
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



 

 

 
 

 
 
 
 
 
 
 
 
 
The Van Houten library has removed some of the 
personal information and all signatures from the 
approval page and biographical sketches of theses 
and dissertations in order to protect the identity of 
NJIT graduates and faculty.  
 



DECONVOLUTION TECHNIQUES WITH APPLICATIONS

IN CARDIOVASCULAR SYSTEMS ANALYSIS

by

Lakshminarayan Rajaram

Thesis submitted to the Faculty of the Graduate School
of New Jersey Institute of Technology in partial
fulfillment of the requirements for the degree of

Master of Science
1986



APPROVAL SHEET

Title of Thesis: Deconvolution techniques with applications

in cardiovascular systems analysis

Name of Candidate: Lakshminarayan Rajaram

Master of Science, 1986

Thesis and Abstract approved:

Dr. Denis Blackmore
Professor
Department of Mathematics
New Jersey Institute of Technology

Date

Dr. Swamy Laxminarayan
Department of Biomedical Engg.
U. of Medicine & Dentistry of N.J.

Date

Dr. Roy Plastock
Department of Mathematics
New Jersey Institute of Technology

Date



VITA

Name: Lakshminarayan Rajaram.

Permanent address:

Degree and date to be conferred: M.S., May 1986

Date of birth:

Place of birth:

Secondary education: Siddaganga High School, May 1969.

Collegiate institutions 

attended

Dates Degree Date of degree

Government Science College
Tumkur,Karnataka State
India

1972-75 B.Sc. July 1975

Mangalagangothri
Mangalore,Karnataka State
India

1975-77 M.Sc. July 1977

New Jersey Institute
of Technology

Newark,N.J.

1983-86 M.S. May 1986

Major : Applied Mathematics

Publications:

. Spectral Analysis applications in the characterization of
sleep-wake patterns of normal and near-miss infants for
the Sudden Infant Death Syndrome.

. Estimation of Impulse Response Function by deconvolution
technique in the characterizationofphysial ogical system.

Positions held:

• February 1981 - December 1982, Lecturer in Mathematics,
NMERV College for Women, Bangalore, India.

. September 1984 - May 1986, Teaching Assistant, Department
of Mathematics, New Jersey Institute of Technology,
Newark, New Jersey.



ABSTRACT 

Title of Thesis:Deconvolution Techniques with applications

in Cardiovascular systems analysis

Lakshminarayan Rajaram,Master of Science,1986

Thesis directed by: Dr. D.Blackmore,Professor of Mathematics

System characterization by means of Impulse and Frequency

Response Functions are well known in classical linear

systems analysis. Impulse Response Function is a time domain

description of a linear system where as the Frequency

Response Function represents the frequency domain

counterpart.Linear systems are often characterized in

frequency domain.In many biological research applications,it

becomes necessary to examine the impulse response function

in order to understand the behavior of the system under

investigation.One such application is the arterial system in

cardiovascular dynamics. It has been shown that although both

representations are identical,some aspects of the arterial

system are better emphasized by one description than by the

other. In order to obtain accurate estimates of the impulse

response function it is desirable to solve the convolution

integral in the time domain by deconvolving the system input

and output time histories. Solution of the convolution

integral is however extremely complex and requires the use

of numerical approximation methods.

This work is primarily focused on developing these

numerical approximation procedures with particular

application emphasis on the arterial system.
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1. INTRODUCTION

System characterization by means of Impulse and Frequency

Response functions are well known in classical linear

systems analysis. Impulse response function is a time domain

description of a linear system 'where as the Frequency

Response Function represents its frequency domain

counterpart. Linear systems are often characterized in

frequency domain.In many biological research applications,it

becomes necessary to examine the impulse response function

in order to understand the behavior of the system under

investigation.One such application is the arterial system in

cardiovascular dynamics Fit has been shown that although both

representations are identical,some aspects of the arterial

system are better emphasized by one description than by the

other (Laxminarayan et a1,1978).In order to obtain accurate

estimates of the impulse response function it is desirable

to solve the convolution integral in the time domain by

deconvolving the system input and output time histories.

Solution of the convolution integral is however extremely

complex and requires the use of numerical approximation

methods.This work is primarily focused on developing these

numerical approximation procedures with particular

application emphasis on the arterial system.

