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ABSTRACT 

Title of Thesis: A New Density-Dependent Mixing Rule 

for Equations of State 

Theodore John Shatynski, Master of Science in Chemical Engineering, 1986 

Thesis directed by: Dr. Dana E. Knox, Professor of Chemical Engineering 

A general procedure for the development of density-dependent mixing 

rules is demonstrated. This method is used to obtain a density-

dependent local-composition mixing rule based on an extention of the 

work of Knox et al (1984). The resulting expression is tested with the 

Soave-Redlich-Kwong equation of state. Results for normal and cryogenic 

vapor-liquid systems for both one-parameter and three-parameter versions 

of the mixing rule are compared with results using the classical mixing 

rules. 
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CHAPTER I: INTRODUCTION 

Equations of state (EOS) are a popular way of predicting and 

correlating fluid phase equilibria. EOS can adequately describe both 

liquid and vapor phase behavior using the classical mixing rules when 

dealing with nonpolar or slightly polar mixtures. However, when polar 

mixtures are encountered, the EOS with the classical mixing rules can no 

longer accurately predict the liquid phase. The inadequacy of these 

mixing rules with EOS to model liquid phase nonideality gave rise to the 

liquid phase activity coefficient concept. Some of the most successful 

of these activity coefficient expressions are local—composition 

equations such as the Wilson (1964), the NRTL of Renon and Prausnitz 

(1968), and the UNIQUAC of Abrams and Prausnitz (1975). 

The use of local—composition activity coefficient models to 

describe liquid—phase molecular behavior coupled with an EOS using the 

classical mixing rules to predict vapor—phase molecular behavior has 

been successful in correlating vapor liquid equilibria (VLE) for many 

polar mixtures where large degrees of nonideality are present in the 

liquid phase. However, this approach to VLE (known as the y/0 approach) 

has a critical shortcoming in that the activity coefficient frequently 

loses its physical significance. This is due to the definition given to 

the standard—state fugacity which is given as the fugacity of pure 

liquid at system temperature and pressure. Quite often a particular 

component cannot physically exist as a pure liquid at the system's 

temperature and pressure, and extrapolation into the hypothetical region 
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leads to uncertainties. In addition, this approach to VLE lacks 

continuity between the mixing rules for the liquid and vapor phases. 

These shortcomings of the y/0 approach can be bridged by the use of 

density—dependent mixing rules in EOS. The concept is to make a local—

composition model a function of density and develop it into a EOS mixing 

rule applicable to both phases. At the high density limit (liquid—like 

behavior), the fugacity coefficient behaves as if it is an activity 

coefficient. At the low density limit (vapor—like behavior), the mixing 

rule reduces to the standard classical or quadratic mixing rule. 

Typically, the use of the classical mixing rules in EOS to describe 

molecular behavior of mixtures in the vapor phase, even for strongly 

polar compounds, is adequate due to the random arrangement of molecules 

which results in minimal molecular interaction. 

Work in the area of density—dependent mixing rules stemmed from the 

contributions of Vidal (1978), Huron and Vidal (1979), Heyen (1981) and 

Won (1981). These contributors showed that non—quadratic mixing rules 

could be successfully used in EOS to correlate complex polar—polar and 

polar—nonpolar systems. One shortcoming of these mixing rules was that 

they were density—independent and could not reproduce the required (by 

statistical mechanics) quadratic compositon dependence of the second 

virial coefficient in the vapor phase (low densities). Thus, these 

models gave better results at liquid—like densities, but poorer results 

at lower densities. Table I of Appendix I summarizes typical results 

obtained by Huron and Vidal (1979). Overall, the systems containing 
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gaseous components gave poorer results than the liquid systems. 

To get these mixing rules to reduce to the classical mixing rules 

at the low density limit, Whiting and Prausnitz (1982), Mollerup (1981) 

and Won (1983) proposed density—dependent local—composition mixing rules 

for EOS. These rules use conventional mixing rules for the repulsive 

term, b, and local—composition mixing rules with some type of density 

denpendence for the attractive term, a, of the EOS. However, the 

theoretical basis of some of these two—fluid mixing rules has been 

criticized by a number of authors. McDermott and Ashton (1977) and Flemr 

(1976) have noted that two—fluid models have shortcomings because they 

do not contain a material balance constraint. Thus, the number of ij 

pair interactions do not equal the number of ji pair interactions. Use 

of one—fluid models, which contain the material balance constraint, 

would overcome this shortcoming. 

