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ABSTRACT

Title of Thesis:	 A Modified Extended Kalman Filter
As A Parameter Estimator
For Linear Discrete-Time Systems

Bruno J. Schnekenburger Master of Science, 1988

Thesis directed by:	 Prof. Dr. Andrew U. Meyer

Asst. Prof. Dr. B. Tank Oranc

This thesis presents the derivation and implementation of a modified

Extended Kalman Filter used for joint state and parameter estimation of

linear discrete-time systems operating in a stochastic Gaussian environ-

ment. A novel derivation for the discrete-time Extended Kalman Filter is

also presented. In order to eliminate the main deficiencies of the Extended

Kalman Filter, which are divergence and biasedness of its estimates, the

filter algorithm has been modified. The primary modifications are due to

Ujung, who stated global convergence properties for the modified Extended

Kalman Filter, when used as a parameter estimator for linear systems.

Implementation of this filter is further complicated by the need to ini-

tialize the parameter estimate error covariance inappropriately small, to

assure filter stability. In effect, due to this inadequate initialization process

the parameter estimates fail to converge. Several heuristic methods have

been developed to remove the effects of the inadequate initial parameter

estimate covariance matrix on the filter's convergence properties.

Performance of the improved modified Extended Kalman Filter is com-

pared with the Recursive Extended Least Squares parameter estimation

scheme.
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Chapter 1

Introduction

1.1 Motivation and Objectives

The application of modern control techniques to the control of today's industrial

processes is gaining increasing importance. In order for the process control to be safe

and economic, the process needs to he fully known. Mathematical process models

allow the estimation of unmeasurable variables and process parameters. Many of

these modern techniques are computationally costly. However, recent advances in

hardware and software have made impressive computing power available at low cost,

and thus opened up new fields of potential applications.

A wide spread and well known method to estimate and monitor the parameter

process parameters, is the Extended Kalman Filter. It simultaneously estimates

the state and the parameters of the system it is applied to. The Extended Kalman

Filter, related to the well-known Kalman Filter, is an approximate filter, based on

local linearization of the state equations. Though easy to implement, the Extended

Kalman Filter tends to diverge, or gives biased estimates. Lennart Ljung disclosed

in 1331 the causes of biasedness and divergence, using his own method to analyse the

asymptotic properties of recursive estimation algorithms. Ljung suggests a modi-

fication to the Extended Kalman Filter that converts the algorithm to a globally

convergent filter 1331.

In this thesis an improved modified Extended Kalman Filter is implemented,
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based on Ljung's recommendations. Numerous Monte Carlo simulations show the

performance of this filter and the algorithms as developed by the author. To pro-

vide the reader with sufficient theoretical background, detailed derivations of both,

the discrete-time Kalman Filter and the discrete-time Extended Kalman Filter are

given.

1.2 Synopsis

Chapter 2 provides the necessary theoretical background, to provide a basis for the

material of the later chapters. This includes derivations of the discrete-time Kalman

Filter and of the discrete-time Extended Kalman Filter. Chapter 2 closes with the

presentation of a modified Extended Kalman Filter.

Chapter 3 describes the different aspects associated with the implementation of

the Modified Extended Kalman Filter, which are mainly the filter software and the

filter initialization. Detailed information about the noise sequences used for testing

the filters are also given, because properties of the noise is a very crucial part in

system simulations.

In Chapter 4 several different methods intended to improve the rate of conver-

gence in the Modified Extended Kalman Filter are introduced. Most presentations

of these techniques are supplemented with reports on test outcomes of Monte Carlo

simulations, to show their effectiveness.

How the Modified Extended Kalman Filter performs relative to another popular

parameter estimator, namely the Recursive Extended Least Squares method, is

examined in Chapter 5.

A summary of the thesis, along with concluding remarks and recommendations

for future work on this subject, are given in Chapter 6.

The program listings and material furnishing mathematical background, are

contained in the Appendices A-E.
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Kalman gain matrix for updating the state vector (two phase

algorithm)

Kalman gain matrix for updating the state vector (single phase

algorithm)

Kalman gain matrix for updating the parameter vector

Nonlinear system matrix

Nonlinear measurement matrix
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Transpose of matrix M

Inverse of matrix M

Determinant of matrix M
Trace of matrix M

L2-Norm (length) of vector x

Denotes i-th element of vector x

Denotes i-th column of matrix M

Identity matrix

Zero vector

Identical (true for all k 	 14) )
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1.4 Acronyms and Abbreviations

ARMAX Auto Regressive Moving Average eXogenous

EKF 	 Extended Kalman Filter

HOT 	 Higher order terms (in Taylor series expansion)

KF 	 Kalman Filter

MEK F 	 Modified Extended Kalman Filter

MIMO 	 Multiple Input Multiple Output

MV 	 Minimum variance
pd 	 positive definite
pdf 	 probability density function

RELS 	 Recursive Extended Least Square

RPE 	 Recursive Prediction Error



Chapter 2

Theoretical Developments

2.1 Introduction

As mentioned in the introductory chapter, the objective of this thesis is the imple-

mentation of a modified Extended Kalman Filter used for parameter estimation.

This chapter is aimed to provide the reader with the theoretical background on

modern filter theory necessary to fully grasp the material contained in the subse-

quent chapters. It is assumed however, that the reader is already familiar with such

topics as matrix theory, state space techniques, probability theory and stochastic

processes.

The discrete-time' Kalman Filter (KF) is derived first, because the two other

filters, the Extended Kalman  Filter (EKF) and a modified Extended Kalman Filter

(MEKF) introduced subsequently are mere variations of the KF. In Section 2.3 it is

shown, how Kalman Filter theory can, through linearization, be applied to nonlinear

filtering problems and how this leads to the EKF algorithm. In Section 2.4 it is

discussed that parameter estimation is, even for linear systems, a nonlinear filtering

problem. How the EKF can be utilized to attack this problem, is also shown in

Section 2.4. In practical applications the EKF tends to diverge or gives biased

estimates. A modified EKF algorithm (modification due to Ljung [331) with general

Only filters, systems and models that are of discrete-time nature are treated here. The motiva-
tion for exclusion of continuous-time cases comes from the fact that in practical situations digital
computers are used to observe and control systems.
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convergence properties is introduced in Section 2.5.

2.2 The Discrete-Time Kalman Filter

In 1960, R.. E. Kalman 1271 derived a linear, optimal estimator for the estimation of

state variables of linear, time-varying systems, operating in a Gaussian stochastic

environment. Optimal estimator here is referred to a computational algorithm that

processes measurements to deduce a minimum error covariance of the state of a

system combining all the information available, i.e.:

• knowledge of system and measurement dynamics

• assumed statistics of system noise and measurement errors

• initial condition information

Kalman Filter theory includes - contrary to the classical techniques — non-

stationary cases. A Kalman Filter (KF) is, under the Gaussian assumption, optimal,

i.e. better than any other filter, and is for all non-Gaussian cases the best linear es-

timator. Kalman Filters have simple recursive 2 structures that can be implemented

easily using digital computers.

There are many different ways to derive the KF algorithm. Kalrnan's origi-

nal derivation of the discrete-time Kr [27] is based on the orthogonal projection

method'. Another way to deduce the KF algorithm is to first assume the estimator

to be linear and then to optimize it, by minimizing the length of the estimation error

vector. These and other derivations of the KF can e.g. be found in (21, 125], 123],

or (39]. The basis for the derivation given in this work are Bayes' techniques,

- Recursive filters do not require the storage of past measurements, yet. the present estimates are
based on all data up to the present. time.

'Kalman and Bucy derived in 1960/61 the continuous-time countertype to the KFI281, in the
literature known as Kalman-Bucy-Filter or just KF.

'See 111 and (25J for further informations about orthogonal projection.
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as described in 139r. Bayes' techniques will be used to propagate the conditional

probability density function (pdf) of the state from one time instant to another.

Before going into the mathematical details of the derivation some thought will

be given to what the Kalman Filter is about. In order to monitor a process, apply

proper control signal or detect errors, the state of a system has to be known. An

estimator is needed, wherever the states of a system are not directly accessible, but

merely some noise corrupted measurements are available. It will be shown later

that the state vector is Gaussian distributed at all discrete time instances, provided

that system noise, measurement noise and intial state vector are Gaussian. Kalman

Filter theory combines all the information available, to deduce the optimal estimate.

The term optimal is used, because there is no other filter algorithm that results,

on an average, in a smaller estimation error. The Kalman filter also computes an

error covariance matrix for each estimate. This is as important as producing the

estimate itself, because the state estimate is of little value if it is not known, how

certain one can be about it.

To get a notion of how the KF operates, think of a simple example with only one

state variable. Suppose, an estimate of this state variable and its associated variance

are given at a certain time instant, say k. From this and the information about

the system dynamics, the KF predicts (estimates) what the state will be at time

k I. This estimate is less certain (the covariance is larger) than the previous one,

because of the process noise present, that drives the system state randomly. At each

step in time, noise corrupted measurements become available. These measurements

are utilized by the KF, to improve the quality of the state estimate, i.e. decrease

the variance. If the measurement noise is large, the KF gives little weight to the

measurement data, and modifies the estimate only a little; if the measurement

noise is small, the new estimate is determined largely by the measurement data. In

'The derivation given in 1391 served as one of the prime sources for the one presented here.

8



any case, whether the measurement noise is small or large, the measurement data

contain some new information, that leads to a smaller variance, i.e. a state estimate,

with greater certainty.

2.2.1 Problem Statement

Assume that a physical system') that generates the set of measurement vectors

only zk is known. Scalars shall be included as special cases, so notation-wise no

distinction will be made between vectors and scalars. The symbol {X k } stands

that the model (2.1), (2.2) is without a deterministic input. This does not make

the derivation less general, because a known input shifts the mean of the state

vector, but has no effect on the shape of its distribution. The derivation is carried

The underlying physical system can be of continuous-time type. A proper discretization as
described in 1251 or 12i will produce an equivalent discrete-time model.

9



out with this simpler system, solely to keep the equations involved more compact

and easier to survey. Following the Kalman Filter derivation for systems without

known inputs, it will be shown that the developed estimation algorithm can easily

be modified to admit systems with deterministic inputs.

The filtering problem associated with the system described by equations (2.1)

and (2.2) is to generate an optimal' estimate :± k for the state vector x k at all

time instants k utilizing the set of measurements Zk. Without making certain

assumptions about the initial state x() and the noise processes involved, very little

can be done to produce this optimal estimate.

The following assumptions are made:

The initial state x () is assumed to be a Gaussian random vector. It thus suffices to

Remark: Po is merely required to be positive semidefinite instead of being positive

definite (pd). This permits the case where some of the initial states are known

precisely. Note also that the trace of P is related to the length of the error vector

x, as:

'What exactly is meant with optimal estimate will be explained at a. later point, in this section.
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where i i denotes the ith element of x and Hill stands for the length of vector

Further assumptions are that the noise processes {v k }, {e k } are white, Gaussian,

zero mean sequences with statistics:

Some of the assumptions given here, can be relaxed, and an optimal linear estimator

can still be derived to solve the estimation problem. However, the above problem

formulation is considered is general enough for the scope of this thesis.

The filtering problem is to find the optimal estimate xk|k for the state vector x k ,

where:

8 This type of estimate is known as maximum a. posteriori (MAP) estimate

11



2.2.2 Kalman Filter Derivation

For the system (2.1), (2.2) is assumed that at time k (k	 k()) the latest measurement

zk has been processed, i.e. the measurement-updated state estimate xxk|k is available.

Assume further that pxk|zk is Gaussian with conditional mean 5: xk|k and conditional

Thus, at time k, the statistic of the state vector x k is completely known. But

what is the value of this information at future time instances i (i	 k) ? It should

be intuitively clear, that for (i	 k) large, the density Pxklzk is of little value for

estimation of the current state x i . Therefore, the conditional probability density

function p needs to be propagated, to produce the statistics of the state x at any

time i > k. The problem to propagate pxk|zk to the next time instant k + 1, can be

broken up into two distinct phases:

12



the product of two Gaussian densities is also Gaussian, provided that the associated

'See e.g. 1431 for proof of this statement
II See e.g. 1121 or 1431 for an introduction in probability theory and stochastic processes

13



is:

In equation (2.19) E {V k Zk } is equal to zero because 71k, Zk are independent and

surements Zk. Also, define --- as in equation (2.5) — Pk|k as the conditional error



The two equations above (2.23) and (2.24) allow to rewrite (2.22), as:

The first two terms on the right hand side of equation (2.25) are zero, because v k is

This completes phase 1 of the derivation; the measurement-update problem is

treated next.

15



Substituting (2.29) and (2.30) into (2.28) gives:

give rise to the question on how Xk+1 I can be assumed to be known, whereas it was

stated earlier, that the system states are not directly accessible. The answer to

this question is, that the state vector Xk f I is assumed to be known only for some

intermediate steps , and that in the final filter algorithm xk+  I does not appear.

From equation (2.2) it, is known that the measurement vector zk +1 is given by:

13 The addition of a constant to a. random variable does not change the shape of its density function,
but merely shifts its mean by that constant.

16



this discussion put in equation form yields:

exactly described by:

17



Gaussian". By Bayes' rule:

measurements Zk - independent, normally distributed random vectors. Hence, the

"Notice the similarity to the evaluations made in section phase 1 on page 13.
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The Gaussian density is explicitly given by:

At this point, all densities on the right hand side of equation (2.31) are evaluated

It is possible to transform equation (2.42) into a quadratic standard form for Gaus-

sian densities, from which it can be concluded that, p 2 , + indeed is Gaussian.

Because this step is tedious and requires intensive use of algebra, it is left out

and just the resulting equation is given here. The interested reader is referred to

'Refer to eqn. (2.21)
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Maybeck ([39] page 213ff).

The equations derived so fare solve the estimation problem as given in section

Problem Statement and one could stop here. However, the K F algorithm in this form

is not the most efficient one. The reason for this is, that the equations above require

inversions of nx-by-nx16 matrices, whereas it is possible to transform the equations

(2.44) and (2.45) into equivalent representations that require only inversions of

ny-by-ny 17 matrices. This yields an algorithm that is computationally less costly,

because for most systems is the number of states larger than the number of outputs.

The Matrix Inversion Lemma" (eqn. 2.46) shall be used to convert (2.44) and (2.45)

into the desired forms:

I6nx is the number of states
17ny is the number of outputs

"See Appendix F for proof of this lemma

20



Substituting (2.44) into (2.46) immediately yields the proper expression for the

Next, (2.46) is substituted into (2.45), which gives: 19

Exploiting common terms in (2.47) and (2.49) to further simplify the algorithm

gives:

21



What has been shown so far, is how to propagate pE o z, from time instant k

to time instant k -F I and how to incorporate the new measurements, that become

will be Gaussian, which completes the proof.

The state estimate, generated by the derived algorithm, is optimal in many

ways. One criteria of optimallity, that is of special interest for the developments on

the EK 14', is the minimum variance (MV) criteria. It shall be shown that x is also

a minimum variance estimate.

Recall that the error covariance matrix is defined as:

where 71 is the minimum variance state estimate. As expressed by equation (2.6),

the square root of tracelP| equals the expected length of the error vector (x

Thus, minimizing the trace of P leads to an estimate, that is best in a mean square

sense. The problem is to identify this ri that minimizes tracelPI. Let J --- trace P|

and consider J as a function of	 As usual, the minimum of J is found by setting

the derivative of J , with respect to η , to zero (necessary condition).

Exchanging the order of integration and differentiation in equation (2.54) yields:

22



conditional mean, i.e. equals "±. Bence, the K state estimate is also the minimum

variance estimate'''. Note that for the MV estimate, no assumption about the

nature of the conditional probability density function p x|z were made; it is sufficient

to know its mean.

It should be pointed out, that the covariance matrix update equations (2.26) and

(2.47) do not depend on the actual measurements z i . Therefore, covariance matrix P

and Kalman gain matrix K can be computed prior to the actual application time.

The necessary on-line computations are, for finite-time processes, reducible to just

updating the state estimate.

2.2.3 KF for Systems with Deterministic Inputs

The KF algorithm derived above does not account for known inputs. Now it will

be shown that, only little changes in the algorithm are necessary to make the KF

applicable for the broad class of systems with known inputs.

The system that generates the set of measurement vectors Zk is adequately

described by the following state space equations:

where Bk is a nx-by-nu input distribution matrix and u k is the known input vector

23



of dimension nu. All assumptions about initial state, noise sequences etc. are as

before (see equations 2.3-2.13).

