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ABSTRACT 

Title of Thesis : Dispersion in the Laminar Flow of Ellis 

Model Fluids Through Straight Tubes 

Yeong-Hua Huang, Master of Science, 1986 

Thesis directed by : Dr. Wing T. Wong 

Taylor-Aris dispersion theory is extended to the laminar 

tube flow of Carreau model fluids and Ellis model fluids and 

the results are compared with those of power law fluids. It 

is found that Carreau and Ellis models are more appropriate 

than power-law model, especially at low pressure gradient. 

An exact solution to the unsteady convective diffusion 

equation in fully developed laminar flow in tube is obtained 

by applying the generalized dispersion theory of Gill and 

Sankarasubramanian for Ellis model. The results are compared 

with those obtained by Booras and Krantz for power-law model. 

The most interesting result of this work is that the power 

law is valid only at high shear stress, whereas Ellis model 

allows the prediction of dispersion coefficient and mean 

solute distribution over much wider range of external 

pressure gradient. 
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I. INTRODUCTION 

Over the past 20 years the public has been justifiably 

concerned with the protection of environment. In some cases, 

chemicals like pesticides and perfumes are deliberately 

released; in other cassa,chemicals like hydrogen sulfide can 

be accidentally spilled. In all cases, the public worries 

about the long-term effects of such chemical pollutions. 

Public concern has led to legislations at federal, state, 

and local levels. These legislations usually are phased in 

terms of regulations of chemical concentrations. These 

regulations take different forms. The maximum allowable 

concentration may be averaged over a day or over a year. The 

acid concentration C as pH ) can be held within a particular 

range, or the number and size of particles going up a stack 

can be restricted. Those working with chemicals must be able 

to anticipate whether or not these chemicals can be 

adequately dispersed. 

As might be expected, dispersion is related to diffusion. 

Diffusion is a molecular process governed by laws of 

thermodynamics, whereas dispersion is the combined effect of 

diffusion and convection. The relation exists on two very 

different levels. First, dispersion is a form of mixing, and 

so on a microscopic scale it involves diffusion of molecules. 

This microscopic dispersion is not understood in detail, but 

it takes place so rapidly that it is rarely the most 

important feature of the process. Second, dispersion and 
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diffusion are described with very similar mathematics. This 

means that analyses developed for diffusion can often 

correlate results for dispersion. 

Dispersion theory is concerned with the dispersal of a 

solute in a flowing fluid due to the combined action of a 

nonuniform velocity profile, molecular diffusion, and eddy 

diffusion in the case of turbulent flow. Numerous papers have 

discussed dispersion in a variety of laminar and turbulent 

flows since Sir Geoffrey Taylor (1953) and Aria (1956) 

published the first papers on the subject. 

Developments in the areas of polymer processing, 

biomedical engineering, and biochemical processing have 

contributed to the ever-increasing interests in the flow and 

properties of non-Newtonian fluids. Typical occurrences of 

this dispersion phenomenon in applications involving non-

Newtonian fluids include the behavior of dyes in injection 

molding process, the determination of the residence time of 

tracer solutes injected into the bloodstream, and the 

transport of slurries and polymer solutions. 

However, most papers have been focused on dispersion in 

Newtonian fluids. Relatively few papers have considered 

dispersion in non-Newtonian fluids. Taylor-Aris dispersion 

theory had been extended to the laminar flow of power-law, 

Bingham plastic, and Ellis fluids in circular tube by Fan and 

co-workers (1965,1966). Ananthakrishnan et al. (1965) have 
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shown that Taylor-Aria dispersion theory for Newtonian fluids 

applies only for sufficiently large values of the 

dimensionless time V(=Dt/R2) ranging from 0.80 at Pe=500 to 

20 at Pe=1. This limitation of Taylor-Aria dispersion theory 

led Gill (1967) and Gill and Sankartasubramanian (1970) to 

develop a generalized dispersion theory for unsteady 

convective diffusion in Newtonian fluids which is valid for 

all values of V and which reduces to Taylor-Aria results for 

large values of V. Gill and co-workers (Gill and 

Sankarasubramanian (1971,1972) ; Sankarasubramanian and Gill 

(1972,1973)) have extended this analysis to non-uniformly 

distributed and time-variable sources as well as to time 

variable laminar flows including mass transfer at the tube 

wall. Indeed, the generalized dispersion theory of Gill and 

co-workers has permitted us to consider dispersion phenomena 

in a wide variety of flow scenarios which hitherto were far 

too complex to solve analytically. 

In order to understand more fully the rather limited 

domain of Taylor-Aria dispersion theory, let us estimate the 

transit time T or equivalently the tube length L necessary 

for Taylor-Aria theory to apply, assuming a typical liquid 

phase diffusivity of 10-5 cm2/a and Pe=500. Then, according 

to the criterion obtained by Ananthakrishnan et al., T>88 and 

L>4cm for R=0.01cm; T>800s and L>40cm for R=lca; and T>80000a 

and L>400cm for Ralcm. However, many dispersion phenomena of 

practical interest occur for time period V<0.8 and thus are 
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more properly described by the generalized dispersion 

analysis of Gill and co-workers than by Taylor-Aris theory. 

Clearly, it is desirable to apply the generalized 

dispersion theory of Gill and co-workers to the dispersion 

process in non-Newtonian fluids as was done by Booras and 

Krantz (1976) for power-law fluids. 

