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ABSTRACT

Title of Thesis : Investigation of Different CMOS Sense
Amplifier Configurations by Simulation

Bihju Chiu, Master of Electrical Engineering, 1988

Thesis directed by : Dr. Michael P. Singh.

Assoc. Professor.

Electrical Engineering Department

Sense amplifiers are particularly difficult circuits to

design. In this work, only CMOS sense amplifiers are

considered. There are typically two configurations of CMOS

sense amplifiers : the cross-connected flip flop

configuration and the current-mirror configuration. They are

widely used nowadays with various modifications. These

improved configurations are simulated and optimized with

SPICE package, and their relative performances are also

compared in this thesis.
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CHAPTER ONE INTRODUCTION

Sense amplifiers play a major role in deciding the

performance of semiconductor memories. This is specially so

in the case of modern high density dynamic memories, whose

cells have small storage capacitors and use only a single

transistor. The differential voltage available is only of

the order of 0.1v or less. The sense amplifiers have to

receive the small input voltage and develop a large output

voltage within the shortest possible time so that the access

time for the memory can be made small. Basically, sense

amplifiers are either flip-flops or current mirrors whose

output nodes latch into high and low states by regenerative

action. There may be a second stage of amplification but

invariably the output reaches the data output pad after

passing through a buffer. (Fig.1.1)

As shown in Fig.1.2, B/S lines are directly connected to

the sense amplifier input node1 and node2. Two transistors

Ml and M2 are connected to the dummy cells. B/S lines run

symmetrically on both the sides of sense amplifier,

connecting the drains of the storage transistors. Just two

storage cells are shown in the diagram (represented by C s ).

M3 and M4 are their access transistors.

Read cycle starts by precharging B/S lines to a fixed

value (VPRE). When the address is placed on the memory chip,
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Fig. 1.1



Fig.1.2
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one of the memory cells is selected, say for example, M3 is

selected by the word line (P WS ). When a memory cell is

selected on one side, the dummy cell is selected on the other

side of the sense amplifier. Before selecting, dummy cell is

charged to a reference potential (VREF). If the selected

memory cell Cs has a stored 'ONE' in it, it is transferred to

node1 whereas V REF is transferred to node2. Thus

differential voltages are introduced on the opposite sides of

the sense amplifier and the sense amplifier starts to work.

Once the latching is completed, dummy cells and B/S

lines are precharged to VREF and VPRE for the next cycle.

Nowadays, CMOS technology is used more and more widely

in integrated circuits processing, especially when the

circuits are of large scale or very large scale integration.

Although CMOS does reguire more complex processing, there are

several advantages of using it that are worth the trouble:

1. Very Low Static Power Dissipation :

This is because in a CMOS inverter, the signal inversion

is achieved by turning one of the transistors heavily on and

simultaneously turning the other off. Since these two

devices are in series, only junction leaking currents will be

drawn from the power supply in either of the two stable

states.
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2. High Speed :

This is achieved by the push-pull operation of the

inverter. During switching from logic one to logic zero or

vice versa, the node capacitance is always charged or

discharged through a heavily conducting MOS transistor.

3. High Noise Immunity :

The following characteristics produce a very nearly

ideal transfer characteristic :

(1) Symmetry.

(2) A very high gain in the transition region.

(3) The very high off/on resistance ratio of the
device.

With CMOS technology permeating all IC fabrication,

cells and peripheral circuits in memories have also switched

over to CMOS. One type of CMOS sense amplifier is a simple

cross-connected CMOS flip-flop circuit.(Fig.1.3) Another

type is the current mirror circuit.(Fig.1.4) In practice,

however, these simple circuits are modified and the aim of

this work is to investigate these new configurations in

detail and compare their relative performances. Though these

circuits appear in the literature, they are seldom described

in detail. Normally they are mentioned in a cursory manner.
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The operating conditions such as relative timing between the

top and bottom pull up and pull down pulses and the aspect

ratios used for the transistors are rarely given. In this

work, initially optimal operating conditions and aspect

ratios for various transistors are arrived at. Then the

speed of the these circuits are compared for the same input

and output conditions. Conclusions such as these and others

regarding optimum aspect ratios will be of immense practical

value for memory designers.
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CHAPTER TWO THE CMOS FLIP FLOP SENSE AMPLIFIERS

2.1 The Standard Form

2.1.1 Principle of Operation

Fig.1.3 shows the standard CMOS flip flop sense

amplifier, which consists of 3 NMOS and 3 PMOS transistors.

