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ABSTRACT

Title of Thesis: A SILICON PHOTODIODE ARRAY FOR
SOFT X-RAY SENSING

CHIH-TE Hu, MASTER OF SCIENCE IN ELECTRICAL ENGINEERING, 1988

Thesis directed by: W. N. Carr, Ph.D.
Professor

An array of 30 x 30 sensing cells including logic within each cell and a self-

scan address circuit are described. A unique scintillation technique is used to

increase the threshold sensitivity 60dB for X-ray photon sensing beyond that

obtainable with conventional photodiode sensors. Simulations for the sensing

cell and some additional logic elements are based on SPICE version 2G5 and

HILO 3. Worst case analysis includes variations in threshold voltage VT p

and VT N for the CMOS circuit components. The final CMOS chip dimension

using MOSIS 1.2 micron rules is 10mm x 10mm base on the 80μm x 80 tan

sensing cell size.
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Chapter I
INTRODUCTION

X-ray sensors in two dimensional arrays are needed for applications in production

robotics, computer tomography, crystallography, astronomy, nondestructive quality

analysis and many others. The precise requirements for X-ray detectors in these fields

vary. However, the need for high spatial resolution, high sensitivity and signal con-

version linearity are generally very desirable.

In these applications, the use of a solid detection medium is of great advantage, be-

cause the detector dimensions can be kept much smaller than the equivalent gas filled

detector. Furthermore, solid state detectors have superior energy resolution, rela-

tively fast timing charateristics and variable effective thickness. This thesis focusses

on silicon devices since the development of silicon processing technology has reached a

very high standard of sophistication. Also, it is very likely that the cost/performance

ratio of silicon technology will continue decreasing in the future.

The use of silicon as an X-ray array sensor began in the 1960's[Chester 69]. Early

advances in this technology used a scanning electron beam for readout of the residual

charge on each diode. Subsequently, self scanning devices with higher resolution and

better sensitivity have been developed [Kosonocky 85, Tsoi 85, Theuwissen 86], but

the cost for fabrication is expensive.

The sensor described in this thesis is named SPAX (Silicon Photodiode Array for soft

X-ray). Unlike most of the manufactured silicon array sensors which measure average

photon current, SPAX measures the intensity of incident X-ray flux by counting indi-

vidual photons. Corresponding to each incident photon, instant charge is collected on

a reverse biased PN junction diode. An in-cell pulse amplifier having a voltage gain
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of 500 is used to amplify and shape the signal before it is sent to a ripple counter.

In order to obtain the maximum sensitivity and accuracy, the area of PN junction

diodes has to be maximum. Thus the principle challenge in designing the pixels is

to minimize the size of the in-cell amplifier without greatly decreasing its gain and

sensitivity.

A theoretical analysis of X-ray photon interacting with the silicon lattices will be pre-

sented. Circuit simulations, worst case analysis and suggested layout will be detailed

in latter chapters.
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Chapter II
BACKGROUND THEORY

Although many possible interaction mechanisms are known for X-ray in matter,

only three major types play important role in radiation measurments: photoelectric

absorption, Compton scattering and pair production. In pair production process, an

incident photon undergoes an electromagnetic interaction with an atomic nucleus and

is converted into an electron-positron pair. This process can take place only if the

photon energy exceeds a threshold value of 1.022MeV which is twice the rest mass en-

ergy of an electron. In Compton scattering, the incoming photon is deflected through

an angle with respect to its original direction, and transfers a portion of its energy to

the electron. The probability of Compton scattering per atom of the absorber depends

on the number of electrons available as scattering targets. It increases linearly with

atomic number. However, for soft X-rays, the Compton effect is negligible compare

to photoelectric absorption in silicon. Therefore, the major interaction mechanism

for soft X-ray in silicon is photoelectric absorption.

2.1 Absorption interaction

As radiation penetrates matter, particles or photons may be removed from the in-

cident beam either by absorption interaction or by those scattering interactions. In

general, radiation intensity decreases with distance into the interaction material. The

intensity of radiation at distance x is described by the equation:

where /(0) is the original incident radiation intensity, a is the absorption coefficient.

For 20KeV X-ray absorption in silicon, a is 10 at room temperature as illustrated in

figure 1.
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X-RAY PHOTON ENERGY (KeV)

Figure 1: The absorption coefficient for silicon to different energy incident X-ray,
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Figure 2: The absorption percentage of different intensity X-ray flux vs the depth
into silicon
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charge collection efficiency is unity, the charge collected within a PN junction is given

approximately, by

where E is the X-ray photon energy, n is the number of ion pairs formed and q refers

to charge of one sign only.

2.3 Charge collection

If this amount of charge is integrated, a voltage pulse is obtained whose magnitude v

is given by

where C is the total capacitance between electrodes.

The amplitude of v is inversely proportional to C when X-ray photon energy is speci-

fied. In this thesis, PN junctions are used to collect the charge generated by absorbed

X-ray photons. If an external reverse bias is applied across the diode, as shown in

figure 3, the carriers will be swept rapidly to electrodes by the electric field. Almost

all of the applied potential extends across the depletion layer, which acts as the sen-

sitive volume. The square of the depletion width Wd is proportional to the reverse

bias across the junction and inversely proportional to the impurity concentration of

the bulk:

where Vbi is the build-in potential of the PN junction, εs is the dielectric constant of

silicon times eo and NB is the impurity concentration of bulk.

Due to the diffusion of the minority carriers, which will also contribute to collected

charge, the actual charge collecting region W in one dimension, includes the thickness
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Figure 3: Electrons-hole pairs created by an incident X-ray photon.

of the depletion region plus the diffusion length L of the minority carriers outside the

depletion layer.

In general, NB is about 5 x 10"cm-3 . When a reverse bias of -9V is applied to

this abrupt junction, the depletion width is 4.85μm. Corresponding to an 1000μm2

area, the capacitance is 0.02pF. From equation 8, the potential difference across the

junction is 38mV for a 20KeV incident X-ray photon.
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Chapter III
COMPARISON WITH

ALTERNATIVE IC TECHNOLOGIES

Solid state imagers can be employed in three basic X-ray imaging topologies, as

illustrated in figure 5 namely: (1) direct detection (2) X-ray visible light photon con-

version (3) X-ray photon-electron conversion.

3.1 Direct detection

Most solid-state imagers are of the SSPA (Self-Scanned Photodiode Array) type or

CCD (Charge Coupled Device) type. Although they are used mainly for detecting

visible light, several publications using these already available devices in X-ray detec-

tion have been reported[Gamble 79, Koppel 76]. The advantages of these devices are

good resolution, good linearity and fast response. However, they often suffer from

radiation damage and may exhibit increases in dark current which is a consequence

of the direct exposure of scanning circuit and amplifying circuit. Direct detection

devices are seldom used for measuring low intensity X-ray flux since their receiving

surface is too small and the depletion region is too thin to obtain high sensitivity.

3.1.1 Self scanned photodiode array:

In SSPA, as shown in figure 6, the fabrication compatability to general integrated

circuits is advantageous. Its maximum data rate is limited by the speed of the shift

registers, and is typically 3-4 MHZ. A major problem with SSPA design is the com-

plexity of circuit. Additional amplifier are usually needed to compensate the signal

level drop due to the line capacitance on the common output line.

Taniguchi et al [Taniguchi 84] reported their SSPA on which peripheral circuitry was

protected with Pb foil. This device showed less increase in dark current and very

good output/input linearity.



Figure 5: Three basic X-ray imaging topologies: (a) direct detection (b) X-ray visible
light photon conversion (c) X-ray photon-electron conversion.
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Figure 6: A self scanned photodiode array. [Garr 80]
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Figure 7: Crosstalk (Blooming) due to lateral diffusion of minority carriers.[Tsoi 85]

3.1.2 Charge coupled device:

Due to the higher packing density obtainable for CCDs compared with SSPAs, most

large area imager with resolution over 2000 pixels are ccDs[Kosonocky 85, Tsoi 85j.

Unlike photodiodes, CCD structures do not have diffused wells at the interaction area.

Hence there is no ready supply of minority carriers to neutralized the charge in the

depletion region. The depletion region extends much further into the substrate and

most of the potential difference between the gate and substrate is dropped across this

depletion layer. This feature enhances the collection effeciency of CCDs. But also be-

cause of this feature, A well known phenomenon called "crosstalk" occurs. Crosstalk

is cause by the lateral diffusion of minority carriers optically generated below the

depletion layer as shown in figure 7. It causes bloomings of the image and imposes

a serious limit on dynamic amplitude range and spatial resolution of CCDs for X-ray

detection. Recently, Tsoi et al have demonstrated a design for deep depletion CCD
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imagers fabricated on high-resistivity substrates using effective channel stops that

greatly reduce the crosstalk problem, and can be used for 1-10KeV X-ray detection.

3.1.3 Resistive stripe detector:

A position-sensitive detector without scanning circuitry was reported by Geber et al

[Gerber 77]. It consists of stripes of silicon or germanium for which one contact is

made to have a significant series resistance. As shown in figure 8 the position signal

P is obtained by resistive charge division from the back layer. The E signal is propor-

tional to the energy absorbed from the incident radiation in the active volume. Signal

conditioning using an ADC is normally required to obtain the spatial data output

from this detector. Figure 9 shows the schematic of a two dimensional resistive stripe

detector. That the resolution of the device is approximately twice the width of a

stripe. With the advance in lithography, this detector is very promising in ultrahigh

resolution X-ray imaging.