In the present study, Ellis model is applied to the 

generalized dispersion theory instead of the power-law model, 

since it is a flexible empirical model, which includes the 

Newtonian regime at low shear rats and the power-law at high 

shear rate. We know that power-law model is not applicable 

for pipe flow, because by symmetry the shear rate is zero at 

the axis and hence the power-law model would imply an 

infinite viscosity for shear-thinning fluid. This property of 

power-law model implies some lisititions in the application 

of generalized dispersion theory. 

Before we apply the generalized dispersion theory 

approach of Gill and co-workers to the dispersion process in 

Ellis model fluids, we have considered the Taylor-Aria 

dispersion theory of the laminar tube flow of Carreau model 

fluids, and compared the results with those obtained for 

power-law and Ellis fluids. From the results of these three 

models, it may be concluded that in applying the generalized 

dispersion theory the three-parameter Ellis model is more 

appropriate than the two-parameter power-law model. 
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II. THEORY 

A. Dispersion in the laminar flow of a Carreau fluid through 

straight circular tube 

In a series of papers, Taylor (1953,1954a,b) treated the 

problem of dispersion of a soluble tracer in a solvent 

flowing in a circular pipe. His results have been generally 

confirmed by experiments. However it should be noted that 

Taylor's work was only concerned with Newtonian fluids, Fan 

and co-worker applied Taylor's theory to power-law, Binghaa 

and Ellis fluids. In this section the dispersion of a tracer 

material in the laminar tube flow of a fluid, described by 

the Carreau model, is discussed using the Taylor-Aria 

dispersion theory . 

In a cylindrical tube, the variation of tracer 

concentration, C, as a function of time, t, radial position, 

r, and axial distance along the tube, x, may be expressed by 

the following partial differential equation 

where D is the molecular diffusivity and Vx(r) is the fully 

developed axial velocity as a function of radial position. 

When the molecular diffusivity is taken to be zero, only the 

convective tore accounts for material transport. Otherwise, 

both the action of convection and radial material transport 

due to molecular diffusion will account for the dispersion 
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mechanisms. 

1. Effect of Molecular Diffusion on the Fluid Dispersion 

Equation (1) signifies that the distribution of tracer 

concentration in laminar flow is due to the combined action 

of convection along the tube induced by variation of velocity 

over the cross-section and radial dispersion caused by 

molecular diffusion. 

In general, the transfer of C along tube by molecular 

diffusion is email compared with that produced by convection. 

It will be assumed therefore that 82C/8x2 is small compared 

with 

The concentration and velocity will be defined relative 

to axes which move with the mean fluid velocty Vx, that is 

xi = x - Vxt (2) 

We will see that the transformation to a frame of reference 

moving with the average velocity of the fluid is not simply 

for convenience, but rather it is a powerful tool to obtain 

an effective dispersion coefficient (K) which includes the 

combined action of convection and molecular dispersion. 

Then equation (1) becomes 



2. Carreau Model Fluids 

The Carreau model, a four-parameter model which has been 

demonstrated to fit empirical data of many non-Newtonian 

fluids very well ([24)), can be expressed in terms of shear 

rate 

where lb is the zero-shear-rate viscosity, % is the 

infinite-shear-rate viscosity, X is a characteristic time and 

n is equivalent to the power-law index. This model may also 

be written is terms of shear stress as 

where tb is a characteristic stress. 

For polymer melt, le  is typically two to three orders of 

magnitude smaller than Tb and so may be neglected. This means 

that 



From the equations of motion, the momentum flux distribution 

in cylindrical tube is found to be 

where AP is the pressure drop over a tube length L. 

Equation (5) is simplified by setting % = r/R and letting 

and 

Then integration of equation (5) with the no-slip boundary 

condition yields the isothermal and steady-state velocity 

profile 



and 

Substituting (7) and (8) into (9) gives 

Normalizing (3) by introducing the dimensionless variables 

C*, e, 4, and Ilk, we obtain 

where 

C*  = dimensionless concentration = C/Co  

6 = dimensionless time= t/t = tklx/L 

4 = dimensionless radial distance= r/R 

X = dimensionless axial distance= x/L 

T11 = X - 6 

Here aiae represents differentiation with respect to time at 

a point fixed relative to axes moving with the mean velocity. 

Since the moving axes have been introduced, the transfer of 

tracer concentration across plane at which ilk is constant 
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depends only on the radial variation of tracer concentration 

because the mean velocity across such planes is zero. It is 

further assumed (Taylor,1953) that the time necessary for 

appreciable effects to appear, owing to convective transport, 

is long compared with the *time of decay' during which radial 

variations of concentration are reduced to a fraction of 

their initial value through the action of molecular 

diffusion, which means that the radial variation of tracer 

concentration is email, i.e., Taylor's limiting condition is 

satisfied, and thus 8e/80 is also small. Now we can 

approximately calculate the radial variation of C*  by first 

neglecting the 80/ 80 term 

In solving this equation 8C*/8/1k may be taken as independent 

of 4 because moving coordinate is used. The boundary 

condition 

is employed. The result for this case is 

where C• is the value of C*  at 4 = 0. 



The rate of transport of C*  across a section at fixed is 

Substituting (8), (10) and (13) into (14) and integrating 

over the range (0,1) and comparing this with Fick's law of 

diffusion, we find that an effective dispersion coefficient 

K can be defined 



where 

K stands for all the terms in the ( ) (16c) 

3. Ellis Model Fluids 

The shear stress and viscosity relation of the Ellis model 

fluid is characterized by 

in which lb is the zero-shear-rats viscosity, V% is the value 

of the shear stress at which TINTb/2, and a-1 is the slope of 

(W /1V-1 vs. V/V% on log-log paper. 

and substituting (6) into (18), the velocity profile Vx  is 



given by 

where 

from which the mean velocity can by readily obtained, 

Following the procedures in section 2 the effective 

dispersion coefficient K becomes 

which has been obtained by Fan and Wang (1965). 

