
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



CIRCULAR PLATE ANALYSIS USING FINITE ELEMENT METHOD

by

SHYH-RONG CHIU

Thesis submitted to the Faculty of the Graduate School of
the New Jersey Institute of Technology in partial fulfillment of

the requirements for the degree of
Master of Science in Mechanical Engineering

1986



APPROVAL SHEET

Title of Thesis: Circular Plate Analysis Using Finite

Element Method

Name of Candidate: SHYH-RONG CHIU

Master of Science in M.E., 1986

Thesis and Abstract Approved:
	Dr. Rong-Yaw Chen 	 Date

Professor
Department of Mechanical
Engineering

Signatures of other members
of the thesis committee:



VITA

Name: SHYH-RONG CHIU.

Permanent address:

Degree and date to be conferred: 	 Master of Science in M.E.

May, 1986

Date of birth:

Place of birth:

Collegiate institutions attended 	 Dates Degree Date of Degree

New Jersey Institute of Technology 1984 	 M.S. 	 May, 1986

Chung Yuan Christian University 	 1977 	 B.S. 	 June, 1981

Major: Mechanical Engineering



ABSTRACT

Title of Thesis: Circular Plate Analysis Using Finite
Element Method

SHYH-RONG CHID, Master of Science in M.E., 1986

Thesis directed by: RONG-YAW CHEN
Professor
Department of Mechanical Engineering

The ANSYS computer program is the application of finite

element methods to large-scale engineering problems. In this

work the ANSYS program has been employed to solve the

circular plate under uniformly loaded with various boundary

conditions as follows: (1) clamped along entire edge, (2)

simply supported along entire edge, (3) clamped at several

points along the boundary, (4) simply supported at several

points along the boundary, and (5) simply supported 36 points

with 4 points clamped.

The results obtained from the ANSYS program illustrated

that the finite element method has no boundary conditions

constraints and presents good approximations to the exact

solutions derived by differential equations. These examples

also have clearly shown that the results converge to the

exact solutions when the number of elements is increased.
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NOTATION

[ ] 	 A rectangular or square matrix or a row vector

{ } 	 A column vector

[]T	Matrix transpose

A 	 Area

a 	 Radius of circular plate

[B] 	 The strain-displacement matrix

D 	 Flexural rigidity

[D] 	 The stress-strain matrix

E 	 Modulus of elasticity

{f} 	 Forces applied by element to nodes(nodal
element forces)

G 	 Modulus of elasticity in shear

h 	 Thickness

[k] 	 Element stiffness matrix

Mx, My 	Bending moments per unit length on x and y
planes

Mxy 	Twisting moment per unit length on x plane

Mr, Mt 	Radial and tangential moments per unit length

Mrt 	Twisting moment per unit length on radial
plane

[N] 	 Matrix of shape function

O 	 Origin of coordinates

q 	 Intensity of a continuously distributed load

Q 	 Shear force per unit length
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Qx, Qy 	Shear force per unit length on x and y planes

Qr, Qt 	Radial and tangential shear forces per unit
length

r 	 Radial distances of points in the middle plane
of plate

rn , rt 	Radii of curvature of midsurface

SX 	 Direct stress in x direction

SY 	 Direct stress in y direction

SXY 	 Shear stress

SIG1,SIG2,SIG3 Principal stresses

SI 	 Stress intensity, SI = MAX ( |SIG1 - SIG2|,

|SIG2 - SIG3|, |SIG3 - SIG1|)

SIGE 	 Equivalent stress, SIGE = {1/2( SIG1 - SIG2 ) 2

+ ( SIG2 - SIG3 )2 + ( SIG3 - SIG1 )2 ] }

U 	 Strain energy

{u} 	 Displacement matrix

{U} 	 Displacements at nodal points

u, v, w 	 Components of displacements in x, y, and z
directions

V 	 Volume

W 	 Work done by external forces

wC 	 Center deflection of circular plate

x, y, z 	 Rectangular coordinate

X, Y, Z 	 Components of body forces in the x, y, and z
directions

X, Y, Z 	 Components of surface tractions in the x, y,
and z directions

θ	Angle

ix



ϕ	Slope

ν	Poission's ratio

Dx, Dy, Dz 	Normal components of stresses on the x, y, and
z planes

Dr, Dt 	Radial and tangential normal stresses

εx, εy, εz 	 Normal strains in x, y, and z directions

γxy, γyz, γzx 	 Shear strains on the xy, yz, and zx planes

τxy, τyz, τzx 	Shear stresses components on the x, y, and z
direction

τrt 	Shear stress on radial plane and parallel to
the tangential plane

II 	 Total potential energy

(D) 	 Stresses

(ε)	 Strains



CHAPTER I

INTRODUCTION

The problem of mechanical strength is one of the most

important features of the design of structures. Consequently,

the objective of mechanical analysis is the determination of

the stresses, strains, and deformations produced by the

loads. In classical methods, a field problem is usually

described by a set of differential equations with proper

boundary conditions, or by the extremum of a variational

principle, if it exists, or by some forms of variational

statements (incomplete variational principle). The solution

sought for in classical methods usually possesses high-order

differentiablity, satisfies the differential equations

everywhere, and satisfies all the boundary conditions.

In practice, many practical problems in engineering are

either extremely difficult or impossible to solve by

traditional mathematical method and has to rely on numerical

analyses. The subject of numerical analysis is concerned with

devising methods for approximating, in an efficient manner,

the solutions to mathematically expressed problems. The

finite element method is a powerful numerical analysis

technique for obtaining approximate solutions to the

mathematical problems of physics and engineerings that are

much difficult to obtain by analytical methods. The finite

element method not only overcomes the shortcoming of the

1



traditional variation methods, it is also endowed with the

features of an effective computational techniques.

Finite element methods were originated in the field of

structural analysis and were widely developed and exploited

in the aerospace industries during the '50s and '60s. Finite

element methods are also widely used by mechanical engineers,

particularly for the analysis of stress in solid components,

plates and shells, vibrations, buckling of structures,

elastic-plastic behavior, fluid mechanics and heat transfer.

All finite element methods involve dividing the physical

systems, such as structures, solid or fluid continua, into

small subregions or elements. Each element is an essentially

simple unit, the behavior of which can be readily analyzed.