1.1. ARTERIAL SYSTEM

The functioning of the arterial system in cardiovascular

physiology is to transport blood ejected from the left
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ventrical to the peripheries. The arterial system consists

of a complex branched network of tubes varying in size from

very large to tiny arteries. The large artery, the aorta ,acts

as a "compression chamber" storing by its capacitance the

stroke volume for delivery at a constant rate to the

peripheries. As in any hydraulic system the dynamics of the

arterial tree can be characterized by measuring the

pressure and flow of blood in the system. It is widely

known that the pressure and flow measurements made in the

aorta can be used to characterize the entire arterial

system (Bergel,1972).

In the past,systems engineering methods have been applied

to the measured pressure and flow data for characterizing

the arterial system. Utilizing these methods,the dynamics

of any given system can be described either in the time

domain or in the frequency domain provided the system is

assumed to be linear. The frequency domain method involves

computing an input-output relationship in terms of the

frequency response function or the so-called input impedance

function for the arterial system (Westerhof et a1,1980).The

time domain counterpart is given by the impulse response

function of the system (Laxminarayan et a1,1980).

The input-impedance of the arterial system has been widely

studied in recent years and the arterial impulse response

function has been studied by Laxminarayan et.al..Both of

these descriptions contain identical information excepting

that some system properties are emphasized better by one than

the other. As in any electrical analog,a system can be



3

described by a resistance,compliance and an inductance

term.In terms of these elements,input-impedance of the

arterial system emphasizes the peripheral resistance,whereas

in the impulse response function,the emphasis is on the

total arterial compliance.Another important aspect of

arterial dynamics is the reflection phenomenon of the

pressure and flow waves in the system (Van Den & Bos et al

1976 and Laxminarayan et al 1979a). Recent studies have

shown that the arterial reflection can be better studied by

means of the impulse response function than the arterial

input impedance (Laxminarayan et a1,1978 ). This is one of

the major reasons why it is preferable to use the impulse

response function approach for studying arterial

reflections.However the methods for computing the impulse

response function of the arterial system have several

complexities which are discussed in the next section.

The aim of the project is to investigate the computational

methods for estimating the impulse response function with

application emphasis on the arterial system.The methods

developed are tested using relevent analytical models and a

modal of the arterial system.



2. MATHEMATICAL BASIS 

2.1 Input-Impedance of the Arterial System

Assuming the arterial system to be linear,the input-impedance

of the system is estimated by applying linear system analysis

concepts.The linearity of the arterial system has been

established by several investigators in the past(Westerhof

et.a1,1979). If p(t) and f(t) are respectively the pressure

drop and flow through the system,the system function can

be described by means of the convolution integral

given by:

where z(t) is the impulse response function.

Expressing this convolution as a product in the frequency

domain, we can write

where P,F,Z are the Fourier transforms of

respectively,w is the angular frequency and

Hence,

In other words, the input-impedance of the arterial system,

Z(jw),is calculated by dividing the moduli of pressure

and flow harmonics and subtracting the corresponding

phases.This method has been commonly used to compute

Z(jw)(Westerhof et al 1979 and Laxminarayan et al 1979b).

2.2 ARTERIAL MODELS

In the past,two specific models of the arterial system have

4
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been commonly used to understand the behavior or dynamics of

the arterial system (Laxminarayan et al 1978).These models

are:

1. A Windkessel Model

2. Uniform Tube Model

A Windkessel model is an electrical analog of the arterial

system under normal conditions.The electrical circuit for this

is given in Figure A.1, where L=inductance, Rc ; Rp are

two resistors and C=capacitor. Using this model, we can

simulate the functions of the arterial 	 system under

normal conditions.

A second model which imitates the arterial system under

abnormal conditions (i.e. when occlusions are present in the

arterial system) is the Uniform Elastic Tube model. This

model is given in the Figure A.2. Due to the presence of

occlusion at the end of the tube,the pressure and flow

waves entering the tube are reflected back at the end.

In otherwords this model enables us to study the arterial

reflection phenomenon (Laxminarayan et al 1978 ).