4. Power-law Model Fluids 

where m and the dimensionless quantity n are constants 

characteristic of the fluid . The velocity profile Vx(r) in 

this case is 



where 

and the mean velocity is 

By analogous procedure as above, the effective dispersion 

coefficient K is determined to be 

which has also been obtained by Fan and Hwang (1965). 

5. Summary 

From equations (15), (22), and (27) we have the effective 

dispersion coefficients, which were derived by applying the 

Taylor-Aria diaperaion theory to Carreau model, Ellie model 

and power-law respectively. 

Recall that (7a) 



we can rearrange equation (15) by taking (28) into 

equations (10), (16a) and (16b) 

where K'si K/R2 

Equations (20a) and (20b) can also be arranged 

which lead (22) into 

(25) and (26) can be formed as 

which lead (27) into 



B. Dispersion in the laminar flow of Ellis model fluids 

through straight tubes by the generalized dispersion 

theory approach of Gill and Sankarasubraminian 

Purely convective dispersion creates infinite radial and 

axial concentration gradients. This phyaicially unrealistic 

situation is in fact obviate by the action of radial and 

axial molecular diffusion. The former tends to reduce axial 

dispersion by reducing the radial concentration gradient, 

whereas the latter enhances axial dispersion by adding a 

purely diffusive axial component. A complete understanding of 

the action of molecular diffusion on the dispersion process 

demands a solution to the full unsteady-state convective 

diffusion equation which is given in equation (1). 

For the slug input of solute of length xis  in a tube with 

radius R. the boundary conditions may be written as 

For Ellis model fluid, by applying (19) into (1) the 

equation of diffusion (1) can be re-written as 



In dimensionless form, (35) and (36) become 

where 

Vo = maximum velocity = Val Vs2 

1. Purely Convective Dispersion 

Let us consider the purely convective dispersion of a 

Ellis model fluid first. 

Since X = VsV 

For V > Xs, the mean concentration 86 is given for purely 

convective dispersion by 



es = 0 C X < -%Xa ) (40a) 

€6
1 
 . 1 

- 
y2 

( -%X < X < %X ) a a (40b) 

sa  . y12 _ y22 C %Xs  < X < V - %X ) a (40c) 

A
m 
 . y2 ( V - %Xs  < X < V 4 )0(a ) (40d) 

66= 0 C Y + )0( < X< so ) a (40e) 

and for V < Xs  

es = 0 ( X < -%Xa ) (41a) 

ea  = 1 - y2 C -%Xa  < X < V - %X•  ) (41b) 

• = 1 ( 1.  C X C %Xa ) (41c) 

Oa = y2 ( %X < X < %Xs  + V ) a (41d) 

Alt  = 0 C %Xs  + V < X < m ) (41e) 

A plug of solute and a semi-infinite slug are special 

limiting cases of equation (40) and (41) for Xs  being very 

small and very large, respectively. 



2.Dispersion with Molecular Diffusion 

Now let us consider the dispersion with molecular 

diffusion since we know that purely convectvie dispersion 

creates infinite radial and axial concentration gradients, 

and is physically unrealistic. 

Define a new axial coordinate moving with the average 

velocity of flow as 

xl = x Vxt 

which in dimensionless form, is 

so the governing diffusion equation (37) becomes 

Following the method of Gill and Sankarasubramanian (1970) 

we formulate the solution as a series expansion such that 

where 



Upon substituting equation (45) into (44) , the result is 

Now if it is misused that the process of distributing Ai  is 

diffusive in nature right from time zero one can write the 

generalized dispersion model in dimensionless form with time-

dependent dispersion coefficients as 

It is important to note that Ki are a function of V even 

though the velocity field is independent of V. 

Introducing equation (48) into (47) and rearranging terms, 



It is observed that 

and so Eq. (49) becomes 

m0 (50) 

with fel 

where 

If equation (50) is satisfied by equating the coefficients 

of akeilliax,k to zero, an infinite set of differential 

equations is generated 



Since will be chosen to satisfy the initial conditions on 

0, at V=0, 11.111, equation (45) implies that 

fk(0y) = 0 ( k 0 0 ) (55) 

Substituting (45) into (38d) 

and substituting (45) into (46) 

which implies 

By multiplying equation (52) by y and integrating with 

respect to y from 0 to 1 



and applying (56) and (57) 

we obtain 

K1 = 0 (58) 

Applying the same procedure to equation (53) 

and using equation (57) 

From (54) with km1 

and noting that fel 

In fact, Eq.(60) can be generalized as 

In order to obtain the unsteady solution for K2(V) it is 

necessary to obtain the complete solution of equation (52) 



for 11. This solution can be expressed in the form 

where F5(y) is the steady-state solution of equation (52), 

which independently satisfies the conditions given by 

equations (56) and (57) . The time-dependent part of the 

solution of fl, Ft(V,y),which must vanish as V 4 mw, satisfies 

a homogeneous differential equation with homogeneous boundary 

conditions and hence constitutes an eigenvalue problem which 

can readily be solved by the method of separation of variables. 