The major objective of this thesis is to apply ANSYS

program, which is the application of finite element methods

to large-scale engineering problems, to analyze the stresses

and displacements of circular plates under various boundary

conditions. In addition, it includes the comparision of the

approximate solutions of ANSYS program with the exact

solutions of the governing differential equations. This type

of problem has wide application in practical engineering

systems which consists of cylinder with end plates.

The basic equations of uniformly loaded circular plate

with various boundary constraints are discussed in Chapter

2



II. Chapter III considers the general formulation of the

finite element displacement method of plane elasticity. It

employs the potential energy method to formulate the element

stiffness equations. The circular plate under various

boundary conditions solved by ANSYS program will be

developed in Chapter IV. The input data to ANSYS program

and selected portions of the output for uniformly loaded

circular plates are listed in Appendices.

3



CHAPTER II

BASIC EQUATIONS OF CIRCULAR PLATE-BENDING

In this chapter, the governing equations for the

circular plate bending are discussed. The basic equation of

plate theory is a differential equation of the fourth order

linking the displacement of the middle plane w to the load q.

The derivation of the governing equation for deflection of

circular plate from the stress-strain relations and plane-

stress is given in Appendix A.

A. Differential Equation for Symmetrical Bending of Laterally

Loaded Circular Plates.

If a circular plate is loaded symmetrically distributed

about the axis perpendicular to the plate through its center,

the deflection surface of the plate is also symmetrical. At

all points, equal distance from the center of the plate, the

deflections will be the same and a consideration of a

diametral section through this axis is sufficient for

calculating deflections and stresses. Fig.1 represents such

a diametral section with the axis of symmetry OZ. The

deflection of the plate w in the Z direction will depend upon

radial position r only when the applied load and end

restraints are independent of the angle & . The situation

described is the axisymmetrical bending of the plate. Let CI)

denote the maximum slope of the deflection surface at any

point A, which is then equal to

4



and the curvature of the plate in the diametral section rZ is

In determining the radius of curvature, which we denote by

rt , in the section through the normal AB and perpendicular

to the rZ plane, it is necessary to note that after

deflection of the plate, the normals, such as AB form a

conical surface with apex B. Then the length of AB

represents the radius of curvature rt , and from (Fig. 1), we

obtain

For axisymmetrical bending, we assume that the effect of

shear on bending is negligible and that the relation between

the bending moments and the curvatures is the same as in pure

bending of a plate. The material of the plate is assumed to

be linearly elastic with Young's modulus E and Poisson's

and the flexural rigidity of the plate is given byratio
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where h denotes the thickness of the plate. The moments and

shear force in an axisymmetrically loaded circular plate can

be obtained by using the above relations

In these equations M r and Mt denote bending moments per unit

length, and Q represents the shearing force per unit length.

The moment Mr acts along circumferential sections of the

plate, such as the section made by the conical surface with

the apex at B, and Mt acts along the diametral section rZ of

the plate.

B. Uniformly Loaded Circular Plates.

If a circular plate with radius a under a load of

6



intensity q uniformly distributed over the entire surface of

the plate, the shearing force Q at a distance r from the

center of the plate is determined from the equation

Substituting in Eq.(7b), we obtain

The deflection w is obtained by successive integrations when

q is given

where C 1 , C2 , C3, are constants of integration, and must be

determined in each particular case from the conditions at the

edge of the plate.

(1) Circular Plate with Clamped Edges (Fig. 2).

In this case the boundary conditions are

7



Substituting these conditions in Eq.(11), we find

The deflection of such a plate is then

The maximum deflection occurs at the center (r = 0) of the

plate and, from Eq.(12), is equal to

Substituting Eq. (12) into Eq. (5) and Eq.(6), we find

8



The maximum bending moments occur at the edge of the plate

(r = a) and are

From Eq.(16) it is seen that the maximum bending stress is at

the edge of the plate where

(2) Circular Plate with Simply Supported Edges (Fig. 3).

In this case the boundary conditions are

Substituting these conditions in Eq.(5) and (11) yield the

following respective expressions

9



The plate deflection is then

Substituting r = 0 in this expression we obtain the maximum

deflection of the plate at the center (r = 0)

From the deflection curve w, Eq.(18), the distribution

of moments can readily be obtained in the form

1 0



Hence, the maximum bending moment is at the center (r = 0) of

the plate where

The corresponding maximum stress is

In the foregoing discussion the effect of shearing

strain on the deflection has been neglected. When the

thickness of the plate is not small in comparision with its

radius, this effect may be considerable and must be taken

into account.

Several other cases of practical importance can also be

treated on the basis of the mathematical analyses described

in the preceding discussion.

1 1



CHAPTER III

FINITE ELEMENT ANALYSIS OF PLANE ELASTICITY

In the previous chapter, we discussed the governing

equation for the circular plate bending and some fundamental

equations under different boundary conditions.

The matrix displacement method of analysis based upon

finite element idealization is employed throughout the ANSYS

program. In this chapter, the basic steps of the finite

element analysis and the application of the displacement

method to the plane elasticity will be developed.

The solution of problems in the theory of elasticity can

be obtained by two methods. One can solve the governing

differential equations for the specified boundary conditions,

or one can minimize the potential energy that relates to the

strain energy and work done by external forces. The finite

element formulation of elasticity problems utilizes the

latter approach.

In the finite element displacement method, the

displacement equations selected must satisfy the displacement

boundary conditions, and the elements are assumed to be

interconnected at a discrete number of nodal points situated

on their boundaries. The displacements of these nodal points

are taken as the basic unknown and the displacement field is

defined in terms of these discrete variables. Once the

12



discrete displacements are known, the strains are evaluated

from the strain-displacement relations and, finally, the

stresses are determined from the stress-strain relations.

The general procedures involved in the finite element

analysis are as follows:

(1) Discretization of the body into elements, i.e.

selection of elements interconnected at certain nodal

points.

(2) Derivation of element equations, i.e. evaluation of

element stiffness and nodal force matrices.

(3) Assembly of element equations, i.e. assemblage of the

stiffness and force matrices for the system of

elements and nodes.

(4) Introduction of the boundary conditions.

(5) Solution of the assembled equations.

(6) Postprocessing of the solution, i.e. calculation of

strains and stresses based on the nodal displacements.

(A) Matrix Formulation of Plane Elasticity Equations.

The governing equations of two-dimensional plane

elasticity are summaried below.

(1) Equilibrium equations in terms of stresses.

