 1.0V for k < 20
|RES| > (0.1k 1)V for 20 < k < 35
|RES| > 25V for k > 35

Discussion of the Results

As it can be observed from Figure 4.11, the method to reject spurious data points,
failed to improve the MEKF algorithm. The benefits gained by rejecting some
measurements, were oo small, to compensate for the loss of information. Yet, this
method maybe beneficial if the limits are chosen, such that only those measurements

that could disturb the filter severely are suppressed.

90

Parameter Estimates

Variancea of the Estimates

o8

0.6

0.4

0L

0.1

TEST J

TEST A

0.0

Figure 4.11: Parameter Estimates Test A and Test J

200

Number of [tarstions

0.086
0.024
0.028
0.020 -
0.018 -
0.018
0.014 -
0.018 -
0.010 —
0.008
o.008 4

0.002 -1

TEST J

TEST A

J

0.000

Figure 4.12: Variances of Parameter Estimates Test A and Test J

T
200

Number of Iterationas

91

4.6 Keep 0 in D,

Ljung’s proof [33] of the convergence properties of the MEKF is based on the con-
dition, that the filter algorithm is complemented with a projection facility, which

assures that all parameter estimates are element of the compact subset Dg, where

Ds is defined by:
Ds = {0 |(A(9),B(8)) detectable and (A(8),Q") stabilizable }

No elegant technique to determine this set for the general state space model, is
known to the author. A prude for higher order systems computationally costly
method, is to check for any 8, whether it is an element of Ds, i.e., following this
approach, one has to test at each time step if the pair (A(8), B(0)) is detectable,
and if (A(#),Q") is stabilizable. A simple projection facility, to keep the parameter

estimates inside of Dg, is then given by the rule:

o if @k““c ¢ Ds, update the parameter vector, i.e. make @k+1|k to the current

parameter estimate

o if @H”k ¢ Ds, discard (Ai’kﬂik, i.e. do not update the parameter vector

Provided that 90 is element of Dg, this rule ensures, that all éH”k lie inside of the
compact subset Dg.

In case the system under consideration is a physical system, information about
the parameter vector might he available, to further restrict a for the parameter
estimates permissible region. The projection facility should be altered for those
cases 10 account for the additional information.

For the first order system of Sectlion 3.5, the set Ds is readily derived to be:
Ds = { interior of unit circle }

The MEKF algorithm applied to the single parameter case considered in this chap-

ter, should be complementied with the described projection facility, to keep all

92

parameter estimates inside the unit circle. No simulation results are given here,
because convergence properties of the plain MEKF algorithm are such that all the
parameter estimates (cf. TEST A), stay well inside the unitl circle. This is also
attributed to the fact, that there is a substantial margin between the unit circle
and the system parameter. Yel, the discussed projection facility is incorporated in
a improved MEKF, where the dynamic of the parameter estimation process is such

that, parameter estimates outside of Ds are more likely.

4.7 An Improved MEKF — Results

The simulation results for the techniques described in this chapter, are in general
positive. The question is, whether it is possible, through combining all the methods
that work, to achieve even better results. The goal is to design a filter, that unites
all the positive features of the different techniques, so that the parameter estimates
converge faster, than in any of the other filters shown, so far.

The method to enlarge the Kalman gain matrix, produces estimates that vary
least for the different runs, once the algorithm has converged. On the other hand,
the improvement techniques of Section 4.2 and Section 4.3 do result in compara-
tively smaller variances for the first few iterations, but larger ones for later time
instances. Combining these three methods hopefully results in a filter, that pro-
duces fast convergent parameter estimates, and yet is insensitive towards system

and measurement noise.

TEST M

System, model, noise sequences and filter initialization are precisely as in TEST A.

To combine all the techniques introduces in this chapter in one filter, the following

93

settings are selected:

1.6 for k <9
reduction factor: rf, = 1.7 - 0.01k for 10 <k <70
1.0 for k > 60

gain factor: 9f & { 1.5 for1 <k <600

I!

il

noise term: Qr { 1.0 x 107% for 1 < k < 600

This example shows {cf. Figure 4.13) that it is possible to further improve the filter’s
performance by combining the individual techniques, described in this chapter, into

one filter.

o.e

0.6

wd [\

TEST M

0.3 —

0.2 —

Parsmeter Estimates

0.1 —~

0.0 T T T T T
o 200 400 aoo

Numbar of Iterations

Figure 4.13: Parameter Estimates Test M

94

Variances of the Estimates

c.os8
0.0R4
¢.a88
¢.aRa
D.018
0.018
0.014
G.0ig
0.010
a.008
a.coe
0.004
a.coe

0.000

TEST M

T T
200

Number of Iterations

Figure 4.14: Variances of Parameter Estimates Test M

95

aat

4.8 Conclusions

In this chapter, five different methods, intended to improve the inacceptable con-
vergence properties of the plain MEKF, have been introduced. In order to keep
results comparable, they have all been applied to the same single parameler case
of Chapter 3. Due to the stochastic nature of the estimation process, Monte Carlo
simulations were neccessary to study the effects of the different techniques on the
filter’s performance.

The method to decelerate the “shrinking” of the parameter estimate error co-
variance P 3, not only increases the rate of convergence, but also leads to a more
robust filter algorithm. Slightly inferior results were achieved by modeling the time-
invariant system as being slowly time-varying. This second method has the advan-
tage, that it can identify the parameters, and then keep track of them throughout
the process time. This feature is of particular interest in detecting failures in the
process, e.g. caused through wear of parts, before this is indicated by measurable
output signals. Good results in both the variations on the parameter estimates for
different runs as well as the rate of convergence, were accomplished by increasing
the step size in the parameter update process. In case the dynamics in the es-
timation process such that some of the parameter estimates fall outside of Dg, a
projection facility is needed, which discards these estimates and thus assures that
all § are element of Ds. The primary problem associated with this technique is, that
there is no general method to derive this set Ds. A computationally costly check of
each 6 whether it is an element of the set Dg, or not, seems to be the only feasible
solution. Section 4.5 informs the reader about the authors attempt to increase the
rate of convergence in the plain MEKF, by rejecting, i.e. non-processing, of spuri-
ous data points. Although this method does have its merits for other applications,
it failed to increase the rate of convergence in the MEKF. In Section 4.6, finally,

it is reported that the filtering results achieved by application of just one of the

96

techniques described, are not the best ones possible, and combinatipns of it should
be used, to further enhance the MEKF.

Though only applied to a single parameter case, the introduced filter upgrade
techniques are designed for the general state space model. However, the question
remains how well they will work, when applied to higher order cases. The depen-
dency between given system, noise statistic and appropriate gain factor, reduction

factor, covariance Q¥ etc. is subject to further research.

Chapter 5

Comparison of an improved

MEKEF with a RELS Filter

5.1 Introduction

In the previous chapter, several techniques have been developed to increase the
rate of convergence in the MEKF. Although the MEKF, when complemented with
these methods, performs substantially better than the plain filter algorithm, the
question remains, how “good” or “bad” this filter is with repect to other parameter
estimators.

The MEKF shall be compared with a Recursive Extended Least Squares (RELS)
parameter estimator. The RELS, a particularly easy to implement and robust
parameter estimator, is for this reason often the first method to be tried out.

A brief summary of the RELS algorithm is given next. For comprehensive
treatments of the Recursive Extended Least Square method the reader is referred

to [38], |23] or |15].
5.2 The RELS Algorithm

The RELS algorithm is based on an Auto Regressive Moving Average eXogenous

(ARMAX) representation of the system given by:

n m n
Zp = — Z(li Zeo{ T Z:b, Ug.; + Zci €k—i (51)
i=1 1=1

1=0

98

where {e;} is a zero mean white noise sequence. The order of the system (n,m)

is assumed to be known, but the coefficients in (5.1) are unknown. The unknown

coeflicients a;,b, and ¢; forme, just as in the case of the EKF, a parameter vector

#, to be estimated.

In the RELS algorithm these parameters are estimated by comparing the system

output z with the output of an implemented model of the system z™.

Define the output errors as:

e = 2Zp— 2
where 2™ is given by:
n m n
m - 1 (T A
Zg T Z a; i + Zbi Ug-i t L Ci €k
i=1 i=1 i=1
Defining a data vector vy:
5T . .
1/’}: ‘ Ye 1aevees " Yk naUk-19-- s Uk-ms€k-1y---2€k n

and a parameter estimate vector 0:
~T . N s - T
0, - {@1y-- y@nbyy.e b,y En

allows to rewrite equation (5.3) in a compact form:

T
z;cn CoYy B

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

The sequence of output errors contains the information to drive the parameter

estimate vector # to the parameter vector 8. Once 9;: has converged to the parameter

vector 8 the outpul errors ¢ coincide with the noise samples e, i.e., become a white

noise sequences, that contains no futher information.

The parameter estimates are generated by the algorithm, given with equations

(\5.7_5-]0):

99

(5.7)

Oeir = Ok + ez~ 97, 0k) (5.8)

Brsr = I - wyl, 16 (5.9)
€ky1 T Rk T 'Z’ZH éIc+l (5.10)

5.3 Implementation of the RELS Method

Prior to the start up of the parameter estimation process, covariance matrix, P 3,
and the parameler estimate vector 0 need to be initialized. For the simulations

reported in this thesis P3 was set to
P3 = 1000 x I

But any other diagonal matrix ranging from 10/-50007 produced similar results.
Assuming no a priori knowledge about the system state, the parameter estimates
were initially set to zero. The input/output data is still assumed to bé generated
by a system' in state space representation adequately described by the equations
(2.144) and (2.145). Note that in thesc state space equations two independent noise
sources, namely system noise and measurement noise, are assumed to be present.
This can not be modelled adequately with an equation of the type of (5.1). Since
noise structure and noise statistics are not need to be known for the RELS method
to be applicable, one shall not worry about this. That is, when converting the
state space model into an ARMAX model, all the information about the noise is
neglected. The noise sources will simply be modelled by the term) ", ex.;, no
matter what the actual noise statistics look like. Thus, it is important to note for
the interpretation of the simulation results to follow, that the RELS algorithm is
supplied with substantially less information about the system, as compared to the
MEKF. It might be possible to incorporate the information about the noise in the

RELS algorithm, but this is subject to further research.

100

5.4 Results

To achieve a practical measure of the performance of the MEKF, its convergence
results are compared with the ones obtained by application of the RELS method.
This is done for two systems; the first order system of Chapter 3 and a second order

system which is described by:

0.0 1.0 0
Thit [104 -0.2] et { 1 }“’“ e (5.1)
2 = |20 10]z+e (5.12)

with noise statistics v, ~ N ((_), (888‘;)) and e, ~ N(0.0,0.5) input/output data
for both filters is produced by these systems. For the MEKF, only the second
order system needs to be considered, as data for the scalar case is already available

(see Section 4.6). Assume that in case of the second order system the entries as)

and a,; of the system matrix are unknown. This can be modelled by:

0.0 1.0 0
Trpy1 — [01 02]zk 1+ I: 1 } Uk + Vg (513)

Ze = [20 10 |zm+e (5.14)

Hence, the filtering problems is to identify these two parameters §; and ;. An
upgraded version of the MEKF as described in Section 4.6 is applied here.

The filter is initialized as:

[0 0 . [0l ., _ [os 00
PI o 10} o [0} Q" = [o.o 0.5]
. [0 0 - [o .
P2 Loo} 0"‘[0} Q= [05]
. [0.015 0
Fs - | 0 0.015]

To make the RELS method applicable to these estimation problems, the system
equations need to be converted in an ARMAX model representation, which is done

by completely neglecting noise structure and noise statistics. The first order system

101

is therefore given by:
zZk = 0.5zp 1+ 2up_1 + ;€4 (5.15)
For the second order system one can write:
ze = 0227 +04z 9+ 22U 1+ Uk g2+ Crep-1 +C2Ep2 (5.16)

The RELS algorithm for both systems is initialized with P8, = 1000 I and 8, = 0.
Figure 5.1 and Figure 5.2 show the parameter estimates produced by the RELS
and the MEKF for the two systems described. Their sensitivity towards the noise

sequences can be observed from Figure 5.3 and Figure 5.4.

0.60

0.50 e]

0.40 - RELS

MEKF
0.30

0.280

Parameter Estimates

0.10

.00 T ! 1 T !
o 200 400 a00

Number of Itarations

Figure 5.1: Parameter Estimates for 1st Order System

102

0.600

0.400

<

e
0.300

0.800 —

0.100 RELS

a.0a0

MEKF

Parameter Estimatea

~3.100 -

—.200

—-0.8300

Figure 5.2:

.
200

Number of Itarations

T

Parameter Estimates for 2nd Order System

0.0R6
0.084
0.082 -
G.0RG
0.018
0.018
0.014 -
a.018 —

0.010 —

Varisnces of the Estimates

0.008 -r
a.0068 -
0.004

a.008 —

MEKF

RELS

=y

0.000

Figure 5.3: Variances of Parameter Estimates (1st Order System)

i

T
200

Numnber of Itarations

103

a0o

Varisnces of the Egtimates

¢.028
a.024
a.age
0.080
0.018
a.018
0.014
¢.0i8
a.010
¢.008
G.006
0.004
0.008
0.000

—*
. MEKF
7] RELS
—e e et
L ! T 1 T
4] 200 400

Numher of Itarations

Figure 5.4: Variances of Parameter Estimates (2nd Order System)

104

Chapter 6

Conclusions

6.1 Summary and Conclusions

In this thesis parameter estimation of linear, discrete-time systems using a modified
Extended Kalman Filter by Ljung has been studied. The prime motivation in using
the MEKF to attack the parameter estimation problem was the excellent global
convergence properties stated by Ljung.