Substituting Eq.(62) into Eq.(52) gives 

and integrating once 

where C1=0 by virtue of the boundary conditions Eq.(56) 

Further integration yields 

and using Eq.(57) 



Hence 

Now, Ft(V,y) satisfies 

By letting Ft = T(V)U(y), we have 

end 

The solutions of Eq.(66) are 

T = slEXPC-xFV) 

U = g2J0(Ay) 63Y0(Ay) 

and so 

Ft = SiJo(Xy) • 52Y0(Ay)3 EXP(-A?V) (67) 

Since at y =0 Y0(0) 4 Op 52 a O. From Eq.(56) 



dFa  
and since 

d  
---(1) = 0, we have Y(1) 

J1(70 = 0 (69) 

Solution of Eq.(69) yields infinite number of eigenvalues and 

therefore the complete solution of Ft is 

where Am  is calculated using Eq.(55) fi(0,y) =0 

and by integrating by parts and the properties of Hassel 

functions, 



Therefore, 

and the complete solution for fi is then given by 

where A='s are given by 



and the eigenvalues xm's must satisfy 

`71( ) = O (73) 

Equation (71) can now be substituted into equation (59) 

to yield the general solution for K2(T) 

where 

The nomenclature used here conforms to that used by Gill 

and Sankarasubremanian (1970). Hence the results presented 

here for f1, Am, K2(T), Bs, etc. were checked to reduce to 

those of Gill and Sankarasubramanian for Newtonian fluids 

when a is set equal to 1. On the other hand, the time-

independent dispersion coefficient for Ellis model fluids 

given by the limit of equation (74) as T 4 so, agrees with 

that of Fan and Hwang (1965). 

The higher order coefficients in the generalized 

dispersion model can be determined by a solution of equation 

(61) for the appropriate value of k. This necessitates 



solving equation (53) or (54) to order k-1 which is a 

straightforward but algebraically tedious task. Gill and 

Sankarasubramanian (1970) have shown that for Newtonian fluid 

K3(1'410 = -4.34=10-5 and the higher order coefficients will 

decrease in magnitude further. As for Ellis model, equation 

(53) has been solved for the steady state, solution for f2 in 

order to obtain the solution for K3(0). A few values of K3 

were obtained for different polymers under the condition of 

K3(0) is 4.608=10-5 for a=3.59 whereas the 

corresponding K2(0) is 4.421=10-3. For a=2.50 K3(410 is 

5.482=10-5 and K2 is 4.986=10-3. Therefore we see that 

K2(0)is more than two orders of magnitude greater than K3(0) 

for Ellis model fluids. Booras and Krantz (1976) also have 

proven that for power law fluid for all values of n, K3(0)is 

significantly smaller than K2(0). Thus it appears reasonable 

to assume that K3(10 << K2(0)for all values, of 1'; hence the 

generalized dispersion model can be approximated by only one 

term in equation (48) 

i.e. 

The solution of equation (76) with conditions 

(0(0,X1 ,y) = 1 IX11 s %Xs 

1)(0,X1,y) = 0 
IX11 > %Xs 

a, y) = 0 



is obtained by the method of separation of variables. 

Let AI  = ZOCOT(t), so that 

and introducing the separation constant 82 

The problem becomes 

the solutions of which are 

Z = c1COS(8)(1) + c2SIN(8X1) 

T = c3EXPC-82;) 

where 

cl, c2, and c3 are constants 

Hence, 86 may be written in terms of Fourier integral 



Then 

and using Fourier transformation, 06(0,X1) may be expressed 

as 

Comparing Eq.(82) and (83) 

which implies 

Letting 

we have 



and therefore 

Then, using the conditions : 

O g ea  . 4:6(0,x1) . 1 ixii i ma. 

O . 0. . 011,(0,X1) = 0 IX11 > "s 

we finally obtain 

where 



In order to analyze the dispersion behavior of Ellis 

model fluids, a new dimensionless variable P is defined as 

then we have the following 

where 



III. RESULTS AND DISCUSSIONS 

Some commercial polymers are used in this study. 

Their properties for these three models are listed in Table 

1. 

A. Comparison of KD/R4 values by Taylor-Aria dispersion 

theory for different models 

From equations (29), (31) and (34), the KD/R4 values are 

calculated for different wall shear stress YR. Figures 1 and 

2 show the plots of KD/R4 under different SCR for two 

commercial polymers : Ethylene ethyl acrylate at 463k and 

Polystyrene at 483k. 

From these figures we can see that at high shear stress 

(>105) the KD/R4 values of these three models are almost non-

distinguishable, but as SCR decreases, the deviation among 

them becomes significant. We can see a tremendous difference 

between the three-parameter models, i.e. Carreau model and 

Ellis model, and the two-parameter power-law model. For 

example, for PS with SCR * 5*104, the results of Carreau 

model and Ellis model are comparable while the results of 

power-law model are one order of magnitude less than those of 

the two three-parameter models. As 'CR decreases below 1*104, 

the difference between the three-parameter and power-law 

models is more pronounced ( >four orders of magnitude ). 