13



directions, are the normal stresses, and is

where X and Y denote the body forces along the x and y

the shear stress, respectively.

(2) Strain-displacement relations.

where u and v are the displacement components in the x, y

coordinate directions,

is the shear strain.

(3) Stress-strain relations.

are the normal strains and

where are the elasticity (material)

constants. For an isotropic elastic body, are the

function of the modulus or elasticity E and the Poisson's

ratio For plane stress

14



Eqs.(23) through (25) are rewritten in matrix form. To this

end let

For a particular case of plane stress three components

of stress corresponding to the strains already defined have

to be considered, and can be expressed in the form

15



The displacement components can be written in terms of the

nodal values as

where [ N ] is the matrix of shape functions and ( U} is the

nodal displacements.

From Hooke's law, the stress-strain relations and the

strain-displacement relations to be given by

in which [ D ] is material property matrix and [ B 	 is

strain-displacement matrix based on the element shape

functions.

(B) The Total Potential Energy Formulation.

The total potential energy, II, can be written as

where U is the total strain energy stored in a deformed

elastic body,

16



and the work done, W, by the body forces and the forces

applied at the boundary-surface of the body,

where X, Y, Z be the x, y, z components of the body forces

per unit volume and X, Y, Z the x, y, z components of the

surface tractions per unit area, respectively.

Utilizing above equations, the strain energy TI and the

work done W for a typical element e can be written as

17



Substituting Eqs.(34) and (35) into Eq.(31), the total

potential energy, II, is obtained

To minimize the total potential energy, II,

differentiating Eg.(36) with respect to { U } and setting it

equal to zero, we obtain

where an element stiffness matrix and an element

18



force vector f(e) } are expressed as

The next step is the determination of the solution to

the unknown displacements. Once the displacement matrix is

determined, the strains can be evaluated from the strain-

displacement relations and the stresses can be obtained from

the stress-strain relations.

The general procedure for the finite element

displacement method in solving plane elasticity is discussed

in the preceding section. In next chapter, the application

of the ANSYS program to circular plate analysis will be

developed.
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CHAPTER IV

THE ANSYS PROGRAM FOR CIRCULAR PLATE ANALYSIS

The ANSYS program is the application of the finite

element displacement method. The finite element displacement

method was discussed in Chapter III. In this chapter, the

basic concepts of the ANSYS program and the application of

the ANSYS program to circular plate analysis will be

developed. Most of the following materials are taken directly

from the ANSYS Manual [17].

A. Organization of ANSYS

The ANSYS program is a self-contained general purpose

finite element program which was developed and maintained by

Swanson Analysis Systems, Inc. The program contains many

routines for solving engineering problems. Analysis

capabilities include (1) static and dynamic; (2) elastic,

plastic, creep and swelling; (3) buckling; (4) small and

large deflections; (5) steady state and transient heat

transfer, fluid and current flow.

Loading on the structure may be forces, displacements,

pressures, temperatures, or response spectra and may be

arbitrary functions of time for linear and nonlinear

analysis. Heat transfer analysis include all modes of heat

transfer ( i.e. conduction, convection, and radiation ) and

20



all types of boundary conditions ( i.e. convection and

radiation boundaries, and specified temperatures or heat

flows ). Internal heat generation is also allowed.

The ANSYS program use the wave-front ( or " frontal " )

direct solution method for the system of simultaneous linear

equations developed with the matrix displacement method, and

give results of high accuracy with a minimum amount of

computer time. The number of elements used in an analysis has

no limit. Also, there is no "band width" limitation in the

analysis definition.

As in any other commercial available finite element

program, an engineering problem is usually solved in three

phases: 1) Preprocessing, 2) Solution, and 3) Postprocessing.

Some of the operation in each phase are illustrated as

follows:

PREPROCESSING PHASE

. Mesh generation

. Geometry definitions

. Material definitions

. Constraint definitions

. Load definitions

. Model ploting

21



SOLUTION PHASE

. Element matrix formulation

. Overall matrix triangularization

. Displacement, stress, etc., calculations

POSTPROCESSING PHASE

. Post solution operations

. Post data printout (for reports)

. Post data scanning

. Post data plots

B. The General Procedure of Input Data in ANSYS Program

Analysis.

The following procedure is a guide for defining input

data for a basic analysis.

PREPROCESSING PROCEDURE:

1) Define initial analysis data.

2) Select analysis options, if desired.

3) Define material property values.

4) Define real constant values.

5) Generate model geometry.

6) Begin load step data.

7) Define constraints and loads.

8) Merge coincident nodes, if necessary.

9) Write analysis file.
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SOLUTION PROCEDURE:

1) Set check option, if desired.

2) Switch input to analysis file.

3) terminate load steps and solution phase.

POSTPROCESSING PROCEDURE:

1) Select postprocessor.

2) Enter postprocessing data.

3) Exit postprocessing routine.

4) Select another postprocessor, if desired, and

repeat postprocessing steps.

The next examples illustrate the use of ANSYS program in

the solution of circular plate that is subject to uniformly

distributed load and various boundary constraints.

EXAMPLE 1: A solid circular steel plate, 0.3 in thick and

16 in diameter, is loaded with a uniformly distributed load

of 10 lb/in 2 . Determine the center deflection w e under (1)

clamped along the edge, and (2) simply supported along the

edge. Given:

The model is generated with the use of the ANSYS program

using axisymmetric conical shell element ( STIF 11 ). The

line element model ( 8 elements and 9 nodes ) is used because

of symmetry (Fig.4). The results obtained from the ANSYS

program are compared with theoretical solutions are shown in

Table I and II. The input data to ANSYS program in this

23



problem and selected portions of the output are listed in

Appendix B.

Table I Comparison of center deflection between ANSYS
program and theory for circular plate under
uniform loading with clamped entire edge.

Table II Comparison of center deflection between ANSYS
program and theory for circular plate under
uniform loading with entire edge simply
supported.
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EXAMPLE 2: Refer to Example 1 and find the solutions of the

following various boundary constraints.

Case 1 Simply supported at several points along the

boundary.

Case 2 Clamped at several points along the boundary.

Case 3 Clamped and simply supported at several points

along the boundary.

The model is generated with the use of the ANSYS program

using quadrilateral shell element ( STIF 63 ). The one-

quarter model is used because of symmetry. The one-fourth

plate was divided into 80 elements as shown in (Fig.7). The

results obtained from the ANSYS program in Case (1) and Case

(2) are shown in Table III and IV. The explanations of the

input data and selected parts of the output are represented

in Appendix C.

