

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

Title of Thesis: 'The Conversion of the Process Flowsheet
Simulator, FLOWTRAN, For FORTRAN 66 Based Mainframe
Computers.'

Timothy E. Roche, Master of Science in Chemical Engineering

Thesis directed by: Professor Edward C. Roche, Jr., Sc.D.,
P.E.

The process flowsheet simulator FLOWTRAN was converted

from FORTRAN 77 code to FORTRAN 66 code. The conversion was

accomplished by developing a number of subprograms to handle

FORTRAN 77 intrinsic functions that are missing in the

FORTRAN 66 standard and by altering the code to take

advantage of the developed subprograms. Also developed were

a set of procedure files for executing the FORTRAN 66

FLOWTRAN on a Sperry-Univac 90/80-4. The new FLOWTRAN was

tested and performs identically to the FORTRAN 77 version.

The FORTRAN 66 FLOWTRAN can be installed on any mainframe

computer with a FORTRAN 66 compiler.

The Conversion of the
Process Flowsheet Simulator, FLOWTRAN,

For FORTRAN 66 Based Mainframe Computers

by

Timothy Edward Roche

Thesis submitted to the Faculty of the Graduate
School of the New Jersey Institute of Technology in

partial fulfillment of the requirements for the degree of
Master of Science in Chemical Engineering

1986

APPROVAL SHEET

Title of Thesis: The Conversion of the Process Flowsheet
Simulator, FLOWTRAN, For FORTRAN 66 Based
Mainframe Computers

Name of Candidate: Timothy Edward Roche
Masters of Science in Chemical
Engineering

Thesis and
 Abstract Approved:

Edward C. Roche, Jr. Date
Professor
Department of Chemical Engineering

Date

Date

VITA

Name: Timothy Edward Roche

Permanent Address:

Degree and Date to be conferred: M.S.Ch.E., 1986

Date of Birth:

Place of Birth:

Secondary education: Parsippany Hills High School, 1980

Date
of

Collegiate institutions attended Dates Degree Degree

New Jersey Institute of Technology 80-84 B.S.Ch.E. 1984

New Jersey Institute of Technology 84-86 M.S.Ch.E. 1986

Major: Chemical Engineering

DEDICATION

To My Parents: Nancy I. Roche and Edward C. Roche, Jr.

Acknowledgement

I would like to thank Steve Keeton for his help on the
initial stages of the conversion, which eventually lead to
the creation of the EQUAL and MYINDX subroutines. And a
special thanks to my thesis advisor and father, Dr. Edward
C. Roche, Jr. for help throughout the work on this thesis,
and particularly on the procedure files.

TABLES OF CONTENTS

Section Page

I INTRODUCTION 1

II FLOWTRAN 2

II.1 INF 4

11.2 PROPTY 7

II.3 VLE 9

11.4 PREPRO 10

III CONVERSION 16

III.1 Differences 17

III.1.1 Type Hollerith 17

1II.1.2 Type CHARACTER 18

II1.2 Solutions 25

1II.2.1 Assignment Statements 25

II1.2.2 Type Character Constants 33

1II.2.3 Relational Operations 33

II1.2.4 Intrinsic Function INDEX 34

111.2.5 Internal Files 35

IV TESTING 37

V PROCEDURE FILES 39

Appendix A -- Chemicals in the Public Data File 42

Appendix B FLOWTRAN Blocks 47

Appendix C MYINDX, EQUAL1, EQUAL2, EQUAL4 and CORE

FILES 49

Appendix D -- Procedure Files 58

Appendix E -- TIME/DATE Routines 75

Appendix F -- Example FLOWTRAN Jobs 78

Appendix G -- Procedure Files For Loading FORTRAN

Programs 109

LIST OF TABLES

Table Page

II.1.1 Physical Data Record 6

II.2.1 Raw Data for Correlation 8

II.3.1 VLE Objective Functions and Data Types 10

II.4.1 Arrangement of FLOWTRAN Input Data 12

III.1.1 Treatment of Unequal Lengths for Type CHARACTER 21

1II.1.2 Examples of CHARACTER Substrings 24

II1.2.1 Examples of Using the Subprograms EQUAL1 and

EQUAL4 28

II1.2.2 Copying Scheme for EQUAL4 31

LIST OF FIGURES

Figure Page

II.1.1 Data Storage and Retrieval facing page 7

11.2.1 Curve Fitting and Data Storage facing page 8

11.4.1 Property Estimation facing page 13

I INTRODUCTION

The objective of this thesis was the conversion and

implementation of the process simulator FLOWTRAN on a

computer equipped with a FORTRAN 66 or FORTRAN IV compiler.

The complete process simulator, here after referred to as

FLOWTRAN, supplied to the author was written for a FORTRAN

77 compiler. The conversion entailed alterations to the

original code so that FLOWTRAN would compile on a FORTRAN

66/FORTRAN IV compiler and then run error free. The purpose

for this conversion was to permit the use of FLOWTRAN on

computers that do not have a FORTRAN 77 compiler available,

for example the Sperry-Univac 90/80-4 which has only the

1966 standard FORTRAN compiler. This FORTRAN 66 version of

FLOWTRAN can be made available to other schools that do not

have a computer capable of handling the FORTRAN 77 version.

The thesis was limited to producing a version of FLOWTRAN

that performed as close to the original as possible. This

goal was accomplished by creating general subprograms and

algorithms that would emulate the inherent capabilities of

the FORTRAN 77 code.

page 1

II FLOWTRAN

FLOWTRAN is a sequential modular process simulator: a

generalized steady state modeling computer program for

process design and plant simulation (Seader iii). The code

was developed by Monsanto's Applied Mathematics Department

during the 1960's. FLOWTRAN allows comprehensive modelling

of process flow sheets with relative ease of use. Along

with flow sheet simulation FLOWTRAN is capable of retrieving

physical data from its library, estimating physical

properties from established correlations (including

petroleum fractions), and correlating vapor liquid

equilibrium data. All of these abilities are handled by the

four main programs that make up the FLOWTRAN package.

The four main programs that constitute the FLOWTRAN

package are: (1) INF, the information retrieval system;

(2) PROPTY, the physical property correlator and estimator;

(3) VLE, the vapor liquid equilibrium correlating program;

(4) PREPRO, the FLOWTRAN-flow-sheet-simulator interpreter.

The program PREPRO develops from the user supplied

input data a FORTRAN main program which performs the actual

flow sheet simulation. All four main programs and their

accompanying subprograms are written in FORTRAN.

Approximately 40,000 lines of FORTRAN code comprise the

FLOWTRAN package. The four main programs in the FLOWTRAN

package also share similarities in the way they are executed

page 2

and the input/output files that are used.

The input data files for the four main programs are

similarly formatted (examples are included in Appendix E).

Each line of input is a record. Lines beginning with a

blank are considered continuations of the previous record.

Two arguments must be separated by at least one blank space.

Argument lists may be continued on additional lines by

leaving at least the first column blank on each additional

line. While an argument may end in the last column of a

line, it cannot be split between lines. The first word on

any record is the keyword (unless the record contains a

blank in the first column). The keyword defines the type of

record and whatever follows within the record. As an

example consider the record:

BLOCK DIS DSTWU FEED BOTM OVHD

The keyword is BLOCK which indicates that a subroutine will

be called. BLOCK records contain a label for the block, in

this case DIS, short for distillation tower. After the

label comes the block-type, DSTWU, which is the distillation

block using the Winn-Underwood algorithm (a complete list of

blocks is contained in Appendix B). Following the block-

type on the BLOCK records are the stream names for the feed

stream, the bottoms product stream, and the overhead product

stream. Because all four main programs' input data files

are structured the same, the scanning procedure used by all

the main programs in the FLOWTRAN package is very similar.

page 3

The above block statement is translated into the following

FORTRAN statement.

CALL DSTWU(

All four main programs in the FLOWTRAN package scan

their data files for keywords in the same way. The process

involves reading the first six characters on any given line

into a temporary scan variable. The scan variable is tested

to see if it is a valid keyword for the particular program

scanning it. If the scan variable does not match any of the

keywords an error diagnostic is generated. On the other

hand, if the scan variable does match a keyword then the

program proceeds to properly process the information

contained on the record. This involves stripping off

further keywords to test for validity and reading numerical

values from the remainder of the record. This procedure is

repeated until an 'END JOB' record is read.

To make this thesis more understandable a short

description of the four main programs is presented.

II.1 INF

The information storage and retrieval system, INF,

plays a dual role for FLOWTRAN. INF runs as a stand alone

program; usually performing simple tasks such as displaying

the constants for a chemical specie or listing the chemicals

in the library. INF also serves as an unseen servant for

the main programs PROPTY and PREPRO. When either of these

page 4

programs want to retrieve or store component data records

they use INF.

INF has two primary functions: retrieving the records

for desired chemicals, and maintaining the library through

updates of, additions of, and deletions of data records.

INF is the librarian for the FLOWTRAN simulation program.

The data library for FLOWTRAN is composed of two or

more sections. The main library section is the public file

which contains 180 records of chemicals (see Appendix A for

list). The public file is a read only file. Read only

status permits data retrieval and copying privileges, but

does not permit modification to any of the records. The

other section of the library are the private files. A

private file is distinguished from the public file because

it is created by the user, but still can be maintained

through the program INF.

The data records in the Physical Property library,

whether the records are in the public or Private files, are

structured as shown in Table II.1.1

page 5

TABLE 11.1.1 Physical Data Record

Common FLOWTRAN
Basic Properties Symbol Symbol Units
Molar weight MW MW o Normal boiling point TWbp NBP oR Critical temperature TC R ' Critical pressure Pc

c PC psia
Critical compressibility zc ZC
Liquid volume constant VL
Liquid volume (60F and 14.7 psia) - LDEN60 gal/lbmole

Enthalpy Properties
Liquid Enthalpy constant HL
Ideal gas heat capacity BTU

constants * a1...a5 CP(i) lbmole-"F
Liquid Enthalpy constants LH(i)

Equilibria Properties
Solubility parameter 6 DELTA (cal/ml)1/2

Expansion factor EXPF
Acentric factor OMEGA
Antoine vapor pressure

constants a1,a2,a3 VPA(i) psia,oF
Cavett vapor pressure

constants a1, a2 VPC(i) psia,oF
*
Proprietary Monsanto constants computed by PROPTY

When INF is called upon to retrieve named data records,

to edit property constants, or to store new data records it

does these tasks in the following manner (ref. Fig. 11.1.1).

INF scans the commands of the data file for recognized

keywords and determines the desired function. For the

purpose of illustration lets use copying a data record from

the public file to the private file, and then print out the

private file version. First INF must search the public file

to verify that the record exists. When the record has been

found it is copied from the data file to temporary memory.

page 6

FIGURE 3.1 Dat Storag• ar.d Pc tri et

Next, the program will search the private file to find out

if the record already is there; if the component name being

transferred has no record in the private file it is added to

the end of the list; if the component name already exists,

the data record is updated by overwriting the previous

values. Because an output of the component data was ask (I

for, the information in temporary memory is printed out. A

schematic of information flow is presented in Fig. II.1.1

(see facing page).

11.2 PROPTY

When the components for a process are not in the Public

data file it becomes necessary to create new component

records in the Private data file. This is the major purpose

of the program PROPTY. Given raw data as illustrated in

Fig. 11.2.1, PROPTY generates the liquid enthalpy constan

and the expansion factor using proprietary Monsanto

correlations.

A PROPTY job. runs much like an INF job. First of all,

the PROPTY data file is scanned to established what is given

and what must be established. Typically a PROPTY job will

consist of the information shown in Table 11.2.1

page 7

FIGURE 3.4 Property Estimation

TABLE 11.2.1 Raw Data for Correlation

Component name
Molar weight
Normal boiling point
Critical temperature
Critical pressure

Latent heat of vaporization at specified temperature

Liquid density*

a) Table of liquid density versus temperature
b) Coefficients (d., a, P, TR for the liquid

density polynomial in the International
Critical Tables:

dt = ds = 10
-3 a(t - t

s
) + 10-6 pct — ts) + 10

9
y(t - ts)

3

Vapor pressure versus temperature table

Heat capacity of ideal gas*

a) Table of heat capacity versus temperature
b) Bond contribution data

Data in the form of a, b, or both are acceptable.

Most of this information is incorporated directly into

a new physical property record, however, some constants have

to be evaluated. The curve-fitting program computes the

constants that will be in the data record. All the

correlated information and physical constants are saved in a

temporary file in the main memory. If a STORE statement is

included in the data file the information is permanently

stored in the Private file by INF. A schematic

representation is presented in Fig. 11.2.1 (see facing

page).

page 8

Making physical property data records for components of

higher molecular weight can be accomplished by treating them

as groups or pseudo components. This is particularly

helpful when dealing with petroleum streams. The reader

should consult the Introduction to FLOWTRAN by Seader

et.al. for further details.

11.3 VLE

VLE calculates the liquid-phase activity coefficient

constants. All other thermodynamic quantities are handled

by PROPTY. VLE is able to regress parameters for the

following cases:

1. Ideal Solutions
2. Regular Solutions
3. Wilson Equation
4. Van Laar Equation
5. Renon Equation (improved by Monsanto)

Given an equation, VLE regresses for the interaction

parameters using nonlinear regression techniques with one or

more parameters and a choice of five objective functions.

The five objective functions are summarized in the Table II-

C-1 along with the appropriate data type.

page 9

TABLE 11.3.1
VLE Objective Functions and Data Types

Objective Data Type
Function Code T-P-x-y T-P-x T-x-x

ln(y/x)i = in Ki 1 N

In a.Jr 2 N - 1

ln(y/x)r = in Kr + lnajr 3 N

(1,,J. - 1) 4 1 1

ln(xI/xII)i = In Kw. 5 N

Dashes indicate an invalid combination. Other entries

indicate valid combinations; the value of the entry

indicates the number of equations per experimental point for

a system of N components. The subscript i represents all

components, r represents a reference component (component

1), and j represents all components except the reference

component.

11.4 PREPRO

The most frequently used and complicated segment of the

FLOWTRAN package is the one built around the main program

PREPRO. This program is interchangeably referred to as

PREPRO (the preprocessor) or just plain FLOWTRAN, because

the most important task done by the FLOWTRAN package is the

steady state simulation of process flow sheets, which is

PREPRO's function.

page 10

The process simulator is constructed with a number of

integral parts: the physical proper,:y data library and

information retrieval system (INF), the preprocessor

(PREPRO), and a library of BLOCKS or FORTRAN subprograms

that simulate various unit operations.

uiven a FLOWTRAN-job-data file describing a process:

FLOWTRAN will discover which components are involved and

recall their physical properties. FLOWTRAN will determine

the property estimation technici...es desired and use them when

neejed. FLOWTRAN will perform the unit operations included

in the process and perform the evaluation in the order they

are input. FLOWTRAN will read off the stream flew rates,

temperatures, and pressures. And finally, FLOWTRAN will

simulate the process..

A FLOWTRAN-job run relies on two FORTRAN programs (INF

and PREPRO) , the host computer's compiler and linker (to

generate the specific simulation program), the public and

private physical property ..ata files, and the collection of

unit operation blocks (algorithms) that FLOWTRAN is capable

of simulating (input to the linker).

The procedure begins with the information retrieval

system (INF), which scans the input data file for its own

keywords. Specifically it looks for the keywords FILE and

RETR. FILE optionally informs INF which data library to

look in -- the default is the public file. The keyword RETR

tells INF which components are in the simulation and to

page 11

retrieve the physical property data for each of them. The

input file is then rewritten with the needed data inserted

where the RETR statement had been. The output from INF is

then passed to PREPRO as input.

The procedure continues to the second FORTRAN program,

the preprocessor, PREPRO. PREPRO interprets the input data

file and creates a new FORTRAN program that will ultimately

simulate the process described by the input data file. The

process is mapped out using the keywords in Table 11.4.1 to

fully describe the FLOWTRAN flow sheet.

TABLE 11.4.1
Arrangement of FLOWTRAN Input Data

Key Word of Statement
TITLE

PROPS
PRINT *
FILE * Component Data Statements
RETR
PAIR *

NEW BLOCK *
BLOCK Unit operation Statements
PARAM

MOLES
POUNDS or LBS
TEMP Stream Input Statements
PRESS
NOFLSH *

END CASE

Parametric case data consisting of many of the above
statements

END JOB

page 12

FIGURE 3.2 Curve Fitting and Data Stora,'

* not used in all FLOWTRAN simulations

All the FLOWTRAN keywords have specific meanings to

PREPRO but RETR and FILE, which are the keywords used to

inform INF to recover the physical property data for the

components in the process. The keywords in Table 11.4.1

marked Stream Input Statements are self explanatory with the

exception of NOFLSH. Normally, FLOWTRAN will perform an

equilibrium flash computation to find the phase condition of

any feed or tear stream. This calculation presumes only one

liquid phase. (Seader 65) To suppress the flash calculation

the NOFLSH statement is included.

The remaining keywords bear a little more explanation

because they are so important to the set up of the

simulation. The first in order of appearance in the data

file is the PROPS statement.

The eROPS keyword tells the simulator how many

components in the process, and what property estimation

options are desired. Their are options on estimation of

vapor pressure, vapor fugacity, liquid fugacity, and liquid

activity coefficient. An over view of property estimation

is presented in Fig. 11.4.1 (see facing page).

Next are the FILE keyword and the RETR keyword

explained above.

After the RETR statement comes the PAIR record, if it

is necessary. PAIR statements are inserted to supply the

page 13

liquid-phase activity coefficient equation with parameters

for binary pairs. (Seader 58)

The NEW BLOCK record signals FLOWTRAN that in addition

to the normal blocks, a new block is being used in the

simulation. Recognizing the nEW BLOCK statement, FLOWTRAN

knows that following the END JOB record is the FORTRAN code

for a new block.

The most important of the keywords for FLOWTRAN jobs is

the BLOCK statement. The FLOWTRAN process simulator is

built around a library of computer programs, each designed

to model a basic unit operation in a chemical process plant.

Each equation-solving algorithm is represented as a BLOCK

statement. The blocks in the FLOWTRAN library are

classified defined as follows:

Class Block Type
1 operation
2 recycle stream convergence
3 feedback controller
4 feedforward controller
5 multi-parameter feedback controller
6 cost and sizing
7 report

A complete list of the available blocks is in Appendix B.

The BLOCK statement serves three principle functions in

encoding a FLOWTRAN flow sheet: (1) designate the particular

blocks that model the process units, (2) describe how units

are connected by information streams and control signals,

and (3) indicate the calculation order (the BLOCK statements

are arranged in order of computation). (Seader 59)

page 14

Each BLOCK statement has an individual parameter

statement (PARAM) tied to it. The PARAM statement holds all

pertinent information needed for any particular BLOCK

statement that is not included in the BLOCK statement.

The END CASE and the END JOB statements are yield and

stop signs for FLOWTRAN. END CASE represents the end of one

run of the process being simulated under a certain set of

parameter values. To run a parametric studies of the

FLOWTRAN flow sheet, follow an END CASE statement with

PARAMeter statements for any values that need to be changed.

The END JOB record signifies the end of the present FLOWTRAN

input file. Following this record is the FORTRAN code for

NEW BLOCKS.

After translating the data file, PREPRO outputs the

main FORTRAN source code file for the simulation. The next

steps of the procedure are compilation by the host

computer's FORTRAN compiler and linking of the PREPRO

prepared main FORTRAN program with the FORTRAN subroutines

earlier indicated by the BLOCK statements. The final

executable file is the FLOWTRAN simulation of the process.

All that is left to do is run the executable file and

print out the results. After execution a clean-up step is

carried out, erasing all intermediate files.

page 15

III CONVERSION

FLOWTRAN is intimately dependent on the FORTRAN code

in which it is programmed in and in which it constructs the

main program of any FLOWTRAN job, as described in the

previous chapter. A consequence of FLOWTRAN's dependence on

the FORTRAN code precludes that it will only execute on a

computer that accepts the FORTRAN in which it is written.

The majority of computers that are manufactured today have a

FORTRAN compiler that executes FLOWTRAN. However, a number

of mainframes around the country were built previously to

the latest revision of the FORTRAN standard and as a result

are unable to use FLOWTRAN. It is for this problem that

this thesis addresses itself.

To allow the greatest portability of the FORTRAN

language the American National Standards Institute, Inc. set

the generic standard on which all compilers should comply.

In this way a program written on an IBM computer could as

easily be transported to a Control Data Corporation computer

and work, or be transported to a Sperry-Univac computer and

work. The first standard was published in ANSI X3.9-1966

(FORTRAN 66), the second and current standard was published

in ANSI X3.9-1978 (FORTRAN 77). The FLOWTRAN package

distributed by CAChE was developed on a computer with a

FORTRAN 77 compiler. Mainframes or minicomputers that do

not have an available FORTRAN 77 compiler are unable to use

page 16

FLOWTRAN. To solve this problem the existing FORTRAN 77

code had to be altered so that ultimately it would compile

using FORTRAN 66.

III.1 Differences

Many differences distinguish FORTRAN 66 from FORTRAN

77, but for the purposes of this conversion only certain

differences affected the outcome. Of the differences, the

most critical were character type variables and any

associated functions for altering character strings.

Intrinsic functions that are missing in FORTRAN 66 also were

a problem.