This result is expected. Since at low shear stress near 

the axis or at low pressure gradient, the fluid is within the 
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Table 1. Properties of polymers 

Polymer A 

Temperature 
(K) 463 483 493 463 463 

power law 
model 

NSn  
a ( -) 

a2 
4.370104 2.380104 3.220104 4.89.103 6.910103 

n 0.21 0.25 0.27 0.41 0.43 

Carreau 
model 

NS 
'lb (--4 a2 

1.48.105  9.20.103  9.000103 3.20.103  2.50103 

N 
n (--) 

a2 
0.22 0.27 0.28 0.41 0.58 

10 3.00104 3.050104 4.70104 6.8.103 2.5.103 

Ellis 
model 

NS 
Tb (--) 

a2 
1.480105 9.2'103 9.00103 3.20103 3.50103 

a 4.8 3.85 3.59 2.50 2.39 

V4t (Pi--) 
- m2 

3.29,104 3.190104 5.030104 7.190103 1.400104 

where 

A : High Impact Polystyrene (HIPS), LX-2400a 
B : Polystyrene (PS), DyleneTM8b 
C : Styrene acrylontrile, (SAN) Lustran" 31-1000a 
D : Polypropylene (PP) CD 460c 
E : Ethylene ethyl acrylate, DPDA-6169d 

and 
a  Monsanto Co. b ARCO. 
c  Exxon Chemical Co. d Union Carbide Corp. 



VR 
Fig. 1. Dispersion property KD/R4 of ethylene ethyl 

acrylate, DPDA-6169 at 483k vs. shear stress at 
tube wall for three different models 



VR 
Fig. 2. Dispersion property KD/R4 of polystyrene (PS) at 

483K va. wall shear stress for three different 
models 



low Newtonian regime, where power law can not be used to 

predict the behavior correctly. On the other hand we know 

that the three-parameter Carreau model and Ellis model 

include the low Newtonian region and power law region. For 

tube flow the shear stress increases linearly from zero on 

the axis to Vik at the wall. Thus, the fluid exhibits 

Newtonian behaviour near the axis (plug flow) for any 

pressure gradient. Thus, straightly speaking, power-law model 

is not applicable to pipe flow. There is no doubt that the 

calculated KD/R4 values from these two models are of the same 

magnitude even at low shear stress, and power law applied to 

this low shear stress region becomes more unreliable since 

its value is very far from those obtained from these two 

three-parameter models. 

Thus we know that from the results of the Taylor-Aris 

dispersion theory it is more appropriate to use three-

parameter model than power-law model. From this point of view 

we would like to see what will happen if we apply the three-

parameter Ellis model to the generalized dispersion theory of 

Gill and Sankarasubraminan. It may have some very interesting 

implications which were not shown in the Newtonian fluids and 

power-law fluids. In next section, the three-parameter Ellis 

model is applied to the generalized dispersion theory of Gill 

and Sankarasubraminan and the results will be compared with 

those obtained by Booras and Krantz (1976) who used the 

power-law model. 



B. Results of the generalized dispersion theory of Ellis 

fluid in pipe flow 

Figures 3,4 and 5 give the plots of K2-Pe-2 as a function 

of V under different driving force P for three commercial 

polymers. For comparison, K2-Pe-2 for power-law fluid is also 

shown in each figure. In determining K2 from Eq. (74), the 

infinite series was truncated such that the leading term 

discarded resulted in less than a 0.1% change in the value of 

K2. 

Furthermore, the time-dependent behavior of the dispersion 

coefficient k2(V) for all Ellis model fluids is similar in 

that these fluids approach their steady state value at 

approximately the same rate. 

It is seen from these figures that the dispersion 

coefficient varies rapidly with V in the region of t<0.1, and 

then it changes more slowly until K2 becomes constant at 

V>0.3. As P increases, the dispersion coefficient of the 

Ellis model approaches that of the power-law model, while as 

P decreases, K2(m)-Pe-2 approaches the value of Newtonian 

fluid which equals 5.2083*10-3. 

It may make clearer to know the relation between radial 

distance 4 and shear rate T under different driving force P 

('VR/f%)• Differentiating equation (19) with respect to 4, 

we have the relation as 



Fig. 3. Comparison of K2(V)-Pe-2 of Polypropylene (PP) at 463K 
as a function of dimensionless time for Ellis model with 
the result of power-law model 



Fig. 4. Comparison of K2(V)-Pe-2 of styrene acrylontrile at 
493K as a function of dimensionless time for Ellis 
model with the reault of power-law model 



Fig. 5. Comparison of K2(V)-Pe-2 of High Impact Polystyrene 
(HIPS) at 463k as a function of dimensionless time for 
Ellis model with the result of power-law model 



Figure 6 gives a plot of shear rate T against dimensionless 

radial distance 4 for a=3.59. It is seen that the shear rate 

difference between P=0.1 and P=1.0 is significant. At 4=0.4 

the shear rate for P=1.0 is sore than ten times that for 

P=0.1. As 4 increases, the ratio is even more. So it is 

reasonable that we treat the Ellis model fluid under low P as 

near lower newtonian regime and within power law region or 

higher Newtonian regime at large P. 

The results of Figures 3,4 and 5 are, therefore, expected. As 

P increases, the dispersion coefficient approaches the value 

of power-law fluid, and at low P the dispersion coefficient 

is near the value of Newtonian fluid. 

Figure 7 shows a plot of K2(.)-Pe-2 vs. a. It indicates 

that under P=1.5, K2(&-Pe-2 exhibits a maximum value of 

5.241*10-3 at a=1.23; under P=3.5 the maximum value of K2(ca-

pe-2 is 5.247*10-3 at a=1.48. Boors& and Krantz reported 

similar observation for power law fluid; the maximum value is 

reached at n=0.729 with K2-Pe-2 = 5.28*10-3. For Ellis model, 

the maximum value depends on P. Erdogan (1967) commented that 

it was rather remarkable that paeudoplastic fluids (a>1) 

could cause more dispersion than Newtonian fluids. Indeed, 

one might expect K2(e) to decrease as a increases due to the 

decreased axial dispersion associated with progressively more 

blunt velocity profile. 