Case 1:

Table III Center deflection for circular plate under
uniform loading with simply supported 4, 8,
20, and 40 points along the edge.
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Case 2:

Table IV Center deflection for circular plate under
uniform loading with clamped 4, 8, 20, and
40 points along the edge.

The one-fourth circular plate was divided into 24, 40,

80, and 160 elements as shown in Figures 5, 6, 7, and 8 for

circular plate under uniform loading with simply supported 4

points at equidistant along the edge. The results of the

center deflection obtained from the ANSYS program are listed

in Table V.

Table V The ANSYS program solution for the center

deflection obtained by 24, 40, 80, and 160

elements of one-fourth circular plate under

uniform loading with simply supported 4

points along the edge.
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Case 3: The center deflection of circular plate under

uniform loading simply supported 36 points with 4 clamped

points. Though it is difficult to find the solution by using

differential equations in this problem, the approximate

solution ( 0.021111 in ) can be easily obtained in the ANSYS

program.

EXAMPLE 3: A circular plate, 0.3 in thick and 16 in

diameter, is loaded with a uniformly distributed load of 10

lb/in 2 . The plate was divided into 72, 96, 144, 192, and 288

elements as shown in Figures 9, 10, 11, 12, and 13. The

results obtained from the ANSYS program solutions are

compared with those obtained from a series solution [ 1 ] as

shown in Table VI and Figures 14, 15. Stresses contours (top

surface) for 96 elements are shown in Figures 16 to 23.

The circular plate under uniformly loaded with various

boundary constraints has been solved from the ANSYS program

in the previous section. The results and discussion will be

developed in the Chapter V.
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Table VI Comparision of center deflection between ANSYS

program and theory for circular plate under

uniform loading with simply supported 3

points.
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CHAPTER V

RESULTS AND DISCUSSION

The purpose of this study is to construct a finite

element model for a circular plate under uniform loading with

various boundary constraints and determine maximum deflection

and maximum stress using ANSYS General Purpose Finite Element

Computer Program.

The results for all edge clamped is listed in Table I.

The difference in center deflection between ANSYS program (

using 8 elements ) and theoretical solution is only 0.0025%.

The difference for all other points are less than that at the

center. It is clear that the ANSYS program gives very good

results for all edge clamped, even with only 8 elements.

Further refinement of the region is not necessary. Table II

shows the center deflection for a simply supported plate.

The error is only 0.00058% which is within the accuracy of

the single precision used in the computation. The same

conclusion for this case may also be drawn.

Table III and IV list the deflection of multiple-point

simply supported and multiple-point clamped edge conditions.

From Table III, the center deflection was reduced from

0.0479844 in to 0.0361678 in , when the simply supported

points were increased from 4 to 40. The difference in center

deflection between simply supported 40 points and simply
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supported entire edge was 2.8%. From Table IV, the center

deflection was reduced from 0.0218783 in to 0.00889159 in ,

when the clamped points were increased from 4 to 40. The

difference in center deflection between clamped 40 points and

clamped entire edge was 3.05%. These results have shown that

the deflection decreases with increasing number of points of

constrained edge condition.

Case III of Example 2 studied simply supported 36 points

with 4 clamped points mixed boundary condition. The

approximate solution in center deflection (0.021111 in) can

be easily obtained from the ANSYS program. There are no

difficulties in handling mixed boundary conditions in finite

element method.

For simply supported 3 points at equidistance along the

edge, the center deflection is 0.063225% in by ANSYS program

and 0.062799474 in by series solutions. The difference

reduced from 1.39% to 0.68% when the number of elements was

increased from 72 to 288. From Fig.15, it has clearly shown

that the curve of difference in the center deflection is

reduced when the number of elements is increased. However

this difference is not linearly reduced. The result of the

example has shown that the solution of the finite element

method represent good approximation to the exact solution

when the number of elements is 288. Consequently, if the

computational costs have to be considered and the small
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difference can be tolerated, further mesh refinements are

not necessary.

Similar comparison on the stress can also been done.

For Example 1, the maximum stress intensity at top surface

with clamped edge is occured at edge (4288.1) and that for

simply supported edge is occured at center (8768.6). This

shows that the simply supported constraint gives higher

stress and deflection. Figures 16 to 23 show stress contours

for 96 elements in Example 3.

The results demostrated that, in general, the accuracy

of a finite element solution can be obtained by mesh

refinement. Since most practical problems with geometric

complexity are approximated in their engineering formulations

( of the governing equations ), one cannot be overconcerned

with the numerical accuracy of the solution. Therefore, if

the difference is negligibly small, further mesh refinements

are not necessary. Obviously as the mesh is refined, the

number of elements, data preparation, and computer CPU time

are increased, and the computational costs are increased as

well.
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CHAPTER VI

CONCLUSION

Classical mathematical solutions have series limitations

in practice because unusual geometries or boundary conditions

lead to prohibitive complexities in their differential

equations of equilibrium. The finite element method is

nowadays the most general and one of the most powerful

techniques of numerical analysis of structures. By applying

the finite element method, no limitations are imposed with

regard to the boundary conditions.

The ANSYS computer program is a large-scale, general

purpose computer program for the solution of several classes

of engineering analysis. The ANSYS program employed the

matrix displacement method of the finite element

idealization. The program has the capability of solving large

structures. The number of elements and " band width " are no

limitations in the analysis; however, there is " wave-front "

restriction. The " wave-front " restriction depends on the

amount of core storage available for a given problem.

The finite element method for circular plate analysis

under uniformly loaded with simply supported and clamped

along the edge has been presented in this thesis. In order

to illustrate the compability and versatility of this finite

element circular plate analysis procedure, analysis have
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been made of a wide range of circular plate systems involving

many different boundary conditions. The examples presented

herein demonstrated the versatility of the finite element

procedure in treating uniform loading circular plate of

arbitrary boundary conditions.

The results of the examples considered are seen to

represent good approximations to the exact solutions derived

by differential equations. For all edge clamped, the

difference of center deflection between ANSYS program and

theory solutions was 0.0025%. Similarly, the difference for

all edge simply supported is 0.00058% only. The analysis of

the circular plate under uniform loading with simply

supported 3 points at equidistance along the edge

demonstrates the convergence of the process as the finite

element mesh is refined. Thus it seems reasonable to

conclude that equivalent accuracy and convergence properties

would be obtained in the analysis of other circular plate.

