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ABSTRACT

Title of Thesis @ Dispersion in the Laminar Flow of Ellis

Model Fluids Through Straight Tubes

Yeong-Hua Huang, Master of Science, 1986

Theais directed by : Dr. Wing T. Wong

Taylor-Aris dispersion theory is extended to the laminar
tube flow of Carreau model fluids and Ellis model fluids and
the results are compared with those of power law fluids. It
is found that Carreau and Ellis models are more appropriate

than power-law mcdel, eapecially at low preaaure gradient.

An exact solution to the unsteady convective diffusion
equation in fully developed laminar flow in tube is obtained
by applying the generalized dispersion theory of Gill and
Sankaraaubramanian for Ellis model. The resulta are compared
with those obtained by Booras and Krantz for power-law model.
The most interesting result of this work is that the power
law ia valid only at high shear streass, whereas Ellis =model
allowsa the prediction of dispersion coefficient and mean
solute distribution over much wider range of external

pressure gradient.
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I. INTRODUCTION

Over the past 20 years the public has been justifiably
concerned with the protection of environment. In some caaeaa,
chemicals like pesticides and perfumes are deliberately
released; in other cases,chemicals like hydrogen sulfide can
be accidentally spilled. In all cases, the public worries

about the long-term effects of such chemical pollutions.

Public concern has led to legislations at federal, state,
and local levelas. These legislations usually are phased 1in
terms of regulations of chemical concentrations. Theae
regulations take different forma. The =maximum allowable
concentration may be averaged over a day or over a year. The
acid concentration ( as pH ) can be held within a particular
range, or the number and aize of particlea going up a atack
can be reatricted. Those working with chemicala must be able
to anticipaste whether or not these chemicals can be

adequately disperaed.

As might be expected, dispersion is related to diffusion.
Diffusion is a molecular process governed by laws of
thermodynamics, whereas dispersion is the combined effect of
diffusion and convection. The relation exists on two very
different Jlevels. Firast, dispersion is a form of mixing, and
8c on a microscopic scale it involves diffusion 6£ molecules.
This microscopic dispersion is not understood in detail, but
it takea place 8o rapidly that it ia rerely the =moat

important feature of the procesa. Second, dispersaion and



diffusion are described with very similar mathematics. This

means that analysea developed for diffuaion can often

correlate resulta for dispersion.

Dispersion theory is concerned with the dispersal of a
solute in & flowing fluid due to the combined action of a
nonuniform velocity profile, molecular diffusion, and eddy
diffusion in the case of turbulent flow. Numerous papers have
discussed dispersion in a variety of laminar and turbulent

flows since Sir Geoffrey Taylor (1953) and Aris (1956)

published the first papers on the subject.

Developmenta in the areas of polymer proceasing,
biomedical engineering, and biochemical processing have
contributed to the ever-increaaing intereats in the flow and
properties of non-Newtonian fluids. Typical occurrences of
this dispersion phenomenon in applications involving non-
Newtonian fluids include the behavior of dyes in injection
molding proceas, the determination of the residence time of
tracer sclutes injected into the bloodstreanm, and the

tranaport of alurries and polymer solutions.

However, most papers have been focused on dispersion in
Newtonian fluids. Relatively few papers have considered
dispersion in non-Newtonian fluids. Taylor-Aris dispersion
theory had been extended to the laminar flow of power-law,
Binghar plaatic, and Ellis fluida in circular tube by Fan and

co~-workers (1965,1966). Ananthakrishnan et al. (19635) have



shown that Taylor-Aris dispersion theory for Newtonian fluids
applies only for sufficiently large values of the
dimensionlesas time f(sbt/Rz) ranging from 0.80 at Pe=500 to
20 at Pe=1. This limitation of Taylor-Aris diapersion theory
led Gill (1967) and Gill and Sankartasubramanian (1970) to
develop a generalized dispersion theory for unsteady
convective diffusion in Newtonian fluids which is valid for
all values of T and which reduces to Taylor-Aris results for
large values of <«. Gill and co-workers (Gill snd
Sankarasubramanian (1971,1972) ; Sankarasubramanian and Gill
(1972,1973)) have extended this analysis to non-uniforamly
diatributed and time-veriable asocurces as well as to time
variable laminar flowa including mass transfer at the tube
wall. Indeed, the generalized dispersion theory of Gill and
co-workers has permitted us to consider dispersion phenomena
in a wide variety of flow acenarios which hitherto were far

too complex to aclve analytically.

In order to understand more fully the rather limited
domain of Taylor-Aris dispersion theory, let ua estimate the
transit time T or squivalently the tube length L neceaaary
for Taylor-Aris theory to apply, assuming a typical 1liquid
phase diffusivity of 10'5 cn?/a and Pe=500. Then, according
to the criterion obtained by Ananthakrishnan et al., T>8s and
L>4cm for R=0.0lcm; T>800s and L>40cm for R=lcm; and T>80000a
and L>»400cm for R=lcm. However, many dispersion phesnomena of

practical interest occur for time period T<0.8 and thus are
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more properly described by the generalized dispersion

analysis of Gill and co-workers than by Taylor-Aris theory.

Clearly, it is desirable to apply the generalized
dispersion theory of Gill and co-workers to the dispersion
proceas in non-Newtonian fluids as was done by Booras and

Krantz (1976) for power-law fluids.

In the present astudy, Ellis model is applied to the
generalized dispersion theory instead of the power-law model,
saince it is a flexible empirical model, which includes ¢the
Newtonian regime at low shear rate and the power-law at high
shear rate. We know that power-law model is not applicable
for pipe flow, because by syametry the shear rate is zero at
the axis and hence the power-law model would imply an
infinite viscoaity for shear-thinning fluid. This property of
pbwer-law mnodel implies some limititions in the application

of generalized dispersion theory.

Before we apply the genaralized diapersion theory
approach of Gill and co-workers to the dispersion process in
Ellis model fluida, we have conaidered the Taylor-Aris
dispersion theory of the laminar tube flow of Carreau model
fluids, &and compared the results with those obtained for
power-law and Ellis fluide. From the results of these three
models, it may be concluded that in applying the generalized
dispersion theory the three-parameter Ellis model is more

appropriate than the two-paramater power-law model.



II. THEORY

A. Dispersion in the laminar flow of a Carreau fluid through

atraight circular tube

In a series of papers, Taylor (1953,1954a,b) treated the
problem of dispersion of a soluble tracer in a saolvent
flowing in a circular pipe. His results have been generally
confirmed by expaerimenta. However it should be noted that
Taylor’s work was only concerned with Newtonian fluids, Fan
and co-worker applied Taylor‘’s theory to power-law, Binghan
and Ellis fluids. 1In this section the dispersion of a tracer
material in the laminar tube flow of a fluid, described by
the Carreau model, is diacussed using the Taylor-Aris

dispersion theory .

In a cylindrical tube, the variation of tracer
concentration, C, as a function of time, t, radial position,
r, and axial distance along the tube, x, may be expreassed by

the following partial differential equation

ac 13 ac a%c ac
= = D [~ —Ar—) + — ] -V, — (1)
at r ar ar a2 ax

where D is the molecular diffusivity and V, (r) ie the fully
developed axial velocity aa a function of radial position.
When the molecular diffusivity is taken to be zero, only the
convective term accounts for material transport. Otherwiase,
both the action of convection and radial material transport

due to molecular diffusion will account for the dispersion



mechanisms.
1. Effect of Molecular Diffusion on the Fluid Dispersion

Equation (1) signifies that the distribution of tracer
concentration in laminar flow is due to the combined action
of convection along the tube induced by variation of velocity
over the cross-section and radial dispersion caused by

molecular diffusion.