A substantial part of this thesis is devoted to estimation theory. A complete and
detailed derivation of the discrete-time Kalman Filter using a Bayesian approach is
given in Chapter 2. For the discrete-time EKF, two different derivations are given;
the first one is entirely heuristic, but possibly provides more insight to what the
EKF is about, than the second which is mathematically more rigorous.

Chapter 2 also shows how the EKF, a state estimator for non-lincar systems,
can be utilized for parameter estimation of lincar systems.

An EKF algorithm modified by Ljung and tailored for parameter estimation is
presented, and rederived in parts to show some intermediate steps, that are left out

in |33]. This modification adds a tremendous computational burden on the filter.

The actual computing time to account for the modification, is insignificant, because
steady advances in hardware will overcome of this problem.
However, the primary concern is numerical stability and the difficulties involved

in solving three coupled matrix Ricatti equations. It has been shown that, even

1056

for the low order cases, which are treated in this thesis, quite sophisticated pro-
gramming techniques are required to detect convergence and/or divergence of the
algorithm.

Further problems encountered with the implementation of the MEKF were re-
lated to the filter initialization. Initializing the parameter estimation error co-
variance matrix P& appropriately such that P3 reflects the uncertainty about the
parameter vector, resulted in numerical overflow after just few iterations.

On the other hand, selecting a initial covariance P38y, such that the algorithm
is stable, resulted in biased estimates, because the filter “freezes” the parameter
updating process before the systemn parameter estimators could convefge.

Chapter 4 presents several techniques developed by the author, which yield a
stable filter algorithm and at the same time provide sufficient dynamics in the pa-
rameter updating process. Some of these methods worked excellent for the systems
they were applied to. These techniques might also be applicable to other parameter
estimation methods. However, in the case of MEKF, the question that remains is
whether these techniques are still useful when used with higher order systems. How
should their parameter (gain factor, reduction factor e.t.c) be selected, for certain
classes of systems? This is subject to further research.

In summary, the MEKF as a parameter estimator proved to be problematic to
initialize and difficult to operate. This was especially revealing when the author
implemented for comparison reason, an RELS estimator and was striked by the
easiness this could be done and by the simplicity of the estimation algorithm. The
MEKF does have its value, in cases where knowledge about noise statistics, noise
and system structures are available, because it can incorporate all these information
in ils state estimates. However, in practice it will be difficult to obtain all this
information. In any case, the user has to ask herself or himself, whether it is

worth to go through these difficulties that are likely to be encountered when using

106

the MEKF. Also, whether it is not more advisable to use a different estimation

algorithm such as RELS and others, which are substantially simpler to implement.

6.2 Recommendations for Future Work

The author lists here some of the problems encountered, and considers to be worth-

while subjects for further rescarch.

1. In this thesis, several techniques were developed to compensate for improper
initialization of the parameter estimation error covariance. Whether these
techniques do have any value in applications other than the MEKF, should

be investigated.

2. The MEKF formulation is much more general then shown in this thesis. It
is recommended to apply it to MIMO systems, where other estimation tech-

niques are too limited.

3. Ljung proposed another MEKF with similar convergence properties that is
based on an innovation model. In such a filter, the Kalman gain matrix is
directly parametrized. So the additional gain term Q%,JH—@ is particularly easy
to compute. The author suggests the implementation and comparison of this

filter with the one for the general state space model.

4. In practical cases one usually does not arrive at precisc knowledge of noise
statistics and noise structures. The question to be answered is, how sensitive

the MEKF is towards inadequate selection of noise covariance Q¢ and @Q°.

107

Appendix A
Program Listing MEKF

A.1 Main Program

e ke s o ke s e sk sk sde i o s e ok S ok ofeok st sk sk sk b otk Sfe ke she st st sl ok s ok sk skesk o ok sk ekt ke sk ok S e s sk sk sl skl skl R sk ko ke sk fe sk sk Sk

* *
RECURSIVE PARAMETER IDENTIFICATION ROUTINE *
* (recursive prediction error method *
. *
Last Revision NOVEMBER 1, 1987 *
& Ed
LT T Rpepupp *
% *
£ System model x =Ax +Bwu +v, v ..N(O,QM) *
#* k+1 k k k k *
* %
*® Measurement model z =Cx +e, e ..N(0,Q8) *
* k k k k *

¥
*

% T *

Assumptions E{e v } = 0 for all j,k = 0,1,2,... *

kK j *

%

H m o e e e e e e o e e e e m— i m e "

#* Notes: x = x(t), v =v(t), e(t) are the state vector, *

* k k k k k *

* system noise, and the measurement noise of dimensioms *

* *

* nx, nu and ny, respectively. A, B and C are the *

+ *

(nxxnx) state transition matrix, the (nxxmu) input- *

*

distribution matrix and the (nyxnx) measurement *

Y

* matrix (or observation matrix), respectively. *
B

108

% *
:k****************************2:%:****:{!**************{:****:&*************
DOUBLE PRECISION A(10,10),B(10,10),€(10,10) ,AEST(10,10),
& CEST(10,10),Q5(10,10),QM(10,10) ,X(10) ,XEST(10) ,BEST(10,10),
& P1(10,10),P2(10,10),P3(10,10),P1T(10,10),P2T(10,10),
& P3T(10,10),GK(10,10),GL(10,10),M(10,10),D(10,10),5(10,10),
& SINV(10,10) ,THETA(10) ,PARA(10) ,EPS(10),U(10),V(10),E(10),Y(10),
& DET,ERR1,RES,RJIT
INTEGER LCOUNT
OPEN (UNIT=11,FILE=’[BJS8884.NOISE]N_SEQ12’,STATUS='0OLD’)
OPEN (UNIT=22,FILE=’[BJS8884.NOISE]N_SEQ13’,STATUS="0LD’)
OPEN (UNIT=33,FILE=’{BJS8884.NOISE]N_SEQ58’,STATUS='0LD’')
OPEN (UNIT=44,FILE='A1EST12’,STATUS='NEW’)

* READ ALL DATA NECESSARY TO RUN THE PROGRAM

DATA NX/1/NU/1/NY/1/NP/1/

DATA A(1,1),A(1,2),A(2,1),A(2,2)/0.5,1.,.5,.0/

DATA B(1,1),B(2,1),C(1,1),C(1,2)/1.,0.,1.4,0./

DATA AEST(1,1),AEST(1,2),AEST(2,1),AEST(2,2)/0.,1.,0.,0./
DATA BEST(1,1),BEST(2,1),CEST(1,1),CEST(1,2)/1.,0.,2.0,0./
DATA QS(1,1),Qs8(1,2),Qs(2,1),Qs(2,2)/0.55,0.,0.,1./
QM(1,1)=0.55

DATA PARA(1)/.5/PARA(2)/1./

INITIALIZE REAL STATE VECTOR X, ESTIMATED STATE VECTOR XEST,
* PARAMETER VECTOR THETA AND COVARIANCE MATRICES P1,P2, P3

CALL UO2INITIALIZE(NX,NU,NY,X, XEST,THETA,P1,P2,P3)

THIS IS THE BEGIN OF THE ACTUAL IDENTIFICATION LOOP

LO0OP=600
DO 2000 LCOUNT=1,LO0P
WRITE(#,#) LCOUNT

* READ INPUT-VECTOR u, SYSTEMNOISE-VECTOR v AND MEASUREMENTNOISE-
VECTOR e

CALL UO3READNOISE(NX,NU,NY,V,E,U)
V(1)=0.7%V(1)
E(1)=0.7+E(1)

109

COMPUTE TRUE STATE VECTOR AND TRUE OUTPUT

CALL P210UTPUT(Y,C,X,E,NY,NX)
CALL P11STATETIMEUPDATE(A,X,B,U,V,NX,NU)

GENERATE THE MATRICES D AND M

CALL UO4DDERI(D,CEST,THETA,XEST,NX,NY, NP)
write(+,#) *d ’,((d(i,j), j=1,np), i=1,ny)

CALL UOSMDERI(M,AEST,BEST,THETA,XEST,U,NU,NX ,NY.NP)
write(*,*) 'm ', ((m(i,j)., j=1.,np), i=1,nx)

CALL P23SMATRIX(NP,NX,NY,S,CEST,D,P1,P2,P3,QM)

write(s,+) ’s *,((C s(i,j), j=t,ny), i=1,ny)

CALL P13DMATINV(SINV,S,NY,DET)

write(x,+) ’'sinv ’,((sinv(i,j}, j=1,ny), i=1,ny)

CALL P32MMODIFY(NU,NX,NY, NP,AEST,P1,XEST,S,SINV,GK,Y M,THETA,
& CEST,EPS,LCOUNT)

write(#,+) 'm ', ((m(i,j), j=1,np), i=1,nx)

CALL P24KALGNPAR(GL,P2,CEST,P3,D,SINV,NP NX,NY)

write(+,+) 'gl *,((gl(i,j), j=1,ny), i=1,np)

CALL P25KALGNSTATE(GK,AEST,CEST,P1,P2,P3,D,M,SINV,NX,NY, NP)

. CALL P2OPARAEST(THETA,GL,Y,CEST,XEST,NU,NX,NY,NP)
CALL P30STATEEST (AEST,BEST,XEST,U,GK,Y,CEST,NU,NX,NY NP)
CALL P26P1UPDATE(AEST,P1,P2,P3,M,S,GK,QS,NX,NY, ,NP)
write(+,*) 'P1 *,((P1(i,j), j=1,nX), i=1,nx)
CALL P27P2UPDATE(AEST,P2,P3,M,S,GK,GL,NX, NY,KP)
write(s,*) 'P2 *,((P2(i,j), j=1,nP), i=1,nx)
CALL P28P3UPDATE(P3,S,GL,NX,NY,NP,LCOUNT)
write(=,*) 'P3 * ((P3(i,j), j=1,nP), i=1,NP)

NOW UPDATE MATRIX AEST

CALL UOSUPDATE_ABC (AEST,BEST,CEST,THETA NU,NX,NY,NP)
write(#,+) ’'para’, (para(i), i=1,np)
write(#,51) ’theta * (theta(i), i=1,np)
write(44,40) (theta(i), i=1,np)

2000 CONTINUE

CLOSE(44)
CLOSE(33)
CLOSE(22)
CLOSE(12)

110

10
20
30
40
50
51

CLOSE(11)

STOP

FORMAT (/A)
FORMAT(//A,14)
FORMAT(//A)
FORMAT(F8.3)
FORMAT(2F8.3)
FORMAT(a10,F8.3)
END

A.2 Subroutines

Program Package MATRIX

Sk sk sk koK g g skok SOk ok g ke sk o st sk sk sk ok ok sk sk okook sk sk ok st sk sk ok sk ok sk ko vk skok skek sk sk sk ok skl sk kel sk sk ofskek
* %
* Subroutine POIMATMULNN for the matrix operation A :=AB *
* *
* A and B are N dimensional square matricies *
* column vector. *

e e sk o sfe sk st s s s ohe ookt sk skt st sk sk stk RSl Skl ol Rk sk stk st sl ok s stk stk sl st de stk sk skok s st st ok sk oksksk ok
SUBROUTINE PO1MATMULNN(A,B,N)
DIMENSION A(10,10),B(10,10), C(10)
DOUBLE PRECISION A,B,C

* C is a dummy storage vector.
*
DO 1000 J = 1,N
Obtain the j-th column of the product and store it
* temporarily in the column vector C.
DO 1001 I = 1.,N
€(I) = 0.0
DO 1002 K = 1 ,N
IF ((A(I,K) .NE. 0.0) .AND. (B(K,J) .NE. 0.0))
& C(I) = C(I) + A(I,K)+B(K,J)
1002 CONTINUE
1001 CONTINUE
* Now replace j-th column of matrix B with the j-th column
* of the result (stored in vector C).
Ed
DO 1003 I =1, N
A(I,1) = ¢(D
1003 CONTINUE
1000 CONTINUE
RETURN

END

%

skosfe sk ok e sk s sl s of sk ok ohe o sk s st ok sk sfestesfe st s ol e sk sk ke she s st sdeste ook ol o sk sfestole stk s stk sk sk st stk solok skekook ek

« "
* Subroutine PO2MATVEC for the matrix operation y:i= A¥x *
* A is an (nxm) matrix and x is an m-dimensional column vector.

* y is an n-dimensional column vector. *
i s o sk ok S ok o st ok s s ok s sl e ol s ok ok o ok 3K sk sk ke skl o Sk ok Sk sk st s ke sk sk ok sk st s sk sl stk sk s skeoskok sk st sk st g ol sk skl ksl

SUBROUTINE PO2MATVEC(A,X,Y,N,M)
DIMENSION A(10,10),X(10), C(10),Y(10)

112

¥
¥

£

1002
1000

1003

DOUBLE PRECISION A,X,C,Y

C is a dummy storage vector.

DO 1000 J =

1,

N

Obtain the j-th element of the product and store it
temporarily in the column vector C.
0.0

c@) =

DO 1002 K = 1,

IF ((A(J.X)

c(J) =
CONTINUE

&
CONTINUE
Now replace

DO 1003 J
Y(J)
CONTINUE
RETURN
END

C

1

M

with Y

1, N
c(d)

.NE. 0.0) .AND.