The difference between (2.1) and (2.56) is that in the latter equation a known

that this changes only the mean of the state vector x k+1 but not the shape of its

density function. So the covariance matrices associated with xk+ I are not affected.

Therefore, it is sufficient to consider only the estimate update equations here and

derive how they have to be changed to account for known inputs. The optimal

where xk+1 has been substituted by (2.56). The next question one has to ask is,

whether the measurement-update equation (2.51) needs to be changed.

where the right hand side is the updating vector by which i is corrected, when the

into equation (2.59) yields:

So clearly, a. deterministic input has no effect on the measurement update. The

24



Table 2.1: Summary of the 2 phase Kalman filter algorithm

KF algorithm is suited for system with deterministic input, if equation (2.20) is

replaced by equation (2.58).

2.2.4 Summary

To show the order, in which the individual equations of the derived KF algorithm

has to he computed, a summary of the algorithm is given in Table 2.1.

Phase 1 and phase 2 have to be executed recursively; with phase 1 the filter "jumps"

in time from time instant k to time instant, k	 1, where phase 2 is performed, as

soon as z k+1 I becomes available and so on.

There are situations, where it suffices to singly compute either the time-updated

cases, it is desirable to convert the 2 phase KF algorithm into a single phase algo-

rithm, because the latter one is computationally more efficient. Ljung choose for his

paper 1331 on the asymptotic behavior of the EKF, a filter algorithm that generates

only the time-updated estimates. So, in preparation of the evaluations about I33],

25



it is shown next how the derived KF algorithm can be converted into a single phase

and redefine the Kalman gain matrix K. k to be:

With (2.67) and (2.68) equation (2.66) can be rewritten:

To get a similar expression for the covariance matrix, substitute (2.65) and (2.63)

into equation (2.62) which yields:

26



For further reference, the complete single phase KF algorithm is summarized in

Table 2.2

Table 2.2: Summary of the single phase Kalman filter algorithm

One of the requirements for successful application of the KF as a state estimator

is that the system has to be known completely. In practical cases however, the

system is often not fully known from the very beginning of operation, or it is time-

varying in an unpredictable way, caused e.g. through wear of some parts. These

unknowns about the system can be included in the model as parameters, which can

be regarded as random variables with known a priori statistics. Assume there are

np such parameters combined into a vector 0. In general all system matrices are

dependent on 0. If A, B and C are otherwise time-invariant, one gets the following

model description:

The states of the system and these parameters are both not directly accessible.

Hence, an obvious thing to do, is to extend the state vector x by the parameter
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vector 0 to form an augmented state vector, denoted x'4 .

As before, the filtering problem is to estimate the (augmented) state vector. The

question that arises here is: Can one still use the KF to attack this filtering problem?

The state equation for the augmented system as given below, yields the answer to

this question.

From the equation (2.80) it is obvious that the system is not linear in xA (2:A can not

be factored out). Hence, the KF is not the proper tool to be applied for parameter

estimation, because it does not account for nonlinearities.

2.2.5 Conclusion

Two Kalman filter algorithms suitable for estimating the state of linear discrete-time

multiple-input/multiple-output systems have been derived.

The filters are not the most general ones possible, but sufficient for the needs in

this work. If necessary, the Kalman filter algorithms can be modified to include cases

where measurement and process noise are correlated, where the noise sequences are

non-zero mean (biased) or where some of the measurements are noise free. Kalman

filtering yields an state estimate, that is — based on the assumptions made —

satisfying many optimality criteria. In real applications the initial state and the
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initial error covariance matrix are generally not known. However, the algorithm

will still converge to its 'best' for some large (k 	 ko ).

It has been shown that the KF is not suited for parameter estimation, as this

is inherently a nonlinear filtering problem. An extension of the KF, known as the

Extended Kalman Filter (EMI') can be used instead. This filter is described in the

next section.

2.3 The Discrete-Time Extended Kalman Filter

The Kalman filter, introduced in the previous section is an optimal state estimator

for linear systems that are completely known. Real systems however, are often

nonlinear and/or there are some uncertainties about it. In case the system under

consideration belongs to this group, there are two ways to proceed:

• using nonlinear filter theory (which provides solutions only for some special

cases)

• linearize (approximate) the problem and then apply linear filter theory.

Extended Kalman filtering is based on the latter method. At each step, the state

equation has to be linearized, which is done by expanding it into a Taylor series,

evaluated about an state estimate and truncated after the linear term. Hence the

extended Kalman filter is an approximate filter, based on first order linearization.

Better approximations are achieved by including higher order terms in the ex-

pansion. Filters, based on this method, where in the Taylor series expansions the

quadratic terms are included, are referred to as 2nd Order Extended Kalman Filter.

Another method' to get better state estimates '± k is to repeatedly calculate x k , Kk

and Pk each time about the most recent estimate.

Good descriptions of the extended Kalman filter and the other methods men-

tioned here are e.g. given in 1141,125i and [40].

23 This method is known as Iterated Extended Kalman Filter.
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2.3.1 Problem Statement

Assume that the nonlinear time-invariant 24 system, from which the measured output

data are obtained, is adequately described by the following state space equations:

f (•) and h H are fully known. x k , zk,uk, ek and v k are random vectors of which only

zk and Uk are known. For this derivation, it is assumed that there is a deterministic

input signal present.' As in the case for the KF, some assumptions about initial

state and the noise sequences involved have to be made, such that extended Kalman

filtering becomes applicable.

A I.: Mean and covariance of the initial state vector x o are known

A 2: The two noise sequences { v k } and {e k } are white Gaussian, zero mean se-

quences with statistics:
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The filtering problem is to deduce estimates for the states of the system, utilizing

all the information available, which includes state space equations, noise statistics

and initial conditions. Because extended Kalman filtering is, as noted earlier, an

approximate method, the resulting state estimates are no longer optimal, but the

best one can get applying a linear estimator.

2.3.2 EKF Derivation

There are many different ways to derive the EKF algorithm. Here, the author

outlines two different approaches: the first one is less rigorous and primarily shows

how through linearization, the problem can be converted in an approximately linear

filtering problem. This linear problem can then be solved using the K F. In the

second approach it is shown how the three constraints:

l.) that the estimate has to be unbiased
2.) that the estimation variance is minimal
3.) that the estimator is linear

lead to an algorithm, that is similar to the K -1; algorithm.

First Approach:

31



this estimate. Recall from the Kalman filter derivation, that the optimal time-

distributed,	 I would riot, because f(.) is nonlinear in x. A practical thing to do,

is to expand f(x k ,u k ) in a Taylor series about a vector, say	 truncated after the

linear26" term. The quality|of this approximate method depends to a great extend

on how close, in a mean square sense, s is to the state vector X. But how can such

a vector ± be generated? All the information available about x is represented by

which is the best guess for x. So naturally, the Taylor series expansion of f(xk,uk)

is done about xk|k, which is (hopefully) so close to X k , that the truncation error is

small with respect to remaining terms. Therefore, 	 ilk can be computed as:

Neglecting the higher order terms (HOT) and assuming that the state estimate is

'This is motivated by the idea to apply linear estimation theory to this class of filtering problem.
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is interesting to note, that equation (2.98) is linear in The vector is random

and can under the given assumptions 28 — still assumed to be (approximately)

Gaussian distributed. Substituting (2.96) and (2.97) into equation (2.98) yields

another interesting relation:

The question that arises here is, whether applying the linearization method to the

measurement equation (2.83) will result in an equation that is of the same type as

(2.1), because then the problem could be solved with the KF. To get a linearized
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measurement equation, expand h(xk) into a Taylor series evaluated along the time-

updated state estimate "± k .
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system. The formal differences between the KF and the EKF are, that for the latter

filter algorithm, A and C are replaced by F and H, respectively. The algorithm for

the 2 phase Extended Kalman Filter is summarized in Table 2.3.

Table 2.3: Summary of the 2 phase Extended Kalman Filter algorithm

It is possible to convert the 2 phase EKF algorithm into a single phase EKF

algorithm. For the KF case, this transformation led to an equivalent algorithm,

i.e. the time-updated' covariances and state estimates of single phase and 2 phase

algorithm, are identical. This is not the case for the Extended Kalman Filter

algorithm. As the derivation above has shown, the nonlinear system matrix needs
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to be expanded in a Taylor series, in order to make a linear estimator applicable

The expansion is carried out around the most recent estimate, the measurement-

latest measurement zk . What can be concluded from this is that, the 2 phase EKF

algorithm should work better than the single phase algorithm, because the errors

made by neglecting the higher order terms in the Taylor series expansion of f (•) are

smaller. Because the procedure to convert, the 2 phase EKF algorithm into a single

phase algorithm is so similar to the one applied in the KF case, it is omitted here

A summary of the single phase EKF algorithm is given in Table 2.4.

Table 2.4: Summary of the single phase Extended Kalman Filter algorithm
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In this first approach, it is rather loosely shown, how the nonlinear system equa-

tions can be linearized and converted into a form, that, allows to formally apply the

Kalman filter structure. The EKF is more rigorously derived using the MV optimal-

ity criteria and other constraints. The derivation given below follows this methods.

Second Approach:

To gain better insight and deeper understanding of the EKF algorithm, another,

more rigorous filter derivation is given here. This derivation is achieved by forc-

ing the filter to have the same linear structure as the KF. In order to keep the

evaluations compact, references to the first, approach will he made, where possible.

The first step is to find the time-update equations for the error covariance matrix.

The state estimate time-update equation is derived in the previous section (cf. eqn.

2.95). The time-updated estimation covariance is by definition:

The last two terms in the equation above are zero, because the system noise vector

vk is independent. of error vector xk|k and measurement, set Z k and because {v k } is

a zero mean sequence. The second term in (2.120) is the system noise covariance

matrix Q vk (cf. Chapter 2.3.1). Finally, substituting the defining equation for the

measurement, updated covariance matrix PkIk
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into equation (2.120) yields:

The time-updating of the state estimate is now completed. The next step is to

take into account the new measurements, i.e. to obtain the measurement-update

equations for the state estimate I-. and the with x associated covariance matrix. Led

by the desire to retain a linear filter structure, the measurement updated estimate

where the vector ak+J and the matrix Kk are to be determined. Substituting (2.123)

and (2.83) into equation (2.97) yields:

Taking the expectations on both sides, yields:

Substituting equation (2.125) back into (2.119) gives:

It is impractical to compute the conditional mean of h(xk l 1), as given in (2.125),

because this requires the knowledge of the conditional probability density function

recent state estimate, does circumvent this obstacle. The series is truncated after

the linear term in order to preserve a linear filter structure. Omission of the higher
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order terms is justified by the assumption that, the state estimate is close (in a

mean square sense) to the system state x at any time instant k.

desired to he a minimum variance estimate. Recall from the previous section, that

a MV estimate is equal to the conditional mean no matter what the underlying dis-
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From the evaluations about minimum variance estimates (cf. Chapter 2.2.2) it is

known, that minimizing JkI yields the desired MV estimate. The minimum is

Exchanging the order of integration and differentiation in equation (2.134) yields:

The right hand side of (2.135) is in general zero, if the expression within the brackets

is zero. Therefore:
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So, the gain matrix that minimizes the variance of the state estimate ^4 +1 | k is given

by:

The measurement-update equation for the covariance matrix P is:

cancel out. The second term can also be expressed by:

Substituting these results back into (2.141) yields the covariance measurement-

update equation.

The second Extended Kalman Filter derivation is now complete. The algorithm

obtained via this approach, is identical with the one derived before. Summary of

the EKF algorithms for the 2 phase filter and for the single phase filter are given

in Table 2.3 and Table 2.4, respectively.

2.3.3 Conclusion

When comparing the EKF algorithm with the KF algorithm, one gets the impres-

sion, that the differences between them are insignificant. (Just replace A and B in
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the KF algorithm, by F and H to get to the EKF algorithm.) There are however,

substantial differences. The matrices F and H are random, because the Taylor

series is evaluated around the most recent state estimate, which itself depends on

the observed output data. Therefore, error covariance matrix P and Kalman gain

matrix K can non longer -- contrary to the KF — be precomputed, since they are

dependent on the actual measurements taken. Also, the data might be such, that

covariance P becomes singular, and appropriate heuristic methods might become

necessary, in order to keep P positive definite.

Note, that the EKF algorithm works only, if the errors made in truncating the

Taylor series, are indeed negligible. This will be the case, when good initial state

estimates are available, i.e. Po is small, and when the process noise is not too large,

such that all state estimates ± are close to the system state vector x. Any large Ilv k

can bring the algorithm out of the linear region' and probably cause the algorithm

to diverge. In any case, Monte Carlo simulations are essential to assure satisfactory

performance of the EKF in a particular application.

At the end of Chapter 2.2.4 it is discussed whether parameter estimation prob-

lems could be attacked using the KF. It is shown there, that parameter estimation

is a nonlinear filtering problem, so the Kalman filter is not the right choice. The

EKF, on the other hand, is suitable to treat such problems. In the next section

it is shown, how uncertain parameters of linear systems can be estimated by the

application of Extended Kalman Filter theory.

2.4 The Extended Kalman Filter as a Parameter
Estimator

Up till now, it was assumed, that state space equations that describe the observed

input/output data adequately, are available. In practical cases however, one often

'With linear region is meant the nx-dimensional region where the higher order terms in the series
expansions are much smaller than the linear term
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can only — by exploiting the physical laws governing the process — determine the

structure of the system, but not all its coefficients. Another problem one frequently

encounters in practice is, that the system under consideration is time-varying in an

unpredictable way, e.g. caused by aging, wear or changes in the environment. In any

case, where it is desired to apply optimal control inputs, to estimate the system state

or to detect errors in the system, a complete description is essential. It is natural to

model these unknown coefficients as parameters in the state space equations, and

then estimate the system states and the parameters simultaneously. It was shown

is Chapter 2.2.4 that this is a nonlinear filtering problem, for which the KF in not

applicable. The EKF, derived in the previous section, is suited for attacking this

problem. How this can be done, is shown next. Note, that the presentation of the

EKF algorithm given here, is taken from [33]; the only differences are that more

intermediate steps are shown here, and that the algorithm is corrected by a few

misprints that appeared in [33].

Consider a linear, time-invariant, discrete-time system, adequately described by:

The time-invariant matrices A, B and C is given the subscript "o" to indicate, that

they describe the input/output behavior of the system optimally, i.e. there is no

other set (A, B, C) that describes the measured data better.
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As in the case for the KF, the intial state is assumed to be Gaussian, zero-mean

random vector with covariance H. Further assumptions are that the noise processes

{vk}, {e k } are white, Gaussian, zero mean sequences with statistics:

Suppose, that the structure of the system is known, but the information about the

matrices A, B, C is incomplete, i.e. not all of their entries are completely known.

These uncertainties can be included in the model as parameters and --- just like

the states he regarded as random variables. Assume, there are np parameters,

combined into a parameter vector, say O. In general it has to be assumed, that all

of the system matrices are dependent on this parameter vector 0. So, the system

(2.144), (2.145) is adequately modelled by:

As stated earlier, an obvious thing to do, is to extend the state vector x by the



parameter vector 0 to form an augmented state vector xA .

Estimation of XA is a joint, parameter and state estimation problem. The system is

assumed to he time-invariant. Hence, the parameter vector is best modeled by:

Combining equations (2.153), (2.154), (2.155) and (2.156) allows to rewrite the

model state space equations in terms of xA:

With (2.159) and (2.160) the state equations for the augmented system (2.157),

(2.158) become:

From the above equations it is observed that estimation of the unknown parameter

vector 0 is a nonlinear filtering problem. A comparison of the above two equations,

along with the nonlinear state space equations (2.82) and (2.83) reveals, that the
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The structure of the matrices F and 11, as revealed by equations (2.167), (2.168)

suggests to rewrite the. EKF algorithm in a partitioned, computationally more ef-

ficient, form. To keep this step tractable and compact, a short form notation is

introduced next.
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The gain matrix Nk is naturally subdivided into:
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The last equation of the EKF algorithm to he partitioned, is the covariance matrix

update equation (2.166):

A summary of this partitioned EKF algorithm, is given in Table 2.5. The order

in which the computation of the individual equations needs to be done, corresponds

to their locations in Table 2.5. To start the algorithm, estimates for the state

vector and for the parameter vector as well as the with these estimates associated

covariances have to he available.
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Table 2.5: Summary of the partitioned single phase Extended Kalman Filter algo-
rithm as a parameter estimator
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2.5 A Modified Extended Kalman Filter

As stated in Chapter 2.3, the EKF algorithm (cf. Table 2.5) is likely to give biased

or divergent estimates. Lennart Ljung 131, 132J developed a general method to

analyse the asymptotic properties of recursive identification algorithms. The basis

for this method is to find a differential equation associated with the identification

algorithm, whose stability properties are related to the convergence properties of

the identification algorithm. In 133i Ljung applies this method specifically to the

EKF, which is being used as a parameter estimator. The article shows the causes

for divergence and biasedness of the EKF. Ljung also suggests in [33] a modifica-

tion to the EKF algorithm that improves the convergence behavior of parameter

estimator considerably. Because the theory behind Ljung's convergence analysis

is rather demanding and mathematically involved, it is not covered in this thesis.

