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ABSTRACT

Title of Thesis: Emergency Stop Devices and the Human
Factors of Response

Robert P. Guinter, Master of Science in Management
Engineering, 1986

Thesis directed by: John Mihalasky, D.Ed.
Professor of Industrial Engineering

The manual emergency stop was recognized as an im-

portant aspect of machine control very early during the

history of powered mechanical systems. The purpose, of

course, was to allow machinery to be quickly stopped dur-

ing emergencies to minimize equipment damage and/or per-

sonal injury. Today, however, the emphasis of control is

being shifted more and more toward totally automatic sys-

tems. Often, the importance of manual emergency stopping

and override of these systems is lost in the zeal to per-

fect automatic controls. The problem that evolves is how

and when to provide an efficient human-machine interface

to allow a manual emergency stop.

Here, some common emergency stop devices are studied

in light of ergonomic principles that apply during manual

emergency response. Information on legal and consensus

standards applicable to emergency stopping devices are

included with a summary of useful recommendations regard-

ing design and placement of devices for efficient human

use.



The focus of this study is an ergonomic experiment

concerning different arrangements of emergency stop push-

buttons commonly found on machinery. The results indicate

that an unguarded pushbutton is superior to a guarded but-

ton in terms of the average human response time to acti-

vate and a reduction in the frequency of miss response

(unsuccessful attempts at activation). Further results

indicate that a large, 3 inch mushroom style pushbutton is

superior to a 7/8 inch unguarded pushbutton and a signifi-

cant reduction in frequency of miss response under adverse

conditions is possible by redesigning the surface of the

standard mushroom head.
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CHAPTER I

EMERGENCY STOPPING OF INDUSTRIAL MACHINES

The Problem

Perhaps one of the most important aspects of indus-

trial history has been the design and development of

machines. No one would deny that machinery has been the

driving force behind a 200 year revolution, a revolution

that is still in progress, and a proliferation of technol-

ogy that brought unforseen changes to labor and production.

In short, the industrial development seen in the last two

centuries has produced a standard of living that was here-

tofore impossible without use of machines. Before this

time most American families led rural lives: living,

working, and dying on the farm. Mass production did not

exist and most needed items were either made at home or

constructed by tradesmen one piece at a time.

Accidents of course have always been a familiar part

of life and work. These sudden adverse events may have

often been caused by environmental conditions or by some

form of negligence, but the results over the years have

been much the same. To a tradesman or farmer before the

industrial revolution, an accident causing loss of a limb

was likely a very rare but disastrous event. Nonetheless,

the hardship, the pain and suffering this type of accident

1
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causes has not changed with the advent of machines;

although some might say that the frequency of occurrence

has greatly increased.

Safety theory that developed with industrial work

has seemed to emphasize accident prevention. There can be

no argument that it is better to prevent accidents than

to develop responses contingent on their occurrence.

For example: although it is wise to learn efficient fire

fighting methods, it would be wiser indeed to strive for

fire prevention; for without the fire there is truly no

need for response. However, it is doubtful that human

control over events could become so complete that no fire

would ever occur; and one could not assume that a time

will ever come when fire response will no longer be needed.

Therefore, wise humans will continue to develop contingency

plans. It is within this line of reasoning that situations

requiring manual emergency stops of industrial machines are

considered.

The Emergency Stop 

It is assumed that, no matter what care is taken in

design, installation, maintenance, and control of machines,

situations will arise when those machines will require

manual activations of an emergency stopping device. This

could be due in part to one or any combination of mechan-

ical, electrical, environmental, or human failures.
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Furthermore, no machine can ever be expected to fail

safely at all times. Even the most reliable electrical

components will ultimately fail (if left in service in-

definitely); and there is no guaranty that the failure

will not cause some related dangerous condition. A ma-

chine could run wild due to a frozen relay contact, a

short-circuit could place dangerous voltage on normally

safe parts, or a broken ejection solenoid could cause ma-

chine parts to jam with resultant shattering of metal.

These are only some of the common malfunctions that in-

dustrial operators may eventually face during their life-

times of work. The following are some emergency condi-

tions that could be expected to require a manual emergency

stop.

(1) An electrical explosion.

(2) Jammed work parts.

(3) An entangled operator stuck in the machine.

(4) Broken machine tools.

(5) A runaway power source.

(6) A defect or misalignment of stock.

(7) Blockage of feed.

(8) Loosening of parts.

(9) A sudden unbalance.

(10) An extraneous part in the feed.

(11) Spillage of dangerous chemicals.

(12) An outbreak of fire.



Although this list could not by any stretch of the

imagination be considered complete, the point is perfectly

clear. Irrespective of automatic controls in use, emer-

gency stopping of industrial machines has been, and will

continue to be, an important part of the operator's func-

tion. Contingency plans for the execution of an emergency

stop motion must be considered in operator training and

machine design to ensure efficiency when an accident

eventually occurs.

Types of Devices 

In the early days of industrial machine design,

power was often obtained from an intricate maze of over-

head shafts, which transmitted rotational mechanical

energy from the source or "prime mover" throughout the

plant. 1 Individual machines were connected and discon-

nected as needed to the main shafting and obtained their

power through rotating belts and pulleys. Frequently,

the prime mover was a steam driven engine located in a

. 2separate room at the factory called the "powerhouse."

Methods of disconnecting power from individual machines

consisted of crude belt shifting devices which, while push-

1 John Calder, The Prevention of Factory Accidents
(London, New York, and Bombay, 1899), p. 136.

2Ibid., pp. 142-143.
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ing a lever, threw the rotating belt off the main drive

pulley onto a smaller loose pulley. Alternatively, some

type of clutch device was often used. 3

Attempts at electrical control during this period

were primitive indeed. An electric button or bell-push

alarm was often installed in various locations around the

plant. 4 Assuming the batteries were charged, an alarm

would ring inside the powerhouse and the attendant would

shut down the prime mover when the accident alarm sounded.

Obviously, the effectiveness of the system depended jointly

on the response time of the attendant and the braking speed

of the machine. It was likely that the flywheeling effect

could keep mechanical energy applied to the system for

many seconds after tripping the prime mover. Other efforts

at direct control usually consisted of an electrical or me-

chanical device that would disconnect the head of steam

from the prime mover or interrupt vacuum in condensing

compound engines. These devices were activated by pushing

or pulling a control device inside the plant. 5 Again,

inertia of thousands of pounds of rotating shafting likely

prevented instant stopping of machines.

As technology improved and individual machines became

fitted with electric motors as power sources it became

much easier to include an emergency stopping device.

3C alder, pp. 136-140. 	 4lbid., pp. 142-143.

5Ibid., p. 143.
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One common arrangement was the typical dual pushbutton

station still seen on many industrial machines today. 6

An example is shown in figure 1-1. The problem with many

of these devices is the close proximity of start and stop

buttons. In an emergency an operator could inadvertently

press the wrong button causing delay in stopping a ma-

chine. Also, the stop function is not secure in the

event an operator accidentally presses the start button

after the emergency stop.

Other station panels have become more complex, con-

taining multiple switches, pushbuttons, and signal lights;

typically these panels are custom designed by an engineer

using standard parts to assemble a control station to

personal specifications.? A typical six unit custom

built pushbutton station is shown in figure 1-2. 8 Oper-

ator confusion in an emergency is possible if the designer

does not select and assemble controls in accord with estab-

lished ergonomic principles.

Other types of devices have become popular for

stopping industrial machines. Mushroom head pushbuttons

have been in use for over fifty years with excellent re-

sults. 9 Many variations have been devised to make the

6Allen Bradley Industrial Control Catalog no.107 
(Milwaukee, Wisconsin, 1984), p. 160.

7Ibid., p. 223. 	 8Ibid,

9Eugene J. Verret, Manager-Corporate Product Safety
Allen-Bradley Company, Personal Correspondence (Milwaukee,
Wisconsin, February 5, 1985)



Dual Pushbutton

Figure 1-1



Custom Control Station

8

Source: Allen Bradley Industrial Control Catalog
no. 107, p. 223.

Figure 1-2
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emergency stop secure. Two examples are shown in figure

1_3.10 The first device requires a simultaneous pull and

twist motion to release the mushroom head after an emer-

gency stop and the second device requires only a pull to

release. Both devices would provide a substantial mar-

gin of safety after an emergency stop if they were com-

bined with separate start buttons; restarting the machine

would require a different and distinct set of motions.

Some machines produce their own special problems

when selecting a suitable emergency stopping device.