The application of the ANSYS General Purpose Finite

Element Computer Program method has been presented as an

analytical technique which not only can be applied to a

circular plate but also a very broad class of all the

physical problems that are governed by differential equations.

Several advantageous properties of the finite element method

can be drawn from this study. Some of the main ones include:
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1. The number of elements can be varied. This property

allows the element grid to be expanded or refined as the need

exists. As the number of element is increased, the accuracy

of the results is improved.

2. Boundary conditions such as discontinuous edge

constraint present no difficulties for the method. Mixed

boundary conditions can be easily handled.

3. 	 As the number of points of constraint at the edge

is increased, the deflection and stress approach to that of

the edge entirely constrained.

The primary disadvantage of the finite element method is

the need for computer programs and computer facilities. The

computations involved in the finite element method are

too numerous for hand calculations even when solving very

small problems. The digital computer is a necessity , and

computers with large memories are needed to solve large

complicated problems.
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APPENDIX A

THE GOVERNING EQUATION FOR DEFLECTION OF PLATES

The plane parallel to the faces of the plate and

bisecting the thickness of the plate, in the undeformed

state, is called the middle plane of the plate. Consider the

coordinate axes, in which the x and y axes are in the middle

plane of the plate and the z axis is perpendicular to the

middle plane (Fig. Al). The components of displacement at a

point, occurring in the x, y, and z directions, are denoted

by u, v, and w, respectively (Fig. A2).

If a thin plate is bent with small deflection, i.e.,

when the deflection of the middle plane is small compared

with the thickness h, the following fundamental assumptions

can be made.

(1) The normals of the middle plane before bending are

deformed into the normals of the middle plane after

bending. This means the vertical shear strains Yyz and

YXz are zero.

(2) The normal stress, z is small compared with the other

stress components and may be neglected.

(3) The middle plane remains unstrained after bending.

According to the strain-displacement relations, we have
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Integrating Eq.(A.1c), we obtain

In a like manner, integration of the expressions for Yxz

and Yyz gives
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It is clear that u o (x, y) and v o (x,y) represent,

respectively, the values of u and v on the middle plane.

Based on assumption (3), we conclude that u 0 = vo = 0. Thus

Substituting Eq.(A.4) into Eq.(A.1) yields

According to assumption (2), the stress-strain relations

for a thin plate in bending are
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from which we obtain

where the constants E, p), and G represent the modulus of

elasticity, Poisson's ratio, and the shear modulus of

elasticity, respectively.

Substitution of Eqs.(A.5) into Eqs.(A.7) yields

With these relations, the bending and the twisting

moments per unit length acting on any section of the plate

parallel to the xz and yz planes can be obtained by

integration. Thus
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where
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and is called the flexural rigidity of the plate.

The stresses are found from Eqs.(A.8) by substituting

Eq.(A.9) and Eqs.(A.10) and by employing Eq.(A.11). In this

way we obtain

The maximum stresses occur on the bottom and top surfaces

of the plate.

Since the middle plane is assumed unstrained, the

summations of forces in the x and y directions are

identically zero. The condition that the sum of the z

components of the forces be zero becomes
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The equilibrium of moments with respect to the x axis is

governed by

Similarly, from the equilibrium of moments with respect to

the y axis gives

Substitution of the expression for Qx and Qy from Eqs.(A.14)

and (A.15) into Eq.(A.13) yields

This is the differential equation of equilibrium for bending

of thin plates.
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where

is the Laplace operator.

Substituting (A.17) into (A.13), we obtain the differential

equation which governs the small deflection of a thin plate

with constant thickness under bending

In the discussion of bending of circular plates, polar

coordinates are preferred over cartesian coordinates. The

polar coordinate set and the cartesian coordinate set

(x, y) are related by the equations (Fig. A.3).
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referring to the above,

From these expressions, using the chain rule and considering

w as a function of r and θ yield
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To obtain the second derivatives, it is necessary only

to repeat the above operation. Hence
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Substituting above equations into Eq.(A.19), the Laplace

operator becomes

To derive the fundamental equations for the moments

and shearing forces in polar coordinates, we consider an

infinitesimal element described in polar coordinates

(Fig. A.4). Assume that the x axis coincides with the

direction of radius r, i.e., θ= 0. The moments Mr, Mt, Mrt,

and the shearing forces Qr , Qt then have the same values as

the moments Mx , My , Mxy and the shearing forces Qx , Qy at the

same point in the plate. Thus, letting & = 0 in Eqs.(A.20),

(A.21), and (A.22) and substituting the resulting expressions

into Eqs. (A.9), (A.10), and (A.17), we obtain
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Similarly, formulas for the plane stress components, from

Eqs.(A.12), are written in the following form

Substitution of Eqs.(A.20), (A.21), and (A.22) into

Eq.(A.19), the governing differential equation for plate

deflection in polar coordinates is derived.
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The general solution of the equation is expressed

where wp is the particular solution of Eq.(A.26) and w h is

the solution of the homogeneous equation

This homogeneous solution to be expressed by the following

series

where Pn and Rn are functions of r only. Substituting

Eq.(A.28) in Eq.(A.27), we obtain for each of these functions

an ordinary differential equation of the following kind:

Then, according to mathematical theorem, the general solution

of this equation for n > 1 is
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For n = 0 and n = 1 the solutions are

and

Similar expressions can be written for the function Rn. The

constants An , Bn , 	 , Dn in each particular case must be

determined so as to satisfy the boundary conditions.
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APPENDIX B

INPUT AND OUTPUT OF ANSYS PROGRAM FOR EXAMPLE 1

Table B-1 	 Data input to the ANSYS program for circular
plate problem in Example 1
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Table B-2 	 Selected portions of the output for circular
plate problem in Example 1

CASE 1- CLAMPED ALONG ENTIRE EDGE

*** DISPLACEMENT SOLUTION *** IN NODAL COORDINATES
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Table B-2 (Continued)

CASE 2- SIMPLY SUPPORTED ALONG ENTIRE EDGE

*** DISPLACEMENT SOLUTION *** IN NODAL COORDINATES
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Table B-3 Element printout explanations for Example 1