113

(X(X)

c(J) + A(J.K)+X(X)

.NE. 0.0))

e st sk sk ok e 3k ok ke o oK ke o sk sk sk ok ok s e e sfe s s e sk sk s sk sk 3 sk sk ok ok sk e ok sk sk ek Rk st sk s sk sk ok e ok sk ok sk ook stk ok sk sk ok sk sk ok ok sk ok

* . *
* T *
* Subroutine PO3SMATMULTRANSNN for the matrix operation A := A B =
ES *
* A and B are N dimensional square matrices. *

*
e s sk ok s sk sl o sk st s ok ok ok ok sk sk sl sk ek stk sie sk ok o e st sk st skl sk sk sk s R iR sk ok ol ok ook ok stk sk sk ke kogok skkek

SUBROUTINE PO3MATMULTRANSNN(A,B,N)
DIMENSION A(10,10),B(10,10), C(10)
DOUBLE PRECISION A,B.C

* C is a dummy storage vector
DO 1000 I = 1,N
* Obtain the i-th row of the product and store it
* temporarily in vector C.
Do 100t J = 1,N
c(J) = 0.0

DD 1002 X = 1,N
IF ((A(I,K) .NE. 0.0) .AND. (B(J,K) .NE. 0.0))

& C(J) = C(J) + A(I,X)*B(J.K)
1002 CONTINUE
1001 CONTINUE
* Now replace i-th row of matrix A with the i-th row
= of the result (stored in vector C).
DO 1003 J =1, N
A(I,I) = C(3)
1003 CONTINUE
1000 CONTINUE
RETURN
END
shesde she sk sk s o Sk s shesi sioshoak s oo sl ok o o s o sk s sl ok sl st st ke s sl sl e o et e e sl e stk ke s e e sl ok ik sk e sk oo sl ek ok
#
Subroutine PO4MATADD for the matrix operation C := A+B *
% *
@ RA and CA denotes the number of rows and the number of the *
columns of the matrices A, B and C. *
% o

i3 e ok sk ok sk s e oz st o s ofe o e sk ok sk s b sk sk e e ok o ot ofe ok ok s s ok ok sk ok otk ofe o sk sl sl stk sk sk e ok oo ode e sk sl ok sk ofe ket she sk sk kol e sk sk
SUBROUTINE PO4MATADD(C,A,B,RA,CA)
INTEGER RA,CA
DIMENSION A(10,10),B(10,10),€(10,10)
DOUBLE PRECISION A,B,C
DO 1001 I = 1,RA
DO 1001 J = 1,CA
C(I,J) = A(1,J) + B(I,D)
1001 CONTINUE
RETURN
END

114

S sk sk sk ok ks ok o e s sl ok ke sk ok ke ke 3 e ok sk Sk ke o ok sk S ok o sk sk ok sk sk sk St ok sk ok sk ke ok sk sk ok sfe s sk ok se ke e ok ok ok Sk ok Sk sk sk ok S ok kok

* *
* Subroutine PO4VECADD for the vector operation c¢ := a+b *
*# *
* RA denotes the number of elements of the vectors a,b,c. *
* *

sl ok st she sk ofe sde s ok o sk s st sk sk e s st she s s oo s s ofe e sfe e sl sk ok e s s e ok sde ke e ke ok o s sk sk ok ok ofe sk sk sk kR e sk ok otk
SUBROUTINE PO4VECADD(C A,B,RA)
INTEGER RA
DIMENSION A(10),B(10),C(10)
DOUBLE PRECISION A,B,C
DO 1001 I = 1,RA
C(I) = A(I) + B(I)
1001 CONTINUE

RETURN

END
s s o ok ok ok ok ok o s stk sbe Sk sk e sk sk sk Sk o ke sk stk sk sl ke sk sfeste sk il stk ok steste ok sk sk ke sk e sl e sk sk kot kst ok Nek ke ke stoiekok ok
* *
* Subroutine POSMATMUL for the matrix multiplication C = A B *
ES K
* A and B are RAxCA and RBxCB dimensional matrices, respectively. *
* *
EEF L PR R st e st b b ook o sk ok Sk ok SOk Sk ok o og ok e ok ske sk ook she stestok st sde sk ke dokokok sk sk iR dokokokok

SUBROUTINE POSMATMUL(A B,C,RA,CA,RB,CB,RC,CC)
INTEGER RA,CA,RB,CB,RC,CC
DOUBLE PRECISION A(10,10),B(10,10),C(10,10),DUMMY
RC = RA
CC = CB
IF(CA .NE. RB) GOTO 2001
DO 1000 I = 1,RA
DO 1001 J = 1,CB
DUMMY = 0.0
DO 1002 K = 1,CA
IF ((A(I,X) .NE. 0.0) .AND. (B(X,J) .NE. 0.0))

b DUMMY = DUMMY + A(I,K)=#B(X,J)
1002 CONTINUE
C(I,J) = DUMMY
1001 CONTINUE
1000 CONTINUE
GOTO 2002

2001 WRITE(+*,+) ’ ERROR IN POSMATMUL: Dimension mismatch.’
2002 CONTINUE

RETURN

END

115

e sk sk ke o s ok ok ok sk s ke s s sk sk sk st sk ok ok ok sk ke e ok ke e et s F Sk e e ke sk e sk ok ot e s e sk sk sk ke ok o oK sk sk sk ok ok ok ok ok sk sk stk ok ok sk sk

B

*

oy POGMATMULTRANS *
T *
* Subroutine for the matrix multiplication € = A B . *
. *
* A and B are RAxCA and RBxCB dimensional matrices, respectively #
*

sk s oo ofe ok o sk o s s o s ok st s sfe s sie i oo sk sk s s R SRk g e sk sk sl sl o sk s sk s ook stz e e i ks sk ol o s ol sk s ol e sk st sk o koske e sk ok

SUBROUTINE POGMATMULTRANS(A,B,C,RA,CA,RB,CB,RC,CC)

INTEGER RA,CA,RB,CB,RC,CC

DOUBLE PRECISION A(10,10),B(10,10), €(10,10)

RC = RA

IF(CA .NE. CB) GOTO 2001
DO 1000 I = 1,RA
DO 1001 J = 1,RB
C(1,J)= 0.0
DO 1002 K = 1,CA

IF ((ACI,K) .NE. 0.0) .AND. (B(J,K)
& C(1,3) = C(I,J) + A(I,K)*B(J.K)
1002 CONTINUE
1001 CONTINUE

1000 CONTINUE

*

GOTO 2002

2001 WRITE(6,+) ’ ERROR IN POGMATMULTRANS:

2002 CONTINUE
RETURN
END

116

_.NE. 0.0))

Dimension mismatch.’

e s s sk ok ok 3k 3k Sk ok sk sk s s sk sk sk s sk e ok sk ke sk sk Stk o ok ok oK sk sk ok ok sk Sk KR ok ok sk sk ok sk skl s e ook sk s kok ok skok sk ok ok ok sk ok sk kR

* *

SUBROUTINE PO7 T *
* for the matrix operation P := 0 P 0 + Q *
* 0, P and Q are NxN matrices, each. P and Q are symmetrical. *
%
et s feob st b e s sbe s sk sheobe ok steob sk st st sk sk s s ol vt e sk oo ke sk ok sk sl sk ok ofe s ke ofe o st e kst ol s ke R R S R R Rl Sk ok B R g e sfoR sk ok

SUBROUTINE PO7(0,P,Q,N)

DIMENSION P(10,10),0(10,10),Q(10,10),C(10)
DOUBLE PRECISION P,0,Q,C

CALL PO3MATMULTRANSNN(P,O,N)

C is a dummy storage vector.

DO 1000 J = 1,N
* Obtain the j-th column of the product and store it
* temporarily in the column vector C.
DO 1005 I = 1,]-1
1005 c(I) = 0.
DO 1001 I =
c(1) = 0.
DO 1002 K = 1,N
IF ((0(I,X) .NE. 0.0) .AND. (P(K,J) .NE. 0.0))

N

O «w O

& C(I) = Cc(I) + O(I,K)*P(K,J)
1002 CONTINUE
1001 CONTINUE
Now replace j-th column of matrix P with the j-th column

of the result (stored in vector C). Alsc add matrix Q.

DO 1003 1

1003 P(I,7)
1000 CONTINUE

DO 1020 I =1, N

DO 1020 J =1,

J, N
c(I) + Q(I, D)

i

N
IF(I .NE. J)
& © O P(I,I) = P(J,I)
1020 CONTINUE
RETURN
END

117

st s sk st e e ot S e s sk e sfe s ok ke ke e ok ok ok sk ok sk sk ok sk ke sk sk ok o sk ok ko sk ke sk ok sk sk ok ok ok ot ok sk ok ok ke skok o oK R R ok ok ok kKKK

% ¥
* Subroutine PO8 for the matrix operation A:=HY+R *
* *
* H is a an n-dimensional row vector, Y is an n-dimensional *
* column vector. *

e of¢ o s e e ook sk sk s a e ofe e o2 oz e st e st oo od s sl of shesde s s e sde sk sk skok ok R st sk sie sk sk sk sk sk sfe sk sk ke ke skesieste e sk ok e st e ke sk sk sk ks R
SUBROUTINE PO8(H,Y,R,A,N)
DIMENSION H(10),Y(10)
DOUBLE PRECISION H,Y,A
A=0.0
DO 1000 K = 1,N
IF ((H(X) .NE. 0.0) .AND. (Y(K) .NE. 0.0))

& A=A+ HEK)+*Y(K)
1000 CONTINUE

A=A+R

RETURN

END

118

e o ok 2K sk s sk sk sk sk s sk ok ok Sk s sk sk sk sk sk sk sk sk S sk sk Sk sk s sk sk sk sk ok st sk S e skook e sk sk sk sk sk sk sk sk sfe sk sk ke skeske sk st sk skl sk sk sk sk sk kg

*
* POOMATROWMUL

* T *
* Subroutine for the matrix-vector multiplication Y =P H . *
% kS
* P is an NxN matrix H is an N-dimensional row vector. *
Ed

st e s ke Sl K st i ok sk ok stk stk o o s sk sk o kol s Rk ol sk ok Sk R ROK sk Kok s ot skeok sk sk stk sk skl oot o ke stk ek ok sk ko sk kol sk ok ok ok
SUBROUTINE PO9MATROWMUL(P,H,Y, N)
DIMENSION P(10,10) ,H(10), Y(10)
DOUBLE PRECISION P.H,Y

DO 1000 I = 1,N
Y(I)= 0.0
DO 1002 J = 1,N
IF ((P(I,J) .NE. 0.0) .AND. (H(J) .NE. 0.0))

& Y(I) = Y(I) + P(I,J)=*H(J)
1002 CONTINUE
1000 CONTINUE

RETURN

END

s sk ok s sk e st vl o o ook e etk bk sl ot o ofe e o ke ode s ok ok ol e sk ok ok gl ok ok ok sk sk ok skt sk o sk ok sk ok sk sk sk sheske sk kol ek sk skeokok

*
* Subroutine P10SCALARRESIDUE *
* for the matrix operation v :=z - Hx *
i *
* H is a an n-dimensional row vector, X is an n-dimensional *
* column vector. *
* *

st ol et o s oo o SR ok o s ok o sk ke sk sk okt s ook o sk of sk R ok sk ke skl ke sk sk sk ok st sk sk st sk sl ok ok R R DR SRk sokolok
SUBROUTINE P10SCALARRESIDUE(H,X,Z,V,N)
DIMENSION H(10),X(10)
DOUBLE PRECISION H,X,V,Z

V=0.0
DO 1000 K = 1,N
IF ((H(X) .NE. 0.0) .AND. (X(K) .NE. 0.0))

& V = V + HK)*X(X)
1000 CONTINUE

V=2Z-YV

RETURN

END

119

sk o sk sk ok ok SR e ok i ok st ok sk ke sk sk sk sk sk s sk sk Sl Dk S Sk ks ok ok Skosk S8 3k s sk Sk ok e sl ke st ok sk ok Sk sle s stk ske ofe o sk ske Sk sk ofe ske sk skoke ko

*

%

ookt

o
ES

*
Subroutine P11STATETIMEUPDATE *
*

for the matrix operation X = A*xX+B*u+v *
*

A is a NxN matrix, B is a NxM matrix, x,v are n-dimensional *
*

column vectors and u is a m-dimensional column vector *
*

s ke et e ook sk s st ek b sl sl o ok s sk sk o sle s e e e o o ol sde sde e e sdeste ook sl s ok st sk sk oo sl e b ksl e S ok ok ok sk slesle sk ste deskeofe ke ke

SUBROUTINE P11STATETIMEUPDATE(A,X,B,U,V,N,M)

DIMENSION A(10,10),B(10,10),X(10),€(10),U(10),V(10)
DOUBLE PRECISION A,B,.X,C,U,V

C is a dummy storage vector.