MP1 and MP2 are PMOS load transistors whose W/L ratios will

be called B LO/ MN1 and MN2 are NMOS driver transistors whose

W/L ratios will be called BDR. MP1, MP2 and MN1, MN2 are two

perfectly matched pairs. MPU and MPD are PMOS pull-up

transistor and NMOS pull-down transistor with Bpu and BPD as

W/L ratio respectively.

CBS is a 1PF load capacitor, V(1) and V(2) are the

voltages at nodes 1 and 2 respectively. PPU and PPD are the

gate clock pulses of MPU and MPD. Both of them have the same

delay time and then change to OV and V DD abruptly. VDD is 5V

from the power supply.

The initial values of V(1) and V(2) are V I1 and VI2 , and

VI1 VI2 .( Let's assume they are 2.4 and 2.5 ) When P PD

rises to VDD , MPD conducts and node 6 is pulled down to the

ground. At this time, MP1, MP2, MN1 and MN2 are all on.

Since VI2 is higher than VI1 , MN1 conducts more than MN2,

V(1) decreases faster than V(2). And because V(1) decreases

faster than V(2), the VGS of MP2 becomes higher than that of
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MP1 and MP2 conducts more than MP1. It makes V(2) to rise

faster than V(1). When V(1) finally reaches Vt, MN2 stops

conducting, V(2) rises much faster until finally it reaches

VDD and V(1) continues to decrease since MN1 is still on,

until it finally reaches a value close to zero.

2.2 The Modified Forms

The bit line capacitance, i.e. the capacitance of the

line which runs all along the memory cell array, loads the

latching nodes. The amplifier must be able to drive these

large capacitances on the two nodes. This severely degrades

the sensing time. Modified versions of the CMOS flip-flop

sense amplifiers avoid this capacitive load. One way is to

insert isolation nodes as shown in Fig.2.1.(McAdams 1986;

Miyamoto 1986; Kimura 1987) When the sense amplifier is

enabled, the isolation transistors are turned off to isolate

the nodes which latch.

Another appproach is to separate the p channel cross-

connected transistors from the n channel cross-connected

transistors with the help of separation transistors as shown

in Fig.2.2 (Furuyama 1986; Fujii 1986; Miyamoto 1987). The

bit line capacitance is connected to the p channel

transistors but the latching nodes at the n channel cross

connections do not face this large capacitance directly.
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2.3 Simulation Results

2.3.1 Clock Timings

Simulations show that for both the modified

configurations, there is not much advantage in relatively

delaying the pull-up and the pull-down clocks. They can be

simulataneous. Though the pull up may be delayed in case of

the first configuration which uses isolation transistors,

delay of pull down clock adds a dead time and makes the

sensing process inefficient. For the relative timing between

turning off the isolation transistor and turning on the flip

flop sense amplifier(pull up and pull down transistors),

again simultaneous operation is seen to be optimum. Turning

off the isolation transistor may be delayed, say, by 1NS with

respect to the pull up and pull down and the performance

slightly improves. Turning the isoltaion transistor much

later or much earlier worsens the performance since the large

capacitance of the bit sense lines impede rapid changes in

the voltages of the latching nodes. For the isolation and

separation transistors, PMOS was seen to give better results

than NMOS. PMOS can take a node to V DD easily.

2.3.2 Voltage Levels 

Optimum common mode input signal is seen to be 5V. This

is expected since higher voltages make the driver transistors
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to conduct faster and the low going node reaches the

threshold voltage earlier. Also greater the differential

input signal, better is the performance and this is obvious.