In general, the tranafer of C along tube by molacular
diffusion is amall compared with that produced by convection.

It will be assumed therefore that @°C/ax2 is small compared

with

1 x
- and Vx(r)——
r &

®|®
k|
7|8

The concentration and velocity will be defined relative

to axes which move with the mean fluid velocty Vx, that is

Xy = X - th 2)

We will see that the transformation to a frame of reference
moving with the average velocity of the fluid is not simply
for convenience, but rather it is a powerful tool to obtain
an effective dispersion coefficient (K) which includes the

combined action of convection and molecular dispersion.

Then equation (1) becomes



ac) (V (r)-V )ac (3)
ar axy

*
"y

2. Carreau Model Fluids

The Carreau model, a four-parameter model which has been
demonstrated to fit empirical data of many non-Newtonian

fluids very well ([24]), can be expressed in terms of shear

rate
n-1
1% 1+¢2i)2 3
o™ Ny
where T, is the zero-shear-rate viscosity, N, is the

infinite-shear-rate viscosity, A is a characteristic time and
n is egquivalent to the power-law index. This modael may also

be written is terms of shear stress as

n-1
n Ty e 2 "
= [ 1 » (;ro ] (4
o~ N o

where tb is a characteristic stress.

For polymer melt, T, is typically two to three orders of
magnitude amaller than Ty and so may be neglected. This means

that



v dvVy <
and ¥ ® - = - = (5)
n dr n-1
2 ri o
T
NI 1+¢(— 1
To
<
dvx = - dr
n-1
2 2n
Tl 14— ]
%o

From the equations of motion, the momentum flux distribution

in cylindrical tube is found to be

T = i r (8)
rR 2L

where AP is the pressure drop over a tube length L.
Equation (5) is simplified by setting € = r/R and letting

APRZ
8 T — (7a)

27l

and

APR

27,L

Then integration of equation (5) with the no-slip boundary

condition yields the isothermal and steady-state velocity

profile



i-n n+1 n+l
an n 2n 2n
Ve(8)= —b (b7 2+1) - (b2 + g2) ] 8)
n+l
and
v, = 2£gvxds (9

Subatituting (7) and (8) into (9) gives

n-1 n+l 1-n 3n+1 3n+1
an n 2n 2an n 2n n
Vy = —b  (b2+1) - b [(b”2+1) -b
n+1 (n+1)(3n+1)
(10)

Normalizing ((3) by introducing the dimensionless variables

c", ©, &, and m, we obtain

ac* pt 3%c® 1 & 1 ac*”
—_— — 4 - —) - :—{Vx-Vgl——- (111
3@ R2 3% g a3 V, an,
where
C" = dimensionless concentration = C/C,
© = dimensionless time= t/t = tV, /L
€ = dimensionless radial distance= r/R
X = dimenaionleas axial diatance= x/L

m:X- e

Here 3/36 represents differentiation with respect to time at
a point fixed relative to axea moving with the mean velocity.
Since the moving axes have been introduced, the transfer of

tracer concentration across plane at which 7 is constant



i0

dependa only on the radial variation of tracer concentration
because the mean velocity across such planes is zero. It is
further assumed (Taylor,1953) that the time necessary for
appreciable effects to appear, owing to convective tranaport,
is long compared with the ‘time of decay’ during which radial
variations of concentration are reduced to a fraction of
their initial value through the action of molecular
diffusion, which means that the radial variation of tracer
concentration is small, i.e., Taylor’s limiting condition is
satisfied, and thus a"/30 is also small. Now we can
approximately calculate the radial variation of C" by first

neglecting the 3C"/ 30 term

a#c* 1 ac" RrR? _ "
. - = IV, -V, ] — (12>
2 as DtV 3
13 & tV,, o

In solving this equation ac'/aﬂh may be taken as independent

of § because moving coordinate is used. The boundary
condition
a:l
= Q at € = 1
-1

is employed. The result for this case is

» R edﬁn s , , vx ac
c* = Cq * (] = | v.8'e8’- — & (13
ptv, Jo €¢" Jo a an

where Cg is the value of c" at & = 0.
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The rate of tranaport of C® across a section at fixed ™ is
2 - Y,
Q = 2%R ]10 (Vy =~V ) &d§ (14
0

Substituting «(8), (10> and (13) into (14) and integrating
over the range (0,1) and comparing this with Fick’s law of
diffusion, we find that an effective diaspersion coefficient

K can be defined

_ _ 3n+l1 3n-+1
R2 pz PVy sz nq _ 2n n
K= -2— ( — - . . (p-V,) [(b™2+1) +b 1
D 16 8 16 4(3n+1)
Sn+1
3n+l -
n2q 2 2n n
* (p-V,) [(b™<+1) - b b
(3n+1)(Sn+1) P X
3n+1
3n+1 -
3n-+1 2n n
n2q2 2n npq (b~2+42) b
s [———(b~2+1) - 3 - — 1d¢
(3n+1)2 2(3n+1) Jq § €
3n+1 3n+1 3n+1
n - 2n
n2q2 (b~2+¢2) n (b 2.¢2)
- [ - b ——r— ldg
(3n+1>2}o & &
(15)
3n+1
3n+l -
_ 2n n
nqV, (b~2.¢2) b
- 4 -_— - ldg )
2(3n+1l) 0 ' €
2

x-2—K
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where
1-n n+l
an n -2 2n
p = —bD (b <+ 1) (16a)
n+l
1-n
an n
q = —> (16b)
n+1
K stands for all the terms in the ( ) (16c)
3. Ellis Model Fluids
The shear stress and viscosity relation of the Ellis model
fluid is characterized by
a-1
To Trx
— =1 + ) 17)
n Ty

in which 7, is the zero-shear-rate viscosity, Ty is the value

of the ahear stress at which 1r1b/2.

and -1 is the slope of

(My/W-1 ve. T/Ty on log-log paper.

%

and

o
= M = 1 <
a-
Trx
1 + (—)
%
av, Ty Ty &1
= —;——-- —_—f 14( ) ] (18)
r
o Ty,
substituting (6) into (18), the velocity profile V, is
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given by
Ve = Vpapl1-821 « v ,11-8%*1) (19>
where
v apR? (20a)
B e——
al “bl‘ a

foG‘ 1 AP - 4
Va2 * ¢ ) (20b)
Tpla+1) 2%L

from which the mean velocity can by readily obtained,

a+l

32 21>

-~ 1
Ve = 5”-1 +
Following the procedures in section 2 the effective

dispersion coefficient K becomes

RZ 1 (n+1)>2 (n+1)(n+11)
K= — U.120 v122’ Va1Va2l
D 192 2¢n+3>3(n+5) 12(n+3)(n+S)(n+7)
(22)
which has been obtained by Fan and Wang (1963).
4. Power-law Model Fluids
n= ai"1 (23)

where = and the dimensionless quantity n are constants
characteristic of the fluid . The velocity profile V, (r) in

this case is



14

n+1
n
r
Vx(r) s V.[l-(ﬁo b | (24)
wheare
1
n
n RAP
Vp = ——~(— R (2%)
n+l 2mL

and the mean velocity is

v oy (26)
=
X n+3 ) ]
By analogous procedure as above, the effective dispersion
coefficient K is determined to be
R? v, 2

%
— (27)
D 2(n+3)(n+3)

K =

which has also been obtsined by Fan and Hwang (1963).