III.1.1 Type Hollerith

In the old standard FORTRAN 66 character type variables

were absent. Instead it had the Hollerith data type, named

for Dr. Herman Hollerith, who invented the alphanumeric code

in 1889. No variables are declared Hollerith type, they are

actually declared as integer or real, but will hold

Hollerith type data. When an alphanumeric string is stored

into a Hollerith type variable, a Hollerith format is used;

typically data strings are put into a Hollerith variable via

a DATA statement or via a READ statement.

Formats used for output of Hollerith data and for DATA

statements are of the following forms:

nHh1h2...hn or 'h1hhn'

page 17

where n is the length of the string, H denotes the start of

the Hollerith string as do the ticks and h is an

alphanumeric character; blanks are significant. Because

integers or reals must be used to hold Hollerith data, the

strings are limited to four characters for integers and

reals, unless double precision reals are used; in that case

the string could be eight characters long. If longer

strings have to be, stored they must be broken up and stored

in four byte increments in an array (for this conversion the

convention of using only integer types to hold Hollerith

data was adhered to).

111.1.2 Type CHARACTER

The character handling capabilities of FORTRAN 66 are a

serious limitation and FORTRAN 77 took strides to over come

these deficiencies. FORTRAN 77 has four types of data:

integer, real, logical, and character. The new type

character is the focus of this section.

Character data can be represented by constants,

variables, or arrays, which in turn may be acted upon by

assignment statements, DATA statements, and relational

operations.

A character constant is formed by a series of

characters enclosed within apostrophes. Characters enclosed

within the apostrophes are called a string and are numbered

1, 2, 3, ... consecutively. The characters in a string may

contain blanks, but may not be made up of only blanks.

page 18

When it is necessary to represent apostrophes within a

string they may be included by two apostrophes in a row.

The double apostrophes are recognized by the compiler as a

single apostrophe because zero length character strings are

not allowed.

The length of a string is the number of characters

within the apostrophes, with the double apostrophes counting

as one character. The delimiting apostrophes are not

counted. The string 'TIM"S PROGRAM' has a length of 13,

counting the double apostrophe as a single character and

including the blank. (Hill 294)

The form of a CHARACTER type statement takes different

guises. A variable name may be declared type character by a

CHARACTER statement or by an IMPLICIT statement. The length

of a character variable is specified in the CHARACTER

statement by following the variable name with an asterisk

and then an unsigned, nonzero, integer constant that

indicates the length. Type-character variable's lengths may

also be set up by a default length. A default character

variable length may be specified by following the word

CHARACTER with the asterisk-integer combination. The length

of each entity in the statement that does not have its own

length specified will assume the default length.

All characters in an array must have exactly the same

length. If a length is not specified for any item, a length

of 1 is assigned by default. For example, the length of the

page 19

character strings for the variable VAR, and of each element

of the arrays ARRAY and TABLE, may be established as five by

any of the following ways:

CHARACTER *5 VAR, ARRAY(6), TABLE(4,3)
CHARACTER VAR*5, ARRAY(6)*5, TABLE(4,3)*5
IMPLICIT CHARACTER*5 (A,T,V)

The IMPLICIT statement establishes all entities, not

otherwise explicitly defined, that start with the letters A,

T, and V as type character with length of five. (Hill 294)

Establishing data in type-character variables may be

done by character assignment statements, DATA statements, or

by input from a READ statement. Mixing of types is not

permitted in either replacement or DATA statements when type

character variables are involved. Thus if variables VAR and

TABLE have been specified as type character, the following

type character assignments are valid:

VAR = TABLE(I,J)
TABLE(2,I + 1) = '123'
TABLE(3,I + 2) = 'ABC'

On the other hand, the following three statements are not

valid.

TABLE(2,I + 1) = 123 (Not valid because 123 is type
integer.)

TABLE(2,I + 1) = 123. (Not valid because 123. is type real.)
TABLE(2,I + 1) = NONCHR (Not valid if NONCHR has not been

specified as type character.)
(Hill 295)

Table III.1.1 shows the effect of unequal lengths in

the replacement statements, DATA statements, and

input/output statements.

page 20

Table III.1.1
Treatment of Unequal Lengths for Type CHARACTER

(Note: LEN(v) means the length of variables v (number of
characters specified for variable v in an explicit or
IMPLICIT type statement).)

Character assignment statement

where type CHARACTER variable v is declared same length as e

if LEN(v) > LEN(e) v = e + trailing blanks
LEN(v) < LEN(e) v = e with its rightmost

characters deleted

Data statement

DATA v/'constant'/

if LEN(v) > LEN('constant') v = 'constant' + trailing
blanks

LEN(v) < LEN('constant') v = 'constant' with its
rightmost characters
deleted

Input Character Constant Into Variable Using Format Aw

if LEN(v) > w of Aw

LEN(v) < w of Aw

v = input data + trailing
blanks

v = rightmost characters
from within field
width w, and with
leftmost characters
ignored

Output Character Constant From Variable v

if LEN(v) > w of Aw output = v with its
rightmost characters
deleted

LEN(v) < w of Aw output = leading blanks +

from Structured Programming in FORTRAN by Louis A. Hill, Jr.

page 21

Type character variables and constants may be compared

with each other in relational expressions. The results will

be .TRUE. or .FALSE. depending on the collating sequence.

If the two character expressions to be compared are not of

the same length, the shorter one will be extended to the

right by blanks until it is the same length.

The collating sequence is processor dependent. Most

computers use either the American National Standard Code for

Information Exchange, ANSI X3.4-1977 (typically referred to

as ASCII), or the Extended Binary-Coded-Decimal Interchange

Code (typically called EBCDIC). The codes differ from one

another on the following way:

ASCII
blank ' # t % + () * + , - . /
0 1 2 3 4 5 6 7 8 9 : ; = ? o
ABCDEFGHIJKLMNOPQRSTUVWXYZ

EBCDIC
blank ? . (+ + t *) ; - / , % ' : # o =
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0 1 2 3 4 5 6 7 8 9

As a consequence of the collating sequence the results

of the relational operations .LT., .GT., .LE., and .GT.

(less than, greater than, less than or equal, greater than

or equal, respectively) will differ when symbols and numbers

are included within the strings being compared. FORTRAN 77

has taken steps to alleviate the machine dependence of the

relational operators by including the intrinsic functions

LGE, LGT, LLE, and LLT (lexically greater than or equal to,

greater than, less than or equal to, less than,

page 22

respectively). These functions insure that ASCII collating

sequence is used. Equality and inequality (.EQ., .NE.) are

independent of the processor. (HILL 297)

FORTRAN 77 extends type character capabilities by

several important ways. FLOWTRAN extensively takes

advantage of only one of them (substrings, concatenation,

determining length of a string): substrings. However,

substrings increase the power of character manipulation by

an order of magnitude, because substrings can be combined to

form new substrings.

A substring name is formed by following the name of a

character variable (or element of a character array) by two

optional integer expressions enclosed in parentheses and

separated by a colon. The first integer expression

specifies the leftmost character position of the substring;

the second specifies the rightmost position. If the first

expression within the parentheses is missing, the default

value is 1, signifying the leftmost character position. If

the last expression is missing, the default value is the

length of the variable or array element.

Examples summarizing the rules for substrings are shown

in Table 111.1.2. The material represents only a portion of

a computer program and the strings stored on each location

are shown (on the right hand side of the table) for each

assignment statement. The character string stored in

variable L8 is sequentially altered by a series of substring

page 23

changes taken from element (2,1) of the array AR. (HILL

307)

Table 111.1.2
Examples of CHARACTER Substrings

Given:

CHARACTER *3 L3
CHARACTER *4 L4
CHARACTER *5 L5, AR(4,2)
CHARACTER *8 L8, NAM

Then:

L3
L4
L5
L8

= NAM(4:6)
= NAM(:4)
= NAM(4:)
= NAM(:)

yields L3 = '456'
yields L4 = '1234'
yields L5 = '45678'
yields L8 = '12345678'

L8 = NAM also yields L8 = '12345678'
L8(2;3) = AR(2,1)(4:5) yields L8(2:3) = '45'

so that now L8 = '14545678'
L8(6:) = AR(2,1)(:3) yields L8(6:8) = '123'

so that now L8 = '14545123'

from Structured Programming 'n FORTRAN by Louis A. Hill, Jr.

When using substrings in assignment statements, the

same positions cannot be shown on both sides of the equal

sign. Thus, while

A(3:5) = A (7:9) (Legal)

is legal, it is not legal to write

A(5:9) = A(8:12) (Illegal)

because characters 8 and 9 are referenced on both sides of

the equal sign. The latter could be accomplished with the

following two statements.

ALT = A(8:12)

A(5:9) = ALT

page 24

111.2 Solutions

The problems encountered while converting fell under 5

major types: (1) type character assignment statements, (2)

type character constants, (3) relational operations

involving type character constants and variables, (4)

intrinsic function INDEX, and (5) WRITE statements that

access internal files. All the problems involve type

character in one way or another. In solving these problems

the aim was to limit the number of alterations to the

original code; this was for two reasons: to make the editing

as easy as possible, because there were so many changes to

be made through out the 40,000 lines of code, and by

limiting the changes to the code, the chance of violating

the integrity of it was decreased. Most of the problems

have built into them the added problem of dealing with

substrings.

111.2.1 Assignment Statements

Type character assignments statements were by far the

most common of the problems to be solved. The problem was

moving character data previously held in a type character

variable (or constant) into another type character variable

both of which were now in a type Hollerith variable, which

is actually an integer holding type Hollerith data. The

original character variables could be of any length -- in

FLOWTRAN they ranged from 1 to 448 characters in length. In

page 25

a worst case, the assignment statement could be equating a

substring of one variable to a substring of another

variable. This was a worst case because, most likely, the

beginnings and endings of the substrings would not match up

to the divisions, every four characters, in the INTEGER

arrays holding the character strings. Due to this problem

and the inherent complexity of it, two subroutines were

developed to handle type character assignment statements.

The two subroutines, EQUAL1 and EQUAL4, were written to

emulate the FORTRAN 77 assignment statements when used on

type character variables.

The first subroutine, EQUAL1, moves a source vector

(substring) into a target vector, starting in position one

of the target vector. The term vector refers to a substring

as it appears in FORTRAN 66; the vector consists of a

portion of an integer array, from the position of the first

character to the position of the last character. Many times

the starting position and the ending position of the vector

do not correspond with the breaks in the array elements

(every four characters starting from the beginning of the

array), and because of this, the vector may include only

fractions of the beginning and the end array elements. The

target vector is assumed to be at least long enough to

receive the source vector. It is often true that the target

vector will be a temporary variable added to the code to

enable necessary character manipulation and is then used

page 26

repeatedly in the same module of the code. With this aim in

mind, EQUAL1 erases any previously held data in the target

before depositing the source vector in it.

The second subroutine, EQUAL4, moves a source vector

into a target vector; the starting and the stopping points

for both the source and target are not restricted, other

than to the established rules for type character assignment

statements (see Table III.1.1). When an assignment is made

using EQUAL4 string length is checked for consistency. When

a source vector is less than the target vector's length, the

target vector is filled with trailing blanks. When a source

vector's length is greater than the target vector's length,

the source vector is cut off at the rightmost character that

will fit and then is moved.

The source listings for both EQUAL1 and EQUAL4 are in

Appendix C.

Before going into the inner workings of the EQUAL

subroutines the protocol for using them should be sketched

out. Examples of the use of both EQUAL1 and EQUAL4 are

presented in Table 111.2.1. In the example the variables

LINES and UN were originally type character. The variables

ZIP and MATCH were added to overcome other problems. The

FORTRAN 77-code lines are commented out and their FORTRAN 66

replacements are underneath them. It can be seen in the

example that type character variables larger than 4

characters in length will become integer arrays of one

page 27

dimension larger than the original. Hence, LINES, a type

character array of 21 with a length of 80 becomes a two

dimensional integer array 20 by 21. Similarly, UN, a

character variable of length 6, becomes an integer array of

2.

Table 111.2.1
Examples of Using the Subprograms

EQUAL1 and EQUAL4

.
COMMON /LINES/ LINES

C CHARACTER LINES(21)*80
INTEGER*4 LINES(20,21), ZIP

C CHARACTER UN*6
INTEGER*4 UN(2), MATCH
DATA ZIP/'0 '/

(FORT66)

(FORT66)
(FORT66)

C UN = LINES(IC)(Kl:K2)
CALL EQUAL4(LINES(1,IC),K1,K2,UN,1,8) (FORT66)

.
C IF (LINES(IC)(K1:K2) .EQ. '0')

CALL EQUALl(LINES(1,IC),K1,K2,MATCH) (FORT66)
IF (MATCH .EQ. ZIP) (FORT66)

Previously it was mentioned that EQUAL4 was used when

the consistency of length should be checked. In the EQUAL4

example above, the original assignment statement equated the

substring LINES(IC)(K1:K2) to the character variable UN.

This statement has been replaced by a call to EQUAL4. In

page 28

the argument list are the name of the source, the starting

position of the source vector (substring), the ending

position of the target vector, the name of the target, the

starting position of the target vector, and the ending

position of the target vector. In the example the source

name is LINES(1,IC), the 1 signifies that the entire IC

vector of the array LINES is to be transferred to EQUAL4.

K1 and K2 correspond to the starting and stopping positions

of the source vector. The target name is UN and its

corresponding starting position and stopping position are 1

and 8, respectively. The stopping position of 8 is used as

a fail-safe to assure that there are no extraneous

characters in positions 7 and 8. The result of this call is

the same as the original assignment statement, which, of

course, was the desired result.

Also in Table 111.2.1 is an example of how EQUAL1 is

typically used. In the example, the original statement is a

relational operation between a substring of array LINES and

the type character constant '0'. The replacement of this

statement requires two FORTRAN 66 statements. The first is

the moving of the vector (substring) into a small variable;

in this case vector LINES(1,IC) from K1 to K2 is copied into

MATCH. MATCH can then be used in the IF statement. The

arguments in the CALL statement for EQUAL1 are first the

source name, the starting position of the source vector, the

ending position of the source vector, and the name of the

page 29

target. The starting and stopping points in the target are

not needed because EQUAL1 erases the entire target from

start to finish previous to transfer of the source. This

allows for worry free use of the dummy holding variable

MATCH for numerous cases within a module of the code.

To describe the inner workings of the EQUAL subprograms

EQUAL4 will be used as a model (the FORTRAN code listing is

in Appendix C).

The argument list in the SUBROUTINE statement of EQUAL4

follows the basic definition as was sketched out in the

protocol for using EQUAL4, previously. The dummy variable

names are SOURCE, START1, FINI1, TARGET, START2, FINI2.

SOURCE and TARGET, as their names imply, are the source and

target integer variable arrays containing type Hollerith

data. In the source code, the dimension of 1 for SOURCE and

TARGET are a dummy variable convention of FORTRAN 66 that

tells the compiler to transfer the dimension from the

calling program. START1 and START2 are the starting

(leftmost) positions within the integer arrays SOURCE and

TARGET, respectively (the positions are determined as if the

string was that of a type character variable). Similarly,

FINI1 and FINI2 are the finishing (rightmost) positions in

SOURCE and TARGET, respectively (when referring to the

substring in FORTRAN 66 the term vector will be used).

page 30

Table 111.2.2
Copying Scheme for EQUAL4

In this example the FORTRAN 77 code had been:
TARGET(11:15) = SOURCE(16:21)

The corresponding FORTRAN 66 replacement code is:
CALL EQUAL4(SOURCE,16,21,TARGET,11,15)

The original contents of SOURCE and TARGET are
DATA SOURCEPTO B','E CO','PIED','BY E','QUAL','4 '/
DATA TARGETPCOpi,,,ED B','Y

1 2
12341567819012134561789011234

SOURCE (INTEGER*4 array) TO BIE COIPIEDIBY EIQUALI4
COPY1 (INTEGER*4 array) BY EIQUALI4
IMAGE1 (LOGICAL*1 array) BY EQUAL4
IMAGE2 (LOGICAL*1 array) Y EQUAL
COPY2 (INTEGER*4 array) Y EQIUAL I
TARGET (INTEGER*4 array) COPI1ED BIY EQIUAL 1

Given the information on the argument list, EQUAL4 can

perform substring equivalences just like the FORTRAN 77

equivalence statement. This was accomplished by a 5 step

copying procedure (see Table 111.2.2). The first step makes

an exact copy into the integer array, COPY1, of the source

vector from the array element that contains the starting

position of the vector to the array element that contains

the finishing position of the vector. Depending on the

relative alignment of the vector to the array element breaks

the starting position can be in either the first, second,

third, or fourth position of array element 1 of COPY1. This

relative alignment would be fine for coping if the target's

relative alignment was the same. But, more often than not,

page 31

this is not the case. Consequently, a method of

transferring one character at a time was needed.

The one-character transfer dilemma was solved by using

a type logical*1 variable, which ordinarily would hold

.TRUE. or .FALSE., but here is used to hold a single type

Hollerith character. The vector held in the integer array

COPY1 is put into LOGICAL*1 array IMAGE1 via an EQUIVALENCE

statement. The transfer of the source vector from INTEGER*4

to LOGICAL*1 makes up step 2.

Step 3 is the coping of the original data in the

target, so that any positions not overwritten will be

consistent with the original. The integer elements of array

TARGET are copied into integer array COPY2. COPY2 is

equivalenced to logical array IMAGE2.

Step 4 is the most involved, the vector sitting in

IMAGE1 is copied character by character into IMAGE2,

simultaneously taking into account the offset of the

starting position in IMAGE1 and the starting position on

IMAGE2, and the length of the vector. The starting

positions for IMAGE1 and IMAGE2 and their relative offsets

from each other are handled in the subroutine.

After moving the vector characters into IMAGE2 -- which

is equivalenced to COPY2 -- the last step is to transfer the

correctly aligned vector into TARGET.

page 32

&MALI is a variation on the theme of EQUAL4. Rather

than coping and making allowances for the starting and

finishing positions in the target, EQUAL1 always transfers

the vector into the target starting in TARGET's position 1.

It is assumed that any vector transferred with EQUAL1 will

fit within the designated target. Most importantly, the

target is blanked out before each run of the subroutine.

This feature allows the use of one dummy variable that may

be used repeatedly for solving problems in any given module.

111.2.2 Type Character Constants

Type character constants were used extensively

throughout FLOWTRAN, but especially in PREPRO. This type of

problem was typically solved by creating a 'constant

variable,' which would be defined at the beginning of the

subprogram with a DATA statement. There is an example in

Table 111.2.1. In the example the character constant '0' is

used in an IF statement. The remedy was to create a

'constant variable,' ZIP, which is defined by a DATA

statement. The 'constant variable' ZIP is then used in lieu

of the character constant.

111.2.3 Relational Operations

Once again refer to Table 111.2.1 for the original

FORTRAN 77 code and the typical solution method. Most often

the relational operations involve checking a substring

value. To achieve the same effect in FORTRAN 66, the

substring is transferred into a holding variable via EQUAL1,

page 33

which would then be use in the new FORTRAN 66 IF statement.

In the example the substring LINES(1,IC) from K1 to K2 is

put into the holding variable MATCH. MATCH is then used in

the relational operator. The use of EQUAL1 was specifically

designed for use in this situation, because EQUAL' erases

any previous data in MATCH before loading the current vector

it can be used over and over again within the same

subprogram.

111.2.4 Intrinsic Function INDEX

In the FORTRAN 77 version of FLOWTRAN the code makes

use of the intrinsic function INDEX in order to provide

varying formats for numbers that could have a wide range of

values. Briefly, the number would be checked for its

relative magnitude, and then using the INDEX function along

with some conditional tests chooses the appropriate format

for printing out the number.

The INDEX function searches for a substring C2 (see

program listing in Appendix C) in a specified character

string Cl, and if it finds the substring, returns the

substrings (C2) starting position in Cl. If C2 occurs more

than once in Cl, the starting position of the first

occurrence (leftmost) is returned. If C2 does not occur in

Cl the value of zero is returned.

The original function INDEX could take any length

substring C2 less than or equal to Cl. In FLOWTRAN the

substring C2 was always one character in length. Therefore,

page 34

the function MYINDX is a scaled down version that only works

on C2 character substrings of length one. Also needed in

MYINDX's argument list is the value of IPASS, which

indicates the length of Cl.

111.2.5 Internal Files

Internal files are type CHARACTER variables, array

elements, arrays, or substrings contained within the program

itself. They are used extensively when rescanning input

characters after they have been stored in an internal file

when changing types.

For the conversion to FORTRAN 66 there are two problems

with internal files: there are no type character variables

to serve as internal files and there are no internal file

READ or WRITE statements allowed in FORTRAN 66.

The solution was to use READs and WRITEs to core, that

is, reading and writing to a unit unit assigned to core

memory to make the conversions. A typical READ from an

internal file

CHARACTER INTERNAL_FILE*60
REAL ARRAY(4)
READ (INTERNAL_FILE,'(4F15.0)') (ARRAY(I),I=1,4)

would be replaced by the following statements (assume that

unit 3 is assigned to core memory):

INTEGER INTERNAL_FILE(15)
REAL ARRAY(4)
REWIND(3)
WRITE(3,10) (INTERNAL_FILE(I),I=1,15)
REWIND(3)
READ (3,20) (ARRAY(I),I=1,4)

10 FORMAT(15A4)

page 35

20 FORMAT(4F15.0)

the rewind statements are necessary to reposition the

pointer.

page 36

IV TESTING

The testing of the FLOWTRAN programs was two fold. The

first test was just to get the programs to compile. The

second was to run the test programs supplied to the author

by CAChE along with the original code. The test programs

numbered over 50 with programs from the text FLOWTRAN

Simulation -- An Introduction by Seader, et.al.. In the end

all the test cases reproduced the output of the original

FORTRAN 77 code.