2.2(a)Input-impedance of the Windkessel model 

The input-impedance of the Windkessel model of figure A.1 is

given by (Westerhof et al 1979 ).

where

Z(jw) is a complex quantity and has both a modulus and

phase.



The typical characteristics of input-impedance of the

Windkessel model are:

l.Input-impedance at zero HZ is always equal to Rp which

the peripheral resistance(= mean pressure/mean flow).

2.At higher frequencies, the input-impedance approximates R0

which is the characteristics impedance of the aorta.

3.The total arterial compliance,C, of the arterial system

can be calculated from:

where τ is estimated independently by fitting an exponential

to the diastolic part of the arterial pressure waveform.

2.3 Impulse Response Function:

In practice, the impulse response function of the Windkessel

model of figure Al is given by:

is the Dirac delta function

derivative of the delta function(doublet).

For a periodic excitation of the model with a period T,

we find:

The theoretical impulse response function of the four

element Windkessel model is composed of a delta function

plus a doublet and an exponentially decaying function

with time constant τ.The height of the exponential

decay,extrapolated to time zero,gives
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Arterial Compliance (Laxminarayan et al 1978 ).

The impulse response function of the arterial system can be

visualized as the response in terms of pressure when a unit

impulse of flow is delivered to the system.The impulse

response function can be calculated either directly by

using equation(2.1.1) i.e. by deconvolving pressure and

flow time histories or indirectly by inverse Fourier

transforming the input-impedance, Z(jw), that is

The indirect method of computing the impulse response

function of the arterial system by inverse Fourier

transforming Z(jw) is investigated by Laxminarayan et al.

(1978).

The indirect method as identified in equation (2.3.3)

suffers from one major flaw.The upper limit of

integration in equation (2.3.3) for performing the inverse

transformation indicates that we need to have a knowledge

of Z(jw) at an infinite set of frequencies.In practice

however we cannot satisfy this condition since it is not

possible to compute Z(jw) for frequencies above 40HZ.This

is because above this frequency range,noise in the data

makes it meaningless to compute Z(jw). Therefore the input-

impedance has to be truncated at some finite frequency

prior to inverse Fourier transformation.If the values of

Z(jw) have reached steady zero values at the cut-off

frequency,then the inverse Fourier transformation yields
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meaningful results.Unfortunately this is not the case for

the arterial system.Infact,it is well established that the

input- impedance at higher frequencies stays constant and

is equal to the characteristic impedance of the

aorta.Therefore truncation of the input-impedance at some

finite frequency implies the presence of a mathematical

window.The effects of this window appear as oscillations

superimposed on the true impulse 	 response

function.Therefore in order to eliminate these undesired

components from the impulse response function, some form of

frequency domain smoothing has to be applied before

inverse transforming Z(jw).Such smoothing procedures have

been shown to yield meaningful estimates of the impulse

response 	 function(Laxminarayan et al.,1978).

While this method seems to provide a reasonable solution

under control conditions,the solution may not be adequate

when 	 reflections are present in the arterial system.

Theoretically, 	 reflections in the arterial system should

show up as distinct 	 peaks in the impulse response

function.When frequency domain smoothing is applied,there

is a strong likelihood of missing 	 this important

information.This is especially the case when the amplitudes

of these reflection peaks are relatively small compared to

the initial delta function one obtains in the impulse

response function. Under these conditions, therefore it is

much better to compute the impulse response function without

applying any form of smoothing. This implies that we need to



apply direct techniques i.e. deconvolution using equation

(2.1.1), to estimate the impulse response function.

The procedure for computing the impulse response function by

the direct method involves finding an acceptable solution to

the convolution integral. In the following section,

different methods are presented and their relative

advantages and disadvantages are discussed.

9



3. METHODS 

3.1 CONVOLUTION INTEGRAL:

The convolution integral is givenby (Bendat& Piersol,1972)

For the case of the arterial system where p(t) = Pressure

drop over the arterial system, f(t) = Flow through the

arterial system and z(t) is the impulse response function.

In order to compute the arterial impulse response

function,we need to apply the deconvolution procedure to the

pressure and flow data. Knowing f(t) and p(t), we would like

to calculate z(t).