DO 1000 J = 1,N

Obtain the j-th element of the product and store it
temporarily in the column vector C.

c(J) = 0.0
DO 1002 K = 1,N »
IF ((A(J,K) .NE. 0.0) .AND. (X(K) .NE. 0.0))

& C(J) = €cQJ) + A(J,K)=X(K)
1002 CONTINUE
DD 1004 K=1,M
IF ((B(J,K) .NE. 0.0) .AND. (U(K) .NE. 0.0))
& c(J) = c(J) + BWJ,K)+U(K)
1004 CONTINUE
1000 CONTINUE
Now replace vector X with vector C and add vector V.
DD 1003 J =1, N
X(J) = c(HN+V()
1003 CONTINUE
RETURN
END

120

ok ok sk o oK ok e sk sk sk sk sk sk sk sk sk ok ok ok sl s sk sk e sl s sk sk ok dkeske s o sk ok s sk sk sk ok sl stk s sk sk sk sk sk sk sk o sd ook e skeske sk ek ke sk sk ok

-1 *
* Subroutine P13DMATINV for the matrix operation C :=8 *
* *
* A is N dimensional square matrix *
* Operation in double precision *
4 ®
S St sk e e e ke o s o ok s s st ke st ok e e e e sk ke sl o s e e ke s o ook ok st ke sk st ke stk sk e sk sk ke b e sk sk sk deste e sk e skesk e ok

SUBROUTINE P13DMATINV(C,B,N,D)
DIMENSION €(10,10),B(10,10),4(100),L(10),M(10)
DOUBLE PRECISION C,B,A,D,HOLD,BIGA

DO 5 I=1,N
1Z=N+(I-1)
DO 5 J=1,N
1J=1Z+J
5 A(1)=B(I1,])
D=1.0
NK=-N
DO 80 K=1,N
NK=NK+N
L(K)=K
M(K)=K
KK=NK+K
BIGA=A(KK)
DO 20 J=K,N
1Z=N*(J-1)
DO 20 I=K,N
1J=1Z+1
IF (DABS(BIGA)-DABS(A(IJ))) 15,20,20
16 BIGA=A(IJ)
L(K)=I
M(K)=J
20 CONTINUE

(@]

J=L(K)
IF(J-K) 35,35,25
25 KI=K-N
DD 30 I=1,N
KI=KI+N
HOLD=-A(KI)
JI=KI-K+J
A(KI)=A(JI)
30 A(JI)=HOLD

aQ

121

Q

Qo

Q

aQ

35

38

40

45
46

48

50

55

60
62

65

70
75

DO

I=M(K)
IF(I-K) 45,45,38
JP=N#(I-1)

DO 40 J=1,N
JK=NK+1J
JI=JP+]
HOLD=-A(JK)
A(JK)=A(JI)
A(JI)=HOLD

IF(BIGA) 48,46,48
D=0.0
RETURN
DO 55 I=1,N
IF(I-K) 50,55,50
IK=NK+I
A(IK)=A(IK)/(-BIGA)
CONTINUE

65 I=1,N
IK=NX+I

. HOLD=A(IK)

I1J=I-N
DO 65 J=1,N
IJ=1J+N
IF(I-K) 60,65,60
IF(J-X) 62,65,62
KJ=I1J-I+K

A(I1J)=HOLD*A (KJ)+A(IJ)

CONTINUE

KJ=K-N
DO 75 J=1,N
KJI=KJ+N
IF(J-K) 70,75,70
A(KJ)=A(KJ)/BIGA
CONTINUE

D=D*BIGA

122

Q

aQQ

80

100

105

108

110
120

126

130

150

500

A(KK)=1.0/BIGA
CONTINUE

K=N
K=(K-1)
IF(X) 150,150,105

I=L(K)

IF(I-X) 120,120,108
JQ=N*(K-1)
JR=N+(I-1)

DO 110 J=1,N
JK=JQ+J
HOLD=A (JK)
JI=JR+J
AQJK)=-A(J1)
A(JI)=HOLD

J=M(X)

IF(J-X) 100,100,125
KI=K-N
DO 130 I=1,N

KI=KI+N

HOLD=A(KI)

JI=KI-K+1]

AKI)=-A(J1)

A(JI)=HOLD

GO TO 100
DO 500 I=1,N
IZ=N+(I-1)

DO 500 J=1,N
I1J=17+]
C(I,J)=A(1J)

RETURN
END

123

e s sk e S e sk sk s sk ok sk s ke e sk ke sie sk sk sk sk sk sfok s sl o sk sk sk sk sk skt sk sk St sk s sk sk sk ok ok e st ok o sk sl sk sk sk s sk sk Sk stoke sk s ofe e sk oke stk

* . -1 s
* Subroutine MATINV for the matrix operation A = A *
* *
* A is N dimensional square matrix *
* *
e sk e s s ofe e st ade ol sde sk she ok st ot ofe st sl she sk e ok oo ofe she ofe s sk sl sfesie ofe ke sk e e s koot sk sk ook s s sfe stk sk ok skesk skoke sk sk stk sk sk iRk sk ok

SUBROUTINE MATINV(A,N)
DIMENSION A(10,10)

DO 10 K=1,N
DO 20 I=1,N
DO 30 J=1.,N
IF(I.EQ.X) GOTO 30
IF(J.EQ.X) GOTO 30
ACT,I)=A(I,3)-A(K, 1) +A(T,K)/ALK,X)
30 CONTINUE
20 CONTINUE

DO 40 I=1,N
DO 50 J=1,N
IF(I.EQ.J) GOTO 50
IF(I.NE.K) GOTO 560
A(I,3)=-A(1,3)/A(K,K)
50 CONTINUE
40 CONTINUE

DO 60 I=1,N
DO 70 J=1,N
IF(J.NE.K) GOTO 70
IF(I.EQ.J) GOTO 70
ACI,D)=A(I,J)/A(K,X)
70 CONTINUE
60 CONTINUE
A(K,K)=1.0/A(K,K)
10 CONTINUE
RETURN
END

124

sk ske 3 3 e sfe sk sk sk sk sfe sk sk s sk ol s sk ook sk sk ok ske s skt sk ke Sk sk sk sk sk SR ke sk sk she sk s s stk sk sk sk sk ok s sk Sk sk ok e 3k ok sk sk sk sk sk sk sk kskok ok ok

E

%

*
*
*
*
*

T *
Subroutine P15TRANSPOMATRIX for the matrix operation B := A *

A is (n¥*m) dimensional matrix. *
B is (m#*n) dimensional matrix. *

st s s s s e e s sk sfe sk skofeof st sk o e sk ke sl ke sk ol o e e ok s etk s ok sk ol o el Sk ok ok ke stk sk ok sk ok ok ok e ke Sk ok e S ok koK Sk Kbk o

SUBROUTINE P15TRANSPOMATRIX(A,B,N,M)
DIMENSION A(10,10),B(10,10)
DOUBLE PRECISION A,B,C

D0 1 I=1,N
DG 2 J=1,M
B(J,I)=A(1,1)
2 CONTINUE
1 CONTINUE
RETURN
END

stk o o o o ootk ok sk oo sk sk el ke sf e ok e st ok sk B ok s Bk o sk ook ot ook o sk ok ok ok s ot ol S ke o oK ke st sk sk sk ke sk skl sk Sk ok R oKk K

*
* Subroutine P16MAKEIDENT . *
ks Ed
* Generates a n-dimensional identity matrix A *
¢ e s ok ok s e o e sbe sb ol sl sl o sk ok ol s o sl oie sk sk ok S e she o e ohe s sk sk ok e ke ofe e she sk ofe ofe st sfe ske sheaie e sk sk s ke she sk ok ok sie s ok s sk ot ok Sk skt skesfesk
SUBROUTINE Pi6MAKEIDENT(A,N)
DOUBLE PRECISION A(10,10)

DO 1 I=1,N
po 2 J=1,N
IF(I.EQ.J) A(I,J)=1.0
IF(I.NE.J) A(I,J)=0.0
2 CONTINUE
1 CONTINUE
RETURN
END

125

e ok o sk sk ke o s K sk ot sk ok sk ok ok st sk st ke el e sk ok sk ok o ok o o o ke ok ok ok ok sk 5k s ok ok ke ok e Sk sk ok sk sk ok ok ok s e ok ok ok sk ok sk ok sk sk sk sk sk e ok

*
* Subroutine P17MATTRACE for the matrix operation TR := TRACE(A) =
* *
* A is a general n-dimensional square matrix. #
TR is the sum of the diagonal entries. ®
*
R oo ok s ok R R R SR R ok o st R R R kot e stk sk s sk sk ok sk kRt sk ks skl skt sk s Sk ok ok koK

SUBROUTINE P17MATTRACE(A,N,TR)
DIMENSION A(10,10)

DOUBLE PRECISION TR,A
TR=0.0
DO 1001 I = 1,N
TR=TR+A(I,I)
1001 CONTINUE
RETURN
END

sk th ok o s sk st ske sk stk e sl st ok e sk skl sk b sie sl ok sk sfe e sie sl ol sk ste sl sk ok ofe sk sk ke st sk ok ke stk sk sk sk sk Sk sl stk skl skt skok kol skok ke

* *
* Subroutine P18AUGMENT *
* *
* X and THETA are N and M dimensional vectors, respectively. *
* Z is the augmented vector of dimension NM=N+M. #
* *
3 s s ok sk sk ok sk sk sfe sieod ok sk iz skt sk ok stk sk ok sk stk skl S s sk ke st SkooloR ek kool sk sk skl i sk stk ok ko oloinR keiok ek

SUBROUTINE P18AUGMENT(X,THETA,N,M,NM)
DIMENSION X(10),THETA(10),Z(20)
DOUBLE PRECISION X,THETA,Z

DO 1001 I = 1,N
Z(1)=X(I)
1001 CONTINUE
DD 1002 I = 1,M
Z(I+N)=THETA(I)
1002 CONTINUE
RETURN
END

126

Sk Sk sk e e ok sk sk ok ok 3K 3 Ske ok sk ok sk ok e ok o e ok sk sk oo sk sk ok o ok Sk ok sie Sk sk e sk s ook ke Sk sk e ok s ok ke sk sk ok skl sk sk ok sk sk ok ook ok ok sk s sk sk sk

* *
* #
* Subroutine P19MATCOPY for the matrix operation B := A

* #*
¥ A and B are RxC dimensional matrices. %
*
S sk Rtk R Shole SRR SR SRR R R R s e s st st SR SRR R Rk ok KR 5 R R KR Rk s ks et sk sk ke sk g skt o

SUBROUTINE P19MATCOPY(A,B,R,C)
INTEGER R,C

DIMENSION A(10,10),B(10,10)
DOUBLE PRECISION A,B

DO 1000 I = 1,R
bo 1000 J =1,C
1000 B(I,J)=A(1,])
RETURN
END

sk o gtk o ok el ot sk ok ook gkl skeodelod sk ok ool sk ok ko sk o stk et ek e sk o ok ok skl o ok sk ke sk ok ok sk ok st sk ok

F *
* Subroutine P20VECTORRESIDUE *
* for the matrix operation res := y - Hx *
* ®
* H is a an MxN dimensional matrix, x is an N dimensional *
* .column vector and y,res are M dimensional row vectors. *
* %

¥

R L L L L T P T T P e P P TP T
SUBROUTINE P20VECTORRESIDUE(X,H,Y,RES,N,M)

DIMENSION H(10,10),X(10),Y(10) ,RES(10)

DOUBLE PRECISION H,X,Y,RES

DO 1000 I = 1,M
RES(I) = 0.0
DO 1001 J = 1,N
RES(I) = RES(I)+H(I,J)+X(J)
1001 CONTINUE
§

* Now subtract this from y-vector.

RES(I)=Y(I)-RES(1)
1000 CONTINUE
RETURN
END

127

K sk e s s skl ste sl o ok Sk ok sk sk sk sk sk sl sl sk skoske ok ol oSk sk e sk sl sk sk st sk e e sk sheoske steoske sk sheoske ok sk sk stk sk sk sk sl skl ks sk sk ok ook ke sk ok sk sk ek

Subroutine P210UTPUT for the matrix operation

*

&

%

* C is an (mxn) matrix and x is an n-dimensional column vector
* and e is a m-dimensional column vector.

E3

*

y:= C¥x + e

s sk s sk s sk S Sk ok o o ok ok sk shesi e sk ok ok st s sk she sk ge e ook s o ok e s ke ool sk e s e s sk ok o sl s sk ok sk sk ok ok ok ke ok sk ok s skok skoloksk

SUBROUTINE P210UTPUT(Y,C,X,E,NY,NX)
DIMENSION C(10,10),X(10),E(10),Y(10)

DOUBLE PRECISION C,X,E.,Y

¥
*
DO 1000 I = 1,NY
Y(I) = 0.0
DO 1001 J = 1,NX
Y(I) = Y(I)+C(I,3)*X(1)
1001 CONTINUE
Now add vector E to vector Y.
*

Y(I) = Y(I)+E(I)
1000 CONTINUE
RETURN
END

sk skesteok s ok ok e sk o o sk gl skl e o ok sk ok oK ok sk ok sk s sk Stk st skok ok sk st sk st sl ok s btk sk sk st sk skesk sk sk skesieolke stk seskodok stk

respectively.