In Appendix F are a number of examples of FLOWTRAN

problems with their output. The first example in particular

is unique because the intermediate files have been included

so that the steps for simulating a process with FLOWTRAN may

be easily followed.

The one example includes the FLOWTRAN job data file

(data_file_name.DAT), the FTCI.DAT FORTRAN file, the

FTSI.DAT data file, and the FLOWTRAN output file

(data_file_name.FT0). The FLOWTRAN job data file is the

user supplied data, the original input for FLOWTRAN. INF

reads the file looking for the RETR record. Based on the

RETR record, INF retrieves the physical property data and

inserts it into the original data file, replacing the RETR

record. This new file (FTPI.DAT) then becomes the input for

PREPRO. PREPRO is then executed. PREPRO generates two

output files. The first output file from PREPRO is

page 37

FTCI.DAT, the FORTRAN file, responsible for the actual

simulation after being compiled and linked with the

appropriate subroutines (BLOCKS). The second output file

create by PREPRO is the input data file (FTSI.DAT) for the

simulation. The last file created in process of simulating

the flow sheet is the final output or data_file_name.FTO

file (for FLOWTRAN Output file).

page 3 8

V PROCEDURE FILES

In order to run FLOWTRAN, procedure or command files

are needed to instruct the computer on what to do. Appendix

D contains the procedure files for the Sperry-Univac 90/80-

4. There are separate files for the four main programs,

INF, PROPTY, VLE, and FT. In addition Appendix D contains

the necessary job control language to execute the FORTRAN

program FTPRI.FOR, which creates the Private Data Library

file with the password MONSANTO.

The procedure files written for the Sperry-Univac 90/80

can be invoked by the following three line driver file (this

example specifically for FT, but all the drivers are

included in Appendix D):

/LOGON
/DO FT.PROC, (FT.TEST01)
/LOGOFF

The procedure files handle a variety of tasks. For FT

as an example, the procedure file takes the input file name

and appends .DAT on it and then retrieves the file. Baying

a job data file, the procedure file then defines the unit

numbers to the the correct file names. An example would be

the physical property data files, private and public, which

are assigned to the units 18 and 19, respectively. Being

set to go, the procedure file then instructs the computer to

execute INF. INF runs and creates an output. The procedure

file redirects the INF output as input to PREPRO. It then

page 3 9

executes PREPRO. PREPRO aenerates a FORTRAN file, which the

procedure file instructs the computer to compile and

subsequently link with the required FLOWTRAN BLOCKs

(subroutines). Upon completing the compilation and link

editing, the last executable file remains: the FLOWTRAN

simulation program (FTCI.EXE). The simulation is run and

the final output is created. Finally, the procedure file

has only to eliminate the intermediate or scratch files that

were generated along the way, after which the simulation is

completed.

The generation of the stand-alone programs of VLE, INF

and PREPRO are accomplished using the generic job control

language (JCL) for the program PGM (PGM.EXE) contained in

the file PGM.LOAD. The FLOWTRAN Subprogram Library is

generated with the JCL contained in the file

FT.LOAD.LIBRARY.

The TIME and DATE functions. These are site specific

routines (if they exist) for accessing the system clock.

Included in Appendix E are the programs developed for a

generic FORTRAN based system without specific site/machine

access.

When FLOWTRAN is first brought up on a system the

public and private physical property files have to be

generated. The files needed to do this are contained in

Appendix G.

page 40

APPENDIX A

Chemicals in the Public Data File
Taken from FLOWTRAN Simulation ~- An Introduction

by Seadeer ° et~al~

Empirical Formula Component Name Alias

Inorganic Chemicals
Ar ARGON A
Br:a BROMINE BR2
CCL, CARBON TET CCL4
CO *CARBON MONOXIDE *CO
CO CARBON MONOXIDE *CO
COCLm PHOSGENE COCL2
COcz $CARBON DIOXIDE $CO2
CO__ *CARBON DIOXIDE *CO2
CO-- CARBON DIOXIDE CO2
CS-_ CARBON DISULFIDE CS2
C--OCL, TRICHLOROACETYL-CL
CLH HYDROGEN CHLORIDE HCL
CL-- CHLORINE CL2
HI HYDROGEN IODIDE HI
H, *HYDROGEN *H2
H-- HYDROGEN H2
H2O WATER H2O
H--S *HYDROGEN SULFIDE *H2S
H--S HYDROGEN SULFIDE H2S
H-,N AMMONIA NH3
Ne NEON NE
NO NITRIC OXIDE NO
NO NITROGEN DIOXIDE NO2
O-- OXYGEN 02
Oz-S *SULFUR DIOXIDE *SO2
O~eS SULFUR DIOXIDE SO2
O,nS SULFUR TRIOXIDE S03

Organic Chemicals
CHCl., CHLOROFORM CHCL3
CHN HYDROGEN CYANIDE HCN
CH,O FORMALDEHYDE HCHO
CH,Cl METHYL CHLORIDE MECL
CH:3I METHYL IODIDE CH3I
CH,4 $METHANE $C1
CH, *METHANE *C1
CH, METHANE C1
CH*O METHANOL MEOH
CH,N METHYLAMINE
C--HCl.3 TRICHLOROETHYLENE TCE
CzHCL~O DICHLOROACETYL-CL
C,H, ACETYLENE C2H2

page 41

C7,-HmCl =O CHLOROACETYL—CL
C--H-,Cl VINYL CHLORIDE
C=H:3ClO ACETYL CHLORIDE
C—,H~Cl 112TRI—CL—ETHANE CL3C2
C,H~N ACETONITRILE
C=H= *ETHYLENE *C2=
C--H.4 ETHYLENE C2=
CmH.4Cl-- 1,1—DICHLOROETHANE 11DCE
C--H~Cl:r 1,2—DICHLOROETHANE 12DCE
C--H+O ACETALDEHYDE
C—,H2O ETHYLENE OXIDE EO
C=H40-- ACETIC ACID HOAC
CseH4O:r METHYL FORMATE
C--Ht5Cl ETHYL CHLORIDE ETCL
CmHe. $ETHANE $C2
C--~Ha, *ETHANE *C2
C~2H~ ETHANE C2
C--H2O DIMETHYL ETHER DME
C--He,O ETHANOL ETOH
C=H,sO-- ETHYLENE GLYCOL EG
C--H&S DIMETHYL SULFIDE DMS
C--H,,S ETHYL MERCAPTAN ETSH
C.HrN ETHYLAMINE
C:3H:3N ACRYLONITRILE ACN
C-3H4 METHYLACETYLENE
C,H* *PROPADIENE *PD
C,sH4 PROPADIENE PD
C,3He, *PROPYLENE *C3=
C,H, PROPYLENE C3=
C-sH&O ACETONE
C-,5He.02 ETHYL FORMATE
C:3H&O= METHYL ACETATE
C-3H&O, PROPIONIC ACID C3ACID
C:sH-7NO DIMETHYLFORMAMIDE DMF
C,He $PROPANE $C3
CzH,, *PROPANE *C3
C,H, PROPANE C3
C~HwO ISO—PROPANOL IC30H
C--sHmO N—PROPANOL NC3OH
CzH-PN TRIMETHYLAMINE TMA
C~H.4 VINYLACETYLENE
C.4H.,S THIOPHENE
C.%HeqN METHACRYLONITRILE MACN
C,H,, BUTADIENES BDS
CwH& DIMETHYLACETYLENE
C.,Ha ETHYLACETYLENE
C~4H,, *1,2—BUTADIENE *12BD
C,4He^ 1,2—BUTADIENE 12BD
C,H, *1,3—BUTADIENE *13BD
C+H^, 1,3—BUTADIENE 13BD
C,Hey BUTYLENES C4=S

page 42

C~Htg *1_BUTENE *1C4=
C,H,, 1—BUTENE 1C4=
C,H, *CIS—BUTENE *CSC4=
C.%Hr3 CIS—BUTENE CSC4=
C,~Hnp *ISO—BUTENE *IC4=
C.4He3 ISO—BUTENE IC4=
C,4He' *TRANS-2—BUTENE *TRC4=
C.,H,, TRANS-2—BUTENE TRC4=
C~HeqO ISO—BUTYRALDEHYDE IC4HO
C,~Hc,O MEK
C4H2O, N—BUTRIC ACID
C~HaOm ETHYL ACETATE
C4HtqO__ METHYL PROPIONATE
C~4He,O:z PROPYL FORMATE
C.4H-PNO DIMETHYL ACETAMIDE DMA
C+Hx"» $ISO—BUTANE $IC4
C,%Hsc, *ISO—BUTANE *IC4
C,%H 20 ISO—BUTANE IC4
C~Hzo $N—BUTANE $NC4
C4Hi"^ *N—BUTANE *NC4
C4H, o N—BUTANE NC4
C,%H, oO ISO—BUTANOL IC40H
C4H,oO N—BUTANOL NC40H
C4H,oO T—BUTYL ALCOHOL TC40H
C~4H,e>O DIETHYL ETHER DEE
C4HxwO~ DIETHYLENE GLYCOL DEG
CesH~O= FUFURAL
CmHr, ISOPRENE AND C5 ISOPRE
CnnHx*, *2—ME-1—BUTENE *2M1B=
Cc,Hi°* 2—ME-1—BUTENE 2M1C4=
Ct5H,o *2—ME-2—BUTENE *2M2B=
CoHlp 2—ME-2—BUTENE 2M2C4=
Ct5H 3L "' *3—ME-1—BUTENE *3M1B=
CoH,o 3—ME-1—BUTENE 3M1C4=
Ce5H io *CYCLOPENTANE *CP
CeqH jo CYCLOPENTANE CP
CoHx«» *1—PENTENE *105=
CanH xo 1—PENTENE 105=
CrsH xo *CIS-2—PENTENE *CSC5=
CasH xo CIS-2—PENTENE CISC5=
Ct5H,p *TRANS-2—PENTENE *TRC5=
CoHxo TRANS-2—PENTENE TRNC5=
CoH,qO DIETHYL KETONE DEK
CoHxoO:o N—PROPYL ACETATE
Ce,H,, $ISO—PENTANE $IC5
CesH j ~r *ISO—PENTANE *IC5
Cc,Hzu, ISO—PENTANE IC5
CesH,~~ $N—PENTANE $NC5
CmH z -- *N—PENTANE *NC5
CasH zm N—PENTANE NC5
CmH *:z *NEO—PENTANE *NE005

page 43

CH1-.. NEO-PENTANE NE005
C.5H725C1 1,2,4-TRI-CL-BZ 124TCB
C8H4C1z M-DICHLOROBENZENE MDCB
C8H4C1:2 O-DICHLOROBENZENE ODCB
C6H4C1= P-DICHLOROBENZENE PDCB
Cd,HmBr BROMOBENZENE BRBZ
C8HmC1 CHLOROBEZENE CLBZ
Cd,HmI IODOBENZENE IBZ
081-4.6 *BENZENE *BZ
Ce,Hd, BENZENE BZ
061180 PHENOL
C81-1.7N ANILINE
08H1-, *CYCLOHEXANE *CH
06H12 CYCLOHEXANE CH
Cd,Hlm *ME-CYCLOPENTANE *MCP
Ce,Him METHYLCYCLOPENTANE MCP
C8H1m *1-HEXENE *IC6=
C&Him 1-HEXENE 106=
C,H14 .4,.4-DIMETHYLBUTANE 22DMB
08H14 2,3-DIMETHYLBUTANE 23DMB
Ce.H24. *N-HEXANE *NC6
C8111.4 N-HEXANE NC6
C8H14 2-METHYLPENTANE 2M05
Cd,H14 3-METHYLPENTANE 3MC5
C8H14.04. TRIETHYLENE GLYCOL TRIED
07H® *TOLUENE *TOL
C7Hm TOLUENE TOL
C7H00 0-CRESOL OCR
07H24 *ME-CYCLOHEXANE *MCH
C7H14 METHYLCYCLOHEXANE MCH
071-114 ETHYLCYCLOPENTANE ECP
C71-1 1.4 1-HEPTENE IC7=
071-116 *N-HEPTANE *NC7
07H18 N-HEPTANE NC7
CoHe STYRENE STYR
CelHlo *ETHYLBENZENE *EB
CaHlo ETHYLBENZENE EB
CoHlo XYLENES AND ETB
CoHio *M-XYLENE *M-XYL
CmHio M-XYLENE M-XYL
CoHlo *0-XYLENE *0-XYL
CmHio O-XYLENE O-XYL
CeHlo *P-XYLENE *P-XYL
CoHio P-XYLENE P-XYL
CeH12 N-PROPYLBENZENE
CeHle. ETHYLCYCLOHEXANE ECH
CoH18 N-PROPYLCYCLOPENTA NPCP
CoHlo *N-OCTANE *NCB
CeHim N-OCTANE NCB
CoHloOm TETRAETHENE GLYCOL TETEG
CwHeir INDENE

page 44

C-7H, a INDANE
C-RH j*» METHYLSTYRENE
C,H x2 C3ALKYLBENZENE C3BZ
C,PHz~~ 1—ET-2—ME—BENZENE EMB
C-PH, es N—PROPYLCYCLOHEXAN NPCH
CcpHmo *N—NONANE *NC9
C,PH--o N—NONANE NC9
C:L oHe NAPHTHALENE NAPH
C3.oHio 1—METHYLINDENE 1M—IND
Ci.oH3.o 2—METHYLINDENE 2M—IND
C&oHxs~ DICYCLOPENTADIENE DCPD
C,oH u ^^ N—BUTYLBENZENE NC4BZ
CioHi,* 1,2—DIME-3—ETHBZ 12DMEB

'C:LoH== N—BUTYLCYCLOHEXANE NBCH
C*oH=,a *N—DECANE *NC10
C,oH--s» N—DECANE NC10
Ci*Hio 1—METHYLNAPHTHALEN 1MNAPH
C,,Hio 2—METHYLNAPHTHALEN 2MNAPH
C3.xH=+ *N—UNDECANE *NC11
C,,H=.4 N—UNDECANE NC11
C*~uHeq ACENAPHTHYLENE
C^--H^^* BIPHENYL B—P
C,—~Hxcz 2,7—DIMETHYLNAPHTH 27DMN
Cz--H xzs 1,2,3—TRIME—INDENE 123TMI
Ci~aHme^ *N—DODECANE *NC12
Ci--H=e, N—DODECANE NC12
C,zH%= FLUORENE
Cx~H~,4 C3ALKYLNAPHTHALENE C3NAPH
CizsH,.4 1—ME-4—ETH—NAPHTHA MENAPH
Ci-"sH z4 2,3,4—TRIME—NAPHTH 235TMN
C~~Hmes *N—TRIDECANE *NC13
Cz~Hme3 N—TRIDECANE NC13
Ci.4Hx«' PHENANTHRENE
Cz.%H~o *N—TETRADECANE *NC14
Ci.,*H~o N—TETRADECANE NC14
CiesHico 1—PHENYLINDENE 1P—IND
C esHj,+ 2—ETHYLFLUORENE
C3.mH-ssr *N—PENTADECANE *NC15
Cxe5H.3-- N—PENTADECANE NC15
Cx&Hivx FLUORANTHENE
Cx~Hzo PYRENE
Cie.Hl-- 1—PHENYLNAPHTHALEN 1PNAPH
Cl&H~-4 *N—HEXADECANE *NC16
C~d3H~.* N—HEXADECANE NC16
CzaHz= CHRYSENE

page 45

APPENDIX B

FLOWTRAN BLOCKS
Taken from FK_OWTRAN Simulation -- An Introduction

by Swwader w et.al.

BLOCK
TYPE NAME TITLE
Flash

IFLSH Isothermal flash
AFLSH Adiabatic flash
BFLSH General purpose flash
KFLSH Isothermal three phase flash
FLSH3 Adiabatic/isothermal three phase

flash

Distillation
FRAKB Rigorous distillation (KB method)
DISTL Shortcut distillation (Edminster)
DSTWU Shortcut distillation (Winn-

Underwood)
SEPR Constant split fraction separation
AFRAC Rigorous distillation/absorption

(matrix method)

Adsorption/Stripping
ABSBR Rigorous absorber/stripper

Other Separation
EXTRC Rigorous liquid-liquid extraction

Heat Exchange
EXCH1 Shortcut heat exchanger
CLCN1 Shortcut cooler condenser
DESUP Shortcut desuperheater
HEATR Heat requirements
EXCH2 Shortcut partial/total vaporizer/

condenser
BOILR Shortcut reboiler/intercooler
HTR3 Threephase heater/cooler
EXCH3 Shortcut heat exchanger

Miscellaneous Unit Operations
ADD Stream addition
MIX Stream addition with no phase

change
SPLIT Stream split
PUMP Centrifugal pump size and power
MULPY Stream multiplication by a

parameter

page 46

GCOMP Compressor and turbine
PART Shortcut heat exchanger

Stream Convergence
SCVW Bounded Wegstein stream convergence

Control
CNTRL Feedback controller
PCVB Multiple-parameter control block
DSPLT Distillate feed forward control
RCNTL Ratio, sum and difference feedback

controller

Cost Analysis
CAFLH Flash drum cost
CFLH3
CIFLH
CKFLH
CAFRC Distillation
CDSTL
CFRKB
CABSR Packed absorber cost
CCLN1 Heat exchanger cost
CEXC1
CEXC2
CEXC3
CPUMP Pump cost
CCOMP Compressor cost
CTABS Tray absorber cost
CHETR Heat exchanger cost
BPROD Raw material, by-product, and
PRODT product stream value
RAWMT
PROFT Profitability analysis

Report
SUMRY Stream output editor
TABLE Component physical properties table
GAMX Liquid-activity-coefficients table
SPRNT Stream print block
ASTM Analytical distillation of a stream
,CURVE heating and cooling curves

Reaction
REACT Chemical reactor
AREAC Adiabatic add/subtract reactor
XTNT Chemical reactor (extent of

reaction
model)

page 47

APPENDIX C
MYINDEX n EQUALln EQUAL29
EQUAL4 and CORE FILES

C--- -----
C
C THE FOLLOWING ROUTINES WERE DEVELOPED BY
C TIMOTHY E. ROCHE OF NJIT, NEWARK NJ TO PERMIT
C THE USE OF FLOWTRAN ON FORTRAN66 COMPLIERS
C '

C
C

FUNCTION MYINDX (Cl, IPASS, C2)
C
C**
C
C THE INDEX FUNCTION SEARCHES FOR A SUBSTRING (C2) IN A
C SPECIFIED CHARACTER STRING (Cl), AND, IF IT FINDS THE
C SUBSTRING, RETURNS THE SUBSTRINGS STARTING POSITION.
C IF C2 OCCURS MORE THAN ONCE IN Cl, THE STARTING
C POSITION OF THE FIRST OCCURANCE (LEFTMOST) IS
C RETURNED. IF C2 DOES NOT OCCUR IN Cl THE VALUE ZERO
C IS RETURNED. THE SUBSTRING C2 IS LIMITED TO A LENGTH
C OF ONE CHARACTER.
C
C IPASS = NUMBER OF CHARACTERS IN THE STRING Cl.
C
C**
C

INTEGER*4 Cl, C2, COPY1, COPY2, MATCH1, MATCH2
LOGICAL*1 IMA8E1, IMAGE2
DIMENSION C1(25), COPY1(25), IMAGE1(100),
* IMAGE2(4)
EQUIVALENCE (COPY1(1), IMAGE1(1))
EQUIVALENCE (COPY2, IMAGE2(1))

C
C

IMAX=IPASS
IWORD=IMAX/4
IF (IWORD*4 .LT. IMAX) IWORD=IWORD+1

C
DO 10 I = 1, IWORD

COPY1(I) = Cl(I)
10 CONTINUE

COPY2 = C2
C

CALL EQUAL1 (COPY2,1,1,MATCH2)

page 48

DO 100 I = 1, IMAX
CALL EQUAL1 (COPY1,I,I,MATCH1)
IF (MATCH1 .EQ. MATCH2) GO TO 200

100 CONTINUE
C

MYINDX = 0
GO TO 300

C
200 MYINDX = I

C
C
300 RETURN

END
C==

page 49

SUBROUTINE EQUAL1 (SO(JRCE,START,FINISH,TARGET)
C
C**
C
C THE PURPOSE OF EQUAL1 IS TO TAKE DATA THAT WOULD
C NORMALLY BE STORED IN A CHARACTER STRING USING
C FORTRAN 77 BUT IS NOW STORED IN AN INTEGER*4 TYPE
C VARIABLE, AND TRANSFER IT FROM A LARGE VARIABLE'S
C SUBSTRING TO A SMALL VARIABLE.
C
C**
C

INTEGER*4 SOURCE, TARGET, BEGIN, ZEND, START,
* FINISH, COPY1, COPY2 , OFFSET, FUDGE,
* BLANK, FIXBEG, BEGIN2
LOGICAL*1 IMAGE1, IMAGE2
DIMENSION SOURCE(1), TARGET(1)
DIMENSION COPY1(112), COPY2(112), IMAGE1(448),
* IMAGE2(448)
EQUIVALENCE (COPY1(1), IMAGE1(1)),
* (COPY2(1), IMAGE2(1))

C
DATA BLANK /'