3.2 DIRECT NUMERICAL METHOD:

The direct numerical method resolves in to expressing

equations .as a summation.

i.e. we -have a system of equations:

1 0

So we have a set of simultaneous equations in z for which we

seek the solution. In matrix notation, we write the set of
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Note that (3.2.1) and (3.2.2) are exactly the same excepting

for the transformation in the matrix element notation.



From equation (3.2.2), we write the following set of

equations for deconvolution.

Effectively, we are seeking a solution for:

Since p '6 0 (not necessarily ), the system of equations are

non-homogeneous. A system of non-homogeneous equations in

'n' unknowns has a unique solution provided that the rank of

its co-efficient matrix F is 'n',
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3.3 CRAMER'S RULE:

One method of solving a system of 'n' non-homogeneous

equations is by means of determinants using Cramer's rule.

i.e. if the determinant of a system |F|≠ 0, then the system

F Z = P has the unique solution, namely:

where Fi. is the matrix obtained from F,by replacing its

ith column with the column of constants i.e. p's.

If the determinant of the coefficients is small as compared

to the coefficients themselves, then small changes in the

coefficients can be expected to lead to very large changes

in the solution, implying that these equations are ill-

conditioned.

3.4 METHOD OF GAUSS ION ELIMINATION:

Another method of solution is by inverting the square matrix

F in F Z = P.

i.e. Z = F-1 P

This can be achieved by the method of Gaussian elimination

with pivoting. However,this gives rise to unacceptable

results since such a technique does not exploit the presence

of zeros, where as in the convolution problem we will be

dealing with matrices some of whose elements are zeros.

Therefore it is prudent to examine some of the iterative

methods that are available.

3.5 ITERATIVE METHODS:

In the iterative methods for solving,F 	 Δtz = P, the

solution is obtained by splitting the matrix F in



to two parts,namely,

we define a sequence of vectors

by the equations:

where z must be specified.

Three examples of splitting F are worth discussing.

3.5.1 POINT-JACOBI METHOD:

This method is also called 'The method of simultaneous

displacements'. Here we let D be the diagonal matrix whose

main diagonal agrees with the main diagonal of the matrix F.
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Suppose we let M = D and N D - F 	 (F = M - N)

Substituting these in:



Expanding and simplifying we get,

1(

Therefore we have:

Similarly from (2) above we have:



Therefore in general terms:

The necessary condition for this to work is

3.5.2 GAUSS-SEIDEL METHOD:

The example for splitting the matrix F is known as the

"Gauss-Seidel" method or 'the method of successive

displacements' .

Here we set: G = the lower triangular matrix which agrees

with F in the elements below the main diagonal and J = the

corresponding upper triangular matrix.

17



and D is the diagonal matrix as in the Point-Jacobi method.

Now we split F as: F = (D+G+J).

If we now set X = D + G and N = -J and by substituting this

in the scheme: X z (k +1) = N z (k) + p/Δt, we can

derive as before, the expression,

3.5.3 RELAXATION METHOD:

In the third method which is called 'the point-successive-

relaxation method', a numerical parameter α(alpha) is

introduced and we refer to α  as a 'relaxation parameter'.

18

As before we have,



Therefore the general expression would be:

19



The parameters that seem to play a critical role in this

method arec α (alpha) and f11. The relaxation parameter

assumes the value between 0 and 1 when the system is said to

be "under-relaxed" and between 1 and 2 when the system is

said to be "over-relaxed". A careful choice of these

parameters is the clue to the successful execution of the

deconvolution procedure.

3.6 MODIFIED METHOD

Another method investigated in this study is a modified

representation of the Point-Jacobi scheme.

We need to solve

20

The modified scheme involves splitting the matrix F as:



Substituting this in:

2 1



2 2



2 3



Equation (3.6.5) tracks the error in the iteration scheme.

Proceeding in this pattern, we have:

The error can be calculated using:

In matrix notation,



0 .e is a vector.

As k approaches infinity, ek approaches the null vector

for any initial vector e0 , if and only if (L,*]k approaches

0 as k approaches infinity.

Let the components of e 0 be: eoP and the elements of

Then

(3.6.6) is used to find the error at every iterative step.

(3.6.3a) gives z. But what we are looking for is Z.

i.e. Z can be calculated from

where Z is the impulse response function.