2.3.3 Aspect Ratios

The NMOS driver transistors, if they have higher aspect

ratios, the latching process will be faster. Simulations

show that increasing W/L greater than 4 does not result in

much superior performance. Therefore the optimum value is

chosen as 4. For the pull up and pull down transistors,

again, higher W/L values will be better since they will take

the nodes closer to the rails quickly. The final V OL and VOH

will also be better due to potential division of transistor

resistances. Increasing above 4 did not result in much

enhanced performance and so 4 is chosen as the optimum. The

load transistors do not play that much role and a minimum

size with W/L=1 seem to work fine. Increasing the size does

not yield much better performance. The isolation and

separation transistors have an optimum W/L of 1. Increasing

the size further does not appreciably alter the performance.

2.3.4 Comparative Performance

For the optimized clock timings, voltage levels and

aspect ratios, the two circuits are simulated for the same

output load capacitance of 0.1PF. Differential input voltage

14



is fixed at 200mV. The SPICE parameters are taken from

(Glasser 1985) and L is 2 um. Fig.2.3 gives the results.

The first configuration with isolation transistor is clearly

the winner. Latching process is completed much earlier. The

second configuration with separation transistors has added

resistances in the main paths and that will be causing

additional delays.
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CHAPTER THREE THE CURRENT MIRROR CMOS SENSE AMPLIFIERS

3.1 The Standard Form

3.1.1 Principle of Operation

Fig.1.4 is a standard current mirror sense

amplifier. (Donoghue 1985; Yamamto 1985; Kobayashi 1985;

Kayano 1986) It is also used as front-end in operational

amplifiers. It detects voltage difference, rather than

absolute values.

The current mirror sense amplifier consists of two PMOS

and three NMOS transistors. MP1 and MP2 are PMOS load

transistors with B LO as W/L ratios, MN1 and MN2 are NMOS

driver transistors whose W/L ratios will be called B DR later.

MPD is NMOS pull-down transistor with BPD as W/L ratio.

MP1, MP2 and MN1, MN2 are two perfectly matched

pairs. (Annaratone, 1986) CBS1 and CBS2 are 1PF load

capacitors. V(1) and V(2) are the voltages at node 1 and 2

respectively. PPD is the gate clock pulse of MPD. V DD is 5V

from the power supply. The initial values of V(1), V(2) and

V(5) are V I1 , V I2 and VI5 .

The bit line is connected to node 1, and its reference

value is connected to node 2. Initially, node 7 is OV, M PD
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is off. Before it begins to work, node 1, 2 and 5 are

precharged to fixed values. After V(7) is pulled up, the

circuits starts to work. If VI2 is lower than VI1. MN2

conducts poorer, and V5 begins to charge up and approaches to

VOH. If VI2is higher than VI1, MN2 conducts better than

MN1, V5 starts to discharge, and finally reaches a value near

zero.

This kind of circuit is called current mirror amplifier

because when both load transistors are in saturation mode,

the ratio of the current flowing through the drains of both

loads is equal to the ratio of their beta values. If the

beta value of both transistors are the same, the current

flowing through both transistors will also be equal.

If VI1 is higher than V I2 , the current flowing through

MN1 will be duplicated to MP2. The current flowing through

MN2 is smaller than that of MN1 and so the extra current will

flow through node 5 to charge up C 5 .

When VI1 is smaller than VI2, the current flowing

through MN1 is smaller and is duplicated to MP2. The current

flowing through MN2 is larger than that of MN1 and so C 5 will

be discharged. Thus this circuit can work better with the

help of current mirror load than a normal differential

amplifier which does not have the current mirror action.

18



3.1.2 Simulation Results For The Standard

Current Mirror Circuit :

Voltage Levels :

The optimum precharged voltages for V 1 , V2 and V5 are

decided by the following procedure : at first, common mode

voltage of VI1 and VI2 is changed, V5 is not precharged so

the optimum DC output value can be decided by DC analysis.

The best output is decided from the difference of V 5 (high)

and V5 (low) when VI1. > VI2 and VI1 < VI2 . After deciding the

optimum VI1 and VI2 , different V5 initial values are assigned

and optimum value for V PRE for V5 is decided. Then, the

procedure continues to find the optimum value of other

parameters such as aspect ratios. After aspect ratios are

decided, VII., V12 and VI5 are optimized again. For this

problem, the best value of V 15 turns out to be 2.7V and the

common mode of V II. and V12 is 0.7V.