The interested reader is referred to 1311, [32], 1331, [34] or 135]. This section merely

tries to give the reader some intuition on the suggested modification in the EKF

algorithm and shows how the algorithm needs to be changed.

Ljung's approach to analyze the EKF parameter estimation algorithm is to

keep the model parameter vector constant at, say 14 ., and then examine the process

zero, whereas the matrices P 1 , S and K approach there steady state values P 1 ,

and K given by the solutions of:
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"Thing interprets in 133} the EKF as an

...attempt to minimize the expected value of the squared residual asso-

ciated with model 0.

Ile seeks to minimize:

It is reasonable that, in order to achieve minimization of (2.195), the parameter

vector should he asymptotically adjusted in a negative gradient direction of V(0).

The negative gradient of V (d) is given by:

Carrying out the operations on the right hand side of equation (2.196) leads to an

updating scheme that, is almost identical to the one of the EKF algorithm, as given

in Table 2.5. The only differences are that the S- 1  term in (2.184) is replaced by an

M-matrix as given by (2.167). One might expect to obtain an EKF with improved

convergence properties, when the modifications just mentioned, are included in the

the equations (2.190 2.192). Define:
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compatible with M.

Substitute the equations (2.190 2.192) into (2.197 2.199), respectively, and let

P lk, Kk, 5"k, .9k and Ck be defined as in Table 2.5. Them

Equations (2.200), (2.201) and (2.202) are coupled matrix Riccati equations. They
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the estimates e converge with probability 1 to a minimum of (2.195). This assertion

holds only, if "... the algorithm is complemented with a projection facility to keep é

in a compact subset of

2.5.1 Conclusions

Ljung's convergence analysis 1331 shows the possible causes of divergence and bias

in the EKF algorithm. The reason for divergence can be traced down to the fact

that there is no coupling term between the Kalman gain and the parameter vector

0. With other words, a change in the parameter vector 0 has no direct effect

on the Kalman gain K, but the optimal Kalman gain does in general' depend

on 0. To overcome this problem, Ljung suggests a modification in the algorithm.

The modification assures that the parameter estimates will converge to a local

minimum of V (0) (see eqn. 2.195), provided that the algorithm is complemented

with a projection facility that guarantees e to stay within Ds . A disadvantage of

the MEKF is the high computationally load imposed by the requirement to solve

three coupled matrix Riccati equations (2.200--2.202) at each step in time. Further

problems associated with the MEKF are the questions, on how the algorithm can

be complemented with the required projection facility to keep e in Ds , and how the

set. Ds can be determined for any kind of state space model.

What can be concluded from the discussion above is, that the suggested mod-

ification is quite promising, but also that the MEKF, as given in I33), is not a

ready-to-apply filter algorithm and that some work is needed to implement this

modified Extended Kalman Filter. The author has made the step to implement

the MEKF. How this has been done, the difficulties and problems encountered, are

described in the next chapter.
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Chapter 3

Implementation of the MEKF

3.1 Introduction

The use of the EKF as a on-line parameter estimator for linear, discrete-time sys-

tems is well known and widely spread. Yet, the EKF algorithms has a major

disadvantage: the filter is likely to diverge or give biased estimates. Lennart Ljung

suggests in 1331 a modification in the EKF algorithm, that promises to improve the

convergence behavior of the filter considerably. Motivated by Ljung's results, the

author implemented this encouraging filter algorithm, in order to gain experience

with the modified EKF and to explore for applicability of this parameter estimator.

The algorithm is implemented in a FORTRAN software package, described in

the next section. Before the identification process can be started at time k0 , several

matrices and vectors need to he initialized. Flow this initial values should be chosen,

for the filter to perform satisfactory is described in Chapter 3.3. The input/output

data for the parameter estimator is generated by a simulated linear, discrete-time

system, randomly excited by process noise. The noise corrupted output signal of

the simulated system is fed into the MEKF. The developments in 1331 are based on

correct noise assumptions. Therefore, special care has been taken, to assure that the

noise sequences used for testing the filter were ideally white, normally distributed

sequences. Chapter 3.4 is devoted to this subject. Finally, in Chapter 3.5 of results

of performance tests of the MEKF on simple systems are presented.



3.2 The Algorithm

This section describes the computer programs for parameter estimation of linear,

discrete-time systems based on the MEKF algorithm (see Chapter 2.5). Before

going into the details of the more important routines, the main features of the

developed software shall be listed:

• All routines are strictly modular, i.e. they consist of small subroutines, to

enhance flexibility and simplify debugging.

• The routines are preceded by headers, that describe the function of the par-

ticular program.

• In order to improve readability, all subroutines are given self explanatory

names.

• The programs are written in FORTRAN 77.

• The software package is device independent, i.e. it does not use any other

packages, libraries' etc.

• A broad class of systems that range from scalar SISO systems, up to MIMO

systems with ten inputs and ten outputs, can be treated.

• To enhance numerical stability, all operations are executed in double precision.

For the performance tests reported in this thesis, the estimation programs were

installed an a VAX9900 computer. Most routines of the software developed do not

need any further description; they are simple and self explanatory. There are how-

ever three exceptions to this, that deserve special consideration. The first one is

the main program MEKF, and the second one is the subroutine P32MMODIFY

The main reasons for not, using other software packages were availability and the desire CO

m aintain device independency.
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which modifies the M* matrix, as suggested by Idling. To change the M* matrix,

(2.200)-(2.202) needs to be computed. This computationally most costly problem

is solved by P31COMPKAPPA; so this routine shall find special consideration here.

The main program MEKF

The program MEKF consists of two main parts. In the first part, the system

state vector, the estimated state vector, the estimated parameter vector, as well

as the covariances Pi, P2 and P3 are initialized. This is done by the subroutine

U02INIT1. Under normal operation, this part is executed only once, at the startup

of the estimation process. All other data, required to run the parameter estimation

routines, are contained in "data" lines in the preamble of the main program. To

set the program up for a different system, these "data" lines need to be changed

accordingly. The following information is needed:

- number of system states
- number of inputs
- number of outputs
- number of parameters
- entries of system matrices A, B and C
- entries of model matrices A(0), B(0) and A(0)

- entries of system noise covariance matrix Qv
- entries of measurement noise covariance matrix Q'

The second part of the main program produces the output data of the simulated

system, and simultaneously generates estimates for state vector and parameter vec-

tor. This part is executed recursively, till the program is terminated by a stopping

rule, which consists in the simplest case of a loop-counter to

maximum-number-of iterationscomparison.

Before the program MEKF can be applied to parameter estimation problem,

the user has to decide on a parameterization, which constitutes the interrelation

between the parameter dependent matrices A, B, C and the parameter vector 0.
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The following subroutines are dependent on the type of parameterization chosen

and therefore need to be changed, accordingly.

U04DDERI	 computes the matrix D, where D is defined be equa-
tion (2.168)

U05MDERI 	 computes the matrix M (not M*), where M is defined
be equation (2.168)

U06CDERI	 computes the derivative of matrix C with respect to the
ith parameter

U07ADERI	 computes the derivative of matrix A with respect to the
ith parameter

U08UPDATE ABC updates A(0), B(0), C(0) so that they correspond to
the new parameter estimate

After the utility routines above are recoded, to account for the parameterization

chosen, the program is prepared for joint state vector and parameter vector esti-

mation. The flow charts of the main program (see Figure 3.1 and Figure 3.2) show

that, due to modular programming, a simple structure is maintained.

The subroutine P32MMODIFY

The subroutine P32MMODIFY modifies the M matrix, as suggested by Ljung 133].

The "new" M-matrix M* is given by:
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Figure 3.1: Main Program MEKF Flowchart Part 1
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Figure 3.2: Main Program MEKF Flowchart, Part 2
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P32MMODIFY computes first the residual (zk - C(b k i k _ i Yi k i k _ i ) and then calls

the subroutine P31COMPKAPPA, which calculates icy. This second step has to be

executed separately for each entry in the parameter vector; P32MMODIFY sets the

parameter pointer appropriately. The ith column of the M matrix is changed, as

soon as a new K i becomes available. The subprogram P32MMODIFY is terminated

after all columns M* (2 ) (i 1, , np) have been computed.

The subroutine P31COMPKAPPA

The subroutine P31COMKAPPA generates the solutions of the three equations

(2.200)- (2.202). In the tests conducted by the author it was observed that it is in

general not sufficient to compute the three coupled matrix equations, as suggested

by Ljung, only once per step in time. If the difference between the previous and the

current parameter estimates is large,' the algorithm (2.200)-(2.202) takes approx-

imately ten 3 iterations to converge. Although the matrix is sufficiently close to

the term laK/dOi l after just one iteration, if the changes in the parameter estimates

are minute, the number of iterations_ per step in time is kept constant at eleven.

If the covariance matrix P1 is ill conditioned, i.e. the relations between the

eigenvalues of P3 are large, the algorithm (2.200)-(2.202) shows either very slow

convergence or even divergence. In these cases, the computed K i is of no value and

one wants to discard it, that is leave the corresponding ith column of the M matrix

unchanged. This is readily achieved by setting K i to zero, whenever divergence has

been detected. The question that arises here is, how divergence can be detected.

To discuss this, consider for simplicity that K i is scalar valued. When K i converges

uniformly to the optimum value aKiaoi, one simply has to check, whether the

increments (or decrements) of the iti sequence are descendent. Unfortunately,

however, the solutions of the matrix equations (2.200)-(2.202) do often not converge

2 T►is will usually be the case at the startup of the estimation process
This could be observed for the small scale estimation problems reported um this thesis, but this

rule of thumb might not hold for other problem classes.
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Figure 3.3: Uniform Convergence

Figure 3.4: Oscillatory Convergence

Figure 3.5: Oscillatory Divergence of ki
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uniformly (if they converge at all), but in form of a damped oscillation, as shown

in Figure 3.4. To differentiate between oscillatory convergence and divergence' a

more sophisticated convergence check is needed.

The program P31COMPKAPPA detects divergence by comparing sum of the

increments for the first six iterations HALFSUM, with the respective sum for all it-

erations. if the latter sum is larger than two times HALFSUM , P31COMPKAPPA

considers this as an occurrence of divergence and consequently sets lc' to zero,

so that the respective column in Al remains unchanged. To avoid numerical un-

der/overflow, the algorithm is complemented with a boundary check. The subpro-

gram P31COMKAPPA discards k i and terminates, whenever one of the entries in ki,

oi or H i is beyond certain limits. There is no guarantee that the implemented con-

vergence check leads to correct decision, in all cases. However, it worked sufficiently

well in the tests undertaken. For additional information about this subprogram, a

flow chart of P31COMKAPPA is given with Figure 3.6.

4 Note, that in both cases the increments, or decrements, are increasing for the first, few iterations.
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Figure 3.6: Subprogram P31COMPKAPPA Flowchart
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3.3 Filter Initialization

In the introduction to this chapter, it is stated that prior to the startup of the

identification process, several matrices and vectors need to be initialized. These are

specifically:

The question of how to initialize the filter, is quite different for practical cases, then

it is for testing the algorithm in a laboratory environment. If the filter is to be

applied to physical systems, one often knows a good deal about the initial system

state and parameter vector, e.g. such as the range a particular parameter can lay

in. So, if information of this type is available, or can be obtained, it should be used

and the covariances and the estimation vectors initialized, accordingly.

Ljung suggests in 1331 that for cases where no a priori information is available,

to choose the initial parameter estimate bo to be zero and the associated error

covariance matrix P30 to be 100. (variance of z). The author does not quite agree

to this rule of thumb, because whether a zero initial parameter estimate is a good

choice or not,, depends on the parameterization chosen. It might be that b o 0 is

not an element of the compact subset Ds (cf. Chapter 2.5), i.e. violates one of the

constraints of the MEKF. A better choice should he, to initialize the parameter

set 40 to their center of mass. This method produces an initial parameter estimate

which lies inside the subset Ds , provided that the topology of Ds is "sufficiently"
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Regarding Ljung's other suggestion, to initialize P3 with 100 • (variance of z),

the author does not know what the reasoning behind this rule is and why it should

be a "... good choice". However, for the performance tests of the MEKF conducted

by the author, it turned out to be an inadequate choice. The initial covariance P30

for which the filter worked best, was in magnitude about three powers of ten smaller

than the one advised.

The problematic nature of the filter initialization is quite different for applica-

tions of the MEKF to simulated systems — as used for this thesis — because one

actually has complete knowledge about system states, parameters and covariances

and it is thus possible to initialize the filter ideally. This, however, would not reflect

practical cases. So, the question is how much or little one should pretend to know.

The author did not assume any information about the system states. Hence, a

good choice for the initial state estimate is xo = O. The filter proved to be rather

insensitive towards the choice of the covariance matrix associated with initial state

estimate. Values in the range from 1 to 100 for the diagonal' entries of Pl o worked

best.

The choice of the initial parameter estimates is, as discussed above, dependent

on the selected parameterization. For the tests reported in this thesis, the parame-

terization is in general such that 0 = 0 is permissible. So, unless stated otherwise,

the initial parameter estimate is set, to zero.

Because both the parameter estimate arid the state estimate are chosen ran-

domly, there is no justification to assume the corresponding error vectors other

than uncorrelated. Therefore, the crosscovariance matrix P2 is initially set to zero.

The last matrix to be initialized, is the parameter estimation covariance matrix

P3. The diagonal entries have to be chosen undesirable small (0.0001 0.025), be-

cause for larger values covariance matrix P3 became singular, after a few iterations.
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It is not obvious from the MEKF algorithm why this can happen. The author ob-

served in tests, that a "large" covariance P3 produces via equation (2.188) a large

P2, that in turn leads to a large gain matrix L (cf. eqn. 2.184 in Table 2.5). From

equation (2.189) it is observed that the updated covariance P3k+1 is given by P3k

minus the term L k ,Sk LT, which can become larger than P3k for some k, if the initial

covariance P30 was large. On the other hand, to choose the covariance P30 very

small, is not a remedy to this problem, because this "tells" the filter that b o is

a good estimate for the parameter vector 0 that needs only minor changes. This

results in a slow convergence of the algorithm to the true parameter vector, that is

in general not acceptable. Hence, the only critical part of the filter initialization is

the choice of covariance P30 , which requires fine tuning to find values that result

in both, fast convergence and a stable filter algorithm. Unfortunately, for many

cases it is not possible to find such a initial covariance matrix P30 . In Chapter 4

the author suggests some modifications to the filter algorithm, to overcome this

problem.

3.4 Noise-Sequences Used for Testing the Filter

Ljung stated in 13:31 that the parameter estimates the MEKF produces will only

converge to the system parameters if the noise assumptions are correct. Also, the

performance of the MEKF as a parameter estimator can not, due to the randomness

of the estimation process, be judged from the results of a single test run. Valid

conclusions about the filter performance can be drawn from the outcome of Monte

Carlo simulations, which are performed by letting the identification process rerun

n-timesG with different noise sequences, but under otherwise identical conditions.

This clearly states, that to test the filter algorithm, a set of independent, zero-mean,

white noise sequences is needed.

G  should he at least, 15 -25 for the simulation to produce valid results
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The author experimented with different random number generators. The best

results were achieved with the noise generator RANDUGEN, the program listing

of which is given in the Appendix C. The random number generator RANDU-

GEN, initialized with SEED - 824069364 and SIG = 1.0, was used to generate

30000 samples, randomly split up into fifty files to 600 samples each. These noise

sequence files are named N SEG59.