S. Summary

From equations (15), (22), and (27) we have the effective
diaperaion coefficients, which were derived by applying the

Taylor-Arias dispersion theory to Carreau model, Ellis model

and power-law respectively.

Recall that (7a)

a= — = Ra (28)
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wa can rearrange equation (15 by taking (28) into
equations (10>, (16a) and (16b)
Rt
K = -ZE—K’ (2%
where K’= §/R2

Equationa (20a) and (20b) can also be arranged

1

R
Va1 = Rz_u'; = RVya1 (30a)
% R
Va2 = R———(—) = RY - (30b)
'lb(a*l) fx

which lead (22) into

2
kb ! (nel)S (n+1)(n+31)
2 Va1“ * 3 Ym2~ ¢ Vai1¥Yn2
R 192 2(n+3)°(n+%) 12(n+3)(n+5)(n+7)
(31)
(25> and (26) can be formed as
a
n tﬁ
Vp = R—=(—) = RV, (32>
n+l m
v R n+1 (33
=
x 3n+1 -®
which lead (27) into
KD (n+1)2
— -/ (34)

-
R?  2(n+3)3(n+%)
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B. Dispersion in the laminar flow of Ellis model fluids
through satraight tubes by the generalized dispersion

theory approach of Gill and Sankarasubraminian

Purely convective diaperasion creates infinite radial and
axial concentration gradienta. Thias physicially unrealistic
situation 1ias in fact obviate by the action of radial and
axial molecular diffusion. The former tends to reduce axial
disperaion by reducing the radial concentration gradient,
whereas the latter enhances axial dispersion by adding a
purely diffuasive axial component. A complete understanding of
the action of molecular diffusion on the dispersion process
demanda a solution to the full unsteady-state convective

diffusion equation which is given in equation (1).

For the aslug input of solute of length Xg in & tube with

radius R, the boundary conditions may be written as

C(O,x,r) = C0 ( |x| < x. ) (35a)
CO,x,r) = 0O ¢ |x| > x. ) (35b)
C(t,m,r> = O (35Sc)
ac ac
——(t,X,O) = —<t’x'R) = 0 (35d)
ar ar

For Ellis model fluid, by applying (19 into (1) the

eaquation of diffusion (1) can be re-written as

ac r 2 r ©*1 ac 3¢ 1ac 34C
T (Va1 [1-(D 14V l1-( 1) —=Dl—v——]

3 (36)
ar? rar ax?



In dimensionless form, (35) and (36) becore

3 1 ® %0 1380 1 e
—+—[Vpy (1-y2) sV 5 (1-y®* 1)) — = — — —
at v, A& 3,2 y a2y pe2 a2

with the conditions

8(0,X,y> = 1 |X| s %X
8(0,X,y) = O [X| > %X
8(1,X,0) = O

gg(f,X.O) = ggkf,x.1> =0
3y 3y

where

Vo = maximum velocity = Vg4 + Vo
1. Purely Convective Dispersion

Let us conaider the purely convective diasperaion

Ellis model fluid first.

Since X = fo

v v
ml a
= [—(1-y2) « (1-y**13¢
Vo Vo
X v v
- 1 - ml 2 .2’“,’1
v Vo Vo

For T > Xg, the mean concentration @, is given for

convective dispersion by

17

(37)

(38a)
(38b)

(38¢)

(38d)

of a

39

purely



18

e =0 X < -%Xg ) (40a)>
8 =1 -y? ( -%Xg € X < %X, ) (40b)
8 = v12 - yo2 C %Xg € X € T - %Xy ) (40c)
8, = y° C T - %Xg < X € ¥+ %Xg ) (40d)
8 =0 C T+ %Xy < X ¢ w0) (40e)

and for ¥ < Xq

A¥- C kA
e =0 X < -%Xg ) (41a)
8 =1-y2 C -%Xg € X € T - %X, ) (41b)
e =1 ( T <X < %Xy ) (41c)
8, = y? ( %Xy € X < %Xy + T) (41d)>
e =0 ( %X, + T < X < 0) (41e)
A plug of solute and a semi-infinite slug are special

limiting cases of equation (40) and (41) for X, being very

amall and very large, respectively.
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2.Dispersion with Molecular Diffusion

Now 1let wus consider the dispersion with molecular
diffusion since we know that purely convectvie disperaion
creates infinite radial and axial concentration gradients,

and is physaically unrealistic.

Define a new axial coordinate moving with the average

velocity of flow as

81=X‘.-v-xt

which in dimensionlesas form, is

Xy = X - S*( iv ‘S:lv ) (42>
1 VO 2 nl a+3 m2
Vi = Vx - Vg
1 2
2 a+l
= Varls - ¥21 ¢ Vpat=— - y**h (43)

so the governing diffusion equation (37) becomes

@ , wep.. @ 0120 1 Fe
—-.—‘-——[v (_Y )‘V (.——— -.y )] = — o +>

»1l n2
3t Vg 2 a+3 ax,; 32y 8 Pe? ax,?

(44)

Following the method of Gill and Sankarasubramanian (1570)

we formulate the solution as a series expansion such that

0 e
= (T,X4) ¢ X £,(T,y)—— (45>
8= 68,(7,X; kZ1Tk (Y axlk

where
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e - 2ryeuy (46)
0

Upon substituting equation (45) into (44) , the result is

3 o g 1 1 2 3 v e,
Oy I 0 iV, 1 C—y2)+vo¢ y* 1y ——e,+ = £ )
ax, kv, 2 a+3 ax, K= Tax,k
13 a © a“a_ & w e,
2 - ----y-—-(o-¢k 1 k)o Pe 2-——(0.0k81 k_-l-(-) (47)
y 9y 9 a"1 ax, 2 ,y

Now 1if it is assumed that the process of distributing @, is
diffusive in nature right from time zeroc one can write the
generalized dispersion model in dimensionless form with time-

dependent dispersion coefficients as

a8, © aieg
— = T K (O —— (48)
ar  i=1 ax,

It is important to note that K; are a function of T even

though the velocity field is independent of <.

Introducing equation (48) into (47) and rearranging teras,

o 26, 28,  ¥a
T K, P S

+ A -~ Pe
i=1 1 2
ax,y axy axy
1
o ¥y 13 afk e, #*le,
+ ELC + Afy——) (49>
K1 ar  yay oy axl" ax k1
#*2q, ak+i
- [ ]
- £ (Pe”?f, £, Z, Ky ) =0
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It is observed that

**la, © aitkeg,
———— = E K (D

atax, X ax, vk

and ao Eg. (49) becomes

af, 1 8 af, 3@, o, 1 8 af, _,¥e,
(—= = = —y——AsK)) — [ —— — — —y——+(A+K {1 +K,~Pe 21 —
8ty @y oy a, 8t y 3y 3 axy
© ¥y.2 18 .o 2 o 2., k&2 #"Zq,
*RE{ -—y ‘(A‘Kl)fk*l‘(x -Pe )fk‘igaxifk,z_iJ"—;:E;
at  yay o axy

=0 (50)

with fo=1

where

- yo*1, (51)