EE I S R T

Subroutine P22MMATMUL for the matrix multiplication D = A B C

A, B and C are RAxCA, RBxCB and RCxCC dimensional matrices,

SUBROUTINE P22MMATMUL(D,A,B,C,RA,CA,RB,CB,RC,CC,RD,CD)

INTEGER RA,CA,RB,CB,RC,CC,RD,CD,RT,CT

DIMENSION A(10,10),B(10,10),C(10,10),D(10,10),TEMP(10,10)

DOUBLE PRECISION A,B,C,D,TEMP

CALL POSMATMUL(A,B,TEMP,RA,CA,RB,CB,RT,CT)
CALL POSMATMUL(TEMP,C,D,RT,CT,RC,CC,RD,CD)

RETURN
END

128

%

thoode ol e st sk sk ke ke b sk ok st sd ol sl sk s sge sk ok ok ol o st kel sl e e sk ok el b sk sk stk sl sheod et sttt sk e o ok EEE R R L4

Sk ok e sk s ok s 3K sk sk 3k ok ok sk ok R ok sk ko sk e sk sk skl sk sk sk sk ok sk Sk 3k sk Sk sk Sk Sk sk sk sk sk sk sk sfe sk sk stz ke sk e sk ok e oK s sk ek she ke sk ok e sk sk

*

-

*

* Subroutine P23SMATRIX for the matrix operation *
* T T TT T *
* S:=CP1C+CP2D+DP2C+DP3D+QM *
* *
S is a NYxNY dimensional matrix. *

*

s ke e sl oposie ke sl sfe sl st ofeofeske e st sfe sk s sk o o sk e ek sle et skl sk ko e e s stk s sl sk e ke ok Sie e ok st o e ook sl ok sk st o sie sk sk sk e sk

SUBROUTINE P23SMATRIX(NP,NX,6NY,S,CEST,D,P1,P2,P3,QM)

DOUBLE PRECISION S(10,10),CEST(10,10),P1(10,10),P2(10,10)
DOUBLE PRECISION D(10,10),QM(10,10),TEMP(10,10),CT(10,10)

DOUBLE PRECISION DT(10,10),P3(10,10),P2T(10,10)

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

P1OMATCOPY (QM,S,NY,NY)

P15TRANSPOMATRIX (CEST,CT,NY,NX)
P15TRANSPOMATRIX(D,DT,NY,NP)
P15TRANSPOMATRIX(P2,P2T,NX,NP)

P22MMATMUL (TEMP,D,P3,DT,NY,NP ,NP,NP,NP,NY,NY,NY)
PO4MATADD(S,S,TEMP,NY,NY)

P22MMATMUL (TEMP,D,P2T,CT,NY NP, NP, NX,NX,NY,NY,NY)
PO4MATADD(S,S,TEMP,NY,NY)

P22MMATMUL (TEMP, CEST,P2,DT,NY,NX,NX,NP ,NP,NY, NY,NY)
PO4MATADD(S,S,TEMP,NY,NY)

P22MMATMUL (TEMP, CEST,P1,CT,NY ,NX,NX,NX,NX,NY,NY,NY)
PO4MATADD(S,S,TEMP,NY,NY)

RETURN

END

129

s 33 e s sk e sk sde ok sk s s sl sk sk s e sosde sk she sttt st s sk sl ok sk sk sk sk sl o s Sk ke sk sk e s sk s sl stk sk she sk ok sk s sk ol sie s skosk ok ek ke ok sl e o okesk

ES %
* Subroutine P24KALGNPAR for the métrix operation %
* TT T *
* GL := (P2 C +P3D) 8§ %
4 *
GL is a NPxNY dimensional matrix. *
* *
e st s a2 sk st b o o ke ke ok st e sk ok o e o oo st stk koo sk ook s ook S sk st ook o o kel sie ko ok s st ol sk ok s sl sk sk e sk ok ok sk sk gk

SUBROUTINE P24KALGNPAR(GL,P2,CEST,P3,D,SINV,NP,NX, NY)
DIMENSION GL(10,10),SINV(10,10),CEST(10,10),P2(10,10),P3(10,10)
DIMENSION D(10,10),TEMP(10,10),CT(10,10),P2T(10,10)

DIMENSION DT(10,10),P3T(10,10)

DOUBLE PRECISION GL,SINV,CEST,P2,P3,D,TEMP,CT,P2T,DT,P3T

CALL P15TRANSPOMATRIX(CEST,CT,NY,NX)

CALL P15TRANSPOMATRIX(D,DT,NY,NP)

CALL P15TRANSPOMATRIX(P2,P2T,NX,NP)

CALL POSMATMUL(P2T,CT,TEMP,NP,NX,NX,NY,NP,NY)
CALL P1OMATCOPY (TEMP,GL,NP,NY)

CALL POSMATMUL(P3,DT,TEMP,NP,NP,NP,NY NP, NY)
CALL PO4MATADD(TEMP,TEMP,GL,NP,NY)

*
* don’t multiply with SINV when MEKF is used
* use the jdendity matrix instead
3
C CALL POSMATMUL (TEMP,SINV,GL,NP,NY,NY NY, NP, NY)
RETURN
END

130

3¢ st sk o ok o sk ok sk e ok ok o ok ke sk ok ok skoke ok ok s o sk sk ok sk sk ok o o sk R sk e sk ok e sk s ok s ke sl ok sk e ok sk e Sk sk oK sk sk ok o ke s sk ok o o sk ks

*

£

* Subroutine P25KALGNSTATE for the matrix operation *
s T TT T T *
* GK := (APLC+MP2C+AP2D+MP3D)/S *
* GK is a NXxNY dimensional matrix. *
B *
S 3 s o e e stk ok ook sk s e sk s e s sk sk ke skeoste sk ofe st s e sl st sk ok o sk s ko skekoole skl ok sk ke skoke sl sk sk ek sk okook sk ke stk sk sk

SUBROUTINE P25KALGNSTATE(GK,AEST,CEST,P1,P2,P3,D,M,SINV,NX,NY,NP)

DOUBLE PRECISION SINV(10,10),CEST(10,10),P1(10,10),P2(10,10)
DOUBLE PRECISION D(10,10),AEST(10,10),TEMP(10,10),CT(10,10)

DOUBLE PRECISION M(10,10),DT(10,10),P3(10,10),P2T(10,10)
DOUBLE PRECISION GK(10,10)

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
. CALL

P15TRANSPOMATRIX (CEST,CT,NY,NX)
P15TRANSPOMATRIX(D,DT,NY,NP)
P15TRANSPOMATRIX (P2, P2T,NX ,NP)

P22MMATMUL (GK ,M,P3,DT,NX,NP,NP,NP,NP,NY ,NX,NY)
P22MMATMUL (TEMP, AEST ,P2,DT,NX,NX,NX,NP,NP,NY,NX,NY)
PO4MATADD (GK, GK, TEMP, NX,NY)

P22MMATMUL (TEMP ,M,P2T,CT,NX,NP,NP,NX ,NX,NY,NX,NY)
PO4MATADD(GK, GK, TEMP, NX,NY)

P22MMATMUL (TEMP, AEST,P1,CT,NX,NX,NX,NX ,NX,NY,NX,NY)
PO4MATADD (GK, GK, TEMP , NX,NY)

POSMATMUL (GK,SINV,GK,NX,NY,NY,NY ,NX,NY)

RETURN

END

s ofe s e e sk o e she sk sk e sk ofe s S e SR e sk ok ko sk sk ke st e e st ke sk sfe sl e s sk st sie Shesie sk sk ke ok s sk ke sk e sk sk sk ok s sk sk sk sk ke s sk ok sk

B3

Ed

* Subroutine P26P1UPDATE for the matrix operation *
*# T T TT T T *
® Pt ;= AP1A+AP2M+MP2A+MP3IM-GKDGK + QS *
* ¥
P1 is a NXxNX dimensional matrix.
*
shead ade sk ¢ o o sl o o o e s ode oo o ode st e o kol s e s el skosk sl st sk b sl o sl oo e st sk koK o o ok oo ke e sk o e sk s sie b ok e ok skesie sz ok sheosk s sk o skoskoke

SUBROUTINE P26P1UPDATE(AEST,P1,P2,P3,M,S,GK,QS,NX,NY ,NP)

DOUBLE PRECISION AEST(10,10),P1(10,10),P2(10,10),P3(10,10)
DOUBLE PRECISION M(10,10),S(10,10),GK(10,10),QS(10,10),GKT(10,10)
DOUBLE PRECISION TEMP(10,10),AT(10,10),MT(10,10),P2T(10,10)

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
DO 1

P15TRANSPOMATRIX (AEST AT, NX,NX)

P15TRANSPOMATRIX (M,MT,NX, NP)
P15TRANSPOMATRIX (GK, GKT ,NX,NY)

P15TRANSPOMATRIX (P2,P2T,NX,NP)

P22MMATMUL (P1,AEST,P1,AT,NX,NX,NX,NX,NX,NX,NX,NX)
P22MMATMUL (TEMP , AEST, P2 ,MT,NX ,NX,NX,NP,NP ,NX,NX,NX)
PO4MATADD(P1,P1, TEMP,NX,NX)

P22MMATMUL (TEMP ,M,P2T,AT,NX,NP,NP,NX,NX, NX,NX,NX)
PO4MATADD(P1,P1, TEMP,NX,NX)

P22MMATMUL (TEMP ,M,P3,MT,NX,NP ,NP,NP,NP,NX,NX,NX)
PO4MATADD (P1,P1, TEMP,NX ,NX)

P22MMATMUL (TEMP ,GK,S,GKT ,NX ,NY,NY,NY,NY,NX,NX,NX)
I=1,NX

DO 1 J=1,NX
1 TEMP(I,J)=-TEMP(I,J)

CALL
CALL

PO4MATADD(P1,P1,TEMP ,NX,NX)
PO4MATADD(P1,P1,QS,NX,NX)

RETURN

END

132

St 3k sk sk oK o ok ke s ke s s ke St RS sk o ke ok ke sk sk ke ok s st KoK e ok e ofe ok SR S 38 o e sk ok e e ok oot s skl e o e s ok o sk sk e sk ok ok sk ok ok oK sk skl o koK

* *
* Subroutine P27P2UPDATE for the matrix operation *
* T 2
* P2 := AP2 +MP3 - GKDGL *
*

* P2 is a NXxNP dimensional matrix. %
* 4

e ke o e st oKk s ookt e oo ok o o kK Sk Rk SRR RSO SR K sk sk ok sk ok ok R kst ke ok sk ok R ok ok ok sk KR SR SR Rk
SUBROUTINE P27P2UPDATE (AEST,P2,P3,M,S,GK,GL,NX,NY,NP)
DOUBLE PRECISION AEST(10,10),P2(10,10),P3(10,10)
DOQUBLE PRECISION M(10,10),S8(10,10),GK(10,10),GL(10,10)
DOUBLE PRECISION TEMP(10,10),GLT(10,10)

CALL P15TRANSPOMATRIX(GL,GLT, NP, NY)
CALL POSMATMUL (AEST,P2,P2,NX,NX,NX,NP,NX,NP)
CALL POSMATMUL(M,P3, TEMP,NX,NP,NP,NP,NX,NP)
CALL PO4MATADD(P2,P2,TEMP, NX,NP)
CALL P22MMATMUL(TEMP,GK,S,GLT,NX,NY,NY,NY NY, NP,NX,NP)
DO 1 I=1,NX
DO 1 J=1,NP
1 TEMP(I,J)=-TEMP(I,J)
CALL PO4MATADD(P2,P2,TEMP,NX, NP)
RETURN
END

133

Sk 3K sk ok ok ok sk sk ok ke sk oK ok sk s sk sk sk sk Sk sk sk sk Sk ok s sk s ook sk s s sk o ok e ok sfe sl sfe sk sk ok sk ok s ook sk sfe sk sk sk o ofe sfe sk s s sk sk ke Sk ok ok

* *
* Subroutine P28P3UPDATE for the matrix operation *
* T -1 -1 &
* P3 := {[P3 - GL S GL] + delta * I } *
*
* P3 is a NPxNP dimensional matrix. *
* delta has to be found #
St oo ok ook o ok e ok st ot sk oot of ook ok o s ofe e ok ol s ok SR o o o ok ke ok ke ool o s skl s sk ok sk ok oo of i s ok ok o sk ok ok o

SUBROUTINE P28P3UPDATE(P3,S,GL,NX,NY,NP,LCOUNT)
DOUBLE PRECISION P3(10,10),S8(10,10),GL(10,10) ,DELTA
DOUBLE PRECISION TEMP(10,10),TEMP1(10,10),GLT(10,10) ,DET

¥k
delta=1.0D-09

C DO 10 I=1,NP

c 10 DELTA=DELTA+P3(I,I)

c DELTA=.01/DELTA

13

B3

CALL P15TRANSPOMATRIX(GL,GLT,NP NY)
CALL P22MMATMUL(TEMP,GL,S,GLT,NP,NY,NY,NY,NY, NP, NP, NP)
DO 1 I=1,NP
DO 1 J=1,NP

1 TEMP(I,J)=-TEMP(I,J)
CALL PO4MATADD(P3,P3,TEMP,NP,NP)
CALL P13DMATINV(TEMP,P3,NP,DET)
DO 2 I=1,NP

2 TEMP(I,I)=TEMP(I,I)+DELTA
CALL P13DMATINV(P3,TEMP,NP,DET)
RETURN
END

131

S sk sk ok sk ok e sie e e i e e sk sk e ok ok sk sk sk sk sk ok ok skok sk s Sk e sk ok sk sk e sk ok s ool st sfe sk ok ok ok sheoke ok ok e sk e SR sk sk ok sk ok ook sk s ok ok s skeskeske

Y
* Subroutine P29PARAEST for the matrix operation *
* *
* THETA := THETA + GL = (¥ - C X) *
* ES

et ode ool o otk ok kbt sl st of sk ol skt ks ke o8 s R o8 TSl ok R ek sk ok e o o s ool sk ok ool g o ko o R SRR sk
SUBROUTINE P2SPARAEST(THETA,GL,Y,CEST,XEST,NU,NX,NY,NP)
DOUBLE PRECISION THETA(10),CEST(10,10),6L(10,10)
DOUBLE PRECISION Y(10),XEST(10),RES(10)

CALL P20VECTORRESIDUE(XEST,CEST,Y,RES,NX,NY)
CALL PO2MATVEC(GL,RES,RES, NP, NY)

CALL PO4VECADD(THETA,THETA,RES,NP)

RETURN

END

e s s o ok e e e et e ok o ook skl skl gk R Bk ok s skl s o ok g skl sk sl ok sk sk e sk sk sk ok ok sk st sk o sk ok sk ok o ok Sk sk ok

£ *
* Subroutine P30STATEEST for the matrix operation *
* *
* X :=A*X+B=*U+G=*(Y-CX) g
k 3

S s sk i sk ol ek s sk sk SRl st sk kot o8 o o ook sk K ok sk ks o sk ks Rttt ok sl s e ok
SUBROUTINE P30OSTATEEST(AEST,BEST,XEST,U,GK,Y,CEST,NU,NX,NY, NP)
DOUBLE PRECISION AEST(10,10) ,BEST(10,10),CEST(10,10),GK(10,10)
DOUBLE PRECISION U(10),Y(10) ,XEST(10),RES(10)

CALL P20VECTORRESIDUE(XEST,CEST,Y,RES,NX,NY)

CALL PO2MATVEC(GK,RES,RES,NX,NY)