The optimum common mode level of VI1 and VI2 can be

expained as follows

The optimum value is about the Vt(threshold voltage) of

NMOS transistor. This makes the driver transistor with higher

initial value to be nearly 'ON' and the other to be 'OFF'.

With only one of the drivers 'ON', C 5 is either charged up by
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MP2 or discharged by MN2. The speed is quicker this way than

being charged up by MP2 and discharged by MN2 at the same

time. That will happen if VI1 and VI2 are both above Vt.

Thus the discrimination of the input voltages begins early if

the input voltages are on either side of Vt.

Aspect Ratios :

The NMOS driver transistors, if they have higher W/L

ratios, the performance will be better. Simulations show

that increasing W/L greater than 22 does not result in much

superior performance. Therefore the optimum value is chosen

as 22.

For the pull down transistor, higher W/L ratio will be

better, since it makes the common node closer to the ground

rail quickly. After W/L ratio becomes greater than 4, there

is no much change of output, so the optimum value of B PD is

4.

For PMOS load transistors, however, if W/L is greater

than one, the higher values give worse results; If W/L is

smaller than one, the smaller values give better results,

although there is no much change. So the optimum value of

BLO is one.

3.2. The Modified Configurations :

20



Fig. 3.1



22

Fig. 3.2



Fig. 3.3
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Fig.3-1,3-2,3-3 and 3-4 show four different types of

modified forms derived from the standard circuit.

3.2.1 Complementary Form

3.2.1.1 Schematic

Fig.3-1 shows the structure of one modified form from the

standard circuit.(Furuyama 1987; Ohtsuka 1987) It is almost

the inverse of the standard one with PMOS pull-up transistor

and the bit lines connected to the gate of the PMOS 'load'

transistors (which act as drivers).

3.2.1.2 Simulation Results :

3.2.1.2.1 Voltage Level :

With the same procedure as for the standard form,

simulations reveal that the common mode of VI 1 and VI 2 is

about 4.2V, and VI 5 is 4.9V. The voltage level is much

higher than that of the standard form.

The optimum common mode value of VI 1 and VI 2 can be

explained as follows :

The optimum value can make the V GS value of both PMOS
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transistors about Vt. This makes one of the 'loads' (drivers)

to be nearly 'ON' and the other to be 'OFF' and let C 5 to be

either charged up by MP2 or discharged by MN2. This will

initiate discrimination earlier and speed up the process.

Aspect Ratios

The NMOS 'driver' transistors, (which act as loads) if

they have lower W/L ratios, the performance will be better.

But the NMOS transistors have to support the heavy currents

flowing from the top PMOS transistors. Simulations show that

increasing W/L greater than 12 does not result in much

superior performance. Therefore the optimum value of BDR is

chosen as 12.

For the pull-up transistor, higher W/L ratio will be

better, the reason being the same as the standard form. The

optimum value of BPD is 4.

For the PMOS 'load' transistor which act as drivers

higher W/L value can give better performance. The optimum

value of B LO is 24.

3.2.2 Circuits With Level Shifting Transistors

3.2.2.1 Schematic

26



Fig.3-2 and 3-3 show two other modified current mirror

sense amplifiers. (Matsui 1987) They are almost the same as

the standard form but with a pair of level shifting

transistors interposed either above or below the driver

transistors.

In Fig.3-2, the level shifting transistors are added

between PMOS load and NMOS driver transistors, while in

Fig.3-3, the level shifting transistors are added below the

NMOS driver transistors.

3.2.2.2 Simulation Results :

3.2.2.2.1 Voltage Level :

With the same procedure before, the common mode of V II

and V12 of both configurations are around 0.7V, i.e. the same

as that of the standard form. This result is rather

unexpected since the presence of extra transistors is said to

shift the common mode voltage. (Matsui 1987) The V 15 of

Fig.3-2 is 3.1V, and that of Fig.3-3 is 2.0V. The precharge

level of the output node seems to get shifted. However, the

performance did not change significantly with V15.

3.2.2.2.2 Aspect Ratios :

For the NMOS driver transistors of both circuits. if
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they have higher W/L ratio, the performance will be better.