Calenders, rolls, and conveyors are examples. Since the

point of operation can frequently be many feet wide for

rolls or many yards for conveyors, the problem of locat-

ing a stopping device becomes very difficult indeed. ln

some cases the solution might be to install separate push-

buttons every few feet down the length of the machine; for

others, a trip-wire connected to a microswitch might be

better. 11,12 This technique has also been suggested for

stopping towed agricultural implements. 13 However, these

10Allen Bradley Industrial Control Catalog no.107,
p. 232.

11 B20.1-1947, Safety Code for Conveyors, Cableways, 

and Related Equipment, American Standards Association
(New York, 1947), p. 31.

12 Safety Code for Rubber Mills and Calenders,
Bulletin of the United States Bureau of Labor Statistics
....No 447 (New York, 1927), p. 3.

1 3J. B. Sevart and Bradley Klausmeyer, "Emergency
Stop Devices for Agricultural Machinery," Agricult ural
Engineering, Volume 63, Number 9 (September, 1982), 13.
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authors prefer a mechanical stop at the main driveshaft

for positive control. The point of importance, when

dealing with rolls, conveyors, or farm implements is

clear; on this type of equipment an emergency stopping

device is needed wherever a human entanglement can occur. 14

Ironically, an emergency stopping device can be useless if

it cannot be reached by someone entrapped. An example of

an emergency trip-wire is shown in figure 1-4. 15

Accidents Involving Machinery

Stories of accidents involving machinery can become

very gruesome accounts. In the early factory days open

gears, pulleys, in-running belts, and protruding set-

screws on overhead shafts often caused entanglements. 16

Many persons died or were seriously maimed when clothing

got caught and bodies were whipped violently around. A

person caught in a gear could have an arm almost instantly

chewed to bits. 17 Very likely the equipment did not stop

as inertia kept shafts turning with human bodies attached.

Nevertheless, in spite of present safe-guarding techniques,

14Sidney J. Williams, The Manual of Industrial S afety_
(Chicago and New York, 1927L p. 98.

15Safety Code for Rubber Mills and Calenders,
PP. 3-5.

16Roland P. Blake, ed., ,Industrial Safety
(Englewood Cliffs, New Jersey, 1963), pp. 12-13.

17Ibid.
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entanglements can still occur. Many machine operators

know of or have heard of someone injured from this type

of accident.

Factory owners seemed rarely to be interested in

safety development. 18 Installing guards around dangerous

machine parts cost money or could slow production and

these were often seen as unnecessary expenses. Accident

prevention measures very often waited for public support

and legislative action, mostly being driven by newspapers

printing the gory details of serious cases. 19 Sometimes

these stories hit very close to home as whole communities

might have been employed in one local factory. Co-workers

during the shift became friends and neighbors after work

and serious accidents could affect whole towns.

Today we are still affected by these sensational

stories although they can now be seen directly on the

local news. One recent newscast told the tale of an el-

derly man killed by a train in New York City. 20 While

waiting at the subway station he slipped and fell to the

track. Anxious bystanders tried to help him up but he

had been stunned by the electricity; although he wasn't

yet seriously hurt, he could not help his would be res-

cuers. One woman even risked personal injury and jumped

down to try and push the man up; but she couldn't lift

18Blake, pp. 12-13. 	 19Ibid., p. 13.

20Eyewitness News, WABC-TV (New York, January 1986)



him and other bystanders would not help, being afraid of

electricity and the on-coming train. Several minutes

later the train came into the station and crushed the man

to death, even while transit personnel were handling the

information that someone was on the track. lronically, it

was later found that the means to save this man's life

were available at the site because, hidden at the station

was a master emergency stop switch.

Although this accident points out the need for an

emergency stopping device, especially where innocent by-

standers can be involved in an accident, the point could

be made that one was actually available and the cause of

this death was ignorance of the device location. Obvi-

ously, in New York City such a device would have to be

hidden to prevent vandalism, however, someone at the site

should have known where it was.

Other accidents can occur where no emergency stop

device exists, and very often, operating characteristics

of particular machines may encourage machine operators to

approach a live hazard point. Maintenance or operating

procedures can even require the machine to be powered

and this may be so stated in the operating manual. 21

Consider the following account of an operator's injury

when required to work next to a live hazard:

21J. B. Sevart and Bradley Klausmeyer, Emergency Stop 
Devices for Agricultural Machinery, American Society of
Agricultural Engineers Paper No. MCR-81-401 (St. Joseph,
Missouri, 1981), p. 4.



Gene Brandies, an 18 year old farmboy
worked daily with a Farmhand Feedmaster
model F81-C drop feeder at Carter's dairy.
He knew well how it operates. Taking power
from a tractor, it receives, mixes and
discharges feed by means of augers which
rotate at high speed in cylindrical housings.
Feed is thus received, propelled into a
mixing tank, mixed and forced up to a drop
point where it falls through a shute into a
hopper welded to a discharge sleeve several
feet long. A discharge auger rotates within
that hopper and sleeve.

The hopper is box-shaped, 10 inches or so
wide, about 20 inches long, and open at the
top to receive falling feed. Just inches below
the top of the hopper, the discharge auger
whirls at 380 rpm to force feed through a
hole in the hopper, cut round in the
circumference of the auger, and thence
through the discharge sleeve to its
destination at a sack or trough several feet
away. The hopper is waist high to an
operator standing near the clutch handle
which engages the discharge auger. To one
standing in that position, the auger is
exposed in the hopper; it is readily visible
and, in operation, openly and obviously
dangerous. Gene Brandies, who grew up on a
farm, had "seen enough of it," in his words,
to know that it was dangerous. He knew "not
to put my hand in there."

One day, however, that is what he did. He
and Carl Smith were sacking cornmeal for
sows in the farrow barn. Smith was in the
barn filling sacks with meal which flowed
from the discharge sleeve. Brandies stood
outside, his back to the Feedmaster. With
his right hand on the clutch handle he regu-
lated the flow of cornmeal as the sacks were
filled by Smith; with his left he steadied the
shaking discharge assembly. His left hand
dropped into the hopper. In a split second,
the whirling blade of the auger pulled his
fingers, then his hand and forearm through
the pinch point at the end of the hopper and
tightly into the discharge sleeve. The auger
mangled Brandies' hand before Smith could run
out of the barn and throw the clutch handle. 22

1 5

22Products Liability Reporter (Chicago, lllinois,
1976), pp. 14,547-14,548.



Clearly, an emergency stopping device could not

have stopped Brandies' injury. Only the proper combin-

ation of operator care and machine guarding could have

prevented the accident. However, it is not the intent

of an emergency stopping device to prevent all injury,

but to minimize the severity of injury when an accident

occurs. "If one considers a reaction time of even two

or three seconds, which is several times the normal in-

stinctive reaction time of adults, and a stop time of

three seconds, the power of the machine is available to

do injury to the victim for only five to six seconds." 23

One can only wonder how much more than six seconds

elapsed between Brandies' entanglement and Smith's

emergency stop of the Feedmaster.

Safety engineers and accident investigators have

long acknowledged the value of the emergency stop, es-

pecially during those accidents where injury becomes

time dependent. 24 The following excerpt illustrates the

situation:

16

23Sevart and Klausmeyer, 1981, P. 7.

24Ibid., pp. 2-3.
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...I have investigated many accidents where
farmers or industrial workers were caught in
in-running nip points and experienced severe
damage to the nerve and circulatory systems of
the arm (s) without having broken a bone. The
medical profession can repair broken bones but
the gross burning and erosion of the nerve and
circulatory systems are non-repairable and re-
sult in amputation. I have also encountered
accidents where farmers got one or more addi-
tional limbs entangled in the machinery while
trying to get the first trapped limb out. The
emergency stop device is most useful to reduce
the injury severity in such accidents. Shock
is also minimized if the machine can be quickly
shut down. 25

Trappers have noted that animals caught in traps

will do almost anything to free themselves; even if this

means knawing or wrenching a trapped limb completely off.

Humans have shown a similar instinct when caught in a

machine by attempting to wrench a trapped limb free using

another hand or foot. Frequently, as the above author

points out, the result of this action is further entangle-

ment and more serious injury, Again, an emergency stop-

ping device cannot prevent this type of accident from

first occurring. However, it can provide a reliable means

for an entrapped operator to quickly stop the machine

before instinctive wrenching can cause further entangle-

ment. The following account of an accident with a print-

ing press illustrates the problem:

25J. B. Sevart, P.E., Personal Correspondence
(Wichita, Kansas, 1984).