CALL P11STATETIMEUPDATE (AEST,XEST,BEST,U,RES,NX,NU)
RETURN

END

o o sk K

¥ ¥ ¥ ¥ ¥ % ¥ ¥

EE T

101

102

ke s o ok sk sk ok ke sk sk ook skt ok ok o sk ke sk s ok sk ok ok ke sk 3K 8 K o st s s sk ok o sk o sk sk sk ok e sk sk sk ok s sk e sk sk ke e ok sk o Kok

Subroutine P31COMPKAPPA for the matrix operation *
b

PAY := (defintion see Chapter 2.5) "
RHO := (defintion see Chapter 2.5) *
KAPPA := (defintion see Chapter 2.5) *
P3

*

R T R T S L LT

SUBROUTINE P31COMPKAPPA(NU,NX,NY,NP,AEST,P1,KAPPA,S,SINV,GK,DAEST,
&DCEST,CEST,RHO, AT, CT, GKT,DCT,DAT, LCOUNT, K)

DOUBLE PRECISION AEST(10,10),P1(10,10),PAY(10,10) ,KAPPA(10,10)
DOUBLE PRECISION S(10,10),GK(10,10),RH0O(10,10),GKT(10,10)

DOUBLE PRECISION TEMP(10,10),AT(10,10),DAT(10,10),DAEST(10,10)
DOUBLE PRECISION TEMP1(10,10) ,KAPT(10,10),CT(10,10),DCEST(10,10)
DOUBLE PRECISION CEST(10,10),DCT(10,10),SINV(10,10)

DOUBLE PRECISION PAYOLD(10,10),SUMSQ,HALFSUMSQ,PAYMULT(10,10,5)

IF((LCOUNT.EQ.1) .AND.(K.EQ.1)) THEN
DO 101 I=1,NP
D0 101 J=1,NX
DO 101 J1=1 NX
PAYMULT(J,J1,I)=0.0
IF(J.EQ.J1) PAYMULT(J,J,I)=1.0
.ELSE
DO 102 I=1,NX
DO 102 J=1,NX
PAY(I,J)=PAYMULT(I,J,X)
ENDIF

13=0

DO 100 LOOP=1,11

RHO

CALL P22MMATMUL (RHO,DCT,Pt,CT,NY,NX,NX,NX NX, NY,NY,NY)
CALL P22MMATMUL (TEMP,CEST,PAY,CT,NY,NX,NX NX, NX,NY,NY,NY)
CALL PO4MATADD (RHO,TEMP,RHO,NY,NY)

CALL P22MMATMUL(TEMP,CEST,P1,DCT,NY,NX,NX,NX,NX,NY,NY,NY)
CALL PO4MATADD (RHO, TEMP ,RHO,NY,NY)

KAPPA

CALL P22MMATMUL (KAPPA,DAEST,P1,CT,NX,NX,NX,NX,NX NY,NX,NY)
CALL P22MMATMUL(TEMP,AEST,PAY,CT,NX,NX, NX, NX,NX, NY,NX, NY)

136

CALL PO4MATADD (KAPPA,TEMP,KAPPA,NX,NY)
CALL P22MMATMUL (TEMP,AEST,P1,DCT,NX,NX,NX,NX,NX NY,NX,NY)
CALL PO4MATADD (KAPPA,TEMP,KAPPA,NX,NY)
CALL POSMATMUL (KAPPA,SINV,KAPPA,NX,NY,NY,NY,NX, NY)
CALL P22MMATMUL (TEMP,GK,RHO,SINV,NX,NY,NY,NY,NY,NY, NX, NY)
DO 2 I=1,NX
DO 2 J=1,NY
2 TEMP1(I,J)=-TEMP(I,J)
CALL PO4MATADD (KAPPA ,TEMP1,KAPPA,NX,NY)
CALL P15TRANSPOMATRIX(KAPPA,KAPT,NX,NY)

* PAY

CALL P22MMATMUL(TEMP1,KAPPA,S,GKT,NX,NY,NY,NY, NY,NX,NX,NX)
CALL P22MMATMUL (TEMP,GK,RHO, GKT ,NX,NY ,NY,NY NY,NX,NX, NX)
CALL PO4MATADD(TEMP1,TEMP,TEMP1, NX,NX)
CALL P22MMATMUL(TEMP,GK,S,KAPT,NX, NY,NY,NY, NY, NX,NX,NX)
CALL PO4MATADD(TEMP1,TEMP, TEMP1, NX,NX)
DO 1 I=1,NX
DO 1 J=1,NX
1 TEMP1(I,J)=-TEMP1(I,J)
CALL P22MMATMUL(PAY,AEST,PAY, AT, NX,NX,NX, NX,NX,NX,NX,NX)
CALL PO4MATADD(PAY,TEMP1,PAY,NX,KNX)
CALL P22MMATMUL(TEMP1,DAEST,P1,AT,NX,NX, NX, NX, NX, NX, NX,NX)
CALL PO4MATADD(PAY,TEMP1,PAY, NX, NX)
CALL P22MMATMUL(TEMP1,AEST,P1,DAT,NX,NX,NX, NX, NX,NX,NX,NX)
CALL PO4MATADD(PAY,TEMP1,PAY, NX, NX)
St sk s ok e s o b ok sl sk s s s sk sk sk ot sk sl ot st e s s sk s e sk e e st stk sk sk ok ok s kst skt kolol b oksk o stk etk ol ok sk ok
* CHECK LIMITS *
s ofe s o e ok e e stk sk o sk ok ok R ok g s ok ok s sl sk ok sk sl ol ol siok kR ok s et sk sk ok ok ok skok stk ok ok sk okeok
DO 111 I1=1,NX
DO 111 I2=1,NX
IF (DABS(PAY(I1,I2)) .GT. 200.)THEN
I13=1
ELSE
ENDIF
111 CONTINUE
DO 113 I1=1,NY
DO 113 I2=1,NY
IF (DABS(RHO(I1,I2)) .GT. 200.)THEN
13=1
ELSE
ENDIF
113 CONTINUE
DO 112 T1=1,NX
DD 112 I2=1,NY
IF(DABS(KAPPA(I1,I2)) .GT. 200.)THEN

137

112

1201

I3=1

ELSE

ENDIF
CONTINUE
IF(I3.EQ.1) THEN
DO 1201 I=1,NX
DO 1201 J=1,NY
KAPPA(I,J)=0.0
GOTO 100
ELSE
ENDIF

she she sk she ok sk sk st stk stk ok sk sk skok ok s ok sk ke ok sk sk s sk sk sk s sk sk ol st sk sfe sk sheske st sl s sk sk e sje sl sk ok o o ol sfe ool e e sl s sl sl sk ok sk e ke

%

CHECK FOR DIVERGENCE *

T o st s ok skeobe o ok sk st s e sk ok ok ok ok oS8k ke sk R o ok ok sk sk sk ok sk st sk sk o sk o sk ol s oh sk s o s sk SR K ok S sk e sk ok ok ok Kk KR o ok ek

104

1056
100

201

202

1000

DO 104 I=1,NX
DO 104 J=1,NY
SUMSQ=SUMSQ+ (PAYOLD (I, J)-PAY(I,J)) %2
IF (LOOP.EQ.6) HALFSUMSQ=SUMSQ
DO 105 I=1,NX
DO 105 J=1,NX
PAYOLD(I,J)=PAY(I,J)
CONTINUE
IF(I3.EQ.1)THEN
GOTO 1000
ELSE
ENDIF

IF SUMSQ IS TOO LARGE DO NOT UPDATE PAY AND SET KAPPA TO ZERO

IF (SUMSQ.GT.HALFSUMSQ#2.) THEN
DO 201 I=1,NX
DO 201 J=1,NY
KAPPA(I,J)=0.0
ELSE
DO 202 I=1,NX
DO 202 J=1,NX
PAYMULT(I,J,K)=PAY(I,J)
ENDIF

RETURN
END

138

S 3k sk sk o 2 e e s i ofe e ofe e o sk ke sk s sk e e e sk s ok sk e ofe s st sk sk ke ok ok ok sk sk e skt ek s ok sk ke ok sk ok sk e sk o sk ok ok o sk sk sk ok st sfe ke sk ok

* . ®
* Subroutine P32MMODIFY for the matrix operation #*
* ”
* i i i *
M := M+ KAPPA * (Y - C X) *
* i T -1 i -1 -1 i o*
#* EPS := 0.6 * ((Y-CX)S *RHO *S (Y -CX) +tr S =*RHO) *
+ (optional)

e sk sl sof sk oo s s ok SR s R OR SRR sk sfe sl g el sl gk ek el sk otk sk sk otk ol SRR RSk KRRt kR stk sk sk ok

SUBROUTINE P32MMODIFY(NU,NX,NY,NP,AEST,P1,XEST,S,S5INV,GK,Y M,
&THETA,CEST,EPS,LCOUNT)

DOUBLE PRECISION AEST(10,10),AT(10,10),P1(10,10) ,KAPPA(10,10)
DOUBLE PRECISION S(10,10),GK(10,10),GKT(10,10),RH0(10,10),EPS(10)
DOUBLE PRECISION TEMP(10,10),TEMP1(10,10),DAEST(10,10),M(10,10)
DOUBLE PRECISION DCEST(10,10),CEST(10,10),SINV(10,10),TEMP2(10)
DOUBLE PRECISION Y(10),RES(10),XEST(10),THETA(10) DUMMY

DOUBLE PRECISION CT(10,10),DAT(10,10),DCT(10,10)

CALL P20VECTORRESIDUE(XEST,CEST,Y,RES,NX, NY)
DO 100 K=1,NP
DO 3 I=1,NX
DO 3 J=1,NY
3 KAPPA(I,J)=0.0D00
CALL P15TRANSPOMATRIX(AEST,AT,NX,NX)
CALL P15TRANSPOMATRIX(CEST,CT,NY,NX)
CALL P15TRANSPOMATRIX(GK,GKT,NX,NY)
CALL UOG6CDERI(CEST,DCEST,CT,DCT,THETA,K,NU,NX,NY ,NP)
CALL UO7ADERI(AEST,DAEST,AT,DAT,THETA,K,NU,NX, NY,NP)
CALL P31COMPKAPPA(NU,NX,NY, NP,AEST,P1,KAPPA,S,SINV,GK,DAEST,
&DCEST, CEST,RHO,AT,CT,GKT,DCT,DAT,LCOUNT, X)
CALL PO2MATVEC(KAPPA,RES,TEMP2,NX, NY)
DO 1 I=1,NX
1 M(I,K)=M(I,K)+TEMP2(I)

COMPUTE EPS

CALL POSMATMUL(SINV,RHO,TEMP,NY,NY,NY, NY,NY, NY)
CALL P17MATTRACE(TEMP ,NY,KDUMMY)
CALL POSMATMUL(SINV,TEMP,TEMP1,NY,NY NY, NY,NY, NY)
CALL PO2MATVEC(TEMP1,RES,TEMP2,NY,NY)
DO 2 I=1,NY
2 DUMMY=DUMMY+RES(I) +TEMP2(I)

EPS(K)=5.0D-01+DUMMY

100 CONTINUE
RETURN
END

139

Sk 3k 3k sfe ok 3k sk sk sk sk ok ok sk sk sk sk sk st sk sk ske s sie sk sk sk skok sk sk ok sk i sie sk sk ok sk sk ook sk sk ke sk ok sk st sk sk ok st sk sk ke sk ok sk skesie sk sk sk sl ok ok sfe sfeoke

o *
* Subroutine P33COMP_XFIL for the matrix operation *
ES
& # *
* XFIL := XEST + GK [Y - C XEST] *
*
* # T T *
* GK := (P1 C+P2D)/ S
* ¥
* GK is a NXxNY dimensional matrix. #
*
ek s s sk sk ke ok Sk s sk sk g sk o ke s ot ot ot of f ook o SKHR stk skl sk ok sk ok sk ok o ok e sk Rk sk skl s skl ok sk SR gk s gt sk e sk

SUBROUTINE P33COMP_XFIL(XEST,XFIL,Y,CEST,P1,P2,D,SINV,NP,NU,NX,NY)
DOUBLE PRECISION GKSTAR(10,10),SINV(10,10),CEST(10,10),P2(10,10)
DOUBLE PRECISION D(10,10),TEMP(10,10),CT(10,10)

DOUBLE PRECISION DT(10,10),P1(10,10) ,XEST(10),XFIL(10),Y(10)

CALL P15TRANSPOMATRIX(CEST,CT,NY, NX)
CALL P15TRANSPOMATRIX(D,DT,NY, NP)
*

COMPUTE GK

CALL POSMATMUL (P1,CT,TEMP,NX,NX,NX,NY, NX, NY)

CALL P19OMATCOPY(TEMP,GKSTAR,NX, NY)

CALL POSMATMUL(P2,DT,TEMP,NX,NP,NP,NY,NX, NY)

CALL PO4MATADD (TEMP, TEMP, GKSTAR,NX ,NY)

CALL POSMATMUL (TEMP,SINV,GKSTAR,NX ,NY,NY,NY, NX,NY)

® COMPUTE FILTERED STATE ESTIMATE XFIL
CALL P20VECTORRESIDUE(XEST,CEST,Y,RES, NX,NY)
CALL PO2MATVEC(GKSTAR,RES,RES,NX,NY)
CALL PO4VECADD (XFIL,XEST,RES, NP)

RETURN
END

140

Program Package UTILITI

S o e 3K K e e sk sk sk ke ok sk sk sk ko sk ok okook ok sk sk sk sk ol sk st st she stk sk Sk KOk Stk e sk sk sl e skt s sk sk skook she sk sk s sk ok R s S oK ot sk e sie ke sk o e ok s

S sk ok o sk o s st ok s sk ok S st oo s stk of e sk ok ot s ok ook s ok sk ok sk s ok e s ok sk sk st sl st o 3k e s e R ok e sk sk sk o e e sk sk sk sk sfe s o ok

*

*®

*

30
20

100

Subroutine UOZINITIALIZE

to initialize

the true state vector X, the estimated

vectors XEST (state) and THETA (parameter) and the
covariance matrices P1 (state), P2, P3 (parameter).