The main advantage of this method is that it will allow us

to track down the error at the end of each iteration step.

3.7 Further Modification of the Previous Method

In this section we report a further modification to the

previous scheme such that the method yields faster

convergence.

Again as before,

substituting

25

We now split F as F 	 ( D + L ) where D is the diagonal



matrix and L is the lower triangular matrix.

Therefore (3.7.2) becomes:

26
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Pre-multiplying and post multiplying (-D-1 L) by E-1 and

E respectively, we get

28
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This set of equations can be written in the summation form

as:

The E-Matrix here defines a parameter "Epsilon".



4.RESULTS AND DISCUSSIONS 

The performances of the various numerical approximation

methods discussed in the previous sections were evaluated and

compared using two models with known characteristics.These

are:

1. an RC Filter network and

2. a 3-element Windkessel model.

4.1 RC Filter

The RC network model was chosen such that the time constant

RC = 1 and the value of the compliance was 0.01.The input

considered is a half-sine wave given by:

where A is a DC component.The impulse response function of

the network is assumed to be:

so that the convolution of f(t) and h(t) would yield the

output p(t),given by

The input and output time histories are illustrated in

figure (1). Utilizing these data, the impulse response

function was computed by deconvolving the two sets of

30
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data,using the different methods described in the previous

sections.The impulse response function of the model is a

negative exponential function as given by equation (4.2),

with the initial value at t = 0 to be the inverse of

compliance value.The results of analysis of the application

of direct deconvolution method, also termed here as the

"conventional method" for ease of distinction, are presented

in figure (2) .The instability of the impulse response

function at t = (T/2) (where T = total signal duration) is

presumably due to insufficient sampling rate criteria and

needs to be more closely investigated.

The start of deconvolution was set at time index t = 3 to

avoid division by a small initial value (see equation set

3.2.1).The impulse response function follows the expected

negative exponential function according to equation(4.2).

Although the result clearly indicates that for well defined

signals as in example (1) the direct numerical procedure

works fairly satisfactorily, the procedure has certain

inherent features which make it difficult for application in

many experimental situations especially when the data are

corrupted by the presence of even a slight amount of noise.

However the method should not be lightly regarded as it

does provide satisfactory results under certain ideal

conditions.The model has been successfully used in several

biological applications (Segre, 1967).

Examining the equation set 3.2.1, one would notice that two
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important constraints emerge.These are (1) the input value at

t = 0 can never be zero, and (2) the time between samples

(or the sampling rate) plays a critical role in the accurate

estimation of the impulse response function.When the input

value is zero at t = 0,one would be tempted to consider the

next non-zero value as the start point for deconvolution.The

effect of doing this is demonstrated later on which

indicates the discrepancies in the magnitudes and shape

of the impulse response function. In many practical

situations,this will play a critical role as in the case of

the arterial system in which the input function i.e. the

aortic flow assume zero or near-zero values.There is another

source of error which arises from the choice of the sampling

rate.In general,increasing the sampling interval will

increase the error in the impulse response function and an

optimum sampling interval need to be

selected.(M.E.Valentinuzzi, E.M.Montalado Volache, 1975 ).

The direct method was applied to the measured excitation and

response data obtained from. an RC network.The input,f(t) and

the output,p(t) time histories are illustrated in figure

(3).The R and C characteristics of the filter were chosen to

be 13k Ohms and 13micro-Farads respectively. The impulse

response function computed by the direct method is

illustrated in figure(4).Deconvolution was initiated at time

index t = 5.Although the exponential characteristics of the

impulse response function are evident,the method does

introduce some fluctuations in the computed function.Both
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the start point and the sampling interval contribute to

these fluctuations.

A second procedure,the point-Jacobi method, was investigated

for computing the impulse response function of the RC Filter

network from the measured data. Although theoretically this

method represents a better solution with convergence

properties well suited to the analysis of certain class of

linear systems, the method becomes even more inefficient for

the case when the initial value happens to be zero. Any shift

in the start point gives rise to highly distorted and

meaningless impulse response function as indicated in

figure(5).Increasing the number of iterations does not yield

any improvement in the computed function.

