Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

Title of Thesis : Two and Three-Dimensional Isoparametric Finite Elements for Axisymmetric Micropolar Elasticity FUANG YUAN HUANG : Doctor of Engineering Science, 1986 Thesis directed by : Dr. Sachio Nakamura Assistant Professor

Department of Mechanical Engineering

Finite element analysis program for isotropic and orthotropic axisymmetric micropolar (Cosserat) elastic solids are developed in this thesis. Isoparametric elements of 8- and 20node are used to solve general three-dimensional problems, and both 4- and 8-node elements are used for two-dimensional cases. Three-dimensional finite element formulation for cylindrical coordinate system is derived. Corresponding Fortran programs are then developed. Patch tests are performed for two-dimensional cases to verify the applicability of the finite element method to non-rectangular geometries. Several two-dimensional and threedimensional problems for micropolar elastic solids are solved to verify the formulations and computer program.

Good agreements were obtained in all cases, confirming the validity of the finite element method.

TWO AND THREE-DIMENSIONAL ISOPARAMETRIC FINITE ELEMENTS FOR AXISYMMETRIC MICROPOLAR ELASTICITY

BY

2

FUANG YUAN HUANG

.

Dissertation submitted to the Faculty of the Graduate School of the New Jersey Institute of Technology in partial fulfillment of the requirements for the degree of Doctor of Engineering Science

t

APPROVAL SHEET

Title of Thesis: Two and Three-dimensional Isoparametric Finite Elements for Axisymmetric Micropolar Elasticity

Name of Candidate: Fuang Yuan Huang

Thesis and Abstract Approved:

Dr. Sachio Nal	kamura	Date
Assistant Prop	fessor,	
Dept. of Mecha	anical Eng	ineering

Signatures of other members of the thesis committee.

Dr. Bernard Koplik Date

Chairman,

Dept. of Mechanical Engineering

VITA

Name : FUANG-YUAN HUANG

Degree and Date to be Conferred : D. Eng. Sc., 1986

Secondary Education :

College	Dates	Degree	Date of Degree
Cheng Kung University	1976-1980	BSME	May, 1980
Manhattan College	1980-1982	MSME	February, 1982
New Jersey Institute of Technology	1982-1986	D. Eng. Sc.	October, 1986

Major : Mechanical Engineering.

 \bigcirc \langle

ACKNOWLEDGMENT

I wish to express my sincere gratitude and thanks to my thesis asvisor, Dr. Sachio Nakamura, for his valuable guidance and constructive criticisms throughout the whole process of this study. Without his guidance and encouragements, this work would not have been possible. I would also like to thank Dr. B. Koplik, Dr. R. Chen, Dr. M. Wecharatana and Dr. R. Dave for their critical reading of the manuscript and constructive suggestions.

Finally, I wish to express my deep gratitude to my parents for their unselfish support and many sacrifices they made for my education, and to my three sisters and their families for the continuous encouragements, and to my older brother, Tiaoyuan, for his assistance and inspiration. Last, but not least, a special appreciation is extended to my wife, Chen-Chen, for her patience and understanding during this study.

TABLE OF CONTENTS

List of Figures	iii
List of Tables	iv
Chapter	Page
I. INTRODUCTION	
1.1 Introductory Comments	1
1.2 Literature Review	2
1.3 Scope of thesis	3
II. REVIEW OF THE FINITE ELEMENT METHOD	
2.1 Introductory Comments	5
2.2 General Formulation of Finite Element Method	6
2.2.1 Displacement Finite Element Method	7
2.2.2 Isoparametric Finite Element Method	9
2.3 Finite Element Matrices Formulation	12
III. REVIEW OF MICROPOLAR ELASTICITY	
3.1 Introductory Comments	19
3.2 Basic Equations of Micropolar Elasticity	19
3.2.1 Constitutive Equations	20
3.2.2 Restrictions on Micropolar Elastic Moduli	22
3.2.3 Boundary Conditions	22
3.2.4 Compatibility Conditions	23
3.3 Variational Formulation of Micropolar Elasticity.	23
3.4 Finite Element Formulation of Micropolar Elastici	ty. 25

i

IV. THREE-DIMENSIONAL ISOPARAMETRIC ELEMENTS FOR MICROPOLAR
ELASTICITY
4.1 Introductory Comments 28
4.2 General 3-D Micropolar Elasticity in Cylindrical
Coordinates 28
4.3Formulation of Finite Element Method for General 3-D
Micropolar Elasticity in Cylindrical Coordinate 30
4.4 Numerical Examples
V. AXISYMMETRIC ELEMENTS
5.1 Introductory Comments 53
5.2 Axisymmetric Micropolar Elasticity
5.3 Axisymmetric Element 55
5.4 Numerical Examples 61
VI. CONCLUSION
6.1 Concluding Remarks 79
6.2 Future Study 81
References
APPENDIX I Interpolation Functions of Two-Dimensional
Elements 85
APPENDIX II Program Listing for Two and Three-dimensional
Isoparametric Finite Elements

ii

LIST OF FIGURES

Figure	Page
I.	Some Typical Finite Elements 8
II.	Twenty-Node Three-dimensional Element
III.	Eight-Node Three-dimensional Element
IV.	8-Node Three-dimensional Element for Simple Tension. 41
v.	20-Node Three-dimensional Element for Simple Tension 42
VI.	Isotropic Micropolar Elastic Cylinder with Semi-
	circular Groove 48
VII.	Finite Element Meshes 49
VIII.	Stress Concentration Factor, K _C for a Round
	Tension Bar with a Semi-circular Groove in Three-
	dimensional case (Orthotropic for Force Stress and
	Couple Stress) 51
VIIII.	4-Node Two-dimensional Element for Simple Tension 63
х.	8-Node Two-dimensional Element for Simple Tension 64
XI.	Patch Test for 4- and 8- Node Two-dimensional
	Elements
XII.	Stress Concentration Factor, K _c for a Round
	Tension Bar with a Semi-circular Groove in Two-
	dimensional case. (Orthotropic for Force Stress and
	Couple Stress)
XIII	. Stress Concentration Factor, K _C for a Round Tension
	Bar with a Semi-circular Groove in Two-dimensional
	case. (Orthotropic for Force Stress but Isotropic for
	Couple Stress) 77

Table	Page
I.	Sampling Points and Weights in Gauss-Legendre Numerical
	Integration16
II.	Tabulation of Three-dimensional 8 nodes Finite Element
	Solution for Simple Tension Test
III.	Tabulation of Three-dimensional 20 nodes Finite Element
	Solution for Simple Tension Test
IV.	Material Properties Used for The Analysis of Isotropic
	Micropolar Elasticity 47
v.	Numerical Results of Stress Concentration Factor vs r/d
	In Three-dimensional case(Isotropic for Force Stress
	and Couple Stress) 50
VI.	Tabulation of Two-dimensional 4 nodes Finite Element
	Solution for Simple Tension Test
VII.	Tabulation of Two-dimensional 8 nodes Finite Element
	Solution for Simple Tension Test
VIII.	Numerical Results from the Patch Test
VIIII.	Numerical Results of Stress Concentration Factor vs r/d
	In Two-dimensional case (Isotropic for Force Stress and
	Couple Stress)72
х.	Some of Materials Parameters to Force Stress of
	Anisotropic Materials75
XI.	Numerical Results of Stress Concentration Factor vs r/d
	In Two-dimensional case (Orthotropic for Force Stress

.

iv

CHAPTER I

INTRODUCTION

1.1 Introductory Comments

Micropolar elastic solid is an elastic solid whose deformation can be described by a "macro" displacement, together with a "micro" rotation. Micropolar elastic materials are the elastic materials with extra independent degree of freedom for the local rotations. Micropolar elasticity materials include certain classes of materials with fibrous and elongated grains.

Voigt [1] and F. Cosserat [2] defined the Cosserat continuum many years ago. Since then about 500 papers have been published on the micropolar elasticity. However, most of the works were restricted to isotropic case. Furthermore, they are also restricted to simple geometries only. Possible reason is that it is extremely difficult to solve problems of complex geometries using the analytical methods. This difficulty, however, can be overcome with the application of the finite element method. The finite element method is an efficient tool to numerically solve the engineering problems. In fact, finite element method has been applied to complex geometries and orthotropic problems in the classical elasticity. As in the classical elasticity, finite element method is expected to be one of the most powerful solution techniques in micropolar elasticity theory.

The present study develops the finite element method for axisymmetric micropolar elasticity based on the variational

principle obtained by S. Nakamura et al.[3]. In this thesis, stress concentration problem will be solved and micro-rotation effect in the cylinder with semi-circular groove will be demonstrated. Since classical case has been solved for this problem in the literatures, the numerical results are compared with the one corresponding to the classical cases.

1.2 Literature Review

Voigt and F. Cosserat developed the theory for Cosserat continuum many years ago. However it was not until 1960's that fully developed microstructure theories evolved. In 1964, Eringen and Suhubi [4] introduced a nonlinear theory of microelastic solids. Similiar results were also obtained by Mindlin [5] in 1964 who derived a linear theory using variational principles. In 1962 Mindlin and Tiersten [6] advanced a couple stress theory in which the rotation of material point is equal to the local rotation of the surrounding medium. The couple stress theory presented by Mindlin and Mindlin and Tiersten is known to be a special case of the Cosserat continuum theory. Eringen renamed the Cosserat continuum theory as micropolar elasticity.

The symmetrical bending at laterally loaded circular isotropic micropolar plates was analytically solved by Arimann in 1964 [7]. In the paper by Kaloni and Ariman the micropolar theory is called Eringen's theory and the couple stress theory is called Mindlin's theory. Later Khan and Dhaliwal obtained the analytical solution for the isotropic micropolar elasticity of half-space subjected to an arbitrary normal pressure [8]. Kishida, Sazaki and Hanzawa

solved stress concentration problem for a circular cylinder with a semicircular annular groove under uniaxial tension of linear isotropic couple stress elastic solids [9]. For this purpose, they used indirect fictious boundary integral method. In 1969 Gauthier analytically solved the isotropic axisymmetric micropolar elasticity of a cylinder subjected to axial tension and torsion and cylindrical bending of a rectangular plate [10]. Guathier and his co-worker also performed experiment to obtain micropolar elastic constants of isotropic composite materials [11].

S. Nakamura [12] was the first in solving the orthotropic micropolar elasticity using finite element method. Two finite element programs have been developed for plane Cosserat elasticity theory. The earlier program [13] used triangular constant strain element and the second used 4- and 8-node isoparametric elements [14]. In the following chapter, similar finite element formulation to Ref.[12] is applied to develop finite element method for three-dimensional and axisymmetric micropolar elasticity.

1.3 Scope of the thesis

First, finite element methods are reviewed from Ref. [15] in chapter II.

Equations of general micropolar elasticity, variational method and displacement type finite element formulation for micropolar elasticity are reviewed in Chapter III.

In chapter IV, micropolar elasticity and matrix finite element formulation for cylindrical coordinate system is

developed. Numerical examples are also included.

Axisymmetric elements of 4-node and 8-node elements are used in Chapter V. Numerical results are compared graphically with the results of classical elasticity. Numerical examples and programming organization are also illustrated.

Finally, conclusions and recommendations for research are suggested in Chapter VI.

CHAPTER II

REVIEW OF THE FINITE ELEMENT METHOD

2.1 Introductory Comments

For the last two decades finite element methods have received much attention, due to the increasing use of high-speed computers and the growing emphasis on numerical methods for engineering analysis. This is completely understandable, since it is not possible to obtain analytical solutions for many practical engineering problems.

An analytical solution is a mathematical or functional expression that can give the values of the desired unknown variables at any location in a continuum, and as a consequence it is valid for an infinite number of locations in the body. However, analytical solutions can be obtained only for certain simple problems. For problems involving nonisotropic material properties and complex boundary conditions, one has to resort to numerical methods that provide approximate solutions with reasonable accurracies. In most of the numerical methods, the solutions yield approximate values of the unknown variables only at a discrete number of points in the continuum. The process of selecting finite number of discrete points in the continuum can One way of discretizing an entire be termed "discretization". body or structure is to divide it into a set of small bodies, or units. The assemblage of such units then represents the original body. Instead of solving the problem for the entire body in one operation, the solutions could be formulated for each constituent

unit and then combined to obtain the solution for the original body or structure.

The finite element method is applicable to a wide range of boundary value problems in engineering. In boundary value problems, solutions are sought in the region of the body, while on the boundaries the values of the unknown variables (or their derivatives) are prescribed. Problems in the field of solid mechanics are usually tackled by one of the three approaches: the displacement method, the equilibrium method, or the mixed method. Displacement are assumed as primary unknown quantities in the displacement method; stress are assumed as primary unknown quantities in the equilibrium method; and some displacements and some stresses are assumed as unknown quantities in the mixed method.

In the following of this Chapter, isoparametric finite formulation and axisymmetric finite element method are reviewed first. Variational formulation of micropolar elasticity and finite element formulation for micropolar elasticity are then reviewed.

2.2 General Formulation of Finite Element Method

In this section finite element method is reviewed from Ref.[16]. The concept of finite element methods consist of a discretization of a continuous media to describe the state of those discretized continuum. There are two matrix method approaches associated with the finite element method:

a. The force type finite element method assumes the internal

forces as the unknowns variables. To generate the governing equations, the equilibrium conditions are used first; then to develop the additional equations which might be necessary to obtain the solutions, and compatibility conditions are introduced.

b. The displacement type finite element methods assumes the displacements of the nodes as the unknown variables. In this approach the compatibility conditions in and among elements are initially satisfied. Then the governing equations in terms of nodal displacements are written for each nodal point using the equilibrium conditions.

The difference between force and displacement type finite element methods lies on the selection of the unknowns of the analysis and the variations in the matrix quantities associated with their formulations.

Since most engineers are familiar with the displacement analysis invloving such terms as stresses, strains, and equilibrium, the great majority of literature on the finite element methods has been written in terms of the displacement method. In this thesis displacement-type finite element method is used.

2.2.1 Displacement Finite Element Method

In this section, displacement finite element method is reviewed from Ref. [15].

The displacements of the finite elements are always described in the local coordinate system as shown in Fig.2.1

For one-dimensional truss elements one can use

(e) Thin shell element (obtained by superimposing plate bending and plane stress)

(f) Three-dimensional element

Fig. 2.1 Some Typical Finite Elements

$$\mathbf{u}(\mathbf{x}) = \boldsymbol{\bigotimes}_{i} + \boldsymbol{\bigotimes}_{\mathbf{2}} \mathbf{x} + \boldsymbol{\bigotimes}_{\mathbf{3}} \mathbf{x}^{2} + \dots$$

where x varies over the length of the element. u is the local element displacement and $\alpha_1, \alpha_2, \ldots$ are generalized coordinates.

For two-dimensional elements like plane stress, plain strain and axisymmetric elements, one need two displacement variables uand v as a function of x and y coordinates,

$$u(x, y) = \alpha_1 + \alpha_2 x + \alpha_3 y + \alpha_4 x y + \alpha_5 x^2 + \cdots$$
$$v(x, y) = \beta_1 + \beta_2 x + \beta_3 y + \beta_4 x y + \beta_5 x^2 + \cdots$$

where $\alpha_1, \alpha_2, \ldots$ and β_1, β_2 are generalized coordinates.

In the case of plate bending , the transverse deflection w is needed as a function of coordinates x and y;

$$w(x,y) = Y_1 + \xi_2 x + \xi_3 y + \xi_4 x y + \xi_5 x^2 + \dots$$

where y_{i}, y_{2} are generalized coordinates.

Finally, for general 3+dimensional elements in which u,v, w, are displacement variables at x,y,and z coordinates;

$$u(x, y, z) = \alpha_{1} + \alpha_{2}x + \alpha_{3}y + \alpha_{4}z + \alpha_{5}xy + \dots$$

$$v(x, y, z) = \beta_{1} + \beta_{2}x + \beta_{3}y + \beta_{4}z + \beta_{5}xy + \dots$$

$$w(x, y, z) = \gamma_{1} + \gamma_{2}x + \gamma_{3}y + \beta_{4}z + \gamma_{5}xy + \dots$$

where $\alpha_{1,1}\alpha_{2,2}, \dots, \beta_{1,1}\beta_{2,2}, \dots, \gamma_{1,1}\gamma_{2,2}$ are generalized coordinates.

2.2.2 Isoparametric Finite Element Method

The most widely used finite element method for general application is the isoparametric finite element method. The basic idea of isoparametric finite element formulation is to achieve the relationship between the element displacement at any point and the element nodal point displacement directly through the use of a shape function. The procedure using isoparametric finite element formulation is to express the element coordinates and element displacements in the form of interpolations using the natural coordinate system of each element. A natural coordinate system is a local system which permits the specification of a point within the element by a set of dimensionless numbers whose magnitudes never exceed unity. Such a coordinate system can generalize and simplify the formulation, and also facilitates the numerical integration required to obtain the element stiffness matrix. This coordinate system can be one-. two-, or three-dimensional, depending on the dimensionality of the element. The formulation of the element matrices is basically the same for a one-,two-,or three-dimensional element.

In this section, three-dimensional element is presented. However, the one- and two-dimensional elements are also included using only the relevant coordinate axis and the appropriate interpolation functions.

Considering a general three-dimensional element, the coordinate interpolations are

$$x = \sum_{i=1}^{q} N_{i} x_{i}$$

$$y = \sum_{i=1}^{q} N_{i} y_{i}$$

$$z = \sum_{i=1}^{q} N_{i} z_{i}$$
(2.1)

where x, y, and z are the coordinates at any point of the element, and x_i , y_i , z_i , $i=1,\ldots,$, q, are the coordinates of the q element nodes. The interpolation functions h_i are defined in the natural coordinate system of the element, which has variables r, s, and t whose ranges are between -1 to +1. The interpolation functions for one- and two-dimensional elements are given in Appendix I. The interpolation functions for twodimensional elements are applicable to axisymmetric analysis and used in Chapter 5.

In the classical elastic theory, for one-, or twodimensional elements only the relevant equations in (2.1) would be employed, and the interpolation functions would depend only on the natural coordinate variables r , s and t.

In the isoparametric formulation, the same interpolation functions used in geometry, is used to express displacements:

$$u = \sum_{i=1}^{q} N_{i} u_{i}$$

$$v = \sum_{i=1}^{q} N_{i} v_{i}$$

$$w = \sum_{i=1}^{q} N_{i} w_{i}$$
(2.2)

where u, v, and w are the local element displacement at any point of the element, and u_i , v_i , and w_i , $i=1,\ldots,q$, are the corresponding element displacements at each nodes. Therefore, it is assumed that to each nodal point coordinate necessary to describe the geometry of the element, there corresponds one nodal point displacement.

2.3 Finite-element matrices formulation

In general, the calculation of the element matrices should be carried out in the global coordinate system, using global displacement components if the number of natural coordinate variables is equal to the number of global variables.

To evaluate the stiffness matrix of an element, one needs to calculate the strain-displacement transformation matrix. The element strains are obtained in terms of derivatives of element displacements with respect to local coordinates. Because the element displacements are defined in the natural coordinate system using Eqn. (2.2), one has to relate the displacement with repect to x, y, and z to the ones with respect to r, s, and t. Let eqn (2.1) has the form

$$x = f_1(r,s,t)$$

 $y = f_2(r,s,t)$ (2.3)
 $z = f_3(r,s,t)$

where f_i denotes "function of ". The inverse relationship is

$$r = f_4(x, y, z)$$

 $s = f_5(x, y, z)$ (2.4)
 $t = f_6(x, y, z)$

To obtain the derivatives of $\partial_{\beta} x$, $\partial_{\beta} y$, and $\partial_{\beta} z$, one uses the chain rule:

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial}{\partial t} \frac{\partial t}{\partial x}$$

$$\frac{\partial}{\partial y} = \frac{\partial}{\partial r} \frac{\partial r}{\partial y} + \frac{\partial}{\partial s} \frac{\partial s}{\partial y} + \frac{\partial}{\partial t} \frac{\partial t}{\partial y}$$

$$\frac{\partial}{\partial z} = \frac{\partial}{\partial r} \frac{\partial r}{\partial z} + \frac{\partial}{\partial s} \frac{\partial s}{\partial z} + \frac{\partial}{\partial t} \frac{\partial t}{\partial z}$$
(2.5)

In matrix form,

where J is the Jacobian matrix relating the natural coordinate derivatives to the local coordinate derivatives. The Jacobian matrix can be found using (2.1)

$$\frac{\partial}{\partial x} = J^{-1} \frac{\partial}{\partial r}$$

which requires that the inverse of J exists. The inverse exists provided that there is a one-to-one correspondence between the natural and local coordinates of the elements (2.3.2.4).

Using Equations (2.5) and (2.6), one evaluates $\ni u/ \ni x, \ni u/ \ni y$, $\ni u/ \ni z, \ni v/ \ni x, \dots, \ni w/ \ni z$ and therefore constructs the straindisplacement transformation matrix B;

where u is a vector listing the element nodal point displacement of Equation (2.2).

The element stiffness matrix corresponding to the local element degree of freedom is

$$K = \int_{V} B^{T} D B dv \qquad (2.9)$$

Here the elements of B are functions of the natural coordinates r, s, and t. Therefore, the volume integration extends over the natural coordinate volume, and the volume differential dv needs also be written in the terms of the natural coordinates. In general, we have

$$dv = detJ dr ds dt$$
 (2.10)

where detJ is the determinant of the Jacobin matrix in Equation (2.7).

Since an explicit evaluation of the volume integral in Equation (2.10) is not possible, numerical integration is used.

First, we rewrite Equation (2.9) in the form

$$K = F dr ds dt$$
(2.11)

where $F = B^T D B$ detJ and integration is performed in the natural coordinate system of the element. F depends on r, s, and t, but the actual functional relationship is, in general, unknown. Using numerical integration, the stiffness matrix is now

$$k = \sum_{ijk} \alpha'_{ijk} F_{ijk}$$
(2.12)

where F_{ijk} is the matrix F evaluated at point r_i , s_j , and t_k .

The sampling point r_i , s_j , t_k of the function and the corresponding weighting factors $_{ijk}$ are chosen to obtain maximum accuracy for the interval -1 to +1, and are as given in Table [2.1].

The mass and load vectors are now given by

$$\mathbf{M} = \int_{V} \begin{pmatrix} \mathbf{C} & \mathbf{H}^{\mathrm{T}} & \mathrm{d}\mathbf{v} \\ \mathbf{C} & \mathbf{T} & \mathbf{D} \end{pmatrix}$$
(2.13)

$$R_{\rm B} = /_{\rm V} H^{\rm T} f^{\rm B} dv \qquad (2.14)$$

$$R_{S} = \int_{S} H^{S} f^{S} ds \qquad (2.15)$$

$$R_{I} = \int_{V} B^{T} \mathcal{J}^{I} dv \qquad (2.16)$$

where H is a matrix of the interpolation functions. The above matrices are evaluated using numerical integration.

To calculate the body force vector, R_{B} , we use

$$F = H^T f^B det J$$

For the surface force vector, we use $F = H^S$ f^S detJ and for the initial stress load vector we use $F = B^T \mathcal{J}^I$ detJ, and for the mass matrix one has $F = H^T$ detJ. The weight coefficients \bigwedge_{ijk} are the same as in the stiffness matrix evaluation and the same order of numerical integration is used for different order, values are obtained from the Table 2.1.

2.4 Convergence Considerations

The two requirements for monotonic convergence of a finite element analysis are that the elements must be compatible and complete. Completeness requires that the rigid body displacements and constant strain states be possible [15].

TABLE 2.1

SAMPLING POINTS AND WEIGHTS IN GAUSS-LEGENDRE NUMERICAL INTEGRATION

n	ri		S.	
1	0. (15 ze	ros)	2. (15	zeros)
2	+0.57735 02	691 89626	1,00000	00000 00000
З	+0.77459 66 +0.00000 00	692 41483 000 00000	0.55555 0.88888	55555 55556 38888 88889
4	+0.86113 63 +0.33998 10	115 94053 435 84856	0.34785 0.65214	48451 37454 51548 62546

.

.

.

Note : Sampling Points and Weights till Order 4 is given since the thesis involves integration upto order 3.

The necessity for the constant strain states can physically be understood. When the limit as each element approaches a very small size, the strain in each element approaches a constant value, and any complex variation of strain within the structure can be approximated. The requirement of compatibility means that the displacements within the elements and across the element boundaries must be continuous [15].

In the isoparametric formulation, one has the displacement interpolation

$$u = \sum_{i=1}^{q} N_{i} u_{i}$$

$$u_{i} = a_{1} + b_{1}x_{i} + c_{1}y_{i} + d_{1}z_{i}$$

$$v = \sum_{i=1}^{q} N_{i} v_{i}$$

$$v_{i} = a_{2} + b_{2}x_{i} + c_{2}y_{i} + d_{2}z_{i}$$

$$w = \sum_{i=1}^{q} N_{i} w_{i}$$

$$w_{i} = a_{3} + b_{3}x_{i} + c_{3}y_{i} + d_{3}z_{i}$$
(2.17)

which can be reduced to

$$u = a_{1} \sum_{i=1}^{q} N_{i} + b_{1} \sum_{i=1}^{q} N_{i} x_{i} + c_{1} \sum_{i=1}^{q} N_{i} y_{i} + d_{1} \sum_{i=1}^{q} N_{i} z_{i}$$
$$v = a_{2} \sum_{i=1}^{q} N_{i} + b_{2} \sum_{i=1}^{q} N_{i} x_{i} + c_{2} \sum_{i=1}^{q} N_{i} y_{i} + d_{2} \sum_{i=1}^{q} N_{i} z_{i}$$
$$(2.18)$$
$$w = a_{3} \sum_{i=1}^{q} N_{i} + b_{3} \sum_{i=1}^{q} N_{i} x_{i} + c_{3} \sum_{i=1}^{q} N_{i} y_{i} + d_{3} \sum_{i=1}^{q} N_{i} z_{i}$$

Since in the isoparametric formulation, the coordinates are interpolated in the same way as the displacements,

$$u = a_{1} \sum_{i=1}^{q} N_{i} + b_{1} x_{i} + c_{1} y_{i} + d_{1} z_{i}$$

$$v = a_{2} \sum_{i=1}^{q} N_{i} + b_{2} x_{i} + c_{2} y_{i} + d_{2} z_{i}$$

$$w = a_{3} \sum_{i=1}^{q} N_{i} + b_{3} x_{i} + c_{3} y_{i} + d_{3} z_{i}$$
(2.19)

also

$$\frac{q}{\sum_{i=1}^{N} N_i} = 1$$

The above relation is the condition on the interpolation functions for the completeness requirement to be satisfied.