The purpose of the thesis is to show how a local—composition model 

may be developed into a density—dependent mixing rule for EOS. In this 

thesis, the local—composition expression of Knox et al (1984), a one—

fluid model, is used to demonstrate this procedure with the Soave—

Redlich—Kwong (SRK) EOS. Correlative results using the new mixing rule 

are then compared with results using the classical mixing rule for a 

variety of normal and cryogenic systems. 



CHAPTER II: BASIC MOLECULAR MODEL 

This thesis will develop a mixing rule that is based on a 

statistical thermodynamic model developed by Knox et al (1984). This 

local—composition model is an alternative to those of the Wilson 

equation (1964), the NRTL equation of Renon and Prausnitz (1968), and 

the UNIQUAC equation of Abrams and Prausnitz (1975). 

The Knox local—composition model is a one—fluid model which has its 

physical_ concepts firmly based on molecular theory. The previously 

mentioned local—composition models are two—fluid models which lack 

physical significance since mixture properties are derived from 

postulated properties of hypothetical fluids. Specifically, each fluid 

has its own interchange energy and local composition which is 

independent of those of the other fluid(s). A one—fluid model, on the 

other hand, is based on one interchange energy for each binary and a 

local composition that is dependent on the mixture's constituents. 

The basic assumptions of the Knox one—fluid model are as follows: 

1. The translational partition function is given as a free translation 

in a volume equal to the actual volume less the excluded volume; 

the excluded volume is taken as a linear composition average over 

all components. Note that this assumption produces the repulsive 

contribution to the pressure normally found in cubic equations of 
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state. A different assumption may be used if another form is 

desired for this contribution. 

2. The rotational, vibrational and electronic contributions to the 

molecular partition functions are all independent of both density 

and composition. 

3. Each molecule engages in a characteristic average number of 

interactions, zi, of pair interactions with other molecules. Since 

only pair interactions are considered, the number of interactions 

attributable to the presence of a single molecule i is zi/2, and the 

total number of such interactions is: 

The above assumptions are introduced into the canonical partition 

function of statistical mechanics. The details of this development are 

given in Appendix II. The resulting expression follows: 

where the numbers of interactions by type (Nib) are given by solution of 

the set of equations: 
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The molecular partition functions are given as: 

where bt represents the excluded volume, and qiint contains those  

portions of the molecular partition function which depend only on 

temperature (and not on density or composition). The excluded volume is 

assumed to be given by the usual expression: 



CHAPTER III: EXTENSION TO EQUATIONS OF STATE 

The last section gave the molecular theory that formed the basis of 

this mixing rule. This section shows how the density—dependent mixing 

rule is developed from the canonical partition function. 

The density dependence is introduced into the canonical partition 

function by assuming that the average interaction energy for a given 

type of molecular pair is given to within a multiplicative constant by a 

universal function, f, of density and composition: 

U. = f (III.1) 
ij 

Thus the canonical partition function becomes: 

The following thermodynamic expression relates the canonical 

partition function to the Helmholtz energy: 

At = —kT ln Q 

Applying this relationship, we obtain the Helmholtz energy: 



We have chosen the density—dependent function f so as to obtain a 

Redlich—Kwong equation of state: 

Thermodynamics gives us the relationships between the Helmholtz energy 

(expressed as a function of T, Vt, and Ni), the pressure, and the 

component fugacity coefficient as: 

From these equations, we find (after considerable algebra which is 

covered in Appendices III and IV) that: 

where we have noted that the quantity a is given by: 

and L is Avogadro's number. We thus arrive at the conclusion that the 

Redlich—Kwong parameter a is given by zi/2 times the negative of the 



characteristic energy of the interaction. The local compositions xij 

are evaluated by the following equations, which follow directly from the 

earlier equations for the Nip 

The Ai represent the interaction fraction of component i, and are 

calculated as: 

From the above equations, as the density tends towards zero, the 

predicted local compositions (xii) will approach the interaction 

fractions Ai. If all the zi values are equal, then the local 

compositions will approach the overall compositions (xi), and the given 

mixing rule will reduce to the classical mixing rule. At higher 

densities, this will not be true; the difference will represent the 

nonideality of the dense mixture. 

