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ABSTRACT
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Assistant Professor

Department of Mechanical Engineering

Finite element analysis program for isotropic and

orthotropic axisymmetric micropolar (Cosserat) elastic solids are

developed in this thesis. Isoparametric elements of 8- and 20-

node are used to solve general three-dimensional problems, and

both 4- and 8-node elements are used for two-dimensional cases.

Three-dimensional finite element formulation for cylindrical

coordinate system is derived. Corresponding Fortran programs are

then developed. Patch tests are performed for two-dimensional

cases to verify the applicability of the finite element method to

non-rectangular geometries. Several two-dimensional and three-

dimensional problems for micropolar elastic solids are solved to

verify the formulations and computer program.

Good agreements were obtained in all cases, confirming the

validity of the finite element method.
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CHAPTER I

INTRODUCTION

1.1 Introductory Comments

Micropolar elastic solid is an elastic solid whose

deformation can be described by a "macro" displacement, together

with a "micro" rotation. Micropolar elastic materials are the

elastic materials with extra independent degree of freedom for

the local rotations. Micropolar elasticity materials include

certain classes of materials with fibrous and elongated grains.

Voigt [1] and F. Cosserat [2] defined the Cosserat continuum

many years ago. Since then about 500 papers have been published

on the micropolar elasticity. However, most of the works were

restricted to isotropic case. Furthermore, they are also

restricted to simple geometries only. Possible reason is that it

is extremely difficult to solve problems of complex geometries

using the analytical methods. This difficulty, however, can be

overcome with the application of the finite element method. The

finite element method is an efficient tool to numerically solve

the engineering problems. In fact, finite element method has

been applied to complex geometries and orthotropic problems in

the classical elasticity. As in the classical elasticity, finite

element method is expected to be one of the most powerful

solution techniques in micropolar elasticity theory.

The present study develops the finite element method for

axisymmetric micropolar elasticity based on the variational
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principle obtained by S. Nakamura et al.[3]. In this thesis,

stress concentration problem will be solved and micro-rotation

effect in the cylinder with semi-circular groove will be

demonstrated. Since classical case has been solved for this

problem in the literatures, the numerical results are compared

with the one corresponding to the classical cases.

1.2 Literature Review

Voigt and F. Cosserat developed the theory for Cosserat

continuum many years ago. However it was not until 1960's that

fully developed microstructure theories evolved. In 1964, Eringen

and Suhubi [4] introduced a nonlinear theory of microelastic

solids. Similiar results were also obtained by Mindlin [5] in

1964 who derived a linear theory using variational principles.

In 1962 Mindlin and Tiersten [6] advanced a couple stress theory

in which the rotation of material point is equal to the local

rotation of the surrounding medium. The couple stress theory

presented by Mindlin and Mindlin and Tiersten is known to be a

special case of the Cosserat continuum theory. Eringen renamed

the Cosserat continuum theory as micropolar elasticity.

The symmetrical bending at laterally loaded circular isotropic

micropolar plates was analytically solved by Arimann in 1964 [7].

In the paper by Kaloni and Ariman the micropolar theory is called

Eringen's theory and the couple stress theory is called Mindlin's

theory. Later Khan and Dhaliwal obtained the analytical solution

for the isotropic micropolar elasticity of half-space subjected

to an arbitrary normal pressure [8]. Kishida, Sazaki and Hanzawa



solved stress concentration problem for a circular cylinder with

a semicircular annular groove under uniaxial tension of linear

isotropic couple stress elastic solids [9]. For this purpose,

they used indirect fictious boundary integral method. In 1969

Gauthier analytically solved the isotropic axisymmetric

micropolar elasticity of a cylinder subjected to axial tension

and torsion and cylindrical bending of a rectangular plate [10].

Guathier and his co-worker also performed experiment to obtain

micropolar elastic constants of isotropic composite materials

[11].

S. Nakamura [12] was the first in solving the orthotropic

micropolar elasticity using finite element method. Two finite

element programs have been developed for plane Cosserat

elasticity theory. The earlier program [13] used triangular

constant strain element and the second used 4- and 8-node

isoparametric elements [14]. In the following chapter, similar

finite element formulation to Ref.[12] is applied to develop

finite element method for three-dimensional and axisymmetric

micropolar elasticity.

1.3 Scope of the thesis

First, finite element methods are reviewed from Ref. [15] in

chapter II.

Equations of general micropolar elasticity, variational

method and displacement type finite element formulation for

micropolar elasticity are reviewed in Chapter III.

In chapter IV, micropolar elasticity and matrix finite

element formulation for cylindrical coordinate system is

3



developed. Numerical examples are also included.

Axisymmetric elements of 4-node and 8-node elements are used

in Chapter V. Numerical results are compared graphically with the

results of classical elasticity. Numerical examples and

programming organization are also illustrated.

Finally, conclusions and recommendations for research are

suggested in Chapter VI.
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CHAPTER II

REVIEW OF THE FINITE ELEMENT METHOD

2.1 Introductory Comments

For the last two decades finite element methods have

received much attention, due to the increasing use of high-speed

computers and the growing emphasis on numerical methods for

engineering analysis. This is completely understandable, since it

is not possible to obtain analytical solutions for many

practical engineering problems.

An analytical solution is a mathematical or functional

expression that can give the values of the desired unknown

variables at any location in a continuum, and as a consequence it

is valid for an infinite number of locations in the body.

However, analytical solutions can be obtained only for certain

simple problems. For problems involving nonisotropic material

properties and complex boundary conditions, one has to resort to

numerical methods that provide approximate solutions with

reasonable accurracies. In most of the numerical methods, the

solutions yield approximate values of the unknown variables only

at a discrete number of points in the continuum. The process of

selecting finite number of discrete points in the continuum can

be termed "discretization". One way of discretizing an entire

body or structure is to divide it into a set of small bodies, or

units. The assemblage of such units then represents the original

body. Instead of solving the problem for the entire body in one

operation, the solutions could be formulated for each constituent

5



unit and then combined to obtain the solution for the original

body or structure.

The finite element method is applicable to a wide range of

boundary value problems in engineering. In boundary value

problems, solutions are sought in the region of the body, while

on the boundaries the values of the unknown variables ( or their

derivatives) are prescribed. Problems in the field of solid

mechanics are usually tackled by one of the three approaches: the

displacement method, the equilibrium method, or the mixed method.

Displacement are assumed as primary unknown quantities in the

displacement method; stress are assumed as primary unknown

quantities in the equilibrium method; and some displacements and

some stresses are assumed as unknown quantities in the mixed

method.

In the following of this Chapter, isoparametric finite

formulation and axisymmetric finite element method are reviewed

first. Variational formulation of micropolar elasticity and

finite element formulation for micropolar elasticity are then

reviewed.

2.2 General Formulation of Finite Element Method

In this section finite element method is reviewed from

Ref.[16]. The concept of finite element methods consist of a

discretization of a continuous media to describe the state of

those discretized continuum. There are two matrix method

approaches associated with the finite element method:

a. The force type finite element method assumes the internal

6



forces as the unknowns variables. To generate the governing

equations, the equilibrium conditions are used first; then to

develop the additional equations which might be necessary to

obtain the solutions, and compatibility conditions are

introduced.

b. The displacement type finite element methods assumes the

displacements of the nodes as the unknown variables. In this

approach the compatibility conditions in and among elements are

initially satisfied. Then the governing equations in terms of

nodal displacements are written for each nodal point using the

equilibrium conditions.

The difference between force and displacement type finite

element methods lies on the selection of the unknowns of the

analysis and the variations in the matrix quantities associated

with their formulations.

Since most engineers are familiar with the displacement

analysis invloving such terms as stresses, strains, and

equilibrium, the great majority of literature on the finite

element methods has been written in terms of the displacement

method. In this thesis displacement-type finite element method

is used.

2.2.1 Displacement Finite Element Method

In this section, displacement finite element method is

reviewed from Ref. [15].

The displacements of the finite elements are always

described in the local coordinate system as shown in Fig.2.1

For one-dimensional truss elements one can use

7



Fig. 2.1 Some Typical Finite Elements
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where x varies over the length of the element. u is the local

element displacement and α1 , α2, ...- are generalized coordinates.

For two-dimensional elements like plane stress, plain strain

and axisymmetric elements, one need two displacement variables u

and v as a function of x and y coordinates,

are generalized coordinates.

In the case of plate bending , the transverse deflection w

is needed as a function of coordinates x and y;

are generalized coordinates.

Finally, for general 3* dimensional elements in which u,v,

w, are displacement variables at x,y,and z coordinates;

are generalized coordinates.

2.2.2 Isoparametric Finite Element Method

The most widely used finite element method for general

application is the isoparametric finite element method. The

basic idea of isoparametric finite element formulation is to

9



achieve the relationship between the element displacement at any

point and the element nodal point displacement directly through

the use of a shape function. The procedure using isoparametric

finite element formulation is to express the element coordinates

and element displacements in the form of interpolations using the

natural coordinate system of each element. A natural coordinate

system is a local system which permits the specification of a

point within the element by a set of dimensionless numbers whose

magnitudes never exceed unity. Such a coordinate system can

generalize and simplify the formulation, and also facilitates

the numerical integration required to obtain the element

stiffness matrix. This coordinate system can be one-. two-, or

three-dimensional, depending on the dimensionality of the

element. The formulation of the element matrices is basically the

same for a one-,two-,or three-dimensional element.

In this section, three-dimensional element is presented.

However, the one- and two-dimensional elements are also included

using only the relevant coordinate axis and the appropriate

interpolation functions.

Considering a general three-dimensional element, the

coordinate interpolations are

10



where x, y, and z are the coordinates at any point of the

element, and xi, yi, zi, i=1, , q, are the coordinates of

the q element nodes. The interpolation functions hi are defined

in the natural coordinate system of the element, which has

variables r, s, and t whose ranges are between -1 to +1. The

interpolation functions for one- and two-dimensional elements are

given in Appendix I. The interpolation functions for two-

dimensional elements are applicable to axisymmetric analysis and

used in Chapter 5.

In the classical elastic theory, for one-, or two-

dimensional elements only the relevant equations in (2.1) would

be employed, and the interpolation functions would depend only on

the natural coordinate variables r s and t.

In the isoparametric formulation, the same interpolation

functions used in geometry, is used to express displacements:

where u, v, and w are the local element displacement at any

point of the element, and ui, vi, and wi, i=1, 	 ,q, are the

corresponding element displacements at each nodes. Therefore, it

is assumed that to each nodal point coordinate necessary to

describe the geometry of the element, there corresponds one nodal

point displacement.

11



To obtain the derivatives of

chain rule:

one uses the

2.3 Finite-element matrices formulation

In general, the calculation of the element matrices should

be carried out in the global coordinate system, using global

displacement components if the number of natural coordinate

variables is equal to the number of global variables.

To evaluate the stiffness matrix of an element, one needs to

calculate the strain-displacement transformation matrix. The

element strains are obtained in terms of derivatives of element

displacements with respect to local coordinates. Because the

element displacements are defined in the natural coordinate

system using Eqn. (2.2), one has to relate the displacement with

repect to x, y, and z to the ones with respect to r, s, and t .

Let eqn (2.1) has the form

where f. denotes "function of ". The inverse relationship is

12



where J is the Jacobian matrix relating the natural coordinate

derivatives to the local coordinate derivatives. The Jacobian

matrix can be found using (2.1)

which requires that the inverse of J exists. The inverse exists

provided that there is a one-to-one correspondence between the

natural and local coordinates of the elements (2.3.2.4).

Using Equations (2.5) and (2.6), one evaluates u/ x, u/ y,

and therefore constructs the strain-

displacement transformation matrix B;

13



where u is a vector listing the element nodal point displacement

of Equation (2.2).

The element stiffness matrix corresponding to the local

element degree of freedom is

Here the elements of B are functions of the natural coordinates

r, s, and t. Therefore, the volume integration extends over the

natural coordinate volume, and the volume differential dv needs

also be written in the terms of the natural coordinates. In

general, we have

where detJ is the determinant of the Jacobin matrix in

Equation (2.7).

Since an explicit evaluation of the volume integral in Equation

(2.10) is not possible, numerical integration is used.

First, we rewrite Equation (2.9) in the form

where F = BT D B detJ and integration is performed in the

natural coordinate system of the element. F depends on r, s,

and t, but the actual functional relationship is, in general,

unknown. Using numerical integration, the stiffness matrix is now

where 	 Fij k is the matrix F evaluated at point ri, s.
Si'

 and tk.
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The sampling point ri, si t tk of the function and the

corresponding weighting factors ij k are chosen to obtain maximum

accuracy for the interval -1 to +1, and are as given in

Table [2.1].

The mass and load vectors are now given by

where H is a matrix of the interpolation functions. The above

matrices are evaluated using numerical integration.

To calculate the body force vector, RB , we use

For the surface force vector, we use F = H S fS detJ and for the

initial stress load vector we use F = BTJI  detJ, and for the

mass matrix one has F = HT detJ. The weight coefficients

are the same as in the stiffness matrix evaluation and the same

order of numerical integration is used for different order,

values are obtained from the Table 2.1.

2.4 Convergence Considerations

The two requirements for monotonic convergence of a finite

element analysis are that the elements must be compatible and

complete. Completeness requires that the rigid body

displacements and constant strain states be possible [15].

15



TABLE 2.1

SAMPLING POINTS AND WE 	 IN GAUSS—LEGENDRE
NUMERICAL INTEGRATION

n ri si

1 0.   (15  zeros) 2.   (15  zeros)

2 +0.57735 02691 89626 1.00000 00000 00000

3 +0.77459 66692 41483

+0.00000 00000 00000

0.55555 55555 55556

0.88888 88888 88889

4 +0.86113 63115 94053

+0.33998 10435 84856

0.34785 48451 37454

0.65214 51548 62546

Note : 	 Sampling Points and Weights till Order 4 is given since the
thesis involves integration upto order 3.
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The necessity for the constant strain states can physically

be understood. When the limit as each element approaches a very

small size, the strain in each element approaches a constant

value, and any complex variation of strain within the structure

can be approximated. The requirement of compatibility means that

the displacements within the elements and across the element

boundaries must be continuous [15].

In the isoparametric formulation, one has the displacement

interpolation

which can be reduced to

17



Since in the isoparametric formulation, the coordinates are

interpolated in the same way as the displacements,

The above relation is the condition on the interpolation

functions for the completeness requirement to be satisfied.

18



Chapter III

REVIEW OF MICROPOLAR ELASTICITY

3.1 Introductory Comments

A micropolar elastic material differs from classical elastic

material solids in that each point has extra rotational degree of

freedom independent of translation, and that a micropolar elastic

material can transmit couple stress as well as the usual force

stress [1].

The theory of micropolar elasticity is hoped to be

applicable to many new industrial materials with microstructures.

A dramatic increase in the applications of light-weight materials

in industry is expected in the future, thus enhancing the demand

of vast amounts of basic researches in the related area.

In this chapter, the micropolar elasticity theory is

reviewed. Erigen has studied a comprehensive recapulation of

micropolar elasticity theory based largely on earlier works by

him and his co-workers [4]. These equations are written in

rectangular cartesian tensor notation. His treatise provides an

excellent starting point for further investigations into linear

theory and is served as the main starting grounds for this study.