REVIEW OF MICROPOLAR ELASTICITY

3.1 Introductory Comments

A micropolar elastic material differs from classical elastic material solids in that each point has extra rotational degree of freedom independent of translation, and that a micropolar elastic material can transmit couple stress as well as the usual force stress [1].

The theory of micropolar elasticity is hoped to be applicable to many new industrial materials with microstructures. A dramatic increase in the applications of light-weight materials in industry is expected in the future, thus enhancing the demand of vast amounts of basic researches in the related area.

In this chapter, the micropolar elasticity theory is reviewed. Erigen has studied a comprehensive recapulation of micropolar elasticity theory based largely on earlier works by him and his co-workers [4]. These equations are written in rectangular cartesian tensor notation. His treatise provides an excellent starting point for further investigations into linear theory and is served as the main starting grounds for this study.

3.2 Basic Equations of Micropolar Elasticity

In 1964, Erigen and Suhubi first constructed the linear theory of micropolar elasticity. The equilibrium equations of micropolar elasticity is given [4]:

$$t_{ji,j} + f(f_{k} - \dot{v}_{k}) = 0$$
(3.1)
$$m_{ji,j} + e_{ikm} t_{km} + f(1_{k} - \dot{\delta}_{k}) = 0$$

where e_{ikm} is the permutation tensor. Since only quasi-static problems are considered in this study, the inertia terms can be eliminated. The equilibrium equations thus become:

$$t_{ji,j} = 0$$
 (3.2)
 $m_{ji,j} + e_{ikm} t_{km} = 0$

3.2.1 Constitutive equations

The linear forms of the stress and couple stress constitutive equations for anisotropic micropolar elastic solids are [1]:

$$t_{kl} = A_{kl} + A_{klmn} \in mn$$

$$m_{kl} = B_{lkmn} \not m, n$$
(3.3)

Where \oint is the microrotation vector and \in_{mn} is the Kronecker delta. When the initial stress is zero, one has $A_{kl} = 0$. Thus, for the micropolar solid free of initial stress and couple stress, we have

$$t_{kl} = A_{klmn} \in mn$$

$$m_{kl} = B_{lkmn} \not m, n$$
(3.4)

Various material symmetry conditions place further restrictions on the constitutive coefficients A_{klmn} and B_{lkmn} . These restrictions are found in the same manner as in classical elasticity [17]. If the body is isotropic with respect to both force and couple stress, the solid is called isotropic. In this case, the constitutive coefficients must be isotropic tensors. For second and forth order isotropic tensors, one has the most general forms:

$$A_{kl} = A \delta_{kl}$$

$$A_{klmn} = A_{l} \delta_{kl} \delta_{mn} + A_{2} \delta_{km} \delta_{ln} + A_{3} \delta_{kn} \delta_{lm} \qquad (3.5)$$

$$B_{klmn} = B_{l} \delta_{kl} \delta_{mn} + B_{2} \delta_{km} \delta_{ln} + B_{3} \delta_{kn} \delta_{lm}$$

where A, $A_1, \ldots B_2$ and B_3 are functions of θ only. In this case, Equations (3.4) and (3.5) take the special forms:

$$t_{kl} = A \delta_{kl} + A_{l} \epsilon_{rr} \delta_{kl} + A_{2} \epsilon_{kl} + A_{3} \epsilon_{lk}$$

$$m_{kl} = B_{l} \phi_{r,r} \delta_{kl} + B_{2} \phi_{l,k} + B_{3} \phi_{k,l}$$
(3.6)

For vanishing initial stress A=0. By introducing

$$A_{1} \equiv \lambda, \quad A_{2} \equiv \mu + k \quad A_{3} \equiv \mu$$

$$B_{1} \equiv \alpha \quad B_{2} \equiv \gamma \qquad B_{3} \equiv \beta$$
(3.7)

the above equations can be rewritten as:

$$t_{kl} = \lambda \in_{rr} \delta_{kl} + (\mu + k) \in_{kl} + \mu \in_{lk}$$

$$m_{kl} = \mathcal{A} \varphi_{r,r} \delta_{kl} + \mathcal{B} \varphi_{k,l} + \mathcal{F} \varphi_{l,k}$$
(3.8)

Isotropic micropolar elasticity can therefore be distinguished from classical elasticity by the presence of four extra elastic moduli; namely, k, α', β , and **F**. When these four

extra elastic moduli are set equal to zero, Equation (3.5) reduce to the well-known Hooke's law of the linear isotropic classical solid.

3.2.2 Restrictions on Micropolar Elastic Moduli

The necessary and sufficient conditions for the internal energy to be non-negative are [2]:

$$o \stackrel{<}{=} 3\lambda + 2\mu + k, \quad 0 \stackrel{<}{=} 2\mu + k, \quad 0 \stackrel{<}{=} k$$

 $o \stackrel{<}{=} 3d + \beta + r, \quad -r \stackrel{<}{=} \beta \stackrel{<}{=} r, \quad 0 \stackrel{<}{=} r$
^(3.9)

The micropolar strain tensor indicates the relations among the strain , displacement and microrotation. Since there are 33 equations with 33 variables, the formulation is therefore complete.

3.2.3 Boundary conditions

Many different types of boundary conditions are suggested by the nature of various applications. For example, one may prescribe the displacement u_i and microrotation p_j on a boundary surface s of a body [10]. Equally permissible is the alternate prescription of the tractions and couples on s, i.e.

$$t_{lk} n_t = t_{(n)} K$$
 on S (3.10)

m
lk $^{n}t = ^{m}(n) ^{K}$

where t_{lk} and m_{lk} are surface stress and surface couple vectors, respectively, and $t_{(n)}$ K and $m_{(n)}$ K are the prescribed tractions and couples on the bounding surface whose exterior is

unit normal vector n. In some other problems, it is possible to prescribe the above two types of conditions as mixed boundary conditions.

3.2.4 Compatibility Conditions

The displacement u_i and microrotation ϕ_j are linked to the microstrain tensor \mathbf{e}_{ij} through the strain-displacement relations:

$$\epsilon_{ij} = u_{j,i} + e_{jik} \phi_k \qquad (3.11)$$

When the six quantities u_i and \oint_j are prescribed, these strain fields are determined uniquely from Equation (3.11) by mere substitution. On the other hand, specification of \boldsymbol{e}_{ij} does not determine the displacements and microrotations uniquely as the system is overdetermined. In order to assure single-valuedness and continuity in the displacement and microrotation fields, it is necessary to apply constrains to \boldsymbol{e}_{ij} and $\boldsymbol{p}_{i,j}$, limiting the arbitrariness with which we may prescribe these quantities. These conditions are known as the compatibility conditions, and they are given by

$$\epsilon_{ij,kl} + \epsilon_{kl,ij} + \epsilon_{ik,jl} + \epsilon_{jl,ik} = 0$$
(3.12)

3.3 Variational Formulation of Micropolar Elasticity

In the following, variational formulation of micropolar elasticity as originally derived by Nakamura et al. [3] is reviewed.

The potential energy \mathcal{T} of an elastic body is defined as:

$$\mathcal{T} = U - V \tag{3.13}$$

where U is the strain energy and V is the work done by external load acting on the body.

The principle of minimum potential energy claims, at the equibrium states,

$$\delta \Pi = \delta \upsilon - \delta v = 0 \tag{3.14}$$

The work done by the body force B_i , body couple C_i , surface traction T_i and surface couple M_i can be expressed as

$$V = \iint v^{(B_i U_i + C_i \phi_i) dv} + \int s^{(T_i^{V} U_i + M_i^{V} \phi_i) ds}$$
(3.15)

where

and

Ti^V= tji

Under virtual displacement and virtual microrotation, the virtual work done by external load becomes

$$V = \iint_{\mathbf{v}} (\mathbf{B}_{\mathbf{i}} \ \mathbf{U}_{\mathbf{i}} + \mathbf{C}_{\mathbf{i}} \ \mathbf{\phi}_{\mathbf{i}}) d\mathbf{v} + \int_{\mathbf{s}} (\mathbf{T}_{\mathbf{i}}^{\mathbf{v}} \ \mathbf{U}_{\mathbf{i}} + \mathbf{M}_{\mathbf{i}}^{\mathbf{v}} \ \mathbf{\phi}_{\mathbf{i}}) d\mathbf{s}$$

$$\leq \mathbf{U} = \leq \mathbf{v}$$

$$= \iint_{\mathbf{v}} (\mathbf{B}_{\mathbf{i}} \ \mathbf{U}_{\mathbf{i}} + \mathbf{C}_{\mathbf{i}} \ \mathbf{\phi}_{\mathbf{i}}) d\mathbf{v} + \int_{\mathbf{s}} (\mathbf{T}_{\mathbf{i}}^{\mathbf{v}} \ \mathbf{U}_{\mathbf{i}} + \mathbf{M}_{\mathbf{i}}^{\mathbf{v}} \ \mathbf{\phi}_{\mathbf{i}}) d\mathbf{s}$$

$$= \iint_{\mathbf{v}} ((\mathbf{t}_{\mathbf{j}\mathbf{i}}, \mathbf{j}^{+}\mathbf{B}_{\mathbf{i}}) \ \mathbf{U}_{\mathbf{i}} + (\mathbf{m}_{\mathbf{j}\mathbf{i}}, \mathbf{j}^{+}\mathbf{E}_{\mathbf{i}\mathbf{j}\mathbf{k}}^{\dagger}\mathbf{t}\mathbf{j}\mathbf{k}^{+}\mathbf{C}_{\mathbf{i}}) \ \mathbf{\phi}_{\mathbf{i}}$$

$$+ (\mathbf{t}_{\mathbf{j}\mathbf{i}} \ \mathbf{U}_{\mathbf{i}}, \mathbf{j}^{+}\mathbf{m}_{\mathbf{j}\mathbf{i}} \ \mathbf{\phi}_{\mathbf{i}}, \mathbf{j}^{-}\mathbf{E}_{\mathbf{i}\mathbf{j}\mathbf{k}}^{\dagger}\mathbf{t}\mathbf{j}\mathbf{k} \ \mathbf{\phi}_{\mathbf{i}})) d\mathbf{v}$$

$$(3.16)$$

The equilibrium equations for Cosserat elasticity are given in Equations (3.2):

tji,j^{+B}i⁼⁰ E_{ijk} t_{jk}+ m_{ji,j}+c_i=0

Substituting the equilibrium equations into the above
equations, the first and second terms vanish, and the virtual work becomes:

$$U = \iint v^{(t_{ji} \ U_{i,j}+m_{ji} \ \not P_{i,j}-E_{ijk} \ \not P_{i})dv}$$

$$= \iint v^{(t_{ji} \ E_{ji}+m_{ji} \ \not P_{i,j})dv}$$
(3.17)

The strain energy for linear constitutive relation is

$$U = \iint v^{(t_j i^E_j i^{+m_j} i \not j, j) dv}$$
(3.18)

Then, we have a minimum potential energy functional of micropolar elasticity:

$$\mathcal{T} = \mathbf{U} - \mathbf{V}$$

$$= \iint \mathbf{v}^{(t_{ji}E_{ji}+m_{ji}\not\phi_{i,j})d\mathbf{V}}$$

$$= \iint \mathbf{v}^{(B_{i}U_{i}+C_{i}\not\phi_{i})d\mathbf{V}} \int \mathbf{s}^{(T_{i}V_{U_{i}}+M_{i}\not\phi_{i})d\mathbf{s}}$$
(3.19)

3.4 Finite Element Formulation of Micropolar Elasticity

In this section, the finite element formulation for general micropolar elasticity based on the previous section derived by Nakamura et al. [12] is reviewed.

The total potential energy for a micropolar elastic solid are:

$$T = \frac{1}{2} \iint_{v} (t_{ji} \quad j_{i} + m_{ji} \not \phi_{i,j}) dv$$

$$- \iint_{v} (B_{i}u_{i} + C_{i} \not \phi_{i}) dv$$

$$- \int_{s} (T_{i} (v) u_{i} + M_{i} (v) \not \phi_{i}) ds$$
(3.20)

Here t_{ji} and m_{ji} in the first term are the force stress and couple stress, respectively; and \in_{ij} and $\rho_{i,j}$ are the micropolar strain tensor and microrotation gradient, respectively. B_i and C_i in the second term are the applied body force and body couple, respectively; and U_i and ϕ_i are displacement and microrotation for the i-direction, respectively. T_i and M_i in the third term are the surface force and surface couple tractions, respectively. The first two integrals are volume integrals, while the last one is a surface integral for which the surface traction and surface couples are prescribed.

Extremizing the above total potential energy expression with respect to displacement field u_i and microrotation field ϕ_i gives the following four equations:

Force Equilibrium Equation:

$$t_{ji,j} + G_i = 0$$
 (3.21)

Moment Equilibrium Equation:

$$e_{ijk} t_{jk} + m_{ji,j} + C_i = 0$$
 (3.22)

Cauchy's Formular for Force Stress:

$$T_{i}^{(V)} = t_{ji} v_{j}$$
 (3.23)

Cauchy's Formular for Couple stress:

$$M_{i}^{(V)} = m_{ji} V_{j} \qquad (3.24)$$

Here e_{ijk} in Equation (3.21) is a permutation tensor and v_j in Equation (3.24) is a j-th component of unit normal vector.

One introduces appropriate shape functions \mathtt{N}_{u} and \mathtt{N}_{0} such that

$$\forall_{x} \in V_{e}$$
, $u(x) = N_{u}(x)u^{e}$ and $\phi(x) = N_{0}(x)\phi^{e}$ (3.25)

Here u(x) and $\phi(x)$ are field variable vectors of displacement and microrotation in the finite domain. U^e and ϕ^e are nodal field variable vectors corresponding to them. Using the expression for micropolar strain tensor

$$E = L u(x) + M \phi(x)$$
 (3.26)

where L is a differential operator and M is a permutation matrix, and general constitutive equations

$$t = D_0 \in$$

m = D_1 $\bigtriangledown \phi$ (3.27)

discretized equilibrium equation is obtained:

$$k^{e} U^{e} = F^{e}_{V} + F^{e}_{s} \qquad (3.28)$$

Here the nodal value vector is $U^e = (u^{e^{T}}, 0^{e^{T}})$ and the element stiffness matrix k^e for micropolar elasticity is

$$k^{e} = \iint v (B_0^{T} D_0 B_0 + B_1^{T} D_1 B_1) dv$$
 (3.29)

where

 $B_0 = [L N_u, M N_0]$

and

$$B_1 = [0, N_0]$$

are strain-displacement matrix and microrotation gradient matrix, respectively.

CHAPTER IV

THREE-DIMENSIONAL ISOPARAMETRIC ELEMENTS FOR MICROPOLAR ELASTICITY

4.1 Introductory Comments

Micropolar theory can be applied to many structure materials, including fibrous, lattice and granular microstructures [1]. Although numerous boundary value problems have been solved analytically, the solutions are mainly limited to the isotropic cases. Moreover, it is difficult to apply the analytic methods to complex geometries. In addition, it is generally difficult to solve analytically a three-dimensional problem with the exception of a few special cases, such as the stress and displacement boundary value problems with Volterra's dislocation which can be treated as a plane problem and thus be solved as a two-dimensional problem [18]. Thus finite element methods are powerful tools for solving three-dimensional micropolar elasticity problems with arbitrary geometries.

In this chapter, a general three-dimensional micropolar elasticity theory in cylindrical system is reviewed first. A general purpose three-dimensional finite element method is then formulated, and a computer program is developed. The program is used to solve a micropolar elastic cylinder with a semi-circular groove under uniaxial tension.

4.2 General 3-D Micropolar Elasticity in Cylindrical coordinate System

In this section, micropolar elasticity in Cartesian

Coordinate system is transformed into Cylindrical Coordinate system.

Eringen's micropolar strain tensors

$$\epsilon_{ij} = u_{j,i} - e_{ijk} \phi_k \qquad (3.11)$$

can be expressed in vector form:

where L is a gradient operator in Cartesian Coordinate (x,y,z):

$$\mathbf{L}^{\mathrm{T}} = \begin{bmatrix} \frac{\partial}{\partial \mathbf{x}}, \frac{\partial}{\partial \mathbf{y}}, \frac{\partial}{\partial \mathbf{z}} \end{bmatrix}$$

Equation (3.11) can be transformed into cylindrical coordinate system (r, e, z), using the gradient operator:

$$\mathbf{L} = \begin{bmatrix} \frac{\partial}{\partial \mathbf{r}} & \frac{1}{\mathbf{r}\partial \theta} & \frac{\partial}{\partial z} \end{bmatrix}^{\mathrm{T}}$$

Thus

For Cylindrical Coordinate system (r, θ, z) the constitutive relationship has a form of:

$$\begin{pmatrix} \mathbf{t}_{\mathrm{TT}} \\ \mathbf{t}_{\theta\theta} \\ \mathbf{t}_{\mathrm{ZZ}} \\ \mathbf{t}_{\mathrm{T}\theta} \\ \mathbf{t}_{\mathrm{ZZ}} \\ \mathbf{t}_{\mathrm{T}\theta} \\ \mathbf{t}_{\mathrm{ZZ}} \\ \mathbf{t}_{\mathrm{T}\theta} \\ \mathbf{t}_{\mathrm{ZZ}} \\ \mathbf{t}_{\mathrm{T}\theta} \\ \mathbf{t}_{\mathrm{ST}} \\ \mathbf{t}$$

4.3 Formulation of the Finite Element Method for General 3-D Micropolar Elasticity in Cylindrical Coordinate

,

In this section finite element method for 3-D micropolar elasticity in cylindrical coordinate is derived.

The coordinates transformation from (x,y,z) to (r,θ,z) can be calculated by using coordinate transformations:

$$x = r\cos\theta$$

$$y = r\sin\theta$$
 (4.5)

$$z = z$$

The shape functions for the isoparametric element for eight to twenty variable-number-nodes are discussed in detail in Chapter 2. Using those shape functions N_i , displacement and microrotation field inside each element can be interpolated:

$$u_{r} = \sum_{i=1}^{q} N_{i} u_{ri}$$

$$u_{\theta} = \sum_{i=1}^{q} N_{i} u_{\theta i}$$

$$u_{z} = \sum_{i=1}^{q} N_{i} u_{zi}$$

$$\phi_{r} = \sum_{i=1}^{q} N_{i} \phi_{ri}$$

$$\phi_{\theta} = \sum_{i=1}^{q} N_{i} \phi_{\theta i}$$

$$\phi_{z} = \sum_{i=1}^{q} N_{i} \phi_{zi}$$
(4.6)

Here q is a total number of the nodes of the element. For the development of computer programs for 3-D micropolar elasticity, only 8- and 20- node element are used in this study as described in Chapter 2. u_{ri} , $u_{\theta i}$ and u_{zi} are nodal displacements along x, y, and z direction, respectively, and ϕ_{ri} , $\phi_{\theta i}$ and ϕ_{zi} , are nodal

microrotation about x, y, and z direction.

•

Defining the nodal value vector U^e, as

$$U^{e} = [u_{r1}, u_{\theta1}, u_{z1}, \not \gamma_{r1}, \not \phi_{\theta1}, \not \phi_{z1}, \\ \dots u_{xq'}, u_{yq'}, u_{zq'}, \not \gamma_{xq'}, \not \phi_{yq'}, \not \phi_{zq}]^{T} \quad (q=8 \text{ or } 20)$$

one can express Equation (14) in compact form:

Here u_X , u_Y , u_Z , ϕ_X, ϕ_Y , ϕ_Z , and each shape function N_i are expressed using natural coordinate system in each element. The following shape functions are used for q = 8.

$$N_{1} = 1/8 (1+R) (1+S) (1-T)$$

$$N_{2} = 1/8 (1+R) (1-S) (1-T)$$

$$N_{3} = 1/8 (1+R) (1+S) (1-T)$$

$$N_{4} = 1/8 (1-R) (1+S) (1-T)$$

$$N_{5} = 1/8 (1-R) (1-S) (1+T)$$

$$N_{6} = 1/8 (1-S) (1+R) (1+T)$$

$$N_{7} = 1/8 (1+R) (1+S) (1+T)$$

$$N_{8} = 1/8 (1+S) (1-R) (1+T)$$

To calculate the derivatives with respect to the global coordinate system, one needs coordinate transformation from natural coordinate system to global coordinate system:

Here J is called Jacobian matrix defined by

$$J = \begin{bmatrix} \frac{\partial x}{\partial R} & \frac{\partial x}{\partial s} & \frac{\partial x}{\partial T} \\ \frac{\partial y}{\partial R} & \frac{\partial y}{\partial s} & \frac{\partial y}{\partial T} \\ \frac{\partial z}{\partial R} & \frac{\partial z}{\partial s} & \frac{\partial z}{\partial T} \end{bmatrix}$$

Thus

$$\begin{array}{c}
\frac{\partial}{\partial \mathbf{r}} \\
\frac{\partial}{\partial \mathbf{r}} \\
\frac{\partial}{\partial \mathbf{r}} \\
\frac{\partial}{\partial \theta} \\
\frac{\partial}{\partial \theta} \\
\frac{\partial}{\partial \theta} \\
\frac{\partial}{\partial z} \\
\frac$$

(4.9)

$$= \begin{array}{c} & & \\ & &$$

where

$$\nabla_{11} = \cos \theta * \nabla_1 + \sin \theta * \nabla_2$$
$$\nabla_{22} = -r \sin \theta * \nabla_1 + r \cos \theta * \nabla_2$$
$$\nabla_{33} = \nabla_3$$

Here $abla_1,
abla_2$ and $abla_3$ are differential operators defined by:

$$\overrightarrow{\nabla}_{1} = J^{-1}(1,1) \frac{\partial}{\partial R} + J^{-1}(1,2) \frac{\partial}{\partial S} + J^{-1}(1,3) \frac{\partial}{\partial T}$$

$$\overrightarrow{\nabla}_{2} = J^{-1}(2,1) \frac{\partial}{\partial R} + J^{-1}(2,2) \frac{\partial}{\partial S} + J^{-1}(2,3) \frac{\partial}{\partial T}$$

$$\overrightarrow{\nabla}_{3} = J^{-1}(3,1) \frac{\partial}{\partial R} + J^{-1}(3,2) \frac{\partial}{\partial S} + J^{-1}(3,3) \frac{\partial}{\partial T}$$

Substituting equations (4.7) and (4.9) into strain displacement equation (4.2), one obtains the following strain-displacement matrix B_0 :

$$\begin{cases} \mathcal{E} & rr \\ \mathbf{e} & 0 \mathbf{0} \\ \mathbf{e} & zz \\ \mathbf{e} & r\mathbf{0} \\ \mathbf{e} & \mathbf{0}r \\ \mathbf{e} & \mathbf{0}r \\ \mathbf{r}z \\ \mathbf{e} & zr \\ \mathbf{e} & zr \\ \mathbf{e} & 0z \\ \mathbf{e} & z\mathbf{0} \\ \end{bmatrix}$$
(4.10)

where

 $B_0(1,1) = B_0(1,7) = \dots = B_0(1,1+6*(q-1)) = \nabla_{11} N_q$ $B_0(2,1) = B_0(2,7) = \dots = B_0(2,1+6*(q-1)) =$ N_a/r $B_0(2,2) = B_0(2,8) = \dots = B_0(2,2+6*(q-1)) = \nabla_{22} N_q/r$ $B_0(3,3) = B_0(3,9) = \dots = B_0(3,3+6*(q-1)) = \bigtriangledown_{33} N_q$ $B_0(4,2) = B_0(4,8) = \dots = B_0(4,2+6*(q-1)) = \bigtriangledown_{11} N_q$ $B_0(4,6) = B_0(4,12) = \dots = B_0(4,6+6*(q-1)) =$ -Na $B_0(5,1) = B_0(5,7) = \dots = B_0(5,1+6*(q-1)) = \nabla_{22} N_q/r$ $B_0(5,2) = B_0(5,8) = \dots = B_0(5,2+6*(q-1)) = -N_q/r$ р^И $B_0(5,6) = B_0(5,12) = \dots = B_0(5,6+6*(q-1)) =$ $B_0(6,5) = B_0(6,11) = \dots = B_0(6,5+6*(q-1)) =$ Nq $B_0(6,3) = B_0(6,9) = \dots = B_0(6,3+6*(q-1)) = \nabla_{11} N_{q}$ $B_0(7,1) = B_0(7,7) = \dots = B_0(7,1+6*(q-1)) = \bigvee_{33} N_{q}$ $B_0(7,5) = B_0(7,11) = \dots = B_0(5,2+6*(q-1)) =$ -Ng $B_0(8,3) = B_0(8,9) = \dots = B_0(8,3+6*(q-1)) = \bigtriangledown_{22} N_q/r$ $B_0(8,4) = B_0(8,10) = \dots = B_0(8,4+6*(q-1)) =$ -Na $B_0(9,2) = B_0(9,8) = \dots = B_0(9,2+6*(q-1)) = \bigvee_{33} N_q$ $B_0(9,4) = B_0(9,10) = \dots = B_0(9,4+6*(q-1)) =$ Nσ

for q=1,2,....8

For the axisymmetric case, $B_0(2,2) = ... = B_0(5,1) = ...$ = $B_0(8,3)...=0$

Similary for microrotation gradient, one obtains the following B₁ matrix:

$$\begin{pmatrix} \varphi \\ r,r \\ \varphi \\ r,r \\ \varphi \\ \varphi \\ r,r \\ \varphi \\ z,z \\ \varphi \\ \theta,r = B^{1} U^{e}$$

$$\begin{pmatrix} 4.11 \\ \varphi \\ r,\theta \\ r \\ \varphi \\ r,z \\ \varphi \\ r,z \\ \varphi \\ r,z \\ \varphi \\ \theta,z \end{pmatrix}$$

$$(4.11)$$

where B_1 is a 9 by 48 matrics in q=8 case.

and

$$B_{1}(1,4) = B_{1}(1,10) = \dots = B_{1}(1,4+6*(q-1)) = \bigvee_{11} N_{q}$$

$$B_{1}(2,4) = B_{1}(2,10) = \dots = B_{1}(2,4+6*(q-1)) = \bigvee_{22} N_{q}/r$$

$$B_{1}(2,5) = B_{1}(2,11) = \dots = B_{1}(2,5+6*(q-1)) = \bigvee_{22} N_{q}/r$$

$$B_{1}(3,6) = B_{1}(3,12) = \dots = B_{1}(3,6+6*(q-1)) = \bigvee_{11} N_{q}$$

$$B_{1}(4,5) = B_{1}(4,11) = \dots = B_{1}(4,5+6*(q-1)) = \bigvee_{22} N_{q}/r$$

$$B_{1}(5,4) = B_{1}(4,10) = \dots = B_{1}(4,4+4*(q-1)) = \bigvee_{22} N_{q}/r$$

$$B_{1}(5,5) = B_{1}(5,11) = \dots = B_{1}(5,5+6*(q-1)) = \dots = N_{q}/r$$

$$B_{1}(6,6) = B_{1}(6,12) = \dots = B_{1}(6,6+6*(q-1)) = \bigvee_{11} N_{q}$$

$$B_{1}(7,4) = B_{1}(7,10) = \dots = B_{1}(7,4+6*(q-1)) = \bigvee_{22} N_{q}/r$$

$$B_{1}(8,6) = B_{1}(8,12) = \dots = B_{1}(8,6+6*(q-1)) = \bigvee_{22} N_{q}/r$$

$$B_{1}(9,5) = B_{1}(9,11) = \dots = B_{1}(9,5+6*(q-1)) = \bigvee_{33} N_{q}$$
where $q=1,2,\dots = B_{1}(9,11) = \dots = B_{1}(9,5+6*(q-1)) = \bigvee_{33} N_{q}$

The B_0 - and B_1 - matrices derived above can be substituted into equation (3.29) to obtain element stiffness matrix k^e . To carry out volume integral of equation (3.29), numerical integration of Gaussian quadrature shown in Table 2.1 is used in the program:

$$k^{e} = \sum_{i,j}^{g} t_{ij} \mathcal{A}_{ij} (B_{0}^{T}_{ij} D_{0} B_{0}_{ij}) DET$$

$$+ \sum_{i,j}^{g} t_{ij} \mathcal{A}_{ij} (B_{1}^{T}_{ij} D_{1} B_{1}_{ij}) DET$$

$$(4.12)$$

where \swarrow_{ij} is the weighting factors of Gaussian Quadrature. If body force is neglected, the force vector can becomes

$$F^e = F_s^e$$
.