C
C CALCULATE THE START AND STOP POINTS WITHIN THE SOURCE
C

FUDGE = 3
BEGIN = START/4
FIXBEG = BEGIN
ZEND = FINISH/4
IF (FINISH - ZEND*4 .NE. 0) ZEND = ZEND + 1
IF (START - BEGIN*4 .EQ. 0) GO TO 1
FIXBEG = BEGIN + 1
FUDGE = -1

1 CONTINUE
ILEN = ZEND - FIXBEG + 1
LLEN = FINISH - START + 1
OFFSET = START - BEGIN*4 + FUDGE

C
C COPY THE SOURCE
C

DO 10 I=1, ILEN
COPY1(I) = SOURCE(FIXBEG + I - 1)

10 CONTINUE
C
C BLANK OUT COPY2 FOR A CLEAN SLATE ... USING A 4
C CHARACTER BLANK
C

DO 25 JJ=1,112
COPY2(JJ) = BLANK

page 50

25 CONTINUE
C
c TAV"'E SUBSTRING FROM SOURCE, PUT INTO TARGET IMAGE

DO 20 J=1, LLEN
IMAGE2(J) = IMAGE1(J + OFFSET)

20 CONTINUE
C
C COPY TARGET IMAGE INTO FINAL TARGET

DO 30 K=1, ILEN
TARGET(K) = COPY2(K)

30 CONTINUE
C
C
999 RETURN

END

page 51

SUBROUTINE EQUAL2 (SOURCE,START,FINISH,TARGET)
C
C**
C
C THE PURPOSE OF EQUAL1 IS TO TAKE DATA THAT WOULD
C NORMALLY BE STORED IN A CHARACTER STRING USING FORTRAN
C 77 BUT IS NOW STORED IN AN INTEGER*4 TYPE VARIABLE,
C AND TRANSFER IT FROM A SMALL VARIABLE'S SUBSTRING TO A
C LARGE VARIABLE.
C
C**
C

INTEGER*4 SOURCE, TARGET, BEGIN, ZEND, START,
* FINISH, COPY1, COPY2, OFFSET, FUDGE,
* BLANK, FIXBEG
LOGICAL*1 IMAGE1, IMAGE2
DIMENSION SOURCE(1), TARGET(l)
DIMENSION COPY1(112), COPY2(112), IMAGE1(448),
* IMAGE2(448)
EQUIVALENCE (COPY1(1), IMAGE1(1)>,
* (COPY2(1), IMAGE2(1)>

C
DATA BLANK

C
C CALCULATE THE START AND STOP POINTS WITHIN THE SOURCE
C

FUDGE = 3
BEGIN = START/4
FIXBEG = BEGIN
ZEND = FINISH/4
IF (FINISH - ZEND*4 .NE. 0) ZEND = ZEND + 1
IF (START - BEGIN*4 .EQ. 0) GO TO 1
FIXBEG = BEGIN + 1
FUDGE = -1

1 CONTINUE
ILEN = ZEND - FIXBEG + 1
LLEN = FINISH - START + 1
OFFSET = START - BEGIN*4 + FUDGE

C
C MAKE A COPY OF THE SOURCE VARIABLE
C

DO 10 I=1, ILEN
COPY1(I) = SOURCE(I)

10 CONTINUE
C
C MAKE A COPY OF THE TARGET VARIABLE
C

DO 20 J=1, ILEN
COPY2(J) = TARGET(J + FIXBEG - 1)

20 CONTINUE

page 52

C
C STICK SOURCE INTO TARGET SUBSTRING
C

DO 30 K=1, LLEN
IMAGE2(K + OFFSET) = IMAGE1(K)

30 CONTINUE

C COPY IMAGE SECTION OF TARGET BACK INTO TARGET
C

DO 40 L=1, ILEN
TARGET(L + FIXBEG - 1) = COPY2(L)

40 CONTINUE
C
C

RETURN
END

C===

page 53

SUBROUTINE EQUAL4 (SOURCE, START1, FINI1,
* TARGET, START2° FINI2)

C
C**
*
C THE PURPOSE OF EQUAL4 IS TO TRANSFER CHARACTER
C SUBSTRINGS FROM ONE VECTOR TO ANOTHER VECTOR.
C THIS EMULATES THE EQUIVALENCE OF THE FORTRAN 77
C CHARACTER SUBSTRINGS. THIS IS THE DELUXE VERSION
C THAT CHECKS FOR STRING LENGTH CONSISTANCY. IF THE
C STRING LENGTHS DO NOT MATCH THEN THE TARGET WILL
C BE FILLED WITH TRAILING BLANKS OR CUT OFF AT THE
C RIGHT MOST CHARACTER THAT WILL FIT.
C
C**
C

INTEGER*4 SOURCE, TARGET, BEGIN1, BEGIN2, START1,
* START2, ZEND1, OFFST1, OFFST2, COPY1,
* COPY2, FXBGN1, FXBGN2, FINI1, FINI2,
* FUDGE1, FUDGE2, ILEN1, ILEN2, ZEND2
LOGICAL*1 IMAGE1, IMAGE2, BLANK
DIMENSION SOURCE(1), TARGET(1)
DIMENSION COPY1(112), COPY2(112), IMAGE1(448),
* IMAGE2(448)
EQUIVALENCE (COPY1(1), IMAGE1(1)),
* (COPY2(1), IMAGE2(1))

C
DATA BLANK

C
C
C CALCULATE THE START AND STOP POINTS OF SOURCE AND
C TARGET SUBSTRINGS

FUDGE1 = 3
FUDGE2 = 3
BEGIN1 = START1/4
FXBGN1 = BEGIN1
BEGIN2 = START2/4
FXBGN2 = BEGIN2
ZEND1 = FINI1/4
ZEND2 = FINI2/4
IF (FINI1 - ZEND1*4 .NE. 0) ZEND1 = ZEND1 + 1
IF (START1 - BEGIN1*4 .EQ., 0) GO TO 1
FXBGN1 = BEGIN1 + 1
FUDGE1 = -1

1 CONTINUE
IF (FINI2 - ZEND2*4 .NE. 0) ZEND2 = ZEND2 + 1
IF (START2 - BEGIN2*4 .EQ. 0) GO TO 2
FXBGN2 = BEGIN2 + 1
FUDGE2 = -1

page 54

2 CONTINUE
ILEN1 = ZEND1 - FXBGN1 + 1
ILEN2 = ZEND2 - FXBGN2 + 1
LLEN1 = FINI1 - START1 + 1
LLEN2 = FINI2 - START2 + 1
OFFST1 = START1 - BEGIN1*4 + FUDGE1
OFFST2 = START2 - BEGIN2*4 + FUDGE2

C
C COPY THE TARGET INTO COPY2
C

DO 5 L=1, ILEN2
COPY2(L) = TARGET (L + FXBGN2 - 1)

5 CONTINUE
C
C COPY THE SOURCE INTO COPY1
C

DO 10 I=1, ILEN1
COPY1(I) = SOURCE(FXBGN1 + I - 1)

10 CONTINUE

C MOVE SUBSTRING (USING LLEN1)
C

IF (LLEN2 .LT. LLEN1) GO TO 22
DO 20 J=1, LLEN1

IMAGE2(J + OFFST2) = IMAGE1(J + OFFST1)
20 CONTINUE

GO TO 24
22 DO 23 JJ=I, LLEN2

IMAGE2(JJ + OFFST2) = IMAGE1(JJ + OFFST1)
23 CONTINUE

C
C ADD BLANKS IF NECESSARY ... ONE (1) CHARACTER
C

24 IF (LLEN2 .LE. LLEN1) GO TO 27
LLEN11 = LLEN1 + 1
DO 25 M=LLEN11, LLEN2

IMAGE2(M + OFFST2) = BLANK
25 CONTINUE

C
C MAKE FINAL COPY OF TARGET
C

27 DO 30 K=1, ILEN2
TARGET(K + FXBGN2 - 1) = COPY2(K)

30 CONTINUE
C

999 RETURN
END

page 55

/LOGON
/REM ... SPERRY-UNIVAC 90/80-4 ... GENERATE CORE FILES
/REM
/REM ... FILE NAME "COREFILE"
/REM THIS FILE ASSEMBLES THE MACROS THAT CREATE THE
/REM CORE RESIDENT FILES 'DSET03` & 'DSET08'.
/REM
/REM ... CONTINUATIONS IN $ASSEMB REQUIRE A NON BLANK IN
/REM COLUMN 72, AND THE FOLLOWING LINES STARTING IN
/REM COLUMN 16.
/REM
/REM === /PARAM ASMLST=NO
/PARAM ASMLST=YES
/EXEC $ASSEMB
DDS DSREF=3,RECFORM=FIXUNB,BLKSIZE=160,RECSIZE=160,

X
TYPEFLE=INOUT,DEVICE=CORE

DDS DSREF=8,RECFORM=FIXUNB,BLKSIZE=480,RECSIZE=480,
X

TYPEFLE=INOUT,DEVICE=CORE
DVLST 1,2,5,6,7,97,98,99,3,8
END

/REM
/LOGOFF

Note: The non-blank character in column 72 in the DDS
lines did not print because of space con-
straints.

page 56

APPENDIX D
PROCEDURE FILES

Sperry-Umivac 90/80-4 Procedure Files

Presented are the two files, which are used to execute the
program INF located in the file INF.EXE. Note that the data
file name must not include the suffix '.DAT-".

/LOGON
/DO INF.PROC,(data-file-name)
/LOGOFF

/PROC C,(+DATAFILE)
/REM ... THE POSITIONAL PARAMETER IN THE PROCEDURE FILE IS
/REM DATA FILE NAME WITHOUT THE '.DAT' SUFFIX
/REM +DATAFILE ..~ REQUIRED PARAMETER
/REM &DATAFILE ... OPTIONAL PARAMETER
/REM
/REM ... FILE NAME "INF.PROC"
/REM FILE EXECUTES THE PROGRAM "INF" FOUND IN
/REM FILE "INF.EXE"
/REM
/REM === /PROC C,(+DATAFILE)
/REM PROC C = PRINT OUT OF PROC,
/REM PROC N = SUPRESS PRINT OUT OF PROC
/REM
/REM TITLE INF PROC: EXECUTES THE PROGRAM INF FOUND
/REM IN FILE 'INF.EXE'
/REM
/REM AUTHOR A C PAULS, CED, MONSANTO CO, ST LOUIS, MO
/REM DATE 830810
/REM
/REM ROUTINE MODIFIED BY: T. E. ROCHE
/REM NJIT
/REM NEWARK, NJ 07102
/REM DATE MARCH 1986
/REM
/REM DATA FILE MUST BE SUBMITTED WITHOUT THE '.DAT' SUFFIX
/REM
/FSTAT &DATAFILE..DAT
/SKIP .GOTFILE
/STEP
/REM ... INVALID FILENAME ... CORRECT AND RETRY !!!!

page 57

/SKIP .ABTERM
/REM
/.GOTFILE REM ... DATA FILE HAS BEEN FOUND
/REM
/REM ... DEFINE INPUT AND OUTPUT FILES
/REM SYSDTA=DSET05
/SYSFILE SYSDTA=&DATAFILE..DAT
/REM SYSLST=DSET06
/SYSFILE SYSLST=&DATAFILE..INF
/REM
/REM ... CORE SCRATCH FILES NEED NOT BE DEFINED
/REM DSET3 AND DSET8 ARE DEFINED USING AN ASSEMBLY
/REM PROGRAM CONSISTING OF THE MACRO'S DVLST AND DDS.
/REM
/REM ... SCRATCH FILES NEED TO BE DEFINED
/REM THE FILE COMMAND IS APPLICABLE ONLY TO DISK & TAPE
/REM FILES CORE FILES DO NOT REQUIRE A 'FILE' COMMAND.
/FILE T.&SYSTSN..FIL.04,LINK=DSET4
/FILE T.&SYSTSN..FIL.15,LINK=DSET15
/FILE T.&SYSTSN..FIL.16,LINK=DSET16
/FILE T.&SYSTSN..FIL.17,LINK=DSET17
/REM
/REM ... FILES 18 & 19 ARE LIBRARY DATA FILES ... FILE #18
/REM IS THE PRIVATE LIBRARY FILE, AND FILE #19 IS THE
/REM PUBLIC LIBRARY FILE.
/REM ... OPEN=INOUT IS NEEDED SO THAT THE PRIVATE AND PUBLIC
/REM FILES ARE NOT ALTERED BY THE FILE COMMAND.
/REM ... ACTUAL RECORD SIZE = 448 + 4 = 452 BYTES
/REM 512 BYTE RECORD SIZE USED TO MAKE DISK SPACE
/REM SIZING EASIER.
/REM .. STANDARD BLOCK SIZE = 1024 BYTES.
/FILE FT.FTPRI.FIL,LINK=DSET1B,FCBTYPE=ISAM,RECFORM=F,-
/ RECSIZE=512,BLKSIZE=(STD,2),SPACE=(96,24),OPEN=INOUT
/FILE FT.FTPUB.FIL,LINK=DSET19,FCBTYPE=ISAM,RECFORM=F,-
/ RECSIZE=512,BLKSIZE=(STD,2),SPACE=(96,24),OPEN=INOUT
/REM
/EXEC INF.EXE
/REM
/SYSFILE SYSDTA=(PRIMARY)
/SYSFILE SYSLST=(PRIMARY)
/REM
/ERASE T.&SYSTSN..
/REM
/PRINT &DATAFILE..INF,SPACE=E
/REM
/SKIP .ENDITAL
/STEP
/REM INF.EXE PROGRAM FAILED ... CHECK OUTPUT
/REM ON FILE: &DATAFILE..INF
/STEP

page 58

/.ABTERM REM AN ABNORMAL TERMINATION OCCURRED
/RBM
/SYSFILE SYSDTA=(PRIMARY)
/SYSFILE SYSLST=(PRIMARY)
/REM
/PRINT &DATAFILE..INF,SPACE=E
/STEP
/ERASE T.&SYSTSN..
/STEP
/.ENDITAL
/ENDPROC

page 59

Presented are the two files, which are used to execute the
program PROPTY located in the file PROPTY.EXE. Note that
the data file name must not include the suffix '.DAT'.

/LOGON
/DO PROPTY.PROC,(data-file-name)
/LOGOFF

/PROC C, (+DATAFILE)
/REM ... THE POSITIONAL PARAMETER IN THE PROCEDURE FILE IS
/REM DATA FILE NAME WITHOUT THE '.DAT' SUFFIX
/REM +DATAFILE ..~ REQUIRED PARAMETER
/REM &DATAFILE ... OPTIONAL PARAMETER
/REM

FILE NAME "PROPTY.PROC"
/REM FILE EXECUTES THE PROGRAMS 'PROPTY' AND 'INF'.
/REM THESE PROGRAMS ARE FOUND IN FILES 'PROPTY.EXE'
/REM AND 'INF.EXE'.
/REM
/REM /PROC C,(+DATAFILE)
/REM PROC C = PRINT OUT OF PROC,
/REM PROC N = SUPRESS PRINT OUT OF PROC
/REM
/REM TITLE PROPTY: EXECUTES THE PROGRAM INF FOUND
/REM IN FILE 'PROPTY.EXE' AND
/REM 'INF.EXE'
/REM
/REM AUTHOR A C PAULS, CED,
/REM MONSANTO CO, ST LOUIS, MO
/REM DATE 830810
/REM
/REM ROUTINE MODIFIED BY: T. E. ROCHE
/REM NJIT
/REM NEWARK, NJ 07102
/REM DATE MARCH 1986
/REM
/REM DATA FILE MUST BE SUBMITTED WITHOUT THE '.DAT' SUFFIX
/REM
/FSTAT &DATAFILE..DAT
/SKIP .GOTFILE
/STEP
/REM ... INVALID FILENAME ... CORRECT AND RETRY
/SKIP .ABTERM
/REM
/.GOTFILE REM ... DATA FILE HAS BEEN FOUND
/REM

page 60

/REM ... DEFINE INPUT AND OUTPUT FILES
/REM SYSDTA=DSET05
/SYSFILE SYSDTA=&DATAFILE..DAT
/REM SYSLST=DSET06
/SYSFILE SYSLST=&DATAFILE..PTY
/REM
/REM ... CORE SCRATCH FILES NEED NOT BE DEFINED
/REM DSET3 AND DSET8 ARE DEFINED USING AN ASSEMBLY
/REM PROGRAM CONSISTING OF THE MACRO'S DVLST AND DDS.
/REM
/REM... SCRATCH FILES NEED TO BE DEFINED
/REM THE FILE COMMAND IS APPLICABLE ONLY TO DISK & TAPE
/REM FILES CORE FILES DO NOT REQUIRE A 'FILE' COMMAND.
/FILE T.&SYSTSN..FTII,LINK=DSET7
/REM
/REM ===
/REM ... CORRELATE PROPTY DATA (PROGRAM PROPTY)
/EXEC PROPTY.EXE
/REM
/SKIP .GOTOINF
/STEP
/SKIP .ABTERM
/REM
/.GOTOINF
/REM
/REM ... SCRATCH FILES NEED TO BE DEFINED
/REM THE FILE COMMAND IS APPLICABLE ONLY TO DISK & TAPE
/REM FILES. CORE FILES DO NOT REQUIRE A 'FILE' COMMAND.
/FILE T.&SYSTSN..FTPI,LINK=DSET4
/REM
/REM ... FILES 18 & 19 ARE LIBRARY DATA FILES ... FILE #18
/REM IS THE PRIVATE LIBRARY FILE, AND FILE #19 IS THE
/REM PUBLIC LIBRARY FILE.
/REM ... OPEN=INOUT IS NEEDED SO THAT THE PRIVATE AND PUBLIC
/REM FILES ARE NOT ALTERED BY THE FILE COMMAND.
/REM ... ACTUAL RECORD SIZE = 448 + 4 = 452 BYTES
/REM 512 BYTE RECORD SIZE USED TO MAKE DISK SPACE
/REM SIZING EASIER.
/REM ... STANDARD BLOCK SIZE = 1024 BYTES.
/FILE FT.FTPRI.FIL,LINK=DSET18,FCBTYPE=ISAM,RECFORM=F,-
/ RECSIZE=512,BLKSIZE=(STD,2),SPACE=(96,24),OPEN=INOUT
/FILE FT.FTPUB.FIL,LINK=DSET19,FCBTYPE=ISAM,RECFORM=F,-
/ RECSIZE=512,BLKSIZE=(STD,2),SPACE=(96,24),OPEN=INOUT
/REM
/REM ... REDEFINE THE INPUT DEVICE
/REM SYSDTA=DSET05
/SYSFILE SYSDTA=T.&SYSTSN..FTII
/REM
/REM ===
/REM ... STORE PROPERTY DATA (PROGRAM INF)

page 61

/EXE INF.EXE
/REM
/REM ... APPEND FILE T.&SYSTSN..FTPI TO OUTPUT FILE
/EXEC $EDT
/TRANS START

@READ'&DATAFILE..PTY'
@READ'T.&SYSTSN..FTPI'
@WRITE'&DATAFILE..PTY'
@HALT

/TRANS END
/REM
/SYSFILE SYSDTA=(PRIMARY)
/SYSFILE SYSLST=(PRIMARY)
/REM
/ERASE T.&SYSTSN..
/REM
/PRINT &DATAFILE..VLO,SPACE=E
/REM
/SKIP .ENDITAL
/STEP
/.ABTERM REM AN ABNORMAL TERMINATION OCCURRED IN EITHER
/REM PROPTY.EXE OR INF.EXE ... CHECK THE OUTPUT
/REM FILE &DATAFILE..PTY
/REM
/REM ... APPEND FILE T.&SYSTSN..FTPI TO OUTPUT FILE
/EXEC $EDT
/TRANS START

@READ'&DATAFILE..PTY'
@READ'T.&SYSTSN..FTPI'
@WRITE'&DATAFILE..PTY`
@HALT

/TRANS END
/REM
/SYSFILE SYSDTA=(PRIMARY)
/SYSFILE SYSLST=(PRIMARY)
/REM
/PRINT &DATAFILE..PTY,SPACE=E
/STEP
/ERASE T.&SYSTSN..
/STEP
/.ENDITAL
/ENDPROC

page 62

Presented are the two files, which are used to execute the
program VLE located in the file VLE.EXE. Note that the data
file name must not include the suffix '.DAT'.