1 1 5
A= Va5 y%revy(
Vo a+3

If equation (50) is satisfied by equating the coefficients
of akei/axik to zero, an infinite =set of differential

equations is generated

af, 1 3 af,

B ey ——— - (A¢K1) (521
24 y 8y 3
af, 1 3 af,
—= = — —y—= -(A+K )£, +(Pe"2-K,) (53>
aTt y 9y 3y

pe2 1 3 Ay, -2 k22
- 4 —(A*K1>fk+1*(Po “Kz)fk‘ifaxifk.z-i

at Yy 3 9y
k '1.2’.0- (54)
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Since @, will be chosen to satisfy the initial conditions on
®, at v=0, @=@, equation (45) implies that

£,(0,y) = 0 C(k #0) (55)

Substituting (45) into (38d)

2 o + 2 x >akq'>=o at y = 0 & 1

38, P af, (T, y> ey, _

+ 0
3y k=13y ax,
), afy,
—,0) = ——(%,1)> = O (56)
3y 3y

and substituting (45) into (46)

e,
[ +]

8y = 2rty<e_ * Ik CGy) — 3y
(o]

&,
a3,
1

which implies

ryfkdy =0 (57>
0

By multiplying equation (52) by y and integrating with

respect to y from O to 1

3 a3 afy N 1 4 2y g2
p | nl 2 n2 +3 i
avtJjo 03y 9y 0 Vo «



and applying (56) and (57)

we obtain

K1=0

Applying the aame procedure to equation (S53)

af, a af,

y— = | —y—dv - rﬂfudv + rw"z"‘z”d"
0 o

o ar o 9 ¥

and using equation (S57)

v v
- nl n2
Ky(©) = Pe™2 + 2r<-— y3 y**2>£,dy

0 Vo Vo
From (54) with k=1
ay 3 afy .
— - el e— "Afz + (Pe -Kz)f]_‘xsfo

at Y3 3y

and noting that f,=1

v v
ml n2
Ky = 2 11( y3 + y**1 1f,dy
0 Vo Vo

In fact, Eq.(60) can be generalized as

v-l 3 vl2 o
Kk,z(f) = 2 ( —y + — >fk*1dy
o Vo Vo

In order to obtain the unsteady solution for K,(1T)

nacessary to obtain the complete solution of equation

23

(58)

(59)

(60)

(6l

is

(52>
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for f4. This solution can be expressed in the fora
£f9 = Fgaly) + Fp(T,y) (62>

where F_(y) is the steady-state solution of equation (352),
which independently satisfies the conditions given by
equationa (356) and (57) . The time-dependent part of the
solution of £f4, F;(T,y),which must vanish as T + o, satisfies
a homogeneous differential equation with homogeneous boundary
conditions and hence constitutes an eigenvalue problem wwhich

can readily be solved by the method of separation of variables.

Substituting Eq.(62) into Eq.(52) gives

dF \Y v
d a ml n2 2
-—y——. = .—.—.(-y— - Ya) * —...._( y - Yd*2)
dy dy Vo 2 Vo a+3

and integrating once

a+2
dFa V-l v Yy V‘z y y c
= _(_ — -.—.) FS ( — ) & —
dy Vo 4 4 Vo a+3 a+3 y

where C;=0 by virtue of the boundary conditions Eq.(56)

Further integration yields

LY y2 v‘) Va2 Y2 Y“’3] .
= —— —) o+ C - 2
. Vo 8 16 Vo 200*3) (4s3)2

and using Eq.(57)

ll yFgdy =0
0
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1 Va1 (a+1)Ca+7) Va2
C2 = -~ - (63>
24y, 4ca+3)2(a+5) Vg
Hence
2 4 2
. V-1tY y© 1 Vm2 ¥ Y (a+1) Ca+7)
fovg 8 16 240y 2€a3) (qe3)2  g(a+D)2(ars)
(64)
Now, Fi(T,y) satisfies
oy 1 8 oF,
———  ewe _—y.—-
3t Yy 8 38
By letting F; = T(0)U(y), we have
UdT Td dU (63)
dv y dy dy
and
2
1dr 11dy 9V 2
-——— 8 fe — 4 x - (66)
T d« U y dy d,z
The solutions of Eq.(66) are
T = 8,EXP(-22D
and so
(67>

Fp = [ S;Jo(ay) + SpYo(ay>] EXP(-221

Since at y =0 Yo(0) » ©, S, = 0. From Eq.(56)
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af
—<1,1) =0
ay

dF.
and since ;——41) = 0, we have
4

Jy() =0 (69)

Solution of Eq.(69) yields infinite number of eigenvalues and

therefore the complete solution of F, is

o
Fr = £ ApdoOAay)EXP(-22, 0 (70)

where A, is calculated using Eq.(55) £f4(0,y) =0

o 2 L. 2
-21 lIyA.Jo (2, Y)EXP(-2,“10)dy
= o]

+
2 Y**2 a1 (ae?)

Vai 2yt Va2 Y
= JyJo(a,y2dy

— ) t
oV, 8 1624 y 20arI) (54.3)2 g(a+3)2(a+s)

— A — — =) J (3, y)dy

—.——__——] =
8 16 24
o Vo

3 a+4
Va2 Y y (a+1) Ca+dy
+* 1Jo (XY dy
)

Vo 2¢2*3) (a+3)2 q(a+3)2(a+S)

and by integrating by parts and the properties of Bessel

functions,



1
liyaJo(z-y)dy = ——:{A‘3J1(A.>- ]12(1‘y>2J1(1'y)d(1-y)
o b . 0

12530, (a0 - 22,209,003

4
Jz(l‘)
= -2—-——?——-
a
1 s Jz(l‘) Js(l.)
— Yy Jo(a,y)dy = — +
0
Therefore,
2
AL Jo (L-)] V-1’ Jz(l.)JJz(l‘) Ja(l.)‘
2 2 3
vo 42, 142, 22,
\'/ Ja( ) 1
n2 202y
- { = > lly“'lJo(z‘y)dy
VO (@+3) 2g¢ (a+3) (o]

and the complete solution for f; is then given by

27

2 4 2 +1

Vap ¥¢  ¥® 1 Ve ¥ y® (a+1) (a+7)
12 —A— = — = ) [ - - 3

Vo 8 16 24 Vg 2¢a+3)  (a*3)2  4(a+DZ(a+D)

©
*nfltho(x.y>oxp(-x.f) (71)

where A,’s are given by

V-l Js()‘) V.z 1 Jz(l‘) 1 a+d
A= P + > 'Y 2o > Yy Jo(2,y)dy]

Vora o<y Vg %Jg () (a+3) 2% (a+3)4)J0

(72>
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and the eigenvalues 1,’s must satisfy

JjCag ) =0 (73>

Equation (71) can now be substituted into equation (59

to yield the general solution for K, (1)

2
V.l (ax+l1)(x+11) v,lv.z

K,(1)=Pe 2 + +
2
192 yy2  12(a+3)(a*S)Ca+7>) V42

(a+1)2 Va2l ©
. -4 £ (Bgq+Bu~r)EXP(-2.21) (74>
3 2 =1 nl n2 &
2¢a+S) (a+3)7 V4 »n

where

1 Vm1 J2¢30

B T e - 1} (75a)>
nl n
2 2
v0 ™
1 Va2 a+2
Bpgo = — é- ;"—-A. Y Jo(a,y>dy (75b)
0 (#]

The nomenclature used here conforms to that used by Gill
and Sankarasubramanian (1970). Hence the results presented
here for f;, A,, K>(1T), B,, etc. were checked to reduce to
those of Gill and Sankarasubramanian for Newtonian fluids
when a is set equal to 1. On the other hand, the time-
independent disperaion coefficient for Ellis model fluids
given by the limit of equation (74) as T » w0, agrees with

that of Fan and Hwang (1965).