The force vector can be calculated by

$$\mathbf{F_{s}^{e}} = \begin{pmatrix} N_{1} \\ N_{1} \\ \vdots \\ \vdots \\ N_{1} \\ \vdots \\ \vdots \\ \vdots \\ N_{q} \\$$

The element stiffness matrices calculated in equation (4.12) are assembled into a global stiffiness matrix in a symmetric banded form with only the upper triangular part stored. Boundary conditions of the prescribed displacements and microrotations are imposed by modification of the corresponding rows and columns of this global stiffness matrix. Similarly, the force vector is generated by superposing element force vector in equation (4.13). The linear algebraic equation is then solved for nodal displacement using the skyline technique [12].

4.4 Numerical examples

The finite element formulations developed in the previous section are implemented in Fortran programs(Appendix 2) with either 8- or 20- node element, as shown Fig.4.1 and Fig. 4.2 The eight nodes in the 8-node element represent the eight corners of a cubic finite element, and the additional 12 nodes are included in the 20- node element to bisect every two corners. In order to verify the validity of the proposed finite element formulations, two examples of axisymmetric micropolar elastic solids are solved. The axisymmetric examples are deliberately chosen so that they can be compared with existing two-dimensional analytical solutions [10].

Example 1

This example is to solve a simple tension of cylindrical Cosserat solids. The 8-node element is used. The finite element meshes used are depicted in Fig.4.3 and Fig.4.4. The material parameters are: Coupling factor N=0.0, 0.25, 0.50, 0.7, 0.9, characteristic length l=8.333x10⁻³ inch and Poissons ratio=0.3. \mathcal{M} =lx10³

(psi), k=0.0 (psi) $\beta = 666.6666$ (psi), $\gamma = 0.185185185$ (pound) Dimensions used are: radius R=2 (inches) and length L=2

(inches).

Fig. 4.1 Eight Node Three-dimensional Element

. ۲

Fig. 4.2 Twenty Node Three-dimensional Element

Fig.4.3. 8-Node Three-dimensional Element for Simple Tension.

FRONT VIEW

۰.

TABLE 4.1 Numerical results from Fig.4.3 c.p. Analytical solution

numerical results analytical solution (1) displacement (inch) coordinate $v_m r$ nodal no. r (inch) u_{rr} (inch) $u_{rr}^{=}$ ------ (inch) E_m 2,3,6,7 2.0 -0.34615386×10⁻³ -0.34615386×10⁻³ v_{zz}= -----_{Em} nodal no. z uzz 5, 6, 7, 8 2.0 0.11538462x10⁻² 0.11538462x10⁻² (2) stress element no. $t_{zz} = -\frac{P_z}{A}$ tzz 1.0 1.0

1

-

TABLE 4.2 Numerical results from Fig. 4.4 c.p. Analytical solution

	numerical results	analytical solution
(1) displacement (inch)		
coordinate nodal no. r (inch)	u _{rr} (inch) u _{rr} =	$-\frac{v_m r}{E_m}$ (inch)
9,11,17,19 1.0	-0.17307693x10 ⁻³	-0.17307693x10 ⁻³
2,6,3,7 2.0 10,14,18,15	-0.34615386x10 ⁻³	-0.34615386x10 ⁻³
nodal no. z (inch)	u _{zz} v _z	z= E _m
13,14,15,16 1.0	0.57692309x10 ⁻³	0.57692309x10 ⁻³
5,6,7,8 17,18,19,20	0.11538462x10 ⁻²	0.11538462x10 ⁻²
(2) stress		
element no.		σ
	tzz	$t_{zz} = -\frac{fz}{A}$

1.0

1.0

The numerical results obtained in this study are summarized in Table 4.1 and Table 4.2. Also shown in these tables are the analytical solutions of the same isotropic micropolar elastics solids derived by Gauthier:

Force stress:
$$t_{zz} = -\frac{P_z}{A}$$

r-displacement: $u = -\frac{V_m P_z r}{E_m A}$
z-displacement: $v = -\frac{E_m A}{P_z z}$
 $E_m A$

where A is the area of crossection and Young's modulus and Poission's ratio are defined by

$$E_{m} = \frac{(2\mu + k) (3\lambda + 2\mu + k)}{(2\mu + 2\lambda + k)}, \quad \mu = \frac{\lambda}{(2\mu + 2\lambda + k)}$$

The significant findings are the following:

1. The numerical results for displacements are identical with those from the analytical solution. This confirms the validity of the proposed isoparametric finite element formulation.

2. The displacements are not effected by the coupling factor N. This indicates that the micropolar effects do not affect the simple test, meaning that during the simple test, micropolar effects vanish.

3. The tension stress in the z-direction are found to be equal to unity everywhere in every element.

Example 2

(1) The geometry is simple.

(2)The shape function and numerical integration are exact for lower displacement field.

Example 2

To demonstrate the capability and validity of the proposed finite element formulation, an isotropic micropolar elastic cylinder with a semi-circular groove is used as the second example. To the best of the author's knowledge, this particular problem has never been solved before, probably due to the difficulty in obtaining analytical solutions with such a complex geometry. In the following it is shown that the numerical results obtained in this study indeed coincides with the available experimental results when the coupling factor is equal to zero, i.e., when the micropolar solid reduces to a classical material.

The isotropic micropolar elastic cylinder with a semicircular groove used in this example is shown in Fig.4.5. The diameter of the cylinder D is fixed to 0.1 inch. The radius ratio k is defined by k = r/d, where r is the radius of groove, and d is D - 2r. In this study, k is varied in the range of 0.05 to 0.5. Finite element mesh used for the analysis is shown in Fig.4.6 for radius ratio k=0.5. The material properties used for the isotropic case are as listed in Table.4.3. The characteristic length 1 is fixed to 8.333×10^{-3} , and the Poisson ratio of 0.3 is used. These properties are summarized in Table 4.3.

The numerical results of K_c, or sigma max/sigma nom,

Table 4.3 Material properties used for the analysis of isotropic micropolar elasticity

N	λ		Л		к	
0.0	1.000×10^{3} 6.895 x 10 ⁶	(psi) (N/m ²)	6.666 x 10 ² 4.596 x 10 ⁶	(psi) 0 (N/m ²) 0	.0	(psi) (N/m ²)
0.25	1.125×10^4	(psi)	7.000×10^{3}	(psi) 1	.000 x 10 ³	(psi)
	7.757 x 10 ⁷	(N/m ²)	4.826×10^{7}	(N/m ²) 6	.895 x 10 ⁶	(N/m ²)
0.50	2.250×10^{3}	(psi)	1.000×10^{3}	(psi) 1	$.000 \times 10^3$	(psi)
	5.063 x 10 ⁶	(N/m ²)	6.895 x 10 ⁶	(N/m ²) 6	.895 x 10 ⁶	(N/m ²)
0.75	5.833×10^2	(psi)	1.111 x 10^2	(psi) 1	$.000 \times 10^3$	(psi)
	4.022×10^6	(N/m ²)	7.660 x 10^6	(N/m ²) 6	.895 x 10 ⁶	(N/m ²)
0.90	1.795×10^2	(psi)	3.827×10^2	(psi) 1	1000×10^3	(psi)
	1.213×10^6	(N/m ²)	2.639 x 10 ⁵	(N/m ²) 6	1000×10^6	(N/m ²)

N	γ		X		P	
0.00	0.185185185	(pound)	0.0	(pound)	0.0	(pound)
0.25	2.083333333	(pound)	0.0	(pound)	0.0	(pound)
0.50	0.416666666	(pound)	0.0	(pound)	0.0	(pound)
0.75	0.108024691	(pound)	0.0	(pound)	0.0	(pound)
0.90	0.032578875	(pound)	0.0	(pound)	0.0	(pound)

Fig. 4.5 Isotropic Micropolar Elastic Cylinder with Semicircular Groove

1

~

Fig.4.6 Finite element meshes

Table 4.4 Numerical results of stress concentration factor vs r/d. (isotropic for force stress and couple stress)

N=0.00	N=0.25	N=0.50	N=0.75	N=0.90	ratio r/d
2.73	2.58	2.26	1.92	1.75	0.05
2.53	2.40	2.11	1.81	1.65	0.08
2.39	2.28	2.03	1.75	1.60	0.10
2.22	2.13	1.91	1.67	1.53	0.13
2.04	1.98	1.80	1.59	1.47	0.17
1.93	1.88	1.73	1.54	1.43	0.20
1.84	1.79	1.66	1.50	1.40	0.23
1.74	1.70	1.60	1.45	1.36	0.27
1.68	1.65	1.55	1.42	1.33	0.30
1.59	1.56	1.47	1.35	1.28	0.35
1.52	1.49	1.42	1.31	1.25	0.40
1.46	1.44	1.38	1.29	1.23	0.45
1.42	1.40	1.34	1.26	1.20	0.50

.

case (Orthotropic for Force Stress and Couple Stress)

where sigma max is the maximum stress at the groove and sigma norm is the stress without the groove for different coupling factor N are listed in Table 4.4. The simulated concentration factor versus radius ratio with coupling factor as a parameter are also poltted in Fig.4.7. It can be seen that K_c decreeses monotonically as k increases. The experimental results for the classical elasticity material done by Peterson [19] are also plotted in Fig.4.7 with dashed line. The experimental data concide very well with the numerical results for the case of N = 0.0 in which the micropolar elasticity reduces to classical elasticity. This fact again confirms the validity of the finite element formulation.

The numerical results also show that for non-zero N, the stress concentration factor is reduced, indicating that the microrotation does affect the stress concentration factor. For a fixed radius ratio, a larger N results in a smaller stress concentration factor, suggesting that the microrotation effect increases when the coupling factor increases. It is also interesting to note that the effect of coupling factor on K_c decreases at high radius ratio. When the radius ratio becomes very large, the problem can be treated as a simple test which has no micropolar effect.

CHAPTER V

AXISYMMETRIC ELEMENTS

5.1 Introductory Comments

Many engineering problems involve solids of revolution subjected to axially asymmetric loading. It is therefore important to consider the asymmetric problems in the micropolar elasticity. The axisymmetric problems can be transformed to a two-dimensional plane case and solved by two-dimensional analytical methods. However, no universal technique is available for general boundary value problems, making the solutions procedure tedious. In this chapter it is demonstrated that the finite element method can overcome these short-comings by offering a general-purpose numerical solution, thus providing a powerful technique in solving axisymmetrical problems.

In the following sections, the simplified two-dimensional strain-displacement relationship for micropolar elasticity of the axisymmetric case due to axisymmetric load is derived, and then the isoparametric finite element method is applied to formulate the simplified strain-displacement relationship. Isoparametric elements of 4-node and 8-node are used. The programming organization is then described. The program is also verified by comparing the numerical results with analytical solutions for simple tension of cylindrical Cosserat solid and also for stress concentration of a round bar with semi-circular groove.

5.2 Axisymmetric Micropolar Elasticity

To derive the simplifed two-dimensional strain-displacement

relationship for micropolar elasticity of the axisymmetric material properties under axisymmetric loading, one starts with micropolar strain tensors defined in Equation.3.11.

$$\boldsymbol{\epsilon}_{ij} = u_{j,i} - e_{ijk} \phi_k$$

This equation was transformed into the cylindrical coordinate system (r,o,z) in chapter 4 and had the form:

For the axisymmetric case, dependency on Θ vanishes and the above strain tensors reduce to the following form:

$$\begin{aligned}
\in_{ij} = \begin{pmatrix} \frac{\partial u_r}{\partial r} & \frac{\partial u_\theta}{\partial r} - \phi_z & \frac{\partial u_z}{\partial r} + \phi_\theta \\
- \frac{u_\theta}{r} + \phi_z & \frac{u_r}{r} & -\phi_r \\
\frac{\partial u_r}{\partial z} - \phi_\theta & \frac{\partial u_\theta}{\partial z} + \phi_r & \frac{\partial u_z}{\partial z}
\end{aligned}$$
(5.1)

In the case of axisymmetric load, microrotations about r and z axis vanish, thus Equation (5.1) can be further reduced :

$$(\mathcal{E}_{rr}, \mathcal{E}_{\theta\theta}, \mathcal{E}_{zz}, \mathcal{E}_{rz}, \mathcal{E}_{zr}) = (\frac{\partial^{u}r}{\partial r}, \frac{ur}{r}, \frac{\partial^{u}z}{\partial z}, \frac{\partial^{u}z}{\partial r} + \oint_{\theta}, \frac{\partial^{u}r}{\partial z} - \oint_{\theta}) \quad (5.2)$$

From now on, the following simplified notations are used.

$$u = u_r$$
, $v = u_z$ and $\phi = \phi_{\theta}$

Thus expression (5.2) becomes

$$= \left(\begin{array}{c} \frac{\partial^{\mathbf{u}}}{\partial \mathbf{r}}, \begin{array}{c} \mathbf{u}\\ \mathbf{r} \end{array}, \begin{array}{c} \frac{\partial^{\mathbf{v}}}{\partial \mathbf{z}}, \begin{array}{c} \frac{\partial^{\mathbf{v}}}{\partial \mathbf{r}} + \mathbf{0}, \begin{array}{c} \frac{\partial^{\mathbf{u}}}{\partial \mathbf{z}} - \mathbf{0} \end{array} \right)^{\mathrm{T}}$$
(5.3)

The above kinematical considerations tell one that for elastic solids under axisymmetric loading, each material point has only three degrees of freedom, i.e., (u,v,ϕ) , which represent displacements in the r, and z directions; and microrotation about 0 direction, respectively.

5.3 Axisymmetric Element:

The shape functions for the isoparametric element for four to nine variable-number-nodes were discussed in chapter 3, and also shown in Appendix 1. Using those shape functions N_i , displacement and microrotation field inside each element can be interpolated:

$$u = \sum_{i=1}^{q} N_{i} u^{i}$$

$$v = \sum_{i=1}^{q} N_{i} v^{i}$$

$$\phi = \sum_{i=1}^{q} N_{i} \phi^{i}$$
(5.4)

Here q is the total number of nodes of the element and q=4 or 8 For the development of the computer program for micropolar elasticity, both 4 node- and 8 node-element are used . u^{i} and v^{i} are nodal displacements along r and z direction, respectively; and ϕ is a nodal microrotation about θ direction.

By defining the nodal value vector U^e :

$$U^{e} = (u_{1}, v_{1}, \phi_{1}, \dots, u_{q}, v_{q}, \phi_{q})^{T}, (q=4 \text{ or } 8)$$

one can express Equation (5.4) in compact form:

$$\begin{pmatrix} u & (R,S) \\ v & (R,S) \\ \phi & (R,S) \end{pmatrix} = \begin{pmatrix} N_{1} & (R,S) & N_{q} & (R,S) \\ & N_{1} & (R,S) & N_{q} & (R,S) \\ & & N_{1} & (R,S) & N_{q} & (R,S) \end{pmatrix} U^{e}(5.5)$$

Here u, v, ϕ and each shape function N_i are expressed using natural coordinate system in each element. The following shape functions are used for q=8.

$$N_{1} = 1/4 (1+R) (1+S) (R+S-1)$$

$$N_{2} = 1/4 (1-R) (1+S) (-R+S-1)$$

$$N_{3} = 1/4 (1-R) (1-S) (-R-S-1)$$

$$N_{4} = 1/4 (1+R) (1-S) (R-S-1) (5.6)$$

$$N_{5} = 1/2 (1-R) (1+S)$$

$$N_{6} = 1/2 (1-S) (1-R)$$

$$N_{7} = 1/2 (1-R) (1-S)$$

$$N_{8} = 1/2 (1-S) (1+R)$$

To calculate the derivatives with respect to global coordinate system, one needs coordinate transformation:

$$\begin{bmatrix} \frac{\partial}{\partial r} \\ \frac{\partial}{\partial z} \end{bmatrix}^{z - 1} = J^{-1} \begin{bmatrix} \frac{\partial}{\partial R} \\ \frac{\partial}{\partial R} \\ \frac{\partial}{\partial s} \end{bmatrix}$$

Here J is the Jacobian matrix and is defined by

$$J = \begin{bmatrix} \partial r & \partial r \\ \partial R & \partial s \\ \partial z & \partial z \\ \partial R & \partial s \end{bmatrix}$$

thus

$$J^{-1} = \frac{1}{DET} \begin{pmatrix} \partial z & \partial z \\ \partial s & \partial R \\ \partial r & \partial r \\ \partial s & \partial R \end{pmatrix}$$

and

$$DET = \begin{vmatrix} \frac{\partial r}{\partial R} & \frac{\partial r}{\partial S} \\ \frac{\partial z}{\partial R} & \frac{\partial z}{\partial S} \\ \frac{\partial z}{\partial R} & \frac{\partial z}{\partial S} \end{vmatrix}$$

By substituting Equations (5.5) and (5.6) into strain displacement equation (5.3), one obtains the following strain-displacement matrix B_0 :

Here Δ_1 and Δ_2 are differential operators defined by:

$$\Delta_{1} = \frac{\partial^{z}}{\partial s} \frac{\partial}{\partial R} - \frac{\partial^{z}}{\partial R} \frac{\partial}{\partial s}$$
$$\Delta_{2} = -\frac{\partial^{r}}{\partial s} \frac{\partial}{\partial R} + \frac{\partial^{r}}{\partial R} \frac{\partial}{\partial s}$$

Similarly for microrotation gradient, one obtains the following B₁ matrix:

$$\begin{vmatrix} \frac{\partial}{\partial r} \\ \frac$$

The B_0 - and B_1 - matrices derived above can be substituted into equation (3.29) to obtain the element stiffness matrix k^e .

To carry out volume integral of Equation (3.29), numerical integration of Gaussian quadrature is used in the program. The sampling points and weighting factors for the interval -1 to +1 are given in Table 2.1.

If body force is neglected, the force vector of equation (3.28)) becomes

$$F^{e} = F_{s}^{e}$$
(5.9)

The force vector can be calculated by

$$F_{s}^{e} = \int s \begin{pmatrix} 0 & & \\ 0 & & \\ 1/4 (1+R) (1+S) (R) & & \\ 0 & & \\ 0 & & \\ 1/4 (1-R) (1+S) (-R) & & \\ 0 & &$$

After integration, the nodal forces can be calculated by the following equations:

$$F_{1} = \frac{1}{(r_{2}-r_{1})^{2}} \left(\frac{r^{4}}{2} - \frac{4}{3} r^{3}r_{1} + r^{2}r_{1}^{2} \right) - \frac{1}{(r_{2}-r_{1})} \left(\frac{r^{3}}{3} - \frac{r^{2}}{2} - \frac{r_{1}}{2} \right)$$

$$F_{2} = \frac{1}{(r_{2}-r_{1})^{2}} \left(\frac{r^{4}}{2} - \frac{4}{3} r^{3}r_{1} + r^{2}r_{1}^{2} \right) - \frac{1}{(r_{2}-r_{1})} \left(r^{3} - \frac{3}{2} - r^{2}r_{1} \right) + \frac{r^{2}}{2}$$

$$F_{5} = \frac{1}{(r_{2}-r_{1})^{2}} \left(- r^{4} + \frac{8}{3} - r^{3}r_{1} - 2r^{2}r_{1}^{2} \right) + \frac{1}{(r_{2}-r_{1})} \left(- r^{3} - 2r^{2}r_{1} \right) \right)$$
(5.12)

If $r_1=0$ and $r_2=1$, then the above equation is reduced to

$$F_1 = 2/3$$

 $F_2 = 0$
 $F_5 = 4/3$

Thus
To evalate the element stiffness matrix k^e of equation (3.28), numerical integration can be used:

$$k^{e} = \sum_{i,j}^{F} t_{ij} \alpha_{ij} (B_{0}^{T}_{ij} D_{0} B_{0}_{ij}) DET$$

$$+ \sum_{i,j}^{F} t_{ij} \alpha_{ij} (B_{1}^{T}_{ij} D_{1} B_{1}_{ij}) DET$$
(5.13)

where t_{ij} is the thickness of a portion of axisymmetric element corresponding to unit radian at each node.

$$t_{ij} = \alpha_{ij} N_k(R_i, S_j) r_k$$

and α_{ii} is the weighing factors of Gaussian Quadrature.

5.4 Numerical Examples

To verify the simplified two-dimensional axisymmetrical finite element formulation and computer program developed in this chapter, two numerical examples of axisymmetric micropolar elastic solids used in the previous chapter 4 are solved. The same examples are chosen in order to facilitate the comparison between the simplified two-dimensional finite element solutions obtained in this section and three-dimensional finite element solutions obtained in Section 4.4 of this study. The results are also used to compare with the analytical solutions available in Ref [10]. In addition, a third example with an orthotropic for force stress but isotropic for couple-stress is also included to demonstrate the micropolar effects in orthotropic materials.

Example 1

This first example solved is a simple tension of cylindrical

Cosserat solids as used in Chapter 4. Both 4- and 8-node elements are used in this study for comparison. As shown in Fig.5.1 and Fig.5.2, the four corner nodes in a 8-node element correspond with the four nodes in a 4-node element. The finite element meshes used is shown in Fig.5.1 and Fig.5.2. The material parameter used are: Coupling factor N=0.0, characteristic length $1=8.333 \times 10^{-3}$ inch and Poissons ratio=0.3. $\mathcal{U}=1 \times 10^{3}$ (psi), k=0.0 (psi), β =666.6666 (psi), γ =0.185185185 (pound) Dimensions are: radius R=2 (inches) and length L=2 (inches). The r- and z-displacements obtained by two-dimensional numerical simulations in this study are summarized in Table 5.1 and Table 5.2, for the 4- and 8-node rectangular element, respectively. Again it is found that the displacements are independent of the coupling factor for axisymmetrical loading. It can also be seen that the displacements at the four corner nodes of the 8-node element (Table. 5.2) also coincide with the three-dimensional simulations obtained with a 20-node three-dimensional element in the previous chapter(Table 4.2), and the 4-node two-dimensional results (Table 5.1) coincides with the 8-node three-dimensional results in Table 4.1. These results also coincide with Gauthier's analytical solution shown in those tables. All these confirm the adequacy and validity of the proposed finite element approach.

To confirm the applicability of the proposed finite element method to an arbitrary geometry, a patch test problem as defined in Fig.5.3 for 4-node and 8-node elements, respectively are performed. Five elements are assembled as shown in Fig.5.3 and subjected to an axial tension. The boundary conditions are

Fig. 5.1 4 Node Two-dimensional Element for Simple Tension

Fig. 5.2 8 Node Two-dimensional Element for Simple Tension

·

,

TABLE 5.1 Numerical results from case (a) c.p. Analytical solution

numerical results analytical solution . (1) displacement (inch) $u = - \frac{v_m r}{\dots r}$ (inch) coordinate nodal no. r (inch) u (inch) Em $-0.17307693 \times 10^{-3}$ $-0.17307693 \times 10^{-3}$ 1.0 2,6,8 $-0.34615386 \times 10^{-3}$ $-0.34615386 \times 10^{-3}$ 3,6,9 2.0 z nodal no. z v= ----v \mathbf{E}_{m} $0.57692309 \times 10^{-3}$ 0.57692309x10⁻³ 4,5,6 1.0 $0.11538462 \times 10^{-2}$ $0.11538462 \times 10^{-2}$ 7,8,9 2.0 (2) stress element no.