After each run, the press was stopped,
pans were placed under the rollers, and the
press was turned on so that all six units were
idling. Each crew member, armed with a
bottle filled with naptha, a cleaning
solvent, then stood on a catwalk running
around each unit, and into the machine
and squirted naptha on the unguarded,
revolving rollers. Some of the naptha,
mixed with ink, would be thrown back
onto the catwalk as the rollers turned.
Most of the ink and solvent would drip
onto the lowest rollers and into the pans.
The lower roller was cleaned by a blade
that scraped off the accumulating residue.
This blade was adjusted before and during
the process to ensure that all the residue
was removed. Wansor's injuries occurred
while he was making this adjustment...

To adjust the scraper blade, Wansor had
to crouch on the catwalk to avoid being
hit by the rollers above him, turn two
screws located about fifty inches apart,
then back out in the same Russian-folk-
dance crouched walk. On the date
involved here, Wansor had finished
adjusting the screws and was beginning to
back out of the machine when...his right
hand became caught in the unguarded
rollers. He attempted to pull his hand out
but succeeded only in entangling his left
hand as well and in the struggle caught his
hair on the upper rollers. Although the
machine was quickly turned off, Wansor's
hands were severely mangled. Despite
extensive medical treatment, he lost most
of the fingers and part of the thumb from
his right hand and two fingers from his
left hand. 20

26Products Liability Reporter (Chicago, Illinois,
1979), p. 18,083.

18
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Although it is apparent that an emergency stopping

device located near these rolls would not have prevented

the initial injury to Wansor's right hand, it is possible

that further injuries, including those to the left hand

could have been avoided. Clearly, within a split second

of entanglement, fear and an instant recognition of hope-

lessness caused Wansor to react in panic; and, in the at-

tempt to wrench the trapped hand free further unnecessary

damage occurred. The questions might be asked: why did

the machine designer require operators to enter such a

dangerous area, especially in such an unnatural human pos-

ture (crouching)? Why were better procedures for cleaning

not considered in the design? The answers to these, and

other related questions can only be explained in terms of

foresight. Obviously, the designer of this machine did

not envision the mangling of hands; therefore, cleaning

procedures may have been overlooked in the zeal to perfect

an efficient mechanical design.

Another area that can be overlooked by machine de-

signers is the frequent need to manually clear a stalled

machine. Industrial operators can be faced with the

following situation:

Perhaps the most dangerous of all operating
modes is that where the hazardous rolls, or other
moving parts, are stalled due to a plug. It is
simply contrary to normal human behavior to turn
a stopped machine off. (Who hasn't replaced a
light bulb to find with surprise that the light
was still on.) Under this condition, the opera-
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tor begins to remove the plug and does not
recognize any danger because the machine is
"stopped". As the plug is diminished, sud-
denly the torque of the drive is sufficient
to drive the machine and a slip clutch re-
engages. The condition just described is a
trap and represents a very dangerous con-
dition that the ordinary operator does not
comprehend under the mental pressures of
having a specific, but unrelated task to
perform,...27

The preceeding accounts have all focused on the human

aspects of accidental contact with machines and the need

for an emergency stopping device located close to the

point of hazard, to minimize severity of injury. Largely,

the damage caused to machines in accidents where they

cannot be quickly stopped has been ignored. Perhaps

these stories are not nearly as spectacular as those

causing serious human injury and are, therefore, quickly

forgotten. In any case, the emergency stopping device,

when properly placed can minimize the severity of damage

and monetary loss in an accident. The following two

cases are examples (author's personal observations):

Case 1 

In the pharmaceutical industry, tablets are formed

on a rotary mechanical press which takes powder and presses

it between two punches (rams) in a die. Upper and lower

punches operate vertically and, as a die table revolves,

27Sevart and Klausmeyer, 1981, p. 4.
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motion of many sets of punches are controlled by station-

ary cams. The sequence of tablet formation is as follows;

powder enters a force feeder mechanism positioned 0.003

inch above the revolving die table; upper punches ride

the cam track and clear this feeder assembly while lower

punches are drawn down in the dies to pull powder into

the chambers; upper punches are then lowered into the

die holes and pressure up to five tons is provided to

press the tablets; upper punches are then withdrawn and,

as the die table completes its revolution, lower punches

are raised in their dies to eject the completed tablets.

This sequence continues indefinitely.

One day during a press run an operator inadvertently

forgot to tighten a die retaining screw and ultimately

this die was forced out of its mount. The die table was

revolving at about thirty rpm when die contact was made

with the feeder. On the first revolution (2 seconds) the

feeder was torn from its mount. On succeeding revolutions,

pieces of broken feeder were mangled further and ultimately

bits of metal became jammed in other dies, thereby stall-

ing the machine. It was estimated that the accident dur-

ation was on the order of ten seconds.

During the accident the operator did not stop the

machine because the stop button was located under the

feeder assembly. No emergency stopping device was in-

cluded any place else on the machine. Cost of the acci-

dent was over $20,000 due to broken machine parts and
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complete destruction of one set of punches and dies.

Case 2 

Pharmaceutical capsules are often made on similar

types of rotating machines. However, revolving die tables

usually index and remain at one stationary position for a

certain length of time. Operations performed during dwell

time include: empty capsule placement, opening, filling,

closing, and cleaning, all of which are done at different

station locations.

One day during a capsule run vibrations loosened a re-

taining screw holding the powder hopper in place. Suddenly

the dosing mechanism contacted the powder hopper and break-

ing of metal ensued.

On the side of the machine, away from all moving

parts, was a large, red, mushroom style, emergency stop

pushbutton which the operator quickly activated. At the

time of the accident it was estimated that the dosing

mechanism was rotating at thirty-five rpm. On the first

revolution (1.7 seconds) the dosing mechanism and powder

hopper were severely damaged but the emergency stop was

completed before any further revolutions were made. Cost

of the accident was estimated at about $2,500 to replace

the broken parts.

These two accidents are typical of what can happen

with high speed rotary machines when machine parts loosen,

work parts jam, or extraneous debris finds its way into
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areas of tight clearance. Although these two particular

accidents cannot be directly compared due to differences

in machine operation, the fact that the indexing style

capsule machine was stopped before it jammed completely

is a significant observation. Clearly, the operator in

case 1 did not attempt an emergency stop because the

machine controls were too close to the danger zone. In

fact, this particular operator backed away from the ma-

chine in order to avoid flying bits of metal. Further-

more, there was no master emergency stopping device in

the room. Machines that jam under these conditions are

sure to be severely damaged, therefore, provisions must

be made for the emergency stop. In case 2 the means for

stopping the machine quickly were included in the original

design. Obviously, the designer considered operator and

machine safety as an important criterion.



CHAPTER II

STANDARDS AND REGULATIONS: EMERGENCY STOPPING OF MACHINES

Background of Development

"Industrial accidents cost this country 35,000 human

lives and more than $500,000,000 annually. ln addition,

dismemberments and other serious injuries total about

350,000 yearly while the number of minor accidents, causing

loss of time, exceeds 2,000,000."28 These statements seem

impressive today but even more so when one considers that

they were written in the early 1900's.

The situation that this author was referring to

(industrial accidents) probably included many different

types of accidents such as fires, explosions, and colli-

sions as well as machinery related accidents which are of

interest here. But it cannot be denied that machinery mis-

haps have been a significant factor in industrial safety

standards development and legislative action throughout

the history of industrialization. For example: the first

law requiring guarding of dangerous machine parts was en-

acted in Massachusetts in 1877. 29 During this time period

28George Alvin Cowee, Practical Safety Methods and 
Devices (New York, 1916), p.

29Blake, p. 13.

24
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many young girls (children) were employed in textile mills

to operate spinning machines. They were required to work

with their hands very close to unguarded gears and a very

common accident was mangling of fingers. Strong public

opinion finally resulted in passage of legislation only

after many years had passed and an untold number of man-

gled young hands had accrued.30

This sequence seems to have been repeated time after

time throughout history. In fact, it was once stated by

a railroad executive when the Railway Safety Act was

being considered (1893) that the cost of burying a man

killed in an accident was less than the cost of putting

air brakes on a car. 31 This man, as pointed out by Hammer,

was probably not inherently evil; rather, the statement

indicated that the major industrial concern was often eco-

nomics rather than safety. Therefore, it often remained

for public indignation and concern to force law makers to

take required action while industry dragged its feet. 32

In the 1900's, realizing that something would ulti-

mately be done and fearing a growing intrusion of govern-

mental regulations, industries began to take action by

forming committees and organizations to propose voluntary

30Blake, p. 13.