3.2 Basic Equations of Micropolar Elasticity

In 1964, Erigen and Suhubi first constructed the linear

theory of micropolar elasticity. The equilibrium equations of

micropolar elasticity is given [4]:

19



where ei km is the permutation tensor. Since only quasi-static

problems are considered in this study, the inertia terms can be

eliminated. The equilibrium equations thus become:

3.2.1 Constitutive equations

The linear forms of the stress and couple stress

constitutive equations for anisotropic micropolar elastic solids

are [1]:

is the microrotation vector and E rin is the Kronecker

delta. When the initial stress is zero, one has Akl  = 0. Thus,

for the micropolar solid free of initial stress and couple

stress, we have

Various material symmetry conditions place further

restrictions on the constitutive coefficients Aklmn  and Blkmn .

These restrictions are found in the same manner as in classical

20



elasticity [17]. If the body is isotropic with respect to both

force and couple stress, the solid is called isotropic. In this

case, the constitutive coefficients must be isotropic tensors.

For second and forth order isotropic tensors, one has the most

general forms:

where A, A1,....B2 and B 3 are functions of e- only. In this case,

Equations (3.4) and (3.5) take the special forms:

For vanishing initial stress A=O.

By introducing

the above equations can be rewritten as:

Isotropic micropolar elasticity can therefore be

distinguished from classical elasticity by the presence of four

extra elastic moduli; namely,

21



extra elastic moduli are set equal to zero, Equation (3.5) reduce

to the well-known Hooke's law of the linear isotropic classical

solid.

3.2.2 Restrictions on Micropolar Elastic Moduli

The necessary and sufficient conditions for the internal

energy to be non-negative are [2]:

The micropolar strain tensor indicates the relations among

the strain , displacement and microrotation. Since there are 33

equations with 33 variables, the formulation is therefore

complete.

3.2.3 Boundary conditions

Many different types of boundary conditions are suggested by

the nature of various applications. For example, one may

prescribe the displacement ui and microrotation on a boundary

surface s of a body [10]. Equally permissible is the alternate

prescription of the tractions and couples on s, i.e.

where t 1k and Ta lk 	are surface stress and surface couple

vectors, respectively, and t (n) K and m (n) K are the prescribed

tractions and couples on the bounding surface whose exterior is

22



unit normal vector n. In some other problems, it is possible to

prescribe the above two types of conditions as mixed boundary

conditions.

3.2.4 Compatibility Conditions

The displacement ui and microrotation φj  are linked to the

microstrain tensor e ij through the strain-displacement relations:

When the six quantities ui and are prescribed, these

strain fields are determined uniquely from Equation (3.11) by

mere substitution. On the other hand, specification of eij does

not determine the displacements and microrotations uniquely as

the system is overdetermined. In order to assure single-valuedness

and continuity in the displacement and microrotation fields, it

is necessary to apply constrains to Є ij and φi,j, limiting the

arbitrariness with which we may prescribe these quantities.

These conditions are known as the compatibility conditions, and

they are given by

3.3 Variational Formulation of Micropolar Elasticity

In the following, variational formulation of micropolar

elasticity as originally derived by Nakamura et al. [3] is

reviewed.

The potential energy π  of an elastic body is defined as:



where U is the strain energy and V is the work done by external

load acting on the body.

The principle of minimum potential energy claims, at the

equibrium states,

The work done by the body force Bi, body couple Ci, surface

traction Ti and surface couple Mi can be expressed as

Under virtual displacement and virtual microrotation, the

virtual work done by external load becomes

The equilibrium equations for Cosserat elasticity are given

in Equations (3.2):

Substituting the equilibrium equations into the above

24



equations, the first and second terms vanish, and the virtual

work becomes:

The strain energy for linear constitutive relation is

Then, we have a minimum potential energy functional of micropolar

elasticity:

3.4 Finite Element Formulation of Micropolar Elasticity

In this section, the finite element formulation for general

micropolar elasticity based on the previous section derived by

Nakamura et al. [12] is reviewed.

The total potential energy for a micropolar elastic solid

are:

Here tai and mji in the first term are the force stress and

couple stress, respectively; and

micropolar strain tensor and micro rotation gradient,

respectively. Bi and Ci in the second term are the applied body

25



force and body couple, respectively; and Ui and

displacement and microrotation for the i-direction, respectively.

Ti and Mi in the third term are the surface force and surface

couple tractions, respectively. The first two integrals are

volume integrals, while the last one is a surface integral for

which the surface traction and surface couples are prescribed.

Extremizing the above total potential energy expression with

respect to displacement field ui and microrotation field

the following four equations:

Force Equilibrium Equation:

Moment Equilibrium Equation:

Cauchy's Formular for Force Stress:

Cauchy's Formular for Couple stress:

Here eijk in Equation (3.21) is a permutation tensor and vj in

Equation (3.24) is a j-th component of unit normal vector.

One introduces appropriate shape functions N u and N o such

that
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Here u(x) and φ(x) are field variable vectors of displacement and

microrotation in the finite domain. U e and φeare nodal field

variable vectors corresponding to them. Using the expression for

micropolar strain tensor

where L is a differential operator and M is a permutation matrix,

and general constitutive equations

discretized equilibrium equation is obtained:

Here the nodal value vector is

the element stiffness matrix ke for micropolar elasticity is

are strain-displacement matrix and microrotation gradient matrix,

respectively.

27



CHAPTER IV

THREE-DIMENSIONAL ISOPARAMETRIC

ELEMENTS FOR MICROPOLAR ELASTICITY

4.1 Introductory Comments

Micropolar theory can be applied to many structure

materials, including fibrous, lattice and granular

microstructures [1]. Although numerous boundary value problems

have been solved analytically, the solutions are mainly limited

to the isotropic cases. Moreover, it is difficult to apply the

analytic methods to complex geometries. In addition, it is

generally difficult to solve analytically a three-dimensional

problem with the exception of a few special cases, such as the

stress and displacement boundary value problems with Volterra's

dislocation which can be treated as a plane problem and thus be

solved as a two-dimensional problem [18]. Thus finite element

methods are powerful tools for solving three-dimensional

micropolar elasticity problems with arbitrary geometries.

In this chapter, a general three-dimensional micropolar

elasticity theory in cylindrical system is reviewed first. A

general purpose three-dimensional finite element method is then

formulated, and a computer program is developed. The program is

used to solve a micropolar elastic cylinder with a semi-circular

groove under uniaxial tension.

4.2 General 3-D Micropolar Elasticity in Cylindrical coordinate

System

In this section, micropolar elasticity in Cartesian
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Coordinate system is transformed into Cylindrical Coordinate

system.

Eringen's micropolar strain tensors

can be expressed in vector form:

where L is a gradient operator in Cartesian Coordinate (x,y,z):

Equation (3.11) can be transformed into cylindrical coordinate

system (r,e,z), using the gradient operator:

Thus

For Cylindrical Coordinate system (r,e,z) the constitutive

relationship has a form of:
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4.3 Formulation of the Finite Element Method for General 3-D

Micropolar Elasticity in Cylindrical Coordinate
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In this section finite element method for 3-D micropolar

elasticity in cylindrical coordinate is derived.

The coordinates transformation from (x,y,z) to (r,θ,z) can

be calculated by using coordinate transformations:

The shape functions for the isoparametric element for eight

to twenty variable-number-nodes are discussed in detail in

Chapter 2. Using those shape functions Ni, displacement and

microrotation field inside each element can be interpolated:

Here q is a total number of the nodes of the element. For the

development of computer programs for 3-D micropolar elasticity,

only 8- and 20- node element are used in this study as described

in Chapter 2. uri, uθi and u z i are nodal displacements along x,

y,and z direction, respectively, and
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microrotation about x, y, and z direction.

Defining the nodal value vector Ue, as

one can express Equation (14) in compact form:

and each shape function Ni are

expressed using natural coordinate system in each element.

The following shape functions are used for q = 8.

To calculate the derivatives with respect to the global

coordinate system, one needs coordinate transformation from
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natural coordinate system to global coordinate system:

Here J is called Jacobian matrix defined by

Thus
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where

Substituting equations (4.7) and (4.9) into strain

displacement equation (4.2), one obtains the following strain-

displacement matrix B0 :

3 4



where

For the axisymmetric case,

Similary for microrotation gradient, one obtains the

following B 1 matrix:

35



where B 1 is a 9 by 48 matrics in q=8 case.

and

The B D - and B 1- matrices derived above can be substituted

into equation (3.29) to obtain element stiffness matrix k e. To

carry out volume integral of equation (3.29), numerical integration

of Gaussian quadrature shown in Table 2.1 is used in the program:
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is the weighting factors of Gaussian Quadrature.

If body force is neglected, the force vector can becomes

The element stiffness matrices calculated in equation (4.12)

are assembled into a global stiffiness matrix in a symmetric

banded form with only the upper triangular part stored. Boundary

conditions of the prescribed displacements and microrotations are

imposed by modification of the corresponding rows and columns of

this global stiffness matrix. Similarly, the force vector is
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generated by superposing element force vector in equation (4.13).

The linear algebraic equation is then solved for nodal

displacement using the skyline technique [12].

4.4 Numerical examples

The finite element formulations developed in the previous

section are implemented in Fortran programs (Appendix 2) with

either 8- or 20- node element, as shown Fig.4.1 and Fig. 4.2 The

eight nodes in the 8-node element represent the eight corners of

a cubic finite element, and the additional 12 nodes are included

in the 20- node element to bisect every two corners. In order to

verify the validity of the proposed finite element formulations,

two examples of axisymmetric micropolar elastic solids are

solved. The axisymmetric examples are deliberately chosen so that

they can be compared with existing two-dimensional analytical

solutions [ 10].

Example 1

This example is to solve a simple tension of cylindrical

Cosserat solids. The 8-node element is used. The finite

element meshes used are depicted in Fig.4.3 and Fig.4.4. The

material parameters are:

Coupling factor N=0.0, 0.25, 0.50, 0.7, 0.9, characteristic

length 1=8.333x10 -3 inch and Poissons ratio=0.3.

(psi), 	 k=0.0 (psi)

(pound)

Dimensions used are: radius R=2 (inches) and length L=2

(inches).
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Fig. 4.1 Eight Node Three-dimensional Element
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Fig. 4.2 Twenty Node Three-dimensional Element
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Fig.4.3. 8-Node Three-dimensional Element for Simple Tension.
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Fig.4.4. 20-Node Three-dimensional Element for Simple Tension
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TABLE 4.1 Numerical results from Fig. 4.3 	
c .p . Analytical solution

numerical results analytical solution
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TABLE 4.2 Numerical results from Fig. 4.4
c.p. Analytical solution

numerical results analytical solution
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The numerical results obtained in this study are summarized in

Table 4.1 and Table 4.2. Also shown in these tables are the

,analytical solutions of the same isotropic micropolar elastics

solids derived by Gauthier:

where A is the area of crossection and Young's modulus and

Poission's ratio are defined by

The significant findings are the following:

1. The numerical results for displacements are identical with

those from the analytical solution. This confirms the validity

of the proposed isoparametric finite element formulation.

2. The displacements are not effected by the coupling factor N.

This indicates that the micropolar effects do not affect the

simple test, meaning that during the simple test, micropolar

effects vanish.

3. The tension stress in the z-direction are found to be equal to

unity everywhere in every element.

Example 2
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(1) The geometry is simple.

(2)The shape function and numerical integration are exact

for lower displacement field.

Example 2

To demonstrate the capability and validity of the proposed

finite element formulation, an isotropic micropolar elastic

cylinder with a semi-circular groove is used as the second

example. To the best of the author's knowledge, this particular

problem has never been solved before, probably due to the

difficulty in obtaining analytical solutions with such a complex

geometry . In the following it is shown that the numerical

results obtained in this study indeed coincides with the

available experimental results when the coupling factor is equal

to zero, i.e., when the micropolar solid reduces to a classical

material.

The isotropic micropolar elastic cylinder with a semi-

circular groove used in this example is shown in Fig.4.5. The

diameter of the cylinder D is fixed to 0.1 inch. The radius

ratio k is defined by k = r/d, where r is the radius of groove,

and d is D - 2r. In this study, k is varied in the range of 0.05

to 0.5. Finite element mesh used for the analysis is shown in

Fig.4.6 for radius ratio k=0.5. The material properties used for

the isotropic case are as listed in Table.4.3. The characteristic

length 1 is fixed to 8.333x10 -3 , and the Poisson ratio of 0.3 is

used. These properties are summarized in Table 4.3.

The numerical results of Kc , or sigma max/sigma nom,
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Table 4.3 Material properties used for the analysis of

isotropic micropolar elasticity

N λ µ κ

0.0 1.000 x 103(psi)
6.895 x 106 (N/m2)

6.666 x 102 (psi)
4.596 x 106 (N/m2)

0.0 	 (psi)
0.0 	 (N/m2)

0.25 1.125 x 104 (psi)

	

7.757 x 107 (N/m2)
7.000 x 10 3 (psi)
4.826 x 10 7 (N/m2)

1.000 x 10 3 (psi)
6.895 x 10 6 (N/m2)

0.50 2.250 x 103(psi)
5.063 x 106 (N/m2)

1.000 x 10 3 (psi)
6.895 x 106 (N/m2)

1.000 x 10 3 (psi)
6.895 x 10 6 (N/m2)

0.75 5.833 x 10 2 (psi)
4.022 x 10 6 (N/m2)

1.111 x 10 2 (psi)
7.660 x 10 6 (N/m2)

1.000 x 103 (psi)
6.895 x 106 (N/m2)

0.90 1.795 x 10 2 (psi)
1.213 x 10 6 (N/m2)

3.827 x 10 2 (psi)
2.639 x 105 (N/m2)

1.000 x 10 3 (psi)
6.895 x 10 6 (N/m2)

N γ α β

0.00 0.185185185 	 (pound) 0.0 	 (pound) 0.0 	 (pound)

0.25 2.083333333 	 (pound) 0.0 	 (pound) 0.0	 (pound)

0.50 0.416666666 	 (pound) 0.0 	 (pound) 0.0	 (pound)

0.75 0.108024691 	 (pound) 0.0	 (pound) 0.0 	 (pound)

0.90 0.032578875 	 (pound) 0.0 	 (pound) 0.0 	 (pound)
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Fig. 4.5 Isotropic Micropolar Elastic Cylinder with Semi-

circular Groove
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Fig.4.6 Finite element meshes
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Table 4.4 Numerical results of stress concentration factor

vs r/d. 	 (

stress )

isotropic for force stress and couple

ratio N=0.90 N=0.75 N=0.50 N=0.25 N=0.00
r/d

0.05 1.75 1.92 2.26 2.58 2.73

0.08 1.65 1.81 2.11 2.40 2.53

0.10 1.60 1.75 2.03 2.28 2.39

0.13 1.53 1.67 1.91 2.13 2.22

0.17 1.47 1.59 1.80 1.98 2.04

0.20 1.43 1.54 1.73 1.88 1.93

0.23 1.40 1.50 1.66 1.79 1.84

0.27 1.36 1.45 1.60 1.70 1.74

0.30 1.33 1.42 1.55 1.65 1.68

0.35 1.28 1.35 1.47 1.56 1.59

0.40 1.25 1.31 1.42 1.49 1.52

0.45 1.23 1.29 1.38 1.44 1.46

0.50 1.20 1.26 1.34 1.40 1.42
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Fig. 4.7 Stress Concentraction Factor, K c for a Round Tension

Bar with a Semi-circular Groove in Three-dimensional

case ( Orthotropic for Force Stress and Couple Stress)



where sigma max is the maximum stress at the groove and sigma

norm is the stress without the groove for different coupling

factor N are listed in Table 4.4. The simulated concentration

factor versus radius ratio with coupling factor as a parameter

are also poltted in Fig.4.7. It can be seen that K c decreeses

monotonically as k increases. The experimental results for the

classical elasticity material done by Peterson [19] are also

plotted in Fig.4.7 with dashed line. The experimental data

concide very well with the numerical results for the case of N =

0.0 in which the micropolar elasticity reduces to classical

elasticity. This fact again confirms the validity of the finite

element formulation.