/LOGON
/DO VLE.PROC,(data-file-name)
/LOGOFF

/PROC C,(+DATAFILE)
/REM ... THE POSITIONAL PARAMETER IN THE PROCEDURE FILE IS
/REM DATA FILE NAME WITHOUT THE `.DAT' SUFFIX
/REM +DATAFILE ... REQUIRED PARAMETER
/REM &DATAFILE ... OPTIONAL PARAMETER
/REM
/REM ... FILE NAME "VLE.PROC"
/REM FILE EXECUTES THE PROGRAMS 'INF' AND 'VLE'. THESE
/REM PROGRAMS ARE FOUND IN FILES 'INF.EXE' AND
/REM 'VLE.EXE'.
/REM
/REM === /PROC C,(+DATAFIiE)
/REM PROC C = PRINT OUT OF PROC,
/REM PROC N = SUPRESS PRINT OUT OF PROC
/REM
/REM TITLE VLE PROC: EXECUTES THE PROGRAM INF FOUND
/REM IN FILE 'INF.EXE' AND 'VLE.EXE'
/REM
/REM AUTHOR A C PAULS, CED, MONSANTO CO, ST LOUIS, MO
/REM DATE 830810
/REM
/REM ROUTINE MODIFIED BY: T. E. ROCHE
/REM NJIT
/REM NEWARK, NJ 07102
/REM DATE MARCH 1986
/REM
/REM DATA FILE MUST BE SUBMITTED WITHOUT THE '.DAT' SUFFIX
/REM
/FSTAT &DATAFILE..DAT
/SKIP .GOTFILE
/STEP
/REM ... INVALID FILENAME ... CORRECT AND RETRY !!!!
/SKIP .ABTERM
/REM
/.GOTFILE REM ... DATA FILE HAS BEEN FOUND
/REM
/REM ... DEFINE INPUT AND OUTPUT FILES
/REM SYSDTA=DSET05

page 63

/SYSFILE SYSDTA=&DATAFILE..DAT
/REM SYSLST=DSET06
/SYSFILE SYSLST=&DATAFILE..VLO
/REM
/REM ... CORE SCRATCH FILES NEED NOT BE DEFINED
/REM DSET3 AND DSET8 ARE DEFINED USING AN ASSEMBLY
/REM PROGRAM CONSISTING OF THE MACRO'S DVLST AND DDS.
/REM
/REM ... SCRATCH FILES NEED TO BE DEFINED
/REM THE FILE COMMAND IS APPLICABLE ONLY TO DISK & TAPE
/REM FILES CORE FILES DO NOT REQUIRE A 'FILE' - COMMAND.
/FILE T.&SYSTSN..FTPI,LINK=DSET4
/REM
/REM ... FILES 18 & 19 ARE LIBRARY DATA FILES ... FILE #18
/REM IS PRIVATE LIBRARY FILE, AND FILE #19 IS THE PUBLIC
/REM LIBRARY FILE.
/REM ... OPEN=INOUT IS NEEDED SO THAT THE PRIVATE AND PUBLIC
/REM FILES ARE NOT ALTERED BY THE FILE COMMAND.
/REM ... ACTUAL RECORD SIZE = 448 + 4 = 452 BYTES
/REM 512 BYTE RECORD SIZE USED TO MAKE DISK SPACE
/REM SIZING EASIER.
/REM ... STANDARD BLOCK SIZE = 1024 BYTES.
/FILE FT.FTPRI.FIL,LINK=DSET18,FCBTYPE=ISAM,RECFORM=F,-
/ RECSIZE=512,BLKSIZE=(STD,2),SPACE=(96,24),OPEN=INOUT
/FILE FT.FTPUB.FIL,LINK=DSET19,FCBTYPE=ISAM,RECFORM=F,-
/ RECSIZE=512,BLKSIZE=(STD,2),SPACE=(96,24),OPEN=INOUT
/REM
/REM ===
/REM ... RETRIEVE PROPERTY DATA (PROGRAM INF)
/EXEC INF.EXE
/REM
/SKIP .GOTOVLE
/STEP
/SKIP .ABTERM
/REM
/.GOTOVLE
/REM
/REM ... RE-DEFINE INPUT FILE
/REM SYSDTA=DSET05
/SYSFILE GYSDTA=T.&SYSTSN..FTPI
/REM
/REM ... CORRELATE VLE DATA (PROGRAM VLE)
/REM
/EXEC VLE.EXE
/REM
/SYSFILE SYSDTA=(PRIMARY)
/SYSFILE SYSLST=(PRIMARY)
/REM
/ERASE T.&SYSTSN..
/REM

page 64

/PRINT &DATAFILE..VLO,SPACE=E
/REM
/SKIP .ENDITAL
/STEP
/REM
/.ABTERM REM AN ABNORMAL TERMINATION OCCURRED IN EITHER
/REM INF.EXE OR VLE.EXE ..., CHECK THE OUTPUT FILE
/REM &DATAFILE..VLO
/REM
/SYSFILE SYSDTA=(PRIMARY)
/SYSFILE SYSLST=(PRIMARY)
/REM
/PRINT &DATAFILE..VLO,SPACE=E
/STEP
/ERASE T.&SYSTSN..
/STEP
/.ENDITAL
/ENDPROC

page 65

Presented are the two files, which are used to execute the
programs INF.EXE, PREPRO.EXE, $BGFOR (Fortran compiler),
$LMR (Library Maintenance Routine), $TSOSLNK (Linkage
Editor) and, FTCI.EXE. The program FTCI.EXE is the
dynamically generated flowsheet simulator program FLOWTRAN.
Note that the data file name must not include the suffix
'.DAT'.

/LOGON
/DO FT.PROC,(data-file-name)
/LOGOFF

/PROC C,(+DATAFILE)
/REM ... THE POSITIONAL PARAMETER IN THE PROCEDURE FILE IS
/REM DATA FILE NAME WITHOUT THE '.DAT` SUFFIX
/REM +DATAFILE ... REQUIRED PARAMETER
/REM &DATAFILE ... OPTIONAL PARAMETER
/REM
/REM ... FILE NAME "FT.PROC"
/REM FILE EXECUTES THE PROGRAMS 'INF' AND 'PREPRO'.
/REM THESE PROGRAMS ARE FOUND IN FILES 'INF.EXE' AND
/REM 'PREPRO.EXE`. THE FLOWTRAN MAIN PROGRAM
/REM (GENERATED BY PREPRO.EXE) IS COMPILED, AND
/REM THEN LINKED WITH THE $LMR FILE (FT.OML.LIBRARY)
/REM TO GENERATE THE LOAD MODULE (T.&SYSTSN..FTCI.EXE),
/REM WHICH IS THE FLOWTRAN SIMULATION PROGRAM.
/REM
/REM === /PROC C,(+DATAFILE)
/REM PROC C = PRINT OUT OF PROC,
/REM PROC N = SUPRESS PRINT OUT OF PROC
/REM
/REM TITLE FT PROC: EXECUTES THE PROGRAM INF FOUND IN
/REM FILE 'INF.EXE' AND THE PROGRAM
/REM PREPRO FOUND IN FILE 'PREPRO.EXE'.
/REM THE GENERATED FLOWTRAN MAIN
/REM PROGRAM (T.&SYSTSN..FTCI.FOR) IS
/REM COMPILED, THEN LINKED WITH THE
/REM $LMR FILE TO YIELD THE FLOWTRAN
/REM PROGRAM T.&SYSTSN..FTCI.EXE,
/REM WHICH IS EXECUTED.
/REM
/REM AUTHOR A C PAULS, CED, MONSANTO CO, ST LOUIS, MO
/REM DATE 830810
/REM
/REM ROUTINE MODIFIED BY: T. E. ROCHE
/REM NJIT

page 66

/REM NEWARK, NJ 07102
/REM DATE MARCH 1986
/REM
/REM DATA FILE MUST BE SUBMITTED WITHOUT THE ".DAT' SUFFIX
/REM
/FSTAT &DATAFILE..DAT
/SKIP .GOTFILE
/STEP
/REM ... INVALID FILENAME ... CORRECT AND RETRY 1!11
/SKIP .ABTERM
/REM
/.GOTFILE REM ... DATA FILE HAS BEEN FOUND
/REM
/REM ... DEFINE INPUT AND OUTPUT FILES
/REM SYSDTA=DSET05
/SYSFILE SYSDTA=&DATAFILE..DAT
/REM SYSLST=DSET06
/SYSFILE SYSLST=&DATAFILE..FTO
/REM
/REM ... CORE SCRATCH FILES NEED NOT BE DEFINED
/REM DSET3 AND DSET8 ARE DEFINED USING AN ASSEMBLY
/REM PROGRAM CONSISTING OF THE MACRO'S DVLST AND DDS.
/REM
/REM ... SCRATCH FILES NEED TO BE DEFINED
/REM THE FILE COMMAND IS APPLICABLE ONLY TO DISK & TAPE
/REM FILES. CORE FILES DO NOT REQUIRE A 'FILE' COMMAND.
/FILE 1-.&SYSTSN..FTPI,LINK=DSET4
/REM
/REM ... FILES 18 & 19 ARE LIBRARY DATA FILES ... FILE #18
/REM IS THE PRIVATE LIBRARY FILE, AND FILE #19 IS THE
/REM PUBLIC LIBRARY FILE.
/REM ... OPEN=INOUT IS NEEDED SO THAT THE PRIVATE AND PUBLIC
/REM FILES ARE NOT ALTERED BY THE FILE COMMAND.
/REM ... ACTUAL RECORD SIZE = 448 + 4 = 452 BYTES
/REM 512 BYTE RECORD SIZE USED TO MAKE DISK SPACE
/REM SIZING EASIER.
/REM ... STANDARD BLOCK SIZE = 1024 BYTES.
/FILE FT.FTPRI.FIL,LINK=DSET18,FCBTYPE=ISAM,RECFORM=F,-
/ RECSIZE=512,BLKSIZE=(STD,2),SPACE=(96,24)° OPEN=INOUT
/FILE FT.FTPUB.FIL,LINK=DSET19,FCBTYPE=ISAM,RECFORM=F,-
/ RECSIZE=512,BLKSIZE=(STD,2),SPACE=(96,24),OPEN=INOUT
/REM
/REM ===
/REM ... RETRIEVE PROPERTY DATA (PROGRAM INF)
/EXEC INF.EXE
/REM
/SKIP .GOTOPRE
/STEP
/SKIP .ABTERM
/REM

page 67

/.GOTOPRE
/REM
/REM ... SCRATCH FILES NEED TO BE DEFINED
/REM THE FILE COMMAND IS APPLICABLE ONLY TO DISK & TAPE
/REM FILES CORE FILES DO NOT REQUIRE A 'FILE' COMMAND.
/FILE T.&SYSTSN..SCR,LINK=DSET1
/FILE FT.FTBT.FIL,LINK=DSET8
/FILE T.&SYSTSN..FTCI.FOR,LINK=DSET9
/FILE T.&SYGTSN..FTSI,LINK=DSET11
/REM
/REM ... RE-DEFINE INPUT FILE
/REM SYSDTA=DSET05
/SYSFILE SYSDTA=T.&SYSTSN..FTPI
/REM
/REM ===
/REM ... GENERATE THE FORTRAN CODE FOR FLOWTRAN
/REM (PROGRAM PREPRO)
/EXEC PREPRO.EXE
/REM
/SKIP .GOTOCOM
/STEP
/SKIP .ABTERM
/REM
/.GOTOCOM
/REM
/REM ... RE-DEFINE INPUT FILE
/REM SYSDTA=DSET05
/SYSFILE SYSDTA=T.&SYSTSN..FTCI.FOR
/REM
/REM ===
/REM ... COMPILE THE FORTRAN FILE (PROGRAM $BGFOR)
/PARAM LIST=NO,MAP=NO,DEBUG=YES
/EXEC $BGFOR
/REM
/SKIP .GOTOLMR
/STEP
/SKIP .ABTERM
/REM
/.GOTOLMR
/REM
/REM ... INPUT FILE IS *
/REM
/REM ===
/REM ... PUT COMPILER OUTPUT IN FILE: T.&SYSTSN..FTCI.OBJ
/REM (PROGRAM $LMR)
/EXEC $LMR
/TRANS START
CONTROL OUTFILE=(T.&SYSTSN..FTCI.OBJ)r -

LISTING=(MODNAMES,SYSLST)
COPYALL SOURCE=*

page 68

END
/TRANS END
/REM
/SKIP .GOTOLNK
/STEP
/SKIP .ABTERM
/REM
/.GOTOLNK
/REM
/REM ... INPUT FILE ARE DEFINED VIA THE INCLUDE
/REM STATEMENTS FOR $TSOSLNK
/REM
/REM ===
/REM ... GENERATE THE FLOWTRAN PROGRAM IN FILE:
/REM T.&SYSTSN..FTCI.EXE (PROGRAM $TSOSLNK)
/EXEC $TSOSLNK
/TRANS START
PROGRAM FTCI,FILENAM=T.&SYSTSN..FTCI.EXE,VERSION=66,

ENTRY=FTCI,MAP=N
INCLUDE FTCI,T.&SYSTSN..FTCI.OML
INCLUDE $BLOCK,T.&SYSTSN..FTCI.OML
INCLUDE INPUT,FT.LOAD.LIBRARY
INCLUDE INPUTD,FT.LOAD.LIBRARY
RESOLVE ,FT.LOAD.LIBRARY
BIND
END

/TRANS END
/REM
/SKIP .GOTORUN
/STEP
/SKIP .ABTERM
/REM
/.GOTORUN
/REM
/REM ... SCRATCH FILES NEED TO BE DEFINED
/REM THE FILE COMMAND IS APPLICABLE ONLY TO DISK & TAPE
/REM FILES. CORE FILES DO NOT REQUIRE A 'FILE' COMMAND.
/FILE T.&SYSTSN..HISTORY,LINK=DSET1
/REM
/REM ... RE-DEFINE INPUT FILE
/REM SYSDTA=DSET05
/SYSFILE SYSDTA=T.&SYSTSN..FTSI
/REM
/REM ===
/REM ... EXECUTE THE FLOWTRAN SIMULATION
/REM (PROGRAM T.&SYSTSN..FTCI.EXE)
/EXEC T.&SYSTSN..FTCI.EXE
/REM
/REM ... APPEND FILE T.&SYSTSN..HISTORY TO OUTPUT FILE
/EXEC $EDT

page 69

/TRANS START
@READ'&DATAFILE..FTO'
@READ'T.&SYSTSN..HIGTORY"
@WRITE'&DATAFILE..FTO'
@HALT

/TRANS END
/REM
/SYSFILE SYSDTA=(PRIMARY)
/SYSFILE SYSLST=(PRIMARY)
/REM
/ERASE T.&SYSTSN..
/REM
/PRINT &DATAFILE..FTO,SPACE=E
/REM
/SKIP .ENDITAL
/STEP
/.ABTERM REM AN ABNORMAL TERMINATION OCCURRED IN EITHER
/REM ... CHECK THE OUTPUT FILE: &DATAFILE..FTO
/REM &DATAFILE..VLO
/REM
/REM ... APPEND FILE T.&SYSTSN..HISTORY TO OUTPUT FILE
/EXEC $EDT
/TRANS START

@READ'&DATAFILE..FTO'
@READ'T.&SYSTSN..HISTORY,

@WRITE'&DATAFILE..FTO'
@HALT

/TRANS END
/REM
/SYSFILE SYSDTA=(PRIMARY)
/SYSFILE SYSLST=(PRIMARY)
/REM
/PRINT &DATAFILE..FTO,SPACE=E
/STEP
/ERASE T.&SYSTSN..
/STEP
/.ENDITAL
/ENDPROC

page 70

Presented are the two files, which are used to generate the
Private Data Library. The first file is the Job Control
Language to create the data library, and the second is the
required Fortran Main Program that creates the Private Data
Library with the password "MONSANTO".

/LOGON
/REM
/REM ... FILE NAME IS "FT.FTPRI.LOAD"
/REM THIS FILE GENERATES THE EMPTY PRIVATE DATA FILE
/REM WITH THE NAME 'MONSANTO' IN THE BEGINNING OF
/REM RECORD NUMBER 400
/REM
/REM ... TITLE FT.FTPRI.LOAD: INITIALIZE FLOWTRAN BLOCK
/REM TABLE FILE
/REM
/REM AUTHOR A C PAULS, CED, MONSANTO CO, ST LOUIS, MO
/REM DATE 830810
/REM
/REM ... ROUTINE MODIFIED BY: T. E. ROCHE
/REM NJIT
/REM NEWARK, NJ 07102
/REM DATE MARCH 1986
/REM
/ERASE *
/STEP
/ERASE FT.FTPRI.FIL
/STEP
/ERASE FT.FTPRI.OUTPUT
/STEP
/REM
/REM ... DEFINE INPUT AND OUTPUT FILES
/REM SYSDTA=DSET05
/SYSFILE SYSDTA=FT.FTPRI.FOR
/REM SYSLST=DSET06
/SYSFILE SYSLST=(PRIMARY)
/REM
/PARAM LIST=NO,DEBUG=YES,MAP=NO
/EXEC $BGFOR
/REM
/REM ... RE-DEFINE INPUR FILE
/REM SYSDTA=DSET05
/SYSFILE SYSDTA=(PRIMARY)
/REM
/REM ... OPEN=OUTPUT IS NEEDED WHEN THE FILE IS GENERATED
/REM FILE IS ONLY WRITTEN TO, HENCE IT IS INITIALIZED
/REM TO A SET OF NULL RECORDS
/REM

page 71

/REM ... THE RECORDSIZE HAS BEEN INCREASED TO 512 BYTES TO
/REM ACCOUNT FOR THE LEADING "GREEN WORD" IN EACH RECORD
/REM
/FILE FT.FTPRI.FIL,LINK=DSET18,FCBTYPE=ISAM,RECFORM=F,-
/ RECSIZE=512,BLKSIZE=(STD,2),-
/ SPACE=(96,24),OPEN=OUTPUT
/REM
/SYSFILE SYSLST=FT.FTPRI.OUTPUT
/REM ... THE DYNAMIC LINKING LOADER (DLL) IS USED TO
/REM EXECUTE THE COMPILED PROGRAN FTPRI.
/EXEC *
/REM
/SYSFILE SYSDTA=(PRIMARY)
/SYSFILE SYSLST=(PRIMARY)
/REM
/ERASE *
/STEP
/LOGOFF

PROGRAM FTPRI
C (FLOWTRAN PRIVATE FILE INITIALIZATION)
C
C THE DATA TO BE WRITTEN TO FILE 18 IS CONTAINED IN
C THE DATA STATEMENT "PRITAB" ... WHICH CONTAINS THE
C NAME (MONSANTO) AND A STRING OF BLANKS. THE
C ENTIRE FILE CONTAINS 429 RECORDS, OF WHICH THE FIRST
C 400 ARE VOID. THE PRIVATE TABLE LIST IS STORED IN
C RECORDS 401-429.
C
C EACH RECORD ON THE FILE CONTAINS 448 BYTES OR 112
C WORDS
C
C BLANK = 448 BYTES OF BLANKS
C
C CHARACTER BLANK(112)

INTE8ER*4 BLANK(112)
DATA BLANK /112*' '/

C
C CHARACTER PRITAB(400)*32

INTEGER*4 PRITAB(8,400)
DATA PRITAB /'MONS` , 'ANTO' , 3198*' '/

C
C THE UNIVAC 90/80 WRITES EACH RECORD WITH A 'GREEN
C WORD' WHICH CONTAINS THE FORMAT OF THE RECORD. THE
C LENGTH OF THE GREEN WORD IS FOUR (4) BYTES, THUS ONE
C MORE WORD IS ADDED TO THE RECORD LENGTH IN THE
C 'DEFINE FILE' STATEMENT.

page 72

C
DEFINE FILE 18 (429, 113, U, NRECNO)

C
NRECNO=1

C THE FIRST 400 RECORDS WILL HAVE 112 WORDS
DO 10 K = 1,400

WRITE (18'NRECNO) (BLANK(J),J=1,112)
10 CONTINUE

C
C THE SECOND GROUP OF RECORDS WRITTEN CONTAIN 28+1
C RECORDS. THE FIRST 28 RECORDS CONTAIN 112 WORDS, THE
C FIRST TWO BEING THE PASSWORD FOR THE PRIVATE FILE.
C THE LAST RECORD (#429) CONTAINS ONLY 64 WORDS.
C

DO 20 K = 1,28
WRITE (18'NRECNO) ((PRITAB(J, I+14*(K-1)),

* J=1,8), I=1,14)
20 CONTINUE

C
WRITE (18'NRECNO) ((PRITAB(J, I+392), J=1,8), I=1,8)

C
C

STOP
END

page 73

APPENDIX E
TIME/DATE Routines

Presented are the specific computer / site dependent
routines for accessing the clock in the computer. These
subprograms are supplied as a separate file so that the
appropriate site modifications can be made, and still
interface with the Flowtran code.

SUBROUTINE TDATE (IDATE)
C
C ... SUBROUTINE OBTAINES THE TIME AND DATE FOR
C DOCUMENTATION PURPOSES.
C
C
C SUBROUTINE TDATE (DAT)
C ENTRY TIMER (TINC)
C ENTRY SECOND (T)
C
C
C DOUBLE PRECISION ARG, TVALUE
C
C CHARACTER DAT(2)*8
C DAT(1) = 'HH:MM:SS'
C DAT(2) = 'MM/DD/YY'
C

DIMENSION IDATE(2,2), JDATE(2,2)
C
C ... OPERATING SYSTEM ROUTINES MUST BE INCLUDED THAT
C ACCESS THE CLOCK FOR THE TIME AND DATE.
C

DATA JDATE /'hr:m', 'n:sc','dd/m',"m/yy'/
C
C ... DATE SHOULD RETURN "DD:MM:YY"
C CALL DATE (ARG)
C
C ... TIME SHOULD RETURN THE SYSTEM TIME AS "HH:MM:SS"
C CALL TIME (TVALUE)
C
C ... DUMMY VALUES ARE CURRENTLY PRINTED OUT

IDATE(1,1) = JDATE(1,1)
IDATE(1,2) = JDATE(1,2)
IDATE(2,1) = JDATE(2,1)
IDATE(2,2) = JDATE(2,2)
RETURN

C

page 74

C ... TIMER INITIALIZES THE FLOWTRAN JOB TO THE ARBITRARY
C TIME OF 360.0 SECONDS.

ENTRY TIMER (TINC)
TINC = 360.0

RETURN
C
C ... SECOND SHOULD RETURN THE SYSTEM TIME IN SECONDS, THE
C TIME HAS BEEN ARBITRARILY SET TO 0.0 SECONDS.