31Willie Hammer, Occupational Safety Mana ement and
Engineering (Englewood Cliffs, New Jersey, 1981 , p. 1.

32Blake, pp. 13-14.
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safety standards. 33 ln 1911, at the request of the

Association of Iron and Steel Electrical Engineers a na-

tional industrial safety conference was called. 34 This

resulted in the formation of the National Council for

Industrial Safety (1913) which later became known as the

National Safety Council. Their basic premise was: that

the same principles that were being used to expand pro-

duction could also be used to prevent accidents through

a proper application of Engineering, Education, and En-

forcement - the "Three E's of Safety." 35

One of the early results of the National Safety

Council's efforts was the sponsoring of the American

Engineering Standards Committee which developed voluntary

consensus standards. This committee, which became the

American Standards Association, then the United States of

America Standards Institute, and finally (1969) the

American National Standards Institute (ANSI) developed

safety codes applicable to various industrial operations. 36

Some examples of early safety codes are: the Safety Code

for Power Presses and Foot and Hand Presses (1922), the

Safety Code for Woodworking Plants (1924), and the Safety

33Hammer, p. 67.

34Frank McElroy, ed., Accident Prevention Manual for
Industrial Operations (Chicago, Illinois, 1974), pp. 5-6.

35Ibid., p. 6.

36American National Standard Safety Requirements for 
the Construction Care and Use of Mechanical Power Presses,
ANSI B11.1-1971 New York, 1911 , p. 3.



Code for Mechanical Power Transmission Apparatus (1927).

ANSI standards developed over the years have never

been mandatory. Each current standard contains the phrase:

An American National Standard implies a consensus
of those substantially concerned with its scope and
provisions. An American National Standard is intend-
ed as a guide to aid the manufacturer, the consumer,
and the general public. The existence of an American
National Standard does not in any respect preclude
anyone, whether he has approved the standard or not,
from manufacturing, marketing, purchasing, or using
products, processes, or procedures not conforming to
the standard. 37

This means that neither manufacturers nor consumers

are required by law to manufacture or use products in ac-

cordance with any consensus standard. However, it often

behooves them to do so because, if a victim can show that

use of a non-conforming product resulted in an accident,

the probability of him/her presenting a successful law-

suit greatly increases. 38 Furthermore, use of a product

conforming to an ANSI standard does not necessarily mean

that product is completely safe and an accident cannot

occur. Although some may believe that products conforming

to consensus standards, such as ANSI standards, are safe

to use, this may not always be true. It must be remembered

37American National Standard for Machine Tools-
Mechanical Power Presses-Safety Requirements for Construc-
tion) Care, and Use, ANSI B11.1-1982, (New York, 1982),
p. 2.

38Hammer, p. 73.



28

that a consensus standard implies an agreement among

"...those substantially concerned with its scope and

provisions." 39 and may include significant input from

committee members representing manufacturers. As such, a

consensus standard could be interpreted as the minimum

safety requirements the industry was willing to accept. 4o

Therefore, the motto, "let the buyer/user beware" should

still be applied.

ANSI Standards Applicable to Emergency Stopping Devices 

Many consensus standards developed over the years and

applicable to industrial machines have called for or re-

ferred to an emergency stopping device. Unfortunately,

most of these standards do not provide specific informa-

tion on how the emergency stop is to be accomplished,

where the device should be located, or what type of device

should be used. The following excerpt from a personal

correspondence with Mr. Carvin DiGiovanni - Assistant

Secretary, B11 American National Standards Committee

illustrates the situation:

...regarding your research on emergency stop
devices, I can advise you that existing standards
language relevant to this subject that are listed
throughout the 19 B11 standards are done so in
performance styled language. This means that each
standard calls for the need of an emergency stop

39ANSI B11.1-1982, p. 2. 	 4oHammer, p. 67.



device, then describes what it is supposed to
do, and then may briefly describe its location
in terms of accessibility to the operator. The
standard's reference however, does not provide
specific standards language on how this is to
be accomplished. Thus, leaving the require-
ments to remain flexible for each manufacturer
to design a system innovated for each piece of
equipment. 4 1

The 19 B11 standards referred to above are:

B11.1 - Mechanical Power Presses

B11.2 - Hydraulic Power Presses

B11.3 - Power Press Brakes

B11.4 - Shears

B11.5 - Iron Workers

B11.6 - Lathes

B11.7 - Cold Headers and Cold Formers

B11.8 - Drilling, Milling, and Boring Machines

B11.9 - Grinding Machines

B11.10 - Metal Sawing Machines

B11.11 - Gear Cutting Machines

B11.12 - Roll Forming and Roll Bending Machines

B11.13 - Single and Multiple Spindle Automatic
Screw/Bar and Chucking Machines

B11.14 - Coil Slitting Machines/Systems

B11.15 - Pipe, Tube, and/or Shape Bending Machines

B11.16 - (To be assigned)

41Mr. Carvin DiGiovanni, Personal Correspondence
(McLean, Virginia, October 29, 1984)

29
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B11.17 - Horizontal Hydraulic Extrusion Presses

B11.18 - Coil Processing Equipment

B11.19 - Guards and Devices

Although, as Mr DiGiovanni points out, performance

styled language can allow flexibility for manufacturers

to design emergency stopping devices according to their

own particular needs, consistency among functionally sim-

ilar pieces of equipment has been ignored. Consider the

operator who changes jobs or, perhaps, operates several

different brands of machine within the same shop. On one

machine the emergency stopping device could be located on

the right side of a point of operation hazard while on an-

other machine made by a different manufacturer, it could

be on the left. Furthermore, different devices could be

used. This question of consistency is currently being

considered, among other problems, by the American Foundry-

men's Society Safety Committee. Consider the following

excerpt from a personal correspondence with Mr. William B.

Huelsen - Vice President, Environmental Affairs, American

Foundymen's Society:

The American Foundrymen's Society Safety
Committee is working on a series of graphic ma-
chine symbols which are intended to replace
printed legend plates on push buttons and se-
lector switch controls. This committee has not
only been working on the graphic symbols, but
also the ergonomics...

One of the problems our committee has wrest-
led with on many occasions is the location of
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the master emergency stop on each control pan-
el...

At one time our committee thought perhaps
the emergency stop button should be located in
the center of each control panel, but one of
our members had experience with this on one of
his machines and found that the operator occa-
sionally brushed by the emergency stop button
and shut the equipment down. The machine then
had to be manually returned to its initial mode
of operation and restarted. We have concluded
though that the master stop button should be
located at the same place on each control panel,
even though it may be out of reach of the oper-
ator in an emergency. Additional stop switches
would be connected in series with the master
stop and might be actuated by presence sensing
devices such as photo electric cells, light
shields, pressure pads, cables, etc. specific-
ally designed and located so they could be eas-
ily actuated in an emergency by the operator(s) .42

Obviously, the question of where the master emer-

gency stopping device should be located has not yet been

completely resolved. Security against inadvertent stop-

ping of machines (Bumping) often poses a significant con-

cern.

ANSI B11.1-1982, the American National Standard for

Machine Tools-Mechanical Power Presses-Safety Requirements

for Construction, Care, and Use  contains the following re-

quirements pertaining to emergency stopping devices:

2. Definitions

2.49 Stop Control. An operator control designed to
immediately deactivate the clutch control and acti-
vate the brake to stop slide motion.

42William B. Huelsen, Personal Correspondence
(Des Plaines, Illinois, December 5, 1984)
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3. Construction, Reconstruction, and Modification

3.3 Brakes. Friction brakes provided for stopping
or holding the slide movement shall be set with com-
pression springs. Brake capacity shall be sufficient
to stop the motion of the slide quickly and shall be
capable of holding the slide and its attachments at
any point in its travel.

3.5.2 Controls

3.5.2.1 Stop Control. A red color stop control shall
be provided with the clutch/brake control systems.
Momentary operation of the stop control shall immedi-
ately deactivate the clutch and apply the brake. The
stop control shall override any other control, and
reactuation of the clutch shall require use of the
operating (tripping) means which has been selected.

E3.5.2* Controls

E3.5.2.1 Stop Control. A stop control should be
available to each operator....

3.6 Electrical

3.6.2 Motor-Start Button. The motor start button
shall be protected against accidental operation. 43

Currently the ANSI B11.19 subcommittee is working

on a standard that will establish the requirements for

guards, devices, and methods to be used when they are

called for in the other ANSI B11 series of standards.