The computation of the means and the variances of these noise sequences re-

vealed that they were not exactly zero-mean and their variances were slightly off,

from one. Subtracting the mean of a particular sequence from each number of that

file, results in ideally zero-mean sequences. In addition, the variance of each num-

ber sequence was normalized to one by multiplying each number with the factor

1R 2 , where c 2 is the variance of the particular sequence, prior to the normaliza-

tion process. This yields zero-mean sequences with variance one. To determine the

whiteness of the number sequences estimates for the autocorrelation sequences were

also computed utilizing the following formula:

where the n's stand for the numbers of a particular noise sequence. Representative

for all other number sequences, the first six values of the autocorrelation function

associated with N_SEG13 are given in Table 3.1.

Table 3.1: Autocorrelation function associated with noise sequence N SEQ13

Ideally, one would expect the autocorrelation function to be one for m 0, and to
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be zero for m 0. Similar results were achieved for the crosscorrelation functions,

where the ideal value is zero, for all m.

The data files modified in this way N_SEQ10,... ,N_SEQ59 constitute fifty noise

sequences that are a good match to the noise assumptions made in the derivation

of the MEKF.

3.5 An Example of the Present Method

Now that the filter algorithm is implemented (Chapter 3.2), the question on how to

initialize the filter is answered (Chapter 3.3) and (almost) ideal noise sequences are

generated (Chapter 3.4), the MEKF is ready for Monte Carlo simulations. Natu-

rally, one starts with a simple estimation problem.

TEST A:

The simulated system is given by:

Assume everything, but the A matrix (here a scalar) is known about the system.

The uncertainty about A is modeled as:

where 8 is a parameter to be estimated, using the MEKF . The filter is initialized

as follow:
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where P30 has to be chosen undesirably small (recall discussion in Chapter 3.3

concerning this problem), because for larger initial values, covariance P3 becomes

singular, at some time instant k. The choices for Or) and "x() following directly from

the reasoning in Chapter 3.3. As explained in Chapter 3.4, the filter performance

can, due to the randomness of the estimation process, not be judged from the results

of a. single run. Hence, the parameter estimation process was restarted 25 times,

using the following noise sequences:

Figure 3.7 shows the averaged parameter estimates of these 25 runs.

Figure 3.7: Parameter Estimates Test A (Average of 25 Runs)
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In order to examine how sensitive the algorithm is towards the system and

measurement noise sequences, the variances for all parameter estimates from Run

1 up to Run 25 were computed; the results of which are given with Figure 3.8. A

Figure 3.8: Variances of Parameter Estimates Test A

large variance at a certain time instant k indicates, that the corresponding estimate

(cf. Figure 3.7) is inconsistent.

It is observed from Figure 3.7 that the filter performance is far from being sat-

isfactory. The parameter estimates are even after 600 iterations, not close to the

true parameter value of 0.5. This filter behaviour is mainly due to the choice of

0, that does not need much change. Consequently, the Kalman gain factor L, for

updating the parameter estimates, becomes after just a few iterations so small,

that the parameter estimates practically "freeze" at a certain value. The param-

eter estimate error covariance for the given problem can not be initialized with a
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value larger than 0.015, because otherwise P31, becomes singular for some k, which

results in a numerical blow-up of the estimation algorithm. The author suspected

that yet another reason could cause the parameter estimates to being of the true

value: the MEKF inherently produces biased estimates. To find out if this is one

of the reasons for the MEKF to perform poorly, the author conducted another test

(TEST B), very similar to the previous one. The only difference is that this time 0 1)

Figure 3.9: Parameter Estimates Test B (Average of 25 Runs)

is initialized with the true parameter value of 0.5. If the filter inherently produces

biased estimates, one would expect the estimates of TEST B to be biased. From

Figure 3.9 the reader can observe, that this is not the case.
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3.6 Conclusions

in this chapter, the actual implementation of the modified Extended Kalman Filter

has been discussed. General facts about the developed software, as well as detailed

information about some of the more important routines, are given in Chapter 3.2.

The reader has learned about the filter initialization and the preparation of the

noise sequences used in this thesis, in Chapter 3.3 and Chapter 3.4, respectively.

Finally, convergence results of a Monte Carlo simulation for a single parameter case

are presented in Chapter 3.5.

The results of the simulations conducted were rather unsatisfactory. The filter,

though stable, showed very slow convergence and the parameter estimates stayed

biased. From the results of a further test, it could be concluded, that the MEKF

does not inherently produce biased estimates, but that the slow convergence is

attributed to the small initial parameter covariance P30 , necessary for the filter

algorithm to be stable. Because a parameter estimator with properties as shown

by the MEKF is useless, the author experimented with several heuristic method, to

improve the filter's behavior. The next chapter is devoted to this topic.
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Chapter 4

Investigation and Development of
Various Methods to Improve
Stability and Rate of Convergence
of the MEKF Based on Single
Parameter Case

4.1 Introduction

The application of the MEKF to a simple parameter estimation problem, has shown

that the "plain" filter algorithm, as presented in 133], does not meet the requirements

of a parameter estimator. What is desired, is an estimator that produces unbiased

estimates, converges fast to the true parameter values and shows little variation in

its estimates with respect to system and measurement noise. To upgrade the filter

performance, several heuristic methods were applied to the MEKF algorithm. Most

of the methods presented in this chapter, were developed by the author; some were

adopted from the literature and tailored to meet the specific requirements of the

MEKF. None of this techniques is based on any theoretical developments. They are

all based on heuristic discussions.

The methods to improve the MEKF properties are applied to the single param-

eter case from Chapter 3 (TEST A). The reason for doing so, are threefold: first,

it makes the results comparable, secondly, it simplifies the implementation of the
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developed techniques, and third it enhances the clearness of the methods applied.

The fact, that these methods are only applied to first order systems, does not mean

that their usefulness is limited to single parameter cases. It is expected that they

prove to be equally effective when applied to higher order problems.

4.2 Decelerated Convergence of P3

In Chapter 3 it is discussed that the poor convergence properties of the MEKF might

mainly be attributed to the small initial parameter estimates covariance matrix P30 .

Such a small P30 "tells" the filter that the initial guess for the system parameter

is of high quality, i.e. already so close to the true value 0 0 , that no large changes

in the estimate are needed nor desired. As a result of this, the filter "freezes"

the parameter estimates, before they converged to the value of the system para-

meter. One way to circumvent this problem, is to slow down the convergence of

the covariance matrix P3, because it is this matrix that reflects the quality of the

parameter estimates. By doing so, the parameter updating process is kept active for

more iterations, in compensation for the inadequate initialization of covariance P3.

Recall, that the updating equation for P3 is given by:

As a result of the modification in the update equation for covariance P3, one also

expects, that P30 can be chosen larger, than in the case of the original update

Note that LSLT has only positive entries for all L, because the matrix S is p.d.
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equation. In order to examine, whether this heuristically developed method works

in practice, Monte Carlo simulations with different reduction factors (rf) were per-

formed. The initial covariance P30 was, as in the previous tests, set to the highest

value possible, for the filter algorithm to be stable. The simulated system is given

by equations (3.3) and (3.4). Noise statistic and noise sequences used for the in-

dividual runs, are as before. The system is modeled by equations (3.5) and (3.6),

where the parameter 0 is to be estimated using the MEKF algorithm of Chapter 2.5,

but where the PS covariance update equation is given by:

TEST C, TEST D and TEST E

The reduction factor for test C was arbitrarily chosen to be:

The filter is initialized as follow:

which is almost identical with the initialization for TEST A. The only difference is

that covariance PS could be initialized with a slightly larger value. From Figure 4.1

it is observed that, the method to decelerate the convergence of P3 does have the

desired effect on the filter's convergence properties.

Motivated by this result, the author conducted several additional simulations

operating with different reduction factors. The results for two of these simulations

(TEST 1), with a constant rf of 1.7, and TEST E, with a constant rf of 2.2) are also

given in Figure 4.1. As one can observe from Figure 4.1, a larger reduction factor

causes the filter to converge faster, but also causes the variance in the estimation

process to increase (see Figure 4.2), which is undesirable. Recall, that the reduction
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Figure 4.1: Parameter Estimates Test C, D and E

Figure 4.2: Variances of Parameter Estimates Test C, D and E
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factor was introduced, to compensate for the initial parameter estimate covariance

P3, that had to be chosen smaller than desired in order to prevent /3 5 1, from be-

coming singular. Hence, it should be sufficient to operate with a large reduction

factor only for the first few iterations, and to decrease rf for later iterations, where

the covariance P3 is small, independent of the initial value. So, in order to achieve

fast convergence of the parameter estimates without trading this property in for a

high sensitivity towards the noise sequences, the reduction factor should be large at

the beginning of the estimation process and decrease during time to a value slightly

larger than one. To verify this argument a for this method a final test (TEST F)

was carried out.

TEST F 	 •

System, model, noise sequences and filter initialization are as in the previous tests.

The reduction factor rf is chosen to be:

Comparing the resulting parameter estimates and associated variances given in Fig-

ure 4.3 and Figure 4.4, respectively, with the outcomes of TEST E, where rf was

kept constant at 2.2, reveals, that the reasoning above was correct, although the

variances are almost the same.

Conclusions

A comparison of the results obtained by applying the "plain" MEKF algorithm (see

Chapter 3.5), with the ones achieved using the described method, clearly shows the
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Figure 4.3: Comparison of Parameter Estimates Gained for const. rf (TEST E) and
for time-varying rf (TEST F)

Figure 4.4: Comparison of Variances of Parameter Estimates from Test E and F
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usefulness, that lies in a decelerated convergence of covariance P3. The author does

not claim to have found the optimal method with the few simulations conducted.

Further tests, supplemented with theoretical developments will be necessary, before

this method can he applied to field problems. It should also be mentioned, that

for large reduction factors the estimation algorithm became unstable. The reason

for this instability is attributed to the fact, that the parameter estimates were such

no longer elements of D, (see Chapter 2.5). So, to fully exploit the fast convergence

this method can provide, the algorithm needs to be complemented with a facility

to keep the parameter estimates inside of D.

Rather than elaborating on a single method in detail, the author emphasized

on development and test of several different techniques to improve the MEKF. One

further method to keep the estimation process active is introduced in the next

section.

4.3 Addition of Noise Term to the Parameter Vec-
tor

In the introduction to the current chapter, it is discussed that the insufficient per-

forrnance of the MEKF as a parameter estimator is attributed to the initialization

of covariance P3. The parameter estimate covariance P3 has to be chosen small,

because otherwise the matrix becomes singular for some k. It is this inadequate

initialization, that causes the parameter estimates 0 to "freeze", before they can

converge to the system parameter value. A method which effectively prevents the

"freezing" of the estimates, is presented in the section above. The method is based

on a technique that changes the rate of convergence of the parameter estimate

covariance P3. Here, the author introduces a different technique to improve the

MEKF algorithm, which also directly effects the covariance P3, and is thus some-
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what similar to the previous method.

Recall from Chapter 2.4, where it is shown how the EKF can be utilized for

parameter estimation problems, that the system parameter vector is modeled by:

which is appropriate, because a time-invariant system is assumed. That the pa-

rameter estimates of the MEKF can "freeze", is due to the fact that there is no

dynamics in the parameter system (4.4). Suppose, one does model a time-invariant

system as being time-varying, although it is not. This would keep the update pro-

cess of the parameter estimates active for all k, because of the assumed dynamic

in the parameter system. This approach has two advantages: first, the parameter

estimates produced by the MEKF can no longer "freeze", and secondly, it broadens

the field of possible applications to systems, which are slowly time-varying. The

MEKF can he used to keep tracking of parameters, that vary in an unpredictable

fashion. A time-varying system parameter is readily modeled by:

where W I, is a Gaussian noise vector with statistics:

Substituting this Q: back into equation (2.169), and partioning the augmented error

covariance matrix Pk+1 , yields for the parameter covariance update equation:
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As in the previous method, where one had to choose a proper reduction factor, the

question is how to select a parameter noise covariance matrix Qw, , that optimizes

the filter's performance in a particular case. A practical thing to do is to start with

while recording the filter's performance, till an optimum is reached. Possibly, a

TEST G, TEST H and TEST I

The MEKF algorithm, complemented with the described method, is applied to the

single parameter case from the previous chapter. System, model, noise sequences

and filter initialization, are precisely as in Chapter 3.5. The parameter error co-

variance P3 is updated via equation 4.9, where the noise covariance is chosen to

be:

Discussion of the Results

Modeling the time-invariant system as being slowly time-varying considerably in-

creases the rate of convergence of the parameter estimates to the system parameters.

The larger the parameter noise covariance matrix le, the faster do the estimates

converge. However, there are limits to this. It can be observed from Figure 4.7

that for a Qv' of 0.0002 the variances in the estimation process are already so large

that the parameter estimates become inconsistent. As discussed earlier, it is suffi-

cient to enlarge the covariance P3 only for the first few iterations, to account for
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the improper initialization. This idea was pursued with TEST I, where the covari-

ance QW is decreased to one tenth of its initial value, during the iterations 50-140.

Figure 4.6-4.8 show that, although the rate of convergence is still the same, the vari-

ance in the estimation process is reduced substantially, due to the time-varying Qv'.

0.8

Figure 4.5: Parameter Estimates for Different Parameter Noise Covariances Test G
and Test 11
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Figure 4.6: Parameter Estimates for Different Parameter Noise Covariances Test H
and Test 1

Figure 4.7: Variances of Parameter Estimates Test G and Test H
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Figure 4.8: Variances of Parameter Estimates Test H and Test I
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4.4 Enlargement of the Kalman Gain Matrix

So far, two different methods to improve the convergence properties of the MEKF

have been introduced. Both methods prevent the parameter error covariance ma-

trix P3 from decreasing at its normal pace, in order to compensate for the inade-

quate initialization of P3. A different approach to neutralize the improper covari-

ance P30 , is to enlarge the parameter Kalman gain matrix L by a certain factor,

say gf. Because one merely wants to change the step size in the parameter updating

process but not affect the updating direction, each entry of L has to be multiplied

by gf (cf. equation 2.185). The update equations for covariances P2 (2.188) and P2

(2.189) remain unchanged. To examine the effectiveness of the method described,

two simulation results are given next.

The two simulations are executed under identical conditions to that of TEST A,

i.e. system, model, noise sequences and filter initialization are precisely as in

TEST A. However, the parameter update equation of the plain MEKF is modi-

fied as:

TEST K

For this test a constant gain factor gf is selected.

gf = 2.2 V k k 	 1, . . . , 600

TEST L

Following the reasoning of the previous two sections, a time-varying gain factor gf
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The results of these two tests are given with Figure 4.9 for the averaged parameter

estimates and with Figure 4.10, which shows the respective variances, associated

with the estimates.

The smoothness of the graphs of Figure 4.9, which show the averaged parameter

estimates, is striking. As revealed by Figure 4.10, the variance in the estimation

process is better than in any of the other tests considered so far. This phenomenon is

explained by the fact, that this technique — contrary to the methods of the previous

two sections — does not have a strong effect on the time history of covariance P9.

The parameter covariance matrix does still decrease rapidly to very small values,

so that there is very little variation in the parameter estimates for later iterations,

which is comparable with the behavior of the plain MEKF algorithm. On the other

hand, due to the larger parameter gain, the estimates do approach the system

parameter value, in relatively few iterations. It is observed from Figure 4.9, that

the larger gain factor results in slightly inferior convergence properties. This is

due to the large parameter updating gain which puts the parameter estimates to

high values during the first few iterations, from which they can not return, because

of the fast decreasing covariance P9. The author experimented with even larger

gain factors. The results of these experiments was that the filter algorithm became

unstable, because some of the parameter estimates were larger than one (see also

Section 4.6).
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Figure 4.9: Parameter Estimates Test K (coast. gf and Test L (variable gf)

Figure 4.10: Variances of Parameter Estimates Test K and Test L
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4.5 Rejection of Spurious Data Points

It has been mentioned earlier, that covariance P3 should be initialized with the

largest value possible, for the filter algorithm to be stable. Initialization of the filter

with a slightly larger P3 does not cause the algorithm to diverge for all runs; it

usually results in one or two "had" runs, out of 25. But what is it, that makes the

algorithm work in some cases, and causes the algorithm to fail, in others? To answer

this question, the author examined the noise sequences involved, at and prior to

the point, where the filter started to diverge. It turned out, that those numbers

of the noise sequences, where the divergence started out, were particularly large in

magnitude. As pointed out in the derivation of the EKF (Section 2.3), any large

noise term can bring the algorithm out of the linear region' and cause the algorithm

to diverge. This explains the observed interrelation between the large noise terms

and the divergence of the algorithm, following the processing of these samples. In

order to maintain a stable algorithm, one rather suppresses spurious data points,

than endanger the stability of the estimation process, by processing them. 3 But how

can spurious data points be detected, and where should one draw the borderline

between "good" and "bad" measurements? To answer the first question, recall

and actual measurement z, where a large difference indicates a spurious data point.