The third method that has potential use in the deconvolution

procedure is the relaxation method described in the previous

section.The method introduces a relaxation parameter, "alpha"

to control the stability of the iterative solution of

the deconvolution algorithm.Proper choice of alpha is the

key to the successful application of the method to practical

problems.The system is considered "under relaxed" for values

of alpha between 0 and 1 and "over relaxed" for values

between 1 and 2.If the value "alpha" is equal to 1

the method will reduce to the Gauss-Seidel procedure.The

method however still requires the initial value of the input

to be non-zero.The impulse response function of the RC

network (analytical model) obtained by Gauss-Seidel method
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is illustrated in figure(6),which has an initial

peak, gradually following the expected exponential curve-The

instability at t = T/2 is still present.

The parameters that seem to influence the accuracy of the

impulse response function computed by the relaxation methods

are (1) the relaxation parameter, (2) the start point for

deconvolution and (3) the number of iterations.The last

parameter, i.e. the number of iterations,k, is obviously

variable up till the point at which the solution converges.

When this is reached,increasing the number of iterations

does not in any way affect the final solution already

obtained.In the case of the RC network, it required less than

25 iterations to obtain the necessary impulse response

function.This is illustrated in figures (7) and (8) in which

k is increased from 25 to 100 iterations with the same

relaxation parameter.The results are identical.

The relaxation parameter is a key variable and has a strong

influence on the convergence properties of the deconvolution

solution.The effect of varying the relaxation parameter is

given in figures (9) and (10) in which the parameter is

varied from 0.1 to 0.5 and the results are seen to be

grossly different at the end of 25 iterations.

Finally, the influence of the start point is critical in the

relaxation procedure. Ideally the method requires the initial

value of the input time history to be a nonzero value.This

cannot be always satisfied especially in the case of the
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arterial system.The effect of selecting the next nonzero

value as the initial value can give rise to serious errors

especially if noise is present in the data.The error will

progressivelly increase as t increases.For a simple

analytical model,the difference may not be significant as

shown in figures (11) and (12) for the case of the RC Filter

nstwork.However the results of figures (11) and (12) provide

us some insight in to the way the error might build up.

In deriving the impulse response function by numerical

procedure, it would be extremely useful to be able to

characterize and track down the error at the end of each

iteration loop. In an attempt to do this,the Point-Jacobi

method was modified to account for the error at the end of a

given number of iterations.

The mathematical error representation implemented in the

method is described in the previous section.The procedure

needs a set of initial values for the impulse response

function.In order to satisfy this,the impulse response

function was computed by the direct method,the results of

which were used as the initial values.When applied to

the RC network model,the procedure resulted in very

large fluctuations in the impulse response function with

even much larger error magnitudes.Increasing the number of

iterations to as large as 3000 did not yield the required

convergence. A zero-array initial values did not improve the

impulse response funct ion.This method is also very sensitive
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to the initial value of the input waveform.Therefore the

method was not pursued further.

The effect of division by the sampling interval on the

impulse response function is seen to be another adverse

factor in achieving the accurate estimates of the impulse

response function using the relaxation method.If the values

become too small following the division,the method becomes

very sensitive giving rise to large errors as it propagates

with increasing t.In order to minimize these effects,the

relaxation method was remodified such that the division by

sampling interval was eliminated during the course of

iteration.The final result obtained at the end of the given

number of iterations was divided by the sampling interval

after completion of all iterations.A. new parameter "Epsilon"

was introduced in the iteration procedure,the structure of

which is described in the previous section.The method however

is extremely sensitive to the start point of

deconvolution.This is illustrated in figure(13) in which the

impulse response function of the RC network begins to

oscillate with increasing amplitudes.

When the start points were changed to 3,4 and 5, the method

generated reasonable impulse response functions as

demonstrated in figures (14), (15) and 16.

To obtain insight in to the stability of the method to

experimental data,the excitation and response data generated

by the RC network model were subjected to the modified



procedure.The results are given in figure (l7) which should be

compared with figure(4).The results resemble closely the true

impulse response function although the presence of sinusoidal

oscillations in the computed impulse response function is

intriguing.The latter needs further investigations.