3.2 X-ray visible light photon conversion

A combination of a fluorescent material and glass fibers films have been used with the

SSPA substrate to transform the X-ray into visible light. Figure 10 shows a typical

structure of such a device which can exhibit increased overall sensitivity to X-ray

sources. In these devices, radiation damage of the detector can be eliminated by

shielding peripheral circuit from X-ray bombardment. The decay time of phosphor

films may in some applications be the limiting factor in the speed of the operation.

Gamble et al [Gamble 79] have successfully demonstrated the use of a cooled Reticon

RL512 (512 pixels) linear array, coupled to a 2:1 fiber-optic demagnifier with ZnS(Ag)

phosphor on the incident interface. A resolution of 50μm was reported. The quan-

tum efficiency of this device for electron-hole pair production within a photodiode is
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Figure 8: The principle of a resistive stripe detector

Figure 9: Schematic of a two dimensional resistive stripe detector
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Figure 10: Apparatus of a X-ray visible light photon conversion system

approximately 75%. Consequently, about 110 electron charges are depleted across a

photodiode for each absorbed incident 8KeV X-ray photon.

To further shrink the Gamble et at device, one possible solution is depositing a thick

scintillation film directly on the passivation layer of a photodiode array. The proposed

concept is further detailed in Appendix A.

3.3 X-ray photon-electron conversion

An electron-bombarded silicon imager has been used mainly in visible or infrared

low-light level systems [Brown 76]. Very few such devices are available, with the ex-

ception of the "Digicon" manufactured by Electronic Vision. There still seem to be

a number of operational problems associated with these devices; and they are likely

to remain expensive devices, manufactured individually for particular application.
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Chapter IV
DEVICE HIERARCHY

AND CIRCUIT DESCRIPTION

Integrating analog and digital functions together on one chip has become feasi-

ble. In many cases very high performance analog functions are much required and a

greater number of moderate performance analog functions are preferred. Thus com-

bined analog and digital CMOS is in the center of interest. SPAX is designed using a

top down approach. The root-level block diagram is shown in figure 11. As shown,

the signals required to interface to external circuits are: (1) Clock pulse input (2)

Four-bit data and counter reset outputs (3) End of line output "EOL" and End of

frame output "EOF" (4) Power supply inputs: +5V, -6V to -12V, OV .

The whole circuit is divided into three modules:

4.1 Addressing logic

Addressing logic contains a row address shift register and a column address shift reg-

ister. In most digital circuits, shift registers are composed of level-restoring inverters

coupled by pass transistors. With the movement of data controlled by applying two

non-overlap clock pulses to pass transistors. Besides the need of non-overlapping

clock pulses, switching noises become very annoying when these shift registers are

interfaced to analog circuits. The row (column) register in SPAX, as shown in figure

12, is constructed by a series of D type flip-flops. The outputs of these D flip-flops are

inverted by open drain transistors. By tieing all drains to a pull-up resistor, a multi-

ple input NOR gate is formed. Not only does this configuration provide an automatic

power-up reset but also it forces a circulated transfer of a logic "High" signal in the

shift register. Figure 13 details the circuit of a D flip-flop without the reset function.

It consists of two latches clocked 180 degrees out of phase to provide master-slave
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operations.

4.2 Photodiode array

This array consists 30 x 30 cells which are sequentially selected by the row and cloumn

address shift registers. The negative power supply line is required in this module.

Output signals generated by each cell are sent to the counter module. In each cell,

a source-couple pair, two inverters, two photon sensing diodes and control logic are

included. Simulation shows current required for each cell is 3.55mA when the cell is

selected. Quiescent power for each cell is 17.8mW. The completed circuit diagram of

one cell is demonstrated in figure 14.

4.2.1 Photodiodes and the discharge circuit:

Two identical PN junction diodes are reverse biased to obtain a maximum depletion

layer width. Using two diodes instead of one diode with twice the area increases the

sensitivity. As explained in chapter II, the total capacitance C across these diodes

directly effects the charge signal to be sent to the following amplifier. The signal volt-

age will have a maximum when C (drain capacitance in discharge transistors Ct plus

junction capacitance Cd plus amplifier input capacitance Ca ) is minimum. Without

decreasing the interaction area, two separated diodes give us higher signal voltage

at both amplifier inputs. Considering the case of no discharge transistors, C will

be discharged very graduately due to the leakage current of the diodes. This sig-

nificantly increase the deadtime of the devices. A handshake technique is developed

to overcome this difficulty. In figure 14, when the voltage level on the gates of M99

and M98 which is feedback from the counter module, exceeds the theshold voltage of

discharge transistors, they clamp the diodes to OV rapidly. The pulse width obtained

from SPICE is 60nsec on the cell output line.
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4.2.2 Inverters:

The DC transfer characteristic of both inverters, which are primary factors in shap-

ing the output waveforms, are shown in figure 16 and figure 17. The voltage gain of

the first stage is 9 and is given by the equation:

where gon and gop are the small-signal output conductances of the n-channel and

p-channel transistors respectively, gmn  is the transconductance of the n-channel tran-

sistor. The voltage gain of the second stage is 3.

4.2.3 Source-coupled pair:

The behavior of a source-couple pair is very similar to that of a bipolar differential

stage. However, the range of linear operation is wider. By increasing the bias current

or decreasing the device aspect ratio, the input range for which both transistors are

active can be increased. The linear operation region is typically several hundred mil-

livolts (Vgs  - Vth). The DC transfer characteristic of the CMOS differential stage is

shown in figure 19. The voltage gain, assuming an open-circuit load, can be given as

where Gm  is the differential stage transconductance, and r op and ron are the output

resistance of the input transistor and the load transistor respectively.

4.2.4 Cell-enable logic:
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Three transistors Q1 , Q2  and Q3 form the cell-enable logic. These transistors conduct

when both row address line and column address line of the cell are at logic "Low"

state. The cell output line is then connected to the global counter and the differnetial

stage is then biased.

4.3 Counter module

The ripple counter counts the pulses sent from each cell and provides external circuit

eight-bit data which represents the relative intensity of incident X-ray flux at each

cell. Since the ripple counter must be reset immediately it is read out, a output data

latch is used. An one-shot circuit giving 60nsec pulses at the rising edge of each input

clock pulse resets the ripple counter.

REFERENCES

Standard Cell Design Notes Release 2.1, (Macro cell name:DMRFC). California De-

vices Inc., Sunnyvale, CA. (Nov. 1984)



Figure 11: Root level block diagram of SPAX.



Figure 12: The shift register and the multiple input NOR gate.
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Figure 13: A D type flip-flop cell[CDI 19841.



Figure 14: Circuit schematic of one sensing cell.



Figure 15: Photodiodes and the discharge circuit.
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Figure 16: DC transfer characteristics of the first inverter.



Figure 17: DC transfer characteristic of the second inverter.

Figure 18: Source-couple pair schematic.



Figure 19: DC transfer characteristic of the differential stage.
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Figure 20: Cell enable logic.
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Figure 21: The counter module.
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Chapter V
SIMULATION METHODOLOGY
AND WORST CASE ANALYSIS

As Habekotte [Habekotte 87] pointed out, combined analog and digital design de-

mands very good control of the many different process steps. Examples include min-

imum PN junction leakage current, precise resistor and capacitor ratios with minimal

voltage and temperature dependency, and reproducible and characterized behavior of

the different active and passive components. Since SPAX needs both in-cell amplifier

and addressing logic, these requirements of process control are very desirable. How-

ever, some parameter variations were been taken into account during circuit designing

and simulations.

5.1 Logic simulation results

Logic simulations utilizing HILO3 for addressing logic and ripple counter had been

done. The result are shown in figure 22 and figure 23 respectively.

5.2 Circuit simulations

Simulations of the cell circuit were performed using SPICE2G5. Because of the lack

of a proper photodiode model in SPICE the author used a simple 1N junction diode

cascading an external step volatge source to approximate a photodiode. Transient

analysis demonstrates the output waveform corresponding two input pulses seper-

ated by 200nsec. During the simulation, oscillation occured when transistor effective

channel length exceed 1.2μm regardless to the channel width. That is, oscillation

determined by SPICE is independent of the RC constant, and therefore strongly indi-

cates an error of convergence in SPICE. The source program is presented in Appendix

B.

Simulation shows a constant 4.4V voltage can be obtained at the drain of M60 used
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as bias source in figure 25.

5.3 Worst case analysis

Due to the variation of ion implantation dose, oxidation temperature and polysili-

con deposition temperature, transistor threshold voltage value will vary between with

production process. A ±10 percent threshold voltage variations of both P type and

N type transistors are considered in the worst case analysis separately. Simulation

results indicate a problem only when the N type transistor threshold voltage VTN

is 10 percent below nominal value, in which case inadequate voltage gain of in-cell

amplifiers occurs.