Fig. 6. Shear rate as a function of dimensionless distance for 
P=0.1 and P=1.0 



Fig. 7. Dispersion coefficient based on maximum velocity VD 
under different P as a function of flow behaviour index 
for Ellis model fluids 



The unexpected behavior that K2( m) attains a maximum is a 

consequence of the choice of the velocity scale VD . Let us 

define another dispersion coefficient KS, nondesensionalized 

with the average velocity Vx  rather than the maximum 

velocity, whose relationship to K2 is given by 

This modified dispersion coefficient KS is plotted against a 

in Figure 8. It is seen that there is no maximum and KS 

decreases monotonically with a. The monotonic decreasing of 

KS with a is consistent with non-Newtonian behavior, because 

larger a implies stronger shear-thinning behavior at a given 

pressure gradient and hence more convective transport giving 

a smaller dispersion. The behavior of K2 is a consequence of 

the ratio Vo/Vx  which increases with increasing a thus 

counterbalancing the decrease of KS with increasing a. 

There are two reasons that the definition of K2 is 

preferable to that of K. First, the former definition was 

used by Gill and co-workers, Fan and co-workers, Erdogan, and 

Booras and Krantz, and permits direct comparsion with their 

results. Second, the more significance is the fact that K2 is 

far less sensitive to a than K. From Figure 7 that the 

K2(&-Pe-2 varies only a few percents over the range of flow 

behavior indices liai2, this includes a broad range of 



Fig. 8. Dispersion coefficient based on mean velocity under 
different P as a function of flow behaviour index for 
Ellis model fluids 



pseudoplastic and Newtonian behaviors, and the Newtonian 

value of the dispersion coefficient K2(e) can be used with 

little error. On the other hand if we use IC; as a definition, 

it is seen from Fig 8 that K2(m) decreases as a increases. 

The Newtonian value of the dispersion coefficient K2(a) can 

not be used to predict the pseudoplastic behavior even though 

a value is near 1, since it would cause large error. 

We would like to see how significant the Peclet number 

will effect the dispersion coefficient. As mentioned before 

at low shear stress dispersion coefficient approaches that of 

Newetonian fluid. Substituting equations (20a),(20b) and (88) 

into the definition of the Peclet number, we have 

We assume a typical liquid phase diffusivity, as 

mentioned in the INTRODUCTION, D=10-5 cs2/s, and tube radius 

R=0.1 cm for three different sets of (a,V%,T10) under the same 

condition P=0.1. The results art shown in Figures 9,10 and 

11. It is seen that at lower T%1 'b the effect of Peclet 

number is more noticeable when Figure 11 is compared with 

Figure 9. 

A plot of 86 vs. X is shown in Figure 12 and Figure 13 

for a=4.8 and a=3.59 respectively at Xs=0.019,Pe=1000 and 



Fig. 9. Plot of K2(10 against dimensionless ties V under Pn0.1 
for three different sot of polystr hexing the sass lb 
(=3.2*10•3  NS/s) and Vs (29.064610*' N/m4) 



Fig. 10. Plot of K2(() against dimensionless time V under P=0.1 
for three different set of polymers havAng the sass lb 
012.15.104 NS/a') and V% 0,1.68=104 Nile) 



Fig. 11. Plot of K2(t) against dimensionless time V under P=0.1 
for three diffexent *et of polymer t havAng the same 'b
(=1.46*105 NS/mL) and 1% (=3.294110' N/m') 



V=0.03 whence K2 is still exhibiting time-dependent behavior. 

The set of value (Xis.Pe,V) is chosen so as to compare the 

result obtained by Boors* and Krantz. The purely convective 

cases are shown in Figure 14 and Figure 15. 

It is interesting to observe in the purely convective 

case shown in Figures 14 and 15 that at low pressure 

gradient, the fluids exhibit a symmetrical mean concentration 

distribution about the point X=0.015 for pamtudoplastic fluids 

and are skewed downstream at high pressure gradient due to 

the larger velocity (relative to the average velocity) near 

the axis of the tube. The pure convective solution for power-

law fluids is also shown in Figures 14 and 15 for comparison. 

It is seen that as P increases the concentration distribution 

of Ellis fluids approaches that of power-law fluids. 

Equation (86) gives the effect of molecular diffusion 

on the 86 distribution for the appropriate value of a. The 

resulting sill  shown in Figures 12 and 13 are symmetrical about 

It is seen that as P increases. the 441, distributions 

shift downstream, approach the 86 distribution of power-law 

fluid. This coincides with previous discussion that as P 

increases the fluids behave as power-law model. Also AR  

distribution shifts downstream as a increases for the same P. 

It may appear surprising that these el curves exhibit nearly 



Fig. 12. Comparison of present solution (86) for the 
distribution eit  against X of HIPS ( a = 4.8 ) at 463K 
with the result of the power-law fluid at V=0.03, and 
for Xa=0.019 and Pe=1000 



Fig. 13. Comparison of present solution (86) for the 
distribution 86 against X of styrene acrylontrile 
(a=3.59) at 493K with result of the power-law fluid at 
V=0.03, and for Xa=0.019 and Pe=1000 



Fig. 14. Comparison of pure convective solution (40) for the 
distribution ei, against X of HIPS ( a = 4.8 ) at 463K 
with the result of the power-law fluid at V=0.03, and 
for X8n0.019 and Pen1000 



Fig. 15. Comparison of pure convective solution (40) for the 
distribution AR  against X of styrene acrylontrile 
(a43.59) at 493K with result of the power-law fluid at 
V40.03, and for X4s0.019 and Pes1000 



the same maximum at the sage P, although the value of K2(40) 

for these two fluids differs considerably, i.e. at P=2.5 

K2(m)-Pe-2=3.812=10-3 for a=4.8, and 4.5234'10-3 for a=3.59. 