4.2 WINDKESSEL MODEL

The major aim of the current project is to develop

appropriate numerical approximation methods for the

deconvolution of arterial pressure and flow waveforms in

circulatory dynamics. This would enable us to compute the

arterial impulse response function which would otherwise

have to be computed by frequency domain transformation

methods (Laxminarayan et al 1978).The advantages and

limitations of the time domain approach are summarized in

the earlier sections (Laxminarayan et al 1978) .In an effort

to evaluate the performances of the various numerical

procedures described in the previuos section for the

arterial system,data generated from a 3-element Windkessel

model were analysed. The latter serves as a good model of

the arterial system under control conditions(Westerhof et al

1979).The model consists of a resistance Rc (equal to the

characteristic impedance of the arterial system) in series

with a parallel combination of another resistance

Rp (representing the peripheral resistance) and a capacitor

C(representing the total arterial compliance). The model

parameters chosen were:
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The aortic pressure and flow generated by the model are

shown in figure (18) and figure (19).

The application of the deconvolution procedure to the

Windkessel data is severely hampered by the negligibly small

flow values. Division by the small value at t = 0, will give

rise to large errors in the impulse response function and

the magnitude of the error progressively increases, as t

increases. This effect is typically seen in the direct as

well as in the Jacobi and Gauss-Seidel methods. Figure(20)

illustrates the impulse response function computed by direct

methods. The application of relaxation procedures was found

to suffer from the same flaws. When the system was under

relaxed, it was noted that the system became extremely

sensitive to the start point whereas the over-relaxation

yielded extremely noisy impulse response functions. The

latter also seemed to indicate that the sample interval is

critical. In both cases it was not possible to recover the

impulse response function from deconvolution procedures.

A notable point however is that an optimum choice of the

start point, sampling interval and the relaxation parameter

need to be made in order to obtain meaningfull impulse

response function. This aspect of the study needs further

investigations.

The modified relaxation method, on the other hand, seems to
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be more effective in extracting the impulse response

function. It is interesting to note that the parameter

"Epsilon" has a strong influence on the convergence

properties, yet its magnitude did not have a significant

effect on the computer runs. Several choices of "Epsilon"

between 0 and 1 all produced roughly the same output and

convergence rate when applied to the data. The start point

for deconvolution is again an important parameter. In the

present example different start points were tried out.

Figure(21) illustrates the results of deconvolution with the

start point set at t 34 and the values of Epsilon being

0.5. The error begins to oscillate with increasing

amplitudes as t increases. In this example the iteration

procedure was continued up to k = 2000.

Figure ( 2 2) illustrates the impulse response function

obtained when the deconvolution procedure was activated at

t = 44 which corresponds to a point in the rising segment of

the "systolic" part. The exponential decay part of the

impulse response function is to be expected. By

extrapolating the exponential decay to time t = 0, one can

estimate the total arterial compliance. It seems that the

modified relaxation method represents a better technique for

computing the system impulse response function. The computed

function looks still noisy, and it is worthwhile

investigating mathematical smoothing applications to the

measured data prior to subjecting these to the deconvolution

procedure. Given the nature of the data as the aortic
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pressure and aortic flow, it is imperative that one should

thoroughly investigate methods to overcome the effects of

choosing the non-zero start point at time index which does

not correspond to zero time in real it';(.
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Figure A.I WINDKESSEL MODEL
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Figure A.2 UNIFORM TUBE MODEL



FIGURE 1

Input f(t) and output p(t) of a simple RC Filter

network. RC = 1, C = 0.01. The total number of samples

considered in f(t) and p(t) is, N = 100 so that one time

index on the X-axis represents (pi/50) units. The total

duration T of the data is 2(pi).



INPUT-OUTPUT TIME HISTORIES



FIGURE 2

Impulse response function (IRF) of the RC Filter network

of figure(1). The direct deconvolution procedure was

initiated at time index t = 3. This was necessary in

order to avoid division by zero at t = 0.



RC NETWORK, RC=1, C=.01, DC=0, N=101



FIGURE 3

Measured data from an RC network. R = 13k ohms and

C = 13 Farads. f(t) and p(t) represent the input and

output time histories respectively.The time index of the

X-axis is defined similar to the analytical example of

figure(1).



RC NETWORK, MEASURED DATA FROM THE CIRCUIT



FIGURE 4

Impulse response function of the RC network of figure(3)

computed from the measured signals.