REFERENCES
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600 0 0	 0 0	 0	 0	 0	 0	 1	 0	 0

650 1 0	 0 0	 0	 0	 0	 0	 0	 1	 0

700 0 0	 0 0	 0	 0	 0	 0	 0	 1	 0

750 1 0	 0 0	 0	 0	 0	 0	 0	 0	 1

800 0 0 0 0	 0	 0	 0	 0	 0	 0	 1

850 1 0	 0 1	 0	 0	 0	 0	 0	 0	 0

900 0 0	 0 1	 0	 0	 0	 0	 0 0	 0

950 1 0	 0 0	 1	 0	 0	 0	 0	 0	 0

32

Figure 22: Logic simulation of the addressing logic.
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K C P C WWWW
1 K R R 1234

380 0 1 0 0 1010
--TIME-- 381 0 1 0 0 1010

0 0 0 0 1 0000 400 0 0 0 0 1010

20 0 1 0 1 0001 420 1 1 0 0 1011
421 1 1 0 0 1011

40 0 0 0 1 0001
440 1 0 0 0 1011

50 0 0 0 0 0001
460 1 1 0 0 1100

60 1 1 0 0 0010 461 1 1 0 0 1100
61 1 1 0 0 0010

480 0 0 0 0 1100
80 1 0 0 0 0010

500 0 1 0 0 1101
100 1 1 0 0 0011 501 0 1 0 0 1101
101 1 1 0 0 0011

520 0 0 0 0 1101
120 0 0 0 0 0011

540 1 1 0 0 1110
140 0 1 0 0 0100 541 1 1 0 0 1110
141 0 1 0 0 0100

560 1 0 0 0 1110
160 0 0 0 0 0100

580 1 1 0 0 1111
180 1 1 0 0 0101 581 1 1 0 0 1111
181 1 1 0 0 0101

600 0 0 0 0 1111
200 1 0 0 0 0101

620 0 1 0 0 0000
220 1 1 0 0 0110 621 0 1 0 0 0000
221 1 1 0 0 0110

640 0 0 0 0 0000
240 0 0 0 0 0110

660 1 1 0 0 0001
260 0 1 0 0 0111 661 1 1 0 0 0001
261 0 1 0 0 0111

680 1 0 0 0 0001
280 0 0 0 0 0111

700 1 1 0 0 0010
300 1 1 0 0 1000 701 1 1 0 0 0010
301 1 1 0 0 1000

720 0 0 0 0 0010
320 1 0 0 0 1000

740 0 1 0 0 0011
340 1 1 0 0 1001 741 0 1 0 0 0011
341 1 1 0 0 1001

760 0 0 0 0 0011
360 0 0 0 0 1001

Figure 23: Logic simulation of the eight-bit ripple counter.



Figure 24: Transient analysis of the cell amplifier.

34



I



Figure 25: The bias source of the differential stage.
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Figure 26: Comparing the output pulse height, of five different combination of tran-
sistor threshold voltages.



Figure 27: SPICE simulation result of the D type flip-flop standard cell circuit.
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Chapter VI
SUGGESTED LAYOUTS

The MOSIS 1.2μm — 2μm CMOS design rule is used for physical layout. Since

all shift registers, the ripple counter and the output latch are constructed with D

flip-flops, layouts of a D flip-flop and one photon sensing cell are presented.



Figure 23: Suggested layout of a. photon sensing cell.
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Figure 24: Suggested layout of a D flip-flop.
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Chapter VII
SUMMARY

AND CONCLUSIONS

The operating frequency of SPAX is 1MHZ. This frequency is determined by the

counter bit-number and the pulse width corresponding to each event. Assuming the

clock pulse width at the ripple counter input is P, the maximum operating frequency

Fmax for SPAX can be approximated by

Using standrad cells of 1.2μm design rules, Fmax is about 5.8MHZ. Within a constant

sampling area, the incident radiation intensity is directly proportional to the number

of photons arrived in the sampling time period. Therefore, the optimal incident

radiation intensity for SPAX varies with operating frequency. The X-ray source power

required for a specific SPAX operating frequency is given in figure 30. For an irradiant

intensity of 20KeV X-ray photons of 104 R/hour, the power of the X-ray tube is 8

Watts.

The linearity of the collected charges across a photodiode to the incident flux energy

can be concluded from equation 8 in chapter II. Adding a negative feedback to the

in-cell amplifier will improve the linearity of the cell-output pulse amplititude to the

incident flux energy. This indicates SPAX can be expanded to have energy resolution.

Assuming the threshold voltage of the counter input is 1V, the minimum incident X-

ray photon energy required to trigger the counter is 6.9KeV.

SPAX is a practical device to be fabricated. Its physical layout can be completed

by a standard graphic editor. No special process is needed during a general VLSI

fabrication. However, test patterns contain PN diodes identical to in-cell photodiodes
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Figure 33: X-ray irradiance vs operating frequency, for 10 counts/pixel.

are recommended. They are very desired in measuring the conversion efficiency.

Four performance parameters are summarized from this thesis:

(1) The total active volume of photodiodes

A negative power supply for photodiodes is used to enlarge the active photosensitive

volume of the photodiodes. The estimated active volume for each photodiode is

10μm x 1600μm 2 based on processing with an n-type substrate with a N B = 2.5 x

10"cm-3 . The 20KeV X-ray photon absorption percentage under these conditions is

1.2%.

(2) The voltage gain of the in-cell amplifier.

A voltage gain of 500 at room temperature on a 60nsec input pulse is observed from

SPICE. It is not the limit of this circuitry but a optimal value after considering the

stability of the in-cell amplifier and the physical size of a cell. The cell size in the
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suggested layout is 80μm x 80pm.

(3) The total power dissipation in one cell.

In SPAR, the power dissipation on a selected cell is about 18mW. Most of this value is

consumed by the source coupled pair and the first inverter. The value can be reduced

by adjusting the W/L ratio of the bias transistor. The 900 cell chip is estimated to

required only 18mw plus support power.

Static power dissipation can increase with accumulated irradiation dose. Radiation

damages has not been considered in this thesis, but a gradual increase of dark-current

for all reverse-biased junction and a shift of thresholds are predicted.

(4) The tolerance of parameter variations.

In this thesis, the process control of transistor threshold voltages is assumed to he

+10 percent. This range can be relaxed if additional compensating circuits are added

to the critical differential stage devices.

Two methods can be used to eliminated the long discharge line. (1) Bias M99, M95 to

provide a continuous current source for D1, D2. (2) To each cell, add an extra inverter

which provide a longer time to reset the diodes. However, the increase in cell size has

to be considered.
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Appendix A
DEVICE ENHANCEMENT WITH
A CdTe SCINTILLATION FILM

Due to the inherent low X-ray capture cross-section in the silicon lattice, using sil-

icon devices for X-ray imaging requires on chip amplifiers having high SIN ratios and

wide frequency response ranges. An unavoidable problem for this approach is the ra-

diation damage which cause dark current to increase. Early research[Gamble 79] had

pointed out that by using a scintillation film and optical fibers, one can detect visible

photons thus obtain X-ray images. Without exposing the photodiode array directly to

X-ray flux, radiation damage problem are almost eliminated. Yet, the devices volume

and the reproducablility is still to be optimized. A similar approach using a direct de-

posited scintillation film is studied. Figure 31 shows the schematics of this approach.

A higher density thick film (eg. CdTe) can be used as a scintillator. The selection of

scintillator has to base on the consideration of material density, transparency, lattice

constant and band-gap. For example, CdTe has a higher absorption coefficient than

Si for X-ray and has a bandgap very close to that of Si. Annealing the scintillation

film for maximum quantum conversion efficiency is strongly recommended. As shown

in the figure the thickness of the scintillator has to be smaller than 1/a to avoid the

self-absorption of visible light photon in vertical direction. Horizontal self-absorption

is prefered since it enhances the spatial resolution. It is this reason that the minimum

width of the PN junction is also 1/a.

The circuit schematics demonstrated in figure 32 is recommened for constructuring

the visible light image. Each cell includes enable logics, a discharge transistor, a

dummy transistor and a PN junction diode. There are two output lines from every

cell, a video signal line and a switching noise line. The dummy transistor is used to
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obtain switching noise signals which are symmetrical to those on video signal line.

The video chip output signal is obtained by subtracted the noise signal from the video

signal using a differential amplifier. At the end of every column, two extra transistors

are added to seperated the total line capacitance from the column capacitance. Thus

the capacitance load driven by the photodiode is reduced.

REFERENCES

Gamble, R. C., Baldeschwieler, J. D., and Giffin, C. E., Rev. Sci. Instrum. 50, 1416,

(Nov. 1979)



Figure 31: The photon sensing cell with a CdTe scintillation film.
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Figure 32: Suggested circuit.
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******22-APR-88 ******* 	 SPICE 2G.5 (10AUG81) 	 *******11:53:42*****