Ρ

	tzz	$t_{zz} = -\frac{1}{A}$
1,2,3,4	1.0	1.0
	t _{rr}	trr
1	-6.8313x10 ⁻¹⁵	0.0
2	1.2629x10 ⁻¹⁵	0.0
3	3.5631x10 ⁻¹⁵	0.0
4	2.8189x10 ⁻¹⁴	0.0

TABLE 5.2 Numerical results from case (b) c.p. Analytical solution

numerical results analytical solution

(1) displacement (inch)

nodal no.	coordinate r (inch)	u (inch)	$u = - \frac{v_m r}{E_m} $ (inch)
2,6	1.0	-0.17307693x10 ⁻³	-0.17307693x10 ⁻³
3,4,5	2.0	-0.34615386x10 ⁻³	-0.34615386x10 ⁻³
nodal no.	z (inch)	V	$v = \frac{z}{E_m}$
nodal no. 4,8	z (inch) 1.0	v 0.57692309x10 ⁻³	$v = \frac{z}{E_m}$ 0.57692309x10 ⁻³

(2) stress

element no.

	tzz	$t_{zz} = -\frac{P_z}{A}$
1	1.0	1.0
	trr	trr
1	-6.3630x10 ⁻¹⁵	0.0

(a)

(b)

ф;

ς,

TABLE 5.3 Numerical results from case (a) c.p. Analytical solution

numerical results analytical solution

(1) displacement (inch)

nodal no.	coordinate r (inch)	u (inch)	$u = - \frac{v_m r}{E_m} $ (inch)
2	0.2	-0.34615386x10 ⁻⁴	-0.34615386x10 ⁻⁴
3,11	0.4	-0.69230771x10 ⁻⁴	-0.69230771x10 ⁻⁴
4,10	0.8	-0.13846154x10 ⁻³	-0.13846154x10 ⁻³
5,9	1.0	-0.17307693x10 ⁻³	-0.17307693x10 ⁻³
7 ·	0.6	-0.10384616x10 ⁻³	-0.10384616x10 ⁻³
8,15	1.2	-0.20769231x10 ⁻³	-0.20769231x10 ⁻³
13,19	1.6	-0.27692309x10 ⁻³	-0.27692309x10 ⁻³
14	1.4	-0.24230770x10 ⁻³	-0.24230770x10 ⁻³
16	1.8	-0.31153847x10 ⁻³	-0.31153847x10 ⁻³
17,18,20	2.0	-0.34615386x10 ⁻³	-0.34615386x10 ⁻³

TABLE 5.3 Numerical results from case (a) c.p. Analytical solution

numerical results analytical solution

(1) displacement (inch			inch	(splacement	1
-------------------------	--	--	------	---	------------	---

nodal no.	coordinate z (inch)	v (inch)	v= (inch) E _m
2	0.2	0.11538462x10 ⁻³	0.11153846210 ⁻³
3,19	0.4	0.23076924x10 ⁻³	0.23076924x10 ⁻³
4	0.6	0.34615385x10 ⁻³	0.34615385x10 ⁻³
6,18	1.0	0.57692309x10 ⁻³	0.57692309x10 ⁻³
7,15	0.8	0.46153847x10 ⁻³	0.46153847x10 ⁻³
8	1.4	0.80769233x10 ⁻³	0.80769233x10 ⁻³
9,12,17	2.0	0.11538462x10 ⁻²	0.11538462x10 ⁻²
.10,14	1.2	0.69230771x10 ⁻³	0.69230771x10 ⁻³
11,13	1.6	0.92307694x10 ⁻³	0.92307694x10 ⁻³
16	1.8	0.10384616x10 ⁻³	0.10384616x10 ⁻³

(2) stress element no.

1 - 2 - 3 - 4 - 5	t _{zz}	$t_{zz} = \frac{P_z}{A}$
	t _{rr}	t _{rr}
1	2.4473x10 ⁻¹⁴	0.0
2	-2.8082x10 ⁻¹⁴	0.0
3	-8.9376x10 ⁻¹⁴	0.0
4	-4.2917x10 ⁻¹⁴	0.0
5	-3.6863x10 ⁻¹⁴	0.0

TABLE 5.3 Numerical results from case (b) c.p. Analytical solution

numerical results analytical solution

(1) displacement (inch)

nodal	no.	coordinate r (inch)	u (inch)	$u = -\frac{v_m r}{E_m}$ (inch)
	2	0.4	-0.69230771x10 ⁻⁴	-0.69230771x10 ⁻⁴
	3	1.2	-0.20792310x10 ⁻³	-0.20792310x10 ⁻³
4,8		2.0	-0.34615386X10 ⁻³	-0.34615386X10 ⁻³
	6	0.8	-0.13846186x10 ⁻³	-0.13846186x10 ⁻³
	7	1.6	-0.27692309X10 ⁻³	-0.27692309X10 ⁻³
nodal	no.	z (inch)	v .	z v= ^E m
nodal	no. 2	z (inch) 0.4	v 0.23076924X10 ⁻³	$v = \frac{z}{E_{m}}$ 0.23076924X10 ⁻³
nodal	no. 2 3	z (inch) 0.4 0.8	v 0.23076924X10 ⁻³ 0.46153847X10 ⁻³	
nodal	no. 2 3	z (inch) 0.4 0.8 2.0	v 0.23076924X10 ⁻³ 0.46153847X10 ⁻³ 0.11538462x10 ⁻²	
nodal 5,8	no. 2 3	z (inch) 0.4 0.8 2.0 . 1.2	v 0.23076924X10 ⁻³ 0.46153847X10 ⁻³ 0.11538462X10 ⁻² 0.69230771x10 ⁻³	

specified in Fig. 5.3 the numerical results are summarized in Table 5.3 and Table 5.4 , for 4-node and 8-node patch elements, respectively. These results are found to be exactly identical with those obtained with rectangular element, confirming the applicability to an arbitrary geometry with the isoparametric finite element.

Example 2

The second example solved by the simplified two-dimensional method is an isotropic micropolar elastic cylinder with a semicircular groove shown in the inset of Fig.5.4, subjected to an axisymmetric loading. The same example is solved in Chapter 4 by three-dimensional method. The material properties and geometrical dimensions are as given in Table 4.3 . Numerical results for different coupling factor N are listed in Table 5.4 , and ploted in Fig.5.4. Again these results coincide exactly with the three-dimensional finite element results shown in Table 4.4. The experiment results from the literature for the classical material (N=0.0) are also plotted in the same figue which dased line. One can see excellent agreement.

Table 5.4 Numerical results of stress concentration factor vs r/d. (isotropic for force stress and couple stress)

ratio r/d	N=0.90	N=0.75	N=0.50	N=0.25	N=0.00
0.05	1.75	1.92	2.26	2.58	2.73
0.08	1.65	1.81	2.11	2.40	2.53
0.10	1.60	1.75	2.03	2.28	2.39
0.13	1.53	1.67	1.91	2.13	2.22
0.17	1.47	1.59	1.80	1.98	2.04
0.20	1.43	1.54	1.73	1.88	1.93
0.23	1.40	1.50	1.66	1.79	1.84
0.27	1.36	1.45	1.60	1.70	1.74
0.30	1.33	1.42	1.55	1.65	1.68
0.35	1.28	1.35	1.47	1.56	1.59
0.40	1.25	1.31	1.42	1.49	1.52
0.45	1.23	1.29	1.38	1.44	1.46
0.50	1.20	1.26	1.34	1.40	1.42

Bar with a Semi-circular Groove in Three-dimensional case (Orthotropic for Force Stress and Couple Stress)

Example 3

The finite element method is applied to solve a micropolar elastic solid with an orthotropic for force stress but isotropic for couple-stress. The geometry and loading conditions are the same as in example 2. To generate the new material properties, classical technical constant of graphite-epoxy composite is chosen.

$$E_r = 20 \times 10^6 \text{ psi}$$
 $E_z = 1 \times 10^6$
 $G_{rz} = 5.14035 \times 10^6 \text{ psi}$

Based on these classical material properties, some of the material parameters for force stress are chosen as:

$$\begin{array}{l} \begin{array}{l} \gamma\gamma \\ \lambda_{\theta\theta} = \lambda_{z2} = 2.006 \times 10^7 \text{ psi} \\ \lambda_{\gamma\gamma} = \lambda_{\theta\theta} = \lambda_{z2} = 2.508 \times 10^5 \text{ psi} \\ \lambda_{\gamma\theta} = 1.003 \times 10^6 \text{ psi} \end{array}$$

and the rest are list in Table 5.5 for different coupling factor N. Parameters for couple stress are fixed to

$$\begin{array}{l} \gamma Y & \theta \theta & z^{2} \\ B_{\gamma Y} = B_{\theta \theta} = B_{z 2} = 1.4278750 \times 10^{3} \text{ lb} \\ B_{\theta \theta}^{\gamma Y} = B_{z 2}^{\gamma r} = 0.0 \text{ lb} \end{array}$$

That is, the characteristic length is fixed to 8.333×10^{-3} in. for all N.

The numerical results are summarized in Table 5.6 and also plotted in Fig. 5.5. It is shown that as the radius ratio increase the stress concentration factor decrease, a similar trend as found in isotropic cases. However, the stress

Table 5.5 SOME OF MATERIALS PARAMETERS TO FORCE STRESS

OF ANISOTROPIC MATERIALS

N A	AYO	Aer	A Be
N=0.90	3.2258064110 ⁷ (psi)	-2.000×10 ⁷ (psi)	3.2258064X10 ⁷ (psi)
N=0.75	1.440×10 ⁷ (psi)	-1.800×10 ⁶ (psi)	1.440X10 ⁷ (psi)
N=0.50	9.800×10 ⁶ (psi)	4.900 x 10 ⁶ (psi)	9.800x10 ⁶ (psi)
N=0.25	5.760 × 10 ⁶ (psi)	5.04 X10 ⁶ (psi)	5.760 X 10 ⁶ (psi)
N=0.00	5.14035 X 10 ⁶ (psi)	5.14035 X 10 ⁶ (psi)	5.14035 x 10 ⁶ (psi)

.

75

、 - Table 5.6 Numerical results of stress concentration factor vs r/d. (othotropic for force stress isotropic isotropic for couple stress)

ratio r/d	N=0.90	N=0.75	N=0.50	N=0.25	N=0.00
0.05	1.77	1.90	2.24	3.10	3.73
0.08	1.67	1.81	2.14	3.08	3.81
0.10	1.62	1.76	2.08	3.02	3.79
0.17	1.48	1.61	1.89	2.77	3.59
0.23	1.40	1.51	1.77	2.58	3.35
0.30	1.34	1.43	1.66	2.38	3.06
0.40	1.27	1.35	1.55	2.15	2.68
0.50	1.23	1.30	1.46	1.97	2.36

Fig. 5.5 Stress Concentraction Factor, K_c for a Round Tension Bar with a Semi-circular Groove in Two-dimensional case. (Orthotropic for Force Stress but Isotropic for Couple Stress)

÷

concentraction factor for a fixed N are higher than that in the isotropic cases.

CONCLUSION

6.1 Concluding Remarks

In this study isoparametric finite element method for isotropic and orthotropic axisymmetric micropolar (Cosserat) elastic solids was developed. Both 8- and 20-node elements were employed for solving general three-dimensional problems, and both 4- and 8-node elements were used for two-dimensional cases. Both three-dimensional and two-dimensional finite element formulation for cylindrical coordinate system were obtained. Corresponding Fortran programs were developed to solve several two-dimensional and three-dimensional problems for micropolar elastics solids.

The validity and compatibility of the developed threedimensional finite element programs were established by comparing the numerical results with available analytical solutions for a cylindrical Cosserat solid subjected to a simple tension. The numerical results for displacements were found to be identical with the analytical solutions, and the displacements was independent of the coupling factor. The flexibility and capability of the three-dimensional finite element method are then demonstrated by solving the stress concentration for a classical round tension bar with a semi-circular groove subjected to an axial symmetrical load. For the first time, to the best of the author's knowledge, the effects of various coupling factor on stress concentration factor were obtained for the micropolar round tension bar with a semi-circular groove subjected to an

axial symmetrical load. The stress concentration factor on the micropolar elastic solids was smaller than that in classical elastic solids for the same radius ratio. The stress concentration factor was also found to decrease monotonically as radius ratio increases. Again the validity and compatibility are confirmed by the excellent fit between the available experimental data for classical materials and the numerical results at zero coupling factor, as microelasticity reduces to a classical case when the coupling factor N is equal to zero. In the classical case, the effects of microrotation is vanished.

The three-dimensional finite element formulations can be simplified to a two-dimensional formulation in the case of an asymmetric object when subjected to an axisymmetric load, and can result in significant savings in CPU time. The simplified twodimensional programs with both 4- and 8-node elements are first applied to solve the simple tension of a cylindrical Cosserat solid, which has also been solved by the three-dimensional programs in this study. It is found that the displacements at the four corner-nodes of the 8-node element coincides exactly with those obtained by the 4-node element, indicating the adequacy of the 4-node element approach, which is more economic in CPU time. In addition, the 8-node two-dimensional simulation results are also identical with the three-dimensional simulation results obtained with a 20-node three-dimensional element in this study; and the 4-node two-dimensional numerical results are identical with those with 8-node three-dimensional results in this study.

The simplified programs are also applied to solve a micropolar elastic solid with a semi-circular-groove subjecting to an axial symmetrical loading. Again the results coincide exactly with the three-dimensional finite element results, as well as the experimental data for the special case when the coupling factor is reduced to zero. The applicability of the proposed finite element method to an arbitrary geometry is also verified by the patch tests performed on a two-dimensional example. The results are found to be exactly identical with those obtained with the rectangular elements. Finally, the developed two-dimensional finite element formulation is applied to investigate the dependency of material properties for a material with an orthotropic for stress but isotropic for couple stress. It was verified that the new material depicts a similar trend as the isotropic material with the stress concentration factor decreases with increasing radius ratio. However, the stress concentration factor is larger for any particular coupling factor.

6.2 Future Study

Another interesting topic is the boundary value problem for the stress concentration at spherical cavity in a field of isotropic tension. This is solved by Bleustein [20] using the theory developed by Mindlin. It is found that the stress concentration factor is larger than the 3/2 of classical elasticity for a wide range of material properties and ratio of radius of cavity to a length parameter of the material with a critical ratio, nearly independent of the remaining material

properties, for which the stress concentration factor is a maximum. Bleustein found that for the classical theory of elasticity the stress concentration factor is a constant, independent of material properties and the radius of cavity. However, the solution obtained by the theory of micropolar elasticity shows a stress concentration factor which depends on both material properties and radius. The stress concentration factor is higher than the classical value of 3/2. It is generally true that when the micropolar behavior is considered stress concentration factor becomes smaller than the classical elasticity. Therefore identifying the condition under which the stress concentration factor is larger than the classical elasticity is an interesting future study.

REFERENCES

- [1] W. Voig, "Theoretische studien uber die elasticitutsverhultnisse der krystalle," Abhandlungen der koniglichen gesllschaft der wissenshaften zu gottingen, vol. 24, Gottingen, 1987.
- [2] E. and F. Cosserat, Theorie des corps deformables, Paris, A. Hermann and Sons, 1909.
- [3] S. Nakamura, R. Bendic and R. Lakes, Finite Element Method for Othotropic Micropolar Elasticity. Int. J. Engng Sci. Vol. 22, No.3, 1984, pp. 319-330.
- [4] A. C. Eringen and E. S. Suhubi, "Nonlinear Theory of Simple Micro-elastic Solid-I," Int. J. Engng. Sci, Vol. 2, 1964, pp. 189-203.
- [5] R. D. Mindlin, " Micro-structure in linear Elasticity," Arch. Rat. Mech. Anal., Vol. 16, 1984, pp. 51-78.
- [6] R. D. Mindline and H. F. Tiersten, "Effects of Couplestress in linear Elasticity, "Arch. Rat. Mech. Anal. Vol. 11, 1962, pp. 415-448.
- [7] T.Ariman, On circular Micropolar Plates, Ingenieur Archir.Vol. 37, 1968, pp. 156-160.
- [8] R. N. Kaloni and T. Ariman, "Stress Concentration Effects in Micropolar Elasticity," ZAMP, Vol. 18, 1967, pp. 130-141.
- [9] M.Kishida, K.Sasaki, H. Hanzawa, One Solution of Threedimensional Boundary Value Problems in The Couple-stress Theory of Elasticity. A.S.M.E. J. of Applied Mechanics, Vol.49, 1982, pp. 519-524.
- [10] R. D. Gauthier, Analytical and Experimental Investigations

in Linear Isotropic Micropolar Elasticity. doctoral dissertation, Univ. of Colorado, 1974.

- [11] R.D.Gauthier and W. E. Jahsman, A Quest for Micropolar Elastic Constants, J. of Applied Mechanics, June 1975, pp. 369-374.
- [12] S. Nakamura and Y. Z. Jen
- [13] S. Nakamura, Internal Report 1.
- [14] S. Nakamura, Internal Report 2.
- [15] K.J.Bathe, Finite Element Procedures in Engineering Analysis. Prentice-Hall, Inc., 1982.
- [16] O. Ural, Matrix methods and use of Computers in Structural ngineering, Intext Educational Publishers, NY, 1971.
- [17] S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed., NY, Mcgraw-Hill, 1970.
- [18] B. M. Chiu and James D. Lee, On the Plane Problem in Micropolar Elasticity, Int. J. Engng. Sci., Vol 11, 1973, pp. 997-1012.
- [19] R. E. Peterson, Stress Concentraction factor, John-Willy & Sons, 1974.
- [20] J. L. Bleustein, "Effects of Micro-Structure on The Stress Concentration at a Spherical Cavity", Int. J. Solids Structure, Vol. 2, 1966, pp. 83-104.

(a) Four to 8 variable-number-nodes two-dimensional element Include only if node *i* is defined

. .

$$h_{1} = \begin{vmatrix} 1 \\ 4 \\ (1+r) \\ (1+s) \end{vmatrix} \dots -\frac{1}{2}h_{5} \\ \dots \\ -\frac{1}{2}h_{6} \\ -\frac{1}{2}h_{6} \\ -\frac{1}{2}h_{7} \\ -\frac{1}{2}h_{7} \\ \dots \\ -\frac{1}{2}h_{8} \\ -\frac{1}{2}h_{7} \\ -\frac{1}{2}h_{7} \\ \dots \\ -\frac{1}{2}h_{7} \\ \dots \\ -\frac{1}{2}h_{7} \\ -\frac{1}{2}h_{8} \\ -\frac{1}{2}h_{8} \\ -\frac{1}{2}h_{7} \\ -\frac{1}{2}h_{8} \\ -\frac{1}{2}h_{8} \\ -\frac{1}{2}h_{7} \\ -\frac{1}{2}h_{8} \\ -\frac{1}{2}h_{7} \\ -\frac{1}{2}h_{8} \\ -\frac{1}{2}h_{8} \\ -\frac{1}{2}h_{8} \\ -\frac{1}{2}h_{7} \\ -\frac{1}{2}h_{8} \\ -\frac{1}{2}h_{8} \\ -\frac{1}{2}h_{7} \\ -\frac{1}{2}h_{8} \\ -\frac{1}{2}h_{8} \\ -\frac{1}{2}h_{8} \\ -\frac{1}{2}h_{7} \\ -\frac{1}{2}h_{8} \\ -\frac{1}{2}$$

C C

3-D MICROPOLAR FINITE ELEMENT METHOD

```
IMPLICIT REAL*8(A-H,O-Z)
     INTEGER*4 ITIM
     INTEGER*2 TYPE, CODE
     COMMON/B01/B0(200,9,48),B1(200,9,48),INXY(200),ID(300)
     COMMON/XYZ/NNP(200,8),X(300),Y(300),Z(300)
     COMMON/CSTRN/KSTRN(1000), KSTRT(1000)
     COMMON/MAT/D0(9,9),D1(9,9),A11,A12,A22,A23,B11
     COMMON/AIN/NB, NC, ND, NE, NN, TH, NINT, R, S, T, DET
     COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE
     READ(5,100) NE
 100 \text{ FORMAT}(14)
     DO 10 N=1,NE
     READ(5,200) (NNP(N,I), I=1,8), INXY(N)
 200 FORMAT(4X,8I4,3X,I5)
  10 CONTINUE
     READ(5,100) NN
     DO 20 N=1,NN
     READ(5,300) X(N), Y(N), Z(N)
  20 CONTINUE
 300 FORMAT(4X,3F20.10)
     READ(5,100) NC
     DO 30 N=1,NC
     READ(5,400) KSTRN(N), KSTRT(N)
 400 \text{ FORMAT}(4X, I4, i7)
  30 CONTINUE
      READ(5,550)NINT
 550 FORMAT(15)
      READ(5,600)A11,A12,A22,A23,B11
600
      FORMAT(5E20.7)
      WRITE(6,610)All,Al2,A22,A23,Bll
      FORMAT(2X, 'All=', E20.7, 'Al2=', E20.7, 'A22=',
610
     *E20.7, 'A23=', E20.7, 'B11=', E20.7)
      ND=NN*6
      NB=0
      DO 40 IB=1,NE
      IMAX=MAXO(NNP(IB,1),NNP(IB,2),NNP(IB,3),NNP(IB,4),NNP(IB,5),
     *NNP(IB,6),NNP(IB,7),NNP(IB,8))
      IMIN=MINO(NNP(IB,1),NNP(IB,2),NNP(IB,3),NNP(IB,4),NNP(IB,5),
     *NNP(IB,6),NNP(IB,7),NNP(IB,8))
      NBCHEK=(IMAX-IMIN+1)*6
      IF(NBCHEK.GT.NB) NB=NBCHEK
      IF(NB .GT. 300) GO TO 99
   40 CONTINUE
      SCALE=1.0D0
      DO 41 I=1,NN
      X(I) = X(I) * SCALE
      Y(I) = Y(I) * SCALE
   41 Z(I) = Z(I) * SCALE
```

WRITE(6,700) 700 FORMAT(1H1) WRITE(6,800) ****** WRITE(6,900) 900 FORMAT(3X, '*', 68X, '*') WRITE(6,1000) 1000 FORMAT(3X, '*', 13X, '3-D ORTHOTROPIC MICROPOLAR STRESS ANALYSIS', 13X, '*') * WRITE(6,1050) 1050 FORMAT(3X, '*', 28X, ' SKYLINEMICRO', 27X, '*') WRITE(6,900) WRITE(6,800) WRITE(6,1100) 1100 FORMAT(/20X, '**** DISCRETIZATION NUMBER ****') WRITE(6,1200) 1200 FORMAT(/13X,'ELEMT.#',3X,'NODES.#',3X,'CONSTR.#',3X,'THIKNES', 3X, 'BAND-WIDTH', 3X, 'GAUSS NUMERICAL INTEGRATION ORDER') WRITE(6,1300) NE,NN,NC,TH,NB,NINT 1300 FORMAT(13X,14,7X,13,7X,13,5X,E10.3,5X,15,19X,12) WRITE(6,1700) 1700 FORMAT(//21X,'**** ELEMENT-NODE CONNECTION ****') WRITE(6,1800) 1800 FORMAT(/3X, 'ELM NP1 NP2 NP3 NP4 NP5 NP6 NP7 NP8 ELM IXY * NP1 NP2 NP3 NP4 NP5 NP6 NP7 NP8 IXY') DO 45 I=1,NE 45 ID(I)=ILINE=NE/2 IRESID=NE-2*LINE DO 50 N=1, LINE 50 WRITE(6,1900) (ID(2*(N-1)+I),NNP(2*(N-1)+I,1),NNP(2*(N-1)+I,2), *NNP(2*(N-1)+I,3),NNP(2*(N-1)+I,4),NNP(2*(N-1)+I,5), *NNP(2*(N-1)+I,6),NNP(2*(N-1)+I,7),NNP(2*(N-1)+I,8), *INXY(2*(N-1)+I),I=1,2) *1X,I6)) IF(IRESID .EQ. 0) GO TO 56 WRITE(6,1900) (ID(2*LINE+I),NNP(2*LINE+I,1),NNP(2*LINE+I,2), *NNP(2*LINE+I,3),NNP(2*LINE+I,4),NNP(2*LINE+I,5),NNP(2*LINE+I,6), *NNP(2*LINE+I,7),NNP(2*LINE+I,8),INXY(2*LINE+I),I=1,IRESID) 56 WRITE(6,2000) 2000 FORMAT(//24X,'**** NODAL COORDINATE ****') WRITE(6,2100) 2100 FORMAT(/1X, 'NODE', 5X, 'X', 8X, 'Y', 8X, 'Z', 4X, 'NODE', 5X, 'X', 8X, 'Y', * 8X, 'Z', 4X, 'NODE', 5X, 'X', 8X, 'Y', 8X, 'Z', 4X, 'NODE', 5X, 'X', * 8X, 'Y', 8X, 'Z') DO 55 I=1,NN 55 ID(I)=I LINE=NN/4 IRESID=NN-4*LINE DO 60 N=1, LINE 60 WRITE(6,2200) (ID(4*(N-1)+I),X(4*(N-1)+I),Y(4*(N-1)+I), * Z(4*(N-1)+I), I=1,4)

```
2200 FORMAT(4(2X,I3,1X,F8.3,1X,F8.3,1X,F8.3))
        IF(IRESID .EQ. 0) GO TO 57
        WRITE(6,2200) (ID(4*LINE+I),X(4*LINE+I),Y(4*LINE+I),
       * Z(4*LINE+I),I=1,IRESID)
     57 WRITE(6,2300)
   2300 FORMAT(//27X, '**** CONSTRAINT ****')
        WRITE(6,2400)
   2400 FORMAT(/24X, 'CNSTRND-NODE', 2X, 'CNSTRND-CODE')
        WRITE(6,2500) (KSTRN(N), KSTRT(N), N=1, NC)
    2500 FORMAT(28X, I3, 10X, I6)
                          CALL STSTIF
                          CALL LOADER
                          CALL COLSOL
                          CALL STRESS
     99 WRITE(6,999) NB,IB
    999 FORMAT('****STOP NB=', 15, ' AT ELEMENT=', 15)
        STOP
                                     END
  C *
                                                                    *
                     SUBROUTINE STSTIF
C *
                                                                    *
IMPLICIT REAL*8(A-H,O-Z)
     COMMON/CSTRN/KSTRN(1000),KSTRT(1000)
     COMMON/XYZ/NNP(200,8),X(300),Y(300),Z(300)
     COMMON/AIN/NB, NC, ND, NE, NN, TH, NINT, R, S, T, DET
     COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE
     DIMENSION MHT(1800)
     NBND=NB*ND
     DO 10 I=1,NBND
10
     A(I) = 0.0D0
     DO 20 NEIRE=1,NE
                             CALL ELSTIF
     DO 20 INC=1,8
     INOC=NNP(NEIRE, INC)
     IBC=(NNP(NEIRE, INC) - 1) * 6
     DO 20 IDC=1,6
     ICEL=(INC-1)*6+IDC
      ICST=IBC+IDC
     IDI=0
      IF(ICST.GT.NB)IDI=ICST-NB
      IVC=(ICST-1)*NB
      DO 18 INR=1,8
      INOR=NNP(NEIRE, INR)
      IF(INOC.LT.INOR)GO TO 18
      IBR=(NNP(NEIRE, INR)-1)*6
      IDVC=IDC
      IF (INOC.GT.INOR) IDVC=6
      DO 15 IDR=1,IDVC
      IREL=(INR-1)*6+IDR
      IVV=IVC+IBR+IDR-IDI
      SS=A(IVV)+EK(IREL,ICEL)
15
      A(IVV) = SS
```