The following excerpts from ANSI B11.19 Draft - 2/15/85,

the American National Standard Performance Criteria for

the Construction, Care, and Operation of Safeguards as 

Specified in the Other B11 Standards, apply to emergency

*In current ANSI standards an (E) designation refers
to explanatory material which is not part of the standard.

43ANSI B11.1-1982, pp. 14, 23-24, 26, 30.
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stopping devices:

2. Definitions

2.40 Operator Controls.
An operator control is a pushbutton, switch, lever,
hand wheel or other device activated by the operator
which initiates, cycles, controls or stops the mo-
tion of a machine tool.

5. Auxiliary Devices

5.2 Stop Control 

The requirements of this section shall apply to all
stop controls recommended for safeguarding the haz-
ards associated with the point of operation of ma-
chine tools by the other B11 safety standards or by
section 4 of this standard.

5.2.1 The stop control shall be designed and con-
structed as a means of stopping hazardous motion by:

A. lmmediately deactivating and overriding all
other controls or;

B. Disconnecting the machine tool from the power
or drive source or;

C. Deactivating or overriding the controls or dis-
connecting the power source and simultaneously
applying a brake to stop motion or;

D. Deactivating or overriding the controls or dis-
connecting the power source and simultaneously re-
versing the hazardous motion.

5.2.2 An emergency stop control shall be provided
for each operator control station or position and
shall be readily distinguishable and shall be
clearly labeled.

E5.2 An emergency stop control is sometimes referred
to as a master control or stop control.

E5.2.1 The stopping of hazardous motion is necessary
for a stop control to provide safeguarding of the
operator.

If the driven portion of the machine tool coasts
after the stop control is activated, it may be



necessary to use a brake in conjunction with the
stop control to achieve the desired stopping per-
formance.

E5.2.2 A typical stop control may be a button, cable,
foot control, trip bar or other sensing means.

5.5 Control Reliability

E5.5.1 ...Where possible, all controls and pilot
lights utilized on a machine tool should be stan-
dardized in configuration, location, function and
color code. The controls and indicators should be
accessable and readily visible from the operator's
station or normal location....

5.7 Die and Machine Malfunction Detection and
Monitoring Devices

5.7.1 ...Restarting of the machine tool after a
malfunction is detected shall require start up of 
the machine tool system at the operator's station.44

As can be seen from the representative excerpts pre-

sented from ANSI B11.1 and the B11.19 draft, emergency

stop control requirements are written in performance

styled language. The need for the device in order to

safeguard the operator and the machine from accident

injury and damage has been established and this is re-

flected in these ANSI consensus standards. But, within

very general limits, the location and the design of the

device is left to the discretion of individual manufac-

turers who may choose to utilize available technology in

order to design the most efficient system practical, or

44American National Standard Performance Criteria for
the Construction, Care and Operation of Safeguards as Spec-
ified in the Other B11 Machine Tool Safety Standards, ANSI
B11.19 Draft 2/15785 (New York, 1985), pp. 4, 9, 39, 41-43.
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may ignore established ergonomic principles and opt for

a less efficient system.

Consensus standards over the years have shown many

changes that accrued due to industrial development. Ob-

viously, recommendations applied to early industrial prac-

tices would have to change with advancing technology as

the inherent hazards of these processes changed. For ex-

ample: consensus standards applicable to early shops using

overhead shafting for mechanical power transmission would

likely not be applied today in modern manufacturing plants.

The hazards of this type of apparatus have largely been

superceded by newer hazards inherent with modern machines.

As consensus standards were developing, occasionally

some particular recommendation would conflict with estab-

lished ergonomic principles; principles that were known

long before the standard was written. Sometimes these

standards went against recommendations made by other au-

thorities or even against other standards promulgated by

the same organization at the same time period. When these

standards are read today the reader might wonder what cir-

cumstances at the time caused the error to be made, espe-

cially when the error is blatantly obvious.

The following excerpts follow the historical devel-

opment of ANSI B15.1-1984, the Safety Standard for Mechan-

ical Power Transmission Apparatus as it is known today.

They provide examples of changing recommendations and stan-

dards in conflict with established ergonomic principles.
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B15-1927

Part llI Starting and Stopping Devices

Section 31 Belt Shifters, Clutches, Shippers,
Poles, Perches, and Fasteners

Rule 310 - Belt Shifters

(c) 	 All belt and clutch shifters of the
same type in each shop should move in
the same direction to stop machinesm ,
i.e., either all right or all left.'-)

Part VI Discussion

3. Power Control - Among the methods used for power
control may be mentioned motor switches, friction
clutches, belt shifters and engine stops. The means
for controlling power should be positive and should
be so arranged as to permit of operation from a point
not more than 100 feet from any machine driven from
the source of power in question. If the stations can
be arranged to be within 50 feet of any machine, it
is highly advisable. There will be cases, as for
example in the steel industry, where a greater dis-
tance from the machine becomes necessary.

It is advisable to mark the stop station with
a mark easily distinguishable - green bands on posts
and green circles on walls are recommended, together
with a sign "Stop Station" or "Emergency Stop." A
light of characteristic color should be added in
shops where night work is carried on.

All electrical safety devices should operate
by the opening of a normally closed circuit. Any
failure of the current or device will thus be in-
dicated by the stopping of the prime mover. lt
is advisable to test such devices daily by shut-
ting off the power at noon or night by such means. 46

45American Standard Safety Code for Mechanical Power
Transmission Apparatus, B15-1927 (New York, 1927), p. 17.

"Ibid., p. 25.
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B15.1-1953 

Entries applicable to starting and stopping devices

are the same as in B15-1927.

B15.1-1972 

This edition of the B15.1 standard does not contain

any reference applicable to emergency stopping devices.

The appendix, which was not part of the standard, contains

the following reference:

A6.6.3 All belt and clutch shifters of the same
type in each shop should move in the same direc-
tion to sop machines, i.e., either all right or
all left. 47

B15.1-1984

3 SAFEGUARDING OF HAZARDS

3.2 Types of Safeguards

3.2.2 Devices 
(a) A motion hazard safeguarding device shall pro-
vide protection to personnel by:

(1) preventing and/or stopping normal motion of the
mechanical power transmission source of hazard if
personnel inadvertently enter the hazardous area;

47Safety Standard for Mechanical Power Transmission
Apparatus, ANSI B15.1-1972 (New York, 1972), p. 9.
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(2) providing the means to stop the system in the
event of inadvertent involvement with the hazard.

E3.2.2 Devices

(2) Emergency pull cords, body bars, and/or other
means to stop the system are examples of this type
of device. 48

Clearly, the early editions of B15.1 were heavily

influenced by the state-of-the-art in power transmission

at the time with references to belt shifters and clutches

as examples. These indicate the extensive use of shafting,

pulleys, and belts for power transmission throughout in-

dustry. However, it should be noted that early editions

(1927 and 1953) included material relevant to emergency

stopping of the equipment while in 1972 these references

were dropped. They were not revived again until 1984.

One could not assume that between 1972 and 1984 emergency

stopping of power transmission apparatus was no longer

needed; rather, it might be surmised that committee mem-

bers at that time did not see or could not agree on the

need for emergency stopping devices. It must be remem-

bered that consensus standards cannot be regarded as in-

dications of maximum concern for safety, but often they

reflect minimum acceptable standards. 49

48Safety Standard for Mechanical Power Transmission
Apparatus, ANSI B15.1-1984 (New York, 1984), pp. 7-10.

"Hammer, p. 67.
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Furthermore, these standards can contain serious

errors of judgement that are very difficult to explain.

Until 1972 the B15.1 standard advocated use of green

bands on posts and green circles on walls to designate

emergency stop control locations, even though this is

clearly in violation of long established precedence de-

noting red as the emergency color. "Red has been the

universal danger color for many years. "50 This statement

was made in 1916. Also, the American Standard Safety

Color Code for Marking Physical Hazards and the Identi-

fication of Certain Equipment, Z53.1-1945 stated:

2. Color Identification

2.1 Red. Red shall be the basic color for the
identification of:

(a) Fire Protection Equipment and Apparatus
(b) Danger

(c) Stop 51

Clearly, any standard retained in the 1953 edition and re-

commending the color green be used to designate emergency

stop control locations is in violation of Z53.1. One can

only wonder if any serious accidents occurred due to use

of this recommendation.

50Cowee, p. 30.