The higher order coefficients in the generalized
dispersion model can be determined by a sclution of equation

(61) for the appropriste value of k. This necessitates
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solving equation (53) or (54) to order k-1 which is a
straightforward but algebraically tedious task. Gill and
Sankarasubramanian (1970) have shown that for Newtonian fluid
Ka(T+0) = -4.34%10”> and the higher order coefficients will
decrease in magnitude further. As for Ellis model, equation
(S3) has been sclved for the steady state solution for f, in
order to obtain the solution for Kz(w). A few values of Kgj
were obtained for different polymers under the condition of
TR/ %=2.5. K3(o is 4.608+10°° for a=3.59 whereas the
corresponding K,(w) is 4.421%10°3, For a=2.50 K3(o) is
5.482+107° and Ky ia 4.986#10"3, Therefore we see that
Ko(w)is more than two orders of magnitude greater than Kj(w
for Ellis model fluids. Booras and Krantz (1976) also have
proven that for power law fluid for all values of n, Kj(wlis
significantly amaller than K,(w). Thus it appears reasonable
to assume that Kj(w) << Ko(w)for all values of T; hence the
generalized dispersion model can be approximated by only one
term in equation (48)

i.e.

38, e,
— Ky—— (76)
at ax, 2

The solution of equation (76) with conditions

80, X, ,y) = 1 X, | & %X,
80, X,,y) = 0 [X, | > %X,

T,0,y) = O



3
Q(f,xl,O) = -o_(f,xlgl) L o
3y 3y

ia obtained by the method of separation of variables.

Let @, = Z(X4)T(T), so that

aT d2z
Z— = Ky(OT——
dr ax,2

and introducing the separation conatant a2

KoT dt 2 dXg

The problea becomes

2"(x) + 822 = 0
dT
— = -82K, () dT
T
the solutions of which are
Z = cyC0S(BXy) + coSIN(BX,)
T = c3EXP(-82%)
where

T
s ’[ Kz(l\)dn
(o]

C1» C2» and c3 are constants

Hence, 8, may be written in terms of Fourier integral

©
-p2
e = ];(ABCOS(BXI) + BaSIN(BX,)IEXP(-A“3)dn

30

(77)

(78)

(79a)

(79b)

(80)
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Then

©
(0,X4) = [ARCOS(BX,) + BaSIN(BX,)1d8 (82>
1 8 1 B 1
0

and using Fourier transformation, @,(0,X;) may be expressed

l1{o (w0
eh<o.x1> = :1; [ tho,s)COStﬁ(s-xl)stdB (-n‘x1<n) (83)
-0

Comparing Eq.(82) and (83)

1 (o
AgCOS(NX,) + BaSIN(BXy) = — [ 8,¢0,s)COS(A(s-X,)]1ds
¥ J-o

which implies

1 (o ©
e = - { I n°h‘°"’°°5[°"'x’3d' }EXP(-32§)d6

r
© ©

1
£ - 8,(0,8) ( I COS[B(:—Xl)]EXP(-Bzc)dﬁ lds (84)
x J-©o 0
Letting
vZ = p2g (84a)
.-Xl
g = ~— (84b>
rig4
we have

(8-X4)2

© 1 ®
I COS(B(s-X,)1EXP(-B2%)dB = —J: EXP [- ————]
0 2lz a3
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and therefore

1 (© 1[w (8-X,>2
= - (o' ) = Exp[-.-—-—]d
8, . -“Fh 8) 2 : Y s

1 © (s-xl)z
85(0.s> EXP{~ ———] ds
2% J-© 43

1 ©
= — l 8, (0, X; +2gvTIEXP(-g~2)dg (85)
v¥ J-®

Then, using the conditions @

8- C; = GE(O.XI) = 1 |x1| < KX‘

6= Gh = GL(O’xl) = 0O |X1| > %X‘

we finally obtain

1 Xg (8-X,12
e - EXP (- ——3ds
29%T J-nx, 4y

(RX_-X,>/2v%
1 s "1
= I EXP(-g%)dg
VE J- (%X +Xq)/2V%
1 %X‘*X1 %Xs-xl
=t — [ erf(——) + @orf(———) 1 (86)
2 2V% 2v3

where

T
g =I Ko(mdn 87>
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1 V12 (a+1) (a+11) Va1Va2
=(Pe"2 + +
192 y,2 12(a+3) (@+5) (a+7) Vo2
2 2
(a+l) Va1 . © 1 2
’ 1v- 4 £, —(Bp1+Bpo) [1-exp(-2,“1]

2(a+5)> (+3)3 v,2 m=l,,2

In order to analyze the dispersion behavior of Ellis

mnodel fluids, a new dimensionless variable P is defined as

=R
P = — (88)

Ty

then we have the following

Va1 1

— — (8%9a)
Vo 1+H

Va2 H

— R cmm— (89b)
Vo 1+H

where
Vn2 2
Hs — a —p&-1 (89c)

V.i a+l
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III. RESULTS AND DISCUSSIONS

Some commercial polymers are used in this study.

Their properties for these three models are listed in Table

1.

A. Comparison of KD/R4 valueas by Taylor-Aries dispersion

theory for different models

From equations (29), (31) and (34), the KD/R? values are
calculated for different wall shear stress Tp. Figures 1 and
2 show the plotas of KD/R? under different Tg for two
commercial polymers ! Ethylene ethyl acrylate at 463k and

Polystyrene at 483k.

From these figures we can see that at high shear stress
(»10°) the KD/R? values of theae three models are almost non-
distinguishable, but as TR decreases, the deviation among
them becomes significant. We can see a tremendous difference
betwean the three-parameter models, i.e. Carreau model and
Ellis model, and the two-parameter power-law model. For
example, for PS with QR = 5'104. the results of Carreau
model and Ellis model are comparable while the results of
power-law model are one order of magnitude less than those of
the two three-parameter modaels. As TR decreases below 1'104,
the difference between the three-parameter and power-law

nodels is more pronounced ( >four orders of magnitude ).,

This result is expected. Since at low shear stress near

the axis or at low pressure gradient, the fluid is within the
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Table 1. Properties of polymers
Polymer A B C D E
Temperature
(K> 463 483 493 463 463
power law
nodel
NS
» (=) 4.37#109 2.38%10% 3.22410% 4.89#103 6.91s103
»
n 0.21 0.25 0.27 .41 0.43
Carreau
nodel
NS s 3 3 3 3
o) (-;0 1.48+10 99,2010 9.00#10 3.20s10 2.5%10
n
n (-50 0.22 0.27 0.28 0.41 0.58
»
T, 3.0#10% 3.05+10% 4.7#10%  6.8+10% 2.5#10%
Ellis
model
NS 5 3 3 3 3
v (-;0 1.48+10 9.2510 9.0%10 3.2#10 3.5#10
a
a 4.8 3.85 3.59 2.50 2.39
N
% (5 3.29»10% 3.19+10% s.03+10% 7.19#10% 1.40%10%
n
where
A : High Impact Polystyrene (HIPS), LX-24009%
B : Polystyrene (PS), Dylon.Tusb
C : Styrene acrylontrile, (SAN) LustranTM 31-10002
D : Polypropylene (PP) CD 460°€
E : Ethylene ethyl acrylate, DPDA-61699
and

0o

Monsanto Co.
Exxon Chemical Co.

b arco.

d Union Carbide Corp.
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low Newtonian regime, where power law can not be used to
predict the behavior correctly. On the other hand we know
that the three-parameter Carreau model and Ellis model
include the low Newtonian region and power law region. For
tube flow the shear stress increases linearly from zero on
the axis to 1T at the wall. Thus, the fluid exhibits
Newtonian behaviour near the axis (plug flow) for any
pressure gradient. Thua, straightly speaking, power-law model
is not applicable to pipe flow. There is no doubt that ¢the
calculated KD/R% values from these two modela are of the same
magnitude even at low shear stress, and power law applied to
this low shear stress region becomes more unreliable since

ite value is very far from those obtained from these two

three-parameter models.