Explanation

Meridional moment per unit length of circumference

Circumferential moment per unit axial length

Meridional bending stress

Circumferential bending stress

Stress intensity at top surface

Normal deflection at this location
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APPENDIX C

INPUT AND OUTPUT OF ANSYS PROGRAM FOR EXAMPLE 2

Table C-1 Data input to ANSYS program for circular plate
with clamped 40 points and simply supported 4
points problems in Example 2

1 /PREP? 	 *BEGIN PREP? PREPROCESSING

2 /TITLE,CASE 1- CLAMPED 40 POINTS ALONG EDGE

3 ET,1,63 	 *DEFINE ELEMENT TYPE FOR MODEL
GENERATION

4 EX,1,30E6 	 *DEFINE 	 MODULUS 	 OF 	 ELASTICITY
MATERIAL

5 R,1,0.3 	 *DEFINE THICKNESS REAL CONSTANT

6 N,1 	 *DEFINE NODE 1

7 N,2,1 	 *DEFINE NODE 2

8 N,9,8 	 *DEFINE NODE 9

9 FILL 	 *FILL BETWEEN PREVIOUS TWO NODES

10 LOCAL,11,1 	 *DEFINE CYLINDRICAL

11 NGEN,11,9,1,9„,9 	 *GENERATE 11 RADIAL LINES FROM
NODE 1 TO NODE 9 BY 9

12 E,2,11,1,1 	 *DEFINE ELEMENT 1

13 E,3,12,11,2 	 *DEFINE ELEMENT 2

14 EGEN,7,1,-1 	 *GENERATE 7 ELEMENTS FROM ELEMENT 1

15 EGEN,10,9,-8 	 *GENERATE 10 SETS OF ELEMENT FROM
ELEMENT 1 TO 8

16 MERGE 	 *MERGE NODES 	 ALONG COINCIDENT
REGION BOUNDARY

17 ITER,1,1,1 	 *DEFINE ITERATIONS,PRINT AND POST
CONTROLS

18 KRF,1 	 *ACTIVATES THE NODAL AND REACTION
FORCE CALCULATION

19 D,1,UX,,,,,UY,ROTX,ROTZ

20 D,2,UY,„8„ROTX,ROTZ

21 D,9,ALL„,99,9 	 *DEFINE DISPLACEMENT CONSTRAINTS

54



Table C-1 (Continued)

22 D,91,UX„,98„ROTY,ROTZ

23 EP,1,1,-10„80 	 *DEFINE PRESSURE LOAD

24 TDBC,1 	 *INCLUDE DISPLACEMENT BOUNDARY
CONDITION ON PLOT

25 NPLOT,1 	 *INCLUDE NODE NUMBER ON PLOT

26 ENUM,1 	 *INCLUDE ELEMENT NUMBER ON PLOT

27 EPLOT 	 *PRODUCE ELEMENT PLOT

28 AFWRITE 	 *WRITE ANALYSIS FILE

29 FINISH	 *TERMINATE PREP7 FILE

30 /INPUT,27 	 *SUBMIT ANALYSIS FILE TO SOLUTION
PHASE

31 FINISH 	 *TERMINATE SOLUTION PHASE

32 /POST1 	 *BEGIN POSTPROCESSING PHASE

33 SET,1,1,1 	 *DEFINE DATA SET

34 PRDISP	 *PRINTOUT THE NODAL DISPLACEMENTS

35 PRESTR 	 *PRINTOUT ELEMENT STRESSES

36 TOP 	 *TOP SURFACE OF SHELL

37 PRNSTRS,ALL 	 *PRINTOUT NODAL STRESSES

38 PLDISP 	 *PLOT DISPLACEMENT SHAPE

39 PLNSTR	 *PLOT STRESS CONTOURS

40 FINISH 	 *TERMINATE POST1 ROUTINE

41 /PREP? 	 *BEGIN PREP7 PREPROCESSING

42 RESUME 	 *RESETTING THE CORE DATA

43 /TITLE,CASE 2- SIMPLY SUPPORTED 4 POINTS ALONG EDGE

44 DDELE,18,ALL,90,9

45 DDELE,9,ROTX,99,90 *DELETE PREVIOUSLY DISPLACEMENT
CONSTRAINTS

46 DDELE,9,ROTY,99,90
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Table C-1 (Continued)

47 DDELE,9,ROTZ,99,90

48 AFWRITE *WRITE ANALYSIS FILE

49 FINISH *TERMINATE PREP? FILE

50 /INPUT,27 *SUBMIT ANALYSIS FILE TO SOLUTION
PHASE

51 FINISH *TERMINATE SOLUTION PHASE

52 /POST1 *BEGIN POSTPROCESSING PHASE

53 SET,1,1,1 *DEFINE DATA SET

54 PRDISP *PRINTOUT THE NODAL DISPLACEMENTS

55 PRESTR *PRINTOUT ELEMENT STRESSES

56 TOP *TOP FACE OF SHELL

57 PRNSTRS,ALL *PRINTOUT NODAL STRESSES

58 PLDISP *PLOT DISPLACEMENT SHAPE

59 PLNSTR,SX *PLOT STRESSES CONTOUR

60 FINISH *TERMINATE POST1 ROUTINE

*[EOB]

56



Table C-2 	 Selected portions of the output for circular
plate problems in Example 2

CASE 1- CLAMPED 40 POINTS ALONG EDGE

***

NODE

DISPLACEMENT SOLUTION

UZ

***

NODE

IN NODAL COORDINATES

UZ

1 -0.889159E-02 2 -0.846309E-02

3 -0.764079E-02 4 -0.640621E-02

5 -0.487541E-02 6 -0.321995E-02

7 -0.166362E-02 8 -0.481577E-03

9 0.000000E+00 11 -0.846423E-02

12 -0.764872E-02 13 -0.640695E-02

14 -0.487598E-02 15 -0.322032E-02

16 -0.166381E-02 17 -0.481633E-03

18 0.000000E+00 20 -0.846756E-02

21 -0.764440E-02 22 -0.640911E-02

23 -0.487761E-02 24 -0.322140E-02

25 -0.166437E-02 26 -0.481794E-02

27 0.000000E+00 29 -0.847283E-02

30 -0.764858E-02 31 -0.621247E-02

32 -0.488016E-02 33 -0.322309E-02

34 -0.166524E-02 35 -0.482047E-03

36 0.000000E+00 38 -0.847962E-02

39 -0.765382E-02 40 -0.641670E-02

41 -0.488339E-02 42 -0.322522E-02

43 -0.166635E-02 44 -0.482367E-03

45 0.000000E+00 47 -0.848739E-02
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Table C-2