This behavior arises because the time history of the two 

fluids is nearly identical; C determined from equation (87) 

at l'=0.03 is nearly the same for both fluids. 

These results for non-Newtonian Ellis model fluids 

illustrate quite dramatically the effect of molecular 

diffusion on the overall dispersion process. It seems quite 

remarkable that although the mean concentration distributions 

for purely convective dispersion are considerably 

unsymmetrical for non-Newtonian fluids under considerable 

shear stress the alighteat amount of molecular diffusive 

action can render them symmetrical. The molecular diffusion 

smoothes out the distribution and this dispersing effect is 

enhanced by shear-thinning behaviour. 

Here is a question as to whether the assumption that 

distribution is given by a purely diffusive process from 

time zero leading to equation (48) is valid for high Peclet 

number when the convective transport is large relative to the 

action of molecular diffusion. Note that this criticism of 

the generalized dispersion model restricts only to its 

applicability at the initial stages of the dispersion 

process. Certainly at larger values of V our results and 

those of Gill and co-workers would appear to be applicable. 

Clearly more research is necessary to define the precise 



limits of the generalized dispersion theory. 



IV. CONCLUSIONS 

It has been shown that an exact solution to the 

convective diffusion equation can be constructed by the 

generalized dispersion theory proposed by Gill (1967). This 

exact solution involves a dispersion model that includes 

third and higher order derivatives of mean concentration with 

respect to convected axis distance. 

The effective dispersion coefficient, K2' is less 

sensitive to the flow index than KS and for this reason it is 

a preferable definition of the dimensionless dispersion 

coefficient for Ellis model fluids. That is, moderately 

pseudoplastic fluids have dimensionless dispersion 

coefficients K2 nearly equal to that of Newtonian fluids no 

matter how much the driving force P, is and hence can be 

treated as Newtonian fluids if the dispersion equation is 

appropriately nondimensionalized. 

It is also seen that the dispersion coefficient depends 

on the driving force P. As P increases, the value of 

dispersion coefficient approaches the value of power law 

fluids. The results obtained by Booras and Krantz apply only 

to large driving force and can not predict the fluid behavior 

under low driving force. The usefulness of Ellis model is 

that it allows better prediction of dispersion for any value 

of the driving force P than would be possible with power-law 

model; and Ellis model shows clearly how non-Newtonian 

behaviour affects dispersion, particularly when the external 



pressure gradient varies from low value to high value. Power-

law model is not, straightly speaking, applicable to pipe 

flow of shear-thinning fluids. It is suggested that Ellis 

model is preferable to power-law model. 



V. GLOSSARY 

a : . function defined by eq (7a) 

a • . function defined by eq (28) 

A • . function defined by eq (51) 

Am • . function defined by eq (72) 

b • . function defined by eq (7b) 

Bat • function defined by eq (75a) . 

Bat • • function defined by eq (75b) 

C : local solute concentration 

• Ca . mean solute concentration 

Co initial solute concentration 

C* dimensionless concentration C/Co 

C • value of C*  at r=0 

D molecular diffusion coefficient 

fk : • function defined by eq (45) 

: Fa  steady state solution of eq (62) 

Ft ' . transit solution of eq (62) 

g : . function defined by eq (84b) 

H • . function defined by eq (89c) 

J (Z) : i ith-order Beasel function having argument Z 

K • . dispersion coefficient 

Ki : . generalized dispersion coefficient 

nondimensionalized with respect to Vo and defined 

by eq (48) 

Ki • . generalized dispersion coefficient 

nondimensionalezed with respect to Vx 
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K : . function defined by eq (15) 

K
. 

: function defined by eq (29) 

L • . length of tube 

n : . flow behavior index 

p • . function defined by eq (16a) 

P • . function defined by eq (88) 

Pe • . Peclet number = RVo/D 

6P : . pressure drop 

q : . function defined by equation (16b) 

O : . volumetric flow rate 

✓ : radial coordinate 

R : . radius of tube 

t • . time coordinate 

t • . L/Vx 

T : transit time 

✓ : function defined by eq (84a) 

Vm • . maximum velovcity 

Yik : . function defined by eq (32) 

Val : • function defined by eq (20a) 

Vm2 : • function defined by eq (20b) 

Yml : . function defined by eq (30a) 

Vat • 
. function defined by eq (30b) 

V0 • . function defined by eq (30e) 

Vx • • local fluid velocity 

Cix : . mean fluid velocity 

x • . axial coordinate 
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xa : width of solute plug at time t=0 

X : . dimensionless axial coordinate Dx/R2V0 in a fixed 

coordinate system 

Xl dimensionless axial distance in coordinate system 

convected at mean fluid velocity 

Xs dimensionless width of solute plug Dxa/R2V0 

X axial distance in coordinate system convected at 

mean fluid velocity 

y • . dimensionless radial coordinate r/R 

n • viscosity 

ilk : dimensionless axial distance in coordinate system 

convected at mean fluid velocity 

lb : zero shear rate viscosity 

10 • infinite shear rate viscosity 

8 : . dimensionless local concentration C/C0 

86 . . dimensionless mean concentration 

et ' . dimensionless time 

: . dimensionless radial coordinate r/R 

' . function defined by eq (87) 

a : flow behavior index 

5 separation constant 

T shear rate 

V dimensionless time coordinate Dt/R2 

V% value of shear stress at 1 = lb/2 

TD empirical constant of Carreau model 

TR • . shear stress at wall 

Au . . eigenvalue 
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VI. APPENDIX 