The model is completed by specifying that the pure component energy 

parameters are evaluated by the Soave (1972) expression: 



CHAPTER IV: RESULTS AND DISCUSSION 

Vapor/liquid equilibrium data for a variety of binary systems have 

been fitted using the new density—dependent mixing rule. Bubble point 

calculations were performed using the Michelsen (1980) algorithm. A 

Marquardt regression program was used to determine the optimal values 

for the parameter(s). The objective function used was the sum of the 

squared residual pressures: 

OBI = (P — P
exp

)
2 

where the summation is over all the data points in a given set. An 

objective function including the sum of the squared residual vapor—phase 

compositions may also have been selected. However, the above objective 

function was chosen since most of the experimental data only reported 

equilibrium pressures and contained no vapor—phase compositions. 

The model has one energy parameter, eij, for each interaction and 

one 'size' parameter, zi, for each molecule. The pure—component energy 

parameters are related to the pure—component values of the Soave—

Redlich—Kwong parameter a (eqn 111.14). Rather than regress for eij 

directly, we choose the more traditional approach and define eij in 

terms of the pure component values: 

s
ij 

= — (e
ii 
 e

jj
)
0.5 

(1 — k
ij
) 

The minus sign is necessary since all energy parameters are less than 

zero. Thus, the three adjustable parameters associated with a binary 
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system are zi, z2 and kn. In order for the proposed mixing rule to 

reduce to precisely the classical mixing rule at zero density, all the 

zi values should be equal to 2. If instead we treat the zi values as 

adjustable parameters then the local compositions will approach the 

interaction fractions ei rather than the overall compositions. This 

behavior is in agreement with the observations of Sandler and Lee 

(1986), who have noted that local compositions do not generally equal 

overall compositions in the limit of zero density. 

The experimental data have been fitted using both options. In 

addition, for comparison purposes, the data were fitted with the same 

SRK equation—of—state using the classical mixing rule. In Tables II and 

III a summary of the results for the correlation of vapor/liquid 

equilibria data are presented for five normal and four cryogenic binary 

systems using a) the SRK equation with the classical mixing rule, b) the 

SRK equation with the 1—parameter density—dependent mixing rule, and c) 

the SRK equation with the 3—parameter density—dependent mixing rule. 

The tables list, for each model, the standard error of the correlation 

in (kPa), the average absolute per cent deviation of the calculated 

pressures from the experimental pressures, and the parameter values used 

to obtain the listed results. 

As can be seen from Tables II and III of Appendix I, use of the 

one—parameter density—dependent mixing rule results in a slight 

improvement over the classical mixing rule for the systems studied. 

However, a more noticeable improvement is obtained with the three- 
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parameter mixing rule, particularly for the polar mixtures 

chloroform/acetone, ethanol/toluene, ethanol/water, and 

acetonitrile/ethanol. This is to be expected, of course, due to the 

additional adjustable parameters. 

The mixing rule's flexibility for modeling both polar and nonpolar 

systems is also shown in the results of Tables II and III. For the 

relatively ideal systems of benzene/cyclohexane, argon/methane, and 

nitrogen/argon there is little deviation (less than 0.5%) between the 

calculated and experimental pressures for all three mixing rule 

comparisons. The deviation of results between the mixing rule 

comparisons are much more pronounced for the polar mixtures of 

chloroform/acetone, ethanol/toluene, ethanol/water, and 

acetonitrile/ethanol. In these cases, the 3—parameter version of the 

density—dependent mixing rule drops the deviation in calculated and 

experimental pressures between 2.1 — 7.6% below the classical mixing 

rule. The 1—parameter version of the mixing rule reduces the 

calculated/experimental pressure deviation between 0.04 — 3.5% below the 

classical mixing rule with the exception of the ethanol/water system 

where it is 0.07% higher. 

A study of the zi parameter values of Table II indicate that they 

are all nearly equal to 2 for these organic systems, while the zi values 

for the cryogenic systems in Table III deviate much further from 2. 