And the optimum value of BDR is 22, which is the same as the

standard form.

For the pull-down transistors of both circuits, again,

higher W/L is better and optimum value is about 4.

For the PMOS load transistors of both circuits, neither

higher nor lower W/L gives better performance and so the

optimum value of both are one.

For the level shifting transistors of Fig.3-2, neither

higher nor lower W/L ratio gives better performance. So the

optimum value is one. For the circuit of Fig.3-3, if W/L

ratio of the level shifting transistor is higher, the

performance is better. Optimum value is around 4. This may

be due to the fact that the bottom transistors need to pass

the large currents that are possible with the drivers.

Simulations also showed that NMOS is better than PMOS for the

level shifting transistors. This is so because NMOS is good

for pulling down. PMOS is good for pulling up a node. PMOS

when present in the discharge path (to the ground ) will

offer higher resistance and slow down the process.

3.2.3 Circuit With Additional Transistors Across The Loads

3.2.3.1 Circuit Diagram
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Fig.3-4 shows another type of modified circuit.(Wada

1987) It is the same as the standard form but there is

another pair of PMOS load transistors with their gates

connected to the bit line or the inverted bit line. The

additional two PMOS transistors can help the circuit to get

additional gain. For example, when V I1 is greater than VI2 ,

the current flowing through MN1 increases and that of MTR1

decreases (its gate voltage being higher). This causes the

current flowing through MP1 to increase. This increased

current is duplicated by MP2. V 12 being lower, makes the

current flowing through MN2 to decrease. The current

charging up C 5 is much bigger than that of the standard form

and thus there is additional gain.

3.2.3.2 Simulation Results :

3.2.3.2.1 Voltage Level

With the same procedure as before, the common mode value

of VI1 and VI2 is 2.6V, and precharge value for V I5 is 2.3V.

3.2.3.2.2 Aspect Ratios

For the NMOS driver transistors, neither higher nor

lower W/L ratios would worsen the result. So the optimized

value of B DR is one. This result is in complete contrast
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with the other modified forms.

For the pull down transistor, again, there is no

advantage in increasing or decreasing the W/L ratio. The

optimum value of B PD is one. This again is in contrast to

previous results.

For the regular PMOS load transistor, if W/L ratio is

higher, the performance is a little bit better, but it makes

not much difference. So the optimum value of B LO is one.

For the additional PMOS load transistor pair, neither

higher nor lower W/L ratio will make the performance better.

So the optimum value is one. The above results are

surprising. This means that this configuration will occupy

the least area. The performance with smaller area may be

attributed to the extra gain as explained in 3.2.3.1.

3.2.4 Comparative Performance :

Fig.3-5 shows the performance of the standard and

modified sense amplifiers with their optimized parameters.

3.2.4.1 Output Level :

It appears that the differential output voltage of the

following sense amplifiers : (1) The standard form, (2) The
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level shifting forms and (3) The complementary form are

around 5V, and that means the V(5) (high) can approach 5V, and

V(5) (low) can approach OV. So they are good enough. But the

performance of the circuit with additional transistors across

the loads is not so good. It is about 3.0V, which means the

V5 (high) can only approach about 4V, and V 5 (low) can only

approach about 1V.

3.2.4.2 Switching Speed :

It appears that all these circuits have almost the same

speed, while the speed of the circuit with level shifting

transistors between driver and pull-down transistor is a

little slower than others. The reason may be the additional

resistance in the discharge path.

Size :

Table 3-1 shows that the size of the circuit with

additional transistors across the loads is the smallest. It

can still have the same speed as others in approaching the

final values.

Initial Levels :

Table 3-1 shows another important comparison of V I1 , V I2

and VI5 . Circuits in the following : (1) The standard form
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and (2) The level shifting form, have the same low VI1 and

VI2. While VI5 in the standard form is 2.7V, in the circuit

with level shifting transistors between the loads and

drivers, it is 3.1V and in the circuit with level shifting

transistors between the drivers and pull-down transistor, it

is 2.0V.