Last Revision SEPTEMBER 27, 1987

SUBROUTINE UO2INITIALIZE(NX,NU,NY,X,XEST,THETA,P1,P2,P3)
DIMENSION P1(10,10),P2(10,10),P3(10,10)

DIMENSION X(10),XEST(10),THETA(10)

DOUBLE PRECISION P1,P2,P3,X,XEST,THETA

INITIALIZE REAL STATE

VECTOR X, ESTIMATED STATE VECTOR XEST,

PARAMETER VECTOR THETA AND COVARIANCE MATRICES P1, P2, P3

DO 20 I=1,10
DO 30 J=1,10
P1(1,J)=0.0
P2(1,3)=0.0
P3(1,J)=0.0
IF(I.EQ.J) THEN
P1(1,J3)=10.0
P3(I1,J)=0.08
ELSE
ENDIF
CONTINUE
CONTINUE
DO 100 I=1,10
X(1)=0.0
XEST(I)=0.0
THETA(I1)=0.0
CONTINUE
RETURN
END

141

"
B
*
4

*
&
*
*

sk ok e s s o Sk Sk e ok ofe ok sje sk ok sk o ool sk sk sk sk sk Stk e sk sk sk sk stk ok sk sk sk sk sk sk sic sk skook sk sk iz sk sk sk sk sk sk sk ok Sk sk sk sk sk skeske s ok ok sk sk sk kosk ok

%
* Subroutine UO3READNOISE #
to read in zero mean, Gaussian distributed noise vectors *
* v (process-n.), e (measurement-n.) and u (input). *
* *
* Last Revision AUGUST 20, 1987 =

st ot e 0 sk ok o oo kol o o o8 sk ok ok sk o ke e of s ik skl ok oo sk ol o s o ok skl st e sk ok ok v e sk o ok R SR SR R SR R s ok ke o ke s ok ok ok

SUBROUTINE UO3READNOISE(NX,NU,NY,V,E,U)
DIMENSION V(NX),E(NY),fU(NU)
DOUBLE PRECISION V,E,U

READ (11,#) (V(I),I=1,NX)
READ (22,=) (E(I),I=1,NY)
READ (33,x) (U(I),I=1,N0)

RETURN
END

142

Software Package DERIVAT

s s 8 S 8RR kSR R 8 S SR ke SR SR R s o ol R R SRSk sk sl sk ok sk 8 ok Sl ok ek
* *
* Subroutine UO4DDERI *
#* *
This subroutine generates the matrix D which is the *
derivative of the product CEST*XEST with respect to the *

* parameter vector THETA at the current estimate. *
¥

S ok s nd s s ke s ook el o e e e st e sde s el sl st s sk e e e ode o ol s ol e sl sk sl o oo ok ofe sk st sk s sk s s st o s sl sk sfe o skl sk s sk sk g

SUBROUTINE UQ4DDERI(D,CEST,THETA,XEST,NX,NY,NP)
DIMENSION D(10,10),CEST(NY,NX) , THETA(NP) ,XEST(NX)
DOUBLE PRECISION D,CEST,THETA, XEST

&
* WRITE HERE THE PROGRAM TO COMPUTE THE DERIVATIVE
OF THE VECTOR CEST+XEST WITH RESPECT TO THE
CURRENT PARAMETER ESTIMATE THETA.
*
RETURN
END

s e e e o sk ok ok ok b o 2 ok kK sk e sk sk g sk sk 3k sl ke sk st sk ok ot kol ok sk skl s ook sl sl s s ok s ok sk ks ok sk ok ok skok ook sk ok ok

B4 ¥
* Subroutine UOSMDERI *
® *
* This subroutine generates the matrix M which is the *
* derivative of AEST+XEST + BEST+U with respect to the *
¥ parameter vector THETA at the current estimate. *

*

ok unoie sl sk senpod b okosde tr g ot se e sk e e gl ofe ohe o she sk ke g s ok SR ok ofe sk s sk sk s o ot ok ok e st sde sfe o sk b o b ek ket ke sk ok R ok ok

SUBROUTINE UOSMDERI(M,AEST,BEST,THETA,XEST,U,NU,NX, NY, NP)
DIMENSION M(10,10) ,AEST(NX,NX) ,BEST(NX,NU),THETA(NP) ,XEST(NX)
DIMENSION U(NU)

DOUBLE PRECISION M,AEST,BEST,THETA,XEST,U

* WRITE HERE THE PROGRAM TO COMPUTE THE DERIVATIVE
OF THE VECTOR (AEST+XEST + BEST+U) WITH RESPECT
* TO THE CURRENT PARAMETER ESTIMATE THETA.
RETURN
END

143

s s st ofe 5 Sk ke s sk ok ok sk sk sk sk R St st s sk o o ok o st S ke ke e o sk 3 ook o ke o sk sk sk o ke sk sk ok s skt o e ke sk ok sk o ok ke ol e i ok stk ke ok e ek ko

4 *
* Subroutine UO6CDERI *
B #
* This subroutine generates the matrix DCEST (DCT) which is the =*
derivative of CEST (CT)with respect to the parameter THETA(k) *
i at the current estimate. #

ST skt o b sk ok R RSl sk R R s SRR SR kR R s stk sk ko R s s sk ok ok kR Rk
SUBROUTINE UO6CDERI(CEST DCEST,CT,DCT, THETA K, NU,NX,NY,NP)
DOUBLE PRECISION CEST(10,10) ,DCEST(10,10) ,THETA(10),CT(10,10)
DOUBLE PRECISION DCT(10,10)

* WRITE HERE THE PROGRAM TO COMPUTE THE DERIVATIVE
* OF THE MATRIX CEST WITH RESPECT TO THE XK-TH ENTRY
* OF THE CURRENT PARAMETER ESTIMATE THETA, AS WELL AS
*# THE DERIVATIVE OF THE TRANSPOSE OF CEST WITH RESPECT
TO THE K-TH ENTRY OF THE CURRENT PARAMETER ESTIMATE
* THETA, AS WELL AS
sk
RETURN
END
R B R R o KR R o R ok sk SRS R e sk el ek ok Rk R
* R
* Subroutine UO7ADERI *
e *
#* . This subroutine generates the matrix DAEST (DT) which is the *
* derivative of AEST (DAT) with respect to the parameter THETA(k) ¥
* at the current estimate. *
* ®
S R R R E R e R E PP E P TR T PR LR P L SR LR S L AL S L]
SUBROUTINE UO7ADERI(AEST,DAEST,AT,DAT,THETA,K,NU,NX,NY,NP)
DOUBLE PRECISION AEST(10,10),DAEST(10,10),THETA(10)
DOUBLE PRECISION AT(10,10),DAT(10,10)
WRITE HERE THE PROGRAM TO COMPUTE THE DERIVATIVE
* OF THE MATRIX AEST WITH RESPECT TO THE X-TH ENTRY
* OF THE CURRENT PARAMETER ESTIMATE THETA, AS WELL AS
* THE DERIVATIVE OF THE TRANSPOSE OF AEST WITH RESPECT
* TO THE K-TH ENTRY OF THE CURRENT PARAMETER ESTIMATE

* THETA, AS WELL AS

RETURN
END

144

ok ok o o ok ook oo sk ok Rk o ok o Sk Rk ok R ol oK SR s oK sk o ok ok sk ok e ok ok Sk ok ook ok kS e St St ok SR K s ook b ok Rk

B *
* Subroutine UOBUPDATE_ABC *
% *
* This subroutine updates the matrices A,B,C so that they match *

the new parameter vector THETA. *
4 Ed

steoteob ok sk s ok Reddr s et skt s ok sk ol e sk e ofe s sk s o sk i ke sl ke e ok e ok o s s sl e sk ik s s ok ol s o ok sde sdke sl sl ke st o e e ek ik
SUBROUTINE UOSUPDATE_ABC(AEST,BEST,CEST, THETA,NU,NX,NY,NP)
DOUBLE PRECISION CEST(10,10),AEST(10,10) ,THETA(10) ,BEST(10,10)

e

WRITE PROGRAM, THAT TRANSFERS NEW PARAMETER ESTIMATES
* INTO THE PARAMETER DEPENDENT MATRICES AEST, BEST AND
CEST.

RETURN
END

145

Appendix B

Program Listing RELS

e sk o s e s st sl e s o sk o sk ok sf i ol ok ok sk ot sk e s i sl ok sk s ok ok Sk sk sk skt e sk e skeoskosk sk ook sk sk e skok sk skt sk sk st sk ek sk

* *
* RECURSIVE EXTENDED LEAST-SQUARE ESTIMATOR *
Ed ¥

£ 3

* Last Revision FEBRUARY 24,1987

®

* (algorithm from "Nichtlineare und adaptive Regelungssysteme", *
* J. Boecker, I. Hartmann, Ch. Zwanzig, Springer-Verlag Berlin, *

1986, p.527) *
#* *
s B of s SR SR Sk SR ok oo R o S sk oo s R sk sk s R ok s ol Rt stk ok kol sk e sk ko ke o

DOUBLE PRECISION A(10,10),B(10,10),C(10,10) ,LAMDA
DOUBLE PRECISION X(10),P3(10,10),GL(10),THETA(10)
DOUBLE PRECISION PARA(10),U(10),V(10),E(10),Y(10)
DOUBLE PRECISION TEMPVEC(10), TEMPMAT(10,10),TEMP1,Y1
DOUBLE PRECISION TEMPMAT1(10,10),PHI(10),RESIDUAL,V1
INTEGER LCOUNT

OPEN CHANNELS

OPEN (UNIT=11,FILE=’[BJS8884.NOISE]N_SEQ12’,STATUS='0LD’)
OPEN (UNIT=22,FILE='[BJS8884 . NOISE]N_SEQ13’,STATUS='0LD’)
OPEN (UNIT=33,FILE=’[BJS8884.NOISE]CONSTO’,STATUS=’0LD’)
OPEN (UNIT=65,FILE='RELS10’,STATUS='NEW’)

* READ ALL DATA NECESSARY TO RUN THE PROGRAM

DATA A(1,1),A(1,2),4(2,1) ,A(2,2)/0.5,1.,-.9025, .95/
DATA B(1,1),B(2,1),C(1,1),€c(1,2)/0.,1.,1.,0./

146

" DATA NX,NU,NY,NP/1,1,1,4/
DATA X(1) ,X(2)/0.,0./ R
DATA THETA(1),THETA(2),THETA(3),THETA(4)/0.,0.,0.,0./
DATA PHI/O.,0.,0.,0.,0.,0./
DATA LAMDA,Y1/1.,0./
DO 100 I=1,NP
DO 100 J=1,6NP
IF(I1.EQ.J) THEN
P3(I,J1)=1000.
ELSE
P3(I,J)=0.
ENDIF
100 CONTINUE

* THIS IS THE BEGIN OF THE ACTUAL IDENTIFICATION LOOP

LO0P=512
DO 2000 LCOUNT=1,L0OP
c WRITE(*,+) LCOUNT
e s sk sk KoK s g e o sk s B s sl o ok Kook ok ok e ok o ok sk K s sk ok ok e ok o ok ofe s sk s sk g ofe ookt o ok ok ke oo s sl e kokok sk ok ok
* READ NOISE-SEQUENCES *
Sk of s v o sk ok sk s ol ol ok v s s o ok ok ok sk b ok o sk el e o ok ok ok o sl sk sk sk sl ok ok ok ok sk sk sl skt ol sk sl ook ok ok kR sk s ok ok sk skeodkesk sk
READ(11,%) E(1)
READ(22,:*) V(1)
READ(33,*) U(1)
c V(1)=V(1)=*1.
c E(1)=E(1)#1.
e oteole s sohe o ok e o b e s sk sk ko ke g g ke s ok e e e st o ok ok ofeofe st i st slR Stk s ok skl sk R Rk ook R St sk shsokerskek ook kokoR
COMPUTE TRUE STATE VECTOR AND TRUE OUTPUT *
ke s st ek koK ok sl e sl ok ool o sk Sk ol ook sk ke ok s st sfeofe b sk ook o ke i o st o st sk st stk B st stk ok ksl o kst etk o ol skeok ook
CALL P210UTPUT(Y,C,X,E,NY,NX)
CALL P11STATETIMEUPDATE(A,X,B,U,V, NX, NU)
sk sk ot s Rk ool sl kb ok sk ok ok s ke ol sl RO S R R S okl ki ok kel kokck steokokok
UPDATE VECTOR PHI *
S e ofe sk ot ofe ook SR o o SRR SR Sl SR S R o sl ok ok S b o R s SRR ok s sk SR e el sk i el okl R ootk s skt
PHI(7)=PHI(6)
PHI(6)=V1
PHI(5)=PHI(4)
PHI(4)=V1
PHI(3)=U(1)
PHI(2)=PHI(1)
PHI(1)=-Y1

1*******$***$*******$$***************************

B TR S R SR

COMPUTE GAIN GL *

oot s s s ok K ke ook o o S o SR e S s e o ok R ke S e i sk o o ks S e sk SRR R o S sk st sk ok sl koksk sk sk sttoeok Rk Rk okok

147

CALL PO2MATVEC(P3,PHI,TEMPVEC,NP,6NP)
CALL PO8(PHI,TEMPVEC,LAMDA,TEMP1,6NP)
DO 110 I=1,NP

110 GL(I)=TEMPVEC(I)/TEMP1

st s st S s s s ok st ke ke o3 sk s e ok ot ke ool s e sl shof b ol sk ok ok e o ek bk ok o s sk ke sl ok sk skl o o o SR sk ok ok o ok ok o st ok