The numerical results also show that for non-zero N, the

stress concentration factor is reduced, indicating that the

microrotation does affect the stress concentration factor. For a

fixed radius ratio, a larger N results in a smaller stress

concentration factor, suggesting that the microrotation effect

increases when the coupling factor increases. It is also

interesting to note that the effect of coupling factor on K c

decreases at high radius ratio. When the radius ratio becomes

very large, the problem can be treated as a simple test which has

no micropolar effect.
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CHAPTER V

AXISYMMETRIC ELEMENTS

5-1 Introductory Comments

Many engineering problems involve solids of revolution

subjected to axially asymmetric loading. It is therefore

important to consider the asymmetric problems in the micropolar

elasticity. 	 The axisymmetric problems can be transformed to a

two-dimensional plane case and solved by two-dimensional

analytical methods. However, no universal technique is available

for general boundary value problems, making the solutions

procedure tedious. In this chapter it is demonstrated that the

finite element method can overcome these short-comings by

offering a general-purpose numerical solution, thus providing a

powerful technique in solving axisymmetrical problems.

In the following sections, the simplified two-dimensional

strain-displacement relationship for micropolar elasticity of the

axisymmetric case due to axisymmetric load is derived, and then

the isoparametric finite element method is applied to formulate

the simplified strain-displacement relationship. Isoparametric

elements of 4-node and 8-node are used. The programming

organization is then described. The program is also verified by

comparing the numerical results with analytical solutions for

simple tension of cylindrical Cosserat solid and also for stress

concentration of a round bar with semi-circular groove.

5.2 Axisymmetric Micropolar Elasticity

To derive the simplifed two-dimensional strain-displacement
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relationship for micropolar elasticity of the axisymmetric

material properties under axisymmetric loading, one starts with

micropolar strain tensors defined in Equation. 3.11.

This equation was transformed intothe cylindrical

coordinate system (r,o,z) in chapter 4 and had the form:

For the axisymmetric case, dependency on e- vanishes and the

above strain tensors reduce to the following form:

In the case of axisymmetric load, microrotations about r and

z axis vanish, thus Equation (5.1) can be further reduced :
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From now on, the following simplified notations are used.

Thus expression (5.2) becomes

The above kinematical considerations tell one that for

elastic solids under axisymmetric loading, each material point

has only three degrees of freedom, i.e., (u,v,φ), which represent

displacements in the r, and z directions; and microrotation about

0 direction, respectively.

5.3 Axisymmetric Element:

The shape functions for the isoparametric element for four

to nine variable-number-nodes were discussed in chapter 3, and

also shown in Appendix 1. Using those shape functions Ni,

displacement and microrotation field inside each element can be

interpolated:
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Here q is the total number of nodes of the element and q= 4 or 8

For the development of the computer program for micropolar

elasticity, both 4 node- and 8 node-element are used . u i and vi

are nodal displacements along r and z direction, respectively;

is a nodal microrotation about e direction.

By defining the nodal value vector U e :

and each shape function Ni are expressed using natural

coordinate system in each element. The following shape functions

To calculate the derivatives with respect to global

coordinate system, one needs coordinate transformation:
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Here J is the Jacobian matrix and is defined by

thus

By substituting Equations ( 5.5) and (5.6) into strain

displacement equation (5.3), one obtains the following strain-

displacement matrix B o :

57



Similarly for microrotation gradient, one obtains the

following B1 matrix:
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The B o - and B 1 - matrices derived above can be substituted

Into equation (3.29) to obtain the element stiffness matrix k e.

To carry out volume integral of Equation (3.29), numerical

integration of Gaussian quadrature is used in the program. The

sampling points and weighting factors for the interval -1 to +1

are given in Table 2.1.

If body force is neglected, the force vector of equation

(3 .28)) becomes
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Thus

After integration, the nodal forces can be calculated by

the following equations:
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To evalate the element stiffness matrix ke of equation

(3.28), numerical integration can be used:

where tip is the thickness of a portion of axisymmetric element

corresponding to unit radian at each node.

is the weighing factors of Gaussian Quadrature.

5.4 Numerical Examples

To verify the simplified two-dimensional axisymmetrical

finite element formulation and computer program developed in this

chapter, two numerical examples of axisymmetric micropolar

elastic solids used in the previous chapter 4 are solved. The

same examples are chosen in order to facilitate the comparison

between the simplified two-dimensional finite element solutions

obtained in this section and three-dimensional finite element

solutions obtained in Section 4.4 of this study. The results are

also used to compare with the analytical solutions available in

Ref [10]. In addition, a third example with an orthotropic for

force stress but isotropic for couple-stress is also included to

demonstrate the micropolar effects in orthotropic materials.

Example 1

This first example solved is a simple tension of cylindrical

61



Cosserat solids as used in Chapter 4. Both 4- and 8-node

elements are used in this study for comparison. As shown in

Fig.5.1 and Fig.5.2, the four corner nodes in a 8-node element

correspond with the four nodes in a 4-node element. The finite

element meshes used is shown in Fig.5.1 and Fig.5.2. The material

parameter used are: Coupling factor N=0.0, characteristic length

1=8.333x10 -3 inch and Poissons ratio=0.3.

k=0.0 (psi),

Dimensions are: radius R=2 (inches) and length L=2 (inches).

The r- and z-displacements obtained by two-dimensional numerical

simulations in this study are summarized in Table 5.1 and Table

5.2, for the 4- and 8-node rectangular element, respectively.

Again it is found that the displacements are independent of the

coupling factor for axisymmetrical loading. It can also be seen

that the displacements at the four corner nodes of the 8-node

element (Table. 5.2) also coincide with the three-dimensional

simulations obtained with a 20-node three-dimensional element in

the previous chapter( Table 4.2), and the 4-node two-dimensional

results (Table 5.1) coincides with the 8-node three-dimensional

results in Table 4.1. These results also coincide with Gauthier's

analytical solution shown in those tables. All these confirm the

adequacy and validity of the proposed finite element approach.

To confirm the applicability of the proposed finite element

method to an arbitrary geometry, a patch test problem as defined

in Fig.5. 3 for 4-node and 8-node elements, respectively are

performed. Five elements are assembled as shown in Fig.5.3 and

subjected to an axial tension. The boundary conditions are
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Fig. 5.1 4 Node Two-dimensional Element for Simple Tension

63



Fig. 5.2 8 Node Two-dimensional Element for Simple Tension
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TABLE 5.1 Numerical results from case (a)
c.p. Analytical solution

numerical results analytical solution
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TABLE 5.2 Numerical results from case (b)
c.p. Analytical solution

numerical results analytical solution
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Fig. 5.3 Patch Test for 4- and 8- Node Two-dimensional Elements
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TABLE 5.3 Numerical results from case (a)
c.p. Analytical solution

numerical results analytical solution

(1) displacement (inch)
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TABLE 5.3 Numerical results from case (a)
c.p. Analytical solution

numerical results analytical solution
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TABLE 5 .3 Numerical results from case (b)
c.p. Analytical solution

numerical results analytical solution
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specified in Fig. 5.3 the numerical results are summarized in

Table 5.3 and Table 5.4 , for 4-node and 8-node patch elements,

respectively. These results are found to be exactly identical

with those obtained with rectangular element, confirming the

applicability to an arbitrary geometry with the isoparametric

finite element.

Example 2

The second example solved by the simplified two-dimensional

method is an isotropic micropolar elastic cylinder with a semi-

circular groove shown in the inset of Fig.5.4, subjected to an

axisymmetric loading. The same example is solved in Chapter 4 by

three-dimensional method. The material properties and

geometrical dimensions are as given in Table 4.3 . Numerical

results for different coupling factor N are listed in Table 5.4 ,

and ploted in Fig.5.4. Again these results coincide exactly with

the three-dimensional finite element results shown in Table 4.4.

The experiment results from the literature for the classical

material (N=0.0) are also plotted in the same figue which dased

line. One can see excellent agreement.
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Table 5.4 Numerical results of stress concentration factor

vs r/d. ( isotropic for force stress and couple

stress )

ratio
r/d

N=0.90 N=0.75 N=0.50 N=0.25 N=0.00

0.05 1.75 1.92 2.26 2.58 2.73

0.08 1.65 1.81 2.11 2.40 2.53

0.10 1.60 1.75 2.03 2.28 2.39

0.13 1.53 1.67 1.91 2.13 2.22

0.17 1.47 1.59 1.80 1.98 2.04

0.20 1.43 1.54 1.73 1.88 1.93

0.23 1.40 1.50 1.66 1.79 1.84

0.27 1.36 1.45 1.60 1.70 1.74

0.30 1.33 1.42 1.55 1.65 1.68

0.35 1.28 1.35 1.47 1.56 1.59

0.40 1.25 1.31 1.42 1.49 1.52

0.45 1.23 1.29 1.38 1.44 1.46

0.50 1.20 1.26 1.34 1.40 1.42
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Fig. 5.4 Stress Concentraction Factor, Kc for a Round Tension

Bar with a Semi-circular Groove in Three-dimensional

case ( Orthotropic for Force Stress and Couple Stress)



Example 3

The finite element method is applied to solve a micropolar

elastic solid with an orthotropic for force stress but isotropic

for couple-stress. The geometry and loading conditions are the

same as in example 2. To generate the new material properties,

classical technical constant of graphite-epoxy composite is

chosen.

Based on these classical material properties, some of the

material parameters for force stress are chosen as:

and the rest are list in Table 5.5 for different coupling factor

N. Parameters for couple stress are fixed to

That is, the characteristic length is fixed to 8.333x10 3

in. for all N.

The numerical results are summarized in Table 5.6 and also

plotted in Fig.5.5. It is shown that as the radius ratio

increase the stress concentration factor decrease, a similar

trend as found in isotropic cases. However, the stress
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Table 5.5 SOME OF MATERIALS PARAMETERS TO FORCE STRESS

OF ANISOTROPIC MATERIALS



Table 5.6 Numerical results of stress concentration factor

vs r/d. ( othotropic for force stress isotropic

isotropic for couple stress )

ratio
r/d

N=0.90 N=0.75 N=0.50 N=0.25 N=0.00

0.05 1.77 1.90 2.24 3.10 3.73

0.08 1.67 1.81 2.14 3.08 3.81

0.10 1.62 1.76 2.08 3.02 3.79

0.17 1.48 1.61 1.89 2.77 3.59

0.23 1.40 1.51 1.77 2.58 3.35

0.30 1.34 1.43 1.66 2.38 3.06

0.40 1.27 1.35 1.55 2.15 2.68

0.50 1.23 1.30 1.46 1.97 2.36

76



Fig. 5.5 Stress Concentraction Factor, K c for a Round Tension

Bar with a Semi-circular Groove in Two-dimensional

case. ( Orthotropic for Force Stress but Isotropic for

Couple Stress)



concentraction factor for a fixed N are higher than that in the

isotropic cases.
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CHAPTER VI

CONCLUSION

6.1 Concluding Remarks

In this study isoparametric finite element method for

isotropic and orthotropic axisymmetric micropolar (Cosserat)

elastic solids was developed. Both 8- and 20-node elements were

employed for solving general three-dimensional problems, and both

4- and 8-node elements were used for two-dimensional cases. Both

three-dimensional and two-dimensional finite element formulation

for cylindrical coordinate system were obtained. Corresponding

Fortran programs were developed to solve several two-dimensional

and three-dimensional problems for micropolar elastics solids.

The validity and compatibility of the developed three-

dimensional finite element programs were established by comparing

the numerical results with available analytical solutions for a

cylindrical Cosserat solid subjected to a simple tension. The

numerical results for displacements were found to be identical

with the analytical solutions, and the displacements was

independent of the coupling factor. The flexibility and

capability of the three-dimensional finite element method are

then demonstrated by solving the stress concentration for a

classical round tension bar with a semi-circular groove subjected

to an axial symmetrical load. For the first time, to the best

of the author's knowledge, the effects of various coupling factor

on stress concentration factor were obtained for the micropolar

round tension bar with a semi-circular groove subjected to an
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axial symmetrical load. The stress concentration factor on the

micropolar elastic solids was smaller than that in classical

elastic solids for the same radius ratio. The stress

concentration factor was also found to decrease monotonically as

radius ratio increases. Again the validity and compatibility

are confirmed by the excellent fit between the available

experimental data for classical materials and the numerical

results at zero coupling factor, as microelasticity reduces to a

classical case when the coupling factor N is equal to zero. In

the classical case, the effects of microrotation is vanished.

The three-dimensional finite element formulations can be

simplified to a two-dimensional formulation in the case of an

asymmetric object when subjected to an axisymmetric load, and can

result in significant savings in CPU time. The simplified two-

dimensional programs with both 4- and 8-node elements are first

applied to solve the simple tension of a cylindrical Cosserat

solid, - which has also been solved by the three-dimensional

programs in this study. It is found that the displacements at

the four corner-nodes of the 8-node element coincides exactly

with those obtained by the 4-node element, indicating the

adequacy of the 4-node element approach, which is more economic

in CPU time. In addition, the 8-node two-dimensional simulation

results are also identical with the three-dimensional simulation

results obtained with a 20-node three-dimensional element in this

study; and the 4-node two-dimensional numerical results are

identical with those with 8-node three-dimensional results in

this study.
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The simplified programs are also applied to solve a

micropolar elastic solid with a semi-circular-groove subjecting

to an axial symmetrical loading. Again the results coincide

exactly with the three-dimensional finite element results, as

well as the experimental data for the special case when the

coupling factor is reduced to zero. The applicability of the

proposed finite element method to an arbitrary geometry is also

verified by the patch tests performed on a two-dimensional

example. The results are found to be exactly identical with

those obtained with the rectangular elements. Finally, the

developed two-dimensional finite element formulation is applied

to investigate the dependency of material properties for a

material with an orthotropic for stress but isotropic for couple

stress. It was verified that the new material depicts a similar

trend as the isotropic material with the stress concentration

factor decreases with increasing radius ratio. However, the

stress concentration factor is larger for any particular coupling

factor.