ENTRY SECOND (T)
T = 0.0

RETURN
C

END
C==

SUBROUTINE CLOCK (ITIME)
C
C ... SUBROUTINE OBTAINES THE SYSTEM TIME IN SECONDS. THE
C VARIABLE 'ITIME' IS AN INTEGER COMPATABILE WITH
C 'FLOWTRAN'.
C

ITIME = SECNDS (0.0)
C
C

RETURN
END

C==

FUNCTION SECNDS (T)
C
C ... SECNDS SHOULD RETURN THE SYSTEM TIME IN SECONDS,
C IF T .EQ. 0.0 THEN SECNDS = CURRENT TIME
C IF T .NE. 0.0 THEN SECNDS = LAPSE TIME
C
C ... THE VARIABLE 'T' IS SINGLE-PRECISION.
C
C ... CURRENT TIME (TIME) = NOON (12:00PM OR 43,200 SECONDS)

IF (T .EQ. 0.0) GO TO 10
C
C ... LAPSE TIME COMPUTATION

TSTART = T
TIME = 43200.0
TLAPSE = TIME - T
SECNDS = TLAPSE
GO TO 99

page 75

C
C ... CURRENT TIME COMPUTATION
10 TIME = 43200.0

SECNDS = TIME
99 RETURN
C
C

END
C==

SUBROUTINE SETLIM
C
C SUBPROGRAMS USED = SECOND, TIMER

DOUBLE PRECISION TIME, XXX, YYY
COMMON /XTIME/ TIME

C
C ... TIMER INITIALIZES THE FLOWTRAN JOB TO THE ARBITRARY
C TIME OF 360.0 SECONDS.
C
C ... SECOND SHOULD RETURN THE SYSTEM TIME IN SECONDS, THE
C TIME HAS BEEN ARBITRARILY SET TO 0.0 SECONDS.
C
C ... THE VALUE OF 'TIME' IS STORED IN COMMON /XTIME/ AND
C USED TO MONITOR THE CPU UTILIZATION OF 'FLOWTRAN'.

CALL SECOND (X%X)
CALL TIMER (YYY)

TIME = XXX + YYY
C
C

RETURN
END

page 76

APPENDIX F
Example FLOWTRAN Jobs

For the Example #1, located in Chapter 12 (Page 159) of the "User's
Manual" the following files are those used by Flowtran. Each file
contains a brief discription of how it is used by the Flowtran
simulation program~

(1) EX1.DAT ... Input Data File
(2) EX1.FTO ... Flowtran Output File
(3) FTCI.FOR ... Fortran for Main Program
(4) FTPI ... Passed Output Data from INF.EXE

/ Input to PREPRO.EXE
(5) FTSI ... Passed Output Data from

PREPRO.EXE / Input Data to
FTCI.EXE

*** Ex #1 r Page 159, Chapter 12, of the User's Manual ***

$$ Input Data File: EX1.DAT

CENTRIFUGAL COMPRESSOR CALCULATION ... Ex #1, Page 159
PROPS 4 1 2 5 1
PRINT INPUT
RETR HYDROGEN NITROGEN CO CO2
BLOCK CPI GCOMP S1 S2
PARAM CPI 1 750 0 1 0 .8 .85
BLOCK CCP1 CCOMP CP1
PARAM CCP1 1 1 150 1 0 .015
MOLES S1 1 42672 14268 7368 7688
TEMP S1 100
PRESS S1 650
END CASE
END JOB

$$ Flowtran Output Data File: EX1.FTO

1
TITLE CENTRIFUGAL COMPRESSOR CALCULATION ... Ex #1, Page 159

PROPS 4 1 2 5 1

page 77

PRINT INPUT

RETR HYDROGEN NITROGEN CO CO2

BLOCK CP1 GCOMP S1 S2

PARAM CPI 1 750 0 1 0 .8 .85

BLOCK CCP1 CCOMP CP1

PARAM CCP1 1 1 150 1 0 .015

MOLES S1 1 42672 14268 7368 7688

TEMP S1 100

PRESS S1 650

END CASE

END JOB

1
CENTRIFUGAL COMPRESSOR CALCULATION ... Ex #1, Page 159

PHYSICAL PROPERTY OPTIONS
ANTOINE VAPOR PRESSURE
REDLICH-KWONG VAPOR FUGACITY
CORRECTED HIGH TEMP LIQ FUGACITY
IDEAL SOLUTION ACTIVITY COEF

1
CENTRIFUGAL COMPRESSOR CALCULATION ... Ex #1, Page 159

CP1 (GCOMP) INLET = S1 OUTLET = S2
OUTLET PRESSURE, PSIA = 750.00 OUTLET TEMP, DEG F = 126.96
ISENTROPIC TEMP, DEG F = 122.99 ISENTROPIC HORSEPOWER= 4655.5
INDICATED HORSEPOWER = 5482.8 BRAKE HORSEPOWER = 6853.5

CCP1 (CCOMP) COST FOR UNIT CPI
TYPE OF COMPRESSOR 1. PMP-CMP COST INDEX 150.0
MAT OF CONST FACTOR 1.00 UTILITIES COST, $/HP HR 0.015
COMPRESSOR HORSEPOWER 6853.45

COMPRESSOR CAP COST $ 535646.09 UTILITIES COST $/HR 102.80
1
CENTRIFUGAL COMPRESSOR CALCULATION ... Ex #1, Page 159

STREAM NAME: S1 S2

LBMOL/HR LBMOL/HR
1 HYDROGEN 42672.0 42672.0
2 NITROGEN 14268.0 14268.0
3 CARBON MONOXIDE 7368.00 7368.00
4 CARBON DIOXIDE 7688.00 7688.00
TOTAL LBMOL/HR 71996.0 71996.0
TOTAL LB/HR 1030493. 1030493.
1000 BTU/HR 48083.13 62033.89
DEGREES F 100.00 126.96
PSIA _ 650.000 750.000
DENSITY, LB/FT3 1.5315 1.6E302
MOLE FRAC VAPOR 1.0000 1.0000

1
CENTRIFUGAL COMPRESSOR CALCULATION ... Ex #1, Page 159

CP1 (GCOMP) IN T = 100.00 F, P = 650.00 PSIA
OUT T = 126.96 F, P = 750.00 PSIA

CCP1 (CCOMP) COST FOR UNIT CP1 CAP=535646.$, UTL= 102.80$/HR
**END OF HISTORY

$$ Flowtran Fortran Data File, Prepared by PREPRO.EXE
(Compiler Input $BGFOR): FTCI.FOR

PROGRAM FTCI
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
COMMON/STREAM/NNNNS,NNNNSX
COMMON/STREAM/S1 (10)
DOUBLE PRECISION S1
COMMON/STREAM/G2 (10)
DOUBLE PRECISION S2
COMMON/STREAM/NONE(10)
DOUBLE PRECISION NONE
COMMON/PARAM/NNNNP,NNNNPX,PPPPP(15)
COMMON/RETEN/NNNNR,NNNNRX,RRRRR< 11>
COMMON/CONVRG/NNNNK,KKKKK(1)

9999 CALL INPUT
1 CALL GCOMP<S1 ,S2 ,
1PPPPP(2),RRRRR(2))

2 CALL CCOMP(S1 ,S2 ,
1PPPPP(2),RRRRR(2),
1PPPPP(1(D),RRRRR(9))
CALL OUTPUT
00 TO 9999
END
BLOCK DATA
IMPLICIT DOUBLE PRECISION (A-H, O-Z)
COMMON/STREAM/ NS, NSX, S(30)

COMMON/PARAM/ NP, NPX, P(15)
COMMON/RETEN/ NR, NRX, R(11)
COMMON/CONVRG/ NK, KKKKK(1>
DATA S/ 30*0.0/
DATA P/ 15*0.0/
DATA R/ 11*0.0/
DATA KKKKK/ 1*0/
DATA NS, NP, NR, NK/ 2, 15, 11, 1/
END

$$ Flowtran Passed Data File, Prepared by INF.EXE
(Input to PREPRO.EXE): FTPI.DAT

PROPS 4 1 2 5 1

PRINT INPUT

COMPONENT
$01 HYDROGEN 58 H2
$02 2.0160000 36.686000 59.744000 190.75800 0.3206695 0.0
$03 0.66478160E+01 0.24726470E-02-0.45576350E-05 0.31177010E-08
$04 -0.66436780E-12
$05 3.2500000 0.9600000-0.2082320-1.4743800 0.0
$06 5.6026571 418.17730 474.21400
$07 0.3206700
$01 NITROGEN 60 N2
$02 28.016000 139.25000 227.28800 492.90400 0.2893256 0.0799987
$03 0.69471580E+01 0.66094770E-04 0.56933950E-06 0.32268620E-10
$04 -0.96832590E-13
$05 2.8000000 2.5340000 0.0361420 0.2557765-0.0907021
$06 5.3166555 1184.7968 454.53280
$07 0.2887000
$01 CARBON MONOXIDE 52 CO
$02 28.010000 147.04400 239.31200 507.43700 0.2891256 0.0
$03 0.69560120E+01 0.59112400E-04 0.50758090E-06 0.76411830E-09
$04 -0.65403630E-12
$05 3.1300000 2.5800000 0.0482000 0.3413000-0.2837200
$06 5.7120894 1385.8825 462.61650
$07 0.2860800
$01 CARBON DIOXIDE 53 CO2
$02 44.011000 350.42600 547.56200 1070.4570 0.2728975-0.0826604
$03 0.83986049E+01 0.64757663E-02-0.35550252E-05 0.11945948E-08
$04 -0.18517015E-12
$05 5.0000000 4.7510000 0.2221405 1.5728591 0.0141371
$06 6.4702320 3521.2590 455.86900
$07 0.2720000
$09 0.0 0.0 0.0 0.0 0.0 6.3800000
$99

page 80

TITLE CENTRIFUGAL COMPRESSOR CALCULATION ... Ex #1, Page 159

BLOCK CP1 GCOMP S1 S2

PARAM CPI 1 750 0 1 0 .8 .85

BLOCK CCP1 CCOMP CP1

PARAM CCP1 1 1 150 1 0 .015

MOLES S1 1 42672 14268 7368 7688 .

TEMP S1 100

PRESS S1 650

END CASE
`

END JOB

$$ Flowtran Passed Data File, Prepared by PREPRO.EXE
(Input to FTCI.EXE): FTSI.DAT

COMPONENT
$00

4000001000000000000000000000000 1 2 5 1 1 1 1 1 1 1 1 1
$01

HYDROGEN 58 H2

$02
2.0160000 36.686000 59.744000 190.75800 0.3206695 0.0

$03
0.66478160E+01 0.24726470E-02-0.45576350E-05 0.31177010E-08

$04
-0.66436780E-12

$05
3.2500000 0.9600000-0.2082320-1.4743800 0.0

$06
5.6026571 418.17730 474.21400

$07
0.3206700

$01

$04
-0.18517015E-12

$05
5.0000000 4.7510000 0.2221405 1.5728591 0.0141371

$06
6.4702320 3521.2590 455.86900

$07
0.2720000

$09
0.0 0.0 0.0 0.0 0.0 6.3800000

$99
UNAM

2 NONE
9 CP1 15 CCP1

SNAM
S1 S2 NONE

TITLE
CENTRIFUGAL COMPRESSOR CALCULATION ~.. Ex #1, Page 159

FPAR
2 5 750 0 1

0
FPAR

6 7 .8 .85
FPAR

10 13 1 150 1
0
FPAR

14 14 .015
FMOL

1 1 4 42672 14268 7368
7688
TEMP

1 100
PRESS

1 650
END CASE
END JOB

*** End of Files for EX #1 ***

For the Example #2r located in Chapter 12 (Page 163) of the "User's
Manual" the following files used by Flowtran are displayed.

(1) EX2.DAT ... Input Data File
(2) EX2.FTO ... Flowtran Output File

*** Ex #2, Page 163, Chapter 12, of the User's Manual ***
'

$$ Input Data File: EX2.DAT

TITLE ADIABATIC FLASH CALCULATION ... Ex #2, Page 163
PROPS 3 2 2 2 2
PRINT INPUT
RETR N-BUTANE N-PENTANE N-HEXANE
BLOCK F1 AFLSH S1 6*0 S3 S2
PARAM F1 1 102.9 0 1
BLOCK CF1 CAFLH F1
PARAM CF1 6 .01 2*0 .75
MOLES S1 1 300 400 300
TEMP S1 300
PRESS S1 257.3
END CASE
END JOB

$$ Flowtran Output Data File: EX2.FTO

1
TITLE ADIABATIC FLASH CALCULATION ... Ex #2, Page 163

PROPS 3 2 2 2 2

PRINT INPUT

RETR N-BUTANE N-PENTANE N-HEXANE

BLOCK F1 AFLSH S1 6*0 S3 S2

PARAM F1 1 102.9 0 1

BLOCK CF1 CAFLH F1

PARAM CF1 6 .01 2*0 .75

MOLES S1 1 300 400 300

TEMP S1 300

PRESS S1 257,3

END CASE

END JOB

ADIABATIC FLASH CALCULATION ... Ex #2, Page 163

PHYSICAL PROPERTY OPTIONS
CAVETT VAPOR PRESSURE
REDLICH-KWONG VAPOR FUGACITY
CORRECTED LIQUID FUGACITY
SCATCHARD-HILDEBRAND ACTIVITY COEF

ADIABATIC FLASH CALCULATION ... Ex #2, Page 163

F1 (AFLSH) T = 224.35 F, P = 102.90 PSIA, V/F = 0.4465
MOLS/MOL

FEEDS = S1
BOTTOMS = S3 , OVERHEAD = S2
HEAT IN = 0.0000E+00 BTU/HR
STREAM OUTPUT

TOTAL LIQUID VAPOR LBS/HR MOLE PC K-VALUE
1 N-BUTANE 300.000 112.433 187.567 17436.0 30.0000 2.06837
2 N-PENTANE 400.000 223.614 176.386 29860.0 40.00000.977974
3 N-HEXANE 300.000 217.492 82.5084 25851.6 30.00000.470349

TOTAL MOLES/HR 1000.00 553.539 446.461
TOTAL LBS/HR 41410.1 30737.5 72147.6

DEGREES F 224.35
PSIA 102.90
MOLE FRAC VAPOR 0.4465
1000 BTU/HR 1044.33-1625.29 2669.62
BTU/LB-F 0.5967 0.6789 0.4859
MOLE WT 72.15 74.81 68.85
ACTUAL LB/CUFT 2.4995 33.1809 1.1130
ACTUAL GPM AND CFM 155.602 460.282
DEGREES API 90.57
SP.GR. AT 60 F 0.63718
GPM AT 60 F 129.831
BPD AND MMCFD AT 60,14.7 4451.34 4.06101

I

1

page 85

CF1 (FLSHC) DRUM COST FOR FLASH UNIT F1
VERTICAL DRUM LIQUID HOLDUP TIME, M 7.5
FRACTION OF FLOODING VEL 0.50 ALLOWABLE SHELL STRESS 14000.
SKIRT HEIGHT, FT 5.0 CORR ALLOWANCE, IN. 0.010
EXTRA WEIGHT ITEMS, LB 1000. SHELL COST, $/LB 0.75
FLASH DRUM

LIQUID LEVEL IN DRUM = 12.49 FT DRUM LENGTH = 19.56 FT
DRUM DIAMETER = 3.99 FT WALL THICKNESS = 0.32 IN

VERTICAL DRUM COST = $ 4441.73
1
ADIABATIC FLASH CALCULATION ... Ex #2, Page 163

STREAM NAME: S1 S2 S3
LBMOL/HR LBMOL/HR LBMOL/HR

1 N-BUTANE 300.000 187.567 112.433
2 N-PENTANE 400.000 176.386 223.614
3 N-HEXANE 300.000 82.5083 217.492
TOTAL LBMOL/HR 1000.00 446.461 553.539
TOTAL LB/HR 72147.6 30737.5 41410.1
1000 BTU/HR 1044.33 2669.62 -1625.29
DEGREES F 300.00 224.35 224.35
PSIA 257.300 102.900 102.900
DENSITY, LB/FT3 26.6145 1.1130 33.1809
MOLE FRAC VAPOR 0.0000 1.0000 0.0000

1
ADIABATIC FLASH CALCULATION ... Ex #2, Page 163

** 31-MAR-8 113:32:12
F1 (AFLSH) T = 224.35 F, P = 102.90 PSIA, V/F = 0.4465

Q = 0.000E+00 BTU/HR
CF1 (FLSHC) COST FOR UNIT F1 CAP= 4442.$
**END OF HISTORY

*** End of Files for EX #2 ***

page 86

For the Example #3, located in Chapter 12 (Page 167) of the "User's
Manual" the following files used by Flowtran are displayed.

(1) EX3.DAT ... Input Data File
(2) EX3.FTO ... Flowtran Output File

*** Ex #3, Page 167, Chapter 12, of the User's Manual ***

$$ Input Data File: EX3.DAT

TITLE VAPORIZER CALCULATION ... Ex #3, Page 167
PROPS 3 2 2 2 2
PRINT INPUT
RETR PROPANE N-BUTANE N-PENTANE
BLOCK H1 HEATR S1 S2
PARAM H1 1 240 2 0 0 1
BLOCK C1 CNTRL S2 H1 1
PARAM C1 1 8 .45 300 150 0 -.001 0 -20
BLOCK CV1 CURVE S1 S2
PARAM CV1 1 3*200
BLOCK CH1 CHETR H1
PARAM CH1 1 -3 3*0 150 50 150 338
BLOCK H2 SPRNT S2 6*0
MOLES S1 1 250 400 350
TEMP S1 150
PRESS S1 202
END CASE
END JOB

$$ Flowtran Output Data File: EX3.FTO

1
TITLE VAPORIZER CALCULATION ... Ex #3, Page 167

PROPS 32222

PRINT INPUT

RETR PROPANE N-BUTANE N-PENTANE

BLOCK H1 HEATR S1 S2

PARAM H1 1 240 2 0 0 1

page 87

BLOCK Cl CNTRL S2 H1 1

PARAM Cl 1 8 .45 300 150 0 -.001 0 -20

BLOCK CV1 CURVE S1 S2

PARAM CV1 1 3*200

BLOCK CHI CHETR H1

PARAM CHI 1 -3 3*0 150 50 150 338

BLOCK H2 SPRNT S2 6*0

MOLES S1 1 250 400 350

TEMP S1 150

PRESS S1 202

END CASE

END JOB

VAPORIZER CALCULATION ... Ex #3, Page 167

PHYSICAL PROPERTY OPTIONS
CAVETT VAPOR PRESSURE
REDLICH-KWONG VAPOR FUGACITY
CORRECTED LIQUID FUGACITY
SCATCHARD-HILDEBRAND ACTIVITY COEF

VAPORIZER CALCULATION ... Ex #3, Page 167

H1 - HEATR - INLET = S1 , OUTLET = S2
OUTLET TEMP = 209.02 DEG F , PRESSURE DROP = 2~00 PSI
DUTY = 0.5271E+07 BTU/HR

cl FEEDBACK CONTROLLER SET MANIPULATED PARAMETER TO 2.09017E+02'

CV1 - HEATING/COOLING CURVES
INLET STREAM - S1 OUTLET STREAM - S2
BUBBLE POINT AT 200.00 PSIA = 189.00 DEG F
DEW POINT AT 200.00 PSIA = 227.05 DEG F

page 89

TEMPERATURE PRESSURE STREAM ENTHALPY TOTAL HEAT FRACTION
AT T AND P TRANSFERRED VAPOR

DEG F PSIA BTU/HR BTU/HR
150.00 200.00 -5.0231E+06 0.0000E+00 0.0000
159.75 200.00 -4.6597E+06 3.6344E+05 0.0000
169.50 200.00 -4.2982E+06 7.2489E+05 0.0000
179.25 200.00 -3.9310E+06 1.0922E+06 0.0000
189.00 200.00 -3.5575E+06 1.4656E+06 0.0000
192.33 200.00 -2.9577E+06 2.0654E+06 0.0722
195.67 200.00 -2.3430E+06 2.6801E+06 0.1457
199.01 200.00 -1.7115E+06 3.3116E+06 0.2207
202.34 200.00 -1.0634E+06 3.9597E+06 0.2972
205.68 200.00 -4.1724E+05 4.6059E+06 0.3726
209.02 200.00 2.4835E+05 5.2715E+06 0.4500

CHI (EXCHC)- COST FOR EXCHANGER UNIT H1
TYPE OF EXCHANGER -3.00 MAT OF CONST FACTOR 1.00
PRESSURE FACTOR 1.00 TUBE LENGTH FACTOR 1.00
COST INDEX 150.0 UTILITIES COST FACTOR 50.000
EXCHANGER AREA FT2 224.35 EXCHANGER DUTY BTU/HR 5271472.