18	CONTINUE
20	CONTINUE
	DO 140 N=1,NC
	IRCX=KSTRN(N) * 6-5
	1RCY = KSTRN(N) * 6-4
	IRCZ = KSTRN(N) * 6-3
	IRCRX=KSTRN(N) * 6-2
	IRCRY=KSTRN(N)*6-1
	IRCRZ=KSTRN(N)*6
	KCHK=KSTRT (N)
	IF(KCHK.LT.100000) GO TO 40
	ICB=ND-IRCX+1
	IF(ICB.GT.NB)ICB=NB
	DO 35 I=1,ICB
	IDI=0
	IRCXX=IRCX+I-1
	IF(IRCXX.GT.NB)IDI=IRCXX-NB
	IXV=(IRCX-2+I)*NB+IRCX-IDI
	IF(I.EQ.1)GO TO 25
	A(IXV) = 0.0D0
	GO TO 35
25	A(IXV) = 1.0D0
	IF(IRCX.EO.1)GO TO 35
	DO 30 J=1, IRCX-IDI-1
	IXXV=IXV-J
30	A(IXXV) = 0.0D0
35	CONTINUE
	KCHK=KCHK-100000
40	IF(KCHK.LT.010000) GO TO 60
	ICB=ND-IRCY+1
	IF(ICB.GT.NB)ICB=NB
	DO 55 I=1,ICB
	IDI=0
	IRCYY=IRCY+I-1
	IF(IRCYY.GT.NB)IDI=IRCYY-NB
	IYV=(IRCY-2+I) *NB+IRCY-IDI
	IF(I.EO.1)GO TO 45
	A(IYV) = 0.0D0
	GO TO 55
45	A(IYV) = 1.0D0
	IF(IRCY.EO.1)GO TO 55
	DO 50 $J=1$, IRCY-IDI-1
	IYYV=IYV-J
50	A(IYYV) = 0.0D0
55	CONTINUE
	KCHK=KCHK-10000
60	IF(KCHK.LT.001000) GO TO 80
	ICB=ND-IRCZ+1
	IF(ICB.GT.NB)ICB=NB
	DO 75 I=1,ICB
	IDI=0
	IRCZZ=IRCZ+I-1
	IF(IRCZZ.GT.NB)IDI=IRCZZ-NB
	IZV=(IRCZ-2+I)*NB+IRCZ-IDI
	• •

	IF(A(]	[I.EQ.1)GO TO 65 ZV)=0.0D0
	GÔ	TO 75
65	5 A(1	ZV)=1.0D0
	IF	IRCZ.EQ.1)GO TO 75
	DO	70 J=1, IRCZ-IDI-1
	IZZ	ZV=IZV-J
7(C) A ((ZZV) = 0.0D0
7 :	5 CO1	ITINUE
	KCH	IK=KCHK-1000
8 () IF	KCHK.LT.000100) GO TO 100
	ICH	B=ND-IRCRX+1
	IF	(ICB.GT.NB) ICB=NB
	DO	95 I=1,ICB
	IDI	=0
	IRC	CRXX=IRCRX+I-1
	IF	IRCRXX.GT.NB) IDI=IRCRXX-NB
	IR	V=(IRCRX-2+I)*NB+IRCRX-IDI
	IF	(I.EQ.1)GO TO 85
	A (1	RXV) = 0.0D0
	GO	
8:		(TROPY) = 1.000
	TE	TRCRX.EQ.1)GO TO 95
•	טע נתד	90 J=1, IRCRX-IDI-1
0.	\sim	
90	U A(
9.		ITNOE
٦		$(\mathbf{K}_{\mathbf{C}} \mathbf{H} \mathbf{K}_{\mathbf{T}} \mathbf{K}_{\mathbf$
<u>т</u> ,		ACHA. LI. 000010) GO TO 120
	יייד דד	TCB CT NBITCB=NB
	DO	115 T=1. TCB
	ID	
	IRC	CRYY=IRCRY+I-1
	IF	(IRCRYY.GT.NB)IDI=IRCRYY-NB
	IR	V=(IRCRY-2+I)*NB+IRCRY-IDI
	IF	(I.EQ.1)GO TO 105
	A(:	(RYV) = 0.0D0
	GÒ	TO 115
1	05 A(:	IRYV)=1.0D0
	IF	(IRCRY.EQ.1)GO TO 115
	DO	110 J=1,IRCRY-IDI-1
	IRY	YV=IRYV-J
1	10 A(:	[RYYV)=0.0D0
1	15 CC	DNTINUE
-	KCI	IK=KCHK-10
13	20 IF	(KCHK.LT.000001) GO TO 140
	ICI	B=ND-IRCRZ+1
	TL.	(ICB.GT.NB)ICB=NB
	DO	130 I=1,1CB
	ID.	
	TR	LKGRETKCKGATTET (IDCD77 CM ND)IDTEIDCD772 ND (
	11	(IRCR22.GT.ND)IDI=IRCR22-NB
	TR	AND TRONG-241) WD4TRONG-1D1

<pre>12</pre>			IF(I.EQ.1)GO TO 125	
125 Å [IEXV]=1.0D0 IF(IRCZ.EQ.1)GO TO 135 DO 30 J=1,IRCZ-IDI-1 IRZY=IRZY-J 130 Å (IRZY)=0.0D0 135 CONTINUE DO 160 I=1,ND IDI=0 IF(I.GT.NB)IDI=I-NB IIV=(I-1)*NB DO 150 J=1,I IF(A[IIV+J),EQ.0.0D0)GO TO 150 MHT(I)=I-J-IDI GO TO 160 150 CONTINUE 160 CONTINUE 160 CONTINUE 160 CONTINUE 170 MAXA(1)=1 MAXA(1)=1 MAXA(2)=2 IF(ND.EQ.1)GO TO 190 DO 180 I=2,ND 180 MAXA(I+1)=MAXA(1) 1NN=0 DO 200 I=1,ND ICK=MAXA(I+1)=MAXA(1) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NBHI-IDI DO 200 II=1,ICK IAN=1AN+1 IAN=2AN+1			GO TO 135	
<pre>TF(TEREZ.EC.1)GO TO 135 DO 130 J=1,IRCRZ-TDI-1 IRZZV=IRZV-J 130 A(TRZZV)=0.0D0 135 CONTINUE 140 CONTINUE 140 CONTINUE 140 CONTINUE 150 ISO J=1,I IF(I.GT.NB)IDI=I-NB IIV-(I-1)*NB DO 150 J=1,I IF(A(IIV+J).EQ.0.0D0)GO TO 150 MHT(I)=T-J-IDI GO TO 160 150 CONTINUE NM=ND+1 DO 170 I=1,NM 170 MAXA(I)=0 MAXA(2)=2 IF(ND.EQ.1)GO TO 190 DD 180 I=2,ND 180 MAXA(I+1)=MAXA(I)+HHT(I)+1 190 NWK=MAXA(ND+1)-MAXA(1) IAN=0 DD 200 I=1,ND ICK=MAXA(I+1)=MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+T-IDI DD 200 I=1,ICK IAN=INH=1 A(IAN)=A(IAN) 200 CONTINUE DD 210 I=N,ICK IAN=INH=1 A(IAN)=A(IAN) 210 A(I)=0.0D0 RETURN C * * SUBROUTINE ELSTIF C * SUBROUTINE ELSTIF C * * * * INPLICIT REAL*8(A-H,O-2) COMMON/IZ(NMF)(A(3000),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(35000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(35000),V(300),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(35000),V(300),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(35000),V(300),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(35000),V(300),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(35000),V(300),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(35000),V(300),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(35000),V(300),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(35000),V(300),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(35000),V(300),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(35000),V(300),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(35000),V(300),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(100),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(100),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(100),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(100),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(100),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(100),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(100),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(100),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(100),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(100),EK(48,48),MAXA(1801),NEIRE COMMON/INFS(A(100),EK(48,48),MAXA(1801),INF) C * * * * * * * * * * * * * * * * * * *</pre>		125	A(IRZV)=1.0D0	
DO'130 J=1, TRČRZ-IDI-1 TRZZV-TRV-J 130 A (TRZZV)=0.0D0 135 CONTINUE DO 160 I=1,ND IDI=0 IF(I.GT.NB)IDI=I-NB IIV=(I-1)*NB DO 150 J=1,I IF(A(IV+)).EQ.0.0D0)GO TO 150 MHT(I)=1-J-IDI GO TO 160 150 CONTINUE 160 CONTINUE NM=ND+1 DO 170 I=1,NM 170 MAXA(I)=0 MAXA(2)=2 IF(ND.EQ.1)GO TO 190 DO 180 I=2,ND 180 MAXA(I+1)=MAXA(I) +MHT(I)+1 190 NWK=MAXA(ND+1)=MAXA(1) IAN=0 DO 200 I=1,ND ICK=MAXA(I+1)=MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INB=(I-1)*NB+IT-IDI DO 200 II=1,ICK IAN=INH-1 A(IAN)=A(IAN) 210 A(I)=0.DDD C * * SUERCUTINE ELSTIF * * MAXA(180)A(3000),V(1300),EK(48,48),MAXA(1801),NEIRE COMMON/MIX(MP)(200),CON(300)			IF(IRCRZ.EQ.1)GO TO 135	
<pre>IRZU-IRZU-J I30 A(IRZU)-0.0D0 I35 CONTINUE I40 CONTINUE D0 160 I=1,ND IDI=0 IF(I.GT.NB)IDI=I-NB IIV=(I-1)*NB D0 150 J=1,I IF(A(IIV+J).EQ.0.0D0)GO TO 150 MHT(1)=1-J-IDI GO TO 160 I50 CONTINUE NM=ND+1 D0 170 I=1,NM I70 MAXA(I)=1 MAXA(2)=2 IF(ND.EQ.1)GO TO 190 D0 180 I=2,ND I80 MAXA(1+1)=NAXA(I)+HHT(I)+1 I90 NWK=MAXA(ND+1)-MAXA(1) IAN=0 D0 200 I=1,ND ICK=MAXA(I+1)=NAXA(1) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+I-IDI D0 200 I=1,ICK IAN=INA+1 A(IAN)=A(IAN) 200 CONTINUE D0 210 I=NUE INBB=I+1 A(IAN)=A(IAN) 200 CONTINUE END C * * * * SUBROUTINE ELSTIF C * INPLCIT REAL*8(A-H,O-2) COMMON/TEX/A(35000),V(1300),EX(48,48),MAXA(1801),NEIRE COMMON/TEX/A(150(200,9,48),INXY(200),ID(300) COMMON/TEX/A(150(200,9,48),INXY(200),ID(300) COMMON/TEX/A(150(200,9,48),INXY(200),ID(300)</pre>			DO 130 J=1, IRCRZ-IDI-1	
<pre>130 A(IRZV)=0.0D0 135 CONTINUE 140 CONTINUE 140 CONTINUE 140 CONTINUE 140 CONTINUE 150 J=1,ND 150 J=1,I 17(A(IIV+7).E0.0.0D)GO TO 150 MHT(I)=I-J-IDI GO TO 160 150 CONTINUE 160 CONTINUE 160 MAXA(1)=1 MAXA(1)=0 MAXA(1)=0 MAXA(1)=0 170 MAXA(1)=0 180 MAXA(1)=MAXA(1)HHT(I)+1 190 NWW=MAXA(ND+1)-MAXA(1) 1AN=0 DO 200 J=1,ND 1CK=MAXA(I+1)-MAXA(I) 1DI=0 1F(I.GT.NB)IDI=I-NB 1NB=(II-)*NB+IIDI DO 200 II=1,ICK 1AN=IAN+1 1AV=INBE-II+1 A(IAN)=A(IAV) 200 CONTINUE 200 CONTINUE 210 A(I)=0 NETURN END 210 A(I)=0.0D0 RETURN END 210 A(I)=0.0D0 COMMON/ZIX/NDE/ND,NE,NN,TH,NINT,R,S,T,DET COMMON/AIX/NDF2(0,3)X(300) COMMON/ZIX/NDF2(0,3)X(300) COMMON/ZIX/NDF</pre>			IRZZV=IRZV-J	
<pre>135 CONTINUE 140 CONTINUE D0 160 I=1,ND IDT=0 IF(I.GT.NB)IDI=I-NB IIV=(I-1)*NB D0 150 J=1,I IF(A(IIV+J).EQ.0.0D0)GO TO 150 MHT(I)=I-J-IDI G0 TO 160 150 CONTINUE NM=ND+1 D0 170 I=1,NM 170 MAXA(I)=0 MAXA(2)=2 IF(ND.EQ.1)GO TO 190 D0 180 I=2,ND 180 MAXA(I+1)=MAXA(1) IAN=0 D0 200 I=1,ND ICX=MAXA(ND+1)=NAXA(1) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+I-IDI D0 200 II=1,ICX IAN=1 A(IAN)=A(IAV) 200 CONTINUE D0 210 I=1,ND ICX=MAXA(I+1)=MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+I-IDI D0 200 II=1,ICX IAN=IAN+1 IAN=IAN+1 IAN=IAN+1 A(IAN)=A(IAV) 210 A(I)=0.0D0 RETURN C * * * * * SUBROUTINE ELSTIF C * * * IMPLICIT PEAL*8(A-H,O-Z) COMMON/FSK/A(35000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSL/A(35000),V(1800),FS(A(200),ID(300) COMMON/FSL/A(35000),V(1800),FS(A(200),ID(300) COMMON/FSL/A(35000),V(1800),Y(300),Z(300)</pre>		130	A(IRZZV) = 0.0D0	
<pre>140 CONTINUE D0 160 T=1,ND IDI=0 IF(I.GT.NB)IDI=T-NB IIV=(I-1)*NB D0 150 J=1,I IF(A(IIV+J).EQ.0.0D0)GO TO 150 MHT(I)=I-J-IDI GO TO 160 150 CONTINUE NM=ND+1 D0 170 I=1,NM 170 MAXA(I)=0 MAXA(1)=1 MAXA(2)=2 IF(ND.EQ.1)GO TO 190 D0 180 I=2,ND 180 MAXA(1+1)=MAXA(I)+HHT(I)+1 190 NNK=MAXA(ND+1)-MAXA(1) IDI=0 D0 200 I=1,ND ICK=MAXA(I+1)=MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+1=TDI D0 200 II=1,ICK IAN=IAN+1 IAN=IAN+1 A(IAN)=A(IAV) 200 CONTINUE D0 210 I=NNK+1,NBND 210 A(I)=0.DD RETURN C * * * * * C ** * * C ** * * C ** * * C ** * C *</pre>		135	CONTINUE	
D0 180 1=1,ND IDT=0 IF(I.GT.NB)IDT=I-NB IIF(A(IIV+I).EQ.0.0D0)GO TO 150 MHT(I)=I-J-IDI G0 TO 160 150 CONTINUE 160 CONTINUE 160 CONTINUE 160 CONTINUE 160 CONTINUE NM=ND+1 D0 170 I=1,NM 170 MAXA(I)=0 MAXA(1)=1 MAXA(2)=2 IF(ND.EQ.1)GO TO 190 D0 180 I=2,ND 180 MAXA(I+1)=MAXA(I)+MHT(I)+1 190 NWK=MAXA(ND+1)-MAXA(1) IAN=0 D0 200 I=1,ND ICK=MAXA(I+1)=MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+I-IDI D0 200 II=1,ICK IAN=TAN+1 IAN=TAN+1 IAN=TAN+1 IAN=TAN+1 A(IAN)=A(IAY) 200 CONTINUE D0 210 I=NWK+1,NEND 210 A(I)=0.0D0 RETURN C * SUBROUTINE ELSTIF C * C IMPLCIT REAL*8(A-H,0-Z) COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EX(300),Z(3000) COMMON/FSK/A(D),DE,NC,ND,NE,NNTH,NIXT,R,S,T,DET COMMON/FSK/A(350000),V(1800),Z(3000)		140	CONTINUE	
<pre>111-0 IF(I.GT.NB)IDI=I-NB IIV=(I-1)*NB D 150 J=1,I IF(A(IIV+J).EQ.0.0D0)GO TO 150 MHT(I)=I-J-IDI G TO 160 150 CONTINUE NM=ND+1 D 170 I=1,NM 170 MAXA(1)=0 MAXA(1)=1 MAXA(2)=2 IF(ND.EQ.1)GO TO 190 D 0 180 I=2,ND 180 MAXA(I+1)=MAXA(I)+NHT(I)+1 190 NWK=MAXA(ND+1)-MAXA(1) IAN=0 D 200 I=1,ND ICK=MAXA(I+1)-MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+I-IDI D 0 200 I=1,ICK IAN=INN+1 IAV=INBB-II+1 A(IAN)=A(IAV) 200 CONTINUE D 0 210 I=NWK+1,NEND 210 A(I)=0.0D0 RETURN C * SUEROUTINE ELSTIF C * IMPLICIT REAL*8(A-I,O-2) COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EX(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EX(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EX(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EX(48,48),MAXA(1801),NEIRE COMMON/FSK/A(35000),V(1800),EX(48,48),MAXA(1801),NEIRE COMMON/FSK/A(35000),V(1800),EX(48,48),MAXA(1801),NEIRE COMMON/FSK/A(35000),V(1800),EX(48,48),MAXA(1801),NEIRE COMMON/FSK/A(35000),V(1800),EX(48,48),MAXA(1801),NEIRE COMMON/FSK/A(35000),V(1800),EX(48,48),MAXA(1801),NEIRE COMMON/FSK/A(35000),V(1800),EX(300),Z(3000) COMMON/FSK/A(35000),V(1800),EX(300),Z(3000) COMMON/FSK/A(35000),V(1800),EX(3000),Z(3000) COMMON/FSK/A(35000),V(1800),Z</pre>			DO 160 I=1,ND	
<pre>IIV=(I-1)*NB D0 150 J=1, I IF(A(IIV+J).EQ.0.0D0)GO TO 150 MHT(I)=I-J-IDI G0 TO 160 150 CONTINUE 160 CONTINUE 160 CONTINUE NM=ND+1 D0 170 I=1,NM 170 MAXA(I)=1 MAXA(2)=2 IF(ND.EQ.1)GO TO 190 D0 180 I=2,ND 180 MAXA(I+1)=MAXA(I)+MHT(I)+1 190 NWK=MAXA(ND+1)-MAXA(I) IAN=0 D0 200 I=1,ND ICK=MAXA(I+1)-MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+I-IDI D0 200 II=1,ICK IAN=IAN+1 IAV=INBB-II+1 A(IAN)=A(IAV) 200 CONTINUE D0 210 I=NWK+1,NBND 210 A(I)=0.DD RETURN C * SUBROUTINE ELSTIF C * IMPLCIT REAL*8(A-H,O-2) COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EX(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EX(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EX(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),Z(3000)</pre>			TF(T, GT, NB) TDT=T-NB	
DO 150 J=1,T IF (A (IIV+J).EQ.0.0D0) GO TO 150 MHT(I)=J-J-IDI GO TO 160 150 CONTINUE NM=ND+1 DO 170 I=1,NM 170 MAXA (I)=0 MAXA (1)=1 MAXA (2)=2 IF (ND.EQ.1) GO TO 190 DO 180 I=2,ND 180 MAXA (I+1)=MAXA (I) +MHT (I)+1 190 NWK=MAXA (ND+1)-MAXA (1) IAN=0 DO 200 I=1,ND ICK=MAXA (I+1)-MAXA (I) IDI=0 IF (I.GT.NB) IDI=I-NB INBB=(I-1)*NB+I-IDI DO 200 II=1,ICK IAN=IAN+1 IAV=INBB-II+1 A (IAN)=A (IAV) 200 CONTINUE DO 210 I=NWK+1,NBND 210 A (I)=0.0D0 RETURN C * SUBROUTINE ELSTIF C * IMPLICIT REAL*8 (A+H,0-2) COMMON/FSK/A (350000),V(1800),EK (48,48),MAXA (1801),NEIRE COMMON/FSK/A (350000),V(1800),EK (48,00),IX(2000),ID(300) COMMON/FSK/A (0500,B),X (300),Z (300)			$IIV = (I-1) \times NB$	
<pre>IF(A(IIV+J)_EQ.0.0D0)GO TO 150 MHT(I)=I-J-DII GO TO 160 150 CONTINUE 160 CONTINUE NN=ND+1 DO 170 I=1,NM 170 MAXA(I)=0 MAXA(I)=1 MAXA(2)=2 IF(ND.EQ.1)GO TO 190 DO 180 I=2,ND 180 MAXA(I+1)=MAXA(I)+MHT(I)+1 190 NNK=MAXA(ND+1)-MAXA(1) IAN=0 DO 200 I=1,ND ICK=MAXA(I+1)=MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+I-IDI DD 200 II=1,ICK IAN=IAN+1 IAV=INBB-II+1 A(IAN)=A(IAV) 200 CONTINUE DO 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN END C * SUBROUTINE ELSTIF * C * IMPLCICT REAL*8(A-H,0-2) COMMON/FX(A(3500),Y(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FANCAND,EN,NN,TH,NINT,R,S,T,DET COMMON/FDI/B0(200,9,48),B1(200,9,48),INXY(200),ID(300) CCMMON/FS(JNRE)CO,B1,X(300),Y(300),IX(300)</pre>			DO 150 $J=1, I$	
<pre>MHT (1)=1-J-IDI GO TO 160 150 CONTINUE 160 CONTINUE NM=ND+1 DO 170 I=1,NM 170 MAXA(I)=0 MAXA(I)=1 MAXA(2)=2 IF(ND.EQ.1)GO TO 190 DO 180 T=2,ND 180 MAXA(I+1)=MAXA(I)+MHT(I)+1 190 NWK=MAXA(ND+1)-MAXA(I) IDI=0 DO 200 I=1,ND ICK=MAXA(I+1)=MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+I-IDI DO 200 II=1,ICK IAN=IAN+1 IAV=INBB-II+1 A(IAN)=A(IAV) 200 CONTINUE DO 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C * C * C * C * C * C * C * C * C * C *</pre>			IF(A(IIV+J).EQ.0.0D0)GO TO 150	
GO TO 160 150 CONTINUE NM=ND+1 DO 170 I=1,NM 170 MAXA(1)=0 MAXA(1)=1 MAXA(2)=2 IF(ND.EQ.1)GO TO 190 DO 180 I=2,ND 180 MAXA(1+1)=MAXA(1)+MHT(I)+1 190 NWK=MAXA(ND+1)-NAXA(1) IAN=0 DO 200 I=1,ND ICK=MAXA(I+1)-MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+I-IDI DO 200 II=1,ICK IAN=IAN+1 IAV=INBB-II+1 A(IAN)=A(IAV) 200 CONTINUE DO 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C * C * SUBROUTINE ELSTIF C * C * IMPLICIT REAL*8(A-H,O-Z) COMMON/FX(A(1500),PL(85,48),MAXA(1501),NEIRE COMMON/FX(A(200,6),X(300),Z(300),ID(300) COMMON/FX(AND,R),ND,NE,NN,TH,NINT,R,S,T,DET COMMON/FX(AND),NEIRE(200,9,48),INXY(200),ID(300) COMMON/FX(AND),NEIRE(200,9,48),INXY(200),ID(300)			MHT(I) = I - J - IDI	
<pre>150 CONTINUE 160 CONTINUE NM=ND+1 D0 170 I=1,NM 170 MAXA(I)=1 MAXA(I)=1 MAXA(1)=1 MAXA(1)=1 MAXA(1)=1 MAXA(1)=1 MAXA(1)=1 MAXA(1)=1 180 MAXA(I+1)=MAXA(I)+MHT(I)+1 190 NWK=MAXA(ND+1)=NAXA(I) IAN=0 D0 200 I=1,ND ICK=MAXA(I+1)=MAXA(I) IDI=0 IF(I.GT.NB)IDI=I=NB INBB=(I-1)*NB+I=IDI D0 200 II=1,ICK IAN=IAN+1 IAV=INBB-II+1 A(IAN)=A(IAV) 200 CONTINUE D0 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C * * SUBROUTINE ELSTIF C * * * IMPLICIT REAL*8(A-H,O-Z) COMMON/FSK/A(35000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(3500,48),B1(200,9,48),INXY(200),ID(300) COMMON/FSK/A(S00,48),B1(200,9,48),INXY(200),ID(300)</pre>			GO TO 160	
<pre>160 CONTINUE NM=ND+1 D0 170 I=1,NM 170 MAXA(I)=0 MAXA(2)=2 IF(ND.EQ.1)GO TO 190 D0 160 I=2,ND 180 MAXA(I+1)=MAXA(I)+MHT(I)+1 190 NWK=MAXA(ND+1)-MAXA(1) IAN=0 D0 200 I=1,ND ICK=MAXA(I+1)-MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+1-IDI D0 200 II=1,ICK IAN=IAN+1 IAV=INBB-II+1 A(IAN)=A(IAV) 200 CONTINUE D0 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C * SUBROUTINE ELSTIF C * * * * SUBROUTINE ELSTIF C * * * IMFLICIT REAL*8(A-H,O-Z) COMMON/FSK/A(35000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET COMMON/AIN/NB,</pre>		150	CONTINUE	
NM=ND+1 D0 170 I=1,NM 170 MAXA(1)=0 MAXA(2)=2 IF(ND.EQ.1)GO TO 190 D0 180 I=2,ND 180 MAXA(1+1)=MAXA(I)+MHT(I)+1 190 NWK=MAXA(ND+1)-MAXA(1) IAN=0 D0 200 I=1,ND ICK=MAXA(I+1)-MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+1-TDI D0 200 II=1,ICK IAN=IAN+1 A(IAN)=A(IAV) 200 CONTINUE D0 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C * SUBROUTINE ELSTIF C * C SUBROUTINE ELSTIF C * * SUBROUTINE ELSTIF C * * SUBROUTINE ELSTIF C * C * MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET COMMON/AIN/NB,NC,000,S),2(300),3(300)		160	CONTINUE	
<pre>D0 170 1=1,NM 170 MAXA(1)=0 MAXA(2)=2 IF(ND.EQ.1)GO TO 190 D0 180 I=2,ND 180 MAXA(1+1)=MAXA(1)+MHT(I)+1 190 NWK=MAXA(ND+1)-MAXA(1) IAN=0 D0 200 I=1,ND ICK=MAXA(I+1)-MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+I-IDI D0 200 II=1,ICK IAN=IAN+1 IAV=INBB-II+1 A(IAN)=A(IAV) 200 CONTINUE D0 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C * * * * * SUBROUTINE ELSTIF C * * * C * IMPLICIT REAL*8(A-H,O-Z) COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(35000,N(300)) COMMON/FSK/A(35000,N(300)) COMMON/FSK/A(35000,N(300)) COMMON/YZ/NNP(200,8),X(300),V(300),Z(300)</pre>				
<pre>1/0 MAXA(1)=1 MAXA(2)=2 IF(ND.EQ.1)GO TO 190 DO 180 I=2,ND 180 MAXA(1+1)=MAXA(1)+MHT(1)+1 190 NWK=MAXA(ND+1)-MAXA(1) IAN=0 DO 200 I=1,ND ICK=MAXA(I+1)-MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+I-IDI DO 200 II=1,ICK IAN=IAN+1 IAV=INBB-II+1 A(IAN)=A(IAV) 200 CONTINUE DO 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN END C ************************************</pre>		170	DO I/O I=I, NM	
<pre>MAXA(2)=2 IF(ND.EQ.1)GO TO 190 DO 180 I=2,ND 180 MAXA(I+1)=MAXA(I)+MHT(I)+1 190 NWK=MAXA(ND+1)-MAXA(1) IAN=0 DO 200 I=1,ND ICK=MAXA(I+1)-MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+I-IDI DO 200 II=_,ICK IAN=IAN+1 IAV=INBB-II+1 A(IAN)=A(IAV) 200 CONTINUE DO 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C * SUBROUTINE ELSTIF C * IMPLICIT REAL*8(A-H,O-Z) COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1300),Z(300) COMMON/FOL/B0(200,9,48),E1(200,9,48),INXY(200),ID(300) COMMON/FOL/B0(200,9,48),E1(200,9,48),INXY(200),ID(300) COMMON/FOL/B0(200,9,48),E1(200,9,48),INXY(200),ID(300) COMMON/FOL/B0(200,9,48),E1(200,9,48),INXY(200),ID(300) COMMON/FOL/B0(200,9,48),E1(200,9,48),INXY(200),ID(300) COMMON/FOL/B0(200,9,48),E1(200,9,48),INXY(200),ID(300) COMMON/FOL/B0(200,9,48),E1(200,9,48),INXY(200),ID(300) COMMON/FOL/B0(200,9,48),E1(200,9,48),INXY(200),ID(300) COMMON/FOL/B0(200,9,48),E1(200,9,48),INXY(200),ID(300) COMMON/FOL/B0(200,9,48),E1(200,9,48),INXY(200),ID(300) COMMON/FOL/B0(200,9,48),FI(200,9,48),INXY(200,FICA) COMMON/FOL/B0(200,9,48),FI(200,9,48),INXY(200,FICA) COMMON/FOL/B0(200,9,48),FI(200,9,48),INXY(200,FICA) COMMON/FOL/B0(200,9,48),FI(200,9,48),INXY(200,FICA) COMMON/FOL/B0(200,9,48),FI(200,9,48),INXY(200,FICA) COMMON/FOL/B0(200,9,48),FI(200,9,48),INXY(200,FICA) COMMON/FOL/B0(200,9,48),FI(200,9,48),INXY(200,FICA) COMMON/FOL/B0(200,9,48),FI(200,9,48),INXY(200,FICA) COMMON/FOL/B0(200,9,48),FI(200,9,48),INXY(200,FICA) COMMON/FOL/B0(200,9,48),FI(200,9,48),INXY(200,FICA) COMMON/FOL/B0(200,9,48),FI(200,9,48),INXY(200,FICA) COMMON/FOL/B0(200,9,48),FI(200,9,48),FICA) COMMON/FOL/B0(200,9,48),FICA) COMMON/FOL/B0(200,9,48),FICA) COMMON/FOL/B0(200,9,48),FICA) COMMON/FOL/B0(200,9,48),FICA) COMMON/FOL/B0(200,9,48),FICA) COMMON/FOL/B0(200,9,48),FICA) COMMON/FOL/B0(200,9,48),FICA) COMMON/FOL/B0(200,9,48),FICA) COMMON/FOL/B0(200,9,48),FICA) COMMON/FOL/B0(200,9,48),FICA) COMMON/FOL/B0(200,9,48),FICA) COMMON/FOL/B0(200,9,48),FICA) COMMON/FOL/B0(</pre>		1,0	MAXA(1)=1	
<pre>IF(ND.EQ.1)GO TO 190 DO 180 I=2,ND 180 MAXA(I+1)=MAXA(I)+MHT(I)+1 190 NWK=MAXA(ND+1)-MAXA(1) IAN=0 DO 200 I=1,ND ICK=MAXA(I+1)-MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBE=(I-1)*NB+I-IDI DO 200 II=1,ICK IAN=IAN+1 IAV=INBB-II+1 A(IAN)=A(IAV) 200 CONTINUE DO 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C * SUBROUTINE ELSTIF C * * * * C **************************</pre>			MAXA(2) = 2	
DO 180 I=2,ND 180 MAXA(I+1)=MAXA(I)+MHT(I)+1 190 NWK=MAXA(ND+1)-MAXA(1) IAN=0 DO 200 I=1,ND ICK=MAXA(I+1)-MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+I-IDI DO 200 II=1,ICK IAN=IAN+1 A(IAN)=A(IAV) 200 CONTINUE DO 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C * C * C * C * IMPLICIT REAL*8(A-H,O-Z) COMMON/FSK/A(35000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FS(A(35000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FS(A(35000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FS(20,9,48),B1(200,9,48),INXY(200),ID(300) COMMON/XZZ/NP(200,6),X(300),Z(300)]Z(300)			IF (ND.EO.1)GO TO 190	
<pre>180 MAXA(I+1)=MAXA(I)+MHT(I)+1 190 NWK=MAXA(ND+1)-MAXA(1) IAN=0 D0 200 I=1,ND ICK=MAXA(I+1)-MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+I-IDI D0 200 II=1,ICK IAN=IAN+1 IAV=INBB-II+1 A(IAN)=A(IAV) 200 CONTINUE D0 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C * * * * SUBROUTINE ELSTIF C * C * IMPLICIT REAL*8(A-H,O-Z) COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET COMMON/AIN/NB/C200,9,48),B1(200,9,48),INXY(200),ID(300) COMMON/XYZ/NNP(200,8),X(300),Y(300),Z(300)</pre>			DO 180 I=2,ND	
<pre>190 NWK=MAXA(ND+1)-MAXA(1) IAN=0 D0 200 I=1,ND ICK=MAXA(I+1)-MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+I-IDI D0 200 II=1,ICK IAN=IAN+1 IAV=INBB-II+1 A(IAN)=A(IAV) 200 CONTINUE D0 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C * SUBROUTINE ELSTIF C * C * IMPLICIT REAL*8(A-H,O-Z) COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EK(48,48),INXY(200),ID(300) COMMON/XIZ/NNP(200,8),X(300),Y(300),Z(300)</pre>		180	MAXA(I+1) = MAXA(I) + MHT(I) + 1	
IAN=0 DO 200 I=1,ND ICK=MAXA(I+1)-MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+I-IDI DO 200 II=1,ICK IAN=IAN+1 A(IAN)=A(IAV) 200 CONTINUE DO 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C * SUBROUTINE ELSTIF C * C * IMPLICIT REAL*8(A-H,O-Z) COMMON/FSK/A(35000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(35000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(35000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(35000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSC/A(35000),V(1800),FS(200),FS(200),ID(300) COMMON/XZZ/NNP(200,8),X(300),Z(300)		190	NWK=MAXA(ND+1) - MAXA(1)	
D0 200 I=1,ND ICK=MAXA(I+1)-MAXA(I) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+I-IDI D0 200 II=1,ICK IAN=IAN+1 A(IAN)=A(IAV) 200 CONTINUE D0 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C * SUBROUTINE ELSTIF C * C * IMPLICIT REAL*8(A-H,O-Z) COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/FSK/A(3500,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0			IAN=0	
<pre>ICK=MAXA(1+1)-MAXA(1) IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+I-IDI D0 200 II=1,ICK IAN=IAN+1 IAV=INBB-II+1 A(IAN)=A(IAV) 200 CONTINUE D0 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C * * * * * * * * * * * * * * * * * * *</pre>			DO 200 I=1,ND	
<pre>IDI=0 IF(I.GT.NB)IDI=I-NB INBB=(I-1)*NB+I-IDI D0 200 II=1,ICK IAN=IAN+1 IAV=INBB-II+1 A(IAN)=A(IAV) 200 CONTINUE D0 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C ************************************</pre>			ICK=MAXA(I+1)-MAXA(1)	
<pre>In (1.01.NB) = (1-1) *NB+1-ND INBB=(1-1) *NB+1-IDI DO 200 II=1,ICK IAN=IAN+1 IAV=INBB-II+1 A(IAN)=A(IAV) 200 CONTINUE DO 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C ************************************</pre>			IDI=0 TF(I CT NB)IDI=I-NB	
DO 200 II=1,ICK IAN=IAN+1 IAV=INBB-II+1 A (IAN)=A (IAV) 200 CONTINUE DO 210 I=NWK+1,NBND 210 A (I)=0.0D0 RETURN C ************************************			$TNBB=(T-1) \times NB+T-TDT$	
IAN=IAN+1 IAV=INBB-II+1 A(IAN)=A(IAV) 200 CONTINUE DO 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C ************************************			DO 200 II=1.ICK	
IAV=INBB-II+1 A(IAN)=A(IAV) 200 CONTINUE D0 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C ************************************			IAN=IAN+1	
A (IAN) =A (IAV) 200 CONTINUE DO 210 I=NWK+1,NBND 210 A (I)=0.0D0 RETURN C ************************************			IAV=INBB-II+1	
200 CONTINUE D0 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C ************************************			A(IAN) = A(IAV)	
DO 210 I=NWK+1,NBND 210 A(I)=0.0D0 RETURN C ************************************		200	CONTINUE	
210 A(1)=0.0D0 RETURN C ************************************			DO 210 I=NWK+1,NBND	
END C ************************************		210	A(1) = 0.0D0	
C ************************************			RETURN	
<pre>C *</pre>		C ***	,*************************************	******
SUBROUTINE ELSTIF C * C * C **************************	С	*		*
<pre>C * C * C * C *************************</pre>			SUBROUTINE ELSTIF	
C ************************************	С	*		*
IMPLICIT REAL*8(A-H,O-Z) COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET COMMON/B01/B0(200,9,48),B1(200,9,48),INXY(200),ID(300) COMMON/XYZ/NNP(200,8),X(300),Y(300),Z(300)	С	*****	***************************************	****
COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET COMMON/B01/B0(200,9,48),B1(200,9,48),INXY(200),ID(300) COMMON/XYZ/NNP(200,8),X(300).Y(300).Z(300)		IM	$\frac{PLICIT REAL*8(A-H, O-Z)}{PK(AO, AO)}$	
COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,T,DET COMMON/B01/B0(200,9,48),B1(200,9,48),INXY(200),ID(300) COMMON/XYZ/NNP(200,8),X(300),Y(300),Z(300)		00	MMUN/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE	
COMMON/XYZ/NNP(200,8), X(300), Y(300), Z(300)			$\frac{1}{2} \frac{1}{2} \frac{1}$	
			MMON/XYZ/NNP(200,8),X(300).Y(300).Z(300)	