6.2 Future Study

Another interesting topic is the boundary value problem for

the stress concentration at spherical cavity in a field of

isotropic tension. This is solved by Bleustein [20] using the

theory developed by Mindlin. It is found that the stress

concentration factor is larger than the 3/2 of classical

elasticity for a wide range of material properties and ratio of

radius of cavity to a length parameter of the material with a

critical ratio, nearly independent of the remaining material
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properties, for which the stress concentration factor is a

maximum. Bleustein found that for the classical theory of

elasticity the stress concentration factor is a constant,

independent of material properties and the radius of cavity.

However, the solution obtained by the theory of micropolar

elasticity shows a stress concentration factor which depends on

both material properties and radius. The stress concentration

factor is higher than the classical value of 3/2. It is

generally true that when the micropolar behavior is considered

stress concentration factor becomes smaller than the classical

elasticity. Therefore identifying the condition under which the

stress concentration factor is larger than the classical

elasticity is an interesting future study.
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APPENDIX I

Interpolation Functions of Four to Eight Variable -

Number-Nodes Two-Dimensional Element

(a) Four to 8 variable-number-nodes two-dimensional element

Include only if node is defined
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APPENDIX II Program Listing for Two and Three-
dimensional Isoparametric Finite Elements

C 	 3-D MICROPOLAR FINITE ELEMENT METHOD
C

IMPLICIT REAL*8(A-H2O-Z)
INTEGER*4 ITIM
INTEGER*2 TYPE,CODE
COMMON/B01/B0(200,9,48),B1(200,9,48),INXY(200),ID(300)
COMMON/XYZ/NNP(200,8),X(300),Y(300),Z(300)
COMMON/CSTRN/KSTRN(1000),KSTRT(1000)
COMMON/MAT/D0(9,9),D1(9,9),A11,Al2,A22,A23,811
COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET
COMMON/FSK/A(350000) ,V(1800) ,EK(48,48) ,MAXA(1801) ,NEIRE
READ(5,100) NE

100 FORMAT(I4)
DO 10 N=1,NE
READ(5,200) (NNP(N,I),I=1,8),INXY(N)

200 FORMAT(4X,8I4,3X,I5)
10 CONTINUE

READ(5,100) NN
DO 20 N=1,NN
READ(5,300) X(N),Y(N),Z(N)

20 CONTINUE
300 FORMAT(4X,3F20.10)

READ(5,100) NC
DO 30 N=1,NC
READ(5,400) KSTRN(N),KSTRT(N)

400 FORMAT(4X,I4,i7)
30 CONTINUE

READ(5,550)NINT
550 FORMAT(I5)

READ(5,600)A11,Al2,A22,A23,B11
600 	 FORMAT(5E20.7)

WRITE(6,610)A11,Al2,A22,A23,B11
610 	 FORMAT(2X,'A11=',E20.7,°Al2=',E20.7,1A22=1,

*E20.7,'A23=',E20.7,'B11=',E20.7)
ND=NN*6
NB=0
DO 40 IB=1,NE
IMAX=MAXO(NNP(IB,1),NNP(IB,2),NNP(IB,3),NNP(IB,4),NNP(IB,5),
*NNP(IB,6),NNP(IB,7),NNP(IB,8))
IMIN=MINO(NNP(IB,1),NNP(IB,2),NNP(IB,3),NNP(IB,4),NNP(IB,5),
*NNP(IB,6),NNP(IB,7),NNP(IB,8))
NBCHEK=(IMAX-IMIN+1)*6
IF(NBCHEK.GT.NB) NB=NBCHEK
IF(NB .GT. 300) GO TO 99

40 CONTINUE
SCALE=1.0D0
DO 41 I=1,NN
X(I)=X(I) *SCALE
Y(I)=Y(I) *SCALE

41 Z(I)=Z(I)*SCALE
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WRITE(6,700)
700 FORMAT(1H1)

WRITE(6,800)
800 FoRmAT(3x,1*****************************************************1
****************1)
WRITE(6,900)

900 FORMAT(3X,'*',68X,'*')
WRITE(6,1000)

1000 FORMAT(3X,140,13X,'3-D ORTHOTROPIC MICROPOLAR STRESS ANALYSIS',
13X,'*')

WRITE(6,1050)
1050 FORMAT(3X,'*',28X,' SKYLINEMICRO',27X,'*')

WRITE(6,900)
WRITE(6,800)
WRITE(6,1100)

1100 FORMAT(/20X,'**** DISCRETIZATION NUMBER ****')
WRITE(6,1200)

1200 FORMAT(/13X,'ELEMT.#'13X,'NODES.P,3X,'CONSTR.#1,3X,'THIKNES',
3X,'BAND-WIDTH',3X,'GAUSS NUMERICAL INTEGRATION ORDER')

WRITE(6,1300) NE,NN,NC,TH,NB,NINT
1300 FORMAT(13X,I4,7X,I3,7X,I3,5X,E10.3,5X,I5,19X,I2)

WRITE(6,1700)
1700 FORMAT(//21X,'**** ELEMENT-NODE CONNECTION ****')

WRITE(6,1800)
1800 FORMAT(/3X,IELM NP1 NP2 NP3 NP4 NP5 NP6 NP7 NP8 	 IXY ELM

* NP1 NP2 NP3 NP4 NP5 NP6 NP7 NP8 	 IXY')
DO 45 I=1,NE

45 ID(I)=I
LINE=NE/2
IRESID=NE-2*LINE
DO 50 N=1,LINE

50 WRITE(6,1900) (ID(2*(N-1)+I),NNP(2*(N-1)+I,1),NNP(2*(N-1)+I,2),
*NNP(2*(N-1)+I,3),NNP(2*(N-1)+I,4),NNP(2*(N-1)+I,5),
*NNP(2*(N-1)+I,6),NNP(2*(N-1)+I,7),NNP(2*(N-1)+I,8),
*INXY(2*(N-1)+I),I=1,2)

1900 FORMAT(2(2X,I4,1X,I3,1X,I3,1X,I3,1X,I3,1X,I3,1X,I3,1X,I3,1X,I3,
*1X,I6))
IF(IRESID .EQ. 0) GO TO 56
WRITE(6,1900) (ID(2*LINE+I),NNP(2*LINE+I,1),NNP(2*LINE+I,2),
*NNP(2*LINE+I,3),NNP(2*LINE+I,4),NNP(2*LINE+I,5),NNP(2*LINE+I,6),
*NNP(2*LINE+I,7),NNP(2*LINE+I,8),INXY(2*LINE+I),I=1,IRESID)

56 WRITE(6,2000)
2000 FORMAT(//24X,'**** NODAL COORDINATE ****')

WRITE(6,2100)
2100 FORMAT(/1X,'NODE1,5X,1X1,8X,'Y',8X,1Z1,4X,INODE1,5X,IX1,8X,IYI,

* 8X,'Z',4X,'NODE',5X,'X',8X,'Y',8X,'Z',4X,'NODE',5X,'X',
* 8X,'Y',8X,'Z')
DO 55 I=1,NN

55 ID(I)=I
LINE=NN/4
IRESID=NN-4*LINE
DO 60 N=1,LINE

60 WRITE(6,2200) (ID(4*(N-1)+I),X(4*(N-1)+I),Y(4*(N-1)+I),
* Z(4*(N-1)+I),I=1,4)
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2200 FORMAT(4(2X,I3,1X,F8.3,1X,F8.3,1X,F8.3))
IF(IRESID .EQ. 0) GO TO 57
WRITE(6,2200) (ID(4*LINE+I),X(4*LINE+I),Y(4*LINE+I),
* Z(4*LINE+I),I=1,IRESID)

57 WRITE(6,2300)
2300 FORMAT(//27X,'**** CONSTRAINT ****')

WRITE(6,2400)
2400 FORMAT(/24X,ICNSTRND-NODE',2X,'CNSTRND-CODE')

WRITE(6,2500) (KSTRN(N),KSTRT(N),N=1,NC)
2500 FORMAT(28X,I3,10X,I6)

CALL STSTIF
CALL LOADER
CALL COLSOL
CALL STRESS

99 WRITE(6,999) NB,IB
999 FORMAT('*****STOP NB=',I5,' AT ELEMENT=',I5)

STOP
END

C ********************************************************************
C *

SUBROUTINE STSTIF
C *

C **********************************************************************
IMPLICIT REAL*8(A-H2O-Z)
COMMON/CSTRN/KSTRN(1000),KSTRT(1000)
COMMON/XYZ/NNP(200,8),X(300),Y(300),Z(300)
COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET
COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE
DIMENSION MHT(1800)
NBND=NB*ND
DO 10 I=1,NBND

10 	 A(I)=0.0D0
DO 20 NEIRE=1,NE

CALL ELSTIF
DO 20 INC=1,8
INOC=NNP(NEIRE,INC)
IBC=(NNP(NEIRE,INC)-1)*6
DO 20 IDC=1,6
ICEL=(INC-1)*6+IDC
ICST=IBC+IDC
IDI=0
IF(ICST.GT.NB)IDI=ICST-NB
IVC=(ICST-1)*NB
DO 18 INR=1,8
INOR=NNP(NEIRE,INR)
IF(INOC.LT.INOR)G0 TO 18
IBR=(NNP(NEIRE,INR)-1)*6
IDVC=IDC
IF(INOC.GT.INOR) IDVC=6
DO 15 IDR=1,IDVC
IREL=(INR-1)*6+IDR
IVV=IVC+IBR+IDR-IDI
SS=A(IVV)+EK(IREL, ICEL)

15 	 A(IVV)=SS
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18 	 CONTINUE
20 	 CONTINUE

DO 140 N=1,NC
IRCX=KSTRN(N)*6-5
IRCY=KSTRN(N)*6-4
IRCZ=KSTRN(N)*6-3
IRCRX=KSTRN(N)*6-2
IRCRY=KSTRN(N)*6-1
IRCRZ=KSTRN(N)*6
KCHK=KSTRT(N)
IF(KCHK.LT.100000) GO TO 40
ICB=ND-IRCX+1
IF(ICB.GT.NB)ICB=NB
DO 35 I=1,ICB
IDI=0
IRCXX=IRCX+I-1
IF(IRCXX.GT.NB)IDI=IRCXX-NB
IXV=(IRCX-2+I)*NB+IRCX-IDI
IF(I.EQ.1)GO TO 25
A(IXV)=0.0D0
GO TO 35

25 	 A(IXV)=1.0D0
IF(IRCX.EQ.1)G0 TO 35
DO 30 J=1,IRCX-IDI-1
IXXV=IXV-J

30 	 A(IXXV)=0.0D0
35 	 CONTINUE

KCHK=KCHK-100000
40

	

	 IF(KCHK.LT.010000) GO TO 60
ICB=ND-IRCY+1
IF
DO 55 I=1,ICB
IDI=0
IRCYY=IRCY+I-1
IF(IRCYY.GT.NB)IDI=IRCYY-NB
IYV=(IRCY-2+I)*NB+IRCY-IDI
IF(I.EQ.1)GO TO 45
A(IYV)=0.0D0
GO TO 55

45 	 A(IYV)=1.0D0
IF(IRCY.EQ.1)GO TO 55
DO 50 J=1,IRCY-IDI-1
IYYV=IYV-J

50 	 A(IYYV)=0.0D0
55 	 CONTINUE

KCHK=KCHK-10000
60 	 IF(KCHK.LT.001000) GO TO 80

ICB=ND-IRCZ+1
IF(ICB.GT.NB)ICB=NB
DO 75 I=1,ICB
IDI=0
IRCZZ=IRCZ+I-1
IF(IRCZZ.GT.NB)IDI=IRCZZ-NB
IZV=(IRCZ-2+I)*NB+IRCZ-IDI
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IF(I.EQ.1)G0 TO 65
A(IZV)=0.0D0
GO TO 75

65 	 A(IZV)=1.0D0
IF(IRCZ.EQ.1)G0 TO 75
DO 70 J=1,IRCZ-IDI-1
IZZV=IZV-J

70 	 A(IZZV)=0.0D0
75 	 CONTINUE

KCHK=KCHK-1000
80

	

	 IF(KCHK.LT.000100) GO TO 100
ICB=ND-IRCRX+1
IF
DO 95 I=1,ICB
IDI=0
IRCRXX=IRCRX+I-1
IF(IRCRXX.GT.NB)IDI=IRCRXX-NB
IRXV=(IRCRX-2+I)*NB+IRCRX-IDI
IF(I.EQ.1)GO TO 85
A(IRXV)=0.0D0
GO TO 95

85 	 A(IRXV)=1.0D0
IF(IRCRX.EQ.1)GO TO 95
DO 90 J=1,IRCRX-IDI-1
IRXXV=IRXV-J

90 	 A(IRXXV)=0.0D0
95 	 CONTINUE

KCHK=KCHK-100
100 	 IF(KCHK.LT.000010) GO TO 120

ICB=ND-IRCRY+1
IF(ICB.GT.NB)ICB=NB
DO 115 I=1,ICB
IDI=0
IRCRYY=IRCRY+I-1
IF(IRCRYY.GT.NB)IDI=IRCRYY-NB
IRYV=(IRCRY-2+I)*NB+IRCRY-IDI
IF(I.EQ.1)G0 TO 105
A(IRYV)=0.0D0
GO TO 115

105 	 A(IRYV)=1.0D0
IF(IRCRY.EQ.1)GO TO 115
DO 110 J=1,IRCRY-IDI-1
IRYYV=IRYV-J

110 	 A(IRYYV)=0.0D0
115 	 CONTINUE

KCHK=KCHK-10
120 	 IF(KCHK.LT.000001) GO TO 140

ICB=ND-IRCRZ+1
IF
DO 135 I=1,ICB
IDI=0
IRCRZZ=IRCRZ+I-1
IF(IRCRZZ.GT.NB)IDI=IRCRZZ-NB
IRZV=(IRCRZ-2+I)*NB+IRCRZ-IDI
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IF(I.EQ.1)GO TO 125
A(IRZV)=0.ODO

GO TO 135
125  A(IRZV)=1.ODO

IF(IRCRZ.EQ.1)GO TO 135
DO 130 J=1,IRCRZ-IDI-1
IRZZV=IRZV-J

130  A(IRZZV)=0.ODO
135  CONTINUE
140  CONTINUE

DO 160 I=1,ND
IDI=0
IF(I.GT.NB)IDI=I-NB
IIV=(I-1)*NB
DO 150 J=1,I
IF(A(IIV+J).EQ.0.ODO)GO TO 150
MHT(I)=I-J-IDI
GO TO 160

150  CONTINUE
160  CONTINUE

NM=ND+1
DO 170 I=1,NM

170  MAXA(I)=0
MAXA(1)=1
MAXA(2)=2
IF(ND.EQ.1)GO TO 190
DO 180 I=2,ND

180  MAXA(I+1)=MAXA(I)+MHT(I)+1
190  NWK=MAXA(ND+1) -11AXA(1)

IAN=0

DO 200 I=1,ND
ICK=MAXA(I+1)-MAXA(I)

IDI=0
IF(I.GT.NB)IDI=I-NB
INBB=(I-1)*NB+I-IDI
DO 200 II=1,ICK
IAN=IAN+1
IAV=INBB-II+1
A(IAN)=A(IAV)