Although the zi parameters are related to the size of the molecule and 

to its orientation around other molecules, there is no obvious 
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relationship between these z parameters and the relative sizes of a 

mixture's components. The large value of z2 (10.00) in the 

nitrogen/carbon monoxide system tends to indicate that molecular 

interaction may influence the value of the z parameter when dealing with 

polar gases. The results may also indicate that the zi values need to be 

a function of density. 

Regression statistics show that the zi parameters are not at all 

correlated with the k12 parameter, but that the zi and z2 parameters are 

highly correlated with each other. This is supported by the observation 

that the precise values of z1 and z2 are less important than their 

relative values. 

For the systems that did report vapor—phase compositions, Table IV 

reports percent deviations between calculated and experimental values. 

It should be noted that the deviation between calculated and 

experimental vapor—phase compositions may appear larger than one is 

accustomed to but this is due to the objective function only minimizing 

the squared residual sums of pressures and not vapor compositions. In 

turn, the reported deviation between calculated and experimental bubble 

point pressures are smaller than what they would be if both pressure and 

vapor composition were contained in the objective function. The selected 

objective function should not have any bearing on the new mixing rule's 

improvement in correlating vapor/liquid equilibrium since it is compared 

to results using the classical mixing rule which has been regressed with 

the same objective function. 
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CHAPTER V: CONCLUSIONS AND RECOMMENDATIONS 

We have described a straightforward approach for the development of 

both equations of state and mixing rules for equations of state. The 

method is based on the construction of the canonical partition function, 

with particular attention paid to the density- and composition-dependent 

portions. These are the portions of greatest practical importance to 

obtaining expressions for the pressure, fugacity coefficients and mixing 

rules. The temperature dependence of the molecular partition function 

tends to be much more complicated and is better handled by empirical 

means, as with the Soave modification to the Redlich-gwong equation. 

Significant improvement over the classical mixing rules is obtained 

only with the three-parameter density-dependent mixing rules. However, 

it may well be possible to rework the model so that only one parameter 

(reflecting the relative sizes of the molecules) is required in addition 

to the k12 parameter. 

However, it is unlikely that truly significant advances will be 

made without abandoning the cubic equation of state. In terms of the 

model presented here, one likely improvement would be to include an 

athermal combinatorial factor which is density-dependent. Such a factor 

would be a theoretical improvement, but would necessarily lead to a non-

cubic equation of state. Also, the simple free-volume correction may 

also be replaced by a more rigorous expression, again leading to a non-

cubic equation of state. In all cases, however, the current method of 
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development would still be applicable. 

The model has by no means been fully tested. Regressed binary 

interaction parameters should be used to predict ternary systems using 

both the classical mixing rule and the density—dependent mixing rules. 

This will be a stronger test of the model's theory rather than just a 

comparison of correlated results. 



NOMENCLATURE 

a Equation—of—state attractive parameter 

b Equation—of—state volume parameter 
f Density dependence function for energy parameter 
k Boltzmann constant 
n Number of moles 
q Molecular partition function 

Interaction energy 
(one subscript) Mole fraction 
(two subscripts) Local composition — molecular model 

z Average number of interactions for a molecule or group 
A Helmholtz energy 
I Total number of interactions in mixture 

N (one subscript) Number of molecules in mixture 
N (two subscripts) Number of molecule—molecule interactions in 

mixture 
P Pressure 
Q Canonical partition function for mixture 
R Gas constant 
T Temperature 

✓ Volume 
W Combinatorial factor for mixture 
a Interaction energy parameter 
9 Interaction fraction 

Fugacity coefficient 

Superscripts 

ath Athermal 
elc Electronic 
int Internal 
t Total 
trn Translational 
vib Vibrational 

Subscripts 

i,j Refer to molecules 
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APPENDIX I: TABLES 

Table I : Typical Correlation Results of Huron and Vidal (1979) 
Using Density—Independent Local—Composition Mixing Rules 

TEMP (°C) 
NUMBER OF 
PARAMETERS 

EQUIL. PRESS. 
AP (ATM) 