type flip-flop

*** 	 INPUT LISTING 	 TEMPERATURE = 	 27.000 DEG C

******************************* ******** *******************************

M1 7 2 0 0 CMOSN W=3.6U L=1.2U AD 15P AS 15P PD 8U PS 8U
M2 7 2 5 5 CMOSP W=3.6U L=1.20 AD 15P AS 15P PD 8U PS 8U
M3 1 7 6 0 CMOSN W=3.6U L=1.2U AD 15P AS 15P PD 8U PS 8U
M4 1 2 6 5 CMOSP W=3.613 L=1.2U AD 15P AS 15P PD 8U PS 8U
M5 11 6 12 0 CMOSN W=3.6U L=1.2U AD 15P AS 15P PD 8U PS 8U
M6 11 6 5 5 CMOSP W=3.6U L=1.2U AD 15P AS 15P PD 8U PS BU
M7 12 3 0 0 CMOSN W=3.6U L=1.2U AD 15P AS 15P PD 8U PS 8U
M8 11 3 5 5 CMOSP W=3.6U L=1.2U AD 15P AS 15P PD 8U PS 8U
M9 6 11 10 0 CMOSN W=3.6U L=1.2U AD 15P AS 15P PD 8U PS BU
M10 6 11 9 5 CMOSP W=3.6U L=1.2U AD 15P AS 15P PD 8U PS BU
M11 10 2 0 0 CMOSN W=3.6U L=1.2U AD 15P AS 15P PD 8U PS 8U
M12 9 7 5 5 CMOSP W=3.60 L=1.2U AD 15P AS 15P PD 811 PS 8U
M15 15 11 16 0 CMOSN W=3.6U L=1.2U AD 15P AS 15P PO 8U PS 8U
M16 15 11 14 5 CMOSP W=3.6U L=1.2U AD 15P AS 15P PO 8U PS 8U
M17 16 2 0 0 CMOSN W=3.60 L=1.2U AD 15P AS 15P PD 8U PS 8U
M18 14 7 5 5 CMOSP W=3.60 L=1.2U AD 15P AS 15P PD 8U PS BU
M19 15 7 99 0 CMOSN W=3.6U L=1.2U AD 15P AS 15P PD 8U PS 8U
M20 15 2 99 5 CMOSP W=3.6U L=1.213 AD 15P AS 15P PD 8U PS 8U
M21 18 3 0 0 CMOSN W=3.6U L=1.2U AD 15P AS 15P PD 8U PS 8U
M22 17 3 5 5 CMOSP W=3.6U L=1.2U AD 15P AS 15P PO 8U PS 8U
M23 17 15 18 0 CMOSN W=3.6U L=1.2U AD 15P AS 15P PD 8U PS BU
M24 17 15 5 5 CMOSP W=3.613 L=1.2U AD 15P AS 15P PD 8U PS 8U
M25 99 17 0 0 CMOSN W=3.6U L=1.2U AD 15P AS 15P PD 8U PS 8U
M26 99 17 5 5 CMOSP W=3.6U L=1.2U AD 15P AS 15P PD 8U PS 8U
./C V(12)=0 V(17)=0 V(9)=0 V(10)=0 V(14)=0 V(16)=0 V(18)=0
VCLK 2 0 PULSE(0 5 100N 10N 10N 50N 160N)
VD 1 0 PULSE(0 5 200N 10N 10N 200N)
VRB 3 0 PULSE(5 0 350N 10N 10N 60N)
VDD 5 0 5
.WIDTH OUT=80
.TRAN 5N 500N UIC
.PLOT TRAN V(99)(-18 6) V(1)(-12 12) V(2)(-6 18) V(3)(0 24)
.MODEL CMOSN NMOS LEVEL=2 LD=0.28U
+VT0=0.587229 KP=3.848E-05 GAMMA=0.922
+XJ=0.4U LAMBDA=2.2E-02
+RSH=20 CGSO=5.2E-10 CGDO=5.2E-10 CJ=4.5E-4 MJ=0.5 CJSW=6.0E-10 MJSW=0.33

.MODEL CMOSP PMOS LEVEL=2 LD=0.28U
+VTO=-0.784085 KP=1.394594E-05 GAMMA=0.5364
+XJ=0.4U LAMBDA=4.72E-02
+RSH=55 CGSO=4E-10 CGDO=4E-10 CJ=3.6E-4 MJ=0.5 CJSW=6.0E-10 MJSW=0.33
.END
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******22-APR-88 ******* 	 SPICE 2G.5 (10AUG81) 	 *******11:53:42*****

type flip-flop

*** 	 TRANSIENT ANALYSIS 	 TEMPERATURE = 	 27.000 DEG C

**********************************************************************

EGEND:

*: V(99)
+: V(1)
=: V(2)
$: V(3)

TIME 	 V(99)

*) 	 1.8000+01 	 -1.2000+01 	 -6.0000+00 	 0.000D+00 6.0000+00

+) 	 1.2000+01 	 -6.0000+00 	 0.0000+00 	 6.000D+00 1.2000+01

	 6.000D+00 	 0.0000+00 	 6.000D+00 	 1.2000+01 	 1.8000+01

AI 	 0.000D+00 	 6.000D+00 	 1.2000+01 	 1.8000+01 	 2.400D+01

0.0000+00 2.158D+00 . $ 	 = + .
*

*	 .

5.000D-09 -2.4740-04 . $ 	 = + .

1.0000-08 1.173D-04 . $ 	 = + *

1.500D-08 -3.785D-04 . $ = + *

2.0000-08 7.4720-05 . $ 	 = + *
*

•
2.500D-08 3.725D-04 . -, 	 - +
3.000D-08 -7.752D-05 . $ 	 = + *

•3.5000-08 -3.730D-04 . $ 	 = + *
* •4.0000-08 7.4160-05 . $ = +
* •4.5000-08 3.679D-04 . $ = +

•5.000D-08 -7.5900-05 . $ 	 = + *
* •5.500D-08 -3.674D-04 . $ 	 = +
* .6.0000-08 7.3180-05 . $ = +
* •6.500D-08 3.6260-04 . $ 	 = +
* .7.0000-08 -7.4870-05 . $ 	 = +
*

7.5000-08 -3.6220-04 . $ 	 = +
*

-
•

8.0000-08 7.2250-05 . $ 	 = +
+ * .

8.500D-08 3.576D-04 . $ 	 =
+ * .

9.000D-08 -7.389D-05 . $ 	 =
h .

9.500D-08 -3.0540-04 . $ 	 = +
+ * •

1.0000-07 4.249D-04 . $ 	 = * •1.050D-07 -5.386D-03 . $ 	 • 	 = +
+ * •

1.100D-07 -1.1400-04 . $ 	 •	 .
* •

1.150D-07 1.306D-05 . $ 	 • 	 = +
+ * •

1.200D-07 -1.6750-05 . $ 	 •	 .
+ * •

1.250D-07 1.1150-06 . $ 	 •	 .
+ *

1.300D-07 1.832D-05 . $ 	 • 	 = •
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1.350D-07 -1.085D-06 . 	 $ 	 . 	 = 	 + 	 * •
1.4000-07 -1.9780-05 . 	 $ 	 • 	 = 	 + 	 *
1.4500-07 1.115D-06

•
. 	 $ 	 . 	 = 	 + 	 * •

1.500D-07 2.125D-05 . 	 $ 	 . 	 = 	 + 	 * 
1.550D-07 -8.791D-07 . 	 $ 	 . 	 = 	 + 	 *
1.600D-07 -2.301D-05 . 	 $ 	 = 	 4- 	 *. 	 •
1.650D-07 1.911D-06 . 	 $ 	 . 	 = 	 + 	 *
1.700D-07 -6.792D-03

•
. 	 $ 	 = 	 + 	 * 

1.750D-07 2.8400-06 . 	 $ 	 = 	 + 	 *
1.800D-07 -6.7570-06

•
. 	 $ 	 = 	 + 	 *

1.850D-07 -3.276D-05
.

. 	 $	 = 	 4 	 *
1.900D-07 2.803D-05 . 	 $	 = 	 + 	 * •
1.9500-07 2.376D-05 . 	 $ 	 = 	 + 	 *
2.0000-07 -6.689D-05 . 	 $ 	 = 	 + 	 *
2.050D-07 3.836D-03 . 	 $ 	=+ 	 *. 	 •
2.100D-07 3.701D-03 . 	 $ 	 = 	 + 	 * •
2.150D-07 1.0780-05 . 	 $ 	 = 	 + 	* 
2.200D-07 -8.601D-06 . 	 $ 	 = 	 + 	 * •
2.250D-07 -7.280D-07 . 	 $ 	 = 	 + 	 * .
2.300D-07 8.193D-06 . 	 $ 	 = 	 + 	 * •
2.3500-07 7.298D-07 . 	 $ 	 = 	 + 	* 
2.400D-07 -7.348D-06 . 	 $ 	 = 	 + 	 *
2.450D-07 -6.103D-07 . 	 $ 	 = 	 + 	 * •
2.500D-07 6.682D-06 . 	 $ 	 = 	 + 	 * •
2.550D-07 5.075D-07 . 	 $ 	 = 	 + 	 * •
2.600D-07 -6.1720-06 . 	 $ 	 = 	 + 	 * •
2.6500-07 1.482D-02 . 	 $ 	 . 	 = 	 + 	 *• -
2.7000-07 5.004D+00 . 	 $ 	 • 	 = 	 . 	 + 	 *• .
2.750D-07 5.000D+00 . 	 $ 	 • 	 = 	 . 	 + 	 - 	 * 
2.8000-07 5.0000+00 . 	 $ 	 • 	 = 	 + 	 *. 	 •
2.8500-07 5.000D+00 . 	 $ 	 . 	 = 	 + 	 *• •
2.900D-07 5.000D+00 . 	 $ 	 . 	 = 	 + 	 *. 	 • 	 .
2.950D-07 5.0000+00 . 	 $ 	 • 	 = 	 + 	 *• • 	 .
3.0000-07 5.000D+00 . 	 $ 	 • 	 = 	 . 	 + 	 • 	 * .
3.050D-07 5.000D+00 . 	 $ 	 . 	 = 	 + 	 *• • 	 .
3.100D-07 5.0000+00 . 	 $ 	 • 	 = 	 . 	 + 	 *• .
3.1500-07 5.0000+00 . 	 $ 	 . 	 = 	 • 	 + 	 *• .
3.200D-07 5.000D+00 . 	 $ 	 • 	 = 	 + 	 *• • 	 .
3.2500-07 4.9990+00 . 	 $ 	 . 	 = 	 + 	 *- • .
3.300D-07 4.996D+00 . 	 $ 	 = 	 + 	 • 	 * 	 .
3.350D-07 5.000D+00 . 	 $ 	 = 	 + 	 *. 	 .
3.4000-07 5.0000+00 . 	 $ 	 = 	 + 	 *• .
3.450D-07 5.0000+00 . 	 $ 	 = 	 + 	 * •
3.500D-07 5.000D+00 . 	 $ 	 = 	 + 	 *• .
3.550D-07 5.0120+00 . 	 $ 	 = 	 + 	 • 	 * .
3.600D-07 -4.1000-03 $ 	 . 	 + 	 * .
3.650D-07 2.863D-04 $ 	 = 	 + 	* 
3.700D-07 -2.761D-04 $ 	 . 	 + 	 * •3.750D-07 -2.3120-05 $ 	 = 	 + 	 *
3.800D-07 2.9320-04