200  CONTINUE
DO 210 I=NWK+1,NBND

210  A(I)=0.ODO
RETURN

END
C **********************************************************************

C *                                                                    *
SUBROUTINE ELSTIF

C * 	 *
C **********************************************************************

IMPLICIT REAL*8 (A-H, O-Z )
COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE
COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET
COMMON/B01/B0(200,9,48),B1(20O,9,48),INXY(200),ID(300)
COMMON/XYZ/NNP(20O,8),X(300),Y(300),Z(300)
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COMMON/MAT/D0(9,9),D1(9,9),A11,Al2,A22,A23,B11
DIMENSION XG(4,4),WGT(4,4),DOBO(9),D1B1(9)
COMMON V1(100)
COMMON H(8)
DATA XG/0.01)0,0.ODO,0.0D0,0.01)0,-.57735026918961)0,
*.5773502691896D0,0.0D0,0.0DO,-.7745966692415DO,
*0.0D0,.7745966692415D0,0.ODO,-.8611363115941DO,
*-.3399810435849D0,.3399810435849D0,.8611363115941DO/
DATA WGT/2.0D0,0.0D0,0.0D0,0.0D0,1.0D0,1.0D0,0.0D0,
*0.01)0,.5555555555556D0,.88888888888891)0,
*.5555555555556D0,0.0D0,.34785484513751)0,
*.6521451548625D0,.6521451548625D0,
*.3478548451375D0/
D0 43 1=1,9
D0 43 J=1,9
D0(I,J)=O.ODO

43    D1(I,J)=0.0D0
D0(1,1)=A11
D0(1,2)=A12
D0(1,3)=A12
D0(2,1)=A12
D0(2,2)=A11
D0(2,3)=A12
D0(3,1)=A12
D0(3,2)=A12
D0(3,3)=A11
D0(4,4)=A22
D0(4,5)=A23
D0(5,4)=A23
D0(5,5)=A22
D0(6,6)=A22
D0(6,7)=A23
D0(7,6) =A23
D0(7,7)=A22
D0(8,8)=A22
D0(8,9)=A23
D0(9,8)=A23
D0(9,9)=A22
D046 1=1,9
D1(I,I)=B11

46    CONTINUE
DO 39 1=1,8
V(I)=0.OD0

39    CONTINUE
DO 83 LX=1,NINT
R=XG(LX,NINT)
DO 83 LY=1,NINT
S=XG(LY,NINT)
T=1.0D0
CALL STDM
WS=WGT(LX,NINT)*WGT(LY,NINT)*DET
DO 89 1=1,8
V1(I)=V1(I)+H(I)*WS
dO 199 J=1,8
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WRITE(6,99)V1(J)
99 	 FORMAT(2X,F15.7)
199 	 CONTINUE

89 	 CONTINUE
83 	 CONTINUE

DO 30 1=1,48
DO 30 J=1,48

30

	

	 EK(I,J)=0.0D0
DO 80 LX=1,NINT
R=XG(LX,NINT)
DO 80 LY=1,NINT
S=XG(LY,NINT)
DO 80 LZ=1,NINT
T=XG(LZ,NINT)
CALL STDM
WT=WGT(LX,NINT)*WGT(LY,NINT)*WGT(LZ,NINT)*DET
DO 70 J=1,48
DO 40 K=1,9
DOBO(K)=0.0D0
D1B1(K)=0.0D0
DO 40 L=1,9
DOBO(K)=DOBO(K)+DO(K,L)*B0(NEIRE,L,J)

40 	 D1B1(K)=D1B1(K)+Dl(K,L)*B1(NEIRE,L,J)
DO 60 I=J,48
STIFF=0.0D0
DO 50 L=1,9

50 	 STIFF=STIFF+BO(NEIRE,L,I)*DOBO(L)+Bl(NEIRE,L,I)*D1B1(L)
60 	 EK(I,J)=EK(I,J)+STIFF*WT
70 	 CONTINUE
80 	 CONTINUE

DO 90 J=1,48
DO 90 1=3,48

90 	 EK(J,I)=EK(I,J)
IF(INXY(NEIRE).EQ.00001)GO TO 100
IF(INXY(NEIRE).EQ.00010)G0 TO 110
IF(INXY(NEIRE).EQ.00011)GO TO 120
IF(INXY(NEIRE).EQ.00100)G0 TO 130
IF(INXY(NEIRE).EQ.00101)G0 TO 140
IF(INXY(NEIRE).EQ.00110)G0 TO 150
IF(INXY(NEIRE).EQ.00111)G0 TO 160
IF(INXY(NEIRE).EQ.O1000)GO TO 170
IF(INXY(NEIRE).EQ.01001)G0 TO 180
IF(INXY(NEIRE).EQ.01010)GO TO 190
IF(INXY(NEIRE).EQ.01011)G0 TO 200
IF(INXY(NEIRE).EQ.01100)G0 TO 210
IF(INXY(NEIRE).EQ.01101)C0 TO 220
IF(INXY(NEIRE).EQ.01110)G0 TO 230
IF(INXY(NEIRE).EQ.01111)G0 TO 240
IF(INXY(NEIRE).EQ.10000)G0 TO 250
IF(INXY(NEIRE).EQ.10001)GO TO 260
IF(INXY(NEIRE).EQ.10010)G0 TO 270
IF(INXY(NEIRE).EQ.10011)GO TO 280
IF(INXY(NEIRE).EQ.10100)GO TO 290
R= 0.0D0
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S= 0.0D0
T= 0.OD0
GO TO 300

100 R= 1.0DO
S= 1.OD0
T= 1.0D0
GO TO 300

110 R=-1.0D0
S= 1.0D0
T= 1.0D0
GO TO 300

120 R=-1.0D0
S=-1. 0D0
T= 1.0DO
GO TO 300

130 R= 1.0D0
S=-1.0D0
T= 1.0D0
GO TO 300

140 R= 1.0D0
S= 1.0D0
T=-1.OD0
GO TO 300

150 R=-1.0D0
S= 1.0D0
T=-1.OD0
GO TO 300

160 R=-1.0D0
S=-1.0D0
T=-1.OD0
GO TO 300

170 R= 1.0D0
S=-1.0D0
T=-1.0D0
GO TO 300

180 R= 0.0D0
S= 1.0D0
T= 1.0D0
GO TO 300

190 R=-1.0D0
S= 0.0D0
T= 1.0D0
GO TO 300

200 R= 0.0D0
S=-1.0D0
T= 1.0D0
GO TO 300

210 R= 1.0D0
S= 0.0D0
T= 1.0D0
GO TO 300

220 R= 0.0D0
S= 1.0D0
T=-1.0DO
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GO TO 300
230 R=-1.0D0

5= 0.0D0
T=-1.0D0
GO TO 300

240 R= 0.0D0
S=-1.0D0
T=-1.0D0
GO TO 300

250 R= 1.0D0
S= 0.0D0
T=-1.OD0
GO TO 300

260 R= 1.OD0
S= 1.OD0
T= 0.0D0
GO TO 300

270 R=-1.0D0
S= 1.0D0
T= 0.0D0
GO TO 300

280 R=-1.0D0
S=-1. 0D0
T= 0.0D0
GO TO 300

290 R= 1.0D0
S=-1.0D0
T= 0.0D0

300 CALL STDM
RETURN
END

C ********************************************************************
C

SUBROUTINE STDM
C *
C **********************************************************************

IMPLICIT REAL*8(A-H2O-Z)
COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE
COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET
COMMON/B01/B0(200,9,48) ,B1(200,9,48) ,INXY(200) ,ID(300)
COMMON/XYZ/NNP(200,8),X(300),Y(300),Z(300)
DIMENSION P(8,3),XYZ(8,3),XJ(3,3),XJI(3,3)
COMMON H(8)
I=NNP(NEIRE,1)
J=NNP(NEIRE,2)
K=NNP(NEIRE,3)
L=NNP(NEIRE,4)
IJ=NNP(NEIRE,5)
JK=NNP(NEIRE,6)
KL=NNP(NEIRE,7)
LI=NNP(NEIRE,8)
XYZ(1,1)=X( I)
XYZ(2,1)=X( J)
XYZ(3,1)=X( K)
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XYZ(4,1)=X( L)
XYZ(5,1)=X(IJ)
XYZ(6,1)=X(JK)
XYZ(7,1)=X(KL)
XYZ(8,1)=X(LI)
XYZ(1,2)=Y( I)
XYZ(2,2)=Y( J)
XYZ(3,2)=Y( K)
XYZ(4,2)=Y( L)
XYZ(5,2)=Y(IJ)
XYZ(6,2)=Y(JK)
XYZ(7,2)=Y(KL)
XYZ(8,2)=Y(LI)
XYZ(1,3)=Z( I)
XYZ(2,3)=Z( J)
XYZ(3,3)=Z( K)
XYZ(4,3)=Z( L)
XYZ(5,3)=Z(IJ)
XYZ(6,3)=Z(JK)
XYZ(7,3)=Z(KL)
XYZ(8,3)=Z(LI)
RP=1.0DO+R
RM=1.0DO-R
SP=1.0DO+S
SM=1.0DO-S
TP=1.0DO+T
TM=1.0DO-T
H(7)= 0.125D0*RP*SP*TP
H(8)= 0.125D0*RM*SP*TP
H(5)= 0.125D0*RM*SM*TP
H(6)= 0.125D0*RP*SM*TP
H(3)= 0.125D0*RP*SP*TM
H(4)= 0.125D0*RM*SP*TM
H(1)= 0.125D0*RM*SM*TM
H(2)= 0.125D0*RP*SM*TM
P( 7,1)= 0.125D0*SP*TP
P( 8,1)=-0.125DO*SP*TP
P( 5,1)=-0.125D0*SM*TP
P( 6,1)= 0.125D0*SM*TP
P( 3,1)= 0.125D0*SP*TM
P( 4,1)=-0.125D0*SP*TM
P( 1,1)=-0.125D0*SM*TM
P( 2,1)= 0.125D0*SM*TM
P( 7,2)= 0.125D0*RP*TP
P( 8,2)= 0.125DO*RM*TP
P( 5,2)=-0.125D0*RM*TP
P( 6,2)=-0.125DO*RP*TP
P( 3,2 = 0.125D0*RP*TM
P( 4,2)= 0.125D0*RM*TM
P( 1,2)=-0.125D0*RM*TM
P( 2,2)=-0.125D0*RP*TM
P( 7,3)= 0.125D0*RP*SP
P( 8,3)= 0.125D0*RM*SP
P( 5,3)= 0.125D0*RM*SM
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P( 6,3) = 0.125D0*RP*SM
P( 3,3) = -0.125D0*RP*SP
P( 4,3) = -0.125D0*RM*SP
P( 1,3) = -0.125D0*RM*SM

P( 2,3) = -0.125D0*RP*SM
DO 30 1=1,3
DO 30 J=1,3
DUM= 0.0D0
DO 20 K=1,8

20 	 DUM=DUM+P(K,I)*XYZ(K,J)
30 	 XJ (I,J)=DUM

DET=XJ(1,1)*XJ(2,2)*XJ(3,3).+XJ(1,3)*XJ(2,1)*XJ(3,2)
*+XJ(1,2)*XJ(2,3)*XJ(3,1)
*-XJ(1,3)*XJ(2,2)*XJ(3,1)-XJ(1,2)*XJ(2,1)*XJ(3,3)
*-XJ(1,1)*XJ(2,3)*XJ(3,2)
IF(DET.GT.1.OD-14) GO TO 40
WRITE(6,1000)DET

1000 FORMAT(5X,1DET= ',E14.7//)
WRITE (6,2000) NEIRE

2000 FORMAT(3X,'*** ERROR, ZERO OR NEGATIVE JACOBIAN
* DETERMINANT AT ELEMENT=',I4)
STOP

40 	 DUM=1.0DO/DET
XJI(1,1)= (XJ(2,2)*XJ(3,3)-XJ(2,3)*XJ(3,2))*DUM
XJI(2,1)=-(XJ(2,1)*XJ(3,3)-XJ(2,3)*XJ(3,1))*DUM
XJI(3,1)= (XJ(2,1)*XJ(3,2)-XJ(2,2)*XJ(3,1))*DUM
XJI(1,2)=-(XJ(1,2)*XJ(3,3)-XJ(1,3)*XJ(3,2))*DUM
XJI(2,2)= (XJ(1,1)*XJ(3,3)-XJ(1,3)*XJ(3,1))*DUM
XJI(3,2)=-(XJ(1,1)*XJ(3,2)-XJ(1,2)*XJ(3,1))*DUM
XJI(1,3)= (XJ(1,2)*XJ(2,3)-XJ(1,3)*XJ(2,2))*DUM
XJI(2,3)=-(XJ(1,1)*XJ(2,3)-XJ(1,3)*XJ(2,1))*DUM
XJI(3,3)= (XJ(1,1)*XJ(2,2)-XJ(1,2)*XJ(2,1))*DUMTH=0.OD0

DO 49 K=1,8
TH=TH+H(K)*XYZ(K,1)

49 	 CONTINUE
DO 50 1=1,9
DO 50 J=1,48
B0(NEIRE,I,J)=0.0D0

50 	 B1(NEIRE,I,J)=0.0D0
K6=0
DO 65 K=1,8
K6=K6+6

B0(NEIRE,4,K6)=-H(K)
B0(NEIRE,5,K6)=H(K)

B0(NEIRE,6,K6-1)=H(K)
B0(NEIRE,7,K6-1)=-H(K)
B0(NEIRE,8,K6-2)=-H(K)
B0(NEIRE,9,K6-2)=H(K)
B0(NEIRE,2,K6-5)=H(K)/TH
B0(NEIRE,5,K6-4)=-H(K)/TH
B1(NEIRE,2,K6-2)=H(X)/TH
B1(NEIRE,5,K6-1)=-H(K)/TH
DO 64 1=1,3
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BO(NEIRE,1,K6-5)=B0(NEIRE,1,K6-5)+XJI(1,I)*P(K,I)
130(NEIRE,3,K6-3)=B0(NEIRE,3,K6-3)+XJI(3,I)*P(K,I)
BO(NEIRE,4,K6-4)=B0(NEIRE,4,K6-4)+XJI(1,I)*P(K,I)
BO(NEIRE,6,K6-3)=B0(NEIRE,6,K6-3)+XJI(1,I)*P(K,I)
BO(NEIRE,7,K6-5)=B0(NEIRE,7,K6-5)+XJI(3,I)*P(K,I)
BO(NEIRE,9,K6-4)=B0(NEIRE,9,K6-4)+XJI(3,I)*P(K,I)
BO(NEIRE,2,K6-4)=B0(NEIRE,2,K6-4)+XJI(2,I)*P(K,I)
BO(NEIRE,5,K6-5)=B0(NEIRE,5,K6-5)+XJI(2,I)*P(K,I)
BO(NEIRE,8,K6-3)=B0(NEIRE,8,K6-3)+XJI(2,I)*P(K,I)
B1(NEIRE,1,K6-2)=B1(NEIRE,1,K6-2)+XJI(1,I)*P(K,I)
B1(NEIRE,2,K6-1)=B1(NEIRE,2,K6-1)+XJI(2,I)*P(K,I)
B1(NEIRE,3,K6)=B1(NEIRE,2,K6)+XJI(3,I)*P(E,I)
B1(NEIRE,4,K6-1)=B1(NEIRE,4,K6-1)+XJI(1,I)*P(K,I)
Bl(NEIRE,5,K6-2)=B1(NEIRE,5,K6-2)+XJI(2,I)*P(K,I)
Bl(NEIRE,6,K6)=B1(NEIRE,6,K6)+XJI(1,I)*P(K,I)
B1(NEIRE,7,K6-2)=B1(NEIRE,7,K6-2)+XJI(3,1)*P(K,I)
B1(NEIRE,8,K6)=B1(NEIRE,8,K6)+XJI(2,I)*P(K,I)
B1(NEIRE,9,K6-1)=B1(NEIRE,9,K6-1)+XJI(3,I)*P(K,I)