These differences are readily qualified, using the prediction error covariance V,

which is defined as:

It is shown in Chapter 2, that the above equation can be rewritten as:

2 See footnote 30 on page 42
'Suppression of spurious data points is also suggested by Maybeck 1391 for a different application.
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Because the measurement matrix C is in general assumed to be dependent on the

parameter vector 0, which is not precisely known to the filter, an approximation of

(4.12), given with equation (4.13), has to be used, instead.

Maybeck suggests in 1391 to reject measurements, whenever the square of the resid-

ual exceeds three times the corresponding autocovariance factor in V.

It turned out, that the suggested limit is too large for the MEKF to improve

the filters stability at the startup of the estimation process. On the other hand, the

limits can not be chosen extremely small, because this results in rejecting too many

data points, and thus slow down the estimation process. It is reasonable, to choose

the rejection limit small for the first few iterations, where the MEKF is highly

sensitive towards "bad" data. For later iterations, the limit should be gradually

increased, to make use of all the information contained in the measurements. Once

the parameter estimates have converged to the system parameter and are "frozen"

there, the rejection limit can be dropped completely, without risking the filter to

diverge, because the MEKF has transformed itself into a KF, with all its properties.

The idea pursued here, is to reject spurious measurement, and thus being able

to initialize covariance PS with a larger value, that should increase the rate of

convergence in the parameter estimation process. An appropriate rejection limit,

that is neither not too large (no measurements would be rejected and thus make the

method useless), nor too small (this would cause the loss of valuable information

needed, for the algorithm to converge). The author experimented with numerous,

constant and time-varying rejection limits. Unfortunately, none of them would

improve the filter's performance substantially. In most cases, the performance of the

filter was worse than for the plain MEKF algorithm. With a high rejection limit, the

method showed no effect at all, and with a low rejection limit, the rate of convergence

was slowed down. The increase in the initial value for covariance PS, made possible
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by suppression of spurious measurements, was more than outweighed by the loss of

information due to the "throw-away" of output data. For completeness, an example

of the described method is given below.

TEST J

System, model, noise sequences and filter initialization are as in TEST A, with the

exception of P30 , which could be set to 0.017, a value slightly larger than in TEST

A. An approximation for the residual covariance is for the particular problem given

by:

Measurements were rejected, i.e. not processed by the filter, whenever the residual

RES was in magnitude larger than:

Discussion of the Results

As it can he observed from Figure 9.11, the method to reject spurious data points,

failed to improve the MEKF algorithm. The benefits gained by rejecting some

measurements, were too small, to compensate for the loss of information. Yet, this

method maybe beneficial if the limits are chosen, such that only those measurements

that could disturb the filter severely are suppressed.
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Figure 4.11: Parameter Estimates Test A and Test .1

Figure 9.12: Variances of Parameter Estimates Test A and Test
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4.6 Keep 0 in Ps

Ljung's proof [331 of the convergence properties of the MEKF is based on the con-

dition, that the filter algorithm is complemented with a projection facility, which

assures that all parameter estimates are element of the compact subset Ds , where

Ds is defined by:

No elegant technique to determine this set for the general state space model, is

known to the author. A prude for higher order systems computationally costly

method, is to check for any e, whether it is an element of Ds , i.e., following this

In case the system under consideration is a physical system, information about

the parameter vector might be available, to further restrict a for the parameter

estimates permissible region. The projection facility should be altered for those

cases to account for the additional information.

For the first order system of Section 3.5, the set Ds is readily derived to be:

Ds = { interior of unit circle }

The MEKF algorithm applied to the single parameter case considered in this chap-

ter, should be complemented with the described projection facility, to keep all
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parameter estimates inside the unit circle. No simulation results are given here,

because convergence properties of the plain MEKF algorithm are such that all the

parameter estimates (cf. TEST A), stay well inside the unit circle. This is also

attributed to the fact, that there is a substantial margin between the unit circle

and the system parameter. Yet, the discussed projection facility is incorporated in

a improved MEKF, where the dynamic of the parameter estimation process is such

that, parameter estimates outside of Ds are more likely.

4.7 An Improved MEKF — Results

The simulation results for the techniques described in this chapter, are in general

positive. The question is, whether it is possible, through combining all the methods

that work, to achieve even better results. The goal is to design a filter, that unites

all the positive features of the different techniques, so that the parameter estimates

converge faster, than in any of the other filters shown, so far.

The method to enlarge the Kalman gain matrix, produces estimates that vary

least for the different runs, once the algorithm has converged. On the other hand,

the improvement techniques of Section 4.2 and Section 4.3 do result in compara-

tively smaller variances for the first few iterations, but larger ones for later time

instances. Combining these three methods hopefully results in a filter, that pro-

duces fast convergent parameter estimates, and yet is insensitive towards system

and measurement noise.

TEST M

System, model, noise sequences and filter initialization are precisely as in TEST A.

To combine all the techniques introduces in this chapter in one filter, the following
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This example shows (cf. Figure 4.13) that it is possible to further improve the filter's

performance by combining the individual techniques, described in this chapter, into

one filter.

Figure 4.13: Parameter Estimates Test, M
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Figure 4.14: Variances of Parameter Estimates Test M
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4.8 Conclusions

In this chapter, five different methods, intended to improve the inacceptable con-

vergence properties of the plain MEKF, have been introduced. In order to keep

results comparable, they have all been applied to the same single parameter case

of Chapter 3. Due to the stochastic nature of the estimation process, Monte Carlo

simulations were necessary to study the effects of the different techniques on the

filter's performance.

The method to decelerate the "shrinking" of the parameter estimate error co-

variance P3, not only increases the rate of convergence, but also leads to a more

robust filter algorithm. Slightly inferior results were achieved by modeling the time-

invariant system as being slowly time-varying. This second method has the advan-

tage, that it can identify the parameters, and then keep track of them throughout

the process time. This feature is of particular interest in detecting failures in the

process, e.g. caused through wear of parts, before this is indicated by measurable

output signals. Good results in both the variations on the parameter estimates for

different runs as well as the rate of convergence, were accomplished by increasing

the step size in the parameter update process. In case the dynamics in the es-

timation process such that some of the parameter estimates fall outside of Ds, a

projection facility is needed, which discards these estimates and thus assures that

all are element of D. The primary problem associated with this technique is, that

there is no general method to derive this set Ds . A computationally costly check of

each 0 whether it is all element of the set D5, or not, seems to be the only feasible

solution. Section 4.5 informs the reader about the authors attempt to increase the

rate of convergence in the plain MEKF, by rejecting, i.e. non-processing, of spuri-

ous data points. Although this method does have its merits for other applications,

it failed to increase the rate of convergence in the MEKF. In Section 9.6, finally,

it is reported that the filtering results achieved by application of just one of the
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techniques described, are not the best ones possible, and combinations of it should

be used, to further enhance the MEKF.

Though only applied to a single parameter case, the introduced filter upgrade

techniques are designed for the general state space model. However, the question

remains how well they will work, when applied to higher order cases. The depen-

dency between given system, noise statistic and appropriate gain factor, reduction

factor, covariance Qw etc. is subject to further research.



Chapter 5

Comparison of an improved
MEKF with a RELS Filter

5.1 Introduction

In the previous chapter, several techniques have been developed to increase the

rate of convergence in the MEKF. Although the MEKF, when complemented with

these methods, performs substantially better than the plain filter algorithm, the

question remains, how "good" or "bad" this filter is with repect to other parameter

estimators.

The MEKF shall be compared with a Recursive Extended Least Squares (RELS)

parameter estimator. The RELS, a particularly easy to implement and robust

parameter estimator, is for this reason often the first method to be tried out.

A brief summary of the RELS algorithm is given next. For comprehensive

treatments of the Recursive Extended Least Square method the reader is referred

to 1381,1231 or 1151.

5.2 The RELS Algorithm

The RELS algorithm is based on an Auto Regressive Moving Average eXogenous

(ARMAX) representation of the system given by:
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where {e k } is a zero mean white noise sequence. The order of the system (n, m)

is assumed to be known, but the coefficients in (5.1) are unknown. The unknown

coefficients ai , bi and c, forme, just as in the case of the EKF, a parameter vector

0, to be estimated.

In the RIMS algorithm these parameters are estimated by comparing the system

output z with the output of an implemented model of the system en.

Define the output errors as:

The sequence of output errors contains the information to drive the parameter

estimate vector 8 to the parameter vector 0. Once θk has converged to the parameter

vector θk the output errors e coincide with the noise samples e, i.e., become a white

noise sequences, that contains no futher information.

The parameter estimates are generated by the algorithm, given with equationE

(5.7-5.10):
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5.3 Implementation of the RELS Method

Prior to the start up of the parameter estimation process, covariance matrix, PS,

and the parameter estimate vector e need to be initialized. For the simulations

reported in this thesis PS was set to

P S0 = l 000x I

But any other diagonal matrix ranging from 10/-5000/ produced similar results.

Assuming no a priori knowledge about the system state, the parameter estimates

were initially set, to zero. The input/output data is still assumed to be generated

by a system' in state space representation adequately described by the equations

(2.144) and (2.145). Note that in these state space equations two independent noise

sources, namely system noise and measurement noise, are assumed to be present.

This can not be modelled adequately with an equation of the type of (5.1). Since

noise structure and noise statistics are not need to he known for the RELS method

to be applicable, one shall not worry about this. That is, when converting the

state space model into an ARMAX model, all the information about the noise is

matter what the actual noise statistics look like. Thus, it is important to note for

the interpretation of the simulation results to follow, that the RELS algorithm is

supplied with substantially less information about the system, as compared to the

MEK F. It might be possible to incorporate the information about the noise in the

RELS algorithm, but this is subject to further research.

Here restricted to a single-input, single-output model
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5.4 Results

To achieve a practical measure of the performance of the MEKF, its convergence

results are compared with the ones obtained by application of the RELS method.

This is done for two systems; the first order system of Chapter 3 and a second order

system which is described by:

upgraded version of the MEKF as described in Section 9.6 is applied here.

The filter is initialized as:

To make the RELS method applicable to these estimation problems, the system

equations need to be converted in an ARMAX model representation, which is done

by completely neglecting noise structure and noise statistics. The first order system
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is therefore given by:

For the second order system one can write:

The RELS algorithm for both systems is initialized with P30 = 1000 1 and 00 = O.

Figure 5.1 and Figure 5.2 show the parameter estimates produced by the RELS

and the MEKF for the two systems described. Their sensitivity towards the noise

sequences can be observed from Figure 5.3 and Figure 5.4.

Figure 5.1: Parameter Estimates for 1st Order System
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Figure 5.2: Parameter Estimates for 2nd Order System

0.600

Figure 5.3: Variances of Parameter Estimates (1st Order System)
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Figure 5.4: Variances of Parameter Estimates (2nd Order System)
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Chapter 6

Conclusions

6.1 Summary and Conclusions

In this thesis parameter estimation of linear, discrete-time systems using a modified

Extended Kalman Filter by Ljung has been studied. The prime motivation in using

the MEKF to attack the parameter estimation problem was the excellent global

convergence properties stated by Ljung.

A substantial part of this thesis is devoted to estimation theory. A complete and

detailed derivation of the discrete-time Kalman Filter using a Bayesian approach is

given in Chapter 2. For the discrete-time EKF, two different derivations are given;

the first one is entirely heuristic, but possibly provides more insight to what the

EKF is about, than the second which is mathematically more rigorous.

Chapter 2 also shows how the EKF, a state estimator for non-linear systems,

can be utilized for parameter estimation of linear systems.

An EKF algorithm modified by Ljung and tailored for parameter estimation is

presented, and rederived in parts to show some intermediate steps, that are left out

in 33j. This modification adds a tremendous computational burden on the filter.

The actual computing time to account for the modification, is insignificant, because

steady advances in hardware will overcome of this problem.

However, the primary concern is numerical stability and the difficulties involved

in solving three coupled matrix Ricatti equations. It has been shown that, even
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for the low order cases, which are treated in this thesis, quite sophisticated pro-

gramming techniques are required to detect convergence and/or divergence of the

algorithm.

Further problems encountered with the implementation of the MEKF were re-

lated to the filter initialization. Initializing the parameter estimation error co-

variance matrix P3 appropriately such that P3 reflects the uncertainty about the

parameter vector, resulted in numerical overflow after just few iterations.

On the other hand, selecting a initial covariance P30 , such that the algorithm

is stable, resulted in biased estimates, because the filter "freezes" the parameter

updating process before the system parameter estimators could converge.

Chapter 4 presents several techniques developed by the author, which yield a

stable filter algorithm and at the same time provide sufficient dynamics in the pa-

rameter updating process. Some of these methods worked excellent for the systems

they were applied to. These techniques might also be applicable to other parameter

estimation methods. However, in the case of MEKF, the question that remains is

whether these techniques are still useful when used with higher order systems. How

should their parameter (gain factor, reduction factor e.t.c) be selected, for certain

classes of systems? This is subject to further research.

In summary, the MEKF as a parameter estimator proved to be problematic to

initialize and difficult to operate. This was especially revealing when the author

implemented for comparison reason, an RELS estimator and was striked by the

easiness this could be done and by the simplicity of the estimation algorithm. The

MEKF' does have its value, in cases where knowledge about noise statistics, noise

and system structures are available, because it can incorporate all these information

in its state estimates. However, in practice it will be difficult to obtain all this

information. In any case, the user has to ask herself or himself, whether it is

worth to go through these difficulties that are likely to be encountered when using
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the MEKF. Also, whether it is not more advisable to use a different estimation

algorithm such as RELS and others, which are substantially simpler to implement.

6.2 Recommendations for Future Work

The author lists here some of the problems encountered, and considers to be worth-

while subjects for further research.

1. In this thesis, several techniques were developed to compensate for improper

initialization of the parameter estimation error covariance. Whether these

techniques do have any value in applications other than the MEKF, should

be investigated.

2. The MEKF formulation is much more general then shown in this thesis. It

is recommended to apply it to MIMO systems, where other estimation tech-

niques are too limited.

3. Ljung proposed another MEKF with similar convergence properties that is

based on an innovation model. In such a filter, the Kalman gain matrix is

to compute. The author suggests the implementation and comparison of this

filter with the one for the general state space model.

1. In practical cases one usually does not arrive at precise knowledge of noise

statistics and noise structures. The question to be answered is, how sensitive

the MEKF is towards inadequate selection of noise covariance Qe and Q"
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Appendix A

Program Listing MEKF

A.1 Main Program
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CLOSE(11)

STOP

10 FORMAT(/A)

20 FORMAT(//A,I4)

30 FORMAT(//A)

40 FORMAT(F8.3)

50 FORMAT(2F8.3)

51 FORMAT(a10,F8.3)

END
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A.2 Subroutines
Program Package MATRIX

SUBROUTINE PO1MATMULNN(A,B,N)
DIMENSION A(10,10),B(10,10), C(10)
DOUBLE PRECISION A,B,C

C is a dummy storage vector.

DO 1000 J = 1,N
Obtain the j-th column of the product and store it
temporarily in the column vector C.

DO 1001 I = 1,N
C(I) = 0.0
DO 1002 K = 1,N

IF ((A(I,K) .NE. 0.0) .AND. (B(K,J) .NE. 0.0))
C(I) = C(I) 	 A(I,K)*B(K,J)

1002 	 CONTINUE
1001 	 CONTINUE

Now replace j-th column of matrix B with the j-th column
of the result (stored in vector C).

DO 1003 I = 1, N
A(I,J) = C(I)

1003 	 CONTINUE
1000 CONTINUE

RETURN
END

***********************************************************************-

Subroutine PO2MATVEC for the matrix operation 	 y:= A*x 	 *
* 	 *

A is an (nxm) matrix and x is an m-dimensional column vector. 	 •
y is an n-dimensional column vector. 	 *

***********************************************************************
SUBROUTINE P02MATVEC(A,X,Y,N,M)
DIMENSION A(10,10),X(10), C(10),Y(10)
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DOUBLE PRECISION A,X,C,Y

C is a dummy storage vector.