•
$ 	 + 	 *

3.850D-07 2.292D-05 $ 	 = 	 + 	 *
3.900D-07 -2.899D-04

•
$ 	 = 	 + 	 *

3.9500-07 -2.262D-05
•

$ 	 = 	 + 	 *
4.000D-07 2.867D-04

•
$ 	 = 	 + 	 *•

4.050D-07 1.251D-05
•

$ 	 . 	 + 	 *
4.1000-07 -3.041D-04

•
$ 	 = 	 *

4.150D-07 -2.977D-06
+ 	 •

$ 	 = 	 + 	 *
4.200D-07 1.500D-05

•
$ 	 = 	 + 	 * •

4.250D-07 -1,012D-02 . 	 $ 	 = 	 + 	 * •
4.300D-07 1.502D-03 . 	 $ 	 • 	 = 	 + 	 * 	 •
4.3500-07 6.972D-05 . 	 $ 	 • 	 = 	 +*

4.400D-07 -5.9830-05 . 	 $ 	 • 	 = 	 + 	 * 	 •

4.450D-07 -2.8840-05 . 	 $ 	 • 	 = 	 + 	 *

4.500D-07 7.8610-05 . 	 $ 	 • 	 = 	 + 	 * 	 .

4.5500-07 2.788D-05 . 	 $ 	 • 	 . 	 + 	 *

4.600D-07 -7.582D-05 . 	 $ 	 • 	 . 	 + 	 *

4.6500-07 -2.6890-05 . 	 $ 	 • 	 = 	 + 	 * 	 .

4.700D-07 7.316D-05 . 	 $ 	 • 	 = 	 + 	 * 	 .

4.750D-07 1.583D-05 . 	 $ 	 • 	 = 	 + 	 * 	 .

4.800D-07 -9.4200-05 . 	 $ 	 • 	 . 	 + 	 * 	 .

4.8500-07 1.2080-06 . 	 $ 	 • 	 . 	 + 	 * 	 .

4.900D-07 -6.798D-03 . 	 $ 	 = 	 + 	 * 	 .

4.9500-07 5.043D-06 . 	 $ 	 = 	 + 	 * 	 .
5.0000 - 0,7 -6.556D-05 . 	 $ 	 = 	 + 	 * 	.
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******* 5-MAY-88 ******* 	 SPICE 2G.5 (10AUG81) 	 *******I7:27:56*****

FIRST INVERTER

**** 	 INPUT LISTING 	 TEMPERATURE = 	 27.000 DEG C

***********************************************************************

M4 4 4 S 5 CMOSP W=10U L=1U AS=9P AD=9P PS=9U PD=9U
M7 8 6 0 0 CMOSN W=100 L=1U AS=20P AD=20P PS=22U PD=22U
M8 8 4 5 5 CMOSP W=4U L=1U AS=16P AD=16P PS=12U PD=12U

	  Current source 	
VR 4 64 0
M60 64 64 0 0 CMOSN W=1U L=20U

Vi 5 0 5
VIN1 6 0 PWL(0 -0.5 10 0.5)
.TRAN 0.5 10
.PLOT TRAN V(6) V(8)
*.PRINT TRAN I(VR) V(4)
.WIDTH OUT=80
.MODEL CMOSN NMOS LEVEL=2 LD=0.28U TOX=520E-10 UO=200
+NSUB=4.575777E+15 VTO=0.587229 KP=3.848E-05 GAMMA=0.922
+RSH=20
+XJ=0.4U LAMBDA=2.2E-02
+RSH=20 CGS0=5.2E-10 CGDO=5.2E-10 CJ=4.5E-4 MJ=0.5 CJSW=6.0E-10 MJSW=0.33

.MODEL CMOSP PMOS LEVEL=2 LD=0.28U TOX=520E-10 UO=100
+NSUB=2.534947E+14 VTO=-0.784085 KP=1.394594E-05 GAMMA=0.5364
+RSH=55
+XJ=0.4U LAMBDA=4.72E-02
+RSU=55 CGS0=4E-10 CGDO=4E-10 CJ=3.6E-4 MJ=0.5 CJSW=6.0E-10 MJSW=0.33

.END
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******* 5-MAY-88 ******* 	 SPICE 2G.5 (10AUG81) 	 *******17:27:56*****

FIRST INVERTER

**** 	 TRANSIENT ANALYSIS 	 TEMPERATURE = 	 27.000 DEG C

******************************** ************ * ***** *********************

LEGEND:

*: V(6)

+: V(8)

TIME 	 V(6)

(*) 	 1.0000+00 	 -5.000D-01 	 0.000D+00 	 5.0000-01 1.0000+00

(+1 	  0.0000+00 	 2.000D+00 	 4.0000+00 	 6.0000+00 8.000D+00

0.000D+00 -5.000D-01 . * + 	 . •

5.000D-01 -4.5000-01 . .* + 	 - •

1.000D+00 -4.000D-01 . . * - + 	 . •

1.500D+00 -3.500D-01 . . * + 	 . •

2.000D+00 -3.000D-01
*

. +

2.500D+00 -2.500D-01 . . * , + •

3.000D+00 -2.000D-01 . . * . + 	 • •

3.500D+00 -1.500D-01 . * 	 . + 	 • •

4.0000+00 -1.000D-01 . . * 	 .4- • •

4.5000+00 -5.000D-02 . . + A. • •

5.000D+00 0.000D+00 . + * • •

5.500D+00 5.000D-02 . + 	 . •*

6.000D+00 1.000D-01 . +
. 	 * • •

6.500D+00 1.500D-01 . +
. 	 * • •

7.000D+00 2.000D-01 .+
* • •

7.500D+00 2.500D-01 +
* 	 • •

8.000D+00 3.0000-01 + . . * •

8.500D+00 3.500D-01 +
* 	 . •

9.000D+00 4.000D-01 +
* 	 . •

9.500D+00 4.500D-01 + *• •

1.0000+01 5.000D-01 + *

JOB CONCLUDED

TIME 	 PAGE 	 DIRECT 	 BUFFERED

CPU 	 ELAPSED 	 FAULTS 	 I/O 	 I/O

0: 0: 1.13 	 0: 0: 2.62 	 217 	 12 	 1
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******* 5-MAY-88 ******* 	 SPICE 2G.5 (10AUG81) 	 *******17130:15*****

SECOND INVETER

**** 	 INPUT LISTING 	 TEMPERATURE = 	 27.000 DEG C

********************** * * * * * * * * * * * * * 	 * * * * * Or * * * 	 * * * * * * * 	 * * * * * Or * * * Or

M9 9 8 0 0 CMOSN W=6U L=1U AS=6P AD=6P PS=8U PD=8U
M10 9 8 5 5 CMOSP W=2U L=1U AS=6P AD=6P PS=8U PD=8U
V1 5 0 5
VIN1 8 0 PWL(0 0 5 5)
.TRAN 0.1 5
.PLOT TRAM V(9) V(8)
.IC V(9)=5
*.PRINT TRAM I(VR) V(4)
.WIDTH OUT=80
.MODEL CMOSN NMOS LEVEL=2 LD=0.28U TOX=520E-10 U0=200
+NSUB=4.575777E+15 VTO=0.587229 KP=3.848E-05 GAMMA=0.922
+RSH=20
+XJ=0.4U LAMBDA=2.2E-02
+RSH=20 CGSO=5.2E-10 CGDO=5.2E-10 CJ=4.5E-4 MJ=0.5 CJSW=6.0E-10 MJSW=0.33

.MODEL CMOSP PMOS LEVEL=2 LD=0.28U TOX=520E-10 UO=100
+NSUB=2.534947E+14 VTO=-0.784085 KP=1.394594E-05 GAMMA=0.5364
+RSH=55
+XJ=0.4U LAMBDA=4.72E-02
+RSH=55 CGSO=4E-10 CGDO=4E-10 CJ=3.6E-4 MJ=0.5 CJSW=6.0E-10 MJSW=0.33

.END
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******* 5-MAY-88 *******	 SPICE 2G.5 (10AUG81)	 *******17:30:15 *****

SECOND INVETER

****	 TRANSIENT ANALYSIS	 TEMPERATURE = 	 27.000 DEG C

************************** ***** **** ******** ******* ***** ****************

LEGEND:

*: V(9)
+: V(8)

TIME	 V(9)

(*+)  	 0.000D+00	 2.0000+00	 4.0000+00	 6.0000+00	 8.0000+00

0.000D+00 	 5.000D+00

- -

+ • •
*

1.0000-01 	 4.7160+00 .+ . • A

2.0000-01 	 4.5160+00 .+ • . * .

3.0000-01 	 4.2700+00 . 	 + . . 	 *
4.000D-01 	 3.975D+00 . + . * .

5.000D-01 	 3.6320+00 . + . * 	 . •

6.000D-01 	 3.2420+00 . + . *	 • •
7.000D-01 	 2.8070+00 . + . * .

8.0000-01 	 2.332D+00 . + . * .

9.000D-01 	 1.8170+00 . + *. .

1.000D+00 	 1.1560+00 . +* . • • '
1.1000+00 	 7.4700-01 . * + •

1.200D+00 	 5.705D-01 . * + • • •
1.3000+00 	 4.7010-01 . * + .