The V111 VI2 and V I5 of the circuit in the complementary

form is the highest, and those of the circuit with additional

transistors across the loads is around the middle

value(2.5V).
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CHAPTER FOUR CONCLUSION

Two modified CMOS flip flop sense amplifier

configurations are investigated in this work. Optimum

operating conditions and aspect ratios are obtained and the

performances of the two circuits are compared for the same

input and output conditions. The sense amplifier that uses

the isolation transistors outperforms the other configuration

that uses the separation transistors. The separation

transistors, though they are ON, add some delay and

resistance and the latching process gets slightly delayed.

Also the large capacitances of the bit sense lines are not

fully isolated from this circuit during the latching process.

Therefore the performance is expected to be inferior to the

other configuration.

In case of current mirror sense amplifiers, five

different configurations are investigated in detail and their

optimized parameters are obtained. The optimum common mode

input values of the standard form and the complimentary form

make the VGS of the drivers about Vt. This makes only one

driver 'ON' at one time and can speed up the charging or

discharging action of the load capacitance. The circuit with

additional PMOS transistors across the load transistors has

the smallest area. Therefore any one wanting the minimum

area should go for this one. Though V OH and VOL, are not as

good as those of others, this circuit can be used as the
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first stage. The second stage can take care of the final

high and low values.