R=13 KOHMS, C=20 MFARADS, N=123, START=5



FIGURE 5

Impulse response function of the RC network computed

from the measured input and output time

histories.Deconvolution was performed by Point-Jacobi

method.
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FILE=ITT11, START=10, OF ITERATIONS=4



FIGURE 6

Impulse response function of the RC Filter network using

the Gauss-Siedal method.Deconvolution was initiated at

time index t = 2 with relaxation parameter set equal to

1. Extrapolation of the exponential curve to time index

t = 0 yields a value equal to the inverse of the

compliance as predicted by the theoretical model.
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PC NETWORK, RC=1, C=.01



FIGURE 7

Impulse response function of the RC network computed by

relaxation method.Number of iterations is 25 with the

relaxation parameter 0.5.
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RC FILTER. RC=1. C=.01



FIGURE 8

Impulse response function of the RC network computed by

Relaxation method.The number of iterations performed is

100 with the relaxation parameter set at 0.5. Compare

this with figure (8).



RC FILTER. RC=1, C=.01



FIGURE 9

Impulse response function (IRF) computed by the

relaxation method with k = 25 and the relaxation

parameter set at 0.1. Note that the IRF is sketched only

up to t = T/2 for the purpose of enhancing the effects

of the relaxation parameter.
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RC NETWORK. RC=1. C=.01



FIGURE 10

Impulse response function(IRF) computed by the

relaxation method with k =25 and the relaxation

parameter set at 0.5. Compare the results with those of

figure(9).
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RC FILTER RC=1, C=.01



FIGURE 11

Impulse response function(IRF) of the RC network

computed by the relaxation method.k = 25, Relaxation

parameter = 0.5. The start point is choosen at t= 2.

Note that the IRF is sketched only up to t = T/2 for the

purpose of enhancing the effect of the start point.



RC NETWORK. RC=1. C=.01
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FIGURE 12

Impulse response function (IRF) of the RC network

computed by the relaxation method. k = 25, Relaxation

parameter = 0.5 and start point, t = 4. Compare results

with those of figure (11).



RC NETWORK, RC=1, C=.01



FIGURE 13

Impulse response function of the RC Filter network using

a modified relaxation procedure. With t = 2, the IRF

shows oscillations with increasing amplitudes as t is

increased.
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RC NETWORK, RC=1, C=.01, DC=0, N=101



FIGURE 14

Impulse response function of the RC network using the

modified procedure with t = 3, Epsilon = 0.5 and k = 201.

69



RC NETWORK, RC=1, C=.01, DC=0, N=101



FIGURE 15

Impulse response function of the RC network using the

modified procedure with t = 4, Epsilon = 0.5 and k = 201.
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RC NETWORK, RC=1, C=.01, DC=0, N=101



FIGURE 16

Impulse response function of the RC network using the

modified method with t = 5, Epsilon = 0.5 and k = 201.
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RC NETWORK, RC=1, C=.01, DC=0, N=101



FIGURE 17

Impulse response function of the RC network by the

modified method method computed from experimentally

generated data.R = 13k ohms,C = 20 Farads Epsilon= .5

k = 200 and start point = 5. Compare with the results

of figure(4).



RC NETWORK, R=13 KOHMS, C=20 MICROFARADS



FIGURE 18

Aortic pressure waveform obtained from a 3-element

Windkessel model. Model parameters are given in the text.



WINDKESSEL MODEL - PRESSURE



FIGURE 19

Aortic Flow waveform obtained from a 3-element Windkessel

model. Model parameters are given in the text.



WINDKESSEL MODEL - AORTIC FLOW



FIGURE 20

Impulse Response Function of the Windkessel model computed

by the direct method.The time index corresponds to a sample

interval of 0.01 seconds



WINDKESSEL MODEL



FIGURE 21

Impulse Response Function of the Windkessel model computed

by the modified relaxation method.Start point for

deconvolution is set at t = 34 and Epsilon = 0.5.
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WINDKESSEL MODEL



FIGURE 22

Impulse Response Function of the Windkessel model computed

by the modified relaxation method.Start point for

deconvolution was set at t = 34 and the rest of the

parameters are the same as in figure(20). Note the effect of

start point between figure(21) and figure(22).
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