1.4000+00 	 3.982D-01 . * + . . .

1.5000+00 	 3.4280-01 . 	 * + 	 . .

1.6000+00	 2.9820-01 . 	 * + 	 .
1.7000+00 	 2.613D-01 . 	 * + 	 . • •
1.8000+00 	 2.301D-01 . 	 * +. .

1.9000+00 	 2.0340-01 .* +.
2.0000+00 	 1.802D-01 .* + .

2.1000+00 	 1.6000-01 .* .+ • •
2.200D+00 	 1.4220-01 .* 0+ • • •

2.3000+00 	 1.264D-01 .* . + .

2.4000+00 	 1.1230-01 .* . + • • •
2.5000+00 	 9.977D-02 .* . + • • •
2.600D+00 	 8.850D-02 .* . + .

2.7000+00 	 7.836D-02 .* . + . . .

2.8000+00 	 6.923D-02 * + • • •

2.900D+00 	 6.098D-02 * + • • •
3.000D+00 	 5.353D-02 * + • • •
3.1000+00 	 4.680D-02 * + 	 . • .
3.2000+00 	 4.071D-02 * + . .
3.3000+00 	 3.5200-02 * + 	 . • •
3.400D+00 	 3.0230-02 * + 	 . . .
3.500D+00 	 2.574D-02 * + 	 . . .
3.6000+00 	 2.1710-02 * + 	 . . .
3.7000+00 	 1.808D-02 * + 	 . • •
3.8000+00 	 1.4840-02 * +. • •

3.9000+00 	 1.1960-02 * +. . •

4.0000+00	 9.4020-03 * + • •
4.1000+00 	 7.156D-03 * -+ • •
4.2000+00	 5.202D-03 * .+ • •
4.3000+00 	 3.522D-03 * . + • •
4.4000+00 	 2.1030-03 * • + • •
4.5000+00 	 9.3240-04 * • + • .
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******* 5-MAY-88 ******* 	 SPICE 2G.5 (10AUG81) 	 *******17:31:58*****

Pulse amplification

**** 	 INPUT LISTING 	 TEMPERATURE = 	 27.000 DEG C

***********************************************************************

42 6 0 3 5 CMOSP W=12U L=1U AS=4P AD=4P PS=6U PD=6U
41 7 2 3 5 CMOSP W=6U L=1U AS=4P AD=4P PS=6U PD=6U
M51 7 52 3 5 CMOSP W=6U L=1U AS=4P AD=4P PS=6U PD=6U
13 3 4 5 5 CMOSP W=2U L=1U AS=9P AD=9P PS=9U PD=9U
44 4 4 5 5 CMOSP W=10U L=1U AS=9P AD=9P PS=9U PD=9U
15 6 7 0 0 CMOSN W=3.6U L=10 AS=16P AD=16P PS=12U PD=12U
46 7 7 0 0 CMOSN W=3.6U L=1U AS=16P AD=16P PS=12U PD=12U
47 8 6 0 0 CMOSN W=10U L=1U AS=20P AD=20P PS=22U PD=22U
48 8 4 5 5 CMOSP W=4U L=1U AS=16P AD=16P PS=12U PD=12U
499 0 10 2 2 CMOSN W=1U L=1U AS=3P AD=3P PS=5U PD=5U
498 0 10 52 52 CMOSN W=1U L=1U AS=3P AD=3P PS=5U PD=5U

	  Current source 	
VR 4 64 0
160 64 64 0 0 CMOSN W=1U L=20U

V1 5 0 5
V2 11 0 -12
49 9 8 0 0 CMOSN W=6U L=1U AS=6P AD=6P PS=8U PD=8U
110 9 8 5 5 CMOSP W=2U L=1U AS=6P AD=6P PS=8U PD=8U
ZLOAD 9 0 3P
BACK 10 0 3P
411 10 9 0 0 CMOSN W=3U L=1U AS=6P AD=6P PS=8U PD=8U
412 10 9 5 5 CMOSP W=9U L=1U AS=6P AD=6P PS=8U PD=8U

DCELL1 11 2 PNJD
DCELL2 11 52 PNJD
CA2 55 52 1P
VIN2 55 0 PUL(0 -10E-3 400N 0 0 15)
VIN1 45 0 PUL(0 -10E-3 150N 0 0 15)
CAI 45 2 1P
.IC V(2)=0 V(3)=0 V(4)=0 V(6)=0 V(7)=0 V(B)=0 V(9)=5 V(10)=0 V(52)=0
.TRAN IONS 600NS
.PLOT TRAN V(2) V(52) V(10)
.PLOT TRAN V(2) V(6) V(8) V(9)
.PRINT TRAN I(VR) V{4)
.WIDTH OUT=80
.MODEL CMOSN NMOS LEVEL=2 LD=0.28U TOX=520E-10 UO=200
+NSUB=4.575777E+15 VT0=0.587229 KP=3.848E-05 GAMMA=0.922
+RSH=20
+XJ=0.4U LAMBDA=2.2E-02
+RSH=20 CGSO=5.2E-10 CGDO=5.2E-10 CJ=4.5E-4 MJ=0.5 CJSW=6.0E-10 MJSW=0.33

.MODEL CMOSP PMOS LEVEL=2 LD=0.28U TOX=520E-10 U0=100
+NSUB=2.534947E+14 VTO=-0.784085 KP=1.394594E-05 GAMMA=0.5364
+RSH=55
+XJ=0.4U LAMBDA=4.72E-02
+RSH=55 CGS0=4E-10 CGDO=4E-10 CJ=3.6E-4 MJ=0.5 CJSW=6.0E-10 MJSW=0.33

.MODEL PNJD D IS=1E-10 RS=10 TT=0.1NS CJ0=0.4P VJ=0.7 BV=20END
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******* 5-MAY-88 ******* 	 SPICE 2G.5 (10AUG81) 	 *******17:31:58 0 ****

Pulse amplification

**** 	 TRANSIENT ANALYSIS 	 TEMPERATURE 	 27.000 DEG C

#*******************************************************************

TIME I(VR) V(4)

0.000E+00 3.063E-15 2.209E-03
1.000E-08 1.036E-05 4.419E+00
2.000E-08 1.389E-05 4.419E+00
3.000E-08 9.604E-06 4.419E+00
4.000E-08 1.324E-05 4.419E+00
5.000E-08 1.103E-05 4.419E+00
6.000E-08 1.179E-05 4.419E+00
7.000E-08 1.249E-05 4.419E+00
8.000E-08 1.033E-05 4.419E+00
9.000E-08 1.394E-05 4.419E+00
1.000E-07 1.030E-05 4.419E+00
1.100E-07 1.252E-05 4.419E+00
1.200E-07 1.177E-05 4.419E+00
1.300E-07 1.177E-05 4.419E+00
1.400E-07 1.177E-05 4.419E+00
1.500E-07 1.177E-05 4.419E+00
1.600E-07 1.180E-05 4.419E+00
1.700E-07 1.178E-05 4.420E+00
1.800E-07 1.177E-05 4.419E+00
1.900E-07 1.177E-05 4.418E+00
2.000E-07 1.177E-05 4.418E+00
2.100E-07 1.177E-05 4.418E+00
2.200E-07 1.177E-05 4.418E+00
2.300E-07 1.177E-05 4.419E+00
2.400E-07 1.177E-05 4.419E+00
2.500E-07 1.177E-05 4.419E+00
2.600E-07 1.177E-05 4.419E+00
2.700E-07 1.177E-05 4.419E+00
2.800E-07 1.177E-05 4.419E+00
2.900E-07 1.177E-05 4.419E+00
3.000E-07 1.177E-05 4.419E+00
3.100E-07 1.177E-05 4.419E+00
3.200E-07 1.177E-05 4.419E+00
3.300E-07 1.177E-05 4.419E+00
3.400E-07 1.177E-05 4.419E+00
3.500E-07 1.177E-05 4.419E+00
3.600E-07 1.177E-05 4.419E+00
3.700E-07 1.177E-05 4.419E+00
3.800E-07 1.177E-05 4.419E+00
3.900E-07 1.177E-05 4.419E+00
4.000E-07 1.177E-05 4.419E+00
4.100E-07 1.179E-05 4.420E+00
4.200E-07 1.177E-05 4.419E+00
4.300E-07 1.177E-05 4.418E+00
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******* 5-MAY-88 ******* 	 SPICE 2G.5 (10AUG81) 	 *******17:31:58*****

Pulse amplification

**** 	 TRANSIENT ANALYSIS 	 TEMPERATURE = 	 27.000 DEG C

**************************************************************************

LEGEND:

*: V(2)

+: V(52)

=: V(10)

TIME 	 V(2)

(*+) 	 1.0000-02 	 -5.000D-03 	 0.0000+00 	 5.0000-03 	 1.000D-02

(m) 	 2.000D+00 	 0.000D+00 	 2.0000+00 	 4.0000+00 	 6.000D+00

0.0000+00 -1.120D-10 	 . = X . •
1.0000-08 1.625D-03 	 . = . 	 X . •

2.000D-08 1.623D-03 	 . = . 	 X • •

3.0000-08 1.622D-03 	 . = . 	 X • •

4.0000-08 1.621D-03 	 . = . 	 X . •

5.000D-08 1.620D-03 	 . = . 	 X • •

6.000D-08 1.619D-03 	 . = . 	 X • •

7.0000-08 1.618D-03 	 . = . 	 X • •
8.000D-08 1.6170-03 	 . = . 	 X • •

9.000D-08 1.616D-03 	 . = . 	 X • •

1.000D-07 1.615D-03 	 . = . 	 X • .