Thus we know that from the results of the Taylor-Aris
dispersion theory it is more appropriate to use three-
parameter model than power-law model. From this point of view
we would like to see what will happen if we apply the three-
parameter Ellis model to the generalized dispersion theory of
Gill and Sankarasubraminan. It may have some very interesting
implications which were not shown in the Newtonian fluids and
power-law fluids. In next section, the three-parameter Ellis
model is applied to the generalized dispersion theory of Gill
and Sankarasubraminan and the results will be compared with

those obtained by Booras and Krantz (1976) who used the

power-law model.
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B. Resulta of the generalized disperajion theory of Ellis

fluid in pipe flow

Figureas 3,4 and 5 give the plots of K2-P.’2 as a function
of T under different driving force P for three commercial
polymers. For comparison, Kz—Pe'z for power-law fluid is also
shown in each figure. In determining Ko, from Eq. (74), the
infinite series was truncated such that the leading tera

discarded resulted in less than a 0.1% change in the value of

K2.

Furthermore, the time-dependent behavior of the dispersion
coefficient k,(T) for all Ellis model fluids is similar in
that these fluids approach their steady state value at

approximately the same rate.

It is seen from these figures that the dispersion
coefficient varies rapidly with ¥ in the region of T1<0.1, and
then it changes more slowly until K, becomes constant at
00.3. As P increases, the dispersion coefficient of the
Ellis model approaches that of the power-law model, while as
P decreases, Kztn)-Po°2 approaches the value of Newtonian

fluid which equala 5.2083#10°3,

It may make clearer to know the relation between redial
distance €& and shear rate 7 under different driving force P
(=1TR/7y). Differentiating equation (19) with respect to §,

we have the relation aa
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Ty
= — PEL1+(PEIT"1;

o
Figure 6 gives a plot of shear rate ~ against dimensionless
radial distance € for a=3.959,., It is seen that the shear rate
difference between P=0.1 and P=1.0 is significant. At §=0.4
the ahear rate for P=1.0 is more than ten timea that for
Pa0.1. As €& increzses, the ratio is even more. 3o it is
reasonable that we treat the Ellis model fluid under low P as
near lower newtonian regime and within power law region or

higher Newtonian regime at large P.

The results of Figures 3,4 and 5 are, therefore, expected. As
P increases, the dispersion coefficient approaches the value
of power-law fluid, and at low P the dispersion coefficient

is near the value of Newtonian fluid.

Figure 7 ahowa a plot of Kz(n)-Po'z vE. a.i It indicates
that under P=1.5, Kz(n)—Po'z exhibits a maximum value of
5.241#10"3 at a=1.23; under P=3.5 the maximum value of Koo -
Pe 2 ia 5.247210"3 at a=1.48. Booras and Krantz reported
similar observation for power law fluid; the maximum value is
reached at n=0.729 with K2-Pa'2 = 5.28#10°3. For Ellis model,
the maximum value depends on P. Erdogan (1967) commented that
it was rather remarkable that pseudoplastic fluids (a>l)
could cause more dispersion than Newtonian fluids. Indeed,

one might expect K,(w) to decrease as « increases due to the

decresased axial dispersion associated with progreasively more

blunt velocity profile.
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Fig. 6. Shear rate as a function of dimensionless distance for
P=0.1 and P=1.0
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under different P as a function of flow behaviour
for Ellis model fluids

index

13 4



46

The unexpected behavior that K,(w) attains a maximum is a
consequence of the choice of the velocity scale Vo . Let us
define another dispersion coefficient Ki, nondemensionalized
with the average velocity V, rather than the maximum

velocity, whose relationship to K, ias given by

2 2
5 pa-2 Vo s 1+H s
>-Pe g (=) (KZ-PQ ) = ( ) (Kz—PO ) (90)
\Y 1 a+l
x
-— e 1 |
2 x+3

This modified dispersion coefficient K§ is plotted against «
in Figure 8. It ias sean that there is no maximum and K§
decreases monotonically with a. The monotonic decreasing of
K§ with a is consistent with non-Newtonian behavior, because
larger « implies stronger shear-thinning behavior at a given
pressure gradient and hence more convective transport giving
a smaller dispersion. The behavior of K, is a consequence of
the ratio Vo/Vx which increases with increasing « thus

counterbalancing the decrease of K§ with increasing «.

There are ¢two reasons that the definition of K, is
preferable to that of K;. First, the former definition was
used by Gill and co-workers, Fan and co-workers, Erdogan, and
Booras and Krantz, and permits direct comparsion with their
results. Second, the more significance is the fact that K, is
far leas sensitive to a than K%. From Figure 7 that the
Kz(n)-Pe'z varies only a few percents over the range of flow

behavior indices 1sas2, this includes a broad range of
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Fig. 8. Dispersion coefficient based on mean velocity under
different P as a function of flow behaviour index for
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pseudoplastic and Newtonian behaviora, and the Newtonian
value of the dispersion coefficient K,(w) can be used with
little error. On the other hand if we uase K5 as 8 definition,
it is seen from Fig 8 that Ki(n) decresases as ¢« increases.
The Newtonian value of the dispersion coefficient Ki(n) can
not be used to predict the pseudoplastic behavior even though

a value is near 1, since it would cause large error.

We would like to see how aignificant the Peclet numbar
will effect the dispersion coefficient. As mentioned before
at low shear stress dispersion coefficient approaches that of
Newetonian fluid. Substituting equations (20a), (20b) and (88)

into the definition of the Peclet number, we have

RVo R
Pe = —— =—(Vg1+Vp2) (51>
D D

(92)

Ve assume a typical 1liquid phase diffusivity, as
mentioned in the INTRODUCTION, D=10"3 clzls, and tube radius
R=0.1 cm for three different sets of (x, ¥y, T;’> under the same
condition P=0.1. The results are shown in Figures 9,10 and
11. It is seen that at lower Ty/Ty the effect of Peclet

number is more noticeable when Figure 11 is compared with

Figure 9.

A plot of @, vs. X is shown in Figure 12 and Figure 13

for «=4.8 and a=3.59 respectively at X_ =0.019,Pe=1000 and
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Fig. 9. Plot of K,(Y) against dimensionless time T under P=0.1
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Fig. 10. Plot of K,(7) against dimensionless time T under P=0.1

for three diffogont set of polynorn havéng the same
(=2.15+«10% NS/mn%) and Ty (=1. 68+10% N/m
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¥=0.03 whence K, is still exhibiting time-dependent behavior.

The set of value (X, ,Pe,Y) is chosen so as to compare the
result obtained by Booras and Krantz. The purely convective

cases are shown in Figure 14 and Figure 1S5.