51American Standard Safety Color Code for Marking
Physical Hazards and the Identification of Certain Equip-
ment, Z53.1-1945 (New York, 1945), p. 5.
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Certain industries such as paper and pulp mills and

rubber mills utilized equipment that quickly developed a

reputation for potentially severe, possibly fatal human

entanglements.5 2 The machines that were used in paper and

rubber processing often contained sets of revolving roll-

ers (rolls) or calenders which produced in-running nip

points. Depending on the spacing between rolls, hair,

fingers, hands, arms, and even legs could become entangled

with disastrous consequences. During rubber processing

these rolls were often heated internally and human entan-

glements could produce additional heat through friction

with resultant tearing and burning of flesh. 53 Catching

significant amounts of hair between rolls could easily

result in scalping. The possibility of bleeding to death

from any of these accidents existed if the means were not

available to stop the machine quickly and someone was not

available to perform first aid.

Early ANSI standards covering this equipment reflect-

ed the need for emergency stopping devices. Also, the

severity of potential accidents resulted in these stan-

dards specifying design and location of devices to be

used. Consider the following excerpts regarding emergency

stop devices taken from the American Standard Safety Code 

52Williams, p. 98.

53American Standard Safety Code for Mills and Calen-
ders ln the Rubber Industry, B28.1-1949 (New York, 1949),
p. 5.



for Paper and Pulp Mills (P1-1925) and the Safety Code for

Rubber Mills and Calenders  (B28-1927):

P1-1925 

PART VII - MACHINE ROOM

Rule 701. Emergency stops.

Both the operating and the back sides of the paper
machines shall be equipped with devices that will
stop the machine quickly in an emergency. The
device shall consist of push buttons for electric
motive power or electrically operated engine stops,
pull cords connected direct to the prime mover,
control clutches, etc. The devices shall be tested
frequently by making use of them when stopping the
machine.

PART VIII - FINISHING ROOM

Section 80. SUPER CALENDERS

Rule 803. Emergency stops.

Push buttons (for electric power) or manually
operated quick power-disconnecting devices shall
be provided on all sides of the machine within
easy reach of all employees.54

B28-1927 

SAFETY-TRIP CONTROLS AND QUICK-STOP FACILITIES

Rule 110. Safety-trip controls -- Mills.

(a) A safety trip rod or tight-wire cable for each
individual mill shall be provided front and back of

54Safety Code For Paper and Pul. Mills , P1-1925
(New York, 1925 , pp. 22, 2..
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all mills, extending the length of the face of the
rolls. It shall operate sensitively if it is pushed
or if it is pulled.

(b) The normal location of the safety-trip rod over
the front roll shall be two (2) inches to four (4)
inches in from the edge of the front roll and not
more than sixty-nine (69) inches above the working
floor level on which the operator stands, with pro-
vision made for adjustment of three (3) inches either
up or down.

(c) The normal location of the safety-trip rod
at the back of the mill shall be two (2) inches
to four (4) inches in from the edge of the back
roll and shall be in the same horizontal plane
as the safety-trip bar over the front roll, and
the length of the lever from fulcrum shall be the
same.

Rule 112

The locations of safety-trips apply to all sizes
of mills.

Rule 120. Safety-trip control -- Calenders.

(a) A safety-trip rod or a tight-wire cable shall
be provided across the front and the back of all
calenders, extending the length of face of rolls,
to operate sensitively if it is pushed or if it is
pulled. This rod shall be at a height not more
than sixty-nine (69) inches above the working floor
level or platform on which the operator stands and
shall be within easy reach, with provision made for
adjustment either up or down of three (3) inches in
each direction.

(b) On each side of all calenders and near both ends
of the face of the roll there shall be a vertical
tight-wire cable connecting with the bar tipping
mechanism at the top and fastened to the frame with-
in twelve (12) inches of the floor. These cables
should be positioned at a distance of not more than
twelve (12) inches from the face of the roll and at
a distance of not less than one (1) inch from calen-
der frame.

OPERATlNG RULES

Rule 150

Safety stops on mills and calenders should be tested
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daily, and accurate measurements of distance of
travel shall be taken at least once every thirty
(30) days. )-D

Obviously, the severity of accidents which routinely

occurred with rolls and calenders prompted committee mem-

bers to include significant emphasis on emergency stopping

within these early standards. Consider the following

statement: "lt is realized that the quick stopping of

mills and calenders is a very important factor in acci-

dent prevention in that it limits the injury to a worker

if caught between the rolls." 56 As a result, current ANSI

standards B28.1-1967 and P1.1-1969 continue to include

specific standards language describing devices to use, lo-

cations, and limits of travel for rolls (after emergency

stop device activation). This is an important exception

with current consensus standards regarding emergency

stopping devices.

Similar references to emergency stopping devices

can be found in many other ANSI standards. Currently,

there are over 10,000 standards approved by ANSl. 57

Some important ones have been selected and the following

excerpts are included for relevant information:

55Safety Code for Rubber Mills and Calenders,
B28-1927 New York, 1927 , pp. 3-4, 10.

56Ibid., p. 10.

57American National Standards for Safety and Health
1983-84 Catalog (New York, 1983), p. 2.



Z53.1-1979 - Color Code for Marking Physical Hazards

3. Purpose

The intent of this standard is to establish
a safety color code that will alert and inform
persons to take precautionary action or other
appropriate action in the presence of hazards.

4. Applications

4.1 The criteria of this standard shall apply to
the use of safety color coding for the identifi-
cation of physical hazards, the location of safe-
ty equipment, protective equipment, stationary
machinery, portable powered hand tools, signs,
and markers.

6. Color Meaning

6.1 Safety Red. Safety red shall be the color for
the identification of (1) Danger; (2) Stop.

The following are examples of applications of the
color Safety Red:

(1) Emergency stop bars on hazardous machines
(2) Stop buttons or electrical switches used for
emergency stopping of machinery

7. Color Specification and Test Methods

7.1 Visual

7.1.1 The primary color specification is in terms
of the Munsell Notation System, a color identifi-
cation and specification system based on equal
visual spacing as described in American National
Standard Method of Specifying Color by the Munsell
System, ANSI/ASTM D 1535-68 Z138.5)....

7.5 Color Blindness. The colors in the Combined
Standard Safety Color Code have been chosen to give
maximum feasible recognition to both normal and
color-deficient (specifically red-green confusing)
observers.58

58Safety Color Code for Marking Physical Hazards,
Z53.1 -

1979 (New York, 1979), pp. 5-10.
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B20.1-1984 - Conveyors and Related Equipment

5.11.2 Control Station

(a) Control stations should be so arranged and
located that the operation of the equipment is
visible from them, and shall be clearly marked
or labeled to indicate the function controlled.

(c) Remotely and automatically controlled con-
veyors, and conveyors where operator stations
are not manned or are beyond voice and visual
contact from drive areas, loading areas, trans-
fer points, and other potentially hazardous lo-
cations on the conveyor path not guarded by lo-
cation, position, or guards, shall be furnished
with emergency stop buttons, pull cords, limit
switches, or similar emergency stop devices.

(1) All such emergency stop devices shall be
easily identifiable in the immediate vicinity
of such locations unless guarded by location,
position, or guards. Where the design, func-
tion, and operation of such conveyor clearly
is not hazardous to personnel, an emergency
stop device is not required.

(2) The emergency stop device shall act directly
on the control of the conveyor concerned and shall
not depend on the stopping of any other equipment.
The emergency stop devices shall be installed so
that they cannot be overridden from other locations. 59

01.1-1975 - Woodworking Machinery

5.1.3 Machine Control

5.1.3.1 Each machine, whether mechanically or
electrically driven, shall be provided with a
device that will make it possible for the opera-
tor to cut off the power supply to the machine
without leaving his normal operating position.

59Safety Standard for Conveyors and Related Equipment,
B20.1-1984 (New York, 1984), p. 8.



5.1.3.5 Power controls and operating controls
shall be located within easy reach of the op-
erator while he is at his regular work station.
They shall be positioned so as to make it un-
necessary for him to reach over a hazardous
area to actuate the control. 60

Z245.5-1982 - Baling_ Equipment 

4 Construction and Modification Requirements

4.1.1.3 Controls. Each operator control shall
be conspicuously labeled as to its function.
Operating controls shall be designed and located
to prevent unintentional activation.

4.1.1.3.2 Stop buttons and emergency stop buttons
shall be red, distinguishable from all other con-
trols by size and color, and shall not be recessed.