64 	 CONTINUE
65 	 CONTINUE

RETURN
END

C ********************************************************************
C *

SUBROUTINE LOADER
C
C **********************************************************************

IMPLICIT REAL*8(A-H,O-Z)
COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET
COMMON/FSK/A(350000) ,V(1800) ,EK(48,48) ,MAXA(1801) ,NEIRE
COMMON V1(100)
DO 10 LO=1,ND

10 V(L0)=0.OD0
SCALE=1.0D0

WRITE(6,1000)
1000 FORMAT(//34X,'**** EXTERNAL LOAD *****)

WRITE(6,2000)
2000 FORMAT(/1X,'NODE',8X,'X-FORCE',8X,'Y-FORCE',8X,'Z-FORCE',

8X,'X-MOMNT',8X,'Y-MOMNT',8X,'Z-MOMNT')

IND=0
DO 20 N=1,ND,6
IND=IND+ 1
CHECK= DABS(V(N))+DABS(V(N+1))+DABS(V(N+2))

1

	

	 +DABS(V(N+3))+DABS(V(N+4))+DABS(V(N+5))
IF(CHECK .EQ. O.0D0) GO TO 20
WRITE(6,3000) (IND,V(N),V(N+1),V(N+2),

V(N+3),V(N+4),V(N+5))
20 CONTINUE

3000 FORMAT(2X,I3,6(5X,E10.3))
RETURN

END
C **********************************************************************

C *
SUBROUTINE COLSOL
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C
C **********************************************************************

IMPLICIT REAL*8(A-H,O-Z)
COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET
COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE
DO 140 N=1,ND
KN=MAXA(N)
KL=KN+1
KU=MAXA(N+1)-1
KH=KU-KL
IF (KH) 110, 90, 50

50 	 K=N-KH
IC=0
KLT=KU
DO 80 J=1,KH
IC=IC+1
KLT=KLT-1
KI=MAXA(K)
NND=MAXA(K+1)-KI-1
IF (NND) 80, 80, 60

60 	 KK=MINO(IC,NND)
C=0.OD0
DO 70 L=1,KK

70 	 C=C+A(KI+L)*A(KLT+L)
A(KLT)=A(KLT)-C

80 	 K=K+1
90 	 K=N

B=0.0D0
DO 100 KK=KL,KU
K=K-1
KI=MAXA(K)
C=A(KK)/A(KI)
B=B+C*A(KK)

100 	 A(KK)=C
A(KN)=A(KN)-B

110 	 IF(A(KN)) 120,120,140
120 	 WRITE(6,2000)N,A(KN)

STOP
140 	 CONTINUE

DO 180 N=1,ND
KL=MAXA(N)+1
KU=MAXA(N+1)-1
IF (KU-KL) 180,160,160

160 	 K=N
C=0.0D0
DO 170 KK=KL,KU
K=K-1

170 	 C=C+A(KK)*V(K)
V(N)=V(N)-C

180 	 CONTINUE
DO 200 N=1,ND
K=MAXA(N)

200 	 V(N)=V(N)/A(K)
IF(ND.EQ.1)RETURN
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N=ND
DO 230 L=2,ND
KL=MAXA(N)+1
KU=MAXA(N+1)-1
IF(KU-KL)230,210,210

210 K=N
DO 220 KK=KL,KU
K=K-1

220 	 V(K)=V(K)-A(KK)*V(N)
230 N=N-1

WRITE(6,1000)
1000 FORMAT(//33X,'*** NODAL DISPLACEMENT ***')

WRITE(6,1500)
1500 FORMAT(/1X,'NODE',8X,'X-DISP',9X,'Y-DISP',9X,'Z-DISP,

9X,'X-ROTN',9X,'Y-ROTN',9X,'Z-ROTN')
IND=0
DO 250 K=1,ND,6
IND=IND+1
WRITE(6,3000) IND,V(K),V(K+1),V(K+2),

V(K+3),V(K+4),V(K+5)
250 CONTINUE

RETURN
2000 FORMAT(//48H STOP - STIFFNESS MATRIX NOT POSITIVE DEFINITE ,//

32H NONPOSITIVE PIVOT FOR EQUATION ,I4,//
10H PIVOT = ,E20.12)

3000 FORMAT(2X,I3,6(5X,E10.3))
END

C ********************************************************************
C *

SUBROUTINE STRESS
C
C **********************************************************************

IMPLICIT REAL*8(A-H,O-Z)
COMMON/B01/80(200,9,48),B1(200,9,48),INXY(200),ID(300)
COMMON/XYZ/NNP(200,8),X(300),Y(300),Z(300)
COMMON/MAT/D0(9,9),D1(9,9),A11,Al2,A22,A23,B11
COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET
COMMON/FSK/A(350000) ,V(1800) ,EK(48,48) ,MAXA(1801) ,NEIRE
DIMENSION EDISP(48),E(100,9),PHIJ(100,9),T(100,9),CM(100,9),

*U(100)
DO 300 IE=1,NE
DO 20 IJM=1,8
IEB=(IJM-1)*6
ISB=(NNP(IE,IJM)-1)*6
DO 20 IDOF=1,6

20 	 EDISP(IEB+IDOF)=V(ISB+IDOF)
DO 40 IC=1,9
SUM=0.0D0
DO 30 K=1,48

30 	 SUM=SUM+B0 (IE, IC, K) *EDISP (K)
40 E(IE,IC)=SUM

DO 60 IC=1,9
SUM=0.0D0
DO 50 K=1,48
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50 	 SUM=SUM+B1(IE,IC,K)*EDISP(K)
60 PHIJ(IE,IC)=SUM

DO 80 IC=1,9
SUM=0.0D0
DO 70 K=1,9

	

70 	 SUM=SUM+D0(IC,K)*E(IE,K)
80 T(IE,IC)=SUM

DO 100 IC=1,9
SUM=0. OD0
DO 90 K=1,9

90 SUM=SUM+DMIC,K)*PHIJ(IE,K)
100 CM(IE,IC)=SUM

SUM=0.0D00
DO 200 IC=1,9

	

200 	 SUM=SUM+E(IE,IC)*T(IE,IC)+PHIJ(IE,IC)*CM(IE,IC)
U(IE)=SUM*0.50D00

300 CONTINUE
WRITE(6,1000)

1000 FORMAT(//19X,'**** STRESSES & STRAINS CALCULATED *****')
WRITE(6,2000)

2000 FORMAT(/1X, 'ELMT' , 1X, 'COMP' , 1X, 'DISP-STRAN' , 3X, 'FORCE-STRS
,2X,'COMP',1X,'ROTATN-GRAD',2X,'COUPLE-STRS'

* 	 ,2X,'STRN-ENEGYI)
WRITE(6,3000)

3000 FORMAT(15X,'E',12X,'T',15X,'PHI,J',9X,'M',12X,'U')
DO 400 IE=1,NE
WRITE(6,4000) IE

4000 FORMAT(I5)
WRITE(6,5000) E(IE,1),T(IE,1),PHIJ(IE,1),CM(IE,1),U(IE)

5000 FORMAT(7X,'rr',1X,1PE11.4,2X,1PE11.4,2X,'r,r',2X,1PE11.4,
2X,1PE11.4,1X,1PE11.4)

WRITE(6,6000) E(IE,2),T(IE,2),PHIJ(IE,2),CM(IE,2)
6000 FORMAT(4x, 'theta' ,1X,1PE11.4,2X,1PE11.4,2X, '0,0' ,2X, 1PEll . 4,

2X,1PE11.4)
WRITE(6,7000) E(IE,3),T(IE,3),PHIJ(IE,3),CM(IE,3)

7000 FORMAT(7X,'ZZ',1X,1PE11.4,2X,1PE11.4,2X,'Z,Z',2X,1PE11.4,
2X,1PE11.4)

WRITE(6,8000) E(IE,4),T(IE,4),PHIJ(IE,4),CM(IE,4)
8000 FORMAT(7X,'ro',1X,1PE11.4,2X,1PE11.4,2X,'r,o',2X,1PE11.4,

2X,1PE11.4)
WRITE(6,9000) E(IE,5),T(IE,5),PHIJ(IE,5),CM(IE,5)

9000 FORMAT(7X,lor.,1X,1PE11.4,2X,1PE11.4,2X,"o,r.,2X,1PE11.4,
2X,1PE11.4)

WRITE(6,10000) E(IE,6),T(IE,6),PHIJ(IE,6),CM(IE,6)
10000 FORMAT(7X,srz',1X,1PE11.4,2X,1PE11.4,2X,ir,z',2X,1PE11.4,

2X,1PE11.4)
WRITE(6,11000) E(IE,7),T(IE,7),PHIJ(IE,7),CM(IE,7)

11000 FORMAT(7X,'zr',1X,1PE11.4,2X,1PE11.4,2X,'z,r',2X,1PE11.4,
2X,1PE11.4)

WRITE(6,12000) E(IE,8),T(IE,8),PHIJ(IE,8),CM(IE,8)
12000 FORMAT(7Xl'oz',1X,1PE11.4,2X,1PE11.4,2X,'o,V,2X,1PE11.4,

2X,1PE11.4)
WRITE(6,13000) E(IE,9),T(IE,9),PHIJ(IE,9),CM(IE,9)

13000 FORMAT(7X,izo',1X,1PE11.4,2X,1PE11.4,2X,'z,o',2X,1PE11.4,
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2X,1PE11.4)
400 CONTINUE

RETURN
END
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C 	 2-D MICROPOLAR FINITE ELEMENT METHOD
IMPLICIT REAL*8(A-H,O-Z)
INTEGER*4 ITIM
INTEGER*2 TYPE,CODE
COMMON/STR/EDISP(24) ,E(100, 5) ,PHIJ(100,3) ,T(100,5)
*,CM(100,3),U(100)
COMMON/B01/B0(100,5,24),B1(100,4,24),INXY(200),ID(500)
COMMON/XYZ/NNP(200,8),X(750),Y(750),XG(4,4),WGT(4,4)
*,XY(8,2)
COMMON/CSTRN/KSTRN(1000),KSTRT(1000)
COMMON/MAT/D0(5,5),D1(4,4),A10,A11,Al2,A22,A23,B11,B12
COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,DET
COMMON/FSK/A(185220),V(1890),MAXA(1891),
*EK(24,24),NEIRE

READ(5,100)NE
100 	 FORMAT(I4)

DO 10 N=1,NE
READ(5,200)NNP(N,1),NNP(N,2),NNP(N,3),NNP(N,4)
*,NNP(N,5),NNP(N,6),NNP(N,7),NNP(N,8),INXY(N)

200 	 FORMAT(4X,8I4,I6)
10 	 CONTINUE

WRITE(6,63)NNP(1,1),NNP(1,2),NNP(1,3),NNP(1,5)
* ,NNP(1,6),NNP(1,7),NNP(1,8)

63 	 FORMAT(2X,'NNP=',8I4)
READ(5,100)NN
DO 20 N=1,NN
READ(5,300) X(N), Y(N)

300 	 FORMAT(4X,F20.10,F20.11)
20 	 CONTINUE

READ(5,100) NC
DO 30 N=1,NC
READ(5,400) KSTRN(N),KSTRT(N)

400 	 FORMAT(4X,2I4)
30 	 CONTINUE

WRITE(6,73)KSTRN(1) ,KSTRT(1) ,KSTRN(2)
73 	 FORMAT(2X,'KSTR=1,3I4)

READ(5,550)NINT
550 	 FORMAT(I5)

READ(5,600) A10,A11,Al2,A22,A23,B11,B12
600 	 FORMAT(7E14.7)

ND=NN*3
NB=0
DO 40 IB=1,NE
IMAX=MAX0(NNP(IB,1),NNP(IB,2),NNP(IB,3),NNP(IB,4)

*,NNP(IB,5),NNP(IB,6),NNP(IB,7),NNP(IB,8))
IMIN=MINO(NNP(IB,1),NNP(IB,2),NNP(IB,3),NNP(IB,4)
*,NNP(IB,5),NNP(IB,6),NNP(IB,7),NNP(IB,8))
NBCHEK=(IMAX-IMIN+1)*3
IF(NBCHEK.GT.NB) NB=NBCHEK
IF(NB.GT.2000) GO TO 99

40 	 CONTINUE
SCALE=1.OD0
DO 41 I=1,NN
X(I)=X(I) *SCALE
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41 	 Y(I)=Y(I)*SCALE
WRITE(6,700)

700 FORMAT(1H1)
WRITE(6,800)

	

800 	 FORMAT(3X,'********************* *************************
***********')
WRITE(6,900)

	

900 	 FORMAT(3X,'*',68X, ' * ' )
WRITE(6,1000)

1000 FORMAT(3X,'*',13X, 'AXISYMMETRIC CASE
WRITE(6,1050)

1050 FORMAT(3X,'*',28X, 'SKYLINEMICR01,27X,
WRITE(6,900)
WRITE(6,800)
WRITE(6,1100)

1100 FORMAT(/20X,'**** DISCRETIZATION NUMBER ****')
WRITE(6,1200)

1200 FORMAT(/13X,'ELEMT.#1,3X,'NODES.#',3X,'CONSTR.P,3X,
*6X, 'BAND-WIDTH' , 3X, 'GAUSS NUMBERICAL INTEGERATI
*N ORDER')
WRITE(6,1300)NE,NN,NC,NB,NINT

1300 FORMAT(13X,I4,7X,13,7X,I3,20X,I5,19X,I2)
WRITE(6, 1400)

1400 FORMAT(/6X,'A11',9X,'Al2',9X,'A22',8X,'A23')
WRITE(6,1500) A10,A11,Al2,A22,A23

1500 FORMAT(4E12.3)
WRITE(6,1600)

1600 FORMAT(/6X,'811',9X,'B12')
WRITE(6,1550) B11,812

1550 FORMAT(2E12.2)
WRITE(6,234)KSTRN(1),KSTRT(1),KSTRN(2),KSTRT(2)

	

234 	 FORMAT(3X,'KSTR==',4I4)
WRITE(6,1700)

1700 FORMAT(//21X, '**** ELEMENT-NODE CONNECTION ****')
WRITE(6, 1800)

1800 FORMAT(/3X, 'ELM NP1 NP2 NP3 NP4 IXY elm NP1 NP2 NP3 NP4
* IXY ELM NP1 NP2 NP3 NP4 IXY ELM NP1 NP2 NP3 NP4
*ixy')
DO 45 I=1,NE