1.1000-07 1.614D-03 	 . = . 	 X • •

1.200D-07 1.613D-03 	 . = • x • '
1.300D-07 1.612D-03 	 . = • X • •

1.400D-07 1.6110-03 	 . = . 	 X . •

1.500D-07 1.610D-03 	 . = . 	 X • .

1.600D-07 -7.3940-03 	 . * = • + . '
1.700D-07 -7.376D-03 	 . * = • + • •
1.800D-07 -6.623D-03 	 . * 	 • = - 	 + • '
1.900D-07 -3.678D-03 	 . = 	 . 	 + • .

2.000D-07 -6.399D-04 	 . • * 	 . 	 + 	 = '•

2.100D-07 2.0840-04 	 . • .X = 	 • •

2.200D-07 -9.761D-05 	 . • X = 	 . .

2.300D-07 -2.5840-04 	 . . X. '.

2.4000-07 -4.609D-04 	 . . = 	 X. • •
2.500D-07 -5.1830-04 	 . • = X. '•

2.600D-07 -3.9420-04 	 . • = X. . '
2.7000-07 -2.644D-04 	 . • = X. . •
2.800D-07 -1.842D-04 	 . • = X. • •

2.900D-07 -1.466D-04 	 . . = X • .

3.000D-07 -1.438D-04 	 . • = X •

3.100D-07 -1.4940-04 	 . • = X . •

3.200D-07 -1.5260-04 	 . • = X • .

3.300D-07 -1.521D-04 	 . • = X . •
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3.400D-07 -1.483D-04 	 . . 	 = X . 	 .

3.500D-07 -1.4270-04 	 . . 	 = X .

3.600D-07 -1.365D-04 	 . .= X .	 .

3.700D-07 -1.304D-04 	 . .= X .

3.800D-07 -1.248D-04 	 . .= X

3.900D-07 -1.196D-04 	 . .= X .

4.0000-07 -1.149D-04 	 . .= X .

4.1000-07 -4.732D-05 	 . 	 + .= * •

4.200D-07 2.258D-04 	 . + 	 . 	 . .* •

4.300D-07 6.195D-04 	 . + 	 • *= 	 ••

4.400D-07 3.950D-04 	 . .X
=

4.500D-07 1.3540-05 	 . X • = 	 .

4.600D-07 -1.196D-04 	 . X =.

4.700D-07 -2.505D-04 	 . X. . 	 •.

4.800D-07 -4.3300-04 	 . =X. . 	 •

4.900D-07 -5.041D-04 	 . = X. •

5.000D-07 -4.067D-04 	 . . 	 = X. .

5.100D-07 -2.740D-04 	 . . 	 = X. •

5.200D-07 -1.844D-04 	 . . 	 = X. •

5.300D-07 -1.5150-04 	 . . 	 = X • .

5.400D-07 -1.455D-04 	 . . 	 = X • •

5.500D-07 -1.4970-04 	 . • = X • •

5.600D-07 -1.537D-04 	 . • = x • •

5.7000-07 -1.537D-04 	 . . 	 = X • .

5.800D-07 -1.499D-04 	 . • = X • .

5.900D-07 -1.440D-04 	 . . 	 = X • •

6.000D-07 -1.377D-04 	 . •= X • •
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******* 5-MAY-88 ******* 	 SPICE 2G.5 (10AUG81) 	 *******17:31:58*****

Pulse amplification

**** 	 TRANSIENT ANALYSIS 	 TEMPERATURE = 	 27.000 DEG C

******************* ***** ***********************************************

LEGEND:

*: V(2)
+: V(6)
=: V(8)
$: V(9)

TIME 	 V(2)

(*) 	 1.0000-02 	 -5.000D-03 	 0.0000+00 	 5.000D-03 	 1.000D-02

(+) 	 0.000D+00 	 1.0000-01 	 2.000D-01 	 3.000D-01 	 4.000D-01

(=) 	 0.000D+00 	 5.000D-01 	 1.0000+00 	 1.500D+00 2.0000+00

($) 	 0.0000+00 	 2.0000+00 	 4.0000+00 	 6.0000+00 	 8.0000+00

0.000D+00 -1.120D-10 X
* $ . .

1.000D-08 1.6250-03 . 	 = *$+ . .

2.000D-08 1.6230-03 .=
*$ + .

3.000D-08 1.6220-03 .= • *$
• + .

4.000D-08 1.6210-03 .= • *$ • + •

5.0000-08 1.620D-03 .= • *$ . + .

6.0000-08 1.619D-03 .=
*$ . + •

7.000D-08 1.6180-03 .= • *$ . + •

8.000D-08 1.617D-03 .= • • *$ . + •

9.0000-08 1.6160-03 .= • . *$ • + •

1.0000-07 1.615D-03 .= • *$ . + •

1.100D-07 1.614D-03 .= • • *$ . + •
.

1.200D-07 1.613D-03 .= . • *$ . +

1.300D-07 1.6120-03 .= • • *$ . + •

1.400D-07 1.6110-03 .= • *$ . + .

1.500D-07 1.6100-03 .= • *$ . + •

1.600D-07 -7.394D-03 . 	 = * • + • $ • •
•

1.700D-07 -7.376D-03 . *4 =$ •

1.800D-07 -6.623D-03 . + * • $ • = • •

1.900D-07 -3.678D-03 . + $ • *
*

= • '

2.000D-07 -6.3990-04 . $ +•
.„.

•
2.1000-07 2.084D-04 . $ . + = .*

*
.

.
2.200D-07 -9.7610-05 . S. + •

2.300D-07 -2.584D-04 . •= $+ *. •

2.400D-07 -4.609D-04 . • =+ $ *• • •

2.500D-07 -5.183D-04 . • + = $ *• •

2.600D-07 -3.9420-04 . . 	 + X *. •
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2.700D-07 -2.644D-04 	 . . 	 + 	 =$ ,*. .
2.800D-07 -1.842D-04 	 . . 	 += 	 $ *. .
2.900D-07 -1.466D-04 	 . . 	 =+ 	 $ * .
3.0000-07 -1.438D-04 	 . .= 	 + $	 * .
3.100D-07 -1.494D-04 	 . + $ 	 * .
3.2000-07 -1.526D-04 	 . = 	 + $ 	 * .
3.300D-07 -1.521D-04 	 . = 	 + $ 	 * .
3.400D-07 -1.483D-04 	 . =	 + $ 	 * .
3.5000-07 -1.427D-04 	 . . 	 + $ 	 * .
3.600D-07 -1.365D-04 	 . + $ 	 * .
3.700D-07 -1.304D-04 	 . = 	 + $ 	 *
3.800D-07 -1.248D-04 	 . = 	 + $ 	 * .
3.900D-07 -1.196D-04 	 . =. 	 + $ 	 * .
4.000D-07 -1.149D-04 	 . =. 	 + $ 	 * .
4.100D-07 -4.732D-05 	 . + $ 	 = 	 * .
4.200D-07 2.258D-04 	 . + . 	 $ .* = 	 .
4.300D-07 6.195D-04 	 . X . 	 * = 	 .
4.4000-07 3.950D-04 	 . $ + =,* .
4.500D-07 1.354D-05 	 . $ 	 . 	 + = * .
4.600D-07 -1.1960-04 	 . $. 	 = 	 + * .
4.700D-07 -2.505D-04 	 . .=$ 	 + *. .
4.800D-07 -4.330D-04 	 . . 	 =+ 	 $ *. .
4.900D-07 -5.041D-04 	 . .	 +	 = 	 $ *. .
5.000D-07 -4.067D-04 . 	 + 	 X *. .
5.100D-07 -2.7400-04 	 . . 	 + 	 =$ *. .
5.200D-07 -1.8440-04 	 . . 	 += 	 $ *. .
5.300D-07 -1.515D-04 	 . . 	 =+ 	 $ * .
5.400D-07 -1.455D-04 	 . . 	 = 	 + $ 	 * .
5.500D-07 -1.497D-04 	 . .= 	 + $ 	 * •
5.600D-07 -1.537D-04 	 . = 	 + $ 	 * .
5.7000-07 -1.537D-04 	 . = 	 + $
5.800D-07 -1.499D-04 	 . = 	 + $ 	 * .
5.900D-07 -1.440D-04 	 . = 	 + $ 	 * .
6.000D-07 -1.377D-04 	 . = 	 + $ 	 * .

JOB CONCLUDED

TIME 	 PAGE 	 DIRECT 	 BUFFERED
CPU 	 ELAPSED 	 FAULTS 	 I/O 	 I/O

0: 0:17.12 	 0: 0 : 19.94 	 232 	 20 	 2

	

TOTAL JOB TIME 	 17.12
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Parameters=displayfile,scratch,coresize=800 Kbytes
New Jersey Institue of Technology, New Jersey 	 Ref: NJITVV01
VAX/VMS version. Licenced for

VAX 8800 Ser.No. ni00247 only.

Use of the Proprietary computer program is governed by the
non-exclusive, non-transferrable License on authorized computer(s)
only. The right to copy and title to this computer program
remains with the owners (Licensors).