A. Program for equation (74) 

DEBUG 
PROGRAM DISRERSION 
IMPLICIT REAL*8(A-H2O-Z) 
DOUBLE PRECISION N 
DIMENSION XX(10),XXN(10) 
OPEN(2,FILE='DISPER.XXX',STATUS='NEW') 
OPEN(3,FILE=1 ALFA.DTA') 
OPEN(4,FILE='DRIVE.DTA') 
OPEN(5,FILE='EIGEN.VAL') 

960 READ(3,920,END=930)N 
WRITE(*,890)N 

890 FORMAT(/' ALFA= ',D10.3) 
REWIND 4 

920 FORMAT(D4.1) 
990 READ(4,920,END=940)P 

WRITE(*,880)P 
880 FORMAT(' T-R/T-.5 =',D10.4) 

REWIND 5 
IF (N-1.)790,780,790 

780 G=0.D0 
GO TO 781 

790 G=2.*P**(N-1.)/(N+1.) 
781 V1=1./(1.+G) 

X1=V1,V1/192. 
V2=G/(1.+G) 
V22=(N+1.)*(N+11.)/(12.46(N+3.)*(N+5.)*(N+7.)) 
X2=V22011*V2 
Ww(N+1.)*(N+1.)/(2.*(N4.5.)*(N+3.)*(N+3.)*(N+3.)) 
X3=W*V2*V2 
WRITE(2,36)G,V1,V2,X1,X2,X3 

36 FORMAT(//' H= ',D10.5/' V1= ',D10.5/' V2= ',010.5 
C/' Xl= ',D10.5/' X2= ',D10.5/' X3= ',D10.5) 
II=0 

980 READ(5,950,END=970)XN,BO,B2,83 
WRITE(2,66)N,P,XN,B0,82,93 

66 FORMAT(//' ALFA= ',D10.5/' D-P= ',D10.5/' XN= ',D10.5 
C,' JO= ',D15.8,' J2= ',D10.5,' J3= ',D10.5/) 

950 FORMAT(4D10.6) 
II=II+1 
BM=0.D0 
XXN(II)=XN 
A1=V1*B3/(XN*XN*XN*B0*B0) 
A21=2.*V2/(B0*80) 
A22=B2/((44.3.)*XN*XN) 
Y=0. 
H=0.05 



HH=3.14159/64. 
SS=0.D0 
UU=0.D0 
TT=0.D0 
VV=0.D0 
TAU=0.0005 
DO 4 J=1,100 
IF (Y-1.)2,8,8 

8 GO TO 10 
2 Y=Y+H 

SI=0.D0 
C=0.D0 
S=0.D0 
T=0.D0 
DO 5 I=1,100 
IF(C-3.14159)17.7,7 

7 GO TO 11 
17 2=XN=Y 

C=C+HH 
/41=Z=SIN(C) 
5=5+4.*COS(B1) 
C=C+HH 
IF(C-3.14159)20,11,11 

20 138=Z=SIN(C) 
T=T+2.81C05(88) 

5 CONTINUE 
11 SI=(2.+S+T)/3.*HH/3.14159 

SS=SS+4.*(Y**(N+4.)*SI) 
UU=UU+4.01(Y**(N+2.).SI) 
Y=Y+H 
IF (Y-1.)18,10.10 

18 D=0.D0 
51=0.D0 
T1=0.DO 
5P=0.D0 
DO 6 K=1,100 
IF (D-3.14159)12,14,14 

14 GO TO 15 
12 Z1=XN*Y 

D=D+HH 
B5=21*SIN(D) 
S1=S1+4.*COS(135) 
D=D+HH 
IF (D-3.14159)9,15,15 

9 B6=21*SIN(D) 
T1=T1+2.*COS(B6) 

6 CONTINUE 
15 SP=(2.+51+T1)/3.*HH/3.14159 

TT=TT+2.*(Y**(N+4.)*Sp) 
VV=VV+2.*(Ye.(N+2.)*SP) 

4 CONTINUE 
10 A11=(TT+SS+80)*H/3./((N+3.)*(N+3.)) 

AN=A1+A21*(A22+A11) 

65 



BM1=V1*B2*AN/(XN*XN) 
BX=CUU+VV+130)*H/3. 
BM2=(-1.)*V2*AN*BX/2. 
BM=BM1+BM2 
XX(II)=BM 
WRITE(2.88)AN,BM1,BM2.BM 

88 FORMAT(/' AN= '.D20.10/' BM1= ',D20.10/' BM2= 
C.D20.10/' BM= ',D20.10) 
GOTO 980 

970 DO 25 L=1,15 
X4=0.D0 
DO 26 JJ=1,II 
Q=XXN(JJ)*XXN(JJ)*TAU*(.-1.) 
X4=4.*XX(JJ)*EXP(0)+X4 

26 CONTINUE 
SU=X1+X2+X3-X4 
WRITE(2,30)TAU.X4,5U 

30 FORMAT(/' TAU ',D20.10/' X4m ',D20.10/ 
C/' K2-1/PE**2= '.D20.10) 
TAU=TAU*2. 

25 CONTINUE 
IF (N-1.)990.960,990 

940 GOTO 960 
930 STOP 

END 
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