It is interesting to observe in the purely convective
case shown in Figures 14 and 15 that at low pressure
gradient, the fluids exhibit a aymmetrical mean concentration
distribution about the point X=0.015 for pseudoplastic fluids
and are skewed downstream at high pressure gradient due to
tha larger velocity (relative to the average velocity) near
the axis of the tube. The pure convective solution for power-
law fluids is also shown in Figures 14 and 15 for coaparison.
It is seen that as P increases the concentration distribution

of Ellis fluids approaches that of power-law fluids.

Equation (86) gives the effect of molecular diffusion
on the @, distribution for the appropriate value of «. The

resulting @, shown in Figures 12 and 13 are symmetrical about

T 1 a+l
X = — ( Vpq + —Vp5 )
VO 2 a+3

It is seen that as P increases, the @, distributions
ahift downatream, approach the @, distribution of power-law
fluid. This coincideasa with previoua discussion that as P
incresses the fluids behave as power-law model. Also e,
distribution shifts downstream as a increases for the same P.

It may appear surprising that these @, curves exhibit nearly
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Fig. 12. Comparison of present solution (86) for the

distribution @, against X of HIPS ( a = 4.8 ) at 463K
with the result of the power-law fluid at T=0,03, and
for X =0.019 and Pe=1000
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Fig. 13, Comparison of present solution (86) for the
distribution @, against X of styrene acrylontrile
(a=3,.58) at 493K with result of the power-law fluid at
¥=0.03, and for X =0.019 and Pe=1000
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14. Comparison of pure convective solution (40) for

S5

the

distribution @, against X of HIPS ( « = 4.8 ) at 463K

with the result of the power-law fluid at *s0.03,
for X,=0.019 and Pe=1000

and
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Comparison of pure convective sclution (40) for the
distribution @, against X of styrene acrylontrile
(a=3,59) at 493K with result of the power-law fluid at
¥=0.03, and for X_ =0.019 and Pe=1000
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the same maximum at the same P, although the value of K2(¢»
for these two fluids differs considerably, i.e. at P=2.,5
K,(w)-Pe"2=3.812¢10"2 for «=4.8, and 4.523%10"2 for a=3.59.
This behavior arises because the time history of the two
fluids is nearly identical; §{ determined from equation (87)

at ¥=0.03 is nearly the same for both fluids.

These results for non-Newtonian Ellis =model fluids
illustrate quite dramatically the effect of molecular
diffusion on the overall dispersion process. It seems quite
remarkable that although the mean concentration distributions
for purely convective dispersion are considerably
unsymmetrical for non-Newtonian fluids under considerable
shear stress the slighteat amount of molecular diffusive
action can render them gymmetrical. The molecular diffusion
smoothes out the distribution and this dispersing effect is

enhanced by shear-thinning behaviour.

Here is a question as to whether the assumption that
distribution @, is given by a purely diffusive process from
time zero leading to egquation (48) is valid for high Peclet
number when the convective tranaport is large relative to the
action of molecular diffusion. Note that this criticism of
the generalized dispersion model restricts only ¢to its
applicability at the initial stages of the dispersion
process. Certainly at larger values of T our results and
those of Gill and co-workers would appear to be applicable.

Clearly =more research is necaessary to define the precise



limits of the generalized dispersion theory.

S8
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IV. CONCLUSIONS

It has been shown that an exact solution to the
convective diffusion equation can be constructed by the
generalized dispersion theory proposed by Gill (1967). This
exact solution involveas a dispersion model that includes
third and higher order derivatives of mean concentration with

respect to convected axis distance.

The effective diaperaion coefficient, Ko, is leas
sensitive to the flow indax than K5 and for this reason it isas
a preferable definition of the dimensionless dispersion
coefficient for Ellis model fluids. That is, moderately
pseudoplastic fluids have dimensionless disperaion
coefficients K, nearly equal to that of Newtonian fluids no
natter how much the driving force P, is and hence can be
treated as Newtonian fluida if the dispersion equation {s

appropriately nondimenasionalized.

It is also seen that the dispersion coefficient depends
on the driving force P. As P incresses, the value of
disperaion coefficient approaches the value of power law
fluids. The results obtained by Booras and Krantz apply only
to large driving force and can not predict the fluid behavior
under low driving force. The usefulness of Ellis model is
that it allowa better prediction of disperaion for any value
of the driving force P than would be possible with power-law
model; and Ellis model shows clearly how non-Newtonian

behaviour affects dispersion, particularly when the external
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pressure gradient varies from low value to high value. Power-
law model is not, straightly speaking, applicable to pipe
flow of shear-thinning fluida. It is suggested that Ellis

nodel is preferable to power-law model.
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a : function defined by eq (7a)

a : function defined by eq (28)

A : function defined by eq (51>

Ay : function defined by eq (72)

b : function defined by eq (7b)

Bai : function defined by eq (75a)

By2 : function defined by eq (75b)

C : local solute concentration

Ca : mean solute concentration

Co : initial solute concentration

c* : dimensionlesa concentration C/Cgy

C¢ : value of C* at r=0

Q : molecular diffusion coefficient

fr : function defined by eq (45)

Fa : steady state solution of eq (62)

Fy : transit solution of eg (62)

g : function defined by eq (84b)

H : function defined by eq (89¢c)

Jy2) ¢ ith_order Bessel function having argument 2

K : dispersion coefficient

Ky : generalized dispersion coefficient
nondimensionalized with respect to Vo and defined
by eq (48)

K : generslized dispersion coefficient

nondimensionalezed with respect to Vx
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function defined by

function defined by

length of tube

flow behavior index

function defined

function defined
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by

eq

eq

eq

eq

Peclet number = RVOID

pressure drop

function defined by esquation (16b)

volumetric flow rate

radial coordinate
radius of tube
time coordinate
L/V,

tranasit time

function defined by eq

maximum velovcity
function defined
function defined
function defined
function defined
function defined

function defined

local fluid velocity

mean fluid veloci

axial coordinate

by
by
by
by
by

by

ty

eq

oq

qQ

g

eq

eq

(15)

(29)

(16a)

(88)

(84a)

(32)

(20a)
(20b)
(30a)
(30b>

(30a)
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width of solute plug at time t=0

dimensionless axial coordinate Dx/szo in a fixed
coordinate system

dimensionless axial distance in coordinate systenm
convected at mean fluid'velocity

dimensionlesas width of asolute plug Dx‘/szo

axial distance in coordinate system convected at
mean fluid velocity

dimensionless radial coordinate r/R

viscosity

dimensionless axial distance in coordinate systenm
convected at mean fluid velocity

Zero shear rate viscosity

infinite shear rate viscosity

dimensionless local concentration C/Cg
dimensionless mean concentration

dimensionless time

dimensionless radial coordinate r/R

function defined by eq (87)

flow behavior index

separation constant

shear rate

dimensionless time coordinate Dt/RZ

value of shear stress at M = TMy/2

empirical constant of Carreau model

shear stress at wall

eigenvalue



VI. APPENDIX

A. Program for equation (74)

SDEBUG

890

920
9390

880

780

790
781

36

980

66

950

PROGRAM DISRERSION
IMPLICIT REAL%8(A-H,0-2)
DOUBLE PRECISION N
DIMENSION XX(10),XXN(10)
OPEN(2,FILE="DISPER.XXX’,STATUS="NEW’)
OPEN(3,FILE="ALFA.DTA")
OPEN(4,FILE="DRIVE.DTA’)
OPEN(S,FILE="EIGEN.VAL’)
READ(3,920,END=930)N
WRITE(#,890)N

FORMAT(/’ ALFA= ’,D10.3)
REWIND 4

FORMAT(D4.1)
READ(4,920,END=940)P
WRITE(»,880)P

FORMAT(’ T-R/T-.S5 =’,D10.4)
REWIND S

IF (N-1.)790,780,790
G=0.D0O

GO TO 781

G=2.Pss (N-1.)/(N+1.)
Vi=1l./(1.+G)
X1=V1svV1/192.
V2=G/(1.+G)

V22=(N+1.)%(N+11.)/C1l2,%(N+3.)%(N+S,.)%(N+7,))

X2=V22%V1aV2

64

W=(N+1,)8(N+1.)/C2.8(N+5.)8(N+3,)8(N+3,)%(N+3.))