4.1.1.5 Emergency Stop. A means of stopping and
controlling the movement of the ram at any point
shall be provided. For multiple-stage balers, an
emergency stop mechanism shall be provided to stop
all rams. Located next to this mechanism shall be
reverse mechanisms, one for each ram.61

A90.1-1976 - Manlifts 

5.8 Rope Control Stop

5.8.1 Requirements. A rope control stop means
shall be provided.

5.8.2 Location. This control shall be within
easy reach of the up and down runs of the belt,
incorporating rope guides and pulley arrange-
ments to restrict lateral movement.

60Safety Requirements for Woodworking Machinery,
01.1-1975 (New York, 1975), p. 9.

61 Safety Requirements for Baling Equipment,
Z245.5-1982 (New York, 1982), p. 8.
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5.8.3 Operation. This control shall be so connected
to a control lever or operating mechanism that it
will cut off the power and apply the brake when
pulled in the direction of travel.

5.8.4 The control shall consist of rope with a
diameter not less than 3/8 4.'0 (9.525 mm).
Wire rope shall not be used.'

Z245.1-1975 - Refuse Collection and Compaction Equipment 

7. Specific Mobile Equipment Safeguards and Features

7.1 Front-Loading Compaction Equipment

7.1.4 Controls

7.1.4.1 Each control shall be conspicuously
labeled as to its function.

7.1.4.2 Controls for operating the container-
lifting mechanism, packer panel, and tailgate
shall be designed and located to prevent un-
intentional activation.

7.1.4.3 All controls for operating any part of
the container-lifting mechanism shall be dead-
man controls.

7.3 Rear-Loading Compaction Equipment

7.3.3 Controls

7.3.3.1 Each control shall be conspicuously
labeled as to its function.

7.3.3.2 Controls (for example, for operating the
packer panel, tailgate, point of operation guards,
ejector panel, container hoists) shall be designed
and located to prevent unintentional activation.

7.3.3.2.1 Start buttons shall be recessed or located
to prevent unintentional activation.

62Safety Standard for Manlifts, A90.1-1976 (New York,
1976), p. 17.
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7.3.3.2.2 Stop button controls shall be red, dis-
tinguishable from all other controls by size and
color, and not be recessed.

7.3.3.5 For emergencies a means of stopping and
moving the packer panel away from the pinch point
(prior to the pinch point) shall be provided.
Emergency stop controls shall be red, distinctly
labeled as to function, and not be recessed.63

Standards Summary; Useful Recommendations 

Although the development of ANSI standards seems to

have been done by separate committees working in response

to specific hazards in different industries, many worth-

while recommendations can be gleaned from them. In

reviewing the standards and viewpoints from personal cor-

respondences previously mentioned, the following recommen-

dations with regard to emergency stopping devices can be

made:

(1) The master stop control should be located in

the same place on each master control panel.

(2) A red colored control should be used consistently

for the emergency stopping device and other con-

trols should not be coded red.

(3) Momentary operation of the device should im-

mediately stop hazardous motion and leave the

6 3Safety Requirements for Refuse Collection and Com-
paction Equipment, Z245.1-1975 (New York, 1975),pp. 17-18.



system in a safe condition.

(4) Restarting of machinery should require use of

a separate and distinct operation.

(5) A stop control should be available to each

operator at each normal operator's station,

and in each hazardous location where operators

may be required to work.

(6) Means should be available for manually inching

hazardous machine parts foreward or backward.

(7) If hazardous machine parts can coast after the

emergency stopping device is actuated, a brak-

ing system should be incorporated to achieve

good stopping performance.

(8) Controls used on similar machines should be stan-

dardized in configuration, location, function,

and color coding.

(9) Emergency stopping devices should be tested

frequently by making use of them during rou-

tine stopping of equipment.

(10) Emergency stopping devices should be size and

shape coded.

(11) All controls should be conspicuously labeled.

(12) Emergency stop pushbuttons should not be re-

cessed.
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Legal Requirements 

The previous discussion has focused on the develop-

ment of voluntary consensus standards applicable to emer-

gency stopping of industrial machines. As written, vol-

untary standards developed by standards setting organiza-

tions were never binding unless federal, state, or local

laws incorporated them within their codes of regulations.

Before the Occupational Safety and Health Act of 1970

(OSHAct, Public Law 91-596), enactment of health and

safety laws had been left principally to the individual

states. 64 Some federal legislation existed including:

the Service Contract Act of 1965, the National Foundation

on Arts and Humanities Act, the Federal Metal and Non-

metallic Mine Safety Act, and the Contract Workers and

Safety Standards Act (Construction Safety Act), but these

were applicable only to a limited number of employees

such as those who worked on federal contracts or in speci-

fic industries. 65 The rest were covered only by state

laws and each state had a different set of health and

safety regulations which might have included codes derived

from many different sets of consensus standards. Not only

did these standards vary from one state to another but

regulations were often lax, inadequate, and ineffectively

enforced. 66

64McElroy, p. 21. 	 65Ibid. 	 66Ibid.
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One major concern of the federal OSHAct was, "...to

assure so far as possible every working man and woman in

the Nation safe and healthful working conditions..." 67

One of the ways this objective was accomplished was in

setting mandatory Occupational Safety and Health stan-

dards and requiring compliance by employers and employees.

Many previously issued consensus standards were compiled,

revised where necessary, and used as the basis for OSHA

standards. 68 Current OSHA regulations that apply to emer-

gency stopping devices are found in the Occupational Safe-

ty and Health Standards for General Industry (29 CFR Part

1910). The following excerpts from this document apply

to emergency stopping of machines and emergency stop de-

vices:

Subpart 0 -- Machinery and Machine Guarding

1910.211 Definitions

(52) "Stop control" means an operator control
designed to immediately deactivate the clutch
control and activate the brake to stop slide
motion.

1910.212 General requirements for all machines

(No entries applicable to emergency stops)

67Occupational Safety and Health Act of 1970, Public
Law 91-596 (Washington, D.C., 1970), p. 1.

68McElroy, p. 27.
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1910.213 Woodworking machinery requirements

(b) Machine controls and equipment.
(1) A mechanical or electrical power control
shall be provided on each machine to make it
possible for the operator to cut off the power
from each machine without leaving his position
at the point of operation.

(4) Power controls and operating controls should
be located within easy reach of the operator while
he is at his regular work location, making it un-
necessary for him to reach over the cutter to make
adjustments...

1910.214 Cooperage machinery

(Revoked at 43 F.R. 49726, October 24, 1978)

1910.215 Abrasive wheel machinery

(No entries applicable to emergency stops)

1910.216 Mills and calenders in the rubber and
plastics industries.

(b) Mill safety controls --- (1) Safety trip control.
A safety trip control shall be provided in front and
in back of each mill. It shall be accessible and
shall operate readily on contact. The safety trip
control shall be one of the following types or
a combination thereof:

(i) Pressure-sensitive body bars. Installed at
front and back of each mill having a 46-inch roll
height or over. These bars shall operate readily
by pressure of the mill operator's body.

(ii) Safety triprod. Installed in the front and in
the back of each mill and located within 2 inches
of a vertical plane tangent to the front and rear
rolls. The top rods shall be not more than 72
inches above the level on which the operator stands.
The triprods shall be accessible and shall operate
readily whether the rods are pushed or pulled.

(iii) Safety tripwire cable or wire center cord.
Installed in the front and in the back of each mill
and located within 2 inches of a vertical plane
tangent to the front and rear rolls. The cables
shall not be more than 72 inches above the level on
which the operator stands. The tripwire cable or
wire center cord shall operate readily whether cable
or cord is pushed or pulled.
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(c) Calender safety controls --- (1) Safety trip,
face. A safety triprod, cable, or wire center cord
shall be provided across each pair of in-running
rolls extending the length of the face of the rolls.
It shall be readily accessible and operate whether
pushed or pulled. The safety tripping devices shall
be located within reach of the operator and the bite.

(2) Safety trip, side. On both sides of the calender
and near each end of the face of the roll, there shall
be a cable or a wire center cord connected to the
safety trip. They shall operate readily whether
pushed or pulled.

(e) Trip and emergency switches. All trip and emer-
gency switches shall not be of the automatically re-
setting type, but shall require manual resetting.

1910.217 Mechanical power presses

(b) Mechanical power press guarding and construction.

(7) Machines using part revolution clutches

(ii) A red color stop control shall be provided
with the clutch/brake control system. Momentary
operation of the stop control shall immediately
deactivate the clutch and apply the brake. The
stop control shall override any other control,
and reactuation of the clutch shall require use
of the operating (tripping) means which has been
selected.