EXCHANGER COST, $ = 3370.00
UTILITIES COST, $/HR = 2.64

STREAM NAME: S2
MOLES/HR

TOTAL LIQUID VAPOR LBS/HR MOLE PC K-VALUE
1 PROPANE 250.000 88.8767 161.123 11023.5 25.0000 2.21575
2 N-BUTANE 400.000 214.746 185.254 23248.0 40.0000 1.05436
3 N-PENTANE 350.000 246.377 103.623 25252.5 35.00000.514052

TOTAL MOLES/HR 1000.00 550.000 450.000
TOTAL LBS/HR 34176.1 25347.9 59524.0

DEGREES F 209.02
PSIA 200.00
MOLE FRAC VAPOR 0.4500
1000 BTU/HR 248.352-1611.15 1859.50
BTU/LB-F 0.5941 0.6800 0.4783
MOLE WT 59.52 62.14 56.33
ACTUAL LB/CUFT 4.2074 27.4919 1.9643
ACTUAL GPM AND CFM 154.994 215.071
DEGREES API 105.55
SP.GR. AT 60 F 0.59692
GPM AT 60 F 114.378
BPD AND MMCFD AT 60,14.7 3921.54 4.09320

1

VAPORIZER CALCULATION ... Ex #3, Page 167

STREAM NAME: S1 S2
LBMOL/HR LBMOL/HR

1 PROPANE 250.000 250.000
2 N-BUTANE 400.000 400.000
3 N-PENTANE 350.000 350.000
TOTAL LBMOL/HR 1000.00 1000.00
TOTAL LB/HR 59524.0 59524.0
1000 BTU/HR -5023.12 248.35
DEGREES F 150.00 209.02
PSIA 202.000 200.000
DENSITY, LB/FT3 32~2600 0.0000
MOLE FRAC VAPOR 0.0000 0.4500

1
VAPORIZER CALCULATION ... Ex #3, Page 167

** 14-MAR-8 17:26:43
H1 - TEMP= 240.0F, DELP= -2.0PSI, Q= 0.103E+08BTU/HR

*C1 -ITER 1, MANIP PARAM= 2.4000E+02, CALC VAL= 1.0000E+00
DESIRED VAL= 4.5000E-01, NEW MANIP PARAM= 2.2500E+02

H1 - TEMP= 225.0F, DELP= -2.0PSI, Q= 0.931E+07BTU/HR
*C1 -ITER 2, MANIP PARAM= 2.2500E+02, CALC VAL= 9.2973E-01

DESIRED VAL= 4.5000E-01, NEW MANIP PARAM= 1.9500E+02
H1 - TEMP= 195.0F, DELP= -2.0PSI, Q= 0.256E+07BTU/HR

*C1 -ITER 3, MANIP PARAM= 1.9500E+02, CALC VAL= 1.3084E-01
DESIRED VAL= 4.5000E-01, NEW MANIP PARAM= 1.9917E+02

H1 - TEMP= 199.2F, DELP= -2.0PSI, Q= 0.334E+07BTU/HR
*C1 -ITER 4, MANIP PARAM= 1.9917E+02, CALC VAL= 2.2438E-01

DESIRED VAL= 4.5000E-01, NEW MANIP PARAM= 2.0834E+02
H1 - TEMP= 208.3F, DELP= -2.0PSI, Q= 0.512E+07BTU/HR

*C1 -ITER 5, MANIP PARAM= 2.0834E+02, CALC VAL= 4.3157E-01
DESIRED VAL= 4.5000E-01, NEW MANIP PARAM= 2.0906E+02

H1 - TEMP= 209.1F, DELP= -2.0PSI, Q= 0.528E+078TU/HR
*C1 -ITER 6, MANIP PARAM= 2.0906E+02, CALC VAL= 4.5129E-01

DESIRED VAL= 4.5000E-01, NEW MANIP PARAM= 2.0917E+02
H1 - TEMP= 209.2F, DELP= -2.0PSI, Q= 0.531E+07BTU/HR

*C1 -ITER 7, MANIP PARAM= 2.0917E+02, CALC VAL= 4.5421E-01
DESIRED VAL= 4.5000E-01, NEW MANIP PARAM= 2.0902E+02

H1 - TEMP= 209.0F, DELP= -2.0PSI, Q= 0.527E+07BTU/HR
**C1 -CONVERGED IN ITER 8, MANIP PARAM= 2.0902E+02

CHI (EXCHC) COST FOR UNIT H1 CAP= 3370.$, UTL= 2.64$/HR
**END OF HISTORY

*** End of Files for EX #3 ***

For the Example #4, located in Chapter 12 (Page 16?) of the "User's
Manual" the following files used by Flowtran are displayed.

(1) EX4.DAT ... Input Data File
(2) EX4.FTO ... Flowtran Output File

*** Ex #4, Page 173, Chapter 12, of the User's Manual ***

$$ Input Data File: EX3.DAT

TITLE VAPORIZER CALCULATION ... Ex #4, Page 173

For the Example #4, located in Chapter 12 (Page 173) of the "User's
Manual" the following files used by Flowtran are displayed.

(1) EX4.DAT ... Input Data File
(2) EX4.FTO ... Flowtran Output File

*** Ex #4, Page 173, Chapter 12, of the User's Manual ***

$$ Input Data File: EX4.DAT

TITLE DISTILLATION COLUMN CALCULATION ... Ex #4, Page 173
PROPS 5 2 2 3 2
PRINT INPUT
RETR *ETHANE *PROPANE *N-BUTANE *N-PENTANE *N-HEXANE
BLOCK D1 DISTL S1 S3 S2
PARAM D1 1 6.827 14 B 248 252 .226 .164 0 1
BLOCK C1 CNTRL S3 D1 1
PARAM C1 1 2 8 10 3 0 -.1 -.1 -20
BLOCK CD1 CDSTL D1
PARAM CD1 1 2 8*0 150 7*0 880.6 338 2*0 .01 2*0 .75 3 150 5*0 150
MOLES S1 1 30 200 370 350 50
TEMP S1 225
PRESS S1 250
END CASE
END JOB

$$ Flowtran Output Data File: EX4.FTO

1
TITLE DISTILLATION COLUMN CALCULATION ... Ex #4, Page 173

PROPS 5 2 2 3 2

PRINT INPUT

RETR *ETHANE *PROPANE *N-BUTANE *N-PENTANE *N-HEXANE

BLOCK D1 DISTL 81 S3 S2

PARAM D1 1 6.827 14 8 248 252 .226 .164 0 1

BLOCK C1 CNTRL S3 D1 1

PARAM C1 1 2 8 10 3 0 -.1 -.1 -20

BLOCK CD1 CDSTL D1

PARAM CD1 1 2 8*0 150 7*0 880.6 338 2*0 .01 2*0 .75 3 150 5*0 150

MOLES S1 1 30 200 370 350 50

TEMP S1 225

PRESS S1 250

END CASE

END JOB

1
DISTILLATION COLUMN CALCULATION ... Ex #4, Page 173

PHYSICAL PROPERTY OPTIONS
CAVETT VAPOR PRESSURE
REDLICH_KWONG VAPOR FUGACITY
CHAO-SEADER LIQUID FUGACITY
SCATCHARD-HILDEBRAND ACTIVITY COEF

1
DISTILLATION COLUMN CALCULATION ... Ex #4, Page 173

D1 - DISTL - PART. CONDENSER
FEED = S1 , BOTTOMS = S3 , OVERHEAD = S2
REFLUX RATIO= 5.44, NO. OF PLATES = 14., FEED PLATE= 8.
FRAC OVHD = 0.226, FEED FRAC VAPOR= 0.164
CONDENSER DUTY= 0.8688E+07BTU/HR, TEMP= 118.22F, PRES= 248.00PSIA

REBOILER DUTY= 0.9377E+07BTU/HR, TEMP= 265.34F, PRES= 252.00PSIA

Cl FEEDBACK CONTROLLER SET MANIPULATED PARAMETER TO 5.44473E+O0

CD1 (DISTC) COST FOR UNIT D1
NUMBER OF DIAMETERS 2. REFLUX RATIO 5.445
NUMBER OF TRAYS 14.0 TYPE OF TRAY 3.
MOC FACTOR FOR TRAYS 1.00 TRAY COST UPDATE FACTOR 150.0
LOADING AT TOP 0.85 LOADING AT BOTTOM 0.85
PLATE SPACING AT TOP 24. PLATE SPACING AT BOTTOM is.
SURFACE TENSION AT TOP 20. SURFACE TENSION AT BOTTOM 20.
FOAMING FACTOR AT TOP 1~00 FOAMING FACTOR AT BOTTOM 1.00
OVERALL U FOR CONDENSER 150.0 COOLANT TEMP IN 80.00
COOLANT TEMP RISE 20.00 MINIMUM TEMP APPROACH 10.00
COOLANT HEAT CAPACITY 1.00 COOLANT SPECIFIC GRAVITY 1.00
CONDENSATE SUBCOOLING 0.00 PRESSURE FACTOR-CONDENSER 1.00
TYPE OF CONDENSER -1. TUBE LENGTH FACTOR-COND 1.00
MOC FACTOR FOR CONDENSER 1.00 CONDENSER UPDATE FACTOR, 150.0
COOLANT COST-C/MGL 3.00 HEATING FLUID COST-C/MLB 56.00
HEATING FLUID MAX TEMP 338.00 REBOILER HEAT FLUX 12000.
MIN TEMP DIF FORFLUX 1.00 HEATING FLUID DELTA H _ 881.
TYPE OF REBOILER -1. MOC FACTOR FOR REBOILER 1.00
PRESSURE FACTOR-REBOILER 1.00 TUBE LENGTH FACTOR-REBL 1.00
REBOILER UPDATE FACTOR 124.0 SKIRT HEIGHT 10.0
STRESS IN COLUMN SHELL 14000. CORROSION ALLOWANCE 0.010
EXTRA WEIGHT ITEMS 2500. SHELL COST,$/LB 0.75

CONDENSER_
CONDENSER DUTY, BTU/HR = 0.86882041E+07
LOG MEAN TEMP DIFFERENCE = 26.99 DEB F
AREA = 2145.70 SO FT
COOLANT FLOW RATE = 868.820 GPM
CONDENSER COST = $ 13570.00
COOLANT COST = $/HR 1.56

REBOILER -
REBOILER DUTY, BTU/HR = 0.93765808E+07
AREA = 781.38 SO FT
STEAM FLOW RATE = 10647.945 LB/HR
REBOILER COST = $ 5440.00
STEAM COST = $/HR 5.96

COLUMN DIAMETERS- COLUMN HEIGHT, FT = 34.00
BELOW FEED 5.5000 SHELL THICKNESS, IN = 0.8125
ABOVE FEED 4.0000 SHELL THICKNESS, IN = 0.5625
COST OF COLUMN SHELL = $ 15365.00
TRAY COST = $ 2240.00

TOTAL UTILITY COST= $/HR 7.53

COLUMN CAPITAL COST = $ 36615.00

DISTILLATION COLUMN CALCULATION ... Ex #4, Page 173

STREAM NAME: S1 S2 S3
LBMOL/HR LBMOL/HR LBMOL/HR

1 *ETHANE 30.0000 29.9999 0.00015
2 *PROPANE 200.000 192.039 7.96116
3 *N-BUTANE 370.000 3.95601 366.044
4 *N-PENTANE 350.000 0.00530 349.995
5 *N-HEXANE 50.0000 0.00000 50.0000

TOTAL LBMOL/HR 1000.00 226.000 774.000
TOTAL LB/HR 60786.3 9600.10 51186.2
1000 BTU/HR -772.83 269.20 -353.65
DEGREES F 225.00 118.22 265.34
PSIA 250.0()0 248.000 252.000
DENSITY, LB/FT3 0.0000 2.2118 27.9168
MOLE FRAC VAPOR 0.2295 1.0000 0.0000

1
DISTILLATION COLUMN CALCULATION ... Ex #4, Page 173

** 14-MAR-8 17:28:28
D1 -OVD T= 116.9F,FD T= 197.4F,BTM T= 265.7F

*C1 -ITER 1, MANIP PARAM= 6.8270E+00, CALC VAL= 6.3366E+00
DESIRED VAL= 8.0000E+00, NEW MANIP PARAM= 6.1270E+00

D1 -OVD T= 117.5F,FD T= 201~1F,BTM T= 265.6F
*C1 -ITER 2, MANIP PARAM= 6.1270E+00, CALC VAL= 6.9957E+00

DESIRED VAL= 8.0000E+00, NEW MANIP PARAM= 5.0605E+00
D1 -OVD T= 118.8F,FD T= 207.5F,BTM T= 265.2F

*C1 -ITER 3, MANIP PARAM= 5.0605E+00, CALC VAL= 8.7228E+00
DESIRED VAL= 8.0000E+00, NEW MANIP PARAM= 5.4447E+00

D1 -OVD T= 118.2F,FD T= 205.1F,BTM T= 265.3F
**Cl -CONVERGED IN ITER 4, MANIP PARAM= 5.4447E+00

CD1 (DISTC) COST FOR UNIT D1~ CAP= 36615.$, UTL= 7.53$/HR
**END OF HISTORY

*** End of Files for EX #4 ***

For the Example #4 (Modified), located in Chapter 12 (Page 173) of the
"User's Manual" the following files used by Flowtran are displayed.

(1) EX4A.DAT ... Input Data File
(2) EX4A.FTO ... Flowtran Output File

*** Ex #4A, Page 173, Chapter 12, of the User's Manual ***

$$ Input Data File: EX4A.DAT

TITLE DISTILLATION COLUMN CALCULATION ... WINN UNDERWOOD METHOD
PROPS 5 2 2 3 2
PRINT INPUT
RETR *ETHANE *PROPANE *N-BUTANE *N-PENTANE *N-HEXANE
BLOCK D1 DSTWU S1 S3 S2
PARAM D1 1 3 2 82.5 27.0 .164 6.827 14 248 252 1
BLOCK C1 CNTRL S3 D1 6
PARAM C1 1 2 8 20 3 0 -.1 -.1 -20
MOLES S1 1 30 200 370 350 50
TEMP S1 225
PRESS S1 250
END CASE
END JOB

Flowtran Output Data File: EX4A2.FTO

1
TITLE DISTILLATION COLUMN CALCULATION ... WINN UNDERWOOD METHOD

PROPS 5 2 2 3 2

PRINT INPUT

RETR *ETHANE *PROPANE *N-BUTANE *N-PENTANE *N-HEXANE

BLOCK D1 DSTWU S1 S3 S2

PARAM D1 1 3 2 82.5 27.0 .164 6.827 14 248 252 1

BLOCK C1 CNTRL S3 D1 6

PARAM C1 1 2 8 20 3 0 -.1 -.1 -20

MOLES S1 1 30 200 370 350 50

TEMP S1 225

PRESS S1 250

END CASE

END JOB

1
DISTILLATION COLUMN CALCULATION ... WINN UNDERWOOD METHOD

PHYSICAL PROPERTY OPTIONS
CAVETT VAPOR PRESSURE
REDLICH-KWONG VAPOR FUGACITY
CHAO-SEADER LIQUID FUGACITY
SCATCHARD-HILDEBRAND ACTIVITY COEF

1
DISTILLATION COLUMN CALCULATION ... WINN UNDERWOOD METHOD

D1 (DSTWU) FEED=S1 OVD=S2 BOT=S3
HVY KEY COMP. NO. 3.000 LT. KEY COMP. NO. 2.000
SPLIT FOR LT. KEY 82.500 SPLIT FOR HVY KEY 27.000
QUALITY OF FEED 0.164
DESIRED REFLUX 6.827 DESIRED NO OF STGS 14.000
TOP PRESS. PSIA 248.000 BOTTOM PRESS. PSIA 252.000
CONDENSER TYPE 1.000

MIN. NO. THEO. STAGES AT TOTAL REFLUX 9.97
MINIMUM REFLUX AT INFINITE STAGES 4.95
NO. STAGES ABOVE FEED AT TOTAL REFLUX 5.78
ACTUAL REFLUX 8.78
NO. OF THEO. STAGES AT ACTUAL REFLUX 14.00
CONDENSER TEMP, DEG F 118.21
REBOILER TEMP, DEG F 2265.34

C1 FEEDBACK CONTROLLER SET MANIPULATED PARAMETER TO 6.82700E+00
1
DISTILLATION COLUMN CALCULATION ... WINN UNDERWOOD METHOD

STREAM NAME: S1 S2 S3
LBMOL/HR LBMOL/HR LBMOL/HR

1 *ETHANE 30.0000 29.999B 0.00017
2 *PROPANE 200.000 192.027 7.97269
3 *N-BUTANE 370.000 3.95827 366.042
4 *N-PENTANE 350.000 0.00351 349.996
5 *N-HEXANE 50.0000 0.00000 50.0000

TOTAL LBMOL/HR 1000.00 225.989 774.011
TOTAL LB/HR 60786.3 9599.59 51186.7
1000 BTU/HR -772.83 269.17 -353.77
DEGREES F 225.00 118.21 265.34
PSIA 250.000 248.000 252.000
DENSITY, LB/FT3 0.0000 2.2118 27.9168
MOLE FRAC VAPOR 0.2295 1.0000 0.0000

1
DISTILLATION COLUMN CALCULATION ... WINN UNDERWOOD METHOD

** 21-FEB-8 13:28:02
D1 (DSTWU) FEED=S1 OVD=S2 BOT=83

ITR TOP TEMP BOT TEMP MIN THEO STGS
1 224.517 254.517 10.087
2 118.219 265.336 9.966

MINIMUM REFLUX 4.947
**C1 -CONVERGED IN ITER 1, MANIP PARAM= 6.8270E+00
**END OF HISTORY

*** End of Files for EX #4A ***

For the Example #4B (Modified), located in Chapter 12 (Page 173) of
the "User's Manual" the following files used by Flowtran are
displayed.

(1) EX4B.DAT ... Input Data File
(2) EX4B.FTO ... Flowtran Output File

*** Ex #4B, Page 173, Chapter 12, of the User's Manual ***

$$ Input Data File: EX48.DAT

TITLE DISTILLATION COLUMN CALCULATION ... KB METHOD
PROPS 5 2 2 3 2
PRINT INPUT
RETR *ETHANE *PROPANE *N-BUTANE *N-PENTANE *N-HEXANE
BLOCK D1 FRAKB S1 0 0 S3 0 0 0 S2
PARAM D1 1 16 6.827 .226 1 0 248 249 252 0 118 265 1 1 9
BLOCK C1 CNTRL S3 D1 2
PARAM C1 1 2 8 10 3 0 -.1 -20
BLOCK CD1 CFRKB D1
PARAM CD1 1 2 8*0 150 7*0 880.6 338 2*0 .01 2*0 .75 3 336.3 5*0

336.3 4*0 336.3 0 300
MOLES S1 1 30 200 370 350 50
TEMP S1 225
PRESS S1 250
END CASE `
END JOB

$$ Flowtran Output Data File: EX4B.FTO

1
TITLE DISTILLATION COLUMN CALCULATION ... KB METHOD

PROPS 5 2 2 3 2

PRINT INPUT

RETR *ETHANE *PROPANE *N-BUTANE *N-PENTANE *N-HEXANE

BLOCK D1 FRAKB S1 0 0 S3 0 0 0 S2

PARAM D1 1 16 6.827 .226 1 0 248 249 252 0 119 265 1 1 9

BLOCK Cl CNTRL S3 D1 2

PARAM Cl 1 2 8 10 3 0 -.1 -20

BLOCK CD1 CFRKB D1

PARAM CD1 1 2 8*0 150 7*0 880.6 338 2*0 .01 2*0 .75 3 336.3 5*0

336.3 4*0 336.3 0 300

MOLES S1 1 30 200 370 350 50

TEMP S1 225

PRESS S1 250

END CASE

END JOB

1
DISTILLATION COLUMN CALCULATION ... KB METHOD

PHYSICAL PROPERTY OPTIONS
CAVETT VAPOR PRESSURE
REDLICH-KWONG VAPOR FUGACITY
CHAO-SEADER LIQUID FUGACITY
SCATCHARD-HILDEBRAND ACTIVITY COEF

1
DISTILLATION COLUMN CALCULATION ... KB METHOD

D1 - FRAKB
REFLUX RATIO 6.057 CONDENSER DUTY 0.80374E+07
REFLUX RATE 1368.960 REBOILER DUTY 0.87255E+07
NUMBER OF STAGES 16
FEED 1 IS S1 ON STAGE 9 BOTTOMS IS S3
VAPOR DISTILLATE IS S2 PC EFF IS 100.00 FOR ALL STAGES

Cl FEEDBACK CONTROLLER SET MANIPULATED PARAMETER TO 6.05735E+00

CD1 (DISTC) COST FOR UNIT D1
NUMBER OF DIAMETERS 2. REFLUX RATIO 6.057
NUMBER OF TRAYS 14.0 TYPE OF TRAY 3.
MOC FACTOR FOR TRAYS 1.00 TRAY COST UPDATE FACTOR 336.3
LOADING AT TOP 0.85 LOADING AT BOTTOM 0.85
PLATE SPACING AT TOP 24. PLATE SPACING AT BOTTOM is.