DO 1000 J = 1,N
Obtain the j-th element of the product and store it
temporarily in the column vector C.

C(J) = 0.0
DO 1002 K = 1,M

IF ((A(J,K) .NE. 0.0) .AND. (X(K) .NE. 0.0))
C(J) = C(J) + A(J,K)*X(K)

1002 	 CONTINUE
1000 	 CONTINUE

Now replace C with Y

DO 1003 J = 1, N
Y(J) = C(J)

1003 	 CONTINUE
RETURN
END



* T
• Subroutine PO3MATMULTRANSNN for the matrix operation A := A B

• A and B are N dimensional square matrices.

**********************************************************************,
SUBROUTINE PO3MATMULTRANSNN(A,B,N)
DIMENSION A(10,10),B(10,10), C(10)
DOUBLE PRECISION A,B,C

• C is a dummy storage vector
DO 1000 I = 1,N
Obtain the i-th row of the product and store it
temporarily in vector C.

DO 1001 J = 1,N
C(J) = 0.0
DO 1002 K = 1,N

IF ((A(I,K) .NE. 0.0) .AND. (B(J,K) .NE. 0.0))
C(J) = C(J) + A(I,K)*B(J,K)

1002 	 CONTINUE
1001 	 CONTINUE

Now replace i-th row of matrix A with the i-th row
of the result (stored in vector C).

DO 1003 J = 1, N
A(I,J) = C(J)

1003 	 CONTINUE
1000 	 CONTINUE

RETURN
END

• Subroutine PO4MATADD 	 for the matrix operation C := A+13

RA and CA denotes the number of rows and the number of the
columns of the matrices A, B and C.

SUBROUTINE PO4MATADD(C,A,B,RA,CA)
INTEGER RA,CA
DIMENSION A(10,10),B(10,10),C(10,10)
DOUBLE PRECISION A,B,C
DO 1001 I = 1,RA

DO 1001 J = 1,CA
C(I,J) = A(I,J) + B(I,J)

1001 CONTINUE
RETURN
END
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Subroutine PO4VECADD for the vector operation c := a+b

RA denotes the number of elements of the vectors a,b,c.

SUBROUTINE PO4VECADD(C,A,B,RA)
INTEGER RA
DIMENSION A(10),B(10),C(10)
DOUBLE PRECISION A,B,C
DO 1001 I = 1,RA

C(I) = A(I) + B(I)
1001 CONTINUE

RETURN
END

Subroutine PO5MATMUL for the matrix multiplication C = A B

A and B are RAxCA and RBxCB dimensional matrices, respectively. *

SUBROUTINE P05MATMUL(A,B,C,RA,CA,RB,CB,RC,CC)
INTEGER RA,CA,RB,CB,RC,CC
DOUBLE PRECISION A(10,10),B(10,10),C(10,10),DUMMY
RC = RA
CC = CB
IF(CA .NE. RB) GOTO 2001

DO 1000 I = 1,RA
DO 1001 J = 1,CB

DUMMY = 0.0
DO 1002 K = 1,CA

IF ((A(I,K) .NE. 0.0) .AND. (B(K,J) .NE. 0.0))
DUMMY = DUMMY + A(I,K)*B(K,J)

1002 	 CONTINUE
C(I,J) = DUMMY

1001 	 CONTINUE
1000 CONTINUE

GOTO 2002
2001 WRITE(*,*) ' ERROR IN PO5MATMUL: Dimension mismatch.'

2002 CONTINUE
RETURN
END
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PO6MATMULTRANS
T

Subroutine for the matrix multiplication C = A B .

A and B are RAxCA and RBxCB dimensional matrices, respectively

SUBROUTINE PO6MATMULTRANS(A,B,C,RA,CA,RB,CB.RC,CC)
INTEGER RA,CA,RB,CB,RC,CC
DOUBLE PRECISION A(10,10),B(10,10), C(10,10)

RC = RA
CC = CB

IF(CA .NE. CB) GOTO 2001
DO 1000 I = 1,RA

DO 1001 J = 1,RB
C(I,J)= 0.0
DO 1002 K = 1,CA

IF ((A(I,K) .NE. 0.0) .AND. (B(J,K) .NE. 0.0))
C(I,J) = C(I,J) + A(I,K)*B(J,K)

1002 	 CONTINUE
1001 	 CONTINUE
1000 CONTINUE

GOTO 2002
2001 WRITE(6,*) ' ERROR IN PO6MATMULTRANS: Dimension mismatch.'
2002 CONTINUE

RETURN
END
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SUBROUTINE P07
for the matrix operation P := 0 P 0 +
0, P and Q are NxN matrices, each. P and Q are symmetrical.

SUBROUTINE P07(0,P,Q,N)
DIMENSION P(10,10),0(10,10),Q(10,10),C(10)
DOUBLE PRECISION P,O,Q,C
CALL PO3MATMULTRANSNN(P,O,N)

C is a dummy storage vector.

DO 1000 J = 1,N
Obtain the j-th column of the product and store it
temporarily in the column vector C.

DO 1005 I = 1,J-1
1005 	 C(I) = 0.0

DO 1001 I = J,N
C(I) = 0.0
DO 1002 K = 1,N

IF ((0(I,K) .NE. 0.0) .AND. (P(K,J) .NE. 0.0))
C(I) = C(I) + 0(I,K)*P(K,J)

1002 	 CONTINUE
1001 	 CONTINUE

Now replace j-th column of matrix P with the j-th column
of the result (stored in vector C). Also add matrix Q.

DO 1003 I = J, N
1003 	 P(I,J) = C(I) + Q(I,J)
1000 	 CONTINUE

DO 1020 I = 1, N
DO 1020 J = I, N

IF( I .NE. J)
P(I,J) = P(J,I)

1020 CONTINUE
RETURN
END
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Subroutine P08 for the matrix operation 	 A := H Y + R

H is a an n-dimensional row vector, Y is an n-dimensional
column vector.

SUBROUTINE P08(H,Y,R,A,N)
DIMENSI0N H(10),Y(10)
DOUBLE PRECISI0N H,Y,A

A = 0.0
DO 1000 K = 1,N

IF ((H(K) .NE. 0.0) .AND. (Y(K) .NE. 0.0))
A = A + H(K)*Y(K)

1000 	 CONTINUE
A=A+R
RETURN
END
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P09MATROWMUL
T

Subroutine for the matrix-vector multiplication Y = P H .

P is an NxN matrix H is an N-dimensional row vector.

SUBROUTINE PO9MATROWMUL(P,H,Y,N)
DIMENSION P(10,10),H(10), Y(10)
DOUBLE PRECISI0N P,H,Y

DO 1000 I = 1,N
Y(I)= 0.0
DO 1002 J = 1,N

IF ((P(I,J) .NE. 0.0) .AND. (H(J) .NE. 0.0))
Y(I) = Y(I) + P(I,J)*H(J)

1002 	 CONTINUE
1000 CONTINUE

RETURN
END

Subroutine P1OSCALARRESIDUE
for the matrix operation 	 v := z - H x

H is a an n-dimensional row vector, x is an n-dimensional
column vector.

SUBR0UTINE P1OSCALARRESIDUE(H,X,Z,V,N)
DIMENSION H(10),X(10)
D0UBLE PRECISION H,X,V,Z

V = 0.0
DO 1000 K = 1,N

IF ((H(K) .NE. 0.0) .AND. (X(K) .NE. 0.0))
V = V + H(K)*X(K)

1000 	 CONTINUE
V = Z - V
RETURN
END
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Subroutine P11STATETIMEUPDATE

for the matrix operation 	 x :=A*x+B*u+ v

A is a NxN matrix, B is a NxM matrix, x,v are n-dimensional

column vectors and u is a m-dimensional column vector

SUBROUTINE P11STATETIMEUPDATE(A,X,B,U,V,N,M)

DIMENSION A(10,10),B(10,10),X(10),C(10),U(10),V(10)
DOUBLE PRECISI0N A,B,X,C,U,V

C is a dummy storage vector.

DO 1000 J = 1,N

Obtain the j-th element of the product and store it
temporarily in the column vector C.

C(J) = 0.0
DO 1002 K = 1,N

IF ((A(J,K) .NE. 0.0) .AND. (X(K) .NE. 0.0))
C(J) = C(J) + A(J,K)*X(K)

1002 	 CONTINUE
DO 1004 K=1,M

IF ((B(J,K) .NE. 0.0) .AND. (U(K) .NE. 0.0))
C(J) = C(J) + B(J,K)*U(K)

1004 	 CONTINUE
1000 	 CONTINUE

Now replace vector X with vector C and add vector V.

DO 1003 J = 1, N
X(J) = C(J)+V(J)

1003 	 C0NTINUE
RETURN
END
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Subroutine P13DMATINV for the matrix operation 	 C := B

A is N dimensional square matrix
Operation in double precision

SUBROUTINE P13DMATINV(C,B,N,D)
DIMENSION C(10,10),B(10,10),A(100),L(10),M(10)
DOUBLE PRECISION C,B,A,D,HOLD,BIGA

C

DO 5 I=1,N

DO 5 J=1,N
IJ=IZ+J

	

5 	 A(IJ)=B(I,J)
D=1.0
NK=-N
DO 80 K=1,N

NK=NK+N
L(K)=K
M(K)=K
KK=NK+K
BIGA=A(KK)

DO 20 J=K,N
IZ=N*(J-1)

DO 20 I=K,N
IJ=IZ+I
IF(DABS(BIGA)-DABS(A(IJ))) 15,20,20

	

15 	 BIGA=A(IJ)
L(K)=I
M(K)=J

	

20	 C0NTINUE

121



C
35 	 I=M(K)

IF(I-K) 45,45,38

38 	 JP=N*(I-1)

DO 40 J=1,N

JK=NK+J

JI=JP+J

HOLD=-A(JK)

A(JK)=A(JI)

40 	 A(JI)=HOLD

C
C
C

45 	 IF(BIGA) 48,46,48

46 	 D=0.0

RETURN

48 	 DO 55 I=1,N

IF(I-K) 50,55,50

50 	 IK=NK+I

A(IK)=A(IK)/(-BIGA)

55 	 CONTINUE

C
C
C

DO 65 I=1,N

IK=NK+I

HOLD=A(IK)

IJ=I-N

D0 65 J=1,N

IJ=IJ+N

IF(I-K) 60,65,60

60 	 IF(J-K) 62.65.62
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A(KK)=1.0/BIGA

80 	 CONTINUE

K=N

100 K=(K-1)

IF(K) 150,150,105

105 I=L(K)

IF(I-K) 120,120,108

108 JQ)=N*(K-1)

JR=N*(I-1)

DO 110 J=1,N

JK=JQ+J

HOLD=A(JK)

JI=JR+J

A(JK)=-A(JI)

110 	 A(JI)=HOLD

120 J=M(K)

IF(J-K) 100,100,125

125 KI=K-N

DO 130 I=1,N

KI=KI+N

HOLD=A(KI)

JI=KI-K+J

A(KI)=-A(JI)

130 	 A(JI)=HOLD

GO TO 100

150 DO 500 I=1,N

IZ=N*(I-1)

DO 500 J=1,N

IJ=IZ+J

500 	 C(I,J)=A(IJ)

RETURN

END

123



-1
Subroutine MATINV for the matrix operation 	 A := A

A is N dimensional square matrix

SUBROUTINE MATINV(A,N)
C

DIMENSI0N A(10,10)

DO 10 K=1,N
DO 20 I=1,N

D0 30 J=1,N
IF(I.EQ.K) GOTO 30
IF(J.EQ.K) G0TO 30
A(I,J)=A(I,J) - A(K,J)*A(I,K)/A(K,K)

30 	 C0NTINUE
20 	 CONTINUE

C

C

DO 40 I=1,N
D0 50 J=1,N

IF(I.EQ.J) GOTO 50
IF(I.NE.K) GOTO 50
A(I,J)=-A(I,J)/A(K,K)

50 	 C0NTINUE
40 	 CONTINUE

DO 60 I=1,N
DO 70 J=1,N

IF(J.NE.K) GOTO 70
IF(I.EQ.J) GOTO 70
A(I,J)=A(I,J)/A(K,K)

70 	 C0NTINUE
60 	 CONTINUE

A(K,K)=1.0/A(K,K)
10 CONTINUE

RETURN
END
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T
Subroutine P15TRANSP0MATRIX for the matrix operation B := A

A is (n*m) dimensional matrix.
B is (m*n) dimensional matrix.

SUBROUTINE P15TRANSPOMATRIX(A,B,N,M)
DIMENSION A(10,10),B(10,10)
D0UBLE PRECISI0N A,B,C

DO 1 I=1,N
DO 2 J=1,M

B(J,I)=A(I,J)
2 	 CONTINUE
1 C0NTINUE

RETURN
END

Subroutine P16MAKEIDENT

Generates a n-dimensional identity matrix A

SUBROUTINE P16MAKEIDENT(A,N)
DOUBLE PRECISI0N A(10,10)

DO 1 I=1,N
DO 2 J=1,N

IF(I.EQ.J) A(I,J)=1.0
IF(I.NE.J) A(I,J)=0.0

2 	 C0NTINUE
1 CONTINUE

RETURN
END
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Subroutine P17MATTRACE for the matrix operation TR := TRACE(A)

A is a general n-dimensional square matrix.
TR is the sum of the diagonal entries.

SUBROUTINE P17MATTRACE(A,N,TR)
DIMENSION A(10,10)

DOUBLE PRECISION TR,A
TR=0.0
DO 1001 I = 1,N

TR=TR+A(I,I)
1001 	 CONTINUE

RETURN
END

Subroutine P18AUGMENT

X and THETA are N and M dimensional vectors, respectively.
Z is the augmented vector of dimension NM=N+M.

SUBROUTINE P18AUGMENT(X,THETA,N,M,NM)
DIMENSION X(10),THETA(10),Z(20)
DOUBLE PRECISION X,THETA,Z

DO 1001 I = 1,N
Z(I)=X(I)

1001 CONTINUE
DO 1002 I = 1,M

Z(I+N)=THETA(I)
1002 CONTINUE

RETURN
END
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Subroutine P19MATCOPY for the matrix operation B := A

A and B are RxC dimensional matrices.

SUBROUTINE P19MATCOPY(A,B,R,C)
INTEGER R,C
DIMENSION A(10,10),B(10,10)
DOUBLE PRECISION A,B

DO 1000 I = 1,R
DO 1000 J = 1,C

1000 	 B(I,J)=A(I,J)
RETURN
END

Subroutine P2OVECTORRESIDUE
for the matrix operation 	 res := y - H x

H is a an MxN dimensional matrix, x is an N dimensional
column vector and y,res are M dimensional row vectors.

SUBROUTINE P2OVECTORRESIDUE(X,H,Y,RES,N,M)
DIMENSION H(10,10),X(10),Y(10),RES(10)
D0UBLE PRECISION H,X,Y,RES

DO 1000 I = 1,M
RES(I) = 0.0
DO 1001 J = 1,N

RES(I) = RES(I)+H(I,J)*X(J)
1001 	 CONTINUE

Now subtract this from y-vector.

RES(I)=Y(I)-RES(I)
1000 CONTINUE

RETURN
END
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Subroutine P21OUTPUT for the matrix operation 	 y:= C*x + e

C is an (mxn) matrix and x is an n-dimensional column vector
and e is a m-dimensional column vector.

SUBROUTINE P21OUTPUT(Y,C,X,E,NY,NX)
DIMENSION C(10,10),X(10),E(10),Y(10)
DOUBLE PRECISION C,X,E,Y

DO 1000 I = 1,NY
Y(I) = 0.0
DO 1001 J = 1,NX

Y(I) = Y(I)+C(I,J)*X(J)
1001 	 CONTINUE

Now add vector E to vector Y.

Y(I) = Y(I)+E(I)
1000 CONTINUE

RETURN
END

Subroutine P22MMATMUL for the matrix multiplication D = A B C

A, B and C are RAxCA, RBxCB and RCxCC dimensional matrices,

respectively.