	

45 	 ID(I)=I
LINE=NE/2
IRESID=NE-2*LINE
DO 50 N=1,LINE,2

	

50 	 WRITE(6,1900) (ID(2*(N-1)+I),NNP(2*(N-1)+I,1),NNP(2*(N-1)
*+I,2),NNP(2*(N-1)+I,3),NNP(2*(N-1)+I,4),INXY(2*(N-1)+I),
*i=1,4)

1900 FORMAT(4(2X,I4,1X,I3,1X,I3,1X,I3,1X,I3,1X,I3))
IF(IRESID.EQ.O) GO TO 56
WRITE(6,1900)(ID(4*LINE+I),NNP(4*LINE+I,1),
*NNP(4*LINE+I,2)
*,NNP(4*LINE+I,3),NNP(4*LINE+I,4),INXY(4*LINE+I),
*i=1,iresid
*)

	

56 	 WRITE(6,2000)
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2000 FORMAT(//24X, 'lc*** NODAL COORDINATE ****')
WRITE(6,2100)

2100 FORMAT(/1X,'NODE',5X,'X',8X,'Y',4X,'NODE',5X,'X',8X,'Y'
*4X,'NODE',5X,'X',8X,'Y',4X,'NODE',5X,'X',8X,'Y')
DO 55 I=1,NN

55 	 ID(I)=I
LINE=NN/4
IRESID=NN-4*LINE
DO 60 N=1,LINE

60

	

	 WRITE(6,2200) (ID(4*(N-1)+I),X(4*(N-1)+I),Y(4*(N-1)+I),
*I=1,4)

2200 FORMAT(4(2X,I3,1X,F9.3,1X,F9.3))
IF(IRESID.EQ.0)GO TO 57
WRITE(6,2200) (ID(4*LINE+1),X(4*LINE+I),Y(4*LINE+I),
*I=1,IRESID)
WRITE(6,123)KSTRN(1),KSTRT(1),KSTRN(2),KSTRT(2)

123 	 FORMAT(4X,'KST=1,414)
57 	 WRITE(6,2300)
2300 FORMAT(//27X,'**** CONSTRAINT ****')

WRITE(6,2400)
2400 FORMAT(/24X,'CNSTRND—NODE',2X,'CNSTRND—CODE')

DO 222 I=1,NC
WRITE(6,2500)KSTRN(I),KSTRT(I)

2500 FORMAT(28X,I3,12X,13)
222 CONTINUE

CALL STSTIF
CALL LOADER
CALL COLSOL
CALL STRESS

	

99 	 WRITE(6,999)NB,IB

	

999 	 FORMAT('*****STOP NB=',I5,' AT ELEMENT=', 15)
STOP
END

SUBROUTINE STSTIF
IMPLICIT REAL*8(A—H2O—Z)
COMMON/CSTRN/KSTRN(1000),KSTRT(1000)
COMMON/XYZ/NNP(200,8),X(750),Y(750),XG(4,4),
*WGT(4,4) ,XY(8,2)
COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,DET
COMMON/FSK/A(185220),V(1890),MAXA(1891),
*EK(24,24),NEIRE
DIMENSION MHT(1890)
NBND=NB*ND
DO 10 I=1,NBND

	

10 	 A(I)=0.0D0
DO 20 NEIRE=1,NE
CALL ELSTIF
DO 20 INC=1,8
INOC=NNP(NEIRE,INC)
IBC=(NNP(NEIRE,INC)-1)*3
DO 20 IDC=1,3
ICEL=(INC-1)*3+IDC
ICST=IBC+IDC
IDI=0
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IF(ICST.GT.NB)IDI=ICST-NB
IVC=(ICST-1) *NB
DO 18 INR=1,8
INOR=NNP(NEIRE,INR)
IF(INOC.LT.INOR) GO TO 18
IBR=(NNP(NEIRE,INR)-1) *3
IDVC=IDC
IF(INOC.GT.INOR)IDVC=3
DO 15 IDR=1,IDVC
IREL=(INR-1) *3+IDR
IVV=IVC+IBR+IDR-IDI

SS=A(IVV)+EK(IREL,ICEL)
IF(DABS(SS).LT.1.0D-14)SS=0.0D0

15 	 A(IVV)=SS
18 	 CONTINUE
20 	 CONTINUE

DO 140 N=1,NC
IRCX=KSTRN(N)*3-2
IRCY=KSTRN(N)*3-1
IRCZ=KSTRN (N) *3
KCHK=KSTRT(N)

IF(KCHK.LT.100) GO TO 60
ICB=ND-IRCX+1
IF(ICB.GT.NB)ICB=NB
DO 50 I=1,ICB
IDI=0
IRCXX=IRCX+I-1
IF(IRCXX.GT.NB) IDI=IRCXX-NB
IXV= (IRCX-2+I) *NB+IRCX-IDI
IF(I.EQ.1) GO TO 30
A(IXV)=0.0D0
GO TO 50

30 	 A(IXV)=1.0D0
IF(IRCX.EQ.1)G0 TO 50
DO 40 J=1,IRCX-IDI-1
IXXV=IXV-J

40 	 A(IXXV)=0.0D0
50 	 CONTINUE

KCHK=KCHK-100
60 	 IF(KCHK.LT.010) GO TO 100

ICB=ND-IRCY+1
IF(ICB.GT .NB) ICB=NB
DO 90 I=1,ICB
IDI=0
IRCYY=IRCY+I-1
IF(IRCYY.GT.NB)IDI=IRCYY-NB
IYV= (IRCY-2+I) *NB+IRCY-IDI
IF(I.EQ.1)GO TO 70
A(IYV)=0.0D0
GO TO 90

70 	 A(IYV)=1.0D0
IF(IRCY.EQ.1)G0 TO 90
DO 80 J=1,IRCY-IDI-1
IYYV=IYV-J
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80 	 A(IYYV)=0.0D0
90 	 CONTINUE

KCHK=KCHK-10
100 	 IF(KCHK.LT.001)G0 TO 140

ICB=ND-IRCZ+1
IF(ICB.GT.NB)ICB=NB
DO 130 I=1,ICB
IDI=0
IRCZZ=IRCZ+I-1
IF(IRCZZ.GT.NB)IDI=IRCZZ-NB
IZV=(IRCZ-2+I)*NB+IRCZ-IDI
IF(I.EQ.1)GO TO 110
A(IZV)=0.OD0
GO TO 130

110 	 A(IZV)=1.0D0
IF(IRCZ.EQ.1)GO TO 130
DO 120 J=1,IRCZ-IDI-1
IZZV=IZV-J

120 	 A(IZZV)=0.0D0
130 CONTINUE
140 CONTINUE

DO 160 I=1,ND
IDI=0
IF(I.GT.NB)IDI=I-NB
IIV=(I-1) *NB
DO 150 J=1,I
IF(A(IIV+J).EQ.0.0D0) GO TO 150
MHT (I) =I-J-IDI
GO TO 160

150 CONTINUE
160 CONTINUE

NM=ND+1
DO 170 I=1,NM

170 MAXA(I)=0
MAXA(1)=1
MAXA(2)=2
IF(ND.EQ.1)GO TO 190
DO 180 I=2,ND

180 MAXA(I+1)=MAXA(I)+MHT(I)+1
190 NWK=MAXA(ND+1)-MAXA(1)

IAN=0
DO 200 I=1,ND
ICK=MAXA(I+1)-MAXA(I)
IDI=0
IF(I.GT.NB)IDI=I-NB
INBB= (I-1) *NB+I-IDI
DO 200 II=1,ICK
IAN=IAN+1
IAV=INBB-II+1
A(IAN)=A(IAV)

200 CONTINUE
DO 210 I=NWK+1,NBND

210 	 A(I)=0.0D0
RETURN
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END
SUBROUTINE ELSTIF

IMPLICIT REAL*8(A-H2O-Z)
COMMON/FSK/A(185220),V(1890),MAXA(1891),EK(24,
*24),NEIRE
COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,DET
COMMON/BO1/B0(100,5,24),B1(100,4,24),INXY(200),ID(500)
COMMON/XYZ/NNP(200,8),X(750),Y(750),XG(4,4),WGT(4,4)
*,XY(8,2)
COMMON/DB01/D0B0(5),D1B1(4)
COMMON/MAT/D0(5,5),D1(4,4),A10,A11,Al2,A22,A23,311,B12
DATA XG/0.0DO,0.0D0,0.0D0,0.000,-.5773502691896D0
*,.5773502691896D0,0.000,0.0D0,-.774596669241500
*,.0D0,.7745966692415D0,0.000,-.861136311594100,
*-.3399810435849D0,.3399810435849D0,.8611363115941
*D0/
DATA WGT/2.0D0,0.0D0,0.000,0.0D0,1.0D0,1.0D0,0.0D0,
*0.0D0,.55555555555556D0,.8888888888900,
*.5555555555556D0,0.0D0,.3478548451375D0,
*.6521451548625D0,.6521451548625D0,
*.347854845137500/
DO 10 1=1,5
DO 10 J=1,5

10 D0(I,J)=0.0D0
D0(1,1)=A11
DO(1,2)=Al2
DO(2,1)=Al2
DO(2,2)=A10
DO(1,3)=Al2
DO(3,1)=Al2
DO(2,3)=Al2
DO(3,2)=Al2
DO(3,3)=A11
D0(4,4)=A22
D0(4,5)=A23
D0(5,4)=A23
DO(5,5)=A22
DO 2 1=1,4
DO 2 J=1,4
Dl(I,J)=0.000

2 	 CONTINUE
D1(1, 1)=B11
D1(1,2)=B12
D1(2,1)=0.OD0
D1(2,2)=B11
D1(1,3)=0.000
D1(2,3)=B12
D1(3,1)=0.000
D1(3,2)=B12
D1(3,3)=B11
I=NNP(NEIRE,1)
J=NNP(NEIRE,2)
K=NNP(NEIRE,3)
L=NNP(NEIRE,4)
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MIJ=NNP(NEIRE,5)
MJK=NNP(NEIRE,6)
MKL=NNP(NEIRE,7)
MLI=NNP(NEIRE,8)
XY(1,1)=X(I)
XY(2,1)=X(J)
XY(3,1)=X(K)
XY(4,1)=X(L)
XY(5,1)=X(MIJ)
XY(6,1)=X(MJK)
XY(7,1)=X(MKL)
XY(8,1)=X(MLI)
XY(1,2)=Y(I)
XY(2,2)=Y(J)
XY(3,2)=Y(K)
XY(4,2)=Y(L)
XY(5,2)=Y(MIJ)
XY(6,2)=Y(MJK)
XY(7,2)=Y(MKL)
XY(8,2)=Y(MLI)
DO 30 1=1,24
DO 30 J=1,24

30

	

	 EK(I,J)=0.0D0
DO 80 LX=1,NINT
R=XG(LX,NINT)
DO 80 LY=1,NINT
S=XG(LY,NINT)
CALL STDM
WT=WGT(LX,NINT)*WGT(LY,NINT)*TH*DET
DO 70 J=1,24
DO 40 K=1,5
DOBO(K)=0.0D0
DO 40 L=1,5

40

	

	 DOBO(K)=DOBO(K)+D0(K,L)*B0(NEIRE,L,J)
DO 45 K=1,4
D1B1(K)=0.0D0
DO 45 L=1,4

45

	

	 D1B1(K)=D1B1(K)+D1(K,L)*B1(NEIRE,L,J)
DO 60 I=J,24
STIFF=0.0D0
DO 50 L=1,5

50 	 STIFF=STIFF+BO(NEIRE,L,I)*DOBO(L)
DO 55 L=1,4

55 	 STIFF=STIFF+Bl(NEIRE,L,I)*D1B1(L)
60 	 EK(I,J)=EK(I,J)+STIFF*WT
70 	 CONTINUE
80 	 CONTINUE

DO 90 J=1,24
DO 90 I=J,24

90 	 EK(J,I)=EK(I,J)
IF(INXY(NEIRE).EQ.100)G0 TO 100
IF(INXY(NEIRE).EQ.010)G0 TO 110
IF(INXY(NEIRE).EQ.001)G0 TO 120
IF(INXY(NEIRE).EQ.011)G0 TO 130
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IF(INXY(NEIRE).EQ.110)G0 TO 135
R=0. ODO
S=0.0D0
GO TO 140

100 	 R=0.0D0
S=1. 0D0
GO TO 140

110 	 P-1.0D0
S=0. 0D0
GO TO 140

120 	 R=0.ODO
S=-1.0D0
GO TO 140

130 	 R=1.0D0
S=0.0D0
GO TO 140

135 	 R=-1.0D0
S=-1.0D0

140 CALL STDM
RETURN
END

SUBROUTINE STDM
IMPLICIT REAL*8(A-H,O-Z)
COMMON/FSK/A(185220),V(1890),MAXA(1891),
*EK(24,24),NEIRE
COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,DET
COMMON/B01/80(100,5,24),B1(100,4,24),INXY(200),ID(500)
COMMON/INF/H(8),P(8,2),XJ(2,2),XJI(2,2)
COMMON/XYZ/NNP(200,8),X(750),Y(750),XG(4,4),WGT(4,4),

*XY(8,2)
RP=1.0DO+R
RM=1.ODO-R
SP=1.0DO+S
SM=1.0DO-S
RSM=1.0D0-(R*R)
SSM=1.0D0-(S*S)
H(1)=0.25DO*RP*SP*(R+S-1.0D0)
H(2)=0.25DO*RM*SP*(-R+S-1.0D0)
H(3)=0.25DO*RM*SM*(-R-S-1.0D0)
H(4)=0.25D0*RP*SM*(R-S-1.0D0)
H(5)=0.5D0*RSM*SP
H(6)=0.5DO*SSM*RM
H(7)=0.5D0*RSM*SM
H(8)=0.5DO*SSM*RP
P(1,1)=0.25DO*SP*(R+R+S)
P(2,1)=0.25D0*SP*(R+R-S)
P(3,1)=0.25D0*SM*(R+R+S)
P(4,1)=0.25DO*SM*(R+R-S)
P(5, 1)=-R*SP
P(6,1)=-0.5DO*SSM
P(7,1)=-R*SM
P(8,1)=0.5D0*SSM
P(1,2)=0.25D0*RP*(R+S+S)
P(2,2)=0.25D0*RM*(S+S-R)
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P(3,2)=0.25D0*RM*(R+S+S)
P(4,2)=0.25DO*RP*(S+S-R)
P(5,2)=0.5DO*RSM
P(6,2)=-S*RM
P(7,2)=-0.5DO*RSM
P(8,2)=-S*RP
DO 30 1=1,2
DO 30 J=1,2
DUM=0.OD0
DO 20 K=1,8

20 	 DUM=DUM+P(K,I)*XY(K,J)
30 	 XJ(I,J)=DUM

DET=XJ(1,1)*XJ(2,2)-XJ(2,1)*XJ(1,2)
IF(DET.GT.1.OD-07)GO TO 40
WRITE(6,2000) NEIRE

2000 FORMAT(3X,'*** ERROR, ZERO OR NEGATIVE JACOBIAN
1DETERMINANT AT ELEMENT=',I4)
STOP

40 	 DUM=1.0DO/DET
XJI(1,1)=XJ(2,2)*DUM
XJI(1,2)=-XJ(1,2)*DUM
XJI(2,1)=-XJ(2,1)*DUM
XJI(2,2)=XJ(1,1)*DUM
TH=0.0D0
DO 45 K=1,8