VAPOR PHASE 

Ax 

Methanol/1,2 Dichloroethane 

50 1 0.049 0.07 
50 2 0.140 0.02 
50 3 0.005 0.01 

Acetone/Cyclohexane 

25 1 0.016 0.049 
25 2 0.004 0.012 
25 3 0.001 0.004 

Acetone/Water 

100 1 0.360 0.08 
100 2 0.060 0.01 
100 3 0.050 0.01 

Carbon Dioxide/Ethane 

10 1 0.340 0.005 
10 2 0.160 0.006 
10 3 0.150 0.005 

Ethane/Acetone 

25 1 1.020 0.001 
25 2 0.660 0.002 
25 3 0.520 0.001 

Propane/Ethanol 

51.85 1 0.650 0.01 
51.85 2 0.480 0.01 
51.85 3 0.140 0.02 



TABLE II: Correlation of Normal Vapor/Liquid Equilibrium data 

Mixing' 
T (K) Rule 

k
ii 2.1- 

Stand. Error 
(kPa) 

AE a 100 
P 

Benzene/Cyclohexane (Li and Lu, 1973) 

298.15 a 0.0283 - - 0.1266 0.74 
298.15 b 0.0305 - - 0.1261 0.71 
298.15 c 0.0337 2.005 1.999 0.0826 0.49 

Chloroform/Acetone (Van Ness and Abbott, 1978) 

323.15 a -0.0495 - - 2.239 2.57 
323.15 b -0.0466 - - 2.194 2.53 
323.15 c -0.0567 2.005 1.980 0.2865 0.39 

Acetonitrile/Ethanol (Wilson et al, 1979) 

323.15 a 0.0783 - - 1.317 2.71 
323.15 b 0.1002 - - 1.141 2.41 
323.15 c 0.0929 1.976 2.022 0.0542 0.12 

Ethanol/Toluene (Van Ness and Abbott, 1977) 

303.15 a 0.0805 - - 1.225 9.84 
303.15 b 0.1754 - - 0.7299 6.34 
303.15 c 0.1610 2.052 1.956 0.2707 2.28 

Ethanol/Water (Wilson et al, 1979) 

323.15 a -0.0863 - - 1.842 7.10 
323.15 b -0.0859 - - 1.861 7.17 
323.15 c -0.0969 1.983 1.933 0.9489 3.61 

1 Mixing Rule: a) Classical Mixing Rule 
b) Density Dependent Mixing Rule (with zi = z2 = 2) 
c) Density Dependent Mixing Rule 



Table III: Correlation of Cryogenic Vapor/Liquid Equilibrium Data 

T (I) 

Mixingl 

Rule. 
k 
ii__a_ 

z z 

_a_ 

Stand. Error 

, (kPa) 

a 
x 100 

P  

Argon/Methane (Prausnitz et al, 1966) 

90.67 a 0.0352 - - 2.016 1.50 
90.67 b 0.0519 - - 1.384 1.72 
90.67 c 0.0886 1.261 1.556 0.904 1.09 

Nitrogen/Argon (Prausnitz et al, 1966) 

83.82 a 0.0043 - - 0.982 0.62 
83.82 b 0.0044 - - 0.980 0.62 
83.82 c -0.0679 1.832 4.03 0.887 0.57 

Nitrogen/Carbon Monoxide (Prausnitz et al, 1966) 

83.82 a 0.0095 - 1.805 0.97 
83.82 b 0.0097 - - 1.802 0.97 
83.82 c -0.3718 1.656 10.000 0.798 0.36 

Nitrogen/Methane (Prausnitz et al, 1966) 

90.67 a 0.0234 - - 2.549 1.34 
90.67 b 0.0360 - - 2.706 1.36 
90.67 c 0.0018 2.385 1.973 1.145 0.39 

1 Mixing Rule: a) Classical Mixing Rule 
b) Density Dependent Mixing Rule (with zi = z2 = 2) 
c) Density Dependent Mixing Rule 



Table IV: Average Percentage Error in Vapor—Phase Composition 
for Cryogenic Vapor/Liquid Systems 

Argon/Methane (Prausnitz et al, 1966) 

Mixing rule a: 1.64 % 
Mixing rule b: 1.4 % 
Mixing rule c: 1.11 % 

Nitrogen/Argon (Prausnitz et al, 1966) 

Mixing rule a: 2.50 % 
Mixing rule b: 2.50 % 
Mixing rule c: 2.36 % 

Nitrogen/Carbon Monoxide (Prausnitz et al, 1966) 