SUBROUTINE P22MMATMUL(D,A,B,C,RA,CA,RB,CB,RC,CC,RD,CD)
INTEGER RA,CA,RB,CB,RC,CC,RD,CD,RT,CT
DIMENSION A(10,10),B(10,10),C(10,10),D(10,10),TEMP( 10 , 10 )

DOUBLE PRECISION A,B,C,D,TEMP

CALL PO5MATMUL(A,B,TEMP,RA,CA,RB,CB,RT,CT)
CALL P05MATMUL(TEMP,C,D,RT,CT,RC,CC,RD,CD)
RETURN
END
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Subroutine P23SMATRIX for the matrix operation
T 	 T 	 T T

S := C P1 C + C P2 D + D P2 C + D P3 D + QM

S is a NYxNY dimensional matrix.

SUBR0UTINE P23SMATRIX(NP,NX,NY,S,CEST,D,P1,P2,P3,QM)
DOUBLE PRECISION S(10,10),CEST(10,10),P1(10,10),P2(10,10)
DOUBLE PRECISION D(10,10),QM(10,10),TEMP(10,10),CT(10,10)
DOUBLE PRECISION DT(10,10),P3(10,10),P2T(10,10)

CALL PliDMATCOPY(QM,S,NY,NY)
CALL P15TRANSPOMATRIX(CEST,CT,NY,NX)
CALL P15TRANSPOMATRIX(D,DT,NY,NP)
CALL P15TRANSPOMATRIX(P2,P2T,NX,NP)
CALL P22MMATMUL(TEMP,D,P3,DT,NY,NP,NP,NP,NP,NY,NY,NY)
CALL PO4MATADD(S,S,TEMP,NY,NY)
CALL P22MMATMUL(TEMP,D,P2T,CT,NY,NP,NP,NX,NX,NY,NY,NY)
CALL PO4MATADD(S,S,TEMP,NY,NY)
CALL P22MMATMUL(TEMP,CEST,P2,DT,NY,NX,NX,NP,NP,NY,NY,NY)
CALL PO4MATADD(S,S,TEMP,NY,NY)
CALL P22MMATMUL(TEMP,CEST,P1,CT,NY,NX,NX,NX,NX,NY,NY,NY)
CALL PO4MATADD(S,S,TEMP,NY,NY)
RETURN
END
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Subroutine P24KALGNPAR for the matrix operation
T T

GL := ( P2 C + P3 D )/ S

GL is a NPxNY dimensional matrix.

SUBR0UTINE P24KALGNPAR(GL,P2,CEST,P3,D,SINV,NP,NX,NY)
DIMENSION GL(10,10),SINV(10,10),CEST(10,10),P2(10,10),P3(10,10)
DIMENSI0N D(10,10),TEMP(10,10),CT(10,10),P2T(10,10)
DIMENSION DT(10,10),P3T(10,10)
DOUBLE PRECISION GL,SINV,CEST,P2,P3,D,TEMP,CT,P2T,DT,P3T

CALL P15TRANSPOMATRIX(CEST,CT,NY,NX)
CALL P15TRANSPOMATRIX(D,DT,NY,NP)
CALL P15TRANSPOMATRIX(P2,P2T,NX,NP)
CALL PO5MATMUL(P2T,CT,TEMP,NP,NX,NX,NY,NP,NY)
CALL P19MATCOPY(TEMP,GL,NP,NY)
CALL PO5MATMUL(P3,DT,TEMP,NP,NP,NP,NY,NP,NY)
CALL PO4MATADD(TEMP,TEMP,GL,NP,NY)

*
don't multiply with SINV when MEKF is used
use the idendity matrix instead

C 	 CALL PO5MATMUL(TEMP,SINV,GL,NP,NY,NY,NY,NP,NY)
RETURN
END
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SUBROUTINE P25KALGNSTATE(GK,AEST,CEST,P1,P2,P3,D,M,SINV,NX,NY,NP)
DOUBLE PRECISION SINV(10,10),CEST(10,10),P1(10,10),P2(10,10)
DOUBLE PRECISION D(10,10),AEST(10,10),TEMP(10,10),CT(10,10)
DOUBLE PRECISION M(10,10),DT(10,10),P3(10,10),P2T(10,10)
DOUBLE PRECISION GK(10,10)

CALL P15TRANSPOMATRIX(CEST,CT,NY,NX)
CALL P15TRANSPOMATRIX(D,DT,NY,NP)
CALL P15TRANSPOMATRIX(P2,P2T,NX,NP)
CALL P22MMATMUL(GK,M,P3,DT,NX,NP,NP,NP,NP,NY,NX,NY)
CALL P22MMATMUL(TEMP,AEST,P2,DT,NX,NX,NX,NP,NP,NY,NX,NY)
CALL PO4MATADD(GK,GK,TEMP,NX,NY)
CALL P22MMATMUL(TEMP,M,P2T,CT,NX,NP,NP,NX,NX,NY,NX,NY)
CALL PO4MATADD(GK,GK,TEMP,NX,NY)
CALL P22MMATMUL(TEMP,AEST,P1,CT,NX,NX,NX,NX,NX,NY,NX,NY)
CALL PO4MATADD(GK,GK,TEMP,NX,NY)

- - 	 CALL PO5MATMUL(GK,SINV,GK,NX,NY,NY,NY,NX,NY)
RETURN
END
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Subroutine P26P1UPDATE for the matrix operation
T 	 T 	 T T 	 T 	 T

P1 := A P1 A + A P2 M + M P2 A + M P3 M - GK D GK + QS

P1 is a NXxNX dimensional matrix.

SUBROUTINE P26P1UPDATE(AEST,P1,P2,P3,M,S,GK,QS,NX,NY,NP)
DOUBLE PRECISION AEST(10,10),P1(10,10),P2(10,10),P3(10,10)
DOUBLE PRECISION M(10,10),S(10,10),GK(10,10),QS(10,10),GKT(10,10)
DOUBLE PRECISION TEMP(10,10),AT(10,10),MT(10,10),P2T(10,10)

CALL P15TRANSP0MATRIX(AEST,AT,NX,NX)
CALL P15TRANSPOMATRIX(M,MT,NX,NP)
CALL P15TRANSPOMATRIX(GK,GKT,NX,NY)
CALL P15TRANSPOMATRIX(P2,P2T,NX,NP)
CALL P22MMATMUL(P1,AEST,P1,AT,NX,NX,NX,NX,NX,NX,NX,NX)
CALL P22MMATMUL(TEMP,AEST,P2,MT,NX,NX,NX,NP,NP,NX,NX,NX)
CALL PO4MATADD(P1,P1,TEMP,NX,NX)
CALL P22MMATMUL(TEMP,M,P2T,AT,NX,NP,NP,NX,NX,NX,NX,NX)
CALL PO4MATADD(P1,P1,TEMP,NX,NX)
CALL P22MMATMUL(TEMP,M,P3,MT,NX,NP,NP,NP,NP,NX,NX,NX)
CALL PO4MATADD(P1,P1,TEMP,NX,NX)
CALL P22MMATMUL(TEMP,GK,S,GKT,NX,NY,NY,NY,NY,NX,NX,NX)
DO 1 I=1,NX

DO 1 J=1,NX
1 TEMP(I,J)=-TEMP(I,J)
CALL PO4MATADD(P1,P1,TEMP,NX,NX)
CALL PO4MATADD(P1,P1AS,NX,NX)
RETURN
END
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Subroutine P27P2UPDATE for the matrix operation
T

P2 := A P2 + M P3 - GK D GL

P2 is a NXxNP dimensional matrix.

SUBROUTINE P27P2UPDATE(AEST,P2,P3,M,S,GK,GL,NX,NY,NP)
DOUBLE PRECISION AEST(10,10),P2(10,10),P3(10,10)
D0UBLE PRECISION M(10,10),S(10,10),GK(10,10),GL(10,10)
DOUBLE PRECISION TEMP(10,10),GLT(10,10)

*

CALL P15TRANSPOMATRIX(GL,GLT,NP,NY)
CALL PO5MATMUL(AEST,P2,P2,NX,NX,NX,NP,NX,NP)
CALL PO5MATMUL(M,P3,TEMP,NX,NP,NP,NP,NX,NP)
CALL PO4MATADD(P2,P2,TEMP,NX,NP)
CALL P22MMATMUL(TEMP,GK,S,GLT,NX,NY,NY,NY,NY,NP,NX,NP)
D0 1 I=1,NX

DO 1 J=1,NP
1 TEMP(I,J)=-TEMP(I,J)
CALL PO4MATADD(P2,P2,TEMP,NX,NP)
RETURN
END
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SUBR0UTINE P28P3UPDATE(P3,S,GL,NX,NY,NP,LC0UNT)
DOUBLE PRECISI0N P3(10,10),S(10,10),GL(10,10),DELTA
DOUBLE PRECISION TEMP(10,10),TEMP1(10,10),GLT(10,10),DET

delta=1.0D-09
C 	 DO 10 I=1,NP
C 	 10 	 DELTA=DELTA+P3(I,I)
C 	 DELTA=.01/DELTA

CALL P15TRANSPOMATRIX(GL,GLT,NP,NY)
CALL P22MMATMUL(TEMP,GL,S,GLT,NP,NY,NY,NY,NY,NP,NP,NP)
DO 1 I=1,NP

D0 1 J=1,NP
1 TEMP(I,J)=-TEMP(I,J)

CALL PO4MATADD(P3,P3,TEMP,NP,NP)
CALL P13DMATINV(TEMP,P3,NP,DET)
DO 2 I=1,NP

2 TEMP(I,I)=TEMP(I,I)+DELTA
CALL P13DMATINV(P3,TEMP,NP,DET)
RETURN
END
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Subroutine P29PARAEST for the matrix operation

THETA := THETA + GL * ( Y - C X )

SUBROUTINE P29PARAEST(THETA,GL,Y,CEST,XEST,NU,NX,NY,NP)
DOUBLE PRECISION THETA(10),CEST(10,10),GL(I0,10)
DOUBLE PRECISION Y(10),XEST(10),RES(10)

CALL P2OVECTORRESIDUE(XEST,CEST,Y,RES,NX,NY)
CALL PO2MATVEC(GL,RES,RES,NP,NY)
CALL PO4VECADD(THETA,THETA,RES,NP)
RETURN
END

Subroutine P3OSTATEEST for the matrix operation

X :=A*X+B*U+ GK * (Y-CX)

SUBROUTINE P3OSTATEEST(AEST,BEST,XEST,U,GK,Y,CEST,NU,NX,NY,NP)
DOUBLE PRECISION AEST(10,10),BEST(10,10),CEST(10,10),GK(10,10)
DOUBLE PRECISION U(10),Y(10),XEST(10),RES(10)

CALL P2OVECTORRESIDUE(XEST,CEST,Y,RES,NX,NY)
CALL PO2MATVEC(GK,RES,RES,NX,NY)
CALL PUSTATETIMEUPDATE(AEST,XEST,BEST,U,RES,NX,NU)
RETURN
END
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Subroutine P31COMPKAPPA for the matrix operation

PAY := (defintion see Chapter 2.5)
RHO := (defintion see Chapter 2.5)

KAPPA := (defintion see Chapter 2.5)

SUBROUTINE P31COMPKAPPA(NU,NX,NY,NP,AEST,P1,KAPPA,S,SINV,GK,DAEST,
&DCEST,CEST,RHO,AT,CT,GKT,DCT,DAT,LCOUNT,K)
DOUBLE PRECISION AEST(10,10),P1(10,10),PAY(10,10),KAPPA(10,10)
DOUBLE PRECISION S(10,10),GK(10,10),RHO(10,10),GKT(10,10)
DOUBLE PRECISION TEMP(10,10),AT(10,10),DAT(10,10),DAEST(10,10)
DOUBLE PRECISION TEMP1(10,10),KAPT(10,10),CT(10,10),DCEST(10,10)
DOUBLE PRECISION CEST(10,10),DCT(10,10),SINV(10,10)
DOUBLE PRECISION PAY0LD(10,10),SUMSQ,HALFSUMSQ,PAYMULT(10,10,5)

IF ((LCOUNT.EQ.1).AND.(K.EQ.1)) THEN
D0 101 I=1,NP

DO 101 J=1,NX
DO 101 J1=1,NX

PAYMULT(J,J1,I)=0.0
101 	 IF(J.EQ.J1) PAYMULT(J,J,I)=1.0

ELSE
DO 102 I=1,NX

DO 102 J=1,NX
102 	 PAY(I,J)=PAYMULT(I,J,K)

ENDIF

13=0
DO 100 LOOP=1,11

RHO

CALL P22MMATMUL(RHO,DCT,P1,CT,NY,NX,NX,NX,NX,NY,NY,NY)
CALL P22MMATMUL(TEMP,CEST,PAY,CT,NY,NX,NX,NX,NX,NY,NY,NY)
CALL PO4MATADD(RHO,TEMP,RHO,NY,NY)
CALL P22MMATMUL(TEMP,CEST,P1,DCT,NY,NX,NX,NX,NX,NY,NY,NY)
CALL PO4MATADD(RHO P TEMP,RHO,NY,NY)

KAPPA

CALL P22MMATMUL(KAPPA,DAEST,P1,CT,NX,NX,NX,NX,NX,NY,NX,NY)
CALL P22MMATMUL(TEMP,AEST,PAY,CT,NX,NX,NX,NX,NX,NY,NX,NY)
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CALL PO4MATADD(KAPPA,TEMP,KAPPA,NX,NY)
CALL P22MMATMUL(TEMP,AEST,P1,DCT,NX,NX,NX,NX,NX,NY,NX,NY)
CALL PO4MATADD(KAPPA,TEMP,KAPPA,NX,NY)
CALL PO5MATMUL(KAPPA,SINV,KAPPA,NX,NY,NY,NY,NX,NY)
CALL P22MMATMUL(TEMP,GK,RHO,SINV,NX,NY,NY,NY,NY,NY,NX,NY)
DO 2 I=1,NX

D0 2 J=1,NY
2 TEMP1(I,J)=-TEMP(I,J)

CALL PO4MATADD(KAPPA,TEMP1,KAPPA,NX,NY)
CALL P15TRANSPOMATRIX(KAPPA,KAPT,NX,NY)

PAY

CALL P22MMATMUL(TEMP1,KAPPA,S,GKT,NX,NY,NY,NY,NY,NX,NX,NX)
CALL P22MMATMUL(TEMP,GK,RHO,GKT,NX,NY,NY,NY,NY,NX,NX,NX)
CALL PO4MATADD(TEMP1,TEMP,TEMP1,NX,NX)
CALL P22MMATMUL(TEMP,GK,S,KAPT,NX,NY,NY,NY,NY,NX,NX,NX)
CALL PO4MATADD(TEMP1,TEMP,TEMP1,NX,NX)
DO 1 I=1,NX

DO 1 J=1,NX
1 TEMP1(I,J)=-TEMP1(I,J)

CALL P22MMATMUL(PAY,AEST,PAY,AT,NX,NX,NX,NX,NX,NX,NX,NX)
CALL PO4MATADD(PAY,TEMP1,PAY,NX,NX)
CALL P22MMATMUL(TEMP1,DAEST,P1,AT,NX,NX,NX,NX,NX,NX,NX,NX)
CALL PO4MATADD(PAY,TEMP1,PAY,NX,NX)
CALL P22MMATMUL(TEMP1,AEST,P1,DAT,NX,NX,NX,NX,NX,NX,NX,NX)
CALL. PO4MATA1)WPAY.TEMP1_PAY_NX_NX)

DO 111 I1=1,NX
DO 111 I2=1,NX

IF (DABS(PAY(I1,I2)) .GT. 200.)THEN
13=1
ELSE
END IF

111 CONTINUE
DO 113 I1=1,NY

DO 113 I2=1,NY
IF (DABS(RHO(I1,I2)) .GT. 200.)THEN
13=1
ELSE
END IF

113 CONTINUE
DO 112 I1=1,NX

D0 112 I2=1,NY
IF(DABS(KAPPA(11,12)) .GT. 200.)THEN
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13=1
ELSE
ENDIF

112 CONTINUE
IF(I3.EQ.1) THEN
DO 1201 I=1,NX

DO 1201 J=1,NY
1201 	 KAPPA(I,J)=0.0

GOTO 100
ELSE
ENDIF

DO 104 I=1,NX
DO 104 J=1,NY

104	 SUMSQ=SUMSQ+(PAYOLD(I,J)-PAY(I,J))**2
IF(LOOP.EQ.6) HALFSUMSQ=SUMSQ

DO 105 I=1,NX
DO 105 J=1,NX

105	 PAYOLD(I,J)=PAY(I,J)
100 CONTINUE

IF(I3.EQ.1)THEN
GOTO 1000
ELSE
ENDIF

IF SUMSQ IS TO0 LARGE DO NOT UPDATE PAY AND SET KAPPA TO ZERO

IF(SUMSQ.GT.HALFSUMSQ*2.) THEN
DO 201 I=1,NX

DO 201 J=1,NY
201

	