45 	 TH=TH+H(K)*XY(K,1)
DO 50 1=1,5
DO 50 J=1,24

50 	 B0(NEIRE,I,J)=0.0D0
DO 55 1=1,4
DO 55 J=1,24

55 	 B1(NEIRE,I,J)=0.0D0
B0(NEIRE,1,1)=(XJI(1,1)*P(1,1)+XJI(1,2)*P(1,2))
B0(NEIRE,1,4)=(XJI(1,1)*P(2,1)+XJI(1,2)*P(2,2))
BO(NEIRE,1,7)=(XJI(1,1)*P(3,1)+XJI(1,2)*P(3,2))
B0(NEIRE,1,10)=(XJI(1,1)*P(4,1)+XJI(1,2)*P(4,2))
B0(NEIRE,1,13)=(XJI(1,1)*P(5,1)+XJI(1,2)*P(5,2))
BO(NEIRE,1,16)=(XJI(1,1)*P(6,1)+XJI(1,2)*P(6,2))
BO(NEIRE,1,19)=(XJI(1,1)*P(7,1)+XJI(1,2)*P(7,2))
B0(NEIRE,1,22)=(XJI(1,1)*P(8,1)+XJI(1,2)*P(8,2))
BO(NEIRE,4,2)=BO(NEIRE,1,1)
B0(NEIRE,4,3)=H(1)
B0(NEIRE,4,5)=B0(NEIRE,1,4)
B0(NEIRE,4,6)=H(2)
BO(NEIRE,4,8)=BO(NEIRE,1,7)
B0(NEIRE,4,9)=H(3)
B0(NEIRE,4,11)=BO(NEIRE,1,10)
BO(NEIRE,4,12)=H(4)
B0(NEIRE,4,14)=B0(NEIRE,1,13)
B0(NEIRE,4,15)=H(5)
BO(NEIRE,4,17)=BO(NEIRE,1,16)
B0(NEIRE,4,18)=H(6)
BO(NEIRE,4,20)=B0(NEIRE,1,19)
B0(NEIRE,4,21)=H(7)
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BO(NEIRE,4,23)=BO(NEIRE,1,22)
BO(NEIRE,4,24)=H(8)
BO(NEIRE, 3, 1)=H(1)/TH
BO(NEIRE,3,4)=H(2)/TH
BO(NEIRE,3,7)=H(3)/TH
BO(NEIRE,3,10)=H(4)/TH
BO(NEIRE,3,13)=H(5)/TH
BO(NEIRE,3,16)=H(6)/TH
BO(NEIRE,3,19)=H(7)/TH
BO(NEIRE,3,22)=H(8)/TH
BO(NEIRE,5,1)=(XJI(2,1)*P(1,1)+XJI(2,2)*P(1,2))
BO(NEIRE,5,3)=-H(1)
BO(NEIRE,5,4)=(XJI(2,1)*P(2,1)+XJI(2,2)*P(2,2))
B0(NEIRE,5, 6)=-H(2)
BO(NEIRE,5,7)=(XJI(2,1)*P(3,1)+XJI(2,2)*P(3,2))
BO(NEIRE,5,9)=-H(3)
BO(NEIRE,5,10)=(XJI(2,1)*P(4,1)+XJI(2,2)*P(4,2))
BO(NEIRE,5,12)=-H(4)
BO(NEIRE,5,13)=(XJI(2,1)*P(5,1)+XJI(2,2)*P(5,2))
BO(NEIRE,5,16)=(XJI(2,1)*P(6,1)+XJI(2,2)*P(6,2))
BO(NEIRE,5,19)=(XJI(2,1)*P(7,1)+XJI(2,2)*P(7,2))
B0(NEIRE,5,22)=(XJI(2,1)*P(8,1)+XJI(2,2)*P(8,2))
B0(NEIRE,5,15)=-H(5)
B0(NEIRE,5,18)=-H(6)
BO(NEIRE,5,21)=-H(7)
B0(NEIRE,5,24)=-H(8)
BO(NEIRE,2,2)=(XJI(2,1)*P(1,1)+XJI(2,2)*P(1,2))
B0(NEIRE,2,5)=(XJI(2,1)*P(2,1)+XJI(2,2)*P(2,2))
BO(NEIRE,2,8)=(XJI(2,1)*P(3,1)+XJI(2,2)*P(3,2))
BO(NEIRE,2,11)=(XJI(2,1)*P(4,1)+XJI(2,2)*P(4,2))
BO(NEIRE,2,14)=(XJI(2,1)*P(5,1)+XJI(2,2)*P(5,2))
B0(NEIRE,2,17)=(XJI(2,1)*P(6,1)+XJI(2,2)*P(6,2))
BO(NEIRE,2,20)=WI(2,1)*P(7,1)+XJI(2,2)*P(7,2))
BO(NEIRE,2,23)=(XJI(2,1)*P(8,1)+XJI(2,2)*P(8,2))
B1(NEIRE,2, 3)=-H(1)/TH
B1(NEIRE,2,6)=-H(2)/TH
B1(NEIRE,2,9)=-H(3)/TH
Bl(NEIRE,2,12)=-H(4)/TH
B1(NEIRE,2,15)=-H(5)/TH
B1(NEIRE,2,18)=-H(6)/TH
B1(NEIRE,2,21)=-H(7)/TH
B1(NEIRE,2,24)=-H(8)/TH
Bl(NEIRE,1,3)=BO(NEIRE,1,1)
B1(NEIRE,1,6)=B0(NEIRE,1,4)
Bl(NEIRE,1,9)=B0(NEIRE,1,7)
Bl(NEIRE,1,12)=BO(NEIRE,1,10)
B1(NEIRE,1,15)=B0(NEIRE,1,13)
B1(NEIRE,1,18)=B0(NEIRE,1,16)
B1(NEIRE,1,21)=B0(NEIRE,1,19)
B1(NEIRE,1,24)=B0(NEIRE,1,22)
B1(NEIRE,3,3)=B0(NEIRE,2,2)
B1(NEIRE,3,6)=B0(NEIRE,2,5)
Bl(NEIRE,3,9)=B0(NEIRE,2,8)
Bl(NEIRE,3,12)=B0(NEIRE,2,11)
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BI(NEIRE,3,15)=B0(NEIRE,2,14)
B1(NEIRE,3,18)=B0(NEIRE,2,17)
B1(NEIRE,3,21)=B0(NEIRE,2,20)
B1(NEIRE,3,24)=B0(NEIRE,2,23)
RETURN
END

SUBROUTINE LOADER
IMPLICIT REAL*8(A-H2O-Z)
COMMON/CSTRN/KSTRN(1000),KSTRT(1000)
COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,DET
COMMON/FSK/A(185220),V(1890),MAXA(1891),
*EK(24,24),NEIRE
DO 10 LO=1,ND

10 	 V(L0)=0.0D0
SCALE=1.0D0
V(2)=20.D0/6.D0
V(5)=12.0D0
V(8)=32.00/6.D0
V(11)=56.00/6.D0
V(14)=4.00
V(17)=40.D0/6.D0
V(20)=16.00/6.D0
V(23)=4.D0
V(26)=8.D0/6.D0
V(29)=8.D0/6.D0
WRITE(6,1000)

1000 FORMAT(//26X,'**** EXTERNAL LOAD ****')
WRITE(6,2000)

2000 FORMAT(/1X,INODE',4X,IX-FORCE1,4X,'Y-FORCE1,4X,
*1Z-MOMENT',1X,'NODE',4X,'X-FORCE',4X,'Y-FORCE',
*4X,1Z-MOMNTI)
IND=-1
INE=O
DO 20 N=1,ND,6
IND=IND+2
INE=INE+2
CHECK=DABS(V(N))+DABS(V(N+1))+DABS(V(N+2))+DABS(V(N+3))
*+DABS(V(N+4))+DABS(V(N+5))
IF(CHECK.EQ.0.0D0) GO TO 20
WRITE(6,3000) (IND,V(N),V(N+1),V(N+2),INE,V(N+3),V(N+4),
*V(N+5))

20 	 CONTINUE
3000 FORMAT(2(2X,I3,1X,E10.3,1X,E10.3,1X,E10.3))

RETURN
END
SUBROUTINE COLSOL
IMPLICIT REAL*8(A-H2O-Z)
COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,DET
COMMON/FSK/A(185220) ,V(1890) ,MAXA(1891) ,EK(24,24) ,NEIRE
DO 140 N=1,ND
ICN=MAXA(N)
KL=KN+ 1
KU=MAXA ( N+1) -1
KH=KU-KL
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IF(KH)110,90,50
50 	 K=N-KH

IC=0
KLT=KU
DO 80 J=1,KH
IC=IC+1
KLT=KLT-1
KI=MAXA (K)
NND=MAXA(K+1)-KI-1
IF (NND) 80, 80, 60

60 	 KK=MINO(IC,NND)
C=0.0D0
DO 70 L=1,KK

70 	 C=C+A(KI+L)*A(KLT+L)
A(KLT)=A(KLT) -C

80 	 K=K+1
90 	 K=N

B=0.
DO 100 KK=KL,KU
K=K-1
KI=MAXA(K)
C=A(KK)/A(KI)
B=B+C*A (KK)

100 	 A(KK)=C
A(KN)=A(KN)-B

110 	 IF(A(EN))120,120,140
120 	 WRITE(6,2000)N,A(KN)

STOP
140 CONTINUE

DO 180 N=1,ND
KL=MAXA(N)+1
KU=MAXA(N+1)-1
IF(KU-KL)180,160,160

160 K=N
C=0.
DO 170 KK=KL,KU
K=K-1

170 	 C=C+A(KK)*V(K)
V(N)=V(N)-C

180 CONTINUE
DO 200 N=1 ND
K=MAXA(N)

200 	 V(N)=V(N)/A(K)
IF(ND.EQ.1)RETURN
N=ND
DO 230 L=2,ND
KL=MAXA(N)+1
KU=MAXA(N+1)-1
IF(KU-KL)230,210,210

210 K=N
DO 220 KK=KL,KU
K=K-1

220 	 V(K)=V(K)-A(KK)*V(N)
230 N=N-1
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WRITE(6,1000)
1000 FORMAT(//25X,'*** NODAL DISPLACEMENT ***')

WRITE(6,2001)
2001 FORMAT(/1X,'NODE',4X,'X-DISP',5X,'Y-DISP',5X,'Z-ROTN',

*3X,'NODE',4X,'X-DISP',5X,'Y-DISP',5X,'Z-ROTN')
IND=-1
INE=0
DO 251 K=1,ND,6
IND=IND+2
INE=INE+2

251 	 WRITE(6,3000)IND,V(K),V(K+1),V(K+2),INE,V(K+3),V(K+4)
*V(K+5)

3000 FORMAT(2(2X,I3,1X,E10.3,1X,E10.3,1X,E10.3))
RETURN

2000 FORMAT(//'STOP MATRIX NOT POSITIVE',I4,E20.12)
END

SUBROUTINE STRESS
IMPLICIT REAL*8(A-H2O-Z)
COMMON/STR/EDISP(24),E(100,5),PHIJ(100,3),T(100,5),CM(100,
*3),U(100)
COMMON/B01/80(100,5,24),B1(100,4,24),INXY(200),ID(500)
COMMON/XYZ/NNP(200,8),X(750),Y(750),XG(4,4),WGT(4,4),
*XY(8,2)
COMMON/MAT/D0(5,5),D1(4,4),A10,A11,Al2,A22,A23,B11,B12
COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,DET
COMMON/FSK/A(185220) ,V(1890) ,MAXA(1891) ,EK(24,
*24),NEIRE
DO 300 IE=1,NE
DO 20 IJM=1,8
IEB=(IJM-1)*3
ISB=(NNP(IE,IJM)-1)*3
DO 20 IDOF=1,3

20 	 EDISP(IEB+IDOF)=V(ISB+IDOF)
DO 40 IC=1,5
SUM=0.0D0
DO 30 K=1,24

30 	 SUM=SUM+BO(IE,IC,K)*EDISP(K)
40 	 E(IE,IC)=SUM

DO 60 IC=1,3
SUM=0.0D0
DO 50 K=1,24

50 	 SUM=SUM+Bl(IE,IC,K)*EDISP(K)
60 	 PHIJ(IE,IC)=SUM

DO 80 IC=1,5
SUM=0.0D0
DO 70 K=1,5

70 	 SUM=SUM+DO(IC,K)*E(IE,K)
80 	 T(IE,IC)=SUM

DO 100 IC=1,3
SUM=0.0D0
DO 90 K=1,3

90 	 SUM=SUM+Dl(IC,K)*PHIJ(IE,K)
100 	 CM(IE,IC)=SUM

115



SUM=0.0D0
DO 200 IC=1,5

200 	 SUM=SUM+E(IE,IC)*T(IE,IC)
DO 250 IC=1,3

250 	 SUM=SUM+PHIJ(IE,IC)*CM(IE,IC)
U(IE)=SUM*0.50D0

300 CONTINUE
WRITE(6,1000)

1000 FORMAT(//19X,' **** STRESS &STRAIN CALCULATED ****')
WRITE(6,2000)

2000 FORMAT(/,'ELMT',1X,'COMP',1X,'DIS-STRAN',3X,'FORCE-STRS'
*,2X,'COMP',1X,'ROTAN-GRAD',2X,'COUPLE-STRS',2X,ISTRN-
*ENEGY')
WRITE(6,3000)

3000 FORMAT(14X,'E',12X,'T',15X,'PHI.J',9X,IM',12X,'U')
DO 400 IE=1,NE
WRITE(6,4000) IE

4000 FORMAT(I4)
WRITE(6,5000) E(IE,1),T(IE,1),PHIJ(IE,1),CM(IE,1),U(IE)

5000 FORMAT(6X,'XX',1X,1PE11.4,2X,1PE11.4,2X,'Z,X',1X,1PE11.4,
12X,1PE11.4,2X,1PE11.4)
WRITE(6,6000) E(IE,2),T(IE,2),PHIJ(IE,2),CM(IE,2)

6000 FORMAT(6X,'YY',1X,1PE11.4,2X,1PE11.4,2X,'Z/Y',1X,
11PE11.4,2X,1PE11.4)
WRITE(6,7000) E(IE,3),T(IE,3),PHIJ(IE,3),CM(IE,3)

7000 FORMAT(6X,'ZZ',1X,1PE11.4,2X,1PE11.4,2X,1Z,Y',1X,
*1PE11.4,2X,1PE11.4)
WRITE(6,8000) E(IE,4),T(IE,4)

8000 FORMAT(6X,'XY'llX,1PE11.4,2X,1PE11.4)
WRITE(6,9000) E(IE,5),T(IE,5)

9000 FORMAT(6X,'YX',1X,1PE11.4,2X,1PE11.4)
400 CONTINUE

RETURN
END
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