	COMMON/MAT/D0(9,9),D1(9,9),A11,A12,A22,A23,B11 DIMENSION XG(4,4),WGT(4,4),D0B0(9),D1B1(9) COMMON V1(100)
	COMMON H(8) DATA XG/0.0D0,0.0D0,0.0D0,0.0D0,5773502691896D0,
	*.5773502691896D0,0.0D0,0.0D0,7745966692415D0,
	*3399810435849D03399810435849D08611363115941D0/
	DATA WGT/2.0D0,0.0D0,0.0D0,0.0D0,1.0D0,1.0D0,0.0D0,
	*0.0D0,.5555555555556D0,.8888888888889D0,
	*.555555555556D0,0.0D0,.3478548451375D0,
	*.6521451548625D0,.6521451548625D0, +.2478548451275D0/
	$n_{3}478548451375007$
	DO 43 $J=1,9$
	DO(I,J) = 0.0D0
43	D1(I,J) = 0.0D0
	DO(1,1) = A11
	DU(1,2) = A12 DO(1,3) = A12
	DO((2, 1) = A12
	DO(2,2) = All
	D0(2,3)=A12
	DO(3,1) = A12
	DO(3,2) = A12
	DO(3,3) = AII DO(4,4) = A22
	DO(4,5) = A23
	DO(5,4) = A23
	DO(5,5) = A22
	D0(6,6) = A22
	DU(6,7) = A23
	DO(7, 7) = A23 DO(7, 7) = A22
	DO(8,8) = A22
	D0(8,9)=A23
	DO(9,8) = A23
	D0(9,9)=A22
	DO 46 1=1,9 DI(T T)=BII
46	CONTINUE
	DO 39 I=1,8
	V(I) = 0.0D0
39	CONTINUE
	DO 83 LX=1,NINT
	R=XG(LX,NINI) DO 83 IV=1 NINT
	S = XG(LY, NINT)
	T=1.0D0
	CALL STDM
	WS=WGT(LX,NINT)*WGT(LY,NINT)*DET
	DO 89 $I=1,8$ VJ (T) -VJ (T) +WC
	$40 \ 199 \ T = 1.8$
	we are a mys

	WRITE(6,99)V1(J)
99	FORMAT(2X,F15.7)
199	CONTINUE
89	CONTINUE
83	CONTINUE
	DO 30 I=1,48
	DO 30 J=1,48
30	EK(I, J) = 0.0D0
	DO 80 LX=1,NINT
	R=XG(LX,NINT)
	DO 80 LY=1,NINT
	S=XG(LY,NINT)
	DO 80 LZ=1,NINT
	T=XG(LZ,NINT)
	CALL STDM
	WT=WGT(LX,NINT)*WGT(LY,NINT)*WGT(LZ,NINT)*DET
	DO 70 $J=1,48$
	DO 40 $K=1,9$
	DOBO(K) = 0.0D0
	DIBI(K) = 0.000
	DOBO(K) = DOBO(K) + DO(K I) + BO(NEIDE I I)
40	D(R) = D(R) + D((R, L) + B((RETRE, L, L)))
	DO 60 T=J.48
	STIFF=0.0D0
	DO 50 L=1,9
50	STIFF=STIFF+B0(NEIRE,L,I)*D0B0(L)+B1(NEIRE,L,I)*D1B1(L)
60	EK(I,J) = EK(I,J) + STIFF * WT
70	CONTINUE
80	CONTINUE
	DO 90 J=1,48
	DO 90 I=J,48
90	EK(J,I) = EK(I,J)
	IF(INXY(NEIRE).EQ.00001)GO TO 100
	IF(INXY(NEIRE).EQ.00010)GO TO 110
	$1F(INXY(NEIRE) \cdot EQ.00011) GO TO 120$
	$IF(INXY(NEIRE) \cdot EQ.00100) GO TO 130$
	IF(INXY(NEIRE).EQ.00101)GO TO 140
	IF(INXY(NEIRE).EQ.UUIIU)GO TO 150
	IF (INXY (NEIRE) EQ. UUIII)GO TO 160 TE (INXY (NEIRE) EQ. 01000)CO EQ. 170
	TE(INXI(NEIRE).EQ.01000)GO TO 170
	$IF(INXI(NEIRE) \cdot EQ \cdot 01001)GO TO 100$
	$\frac{11}{1000} 1000000000000000000000000000000000000$
	TF(TNXY(NETRE), EO, 01300) GO TO 210
	TF(TNXY(NETRE), EO, 01101)GO, TO, 220
	TF(TNXY(NETRE), EO, 01110) GO TO 230
	IF(INXY(NEIRE).EO.01111)GO TO 240
	IF(INXY(NEIRE).E0.10000)GO TO 250
	IF(INXY(NEIRE).EQ.10001)GO TO 260
	IF (INXY (NEIRE) . EQ. 10010) GO TO 270
	IF (INXY (NEIRE).EQ.10011) GO TO 280
	IF(INXY(NEIRE).EQ.10100)GO TO 290
	R= 0.0D0

	S= 0.0D0 $T= 0.0D0$
100	GO TO 300 R= 1.0D0 S= 1.0D0 T= 1.0D0
110	GO TO 300 R=-1.0D0 S= 1.0D0
120	GO TO 300 R=-1.0D0 S=-1.0D0 T= 1.0D0
130	$\begin{array}{c} \text{GO TO 300} \\ \text{GO TO 300} \\ \text{R= 1.0D0} \\ \text{S=-1.0D0} \\ \text{T= 1.0D0} \end{array}$
140	$\begin{array}{l} \text{GO TO 300} \\ \text{R= 1.0D0} \\ \text{S= 1.0D0} \\ \text{T=-1.0D0} \end{array}$
150	GO TO 300 R=-1.0D0 S= 1.0D0 T=-1.0D0
160	GO TO 300 R=-1.0D0 S=-1.0D0 T=-1.0D0
170	GO TO 300 R= 1.0D0 S=-1.0D0 T=-1.0D0
180	GO TO 300 R= 0.0D0 S= 1.0D0 T= 1.0D0
190	GO TO 300 R=-1.0D0 S= 0.0D0 T= 1.0D0
200	GO TO 300 R= 0.0D0 S= $-1.0D0$ T= 1.0D0
210	GO TO 300 R= 1.0D0 S= 0.0D0 T= 1.0D0
220	GO TO 300 R= 0.0D0 S= 1.0D0 T=-1.0D0

.

		GO TO 300	
	230	R=-1.0D0	
		S= 0.0D0	
		T=-1.0D0	
		GO TO 300	
	240	R= 0.0D0	
		S=-1.0D0	
		T = -1.0D0	
		GO TO 300	
	250	R = 1.0D0	
		S = 0.000	
		T = -1.0D0	
		GO TO 300	
	260	R = 1.0D0	
	200	S = 1.0D0	
		$\overline{\mathbf{n}} = 0 0 \mathbf{D} 0$	
	270	B_{-1} 000	
	270	R = 1.0D0	
		m = 0.000	
	200		
	200		
		m = 0.000	
	200		
	290	R = 1.000	
	200		
	300	DETUDN	
		END	
	~ +++		****
с н			*
L .	•		
C 1	•	SUBROUTINE SIDM	*

با	т. Т.	//////////////////////////////////////	
	11.	$\frac{1}{2} \frac{1}{2} \frac{1}$	
		MMON/FSK/A(550000), V(1000), EK(40,40), MARA(1001), METRE	
		MMON/RIN/RE, RC, RD, RE, RN, IN, RINI, R, S, I, DEI	
		MMON/BUI/BU(200,9,48), BI(200,9,48), INAI(200), ID(300)	
		$\frac{1}{2} \frac{1}{2} \frac{1}$	
	נת	$\mathbf{P}(0, 0) = \mathbf{P}(0, 0), \mathbf{N}(0, 0), \mathbf{N}(0, 0), \mathbf{N}(0, 0)$	
		(0)	
	لہ 	L-NNP(NEIRE, 1)	
	ι τ	J-NNP(NEIRE, 2)	
	1	(NETRE, 3)	
	۱ - ب	L=NNP(NEIRE,4)	
	1. 	J=NNP(NEIRE, 5)	
	10	K=NNP(NEIRE, 6)	
	KI	L=NNP(NEIKE,/)	
	لىل مەر	I=NNP(NEIKE,8)	
	X	$\mathbf{Y}\mathbf{Z}(1,1) = \mathbf{X}(1)$	
	X	YZ(2,1) = X(J)	
	X	YZ(3, 1) = X(K)	

X Y X X X X X X X X X X X X X X X X X X		(((((((((((((((((((((((ユユユユユ						IJKL IJKL IJKL	LJKLIJKLJKLIJKLJKLI										
H H H	(7 (8 (5);););			00000	• •	12 12 12	5 5	D D D	0 0 0	* * *	R: RI RI	P M M		5 I 5 I 5 N)*)* [*	T T T	P P P	
H H	(6 (3):):			0	•	12 12	25 25	D D	0 0	* *	R: R:	Pء Pء	k <u>S</u> k S	51 51	⁄[× ⊃+	Υ T	P M	
H	(4	j:	=		0	• :	12	:5	D	0	*	R	M.	k (51	× -	۲	M	
п Н	(1)):):			0		12	:5	D	0	*	R R	P	• •	51 51	1	T	M	
P	(7	,	1)	=		0).	1 า	2	5	D	0×	k S L C	51	⊃* 5*	۲r ۳	P	
P	(5	, : , :	1)	=		-0).	i	2	5	D	0,	k	51	4 ×	۰T	P	
P	(6	,	1)	=		0).	1	2	5	D	0 '	k (51	√]≯	۲	P	
P	(3 4	;;	1)	_		-0).	i	2	5	D	0,	k	51	5 J	۲	M	
P	Ç	1	/	ļ	-	•	-().	ļ	2	5	D	03	*:	51	1	۲	M	
P	(27	/ -	1) 2)		=	C	,. 0	<u>ب</u>	2 1	5 2	ים 51		7:):	*1 *1	RI	5 *	m T	Ρ
P	Ì	8	,	2)		=		0	•	1	2	5	D);	*]	RI	1*	T	P
P	(5		2) 21		=	-	-0 -0	•	ן ו	22	5) 5););	*] *]	RI RI	/* >*	T T	P P
P	ì	3	;;	2)		=		õ		1	2	5	D	2,	*]	RI	>*	Т	M
P	$\left(\begin{array}{c} \\ \end{array} \right)$	4 ٦	1	2)		=	_	0	•	1 1	2	5 ~	D(D/) י ר י	*] *]	RN 21	{* / *	T.	М м
P	(2	;;	~) 2)		_	-	-0	•	1	2	5	D););	*]	RI	>*	T	M
P	Ç	7	,	3j		=		0	•	1	2	5	D); ^	*]	RI	>*	S	P
Ρ	(8		3)		-		0		1	2	5	ν	ງະ	×١	ŁЪ.	1≭	S	P