HILO MARK 3.11.5 - 02-MAY-1988 14:52

(C) GenRad, 	 Inc. 	 1987
*
*
*

*DIS COUNTER

****(

1 : CCT COUNTER (CK,CK1,S[1:24],CR,PR)
2 :
3
4 : SFR RC(CK1,Q1,Q2,Q3,Q4,Q5,Q6,Q7,Q0,CR,PR);
5 :
6 : DFF FF0 (W1„PR,CR,D,CK)

	

7 : 	 FF1 (W2„PR,CR,W1,CK)

	

8 : 	 FF2 (W3„CR,PR,W2,CK)

	

9 : 	 FF3 (W4„CR,PR,W3,CK);
10 :
11 : NAND (1,1) G1 (W1,W99);
12 :

	

13 : 	 NOT (1,1) G1 (Q0,W99) 	 G2 (Q0,W2) 	 G3 (Q0,W3)

	

14 : 	 G4 (Q1,W1) 	 G5 (Q1,W2) 	 G6 (Q1,W3);
15 :
16 : INPUT CK CK1 PR CR;

****)
*
*
*

*DIS COUNTERWF

****t

1 : WAVEFORM COUNTERWF
2 : STIMULUS CK=0 CK1=0 PR=0 CR=1 ;
3 : 0 CK1= BY 120 TO 1200 CHANGE0 (60,+60);
4 : 0 CK= BY 40 TO 800 CHANGE0 (20,+20);
5 : 50 PR=0 CR=0;
6 : 1200 FINISH.

****)
*



11 OF DFF
Delayscale = NS 	 Original Simulation Printouts 62
Time to load 0.12 cpu secs.
COUNTER LOADED OK
Initialisation complete 	 cpu secs = 0.04 	 (total = 0.04)

C
K C P C WWWW
1 K R R 1234

--TIME-

0 0 0 0 1 0000

20 0 1 0 1 0001

40 0 0 0 1 0001

50 0 0 0 0 0001

60 1 1 0 0 0010
61 1 1 0 0 0010

80 1 0 0 0 0010

100 1 1 0 0 0011
101 1 1 0 0 0011

120 0 0 0 0 0011

140 0 1 0 0 0100
141 0 1 0 0 0100

160 0 0 0 0 0100

180 1 1 0 0 0101
181 1 1 0 0 0101

200 1 0 0 0 0101

220 1 1 0 0 0110
221 1 1 0 0 0110

240 0 0 0 0 0110

260 0 1 0 0 0111
261 0 1 0 0 0111

280 0 0 0 0 0111

300 1 1 0 0 1000
301 1 1 0 0 1000

320 1 0 0 0 1000

340 1 1 0 0 1001
341 1 1 0 0 1001

360 0 0 0 0 1001
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CIRCUIT SFR COMPILED OK ON 01-MAY-1988 08:40 	 CPU USED 90 MSECS
SUBFILE SFR TYPE CHANGED
8 OF DFF
Compiling waveform SFRWF

**Warning - subfile already exists

WAVEFORM SFRWF COMPILED OK ON 01-MAY-1988 08:40 	 CPU USED 40 MSEC
SUBFILE SFRWF TYPE CHANGED
Delayscale = NS
Time to load 0.11 cpu secs.
SFR LOADED OK
Initialisation complete 	 cpu secs = 0.02 	 (total = 0.02)

C P C QQ Q Q Q Q Q Q

K R R 0 1 2 3 4 5 6 7

--TIME--

0 0 0 1 1 0 0 0 0 0 0 0

50 1 0 1 1 0 0 0 0 0 0 0

100 0 0 0 1 0 0 0 0 0 0 0

150 1 0 0 0 1 0 0 0 0 0 0

200 0 0 0 0 1 0 0 0 0 0 0

250 1 0 0 0 0 1 0 0 0 0 0

300 0 0 0 0 0 1 0 0 0 0 0

350 1 0 0 0 0 0 1 0 0 0 0

400 0 0 0 0 0 0 1 0 0 0 0

450 1 0 0 0 0 0 0 1 0 0 0

500 0 0 0 0 0 0 0 1 0 0 0

550 1 0 0 0 0 0 0 0 1 0 0

600 0 0 0 0 0 0 0 0 1 0 0

650 1 0 0 0 0 0 0 0 0 1 0

700 0 0 0 0 0 0 0 0 0 1 0

750 1 0 0 0 0 0 0 0 0 0 1

800 0 0 0 0 0 0 0 0 0 0 1

850 1 0 0 1 0 0 0 0 0 0 0

900 0 0 0 1 0 0 0 0 0 0 0

950 1 nn n 1 n n n n 	 n n
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Parameters=displayfile,scratch,coresize=800 Kbytes
New Jersey Institue of Technology, New Jersey 	 Ref: NJITVV01
VAX/VMS version. Licenced for

VAX 8800 Ser.No. ni00247 only.

Use of the Proprietary computer program is governed by the
non-exclusive, non-transferrable License on authorized computer(s)
only. The right to copy and title to this computer program
remains with the owners (Licensors).

HILO MARK 3.11.5 - 01-MAY-1988 08:38

(C) 	 GenRad,
*DIS SFR

****(

Inc. 	 1987

1 : CCT SFR (CK,Q1,Q2,Q3 ,Q4,Q5,Q6,Q7,Q0,CR,PR)
2 :
3 :
4 :
5 : DFF FF0 (Q0„CR,PR,D,CK)
6 : FF1 (Q1„PR,CR,Q0,CK)
7 : FF2 (Q2„PR,CR,Q1,CK)
8 : FF3 (Q3„PR,CR,Q2,CK)
9 : FF4 (Q4„PR,CR,Q3,CK)

10 : FF5 (Q5„PR,CR,Q4,CK)
11 : FF6 (Q6„PR,CR,Q5,CK)
12 : FF7 (Q7„PR,CR,Q6,CK);
13 :

14 :
15 : NOR (10,10) 	 GN 	 (D,Q0,Q1,Q2,Q3,Q4,Q5,Q6);
16 :
17 : INPUT CK PR CR;
18 : WIRE Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7.

****)
*
*

*DIS SFRWF

****(

1 : WAVEFORM SFRWF
2 : STIMULUS CK=0 PR=0 CR=1 ;
3 : 0 CK= BY 100 TO 1000 CHANGE0 (50,+50);
4 : 100 PR=0 CR=0;
5 : 1000 FINISH.
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Appendix C
SPICE PARAMETERS

From " MOSIS 1.2-3 micron design rules"

Users should note that the SPICE model parameters are obtained via transistor

DC curve fitting using a parameter optimizer. These level=2 parameters are treated

as empirical parameters allowing the optimizer to change parameters (often in ways

that have little or no physical siganificance) for best curve fit to measure transistor

curves, without regard for consistency with the MOSIS parameters are accurate to

within 10 percent to 20 percent of measure performance.

The worst case parameters are based upon our published process targets, however,

the parameters were not generated using the optimizer. No past MOSIS run has

ever reached worst case limits. We have no physical devices that can be measured to

refine the worst case parameters. When (or if) such devices become available, we will

optimize the worst case parameter set.
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nMOS SPICE Model Parameters

.MODEL NMOSE NMOS LEVEL-2.00000 LD-0.826296U TOX=544.000E-10
+NSUB-2.090161E+15 T'0=1. 14161 KP=3.730740E-05 GAMMA=0.628661
+PHI-0.600000 U0-300.000 UEXP-1.001000E-03 UCRIT=1.000000E+06
+DELTA-1.15554 VMAX-100000. XJ=1.31233U LAMBDA-3.101167E-02
+NFS=1.902266E+12 NEFF-1.001000E-02 NSS=0.000000E400 TPG-1.00000
+RSH=25.4 CGSO-1.6E-10 CGDO-1.6E-10 CGB0-1.7E-10 CJ-1.1E-4
+MJ=0.5 CJSW-5E-10 MJSW=0.33
.MODEL NMOSD NMOS LEVEL=2.00000 LD=1.01616U TOX=544.000E-10
+NSUB=1.000000E+16 VTO=3.76687 KP-3.281897E-05 G1MMA-0.371508
+PHI=0.600000 U0-900.000 UEXP=1.001000E-03 UCRIT=804753.
+DELTA-2.79525 VMAX-674713. XJ-0.600132U LAM13D11-1.000000E-06
+NFS=4.310000E+12 NEFF=1.001000E-02 NSS-0.000000E+00 TPG=1. 00000
+RSH=25.4 CGSO=1.6E-10 CGDO-1.6E-10 CGBO=1.7E-10 CJ=1.1E-4
+MJ=0.5 CJSW=5E-10 WSW=0.33

CMOS SPICE Model Parameters

.MODEL CMOSN NMOS LEVEL=2.00000 LD=0.200000U TOX=520.000E-10
+NSUB=4.575777E+15 VTO=0.567229 KP=3.848050E-05 GAMMA=0.922197

+PHI=0.600000 U0=200.000 UEXP=1.001000E-03 UCRIT=999000.
+DELTA=1.59123 VMAX=100000. XJ=0.400000U LAMBDA=2.206002E-02
+NFS=5.033532E+11 NEFF=1.001000E-02 NSS-0.000000E100 TPG-1.00000

+RSH-20 CGS0=5.2E-10 CGDO=5.2E-10 CJ=4.5[i;-4 MJ=0.5 CJSW=6.0E-10 MJSW=0.33
.MODEL CMOSP PMOS LEVEL=2.00000 LD=0.280000U TOX=520.000E-10
+NS1JB=2.534947E+14 VTO=-0.784065 KP=1.394594E-05 GAMMA-0.536443

+PHI=0.600000 U0-100.000 UEXP=0.171475 UCRIT-51857.9
+DELTA=1.89818 VMAX=100000. XJ=0.400000U LAMBDA=4.720123E-02
+NFS=8.870574E+11 NEFF=1.001000E-02 NSS-0.000000E+00 TPG=-1.00000

+RSH-55 CGSO=4E-10 CGDO-4E-10 CJ=3.6E-4 MJ=0.5 CJSW=6.0E-10 MJSW=0.33
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