NODE

(Continued)

UZ NODE UZ

48 -0.765957E-02 49 -0.642141E-02

50 -0.488699E-02 51 -0.322761E-02

52 -0.166758E-02 53 -0.482724E-03

54 0.000000E+00 56 -0.849545E-02

57 -0.766525E-02 58 -0.642613E-02

59 -0.489061E-02 60 -0.323001E-02

61 -0.166882E-02 62 -0.483084E-03

63 0.000000E+00 65 -0.850307E-02

66 -0.767028E-02 67 -0.643045E-02

68 -0.489392E-02 69 -0.323219E-02

70 -0.166995E-02 71 -0.483422E-03

72 0.000000E+00 74 -0.850943E-02

75 -0.767420E-02 76 -0.643395E-02

77 -0.489656E-02 78 -0.323393E-02

79 -0.167085E-02 80 -0.483672E-03

81 0.000000E+00 83 -0.851378E-02

84 -0.767672E-02 85 -0.643627E-02

86 -0.489827E-02 87 -0.323506E-02

88 -0.167143E-02 89 -0.483841E-03

90 0.000000E+00 92 -0.851549E-02

93 -0.767758E-02 94 -0.643708E-02

95 -0.489887E-02 96 -0.323545E-02

97 -0.167163E-02 98 -0.483899E-03

99 0.000000E+00
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Table C-2 (Continued)

*** POST1 NODAL STRESS LISTING *** IN ELEMENT COORDINATES

NODE SX SY SIG1 SIG2 SIG3 SI

1 -3395. -2789. -0.3390E-07 -2322. -3861. 3861.

2 -2814. -2645. -0.3159E-07 -2632. -2827. 2827.

3 -3116. -2846. -0.3449E-07 -2846. -3116. 3116.

4 -2740. -2200. -0.2830E-07 -2199. -2741. 2741.

5 -2196. -1266. -0.1888E-07 -1264. -2197. 2197.

6 -1491. -49.08 -0.9400E-06 -47.03 -1493. 1493.

7 -626.8 1448. 1450. 0.1328E-07 -629.4 2080.

8 396.5 3222. 3226. 393.3 -0.3640E-07 3226.

9 1641. 5480. 5483. 1637. 	 0.4532E-07 5483.

18 1641. 5480. 5484. 1638. 	 0.4532E-07 5484.

27 1642. 5482. 5486. 1638. 	 0.4534E-07 5486.

36 1643. 5485. 5489. 1639. 0.4536E-07 5489.

45 1644. 5489. 5492. 1640. 	 0.4539E-07 5492.

47 -3417. -2990. -0.3607E-07 -2697. -3710. 3710.

48 -3208. -2482. -0.3493E-07 -2831. -3281. 3281.

49 -2776. -2208. -0.2853E-07 -2206. -2779. 2779.

50 -2214. -1271. -0.1900E-07 -2206. -2779. 2779.

51 -1500. -50.34 0.2519 -48.48 -1502. 1502.

52 -630.1 1451. 1453. 	 0.1332E-070.1132E-07 -632.8 2086.

53 397.3 3230. 3234. 394.0 	 0.3650E-07 3234.

54 1645. 5493. 5497. 1642. 0.4543E-07 5497.

63 1646. 5497. 5501. 2643. 	 0.4546E-07 5501.

72 1648. 5501. 5505. 1644. 	 0.4549E-07 5505.
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Table C-2 (Continued)

NODE 	 SX 	 SY SIG1 SIG2 SIG3 SI

81 1649. 5504. 5508. 1645. 0.4552E-07 5508.

90 1649. 5506. 5510. 1646. 0.4553E-07 5510.

92 -4577. -3490. -0.4448E-07 -3097. -4917. 4917.

93 -3274. -2485. -0.3522E-07 -2809. -3310. 3310.

94 -2820. -2221. -0.2882E-07 -2220. -2821. 2821.

95 -2234. -1278. -0.1912E-07 -1276. -2236. 2236.

96 -1510. -51.54 0.7541 -50.21 -1512. 1513.

97 -633.7 1454. 1457. 0.1336E-07 -636.3 2093.

98 398.0 3238. 3242. 394.7 0.3661E-07 3242.

99 1649. 5507. 5510. 1646. 0.4554E-07 5510.

CASE 2- SIMPLY SUPPORTED 4 POINTS ALONG EDGE

*** DISPLACEMENT SOLUTION *** IN NODAL COORDINATES

NODE UZ NODE UZ

1 -0.479844E-01 2 -0.468971E-01

3 -0.447226E-01 4 -0.411796E-01

5 -0.361864E-01 6 -0.296763E-01

7 -0.215754E-01 8 -0.117009E-01

9 0.000000E+00 11 -0.469006E-01

12 -0.447352E-01 13 -0.412336E-01

14 -0.363518E-01 15 -0.300801E-01

16 -0.224732E-01 17 -0.137765E-01

18 -0.462250E-02 20 -0.469107E-01

21 -0.447690E-01 22 -0.413750E-01
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Table C-2

NODE

(Continued)

UZ NODE UZ

23 -0.367789E-01 24 -0.311082E-01

25 -0.245992E-01 26 -0.176405E-01

27 -0.106924E-01 29 -0.469261E-01

30 -0.448130E-01 31 -0.415505E-01

32 -0.372988E-01 33 -0.323068E-01

34 -0.269003E-01 35 -0.214420E-01

36 -0.162557E-01 38 -0.469451E-01

39 -0.448535E-01 40 -0.416958E-01

41 -0.377135E-01 42 -0.332294E-01

43 -0.285920E-01 44 -0.241179E-01

45 -0.200590E-01 47 -0.469655E-01

48 -0.448790E-01 49 -0.417601E-01

50 -0.378777E-01 51 -0.335782E-01

52 -0.292123E-01 53 -0.250783E-01

54 -0.214055E-01 56 -0.469855E-01

57 -0.448841E-01 58 -0.417233E-01

59 -0.377377E-01 60 -0.332498E-01

61 -0.286085E-01 62 -0.241308E-01

63 -0.200692E-01 65 -0.470034E-01

66 -0.448711E-01 67 -0.416082E-01

68 -0.373448E-01 69 -0.323451E-01

70 -0.269307E-01 71 -0.214648E-01

72 -0.162722E-01 74 -0.470176E-01

75 -0.448488E-01 76 -0.414473E-01

77 -0.368429E-01 78 -0.311602E-01
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Table C-2