.
```
P(6,3) = 0.125D0 * RP * SM
      P(3,3) = -0.125D0 \times RP \times SP
      P(4,3) = -0.125D0*RM*SP
      P(1,3) = -0.125D0 * RM * SM
      P(2,3) = -0.125D0 \times RP \times SM
      DO 30 I=1,3
      DO 30 J=1,3
      DUM= 0.0D0
      DO 20 K=1,8
20
      DUM=DUM+P(K,I) *XYZ(K,J)
30
      XJ (I,J) = DUM
      DET=XJ(1,1) *XJ(2,2) *XJ(3,3) +XJ(1,3) *XJ(2,1) *XJ(3,2)
     *+XJ(1,2)*XJ(2,3)*XJ(3,1)
     *-XJ(1,3)*XJ(2,2)*XJ(3,1)-XJ(1,2)*XJ(2,1)*XJ(3,3)
     *-XJ(1,1)*XJ(2,3)*XJ(3,2)
      IF(DET.GT.1.0D-14) GO TO 40
      WRITE (6, 1000) DET
  1000
       FORMAT(5X,'DET= ',E14.7//)
      WRITE (6,2000) NEIRE
      FORMAT(3X, **** ERROR, ZERO OR NEGATIVE JACOBIAN
2000
     * DETERMINANT AT ELEMENT=', I4)
      STOP
40
      DUM=1.0D0/DET
      XJI(1,1) = (XJ(2,2) * XJ(3,3) - XJ(2,3) * XJ(3,2)) * DUM
      XJI(2,1) = -(XJ(2,1) * XJ(3,3) - XJ(2,3) * XJ(3,1)) * DUM
       XJI(3,1) = (XJ(2,1) * XJ(3,2) - XJ(2,2) * XJ(3,1)) * DUM
       XJI(1,2) = -(XJ(1,2) * XJ(3,3) - XJ(1,3) * XJ(3,2)) * DUM
       XJI(2,2) = (XJ(1,1) * XJ(3,3) - XJ(1,3) * XJ(3,1)) * DUM
       XJI(3,2) = -(XJ(1,1) * XJ(3,2) - XJ(1,2) * XJ(3,1)) * DUM
       XJI(1,3) = (XJ(1,2) * XJ(2,3) - XJ(1,3) * XJ(2,2)) * DUM
       XJI(2,3) = -(XJ(1,1) * XJ(2,3) - XJ(1,3) * XJ(2,1)) * DUM
       XJI(3,3) = (XJ(1,1) * XJ(2,2) - XJ(1,2) * XJ(2,1)) * DUM
       TH=0.0D0
       DO 49 K=1,8
       TH=TH+H(K) \times XYZ(K, 1)
49
       CONTINUE
       DO 50 I=1,9
       DO 50 J=1,48
       BO(NEIRE, I, J) = 0.0D0
50
       Bl(NEIRE, I, J) = 0.0D0
       K6=0
       DO 65 K=1,8
       K6=K6+6
       BO(NEIRE, 4, K6) = -H(K)
       BO(NEIRE, 5, K6) = H(K)
       BO(NEIRE, 6, K6-1) = H(K)
       BO(NEIRE, 7, K6-1) = -H(K)
       BO(NEIRE, 8, K6-2) = -H(K)
       BO(NEIRE, 9, K6-2) = H(K)
       BO(NEIRE, 2, K6-5) = H(K) /TH
       BO(NEIRE, 5, K6-4) = -H(K) / TH
       Bl(NEIRE, 2, K6-2) = H(K) / TH
       Bl(NEIRE, 5, K6-1) = -H(K)/TH
       DO 64 I=1,3
```

```
97
```

B0(NEIRE,1,K6-5)=B0(NEIRE,1,K6-5)+XJI(1,I)*P(K,I) B0(NEIRE,3,K6-3)=B0(NEIRE,3,K6-3)+XJI(3,I)*P(K,I) B0(NEIRE,4,K6-4)=B0(NEIRE,4,K6-4)+XJI(1,I)*P(K,I) B0(NEIRE,6,K6-3)=B0(NEIRE,6,K6-3)+XJI(1,I)*P(K,I) B0(NEIRE,7,K6-5)=B0(NEIRE,7,K6-5)+XJI(3,I)*P(K,I) B0(NEIRE,9,K6-4)=B0(NEIRE,9,K6-4)+XJI(3,I)*P(K,I) B0(NEIRE,2,K6-4)=B0(NEIRE,2,K6-4)+XJI(2,I)*P(K,I) B0(NEIRE, 5, K6-5)=B0(NEIRE, 5, K6-5)+XJI(2, I)*P(K, I) BO(NEIRE, 8, K6-3) = BO(NEIRE, 8, K6-3) + XJI(2, I) * P(K, I) B1(NEIRE, 1, K6-2) = B1(NEIRE, 1, K6-2) + XJI(1, I) * P(K, I) Bl(NEIRE,2,K6-1)=Bl(NEIRE,2,K6-1)+XJI(2,I)*P(K,I) Bl(NEIRE, 3, K6) = Bl(NEIRE, 2, K6) + XJI(3, I) * P(K, I) Bl(NEIRE, 4, K6-1) = Bl(NEIRE, 4, K6-1) + XJI(1, I) * P(K, I) B1(NEIRE,5,K6-2)=B1(NEIRE,5,K6-2)+XJI(2,I)*P(K,I) Bl(NEIRE, 6, K6) = Bl(NEIRE, 6, K6) + XJI(1, I) * P(K, I) Bl(NEIRE,7,K6-2)=Bl(NEIRE,7,K6-2)+XJI(3,I)*P(K,I) B1(NEIRE, 8, K6) = B1(NEIRE, 8, K6) + XJI(2, I) * P(K, I)Bl(NEIRE,9,K6-1)=Bl(NEIRE,9,K6-1)+XJI(3,I)*P(K,I) 64 CONTINUE 65 CONTINUE RETURN END C * * SUBROUTINE LOADER C * * IMPLICIT REAL*8(A-H,O-Z) COMMON/AIN/NB, NC, ND, NE, NN, TH, NINT, R, S, T, DET COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE COMMON V1(100) DO 10 LO=1,ND 10 V(LO) = 0.0D0SCALE=1.0D0 WRITE(6,1000) 1000 FORMAT(//34X, '**** EXTERNAL LOAD ****') WRITE(6,2000) 2000 FORMAT(/1X, 'NODE', 8X, 'X-FORCE', 8X, 'Y-FORCE', 8X, 'Z-FORCE', * 8X, 'X-MOMNT', 8X, 'Y-MOMNT', 8X, 'Z-MOMNT') IND=0 DO 20 N=1,ND,6 IND=IND+1 CHECK= DABS (V(N)) + DABS (V(N+1)) + DABS (V(N+2))1 +DABS(V(N+3))+DABS(V(N+4))+DABS(V(N+5))IF(CHECK .EQ. 0.0D0) GO TO 20 WRITE(6,3000) (IND, V(N), V(N+1), V(N+2), * V(N+3), V(N+4), V(N+5))20 CONTINUE 3000 FORMAT(2X, I3, 6(5X, E10.3)) RETURN END * C * SUBROUTINE COLSOL

C :	*				
C ************************************					
	IMPLICIT REAL*8(A-H,O-Z)				
	COMMON/AIN/NB.NC.ND.NE.NN.TH.NINT.R.S.T.DET				
	COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE				
	DO 140 N=1.ND				
	KN = MAXA(N)				
	KI = KN + 1				
	KII = MA YA (N+1) = 1				
	KU-MAAA (N+1) I				
50	$r_{N_{V_{V_{V_{V_{V_{V_{V_{V_{V_{V_{V_{V_{V_$				
50					
	D = 1, R = 1				
	10=10+1 VI M_VI M_3				
	$\mathbf{K} = \mathbf{M} \mathbf{A} \mathbf{X} \mathbf{A} (\mathbf{K})$				
	ND = MAXA(K+1) - K1 - 1				
60	$\frac{11}{2} (\text{NND}) \times \frac{10}{2} (\text{NND})$				
60	R = MINO(IC, NND)				
	C=0.0D0				
70	DU / U = 1, KK				
70	C = C + A (KI + L) * A (KLI + L)				
00	A(KLT) = A(KLT) = C				
80					
90					
	DO IOU KR=KL,KU				
	$\mathbf{XI} = \mathbf{MAXA}(\mathbf{K})$				
	C = A(KK)/A(KI)				
	B=B+C*A(KK)				
100	A(KK) = C				
	A(KN) = A(KN) - B				
110	IF(A(KN))120,120,140				
120	WRITE(6,2000)N,A(KN)				
_	STOP				
140	CONTINUE				
	DO 180 N=1,ND				
	KL=MAXA(N)+1				
	KU=MAXA(N+1)-1				
	IF(KU-KL)180,160,160				
160	K=N				
	C=0.0D0				
	DO 170 KK=KL,KU				
	K=K-1				
170	C=C+A(KK)*V(K)				
	V(N) = V(N) - C				
180	CONTINUE				
	DO 200 N=1,ND				
	K=MAXA(N)				
200	V(N) = V(N) / A(K)				
	IF (ND. EQ. 1) RETURN				

```
N=ND
        DO 230 L=2,ND
        KL=MAXA(N)+1
        KU=MAXA(N+1)-1
        IF(KU-KL)230,210,210
  210
        K=N
        DO 220 KK=KL, KU
        K=K-1
  220
        V(K) = V(K) - A(KK) * V(N)
  230
        N=N-1
        WRITE(6,1000)
   1000 FORMAT(//33X,'*** NODAL DISPLACEMENT ***')
        WRITE(6,1500)
   1500 FORMAT(/1X, 'NODE', 8X, 'X-DISP', 9X, 'Y-DISP', 9X, 'Z-DISP',
                9X, 'X-ROTN', 9X, 'Y-ROTN', 9X, 'Z-ROTN')
       *
        IND=0
        DO 250 K=1,ND,6
        IND=IND+1
        WRITE(6,3000) IND,V(K),V(K+1),V(K+2),
       *
                     V(K+3), V(K+4), V(K+5)
  250
        CONTINUE
        RETURN
  2000
       FORMAT(//48H STOP - STIFFNESS MATRIX NOT POSITIVE DEFINITE
                                                                  .//
                   32H NONPOSITIVE PIVOT FOR EQUATION , 14, //
       *
                   10H PIVOT = , E20.12)
  3000
       FORMAT(2X, I3, 6(5X, E10.3))
        END
  C *
                                                                    *
                      SUBROUTINE STRESS
C *
                                                                    *
IMPLICIT REAL*8(A-H,O-Z)
     COMMON/B01/B0(200,9,48),B1(200,9,48),INXY(200),ID(300)
     COMMON/XYZ/NNP(200,8),X(300),Y(300),Z(300)
     COMMON/MAT/D0(9,9),D1(9,9),A11,A12,A22,A23,B11
     COMMON/AIN/NB, NC, ND, NE, NN, TH, NINT, R, S, T, DET
     COMMON/FSK/A(350000),V(1800),EK(48,48),MAXA(1801),NEIRE
     DIMENSION EDISP(48), E(100,9), PHIJ(100,9), T(100,9), CM(100,9),
     *U(100)
     DO 300 IE=1,NE
      DO 20 IJM=1,8
      IEB=(IJM-1)*6
      ISB=(NNP(IE, IJM)-1)*6
       DO 20 IDOF=1,6
       EDISP(IEB+IDOF) = V(ISB+IDOF)
   20
      DO 40 IC=1,9
       SUM=0.0D0
       DO 30 K=1,48
       SUM=SUM+B0(IE,IC,K)*EDISP(K)
   30
   40
      E(IE, IC) = SUM
       DO 60 IC=1,9
       SUM=0.0D0
       DO 50 K=1,48
```

```
50
       SUM=SUM+B1(IE, IC, K) *EDISP(K)
  60
      PHIJ(IE,IC)=SUM
      DO 80 IC=1,9
      SUM=0.0D0
       DO 70 K=1,9
  70
       SUM=SUM+DO(IC,K) *E(IE,K)
  80
      T(IE, IC) = SUM
      DO 100 IC=1,9
      SUM=0.0D0
       DO 90 K=1,9
       SUM=SUM+D1(IC,K)*PHIJ(IE,K)
  90
 100
      CM(IE, IC) = SUM
       SUM=0.0D00
       DO 200 IC=1,9
 200
       SUM=SUM+E(IE,IC) *T(IE,IC) +PHIJ(IE,IC) *CM(IE,IC)
      U(IE) = SUM \times 0.50D00
 300 CONTINUE
     WRITE(6,1000)
1000 FORMAT(//19X, '**** STRESSES & STRAINS CALCULATED ****')
     WRITE(6,2000)
2000 FORMAT(/1X,'ELMT',1X,'COMP',1X,'DISP-STRAN',3X,'FORCE-STRS'
     *
            ,2X, 'COMP',1X, 'ROTATN-GRAD',2X, 'COUPLE-STRS'
            ,2X, 'STRN-ENEGY')
     WRITE(6,3000)
3000 FORMAT(15X,'E',12X,'T',15X,'PHI,J',9X,'M',12X,'U')
      DO 400 IE=1,NE
      WRITE(6,4000) IE
4000 FORMAT(15)
      WRITE(6,5000) E(IE,1),T(IE,1),PHIJ(IE,1),CM(IE,1),U(IE)
5000 FORMAT(7X,'rr',1X,1PE11.4,2X,1PE11.4,2X,'r,r',2X,1PE11.4,
             2X,1PE11.4,1X,1PE11.4)
     *
     WRITE(6,6000) E(IE,2),T(IE,2),PHIJ(IE,2),CM(IE,2)
6000 FORMAT(4x, 'theta', 1X, 1PE11.4, 2X, 1PE11.4, 2X, '0, 0', 2X, 1PE11.4,
             2X, 1PE11.4)
      WRITE(6,7000) E(IE,3),T(IE,3),PHIJ(IE,3),CM(IE,3)
7000 FORMAT(7X, 'ZZ', 1X, 1PE11.4, 2X, 1PE11.4, 2X, 'Z, Z', 2X, 1PE11.4,
             2X,1PE11.4)
      WRITE(6,8000) E(IE,4),T(IE,4),PHIJ(IE,4),CM(IE,4)
8000 FORMAT(7X,'ro',1X,1PE11.4,2X,1PE11.4,2X,'r,0',2X,1PE11.4,
     *
             2X, 1PE11.4)
      WRITE(6,9000) E(IE,5),T(IE,5),PHIJ(IE,5),CM(IE,5)
9000 FORMAT(7X, 'or', 1X, 1PE11.4, 2X, 1PE11.4, 2X, 'o, r', 2X, 1PE11.4,
     *
             2X, 1PE11.4)
      WRITE(6,10000) E(IE,6),T(IE,6),PHIJ(IE,6),CM(IE,6)
10000 FORMAT(7X,'rz',1X,1PE11.4,2X,1PE11.4,2X,'r,z',2X,1PE11.4,
             2X,1PE11.4)
      WRITE(6,11000) E(IE,7),T(IE,7),PHIJ(IE,7),CM(IE,7)
11000 FORMAT(7X,'zr',1X,1PE11.4,2X,1PE11.4,2X,'z,r',2X,1PE11.4,
     *
             2X,1PE11.4)
      WRITE(6,12000) E(IE,8),T(IE,8),PHIJ(IE,8),CM(IE,8)
12000 FORMAT(7X,'oz',1X,1PE11.4,2X,1PE11.4,2X,'o,z',2X,1PE11.4,
     *
             2X, 1PE11.4)
      WRITE(6,13000) E(IE,9),T(IE,9),PHIJ(IE,9),CM(IE,9)
13000 FORMAT(7X,'zo',1X,1PE11.4,2X,1PE11.4,2X,'z,o',2X,1PE11.4,
```

* 2X,1PE11.4) 400 CONTINUE RETURN

.

END

С 2-D MICROPOLAR FINITE ELEMENT METHOD IMPLICIT REAL*8(A-H,O-Z) INTEGER*4 ITIM INTEGER*2 TYPE, CODE COMMON/STR/EDISP(24), E(100,5), PHIJ(100,3), T(100,5) *,CM(100,3),U(100) COMMON/B01/B0(100,5,24), B1(100,4,24), INXY(200), ID(500) COMMON/XYZ/NNP(200,8),X(750),Y(750),XG(4,4),WGT(4,4) *,XY(8,2) COMMON/CSTRN/KSTRN(1000), KSTRT(1000) COMMON/MAT/D0(5,5),D1(4,4),A10,A11,A12,A22,A23,B11,B12 COMMON/AIN/NB, NC, ND, NE, NN, TH, NINT, R, S, DET COMMON/FSK/A(185220),V(1890),MAXA(1891), *EK(24,24),NEIRE READ(5,100)NE FORMAT(I4) 100 DO 10 N=1,NE READ(5, 200)NNP(N, 1), NNP(N, 2), NNP(N, 3), NNP(N, 4) *,NNP(N,5),NNP(N,6),NNP(N,7),NNP(N,8),INXY(N) FORMAT(4X,814,16) 200 10 CONTINUE WRITE(6,63)NNP(1,1),NNP(1,2),NNP(1,3),NNP(1,5) * ,NNP(1,6),NNP(1,7),NNP(1,8) 63 FORMAT(2X, 'NNP=', 8I4)READ(5,100)NN DO 20 N=1,NN READ(5,300) X(N), Y(N) 300 FORMAT(4X, F20.10, F20.11) 20 CONTINUE READ(5,100) NC DO 30 N=1,NC READ(5,400) KSTRN(N), KSTRT(N) 400 FORMAT(4X, 2I4)30 CONTINUE WRITE(6,73)KSTRN(1),KSTRT(1),KSTRN(2) FORMAT(2X, 'KSTR=', 3I4)73 READ(5,550)NINT 550 FORMAT(15) READ(5,600) Al0,Al1,Al2,A22,A23,Bl1,Bl2 600 FORMAT(7E14.7) ND=NN*3 NB=0DO 40 IB=1,NE IMAX=MAXO(NNP(IB,1),NNP(IB,2),NNP(IB,3),NNP(IB,4) *, NNP(IB, 5), NNP(IB, 6), NNP(IB, 7), NNP(IB, 8)) IMIN=MINO(NNP(IB,1),NNP(IB,2),NNP(IB,3),NNP(IB,4) *, NNP(IB, 5), NNP(IB, 6), NNP(IB, 7), NNP(IB, 8)) NBCHEK=(IMAX-IMIN+1)*3 IF (NBCHEK.GT.NB) NB=NBCHEK IF(NB.GT.2000) GO TO 99 40 CONTINUE SCALE=1.0D0 DO 41 I=1,NN X(I) = X(I) * SCALE

```
Y(I) = Y(I) * SCALE
41
     WRITE(6,700)
700
     FORMAT(1H1)
     WRITE(6,800)
800
     **********
     WRITE(6,900)
900
     FORMAT(3X, '*', 68X, '*')
     WRITE(6,1000)
     FORMAT(3X, '*', 13X, 'AXISYMMETRIC CASE
                                                        •)
1000
     WRITE(6,1050)
1050
     FORMAT(3X, '*', 28X, 'SKYLINEMICRO', 27X, '*')
      WRITE(6,900)
      WRITE(6,800)
      WRITE(6,1100)
1100 FORMAT(/20X, '**** DISCRETIZATION NUMBER ****')
      WRITE(6,1200)
1200 FORMAT(/13X,'ELEMT.#',3X,'NODES.#',3X,'CONSTR.#',3X,
     *6X, 'BAND-WIDTH', 3X, 'GAUSS NUMBERICAL INTEGERATI
     *N ORDER')
      WRITE(6,1300)NE,NN,NC,NB,NINT
      FORMAT(13X, 14, 7X, 13, 7X, 13, 20X, 15, 19X, 12)
1300
      WRITE(6,1400)
      FORMAT(/6X, 'All', 9X, 'Al2', 9X, 'A22', 8X, 'A23')
1400
      WRITE(6,1500) Al0,All,Al2,A22,A23
1500
      FORMAT(4E12.3)
      WRITE(6,1600)
      FORMAT(/6X, 'B11', 9X, 'B12')
1600
      WRITE(6,1550) B11,B12
1550
      FORMAT(2E12.2)
        WRITE(6,234)KSTRN(1),KSTRT(1),KSTRN(2),KSTRT(2)
234
        FORMAT(3X, 'KSTR == ', 414)
      WRITE(6,1700)
     FORMAT(//21X, '**** ELEMENT-NODE CONNECTION ****')
1700
      WRITE(6,1800)
1800 FORMAT(/3X, 'ELM NP1 NP2 NP3 NP4 IXY elm NP1 NP2 NP3 NP4
     * IXY
             ELM NP1 NP2 NP3 NP4 IXY ELM NP1 NP2 NP3 NP4
     *ixy')
      DO 45 I=1,NE
      ID(I) = I
45
      LINE=NE/2
      IRESID=NE-2*LINE
      DO 50 N=1,LINE,2
50
      WRITE(6,1900) (ID(2*(N-1)+I),NNP(2*(N-1)+I,1),NNP(2*(N-1))
     *+I,2),NNP(2*(N-1)+I,3),NNP(2*(N-1)+I,4),INXY(2*(N-1)+I),
     *i=1,4)
1900 FORMAT(4(2X,I4,1X,I3,1X,I3,1X,I3,1X,I3,1X,I3))
      IF(IRESID.EQ.0) GO TO 56
      WRITE(6,1900)(ID(4*LINE+I),NNP(4*LINE+I,1),
     *NNP(4*LINE+I,2)
     *, NNP(4*LINE+I,3), NNP(4*LINE+I,4), INXY(4*LINE+I),
     *i=l,iresid
     *)
 56
      WRITE(6,2000)
```

```
FORMAT(//24X, '**** NODAL COORDINATE ****')
2000
      WRITE(6,2100)
      FORMAT(/1X, 'NODE', 5X, 'X', 8X, 'Y', 4X, 'NODE', 5X, 'X', 8X, 'Y',
2100
     *4X, 'NODE', 5X, 'X', 8X, 'Y', 4X, 'NODE', 5X, 'X', 8X, 'Y')
      DO 55 I=1,NN
55
      ID(I) = I
      LINE=NN/4
      IRESID=NN-4*LINE
      DO 60 N=1,LINE
      WRITE(6,2200) (ID(4*(N-1)+I),X(4*(N-1)+I),Y(4*(N-1)+I),
60
     *I=1,4)
2200 FORMAT(4(2X,I3,1X,F9.3,1X,F9.3))
      IF(IRESID.EQ.0)GO TO 57
      WRITE(6,2200) (ID(4*LINE+I),X(4*LINE+I),Y(4*LINE+I),
     *I=1, IRESID)
       WRITE(6,123)KSTRN(1),KSTRT(1),KSTRN(2),KSTRT(2)
       FORMAT(4X, 'KST=', 4I4)
123
57
      WRITE(6,2300)
2300
      FORMAT(//27X, '**** CONSTRAINT ****')
      WRITE(6,2400)
      FORMAT(/24X, 'CNSTRND-NODE', 2X, 'CNSTRND-CODE')
2400
      DO 222 I=1,NC
      WRITE(6,2500)KSTRN(I),KSTRT(I)
      FORMAT(28X, I3, 12X, I3)
2500
222
      CONTINUE
      CALL STSTIF
       CALL LOADER
       CALL COLSOL
       CALL STRESS
       WRITE(6,999)NB,IB
 99
       FORMAT('*****STOP NB=', 15, ' AT ELEMENT=', 15)
 999
       STOP
       END
                   SUBROUTINE STSTIF
       IMPLICIT REAL*8(A-H,O-Z)
       COMMON/CSTRN/KSTRN(1000), KSTRT(1000)
       COMMON/XYZ/NNP(200,8),X(750),Y(750),XG(4,4),
      *WGT(4,4),XY(8,2)
       COMMON/AIN/NB, NC, ND, NE, NN, TH, NINT, R, S, DET
       COMMON/FSK/A(185220),V(1890),MAXA(1891),
      *EK(24,24),NEIRE
       DIMENSION MHT(1890)
       NBND=NB*ND
       DO 10 I=1,NBND
 10
       A(I) = 0.0D0
       DO 20 NEIRE=1,NE
       CALL ELSTIF
       DO 20 INC=1,8
       INOC=NNP(NEIRE, INC)
       IBC=(NNP(NEIRE,INC)-1)*3
       DO 20 IDC=1,3
       ICEL=(INC-1) *3+IDC
       ICST=IBC+IDC
       IDI=0
```

IF(ICST.GT.NB)IDI=ICST-NB IVC=(ICST-1)*NB DO 18 INR=1,8 INOR=NNP(NEIRE,INR) IF(INOC.LT.INOR) GO TO 18 IBR=(NNP(NEIRE,INR)-1)*3 IDVC=IDC IF(INOC.GT.INOR) IDVC=3 DO 15 IDR=1, IDVC IREL=(INR-1)*3+IDR IVV=IVC+IBR+IDR-IDI SS=A(IVV)+EK(IREL, ICEL) IF(DABS(SS).LT.1.0D-14)SS=0.0D0 15 A(IVV) = SSCONTINUE 18 20 CONTINUE DO 140 N=1,NC IRCX=KSTRN(N) *3-2 IRCY=KSTRN(N) *3-1 IRCZ=KSTRN(N) *3 KCHK=KSTRT(N) IF(KCHK.LT.100) GO TO 60 ICB=ND-IRCX+1 IF(ICB.GT.NB)ICB=NB DO 50 I=1,ICB IDI=0 IRCXX=IRCX+I-1 IF(IRCXX.GT.NB) IDI=IRCXX-NB IXV=(IRCX-2+I)*NB+IRCX-IDI IF(I.EQ.1) GO TO 30 A(IXV) = 0.0D0GO TO 50 30 A(IXV)=1.0D0 IF(IRCX.EQ.1)GO TO 50 DO 40 J=1, IRCX-IDI-1 IXXV=IXV-J 40 A(IXXV) = 0.0D050 CONTINUE KCHK=KCHK-100 60 IF(KCHK.LT.010) GO TO 100 ICB=ND-IRCY+1 IF(ICB.GT.NB) ICB=NB DO 90 I=1,ICB IDI=0 IRCYY=IRCY+I-1 IF(IRCYY.GT.NB) IDI=IRCYY-NB IYV=(IRCY-2+I)*NB+IRCY-IDI IF(I.EQ.1)GO TO 70 A(IYV) = 0.0D0 GO TO 90 70 A(IYV)=1.0D0 IF(IRCY.EQ.1)GO TO 90 DO 80 J=1, IRCY-IDI-1 IYYV=IYV-J