Not all simulations have been throughly explained and

this is a fertile field of investigation for future

researchers.
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APPENDIX

CMOS2/ALL SENSE AMPLIFIER
VDD 4 0 5V
V7 7 0 5V
C501 501 0 0.1PF
C502 502 0 0.1PF
C503 503 0 0.1PF
C504 504 0 0.1PF
C505 505 0 0.1PF
C506 506 0 0.1PF
C507 507 0 0.1PF
C508 508 0 0.1PF
C509 509 0 0.1PF
C510 510 0 0.1PF
CLA101 101 0 1PF
CLA201 201 0 1PF
CLA102 102 0 1PF
CLA202 202 0 1PF
CLA103 103 0 1PF
CLA203 203 0 1PF
CLA104 104 0 1PF
CLA204 204 0 1PF
CLA105 105 0 1PF
CLA205 205 0 1PF
CLA106 106 0 1PF
CLA206 206 0 1PF
CLA107 107 0 1PF
CLA207 207 0 1PF
CLA108 108 0 1PF
CLA208 208 0 1PF
CLA109 109 0 1PF
CLA209 209 0 1PF
CLA110 110 0 1PF
CLA210 210 0 1PF
MN101 301 101 601 601 N L=2U W=44U
MN201 501 201 601 601 N L=2U W=44U
MN102 302 102 602 602 N L=2U W=2U
MN202 502 202 602 602 N L=2U W=2U
MN103 803 103 603 603 N L=2U W=44U
MN203 903 203 603 603 N L=2U W=44U
MN104 304 104 804 604 N L=2U W=44U
MN204 504 204 904 604 N L=2U W=44U
MN105 305 305 0 0 N L=2U W=24U
MN205 505 305 0 0 N L=2U W=24U
MN106 306 106 606 606 N L=2U W=44U
MN206 506 206 606 606 N L=2U W=44U
MN107 307 107 607 607 N L=2U W=2U
MN207 Sn7 207 607 607 N L=2U W=2U
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MN108 808 108 608 608 N L=2U W=44U
MN208 908 208 608 608 N L=2U W=44U
MN109 309 109 809 609 N L=2U W=44U
MN209 509 209 909 609 N L=2U W=44U
MN110 310 310 0 0 N L=2U W=24U
MN210 510 310 0 0 N L=2U W=24U
MNA03 303 4 803 603 N L=2U W=2U
MNB03 503 4 903 603 N L=2U W=2U
MNA04 804 4 604 604 N L=2U W=8U
MNB04 904 4 604 604 N L=2U W=8U
MNA08 308 4 808 608 N L=2U W=2U
MNB08 508 4 908 608 N L=2U W=2U
MNA09 809 4 609 609 N L=2U W=8U
MNB09 909 4 609 609 N L=2U W=8U
MP101 301 301 4 4 P L=2U W=2U
MP201 501 301 4 4 P L=2U W=2U
MP102 302 302 4 4 P L=2U W=2U
MP202 502 302 4 4 P L=2U W=2U
MPA02 302 102 4 4 P L=2U W=2U
MPB02 502 202 4 4 P L=2U W=2U
MP103 303 303 4 4 P L=2U W=2U
MP203 503 303 4 4 P L=2U W=2U
MP104 304 304 4 4 P L=2U W=2U
MP204 504 304 4 4 P L=2U W=2U
MP105 305 105 605 605 P L=2U W=48U
MP205 505 205 605 605 P L=2U W=48U
MP106 306 306 4 4 P L=2U W=2U
MP206 506 306 4 4 P L=2U W=2U
MP107 307 307 4 4 P L=2U W=2U
MP207 507 307 4 4 P L=2U W=2U
MPA07 307 107 4 4 P L=2U W=2U
MPB07 507 207 4 4 P L=2U W=2U
MP108 308 308 4 4 P L=2U W=2U
MP208 508 308 4 4 P L=2U W=2U
MP109 309 309 4 4 P L=2U W=2U
MP209 509 309 4 4 P L=2U W=2U
MP110 310 110 610 610 P L=2U W=48U
MP210 510 210 610 610 P L=2U W=48U
MPD1 601 7 0 0 N L=2U W=8U
MPD2 602 7 0 0 N L=2U W=2U
MPD3 603 7 0 0 N L=2U W=8U
MPD4 604 7 0 0 N L=2U W=8U
MPD5 605 0 4 4 P L=2U W=8U
MPD6 606 7 0 0 N L=2U W=8U
MPD7 607 7 0 0 N L=2U W=2U
MPD8 608 7 0 0 N L=2U W=8U
MPD9 609 7 0 0 N L=2U W=8U
MPD10 610 0 4 4 P L=2U W=8U
.MODEL N NMOS LEVEL=3 RSH=0 TOX=225E-10 LD=0.15E-6
+ XJ=0.21E-6 CJ=1.0E-4 CJSW=1.25E-10 U0=-650 VT0=0.628
+ CGS0=2.3E-10 CGDO=2.3E-10 NSUB=3E15
+ THETA=0.06 KAPPA=0.4 ETA=0.14 VMAX=17E4
+ PB=0.7 MJ=0.5 MJSW=0.3 NFS=1E10
.MODEL P PMOS LEVEL=3 RSH=0 TOX=225E-10 LD=0.4E-6
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+ XJ=0.6E-6 CJ=6E-4 CJSW=3.75E-10 U0=220 VT0=-0.668
+ CGS0=6.2E-10 CGDO=6.2E-10 TPG=-1 NSUB=5E15
+ THETA=0.03 KAPPA=0.4 ETA=0.06 VMAX=17E4
+ PB=0.7 MJ=0.5 MJSW=0.3 NFS=1E10
.IC V(101)=0.8V V(201)=0.6V V(501)=2.7V
.IC V(102)=2.7V V(202)=2.5V V(502)=2.3V
.IC V(103)=0.8V V(203)=0.6V V(503)=3.1V
.IC V(104)=0.8V V(204)=0.6V V(504)=2.0V
.IC V(105)=4.3V V(205)=4.1V V(505)=4.9V
.IC V(106)=0.6V V(206)=0.8V V(506)=2.7V
.IC V(107)=2.5V V(207)=2.7V V(507)=2.5V
.IC V(108)=0.6 V(208))=0.8V V(508)=3.1V
.IC V(109)=0.6 V(209)=0.8 V(509)=2.0V
.IC V(110)=4.1 V(210)=4.3 V(510)=4.9V
.WIDTH OUT=80
.TRAN 2NS 100NS
.PRINT TRAN V(501) V(502) V(503) V(504) V(505)
.PRINT TRAN V(506) V(507) V(508) V(509) V(510)
.PRINT TRAN V(501,506) V(502,507) V(503,508) V(504,509)
+ V(505,510)
.PLOT TRAN V(501) V(502) V(503) V(504) V(505) (0 5)
.PLOT TRAN V(506) V(507) V(508) V(509) V(510) (0 5)
.PLOT TRAN V(501,506) V(502,507) V(503,508) V(504,509)
+ V(505,510) (0,5)
.END
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