	 KAPPA(I,J)=0.0
ELSE

DO 202 I=1,NX
DO 202 J=1,NX

202 	 PAYMULT(I,J,K)=PAY(I,J)
ENDIF

1000 RETURN
END
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SUBROUTINE P32MMODIFY(NU,NX,NY,NP,AEST,P1,XEST,S,SINV,GK,Y,M,
&THETA,CEST,EPS,LCOUNT)
DOUBLE PRECISION AEST(10,10),AT(10,10),P1(10,10),KAPPA(10,10)
DOUBLE PRECISION S(10,10),GK(10,10),GKT(10,10),RHO(10,10),EPS(10)
DOUBLE PRECISION TEMP(10,10),TEMP1(10,10),DAEST(10,10),M(10,10)
DOUBLE PRECISION DCEST(10,10),CEST(10,10),SINV(10,10),TEMP2(10)
DOUBLE PRECISION Y(10),RES(10),XEST(10),THETA(10),DUMMY
DOUBLE PRECISION CT(10,10),DAT(10,10),DCT(10,10)

CALL P2OVECTORRESIDUE(XEST,CEST,Y,RES,NX,NY)
DO 100 K=1,NP
DO 3 I=1,NX

DO 3 J=1,NY
3 KAPPA(I,J)=0.0D00

CALL P15TRANSPOMATRIX(AEST,AT,NX,NX)
CALL P15TRANSPOMATRIX(CEST,CT,NY,NX)
CALL P15TRANSPOMATRIX(GK,GKT,NX,NY)
CALL U06CDERI(CEST,DCEST,CT,DCT,THETA,K,NU,NX,NY,NP)
CALL U07ADERI(AEST,DAEST,AT,DAT,THETA,K,NU,NX,NY,NP)
CALL P31C0MPKAPPA(NU,NX,NY,NP,AEST,P1,KAPPA,S,SINV,GK,DAEST ,

&DCEST,CEST,RHO,AT,CT,GKT,DCT,DAT,LCOUNT,K)
CALL PO2MATVEC(KAPPA,RES,TEMP2,NX,NY)
DO 1 I=1,NX

1 M(I,K)=M(I,K)+TEMP2(I)

COMPUTE EPS

CALL PO5MATMUL(SINV,RHO,TEMP,NY,NY,NY,NY,NY,NY)
CALL P17MATTRACE(TEMP,NY,DUMMY)
CALL PO5MATMUL(SINV,TEMP,TEMP1,NY,NY,NY,NY,NY,NY)
CALL PO2MATVEC(TEMP1,RES,TEMP2,NY,NY)
DO 2 I=1,NY

2 DUMMY=DUMMY+RES(I)*TEMP2(I)
EPS(K)=5.0D-01*DUMMY

100 CONTINUE
RETURN
END

139



SUBROUTINE P33COMP_XFIL(XEST,XFIL,Y,CEST,P1,P2,D,SINV,NP,NU,NX,NY)
DOUBLE PRECISION GKSTAR(10,10),SINV(10,10),CEST(10,10),P2(10,10)
DOUBLE PRECISION D(10,10),TEMP(10,10),CT(10,10)
DOUBLE PRECISION DT(10,10),P1(10,10),XEST(10),XFIL(10),Y(10)

CALL Pl5TRANSPOMATRIX(CEST,CT,NY,NX)
CALL P15TRANSPOMATRIX(D,DT,NY,NP)

COMPUTE GK

CALL PO5MATMUL(P1,CT,TEMP,NX,NX,NX,NY,NX,NY)
CALL P19MATCOPY(TEMP,GKSTAR,NX,NY)
CALL PO5MATMUL(P2,DT,TEMP,NX,NP,NP,NY,NX,NY)

. 	 CALL PO4MATADD(TEMP,TEMP,GKSTAR,NX,NY)
CALL PO5MATMUL(TEMP,SINV,GKSTAR,NX,NY,NY,NY,NX,NY)

COMPUTE FILTERED STATE ESTIMATE XFIL

CALL P2OVECTORRESIDUE(XEST,CEST,Y,RES,NX,NY)
CALL PO2MATVEC(GKSTAR,RES,RES,NX,NY)
CALL PO4VECADD(XFIL,XEST,RES,NP)

RETURN
END
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Program Package UTILITI

Subroutine U02INITIALIZE
to initialize the true state vector X, the estimated
vectors XEST (state) and THETA (parameter) and the
covariance matrices P1 (state), P2, P3 (parameter).

Last Revision SEPTEMBER 27, 1987 *

SUBROUTINE U02INITIALIZE(NX,NU,NY,X,XEST,THETA,P1,P2,P3)
DIMENSION P1(10,10),P2(10,10),P3(10,10)
DIMENSION X(10),XEST(10),THETA(10)
DOUBLE PRECISION P1,P2,P3,X,XEST,THETA

INITIALIZE REAL STATE VECTOR X, ESTIMATED STATE VECTOR XEST,
PARAMETER VECTOR THETA AND COVARIANCE MATRICES P1, P2, P3

DO 20 1=1,10
DO 30 J=1,10

P1(I,J)=0.0
P2(I,J)=0.0
P3(I,J)=0.0
IF(I.EQ.J) THEN

P1(I,J)=10.0
P3(I,J)=0.08

ELSE
ENDIF

30 	 CONTINUE
20 CONTINUE

DO 100 1=1,10
X(I)=0.0
XEST(I)=0.0
THETA(I)=0.0

100 CONTINUE
RETURN
END
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Subroutine UO3READNOISE
to read in zero mean, Gaussian distributed noise vectors 	 *
v (process-n.), e (measurement-n.) and u (input).

Last Revision AUGUST 20, 1987 *

is

SUBROUTINE UO3READNOISE(NX,NU,NY,V,E,U)
DIMENSION V(NX),E(NY),U(NU)
DOUBLE PRECISION V,E,U

READ (11,*) (V(I),I=1,NX)
READ (22,*) (E(I),I=1,NY)
READ (33,*) (U(I),I=1,NU)

RETURN
END
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Software Package DERIVAT

• Subroutine UO4DDERI
*

• This subroutine generates the matrix D which is the 	 *
derivative of the product CEST*XEST with respect to the

* parameter vector THETA at the current estimate.

SUBROUTINE UO4DDERI(D,CEST,THETA,XEST,NX,NY,NP)
DIMENSION D(10,10),CEST(NY,NX),THETA(NP),XEST(NX)
DOUBLE PRECISION D,CEST,THETA,XEST

• WRITE HERE THE PROGRAM TO COMPUTE THE DERIVATIVE
• OF THE VECTOR CEST.iXEST WITH RESPECT T0 THE
• CURRENT PARAMETER ESTIMATE THETA.

RETURN
END

Subroutine U05MDERI 	 *
*

This subroutine generates the matrix M which is the 	 *
derivative of AEST*XEST + BEST*U with respect to the 	 *

• parameter vector THETA at the current estimate.

SUBROUTINE U05MDERI(M,AEST,BEST,THETA,XEST,U,NU,NX,NY,NP)
DIMENSI0N M(10,10),AEST(NX,NX),BEST(NX,NU),THETA(NP),XEST(NX)
DIMENSI0N U(NU)
DOUBLE PRECISION M,AEST,BEST,THETA,XEST,U

• WRITE HERE THE PR0GRAM TO COMPUTE THE DERIVATIVE
• OF THE VECTOR (AEST*XEST + BEST*U) WITH RESPECT
• TO THE CURRENT PARAMETER ESTIMATE THETA.

RETURN
END

143



• Subroutine U06CDERI

• This subroutine generates the matrix DCEST (DCT) which is the *
• derivative of CEST (CT)with respect to the parameter THETA(k)
• at the current estimate.

SUBROUTINE U06CDERI(CEST,DCEST,CT,DCT,THETA,K,NU,NX,NY,NP)
DOUBLE PRECISION CEST(10,10),DCEST(10,10),THETA(10),CT(10,10)
DOUBLE PRECISION DCT(10,10)

• WRITE HERE THE PROGRAM TO COMPUTE THE DERIVATIVE
• OF THE MATRIX CEST WITH RESPECT TO THE K-TH ENTRY
• OF THE CURRENT PARAMETER ESTIMATE THETA, AS WELL AS
• THE DERIVATIVE OF THE TRANSPOSE OF CEST WITH RESPECT
• TO THE K-TH ENTRY OF THE CURRENT PARAMETER ESTIMATE
• THETA, AS WELL AS

RETURN
END

• Subroutine U07ADERI

• This subroutine generates the matrix DAEST (DT) which is the
• derivative of AEST (DAT) with respect to the parameter THETA(k) *
• at the current estimate.

SUBROUTINE U07ADERI(AEST,DAEST,AT,DAT,THETA,K,NU,NX,NY,NP)
DOUBLE PRECISION AEST(10,10),DAEST(10,10),THETA(10)
DOUBLE PRECISION AT(10,10),DAT(10,10)

• WRITE HERE THE PROGRAM TO COMPUTE THE DERIVATIVE
• OF THE MATRIX AEST WITH RESPECT T0 THE K-TH ENTRY
• OF THE CURRENT PARAMETER ESTIMATE THETA, AS WELL AS
• THE DERIVATIVE OF THE TRANSPOSE OF AEST WITH RESPECT
• TO THE K-TH ENTRY OF THE CURRENT PARAMETER ESTIMATE
• THETA, AS WELL AS

RETURN
END
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Subroutine UO8UPDATE_ABC 	 *
*

• This subroutine updates the matrices A,B,C so that they match *
the new parameter vector THETA.

SUBROUTINE UO8UPDATE_ABC(AEST,BEST,CEST,THETA,NU,NX,NY,NP)
DOUBLE PRECISI0N CEST(10,10),AEST(10,10),THETA(10),BEST(10,10)

• WRITE PROGRAM, THAT TRANSFERS NEW PARAMETER ESTIMATES
K INT0 THE PARAMETER DEPENDENT MATRICES AEST, BEST AND
• CEST.

RETURN
END
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Appendix B

Program Listing RELS

*
:14	 RECURSIVE EXTENDED LEAST-SQUARE ESTIMAT0R 	 *

Last Revision FEBRUARY 24,1987 *

* (algorithm from "Nichtlineare and adaptive Regelungssysteme",
* J. Boecker, I. Hartmann, Ch. Zwanzig, Springer-Verlag Berlin,
• 1986, p.527)

DOUBLE PRECISION A(10,10),B(10,10),C(10,10),LAMDA
DOUBLE PRECISION X(10),P3(10,10),GL(10),THETA(10)
DOUBLE PRECISION PARA(10),U(10),V(10),E(10),Y(10)
DOUBLE PRECISION TEMPVEC(10), TEMPMAT(10,10),TEMP1,Y1
DOUBLE PRECISION TEMPMAT1(10,10),PHI(10),RESIDUAL,V1
INTEGER LCOUNT

• 0PEN CHANNELS

OPEN (UNIT=11,FILE=qBJS8884.NOISE]N_SEQ12 1 ,STATUS= 3 OLD')
0PEN (UNIT=22,FILE='[BJS8884.N0ISE]N_SEQ13',STATUS.'OLD')
OPEN (UNIT=83,FILE=qBJS8884.NOISE]CONST0',STATUS='OLD')
0PEN (UNIT=55,FILE='RELS10',STATUS='NEW)

READ ALL DATA NECESSARY TO RUN THE PROGRAM

DATA A(1,1),A(1,2),A(2,1),A(2,2)/0.5,1.,-.9025,.95/
DATA B(1,1),B(2,1),C(1,1),C(1,2)/0.,1.,1.,0./
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DATA NX,NU,NY,NP/1,1,1,4/
DATA X(1),X(2)/0.,0./
DATA THETA(1),THETA(2),THETA(3),THETA(4)/0. , 0.,0.,0./
DATA PHI/0.,0.,0.,0.,0.,0./
DATA LAMDA,Y1/1.,0./
DO 100 I=1,NP

DO 100 J=1,NP
IF(I.EQ.J) THEN

P3(I,J)=1000.
ELSE

P3(I,J)=0.
ENDIF

100 CONTINUE

THIS IS THE BEGIN OF THE ACTUAL IDENTIFICATION LOOP

L0OP=512
DO 2000 LCOUNT=1,LO0P

C 	 WRITE(*A LCOUNT
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DO 130 I=1,NP
DO 130 J=1,NP

130 	 TEMPMAT(I,J)=PHI(I)*PHI(J)
CALL P22MMATMUL(TEMPMAT1,P3,TEMPMAT,P3,NP,NP,NP,NP,NP,

NP,NP,NP)
DO 140 I=1,NP

DO 140 J=1,NP
140 	 P3(I,J)=(P3(I,J)-TEMPMAT1(I,J)/TEMP1)/LAMDA

IF(LC0UNT.EQ.512) WRITE(*,51) (THETA(I), I=1,NP)
C 	 WRITE(55,50)(THETA(I), 1=1,5)

WRITE(*,50)(THETA(I), I=1,NP)
Y1=Y(1)

2000 CONTINUE

CLOSE(55)
CLOSE(45)
CLOSE(44)
CLOSE(33)
CLOSE(22)
CLOSE(11)
STOP

30 FORMAT(F9.5)
50 F0RMAT(5F6.2)
51 F0RMAT(7F6.2)

END
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Appendix C

Program Listing Noise Generator

C
C 	 RANDOM NUMBER GENERATOR
C

INTEGER*4 SEED

OPEN (UNIT=11,FILE=[BJS8884.NOISE]NOISE',STATUS='NEW)

SEED = 824064364

SIG = 1.0

WRITE(*,*) ' HOW MANY NUMBERS ?

READ(*,_) N

DO 100 I = 1,N

RANDNUM = GAUSSN(SIG,SEED)

100 	 WRITE(11,*)RANDNUM

END

REAL FUNCTION GAUSSN(SIG,SEED)

C
C 	 FOR GOOD RESULTS USE INITIL SEED = 824064364
C

INTEGER*4 SEED

GN0IZ=O.

DO 10 1=1,12

GNOIZ = GNOIZ + URAND(SEED)

10 CONTINUE

GAUSSN=SIG*(GNOIZ-6.0)

RETURN

END

REAL FUNCTION URAND(SEED)

INTEGER*4 B2E15,B2E16,MODLUS,HIGH15,HIGH31,LOW15,L0WPRD,

& 	 MULT1,MULT2,0VFLOW,SEED

DATA MULT1,MULT2/24112,26143/

DATA B2E15,B2E16,MODLUS/32768,65536,2147483647/
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HIGH15 = SEED/B2E16
LOWPRD = (SEED - HIGH15*B2E16)*MULT1
LOW15 = LOWPRD/B2E16
HIGH31 = HIGH15*MULT1 + LOW15
OVFLOW = HIGH31/B2E15

SEED = (((LOWPRD - LOW15*B2E16) 	 MODLUS) +
(HIGH31 	 OVFLOW*B2E15)*B2E16) + OVFLOW

IF (SEED.LT.0) SEED = SEED + MODLUS

HIGH15 = SEED/B2E16
LOWPRD = (SEED - HIGH15*B2E16)*MULT2
LOW15 = LOWPRD/B2E16
HIGH31 = HIGH15*MULT2 + LOW15
OVFLOW = HIGH31/B2E15

SEED = (((LOWPRD - LOW15*B2E16) 	 MODLUS) +
(HIGH31 	 OVFLOW*B2E15)*B2E16) + OVFLOW

IF (SEED.LT.0) SEED = SEED + MODLUS

URAND = FLOAT(2“SEED/256) + 1)/16777216.0
RETURN
END



Appendix D

Properties of the Expected Value
Operator E

Let: E {•} Expected value operator
cx 	 Random variable (unknown)

Random variable (unknown)
c	 Deterministic variable (known)

The properties of E {•} are:

Note: In the cases, where the argument of E {•} is a vector or a matrix, the rules
given above apply to each entry of that vector or matrix.
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Appendix E

Proof of the Matrix Inversion
Lemma

The identity to be proven is:
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Q.E.D.
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