80	A(IYYV) = 0.0D0
90	CONTINUE
	KCHK=KCHK-10
100	IF (KCHK.LT.001)GO TO 140
	ICB=ND-IRCZ+I
	IF (ICB.GT.NB) ICB=NB
	$\begin{array}{c} \text{DO} 130 1=1, 1\text{CB} \\ \text{TDT} 0 \end{array}$
	IF (IRCZZ.GT.NB) IDI=IRCZZ-NB
	IZV = (IRCZ - 2 + I) * NB + IRCZ - IDI
	IF(I.EQ.I)GO TO IIO
	A(12V) = 0.000
	$\frac{1}{1} \frac{1}{1} \frac{1}$
110	A(12V) = 1.000 IE(IEQUE = 0.1)CO = 0.120
	IF(IRCZ.EQ.I)GO TO I30
	DO IZO J=I, IRCZ=IDI=I
120	122V = 12V = 0
120	A(122V) = 0.000
140	CONTINUE
140	DO 160 $T=1$ ND
	$\frac{1}{100} = 1 $
	TF(T, GT, NB) $TDT=T-NB$
	IIV = (I - 1) * NB
	DO 150 $J=1.I$
	IF(A(IIV+J).E0.0.0D0) GO TO 150
	MHT(I) = I - J - IDI
	GO TO 160
150	CONTINUE
160	CONTINUE
	NM=ND+1
	DO 170 I=1,NM
170	MAXA(I)=0
	MAXA(1)=1
	MAXA(2)=2
	IF(ND.EQ.1)GO TO 190
	DO 180 I=2,ND
180	MAXA(I+1) = MAXA(I) + MHT(I) + 1
190	NWK=MAXA(ND+1)-MAXA(1)
	IAN=0
	DO 200 I=1,ND
	ICK=MAXA(I+1)-MAXA(I)
	IDI=0
	IF(I.GT.NB)IDI=I-NB
	INBB=(I-1)*NB+I-IDI
	DO 200 II=1,ICK
	IAN=IAN+1
	IAV=INBB-II+1
	A(IAN) = A(IAV)
200	CONTINUE
	DO 210 $I=NWK+1,NBND$
210	A(1)=0.0D0
	RETURN

END

10

2

```
SUBROUTINE ELSTIF
IMPLICIT REAL*8(A-H,O-Z)
 COMMON/FSK/A(185220), V(1890), MAXA(1891), EK(24,
*24),NEIRE
 COMMON/AIN/NB, NC, ND, NE, NN, TH, NINT, R, S, DET
 COMMON/B01/B0(100,5,24),B1(100,4,24),INXY(200),ID(500)
 COMMON/XYZ/NNP(200,8), X(750), Y(750), XG(4,4), WGT(4,4)
*,XY(8,2)
 COMMON/DB01/D0B0(5),D1B1(4)
 COMMON/MAT/D0(5,5),D1(4,4),A10,A11,A12,A22,A23,B11,B12
 DATA XG/0.0D0,0.0D0,0.0D0,0.0D0,-.5773502691896D0
*,.5773502691896D0,0.0D0,0.0D0,-.7745966692415D0
*,.0D0,.7745966692415D0,0.0D0,-.8611363115941D0,
*-.3399810435849D0,.3399810435849D0,.8611363115941
*D0/
 DATA WGT/2.0D0,0.0D0,0.0D0,0.0D0,1.0D0,1.0D0,0.0D0,
*0.0D0,.5555555555556D0,.888888888889D0,
*.55555555555556D0,0.0D0,.3478548451375D0,
*.6521451548625D0,.6521451548625D0,
*.3478548451375D0/
 DO 10 I=1,5
 DO 10 J=1,5
 DO(I, J) = 0.0D0
 DO(1,1) = A11
 DO(1,2) = A12
 DO(2,1) = A12
 DO(2,2) = A10
 DO(1,3) = A12
 DO(3,1) = A12
 DO(2,3) = A12
 DO(3,2) = A12
 DO(3,3) = A11
 D0(4,4) = A22
 D0(4,5) = A23
 D0(5, 4) = A23
 D0(5,5) = A22
 DO 2 I=1,4
 DO 2 J=1,4
 D1(I,J) = 0.0D0
 CONTINUE
 D1(1,1) = B11
 D1(1,2) = B12
 D1(2,1)=0.0D0
 D1(2,2) = B11
 D1(1,3)=0.0D0
 D1(2,3) = B12
 D1(3,1) = 0.0D0
 D1(3,2) = B12
 D1(3,3) = B11
 I=NNP(NEIRE, 1)
 J=NNP(NEIRE,2)
 K=NNP(NEIRE,3)
 L=NNP(NEIRE,4)
```

	MIJ=NNP(NEIRE,5)
	MJK=NNP(NEIRE, 6)
	MKI=NNP(NETRE 7)
	MIT-NND (NETDE 0)
	MDI=MNP(NEIRE, 8)
	$XY(\bot, \bot) = X(\bot)$
	XY(2,1) = X(J)
	XY(3,1) = X(K)
	XY(4,1) = X(L)
	XY(5,1) = X(MIJ)
	YV(6 1) = Y(MTK)
	XI(0, I) = X(HUI) XV(7, I) = V(MUI)
	XY(8, 1) = X(ML1)
	XY(1,2) = Y(1)
	XY(2,2) = Y(J)
	XY(3,2) = Y(K)
	XY(4,2) = Y(L)
	XY(5,2) = Y(MIJ)
	XY(6,2) = Y(MJK)
	XY(7, 2) = Y(MKL)
	VV(9, 2) - V(MIT)
	DO 20 T = 1 04
	$10 \ 30 \ 1=1,24$
• •	$D0 \ 30 \ J=1,24$
30	EK(I,J) = 0.0D0
	DO 80 LX=1,NINT
	R=XG(LX,NINT)
	DO 80 LY=1, NINT
	S=XG(LY,NINT)
	CALL STDM
	WT=WCT(IX NINT) *WCT(IV NINT) *TH*DFT
	DO 70 T-1 24
	DO 10 D - 1,24
	D0 40 R = 1,3
40	DOBO(K) = DOBO(K) + DO(K, L) * BO(NEIRE, L, J)
	DO 45 K=1,4
	D1B1(K) = 0.0D0
	DO 45 L=1,4
45	DlBl(K) = DlBl(K) + Dl(K, L) * Bl(NEIRE, L, J)
	DO 60 I=J.24
	STIFF=0.0D0
	D0.50 I=1.5
50	SUTER-SUTERAN (NETRE I I) +DOBO(I)
50	DO ES INI A
	DU 55 L=1,4
55	STIFF=STIFF+BI(NEIRE,L,I)*DIBI(L)
60	EK(I,J) = EK(I,J) + STIFF * WT
70	CONTINUE
80	CONTINUE
	DO 90 J=1,24
	DO 90 I=J,24
90	EK(J, I) = EK(I, J)
	TE(INXY(NETRE), EO, 100) GO TO 100
	TE(INVV(NETDE) EO 010)CO TO 110
	TR(INVI(NEIDE) EO 001/00 TO IIO
	IF (INXY (NEIKE) . EQ. 001) GO TO 120
	IF(INXY(NEIRE).EQ.011)GO TO 130

IF(INXY(NEIRE).EQ.110)GO TO 135 R=0.0D0 S=0.0D0 GO TO 140 100 R=0.0D0 S=1.0D0 GO TO 140 R=-1.0D0 110 S=0.0D0 GO TO 140 120 R=0.0D0 S=-1.0D0 GO TO 140 R=1.0D0 130 S=0.0D0 GO TO 140 135 R=-1.0D0 S=-1.0D0 CALL STDM 140 RETURN END SUBROUTINE STDM IMPLICIT REAL*8(A-H,O-Z) COMMON/FSK/A(185220),V(1890),MAXA(1891), *EK(24,24),NEIRE COMMON/AIN/NB, NC, ND, NE, NN, TH, NINT, R, S, DET COMMON/B01/B0(100,5,24),B1(100,4,24),INXY(200),ID(500) COMMON/INF/H(8), P(8,2), XJ(2,2), XJI(2,2)COMMON/XYZ/NNP(200,8), X(750), Y(750), XG(4,4), WGT(4,4),*XY(8,2) RP=1.0D0+R RM=1.0D0-R SP=1.0D0+S SM=1.0D0-S RSM=1.0D0-(R*R)SSM=1.0D0-(S*S) H(1) = 0.25D0 * RP * SP * (R + S - 1.0D0)H(2) = 0.25D0 * RM * SP * (-R+S-1.0D0)H(3) = 0.25D0 * RM * SM * (-R-S-1.0D0)H(4) = 0.25D0 * RP * SM * (R - S - 1.0D0) $H(5) = 0.5D0 \times RSM \times SP$ H(6) = 0.5D0 * SSM * RM $H(7) = 0.5D0 \times RSM \times SM$ H(8) = 0.5D0 * SSM * RPP(1,1) = 0.25D0 * SP * (R+R+S)P(2,1)=0.25D0*SP*(R+R-S)P(3,1)=0.25D0*SM*(R+R+S)P(4,1)=0.25D0*SM*(R+R-S)P(5,1) = -R * SPP(6,1) = -0.5D0 * SSM $P(7,1) = -R \times SM$ P(8,1) = 0.5D0 * SSMP(1,2)=0.25D0*RP*(R+S+S) $P(2,2) = 0.25D0 \times RM \times (S+S-R)$

```
P(3,2) = 0.25D0 \times RM \times (R+S+S)
      P(4,2) = 0.25D0 * RP * (S+S-R)
      P(5,2) = 0.5D0 * RSM
      P(6,2) = -S * RM
      P(7,2) = -0.5D0 * RSM
      P(8,2) = -S*RP
      DO 30 I=1,2
      DO 30 J=1,2
      DUM=0.0D0
      DO 20 K=1,8
20
      DUM=DUM+P(K,I) *XY(K,J)
30
      XJ(I,J) = DUM
      DET=XJ(1,1) *XJ(2,2) -XJ(2,1) *XJ(1,2)
       IF(DET.GT.1.0D-07)GO TO 40
      WRITE(6,2000) NEIRE
2000
      FORMAT(3X, '*** ERROR, ZERO OR NEGATIVE JACOBIAN
      1DETERMINANT AT ELEMENT=',14)
       STOP
40
       DUM=1.0D0/DET
       XJI(1,1) = XJ(2,2) * DUM
       XJI(1,2) = -XJ(1,2) * DUM
       XJI(2,1) = -XJ(2,1) * DUM
       XJI(2,2) = XJ(1,1) * DUM
       TH=0.0D0
       DO 45 K=1,8
45
       TH=TH+H(K) *XY(K,1)
       DO 50 I=1,5
       DO 50 J=1,24
50
       BO(NEIRE, I, J) = 0.0D0
       DO 55 I=1,4
       DO 55 J=1,24
55
       Bl(NEIRE, I, J) = 0.0D0
       BO(NEIRE,1,1) = (XJI(1,1) *P(1,1) +XJI(1,2) *P(1,2))
       BO(NEIRE, 1, 4) = (XJI(1, 1) *P(2, 1) + XJI(1, 2) *P(2, 2))
       BO(NEIRE,1,7) = (XJI(1,1) *P(3,1) +XJI(1,2) *P(3,2))
       BO(NEIRE, 1, 10) = (XJI(1, 1) * P(4, 1) + XJI(1, 2) * P(4, 2))
       BO(NEIRE,1,13) = (XJI(1,1)*P(5,1)+XJI(1,2)*P(5,2))
       BO(NEIRE, 1, 16) = (XJI(1, 1) * P(6, 1) + XJI(1, 2) * P(6, 2))
       BO(NEIRE, 1, 19) = (XJI(1, 1) * P(7, 1) + XJI(1, 2) * P(7, 2))
       BO(NEIRE, 1, 22) = (XJI(1,1) * P(8,1) + XJI(1,2) * P(8,2))
       B0(NEIRE, 4, 2) = B0(NEIRE, 1, 1)
       BO(NEIRE, 4, 3) = H(1)
       BO(NEIRE, 4, 5) = BO(NEIRE, 1, 4)
       BO(NEIRE, 4, 6) = H(2)
       BO(NEIRE, 4, 8) = BO(NEIRE, 1, 7)
       BO(NEIRE, 4, 9) = H(3)
       BO(NEIRE, 4, 11) = BO(NEIRE, 1, 10)
       BO(NEIRE, 4, 12) = H(4)
       BO(NEIRE, 4, 14) = BO(NEIRE, 1, 13)
       BO(NEIRE, 4, 15) = H(5)
       BO(NEIRE, 4, 17) = BO(NEIRE, 1, 16)
       BO(NEIRE, 4, 18) = H(6)
       BO(NEIRE, 4, 20) = BO(NEIRE, 1, 19)
       BO(NEIRE, 4, 21) = H(7)
```

```
BO(NEIRE, 4, 23) = BO(NEIRE, 1, 22)
BO(NEIRE, 4, 24) = H(8)
BO(NEIRE, 3, 1) = H(1) / TH
BO(NEIRE, 3, 4) = H(2) / TH
BO(NEIRE, 3, 7) = H(3) / TH
BO(NEIRE, 3, 10) = H(4) / TH
BO(NEIRE, 3, 13) = H(5) / TH
BO(NEIRE, 3, 16) = H(6) / TH
BO(NEIRE, 3, 19) = H(7) / TH
BO(NEIRE, 3, 22) = H(8) / TH
BO(NEIRE,5,1)=(XJI(2,1)*P(1,1)+XJI(2,2)*P(1,2))
BO(NEIRE, 5, 3) = -H(1)
BO(NEIRE, 5, 4) = (XJI(2, 1) * P(2, 1) + XJI(2, 2) * P(2, 2))
BO(NEIRE, 5, 6) = -H(2)
BO(NEIRE, 5, 7) = (XJI(2, 1) * P(3, 1) + XJI(2, 2) * P(3, 2))
BO(NEIRE, 5, 9) = -H(3)
BO(NEIRE, 5, 10) = (XJI(2, 1) * P(4, 1) + XJI(2, 2) * P(4, 2))
BO(NEIRE, 5, 12) = -H(4)
BO(NEIRE, 5, 13) = (XJI(2, 1) * P(5, 1) + XJI(2, 2) * P(5, 2))
BO(NEIRE, 5, 16) = (XJI(2, 1) * P(6, 1) + XJI(2, 2) * P(6, 2))
BO(NEIRE, 5, 19) = (XJI(2, 1) * P(7, 1) + XJI(2, 2) * P(7, 2))
BO(NEIRE, 5, 22) = (XJI(2, 1) * P(8, 1) + XJI(2, 2) * P(8, 2))
BO(NEIRE, 5, 15) = -H(5)
BO(NEIRE, 5, 18) = -H(6)
BO(NEIRE, 5, 21) = -H(7)
BO(NEIRE, 5, 24) = -H(8)
B0(NEIRE,2,2)=(XJI(2,1)*P(1,1)+XJI(2,2)*P(1,2))
B0(NEIRE,2,5)=(XJI(2,1)*P(2,1)+XJI(2,2)*P(2,2))
BO(NEIRE,2,8)=(XJI(2,1)*P(3,1)+XJI(2,2)*P(3,2))
BO(NEIRE, 2, 11) = (XJI(2, 1) * P(4, 1) + XJI(2, 2) * P(4, 2))
B0(NEIRE,2,14) = (XJI(2,1)*P(5,1)+XJI(2,2)*P(5,2))
BO(NEIRE, 2, 17) = (XJI(2, 1) * P(6, 1) + XJI(2, 2) * P(6, 2))
B0(NEIRE,2,20) = (XJI(2,1)*P(7,1)+XJI(2,2)*P(7,2))
B0(NEIRE,2,23)=(XJI(2,1)*P(8,1)+XJI(2,2)*P(8,2))
Bl(NEIRE,2,3) =-H(1)/TH
B1(NEIRE, 2, 6) = -H(2)/TH
Bl(NEIRE, 2, 9) = -H(3)/TH
Bl(NEIRE, 2, 12) = -H(4)/TH
Bl(NEIRE, 2, 15) = -H(5)/TH
Bl(NEIRE, 2, 18) = -H(6)/TH
B1(NEIRE, 2, 21) = -H(7)/TH
 B1(NEIRE, 2, 24) = -H(8)/TH
 Bl(NEIRE,1,3)=B0(NEIRE,1,1)
 B1(NEIRE, 1, 6) = B0(NEIRE, 1, 4)
 B1(NEIRE,1,9)=B0(NEIRE,1,7)
 B1(NEIRE, 1, 12) = B0(NEIRE, 1, 10)
 B1(NEIRE, 1, 15)=B0(NEIRE, 1, 13)
 B1(NEIRE,1,18)=B0(NEIRE,1,16)
 B1(NEIRE, 1, 21) = B0(NEIRE, 1, 19)
 B1(NEIRE,1,24)=B0(NEIRE,1,22)
 B1 (NEIRE, 3, 3) = B0 (NEIRE, 2, 2)
 B1(NEIRE, 3, 6) = B0(NEIRE, 2, 5)
 B1(NEIRE, 3, 9) = B0(NEIRE, 2, 8)
 B1 (NEIRE, 3, 12) = B0 (NEIRE, 2, 11)
```

```
B1(NEIRE, 3, 15) = B0(NEIRE, 2, 14)
      B1(NEIRE, 3, 18) = B0(NEIRE, 2, 17)
      B1(NEIRE, 3, 21) = B0(NEIRE, 2, 20)
      B1(NEIRE, 3, 24) = B0(NEIRE, 2, 23)
      RETURN
      END
                         SUBROUTINE LOADER
      IMPLICIT REAL*8(A-H,O-Z)
      COMMON/CSTRN/KSTRN(1000), KSTRT(1000)
      COMMON/AIN/NB, NC, ND, NE, NN, TH, NINT, R, S, DET
      COMMON/FSK/A(185220),V(1890),MAXA(1891),
     *EK(24,24),NEIRE
      DO 10 LO=1,ND
10
      V(LO) = 0.0D0
      SCALE=1.0D0
      V(2) = 20.D0/6.D0
      V(5) = 12.000
      V(8) = 32.D0/6.D0
      V(11) = 56.D0/6.D0
      V(14) = 4.00
      V(17) = 40.D0/6.D0
      V(20) = 16.D0/6.D0
      V(23) = 4.00
      V(26) = 8.D0/6.D0
      V(29) = 8.D0/6.D0
      WRITE(6,1000)
      FORMAT(//26X,'**** EXTERNAL LOAD ****')
1000
      WRITE(6,2000)
     FORMAT(/1X, 'NODE', 4X, 'X-FORCE', 4X, 'Y-FORCE', 4X,
2000
     *'Z-MOMENT', 1X, 'NODE', 4X, 'X-FORCE', 4X, 'Y-FORCE',
     *4X, 'Z-MOMNT')
      IND=-1
      INE=0
      DO 20 N=1,ND,6
      IND=IND+2
      INE=INE+2
      CHECK=DABS(V(N))+DABS(V(N+1))+DABS(V(N+2))+DABS(V(N+3))
     +DABS(V(N+4))+DABS(V(N+5))
      IF(CHECK.EQ.0.0D0) GO TO 20
      WRITE (6,3000) (IND, V(N), V(N+1), V(N+2), INE, V(N+3), V(N+4),
      *V(N+5))
      CONTINUE
20
      FORMAT(2(2X,I3,1X,E10.3,1X,E10.3,1X,E10.3))
3000
      RETURN
      END
       SUBROUTINE COLSOL
       IMPLICIT REAL*8(A-H,O-Z)
       COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,DET
       COMMON/FSK/A(185220),V(1890),MAXA(1891),EK(24,24),NEIRE
       DO 140 N=1,ND
       KN = MAXA(N)
       KL=KN+1
       KU=MAXA(N+1)-1
       KH=KU-KL
```

50	IF(KH)110,90,50
50	
	KIW=KII
	DO 80 T=1 KH
	TC=TC+1
	KLT=KLT-1
	KI=MAXA(K)
	NND=MAXA(K+1)-KI-1
	IF(NND)80,80,60
60	KK=MINO(IC,NND)
	C=0.0D0
	DO 70 L=1,KK
70	C=C+A(KI+L)*A(KLT+L)
	A(KLT) = A(KLT) - C
80	
90	
	DO JOO KK-KI KII
	K=K-1
	KT=MAXA(K)
	C=A(KK)/A(KI)
	B=B+C*A(KK)
100	A(KK) = C
· ·	A(KN) = A(KN) - B
110	IF(A(KN))120,120,140
120	WRITE(6,2000)N,A(KN)
	STOP
140	CONTINUE
	DO 180 N=1,ND
	$K \perp = MAXA(N) + \perp$ $V T = MAXA(N + 1) = 1$
	TE(KII-KI) 180 160 160
160	K = N
100	C=0
	DO 170 $KK = KL$. KU
	K=K-1
170	C=C+A(KK)*V(K)
	V(N) = V(N) - C
180	CONTINUE
	DO 200 N=1,ND
	K=MAXA(N)
200	V(N) = V(N) / A(K)
	IF (ND.EQ.1) RETURN
	N=ND
	DO 230 L=2,ND
	KL=MAXA(N)+1
	$K \cup = MAXA(N+1) - 1$
010	LF(KU-KL)230,210,210
210	N-N NO 220 VV-VI VII
	K=K-J
220	$\mathbf{\Lambda}(\mathbf{K}) = \mathbf{\Lambda}(\mathbf{K}) - \mathbf{\nabla}(\mathbf{K}\mathbf{K}) + \mathbf{\Lambda}(\mathbf{N})$
230	N=N-1
	1 mm

```
WRITE(6,1000)
      FORMAT(//25X, '*** NODAL DISPLACEMENT ***')
1000
      WRITE(6,2001)
      FORMAT(/1X, 'NODE', 4X, 'X-DISP', 5X, 'Y-DISP', 5X, 'Z-ROTN',
2001
     *3X, 'NODE', 4X, 'X-DISP', 5X, 'Y-DISP', 5X, 'Z-ROTN')
      IND=-1
      INE=0
      DO 251 K=1,ND,6
      IND=IND+2
      INE=INE+2
       WRITE(6,3000)IND,V(K),V(K+1),V(K+2),INE,V(K+3),V(K+4),
251
     *V(K+5)
3000
     FORMAT(2(2X, I3, 1X, E10.3, 1X, E10.3, 1X, E10.3))
      RETURN
2000
      FORMAT(//'STOP MATRIX NOT POSITIVE', 14, E20.12)
      END
                         SUBROUTINE STRESS
      IMPLICIT REAL*8(A-H,O-Z)
      COMMON/STR/EDISP(24), E(100,5), PHIJ(100,3), T(100,5), CM(100,
     *3),U(100)
      COMMON/B01/B0(100,5,24),B1(100,4,24),INXY(200),ID(500)
      COMMON/XYZ/NNP(200,8), X(750), Y(750), XG(4,4), WGT(4,4),
     *XY(8,2)
      COMMON/MAT/D0(5,5), D1(4,4), A10, A11, A12, A22, A23, B11, B12
      COMMON/AIN/NB,NC,ND,NE,NN,TH,NINT,R,S,DET
      COMMON/FSK/A(185220),V(1890),MAXA(1891),EK(24,
     *24),NEIRE
      DO 300 IE=1,NE
      DO 20 IJM=1,8
      IEB=(IJM-1)*3
      ISB=(NNP(IE, IJM)-1)*3
      DO 20 IDOF=1,3
20
      EDISP(IEB+IDOF) =V(ISB+IDOF)
      DO 40 IC=1,5
      SUM=0.0D0
      DO 30 K=1,24
30
      SUM=SUM+BO(IE,IC,K)*EDISP(K)
      E(IE, IC) = SUM
40
      DO 60 IC=1,3
      SUM=0.0D0
      DO 50 K=1,24
50
      SUM=SUM+B1(IE,IC,K)*EDISP(K)
60
      PHIJ (IE, IC) = SUM
      DO 80 IC=1,5
      SUM=0.0D0
      DO 70 K=1,5
      SUM=SUM+D0(IC,K)*E(IE,K)
70
80
      T(IE, IC) = SUM
       DO 100 IC=1,3
       SUM=0.0D0
       DO 90 K=1,3
90
       SUM=SUM+D1(IC,K) *PHIJ(IE,K)
100
       CM(IE, IC) = SUM
```

	SUM=0.0D0
	DO 200 IC=1,5
200	SUM=SUM+E(IE,IC) *T(IE,IC)
	DO 250 IC=1,3
250	SUM=SUM+PHIJ(IE,IC)*CM(IE,IC)
	U(IE)=SUM*0.50D0
300	CONTINUE
	WRITE(6,1000)
1000	FORMAT(//19X, ' **** STRESS &STRAIN CALCULATED ****')
	WRITE(6,2000)
2000	FORMAT(/, 'ELMT', 1X, 'COMP', 1X, 'DIS-STRAN', 3X, 'FORCE-STRS'
	*,2X, 'COMP',1X, 'ROTAN-GRAD',2X, 'COUPLE-STRS',2X, 'STRN-
	*ENEGY')
	WRITE(6,3000)
3000	FORMAT(14X,'E',12X,'T',15X,'PHI.J',9X,'M',12X,'U')
	DO 400 IE=1,NE
	WRITE(6,4000) IE
4000	FORMAT(I4)
	WRITE(6,5000) E(IE,1),T(IE,1),PHIJ(IE,1),CM(IE,1),U(IE)
5000	FORMAT(6X,'XX',1X,1PE11.4,2X,1PE11.4,2X,'Z,X',1X,1PE11.4,
	12X, 1PE11.4, 2X, 1PE11.4)
	WRITE(6,6000) E(IE,2),T(IE,2),PHIJ(IE,2),CM(IE,2)
6000	FORMAT(6X,'YY',1X,1PE11.4,2X,1PE11.4,2X,'Z/Y',1X,
	11PE11.4,2X,1PE11.4)
	WRITE(6,7000) E(IE,3),T(IE,3),PHIJ(IE,3),CM(IE,3)
7000	FORMAT(6X,'ZZ',1X,1PE11.4,2X,1PE11.4,2X,'Z,Y',1X,
	*1PE11.4,2X,1PE11.4)
	WRITE(6,8000) E(IE,4),T(IE,4)
8000	FORMAT(6X,'XY',1X,1PE11.4,2X,1PE11.4)
	WRITE(6,9000) E(IE,5),T(IE,5)
9000	FORMAT(6X, 'YX', 1X, 1PE11.4, 2X, 1PE11.4)
400	CONTINUE
	RETURN
	END