X3=WsV2sy2
WRITE(2,36)G,V1,V2,X1,X2,X3

FORMAT(C//”’ H= 7,D10.5/°’ V1= ’,D10.5/° V2=

cs’ Xi= ’,D10.5/’ X2= ’,D10.5/° X3=
II=0

READ(5,950,END=970)XN,B0O,B2,B3
WRITE(2,66)N,P,XN,BO,B2,B3

’yD10.5)

FORMAT(//’ ALFA= ’,D10.5/’ D-P= ’,D10.5/’ XN=

c,” Jo= ’,D15.8,° J2= ‘,D10.5,’ J3=
FORMAT (4D10.6)

II=II+1

BM=0.DO

XXN(II)=XN

Al=V1#B3/ (XN*XN=XN«BO«*BO)
A21=2.8V2/(BO%BO)

A22=B2/ ((N+3.)sXN=*XN)

Y=0.

H=0.05

»D10.5

’,D10.5
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HH=3.14159/64.
$5=0.D0

UuU=0.DO

TT=0.DO

VVv=0.D0

TAU=0,0005

DO 4 J=1,100

IF (v-1.>2,8,8

GO TO 10

Y=Y+H

SI=0.DO

C=0.D0

$=0.D0

T=0.DO

PO S I=1,100
IF(C-3.1415917,7,7

GO TO 11

Z=XNsY

C=C+HH

B1=Z2#SIN(C)
8=25+4,#C0O0S(B1)

CsC+HH
IF(C-3.14159)20,11,11
BB=Z2sSIN(C)
T=T+2.#COS(BB)

CONTINUE
SI1=(2.+S+T)/3.%HH/3.14159
SS=SS+4.2(Yea(N+4,)=SI)
UU=zUU+4 .5 (Yeu (N+2.)s5])
Y=Y+H

IF (¥-1.518,10,10
D=0.DO

S81=0.D0

T1=0.DO

SP=0.D0O

DO & K=1,100

IF (D-3.14159)12,14,14
GO TO 15

Z21=XN»Y

D=D+HH

BS=21«SIN(D)
S1=S1+4.=*C0OS(BS)

D=D+HH

IF (D-3.141%59)9,15,15
B6=Z1«SINC(D)
T1=T1+2.*COS(B6)
CONTINUE
SP=(2.+51+T1)/3.%HH/3.14159
TT2TT+2.%#(Yen(N+4.,)=SP)
VV=VYV+2 2 (You (N+2,)aSP)
CONTINUE
All=(TT+SS+BO)Y*H/3./((N+3.)*(N+3.))
AN=A1+A21=(A22+A11)



88

970

26

30

25

940
930

BM1=V1sB2«AN/ (XN=XN)
BX=(UU+VV+BO)*H/3.
BM2=(-1.)sV2=ANsBX/2.
BM=BM1+BM2

XX(II)=BNX
WRITE(2,88)AN,BM1,BN2,BN

FORMAT(/* AN= ’,D20.10/’ BM1l= ’,D20.10/° BM2= ’
C,D20.10/” BN= ’,D20.10)

GOTO s8o

DO 25 L=1,15

X4=0.DO

DO 26 JJ=1,11
Q=XXN(JJ)=sXXN(JJ)»TAUs(-1.)
X4=4,2XX(JJ)=EXP(Q) +X4
CONTINUE

SU=X1+X2+X3-X4
WRITE(2,30)TAU, X4,3U
FORMAT(/’ TAU= ’,D20.10/’

C/’ K2-1/PE=»2= ’,D20.10)

TAU=TAU»2,

CONTINUE

IF (N-1.)990,960,990
GOTO 960

STOP

END

X4=

*,D20.10/

66



8.

9.

iO.
11.
12.

13.

14.
15.
l6.

17.

67

VII. REFERENCE

Booras, G.S. and Krantz, W.B., Ind. Eng. Chem., Fundanm,
19¢4>, 249 (1976)

Taylor, Sir Geoffrey, Proc. Roy. Soc. Londom, Ser. A,
219, 186 (1953

Gill, W.N. and Senkarasubramanian, R.S. Proc. Roy. Soc.,
London, Ser. A, 322, 101 (i971>

Fan, L.T. and Hwang, W.S. Proc. Roy. Soc., London, Ser.
A, 283, 576 (1965)

Fan, L.T. and Wang, C.B. Proc. Roy. Soc. London, Ser. A,
292, 203 (1966)

Gill, W.N. and Sankarasubramanian, R.S. Proc. Roy. Soc.,
London, Ser. A, 316, 341 (1970)

Taylor, 8ir Geoffrey, Proc. Roy. Soc. London, Ser. A,
223, 473 (1954)

Aris, R. Proc. Roy. Soc., London, Ser. A, 23%, 67 (1956)

Gill, W.N., Proc. Roy. 3Soc. London, Ser. A, 298, 3335
(1967)

Venkatsubramanian, C. and Mashelkar, R., Ind. Eng. Chen.,
Process Des. Dev. 22, 509 (1983)

Kumar, S. and Upadhyay, Ind. Eng. Chem., Fundam, 19, 75
(13880)

Matsuhisa, S. and Bird, R.B. A.I.Ch.E. J. 1965, 1i(4),
S88 (1965

Gill, W.N., Sankarasubramanian, R., Proc. Roy. Soc.,
London, Ser. A, 327, 191 (1972)

Sankarasubramanian, R. and Gill, W.N. Proc. Roy. Soc.,
London, Ser. A, 333, 15 (1973

Bird, R.B. and Stewart, W.E. and Lightfoot, E.N., ”
Tranaport Phenomena ", Wiley, New York, N.Y., 1860

Cussler, E.L., " Diffusion-Mass Transfer in Fluid Systems
*, Cambridge University Press., 1984

Churchill, R.V. and Brown, J.W., " Fourier Series and
Boundary Value Problemas ", 3Td @d., McGraw-Hill, 1978



18.

19.

20.

21.

22.

68

Bird, R.B., Armstrong, R.C., Hassager 0., *“ Dynamic of
Polymeric Liquids **, Vol. I, Wiley, New York, NY 1977

Watson, ™ A Treatise on the Theory of Bessel Functions ",
2nd ed., Cambridge University Preas. London, 19352

Tadmor, 2. and Gogos, C.G., " Principles of Polymer
Processing ", John Wiley & Sons Inc., 1979

Gill, W.N., Chem. Eng. Sci., 22, 1013 (1S67)

P.J. Carreau, Ph.D. Thesis, University of Wisconsin,
Madison (1968)



	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Sheet
	Vita
	Acknowledgement
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	I. Introduction
	II. Theory
	III. Results and Discussions
	IV. Conclusions
	V. Glossary
	VI. Appendix
	VII. Reference

	List of Table
	List of Figure (1 of 3)
	List of Figure (2 of 3)
	List of Figure (3 of 3)