* COMPUTE UPDATED PARAMETER VECTOR THETA *
e ste ok s s 3 o e cdeode ot sjesie s st o shode o ok e e e ke ook ok bt ok ol e s st o ok e sk ke ok ke s ek e ok st ok e ok ke s sl e ok sl ok ok sk R ok el sk

CALL P10SCALARRESIDUE(PHI,THETA,Y(1) RESIDUAL,NP)
DO 120 I=1,NP
120 THETA(I)=THETA(I)+GL(I)*RESIDUAL
C WRITE(44,40) RESIDUAL
CALL P10SCALARRESIDUE(PHI,THETA,Y(1),V1i,NP)
S st s o stk Stk S s s Rl s R SRR R SR KR R R R OF Rk bk st kS bR o sk sk e ks sk ok sk s ok
* UPDATE P3 *
S s oS s SR S ok ok sk R SRk Tk ok ko K K R s R ok sk s ek o stk sk ok sk ok sk Sk ok
DO 130 I=1,NP
DO 130 J=1,NP
130 TEMPMAT(I, J)=PHI(I)*PHI(J)
CALL P22MMATMUL (TEMPMAT1,P3, TEMPMAT,P3,NP,NP,NP NP, NP,
& NP,NP,NP)
DO 140 I=1,NP
DO 140 J=1,NP
140 P3(1,J)=(P3(I,J)-TEMPMAT1(I,J)/TEMP1)/LAMDA

IF(LCOUNT.EQ.512) WRITE(*,51) (THETA(I), I=1,NP)
c WRITE(55,50) (THETA(I), I=1,5)

WRITE(*,50) (THETA(I), I=1,NP)

Yi=Y(1)

2000 CONTINUE

CLOSE(55)
CLOSE(45)
CLOSE(44)
CLOSE(33)
CLOSE(22)
CLOSE(11)
STOP

30 FORMAT(F9.5)

50 FORMAT(5F6.2)

51 FORMAT(7F6.2)
END

148

Appendix C

Program Listing Noise (Generator

Q

Q

100

10

RANDOM NUMBER GENERATOR

INTEGER+4 SEED

OPEN (UNIT=11,FILE='[BJS8884 . NOISE]NOISE',STATUS='NEW’)

SEED = 824064364

SIG =1.0

WRITE(*,+*) ’ HOW MANY NUMBERS ?

READ(*,%) N

DO 100 I = 1,N
RANDNUM = GAUSSN(SIG,SEED)
WRITE(11,*)RANDNUM

END

REAL FUNCTION GAUSSN(SIG,SEED)
FOR GOOD RESULTS USE INITIL SEED = 824064364

INTEGER=*4 SEED
GNOIZ=0.
DO 10 I=1,12
GNOIZ = GNOIZ + URAND(SEED)
CONTINUE
GAUSSN=SIG+(GNOIZ-6.0)
RETURN
END

REAL FUNCTION URAND(SEED)

INTEGER*4 B2E15,B2E16,MODLUS,HIGH15,HIGH31,LOW15,LOWPRD,
& MULT1,MULT2,0VFLOW, SEED

DATA MULT1,MULT2/24112,26143/

DATA B2E15,B2E16,MODLUS/32768,65536,2147483647/

149

HIGH156 = SEED/B2E16

LOWPRD = (SEED - HIGH15%B2E16)+MULT1
LOW15 = LOWPRD/B2E16

HIGH31 = HIGH15+MULT1 + LOW15

OVFLOW = HIGH31/B2E15

SEED = (((LOWPRD - LOW15%B2E16) - MODLUS) +
& (HIGH31 - OVFLOW+B2E15)+B2E16) + QVFLOW
IF (SEED.LT.O) SEED = SEED + MODLUS

HIGH15 = SEED/B2E16

LOWPRD = (SEED - HIGH15*B2E16)*MULT2
LOW15 = LOWPRD/B2E16

HIGH31 = HIGH15+MULT2 + LOW15

OVFLOW = HIGH31/B2E15

SEED = (((LOWPRD - LOW15*B2E16) - MODLUS) +
& (HIGH31 - OVFLOW+B2E15)#B2E16) + OVFLOW
IF (SEED.LT.O0) SEED = SEED + MODLUS

URAND = FLOAT(2+(SEED/2566) + 1)/16777216.0

RETURN
END

150

Appendix D

Properties of the Expected Value
Operator E

Let: E{-} Expected value operator
« Random variable (unknown)
f# Random variable (unknown)
¢ Deterministic variable (known)

The properties of E {-} are:

P E{ca} cli{a}
P2 K{a+ p} - Ela}+ E{p}
P 3: E{aB} - Ela} E{8} il o, are independent

Note: In the cases, where the argument of E {-} is a vector or a matrix, the rules
given ahove apply to cach entry of that vector or matrix.

Appendix E

Proof of the Matrix Inversion
Lemma

Let.:

)
k

Qr
M,
cf
D

Rr=xns a positive definite matrix
R ™ 5 positive definite matrix
Rre=sm Q!

Enzxny

anxnz P»l -+ MC

aTM T

™

The identity to be proven is:

(P'+MC) = P-PM(I+CPM)'CP (E.1)
Proof:
D'P'+ D'MC (E.2)
P - D'+D'MCP (E.3)
P-D' - pD'MCP (£.4)

Post maltiplying equation (E.3) with M gives:

PM - DM +D'MCPM

= D'M(I+CPM) (E.5)
DM = PM(1+cCPM)” (E.6)
p'McP - PM(I+CPM)'CP (E.7)
Substituting (E.4) into (E.7) yields:
P-D' - PM(I+CPM)'CP (E.8)
D' - P-PM(I+CPM)'CP (E.9)

152

Replacing D by P"' 4+ MC and M by CTQ! yields the desired result:

-1

(Pr+cT@) - P-PCTQ(1+CPCTQTY) Cp
P PCT[(1+cpPcTQ)] cp
= P-pPcT(QicrcT) cp (E.10)

Q.E.D.

153

Bibliography

|1] Alexander, S. T. “Fast Adaptive Filters: A Geometrical Approach”, IEEE
Transaction on Acous., Speech and Sig. Processing, vol. ASSP-34, October,
1986. pp. 18-28.

|2] Anderson, B. D. O. and Moore J.B. Optimal Filtering, Englewood Cliffs:
Prentice-Hall., 1979

[3] Astrom, Karl J. Introduction to Stochastic Control Theory, New York: Aca-
demic Press, 1970

|4] Astrém, Karl J. and Eykhoff, P. “System Identification - a Survey”, Automat-
tea, vol. 7, 1971. pp. 123-167.

5

Athans, Michael “Role and Use of the Stochastic Linear Quadratic Gaussian
Problem in Control System Des zn”, IEEE Transactions on Automatic Control,
vol. AC-16, December, 1971. p . 529- 552.

|6] Bierman, Gerald J. Factorization Methods for Discrete Sequential Estimation,
New York: Academic Press, 1977

[7) Brammer, Karl and Siffling Gerhard Kalman-Bucy-Filter, Miinchen: R.Olden-
burg Verlag., 1985

|8] Bécker, J., Hartmann, 1. and Zwanzig, Ch. Nichtlineare und adaptive Rege-
lungssysteme, Berlin: Springer Verlag., 1986

[9] Daum, Frederick E. “Exact Finite Dimensional Filters”, IEEE Transactions on
Automatic Control, vol. AC-31, July, 1986. pp. 616-622.

{10} .“New Exact Nonlinear Filters”, submitted for publication in 1988

|11] Farison, James B., Graham, Richard E. and Shelton, Roy C. “ldentification
and Control of Linear Discrete Systems”, IEEE Transactions on Automalic
Control, vol. AC-14, August, 1969. pp. 438-442.

[12] OFlynn, Michael Probability, Random Variables and Random Processes, New
York: Harper & Row, 1982

|13] Frank, P.M.“Erhdhung der Robustheit und Zuverlissigkeit automatischer Pro-
zesse”, Automatisierungstechnische Prazis, 27.Jahrgang, Heft 2, 1985. pp. 64-
71.

[14] Gelb, Arthur Applied Optimal Estimation, Massachusetts: M.LT. Press, 1974

|15] Goodwin, Graham C. and Payne, Robert L. Dynamic System Idenlification:
Ezperiment Design and Dala Analysis, New York: Academic Press, 1977

154

16]
17]
18]

19]

|20]
|21]
22|

23]
24|

25|

26|

[27]

30)
31]

32

33)

Maybeck, Peter S. Stochastic Models, Estimation and Control Volume 3, New
York: Academic Press, 1982

Maybeck, Peter S. Stochastic Models, Estimation and Control Volume 3, New
York: Academic Press, 1982

Maybeck, Peter S. Stochastic Models, Estimation and Control Volume 3, New
York: Academic Press, 1982

Grimble, M. J. and Johnson, M. A. “Recent Trends in Linear Optimal
Quadratic Multivariable System Design”, /I'E' Proceedings Part D, vol. 134,
January, 1987. pp. 53 -71.

o “Implicit and Explicit LQG Self-tuning Controllers”, Automatica,
vol. 20, 1984. pp. 661 669.

— —.“LQG Design of Discrete Systems Using a Dual Criterion”, IEE
Proceedings Part D, vol. 132, 1985. pp. 61-68.

Hoel, Paul G. Introduction to Mathematical Statistics, New York: John Wiley
& Sons, 1984

Isermann, Roll Digital Control System, Berlin: Springer Verlag, 1981

. *“Fehlerdiagnose mit ProzeBmodelen”, Technisches Messen,
51. Jahrgang, Heft 10, 1984. pp. 345-355.

Jazwins ., A. H. Stochastic Processes and Filtering Theory, New York: Aca-
demic P -ss, 1971

Johansson, Rolf “Parametric Models of Linear Multivariable Systems for Adap-
tive Control”, IEEE Transactions on Automatic Control, vol. AC-32, April,
1987. pp. 303- 313.

Kalman R. E. “A New Approach to Linear Filtering and Prediction Problems”,
Transactions ASME, Series 1D, Journal of Basic Engineering, vol. 82, January,
1960. pp. 35-45.

Kalman R. E. and Bucy R. S. “New Results in Linear Filtering and Prediction
Theory”, Transactions ASME, Series D, Journal of Basic Engineering, vol. 83,
March, 1961. pp. 95-108.

Kroélikowski, A. “Model Structure Selection in Lincar System ldentification”,
Department of Electrical Engincering, Eindhoven University of Technology,
1982, EUT Report 82-FE-126

Lewis, Frank .. Optimal Estimation, New York: John Wiley & Sons, 1986

Ljung, Lennart “On Positive Real Transfer Function and ‘phe Convergence of
some Recursive Schemes”, IEEE Transactions on Automatic Control, vol. AC-
22, August, 1977. pp. 539-551.

. _.“Analysis of Recursive Stochastic Algorithms”, IEEE Transactions
on Automatic Control, vol. AC-22, August, 1977. pp. 551-575.

_______.“Asymptotic Behavior of the Extended Kalman Filter as a Param-
eter Estimator for Linear Systems”, IEEE Transactions on Automatic Control,
vol. AC-24, February, 1979. pp. 36-50.

155

[34]
35]
136]

137)
38]

39]
|40]
|41

[42]

—— .“Analysis of a General Recursive Prediction Error Identification
Algorithm”, Automatica, vol. 17, 1981. pp. 89-99.

. Theory and Practice of Recursive Identificalion, Cambridge: MIT
Press, 1987

——_.System Identification Theory For The User, Englewood Cliffs:
Prentice-Hall, 1987

e __.private communication

Mendel, Jerry M. Duiscrete Techniques of Parameler Estimation, New York and
Basel: Marcel Dekker Inc., 1973

Maybeck, Peter S. Stochastic Models, Estimation and Control Volume 1, Or-
lando: Academic Press, 1979

Maybeck, Peter S. Stochastic Models, Estimation and Control Volume 2, New
York: Academic Press, 1982

Maybeck, Peter S. Stochastic Models, Estimation and Control Volume 3, New
York: Academic Press, 1982

Nelson, Lawrence W. and Stear, Edwin “The Simultaneous On-Line Estimation
of Parameters and States in Linear Systems”, IEEE Transactions on Automalic
Control, vol. AC-21, February, 1976. pp. 94-98.

Papoulis, Athanasios Probability, Random Variables and Stochastic Processes,
New York: McGraw Hill, 1984

Rhodes, Ian B. “A Tutorial Introduction to Estimation and Filtering”, IEEE
Transactions on Automatic Control, vol. AC-16, December, 1971. pp. 688-706.

Saridis, G. M. Self-organizing Control of Stochastic Systems, New York: Marcel
Dekker Inc., 1977

Special Issue on LQG Analysis and Design, IEEFE Transactions on Automatic
Control, vol. AC-16, December, 1971.

Tse, Edison “On the Optimal Control of Stochastic Linear Systems”, IEEE
Transactions on Automatic Control, vol. AC-16, December, 1971. pp. 776- 785.

156

	Copyright Warning & Restrictions
	Personal Information Statement
	Title Page
	Approval Sheet
	Vita
	Abstract
	Dedication
	Acknowledgement
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Theoretical Developments
	Chapter 3: Implementation of the MEKF
	Chapter 4: Investigation and Development of Various Methods
	Chapter 5: Comparison of an improved MEKF with RELS Filter
	Appendix A: Program Listing MEKF
	Appendix B: Program Listing RELS
	Appendix C: Program Listing Noise Generator
	Appendix D: Properties of the Expected Value Operator E
	Appendix E: Proof of the Matrix Inversion
	Bibliography

	List of Tables
	List of Figures