Mixing rule a: 2.07 % 
Mixing rule b: 2.07 % 
Mixing rule c: 2.40 % 

Nitrogen/Methane (Prausnitz et al, 1966) 

Mixing rule a: 0.27 % 
Mixing rule b: 0.24 % 
Mixing rule c: 0.24 % 

NOTES: Percent error was calculated as follows: 

Y Y cal exp_  X 100 
exp 

a = Classical Mixing Rule 

b = Density Dependent Mixing Rule (with zi = z2 = 2) 

c = Density Dependent Mixing Rule 



APPENDIX II: DEVELOPMENT OF CANONICAL PARTITION FUNCTION 

The canonical partition function of statistical mechanics may be 

written as: 

where the summation is over all possible molecular arrangements of the 

mixture, Et is the total intermolecular energy of arrangement , and qi 

is the molecular partition function arising from the translational, 

rotational, and vibrational properties of molecule i. Since the Knox 

model assumes that qi is independent of molecular arrangement, equation 

(AII.1) may be rewritten [Hill, 1960, eqn. (20-5)] : 

where the summation is now over all values of Et, and the combinatorial 

factor W gives the number of molecular arrangements associated with the 

energy Et. 

The energy Et is the sum of all individual pair—interaction 

energies, nip 



W is assumed proportional to the number of distinguishable ways in 

which the total of I pair interactions can be distributed over the I 

interaction sites: 

For the case of an athermal solution, for which all pair 

interactions have the same energy, eqn (AII.2) has but a single term and 

a single W which is the total number of molecular arrangements. Thus 

wath is obtained by summing eqn (AII.4) over all sets of Nij: 

The sum in equation (AII.5) is evaluated (Knox, 1984, Appendix A) and 

solved for h: 

Combining equations (AII.2), (AII.4), and (AII.6) gives: 



Replacing the sum in eqn (AII.7) by its maximum term (Hill, 1960, 

Appendix II), we get the canonical partition function in its final form: 



APPENDIX III: DEVELOPMENT OF EQUATION OF STATE 

Thermodynamics gives us the following relationship between the Helmholtz 

energy (expressed as a function of T, Vt, and Ni) and the pressure: 

The expression for At is given as: 

Differentiating with respect to Vt and dropping terms which are not 

density dependent: 



Simplifying we get: 

. 
Expanding the summation which contains the differential 

8N 
1J 

av 

for j>i, j=i, j<i, we get: 

Differentiating Nij with respect to Vt we get: 



Expanding the differential for j>i, j=i, j<i, we find: 

Substituting this relationship into the expanded summation, eqn 

(AIMS), we find that the entire series is equal to zero. Thus the 

remaining expression is as follows: 

Moving kT to the other side of the eqn (AIII.8), multiplying by L/L, and 

noting the following relationships: 



We arrive at the equation: 

where we have noted that the quantity a is given by: 



APPENDIX IV: DEVELOPMENT OF FUGACITY COEFFICEINT EXPRESSION 

Thermodynamics gives us the relationship between the Helmholtz energy 

(expressed as a function of T, Vt, and Ni) and the component fugacity 

coefficient as: 

Thus, we choose to evaluate the expression At/kT at the limits Vt = 

and Vt = Vt before we differentiate. 

Noting that at Vt = (1,  , we have: 

xij = X. (AIV.2)  

N
ij = (z.Ni /2) (z N /2) / I (AIV.3) 

Therefore: 

Here we have defined ' T ' as: 



Noting that I = ) zi Ni / 2 , ' T ' is simplified to the following: 

Thus: 

Differentiating eqn (AIV.7) with respect to Nk , we obtain: 



For i = k , eqn (AIV.8) can be factored and simplified to: 

where: 

Equation (AIV.10) is now expanded and simplified: 



Changing the indices in the last summation and noting that: 

with the result: 

Substituting ' R ' back into eqn (AIV.9) and simplifying, we get: 



Here we have noted Ok = (zkNk/2)/I and xkk = Nkki(zkNk/2). Substituting 

the above expression into the fugacity coefficient expression, eqn 

(AIV.1), and combining similar terms we get: 

Noting that: 



The fugacity coefficient expression, eqn (AIV.17) is simplified to give: 

where a is given by the quantity: 
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