SURFACE TENSION AT TOP 20. SURFACE TENSION AT BOTTOM 20.
FOAMING FACTOR AT TOP 1.00 FOAMING FACTOR AT BOTTOM 1.00
OVERALL U FOR CONDENSER 150.0 COOLANT TEMP IN 80.00
COOLANT TEMP RISE 20.00 MINIMUM TEMP APPROACH 10.00
COOLANT HEAT CAPACITY 1.00 COOLANT SPECIFIC GRAVITY 1.00
CONDENSATE SUBCOOLING 0.00 PRESSURE FACTOR-CONDENSER 1.00
TYPE OF CONDENSER -1. TUBE LENGTH FACTOR-COND 1.00
MOC FACTOR FOR CONDENSER 1.00 CONDENSER UPDATE FACTOR, 336.3
COOLANT COST-C/MGL 3.00 HEATING FLUID COST-C/ML8300.00
HEATING FLUID MAX TEMP 338.00 REBOILER HEAT FLUX 12000.
MIN TEMP DIF FORFLUX 1.00 HEATING FLUID DELTA H 881.
TYPE OF REBOILER -1. MOC FACTOR FOR REBOILER 1.00
PRESSURE FACTOR-REBOILER 1.00 TUBE LENGTH FACTOR-REBL 1.00
REBOILER UPDATE FACTOR 336.3 SKIRT HEIGHT 10.0
STRESS IN COLUMN SHELL 14000. CORROSION ALLOWANCE 0.010
EXTRA WEIGHT ITEMS 2500. SHELL COST,$/LB 0.75

CONDENSER-
CONDENSER DUTY, BTU/HR = 0.80374033E+07
LOG MEAN TEMP DIFFERENCE = 27.06 DEG F
AREA = 1980.43 SO FT
COOLANT FLOW RATE = 803.740 GPM
CONDENSER COST = $ 28740.00
COOLANT COST = $/HR 1.45

REBOILER -
REBOILER DUTY, BTU/HR = 0.87254526E+07
AREA = 727.12 SO FT
STEAM FLOW RATE = 9908.531 LB/HR
REBOILER COST = $ 14020.00
STEAM COST = $/HR 29.73

COLUMN DIAMETERS- COLUMN HEIGHT, FT = 34.00
BELOW FEED 5.0000 SHELL THICKNESS, IN = 0.7500
ABOVE FEED 4.0000 SHELL THICKNESS, IN = 0.5625
COST OF COLUMN SHELL = $ 13595.00
TRAY COST = $ 4450.00

TOTAL UTILITY COST= $/HR 31.17

COLUMN CAPITAL COST = $ 60805.00
1
DISTILLATION COLUMN CALCULATION ... KB METHOD

STREAM NAME: S1 S2 S3
LBMOL/HR LBMOL/HR LBMOL/HR

1 *ETHANE 30.0000 29.9998 0.00017
200.000 191.964 8.03589 2 *PROPANE

3 *N-BUTANE 370.000 4.03059 365.969

4 *N-PENTANE 350.000 0.00551 349.995
5 *N-HEXANE 50.0000 0.00000 50.0000
TOTAL LBMOL/HR 1000.00 226.000 774.000
TOTAL LB/HR 60786.3 9601.15 51185.2
1000 BTU/HR -772.83 269.50 -354.28
DEGREES F 225.00 118.28 265.32
PSIA . 250.000 248.000 252.000
DENSITY, LB/FT3 0.0000 2.2117 27.9166
MOLE FRAC VAPOR 0.2295 1.0000 0.0000

1
DISTILLATION COLUMN CALCULATION ... KB METHOD

D1 - FEED 1 IS S1 ON STAGE 9
BASE COMPONENT FOR KB METHOD IS COMPONENT 3

MAX MAX
ITR MASS BAL CP STG HEAT BAL STG PHI

ERROR ERROR
1 -0.7E+00 2 13 0.0E+00 0 1.3999
2 0.6E+00 2 9 0.0E+00 0 1.4303
3 -0.2E+00 2 8 0.1E+07 1 1.4290
4 0.1E+00 1 9 0.2E+06 10 1.2276
5 0.2E-01 1 11 -0.2E+06 9 0.9739
6 0.7E-02 1 9 0.5E+05 9 1.0133
7 0.2E-02 1 11 -0.1E+05 9 1.0001
B 0.6E-03 1 11 0.9E+03 9 1.0005
9 0.2E-03 1 11 -0.4E+03 9 1.0001
10 0.4E-04 1 11 -0.9E+02 9 1.0000

**D1 - CONVERGED
TIME= 0

*Cl -ITER 1, MANIP PARAM= 6.8270E+00, CALC VAL= 6.7011E+00
DESIRED VAL= 8.0000E+00, NEW MANIP PARAM= 6.1270E+00

D1 - FEED 1 IS S1 ON STAGE 9
BASE COMPONENT FOR KB METHOD IS COMPONENT 3

MAX MAX
'

ITR MASS BAL CP STG HEAT BAL STG PHI
ERROR ERROR

1 -0.2E+00 2 9 0.0E+00 0 0.9655
2 -0.3E-02 2 15 0.0E+00 0 0.9986
3 -0.2E-02 1 9 -0.9E+06 15 0.9975
4 0.1E+00 1 9 0.2E+06 9 1.1964
5 0.2E-01 1 11 -0.2E+06 9 0.9775
6 0.8E-02 1 11 0.4E+05 9 1.0116
7 0.2E-02 1 11 -0.1E+05 9 0.9998
8 0.6E-03 1 11 0.1E+04 9 1.0005
9 0.2E-03 1 11 -0.4E+03 9 1.0001
10 0.4E-04 1 12 -0.5E+02 9 1.0000

**D1 - CONVERGED
TIME= 0

*C1 -ITER 2, MANIP PARAM= 6.1270E+00, CALC VAL= 7.8824E+00
DESIRED VAL= 8.0000E+00, NEW MANIP PARAM= 6.0573E+00

D1 - FEED 1 IS S1 ON STAGE 9
BASE COMPONENT FOR KB METHOD IS COMPONENT 3

MAX MAX
ITR MASS BAL CP STG HEAT BAL STG PHI

ERROR ERROR
1 -0.2E+00 2 9 0.0E+00 0 0.9675
2 0.3E-02 2 10 0.0E+00 O 1.0009
3 -0.2E-03 2 9 -0.9E+05 15 0.9997
4 0.1E-01 1 9 0.2E+05 9 1.0185 '
5 0.3E-02 1 11 -0.2E+05 9 0.9975
6 0.8E-03 1 11 0.5E+04 9 1.0012
7 0.2E-03 1 11 -0.1E+04 9 1.0000
8 0.7E-04 1 11 0.2E+03 9 1.0001
9 0.2E-04 1 11 -0.6E+02 9 1.0000

**D1 - CONVERGED
TIME= 0

**C1 -CONVERGED IN ITER 3, MANIP PARAM= 6.0573E+00
CD1 (DISTC) COST FOR UNIT D1 CAP= 60805.$, UTL= 31.17$/HR
**END OF HISTORY

*** End of Files for EX #4B ***

For the Example #4C (Modified), located in Chapter 12 (Page 173) of
the "User's Manual" the following files used by Flowtran are
displayed.

(1) EX4C.DAT ... Input Data File
(2) EX4C.FTO ... Flowtran Output File

*** Ex #4C, Page 173, Chapter 12, of the User's Manual ***

$$ Input Data File: EX4C.DAT

TITLE DISTILLATION COLUMN CALCULATION ... RIGOROUS MATRIX METHOD
PROPS 5 2 2 3 2
PRINT INPUT
RETR *ETHANE *PROPANE *N-BUTANE *N-PENTANE *N-HEXANE
BLOCK D1 AFRAC S1 3*0 S3 4*0 S2
PARAM D1 1 264 118 252 248 1200 16 1 3 .226 6.827 9
BLOCK C1 CNTRL S3 D1 10
PARAM C1 1 2 8 10 3 0 -.1 -20
BLOCK CD1 CAFRC D1
PARAM CD1 1 2 8*0 150 7*0 880.6 338 2*0 .01 2*0 .75 3 336.3 5*0

336.3 4*0 336.3 0 300
MOLES S1 1 30 200 370 350 50
TEMP S1 225
PRESS S1 250
END CASE
END JOB

$$ Flowtran Output Data File: EX4C.FTO

1
TITLE DISTILLATION COLUMN CALCULATION ... RIGOROUS MATRIX METHOD

PROPS 5 2 2 3 2

PRINT INPUT

RETR *ETHANE *PROPANE *N-BUTANE *N-PENTANE *N-HEXANE

BLOCK D1 AFRAC S1 3*0 S3 4*0 S2

PARAM D1 1 264 118 252 248 1200 16 1 3 .226 6.827 9

BLOCK Cl CNTRL S3 D1 10

PARAM Cl 1 2 8 10 3 0 -.1 -20

BLOCK CD1 CAFRC D1

PARAM CD1 1 2 8*0 150 7*0 880.6 338 2*0 .01 2*0 .75 3 336.3 5*0

336.3 4*0 336.3 0 300
'

MOLES S1 1 30 200 370 350 50

TEMP S1 225

PRESS S1 250

END CASE

END JOB

1
DISTILLATION COLUMN CALCULATION ... RIGOROUS MATRIX METHOD

PHYSICAL PROPERTY OPTIONS
CAVETT VAPOR PRESSURE
REDLICH-KWONG VAPOR FUGACITY
CHAO-SEADER LIQUID FUGACITY
SCATCHARD-HILDEBRAND ACTIVITY COEF

1
DISTILLATION COLUMN CALCULATION ... RIGOROUS MATRIX METHOD

D1 - AFRAC - RIGOROUS DISTILLATION/ABSORPTION
FEED 1 IS S1 ON STAGE 9
BOTTOM PRODUCT IS S3
OVERHEAD VAPOR IS S2
CONDENSER DUTY, MILLION BTU/HR -8.0307
REBOILER DUTY, MILLION BTU/HR 8.7187
STAGE TEMP PRESSURE LIQ FLOW VAP FLOW

F PSIA LB-M/HR LB-M/HR
16 118.28 248.00 1368.36 226.00
15 127.43 248.27 1349.45 1594.36
14 136.57 248.53 1301.99 1575.45
13 148.71 248.80 1242.71 1527.99
12 164.08 249.07 1172.27 1468.71
11 180.92 249.33 1112.10 1398.27
10 198.07 249.60 1056.70 1338.10
9 216.25 249.87 1834.10 1282.70
8 222.87 250.13 1869.21 1060.10
7 228.48 250.40 1898.79 1095.21

6 233.51 250.67 1926.23 1124.79
5 238.14 250.93 1951.01 1152.23
4 242.63 251.20 1970.48 1177.01
3 247.60 251.47 1980.60 1196.48
2 254.35 251.73 1975.86 1206.60
1 265.32 252.00 774.00 1201.86

Cl FEEDBACK CONTROLLER SET MANIPULATED PARAMETER TO 6.05469E+00

CD1 (CAFRC) COST FOR UNIT D1
NUMBER OF DIAMETERS 2. REFLUX RATIO 6.055
NUMBER OF TRAYS 14.0 TYPE OF TRAY 3.
MOC FACTOR FOR TRAYS 1.00 TRAY COST UPDATE FACTOR 336.3
LOADING AT TOP 0.85 LOADING AT BOTTOM 0.85
PLATE SPACING AT TOP 24. PLATE SPACING AT BOTTOM 18.
SURFACE TENSION AT TOP 20. SURFACE TENSION AT BOTTOM 20.
FOAMING FACTOR AT TOP 1.00 FOAMING FACTOR AT BOTTOM 1.00
OVERALL U FOR CONDENSER 150.0 COOLANT TEMP IN 80.00
COOLANT TEMP RISE 20.00 MINIMUM TEMP APPROACH 10.00
COOLANT HEAT CAPACITY 1.00 COOLANT SPECIFIC GRAVITY 1.00
CONDENSATE SUBCOOLING 0.00 PRESSURE FACTOR-CONDENSER 1.00
TYPE OF CONDENSER -1. TUBE LENGTH FACTOR-COND 1.00
MOC FACTOR FOR CONDENSER 1.00 CONDENSER UPDATE FACTOR, 336.3
COOLANT COST-C/MGL 3.00 HEATING FLUID COST-C/MLB300.00
HEATING FLUID MAX TEMP 338.00 REBOILER HEAT FLUX 12000.
MIN TEMP DIF FORFLUX 1.00 HEATING FLUID DELTA H 881.
TYPE OF REBOILER -1. MOC FACTOR FOR REBOILER 1.00
PRESSURE FACTOR-REBOILER 1.00 TUBE LENGTH FACTOR-REBL 1.00
REBOILER UPDATE FACTOR 336.3 SKIRT HEIGHT 10.0
STRESS IN COLUMN SHELL 14000. CORROSION ALLOWANCE 0.010
EXTRA WEIGHT ITEMS 2500. SHELL COST,$/LB 0.75

CONDENSER-
CONDENSER DUTY, BTU/HR = 0.80307010E+07
LOG MEAN TEMP DIFFERENCE = 36.52 DEG F
AREA = 1466.04 SQ FT
COOLANT FLOW RATE = 803.070 GPM
CONDENSER COST = $ 23170.00
COOLANT COST = $/HR 1.45

REBOILER -
REBOILER DUTY, BTU/HR = 0.87187435E+07
AREA = 726.56 SQ FT
STEAM FLOW RATE = 9900.912 LB/HR
REBOILER COST = $ 14010.00
STEAM COST = $/HR 29.70

COLUMN DIAMETERS- COLUMN HEIGHT, FT 34.00
BELOW FEED 5.0000 SHELL THICKNESS, IN = 0.7500
ABOVE FEED 4.0000 SHELL THICKNESS, IN = 0.5625
COST OF COLUMN SHELL = $ 13595.00
TRAY COST = $ 4450.00

TOTAL UTILITY COST= $/HR 31.15
'

COLUMN CAPITAL COST = $ 55225.00
1
DISTILLATION COLUMN CALCULATION ... RIGOROUS MATRIX METHOD

STREAM NAME: S1 S2 S3
LBMOL/HR LBMOL/HR LBMOL/HR

1 *ETHANE 30.0000 29.9998 0.00017
2 *PROPANE 200.000 191.963 8.03746
3 *N-BUTANE 370.000 4.03214 365.968
4 *N-PENTANE 350.000 0.00549 349.995
5 *N-HEXANE 50.0000 0.00000 50.0000
TOTAL LBMOL/HR 1000.00 226~000 774.000
TOTAL LB/HR 60786.3 9601.18 51185.2
1000 BTU/HR -772.83 269.50 -354.29
DEGREES F 225.00 118.28 265.32
PSIA 250.000 248.000 252~000
DENSITY, LB/FT3 0.0000 2.2117 27.9166
MOLE FRAC VAPOR 0.2295 1.0000 0.0000

1
DISTILLATION COLUMN CALCULATION ... RIGOROUS MATRIX METHOD

D1 - AFRAC -
FEED 1 IS S1 ON STAGE 9
2 -4.82E-01

LAMBDA 1.93E-03 8.93E-07
44 -2.48E-03
48 6.03E-05
49 6.11E-05

LAMBDA 2.16E-03 1.97E-07
81 -9.96E-07

*Cl -ITER 1, MANIP PARAM= 6.8270E+00, CALC VAL= 6.6956E+00
DESIRED VAL= 8.0000E+00, NEW MANIP PARAM= 6~1270E+00

D1 - AFRAC -
FEED 1 IS S1 ON STAGE 9
2 -1.32E-01

LAMBDA 2.16E-03 1.96E-07
37 1. 30E-0"-3
40 -2.91E-05
41 -6.34E-06
42 8.00E-07

*C1 -ITER 2, MANIP PARAM= 6.1270E+00, CALC VAL= 7.8779E+00
DESIRED VAL= 8.0000E+00, NEW MANIP PARAM= 6.0547E+00

D1 - AFRAC -
FEED 1 IS S1 ON STAGE 9
2 -1.37E-02

LAMBDA 1.93E-03 3.13E-07
34 2.21E-04
36 5.10E-06
37 -5.92E-07

**C1 -CONVERGED IN ITER 3, MANIP PARAM= 6.0547E+00
CD1 (CAFRC) COST FOR UNIT D1 CAP= 55225.$, UTL= 31.15$/HR
**END OF HISTORY

*** End of Files for EX #4C ***

APPENDIX 8
PROCEDURE FILES FOR LOADING
THE VARIOUS FORTRAN PROGRAMS

Program to set up PGM in the file PGM.EXE. Here PGM
represents VLE, PROPTY, and PREPRO.

/LOGON
/REM
/REM ... FILE NAME "PGM.LOAD"
/REM FILE GENERATES THE 'PGM.EXE' LOAD MODULE
/REM
/ERASE *
/STEP
/REM ... /PROC C,(&LNG,&SOURCE,&LST,&OBJ,&XRF,&MAP,&BUG)
/REM &LST = LIST = YES/NO
/REM &OBJ = OBJECT = YES/NO
/REM &XRF = XREF = YES/NO
/REM &MAP = MAP = YES/NO
/REM &BUG = DEBUG = YES/NO
/DO COMPILE,($BGFOR,PGM.FOR,NO,YES,NO,NO,YES)
/DO COMPILE,($BGFOR,FT.CHAR.FOR,NO,YES,NO,NO,YES)
/00 COMPILE,($BGFOR,FT.TIMEDATE.FOR,NO,YES,NO,NO,YES)
/REM
/REM ... CONTINUATIONS IN $ASSEMB REQUIRE A NON BLANK IN
/REM COLUMN 72, AND THE FOLLOWING LINES STARTING IN
/REM COLUMN 16.
/REM === /PARAM ASMLST=YES
/PARAM ASMLST=NO
/EXEC $ASSEMB
DDS

DSREF=3,RECFORM=FIXUNB,BLKSIZE=160,RECSIZE=160,X
TYPEFLE=INOUT,DEVICE=CORE

DDS
DSREF=8,RECFORM=FIXUNB,BLKSIZE=480,RECSIZE=480,X

TYPEFLE=INOUT,DEVICE=CORE
DVLST 1,2,5,6,7,97,98,99,3,8
END

/EXEC $LMR
CONTROL OUTFILE=(PGM.OML),LISTING=(MODNAMES,SYSLST)
COPYALL SOURCE=*

END
/EXEC $TSOSLNK
PROG PGM,FILENAM=PGM.EXE,VERSION=66
INCLUDE PGM,PGM.OML
INCLUDE $BLOCK,PGM.OML
INCLUDE ILF#DS3,PGM.OML
RESOLVE ,PGM.OML
BIND
END

/STEP
/ERASE *
/STEP
/ERASE PGM.OML
/STEP
/REM
/LOBOFF

Program to generate the FLOWTRAN Subroutine Library used by
the linkage editor to resolve all subprogram references.

/LOGON
/REM
/REM ... FILE NAME "FT.GEN.LIBRARY.LOAD"
/REM FILE GENERATES THE FLOWTRAN SUBROUTINE LIBRARY
/REM
/ERASE *
/STEP
/REM ... /PROC C,(&LNG,&SOURCE,&LST,&OBJ,&XRF,&MAP,&BUG)
/REM &LST = LIST = YES/NO
/REM &OBJ = OBJECT = YES/NO
/REM &XRF = XREF = YES/NO
/REM &MAP = MAP = YES/NO
/REM &BUG = DEBUG = YES/NO
/DO COMPILE,($BGFOR,FT.FOR,NO,YES,NO,NO,YES)
/DO COMPILE,($BGFOR,FT.CHAR.FOR,NO,YES,NO,NO,YES)
/DO COMPILE,($BGFOR,FT.TIMEDATE.FOR,NO,YES,NO,NO,YES)
/REM
/REM ... CONTINUATIONS IN $ASSEMB REQUIRE A NON BLANK IN
/REM COLUMN 72, AND THE FOLLOWING LINES STARTING IN
/REM COLUMN 16.
/REM === /PARAM ASMLST=YES
/PARAM ASMLST=NO
/EXEC $ASSEMB
DDS
DSREF=3x RECFORM=FIXUNB,BLKSIZE=160,RECSIZE=160,X

TYPEFLE=INOUT,DEVICE=CORE
DDS

DSREF=8,RECFORM=FIXUNB,BLKSIZE=480,RECSIZE=480,X
TYPEFLE=INOUT,DEVICE=CORE

DVLST 1,2,5,6,7,97,98,99,3,8
END

/EXEC $LMR
CONTROL OUTFILE=(FT.GEN.LIBRARY),LISTING=(MODNAMES,SYSLST)
COPYALL SOURCE=*

END
/ERASE *
/STEP

/REM
/LOGOFF

Procedure file to compile and link.

/REM === FILENAME: COMPILE
/REM ===
/REM
/REM
/REM === PROC "COMPILE"
/PROC C,(&LNG,&SOURCE,&LST,&OBJ,&XRF,&MAP,&BUG)
/PARAM LIST=&LST,OBJLST=&OBJ,XREF=&XRF,MAP=&MAP
/PARAM DEBU8=&BUG,ASMLST=&LST
/SYSFILE SYSDTA=&SOURCE
/EXEC &LNG
/SYSFILE SYSDTA=(PRIMARY)
/ENDPR

BIBLIOGRAPHY

Clark, J. Peter, Thomas P. Koehler, and Jude T. Sommerfeld.
Exercise in Process Simulation Using FLOWTRAN. 2nd ed.
Salt Lake City: CACHE, 1980.

Hill, Louis A., Jr. Structured Programming in FORTRAN.
Englewood Cliffs: Prentice-Hall, 1981.

Seader, J. D., W. D. Seider, and A. C. Pauls. =MAN
Simulation -- An Introduction. 2nd ed. Cambridge:
CACHE, 1980.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Sheet
	Vita
	Dedication
	Acknowledgement
	Tables of Contents (1 of 2)
	Tables of Contents (2 of 2)
	I. Introduction
	II. Flowtran
	III. Conversion
	IV. Testing
	V. Procedure Files
	Appendix A: Chemicals in the Public Data File
	Appendix B: Flowtran Blocks
	Appendix C: Myindex, Equal1, Equal2, Equal4, and Core Files
	Appendix D: Procedure Files
	Appendix E: Time/Date Routines
	Appendix F: Example Flowtran Jobs
	Appendix G: Procedure Files for Loading the Various Fortran Programs
	Bibliography

	List of Tables
	List of Figures