NODE

(Continued)

UZ NODE UZ

79 -0.246389E-01 80 -0.176679E-01

81 -0.107086E-01 83 -0.470271E-01

84 -0.448290E-01 85 -0.413188E-01

86 -0.364258E-01 87 -0.301404E-01

88 -0.225175E-01 89 -0.138034E-01

90 -0.463179E-02 92 -0.470309E-01

93 -0.448212E-01 94 -0.412693E-01

95 -0.362641E-01 96 -0.297394E-01

97 -0.216210E-01 98 -0.117256E-01

99 0.000000E+00

*** POST1 NODAL STRESS LISTING *** IN NODAL COORDINATES

NODE SX SY SIG1 SIG2 SIG3 SI

1 -8612. -7133. -0.8641E-07 -5947. -9798. 9798.

2 -7031. -6984. -0.8117E-07 -6833. -7182. 7182.

3 -7817. -8591. -0.9488E-07 -7813. -8596. 8596.

4 -6803. -8637. -0.8824E-07 -6793. -8646. 8646.

5 -5293. -8511. -0.7621E-07 -5274. -8530. 8530.

6 -3360. -8418. -0.6099E-07 -3331. -8447. 8447.

7 510.9 -8168. 609.9 0.1500E-06 -8266. 8876.

8 6660. -3195. 9427. 0.8977E-07 -5962. 15390.

9 1131. -3263. 8514. 0.8244E-07 10650. 19160.

18 -2157. -1522. 3136. 0.3328E-07 -6816. 9952.

27 -5648. -599.6 1501. 0.4020E-07 -7785. 9286.

36 -8061. -250.4 557.2 0.1391E-06 -8844. 9421.
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Table C-2 (Continued)

NODE 	 SX 	 SY SIG1 SIG2 SIG3 SI

45 -9278. -123.5 100.6 0.3073E-05 -9502. 9603.

47 -8840. -7531. -0.9202E-07 -6833. -9538. 9538.

48 -9073. -7392. -0.9442E-07 -7371. -9094. 9094.

49 -9233. -6229. -0.8651E-07 -6215. -9246. 9246.

50 -9566. -4771. -0.7630E-07 -4747. -9589. 9589.

51 -9920. -3322. -0.6892E-07 -3286. -9955. 9955.

52 -10120. -2072. -0.7439E-07 -2027. -10160. 10160.

53 -10040. -1037. -0.1139E-06 -988.6 -10090. 10090.

54 -9680. -84.57 -0.2465E-05 -41.03 -9723. 9723.

63 -9291. -123.1 103.6 0.2943E-05 -9517. 9621.

72 -8038. -249.8 582.6 0.1387E-06 -8871. 9453.

81 -5710. -599.4 1508. 0.4037E-07 -7817. 9325.

90 -2176. -1523. 3145. 0.3339E-07 -6844. 9988.

92 -11500. -9109. -0.1140E-06 -8075. -12530. 12530.

93 -8229. -8582. -0.9721E-07 -7976. -8815. 8815.

94 -7016. -8692. -0.9000E-07 -7008. -8700. 8700.

95 -5405. -8551. -0.7726E-07 -5387. -8569. 8569.

96 -3424. -8448. -0.6154E-07 -3395. -8477. 8477.

97 484.4 -8192. 577.5 0.1762E-06 -8291. 8868.

98 6658. -3204. 9434. 0.8985E-07 -5980. 15410.

99 1129. -3266. 8534. 0.8264E-07 -10670. 19210.
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Table C-3 Element printout explanations for Example 2

Label Explanation

SX,SY Combined membrane and bending stresses

SIG1,SIG2,SIG3 Principal stresses

S.I. Stress intensity
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Figure 1 A Diametral Section of Plate
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Figure 2 Circular Plate with Clamped Edge
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Figure 3 Circular Plate with Simply Supported Edge
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Figure 4 Finite Element Mesh for Line Model of

Circular Plate ( 8 Elements and 9 Nodes )
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Figure 5	 Finite Element Mesh for One-fourth of

Circular Plate ( 24 Elements and 36

Nodes )
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Figure 6 Finite Element Mesh for One-fourth of

Circular Plate ( 40 Elements and 54

Nodes )
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Figure 7 Finite Element Mesh for One-fourth of

Circular Plate ( 80 Elements and 99

Nodes )
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Figure 8 Finite Element Mesh for One-fourth of

Circular Plate ( 160 Elements and 188

Nodes )
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Figure 9 Finite Element Mesh for Circular Plate

( 72 Elements and 81 Nodes)
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Figure 10 Finite Element Mesh for Circular Plate

( 96 Elements and 108 Nodes )
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Figure 11 Finite Element Mesh For Circular Plate

( 144 Elements and 162 Nodes)

75



Figure 12 Finite Element Mesh For Circular Plate

( 192 Elements and 216 Nodes )
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Figure 13 Finite Element Mesh for Circular Plate

( 288 Elements and 324 Nodes )
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Figure 14 Comparision of the Finite Element

Solution with the Series Solution for

Center Deflection of a Circular Plate

with Simply Supported 3 Points
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Figure 15 Number of Elements and Difference
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Figure 16 Stress Contour (SX) for 96 Elements in

Example 3



Figure 17 Stress Contour (SY) for 96 Elements in

Example 3



Figure 18 Stress Contour (SIG1) for 96 Elements

in Example 3
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Figure 19 Stress Contour (SIG2) for 96 Elements

in Example 3



Figure 20 Stress Contour (SIG3) for 96 Elements

in Example 3
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Figure 21 Stress Contour (SI) for 96 Elements in

Example 3



Figure 22 Stress Contour (SIDE) for 96 Elements

in Example 3



Figure 23 Stress Contour (SXY) for 96 Elements

in Example 3



Figure Al Displacement of Midsurface to the Load
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Figure A2 Deflection of Midsurface of Plate
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Figure A3 Relation Between Polar and Cartesian

Coordinates
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Figure A4 An Element of Circular Plate Bounded by

Two Adjacent Axial Planes and by Two

Cylindrical Surfaces
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