(8) Electrical. (i) A main power disconnect switch
capable of being locked only in the Off position
shall be provided with every power press control
system.

(ii) The motor start button shall be protected
against accidental operation.

1910.218 Forging machines

(No entries applicable to emergency stops)

1910.219 Mechanical power transmission apparatus

(No entries applicable to emergency stops)



Subpart R -- Special Industries

1910.261 Pulp, paper, and paperboard mills.

(c) Handling and storage of pulpwood and pulp
chips.

(15) Belt conveyors.

(iv) Every belt conveyor shall have an emergency
stop cable extending the length of the conveyor
so that it may be stopped from any location along
the line, or conveniently located stop buttons
within 10 feet of each work station, in accordance
with American National Standard B20.1-1957.

(k) Machine room.

(1) Emergency stops. Paper machines shall be
equipped with devices that will stop the machine
quickly in an emergency. The devices shall con-
sist of push buttons for electric motive power
(or electrically operated engine stops), pull cords
connected directly to the prime mover, control
clutches, or other devices, interlocked with ade-
quate braking action. The devices shall be tested
periodically by making use of them when stopping
the machine and shall be so located that any per-
son working on the machine can quickly disconnect
the machine from the source of power in case of
emergency.

(1) Finishing rooms.

(2) Emergency stops. Electrically or manually
operated quick power disconnecting devices, inter-
locked with braking action, shall be provided on
all operating sides of the machine within easy
reach of all employees. These devices shall be
tested by making use of them when stopping the
machine.

(7) Rotary cutter.

(v) Electrically or manually operated quick power
disconnecting devices with adequate braking action
shall be provided on all operating sides of the
machine within easy reach of all operators.

54
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1910.262 Textiles.

(c) General safety requirements.

(1) Means of stopping machines. Every textile
machine shall be provided with individual me-
chanical or electrical means for stopping such
machines....

(h) Slashers.

(1) Cylinder dryers.

(iv) Pushbutton control. Slashers operated by
pushbutton control shall have start and stop
buttons located at each end of the machine, and
additional buttons located on both sides of the
machine, at the size box and the delivery end.
If calender rolls are used, additional buttons
shall be provided at both sides of the machine
at points near the nips, except when slashers are
equipped with an enclosed dryer.

(2) Enclosed hot air dryer.

(ii) Push-button control. Slashers operated by
push-button control shall have one start button
at each end of the machine and stop buttons shall
be located on both sides of the machines at in-
tervals spaced not more than 6 feet on centers....

(aa) Sanforizer and palmer machine. A safety trip
rod, cable, or wire center cord shall be provided
across the front and back of all palmer cylinders
extending the length of the face of the cylinder.
It shall operate readily whether pushed or pulled.
This safety trip shall be not more than 72 inches
above the level on which the operator stands and
shall be readily accessible.

(bb) Rope washers.

(2) Safety stop bar. A safety trip rod, cable or
wire center cord shall be provided across the front
and back of all rope washers extending the length
of the face of the washer. It shall operate readily
whether pushed or pulled. This safety trip shall
be not more than 72 inches above the level on which
the operator stands and shall be readily accessible.



1910.263 Bakery equipment.

(e) Mixers.

(1) Horizontal dough mixers.

(iii) Each mixer shall be equipped with an in-
dividual motor and control,...

(g) Moulders.

(3) Stopping devices. There shall be a stopping
device within easy reach of the operator who feeds
the moulder and another stopping device within the
reach of the employee taking the dough away from
the moulder.

(h) Manually fed dough brakes.

(2) Emergency stop bar. An emergency stop bar shall
be provided, and so located that the body of the op-
erator will press against the bar if the operator
slips and falls toward the rolls, or if the operator
gets his hand caught in the rolls. The bar shall
apply the body pressure to open positively a cir-
cuit that will deenergize the drive motor. ln
addition, a brake which is inherently self-engag-
ing by requiring power or force from an external
source to cause disengagement shall be activated
at the same time causing the rolls to stop instant-
ly. The emergency stop bar shall be checked for
proper operation every 30 days.

(i) Miscellaneous equipment.

(7) Conveyors.

(iii) Where hazard of getting caught exists a suf-
ficient number of stop buttons shall be provided to
enable quick stopping of the conveyor.

(1) Ovens.

(3) Safeguards of mechanical parts.

(i) Emergency stop buttons shall be provided on
mechanical ovens near the point where operators
are stationed. 6 9

69 Occupational Safety and Health Standards for Gen-
eral Industry (Chicago, Illinois), pp. 189-286.
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As can be seen from these entries, federal regulations

covering emergency stopping devices on industrial machines

have generally been extracted from those consensus stan-

dards covering processes where there has been a long estab-

lished need for such devices and a strong emphasis on the

emergency stop within the standard (such as on mills and

calenders). In those areas such as mechanical power trans-

mission where there is currently no emphasis on emergency

stopping of equipment within the consensus standard, there

is also no federal regulatory requirement. Furthermore,

within the general requirements for all machinery (29 CFR

1910.212) there is no reference made to an emergency stop-

ping device nor the need for providing the capability to

quickly stop machines. It appears that the importance of

quickly stopping equipment during emergencies has not been

recognized or has somehow been ignored; it is not a con-

sistent, mandatory federal requirement.

Military Standards 

Military standards have often proved to be very spe-

cific and detailed when specifying equipment requirements.

Perhaps this results due to a need for consistency among

many thousands of units purchased and from a desire to ad-

vantageously apply ergonomic principles. It is expected

that military personnel may engage in life-threatening

activities and this is how they are trained. In order
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for soldiers to respond quickly and effectively under

emergency situations they are conditioned with the de-

sired response and this is reinforced through frequent

practice. Furthermore, the advantage of reinforcing

prelearned human expectancies cannot be ignored. Man-

ipulation of controls is a function humans learn from a

very young age and it would not be sensible to violate

long established expectancies between control movements

and system response. Therefore, a significant emphasis

on machine controls has been included in manuals of mili-

tary specifications. The following excerpts from the

Military Standard Human Engineering Design Criteria for

Military Systems, Equipment and Facilities, MIL-STD-1472C

are applicable to emergency stopping devices;

5.4.1.3 Arrangement and Grouping.

5.4.1.3.3 Location of Primary Controls. The most
important and frequently used controls shall have
the most favorable position with respect to ease
of reaching and grasping...

5.4.1.3.4 Consistency. The arrangement of function-
ally similar, or identical, primary controls shall
be consistent from panel to panel throughout the
system, equipment, or vehicle,...

5.4.1.4 Coding.

5.4.1.4.1 Methods and Requirements. The use of a
coding mode (e.g., size and color) for a particular
application shall be governed by the relative ad-
vantages and disadvantages of each type of coding.
Where coding is used to differentiate among controls,
application of the code shall be uniform throughout
the system...
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5.4.1.4.2 Location Coding. Controls associated with
similar functions should be in the same relative lo-
cation from operator work station to work station
and from panel to panel.

5.4.1.4.3 Size-Coding. No more than three different
sizes of controls shall be used in coding controls
for discrimination by absolute size. Controls used
for performing the same function on different items
of equipment shall be the same size...

5.4.1.4.4 Shape-Coding. Primary use of shape coding
for controls is for identification of control knobs
or handles by "feel;" however, shapes shall be iden-
tifiable both visually and tactually...

5.4.1.4.5 Color-Coding.

5.4.1.4.5.1 Choice of Colors. Controls shall be
black (17038, 27038, or 37038) or gray (26231 or
36231). If color coding is required, only the fol-
lowing colors identifiable by FED-STD-595 shall be
selected for control coding.

a. Red, 11105, 21105, 31105
b. Green, 14187
c. Orange-Yellow, 13538, 23538, 33538
d. White, 17875, 27875, 37875
e. Blue, 15123 shall be used if an additional

color is absolutely necessary.
5.4.1.4.5.4 Control Panel Contrast. The color of
the control shall provide contrast between the panel
background and the control.

5.4.1.8 Prevention of Accidental Activation.

5.4.1.8.3 Rapid Operation. Any method of protecting
a control from inadvertent operation shall not pre-
clude operation within the time required.

5.4.3 Linear Controls.

5.4.3.1 Discrete Linear Controls.

5.4.3.1.1 PushButtons (Finger or Hand Operated).

5.4.3.1.1.1 Use. Push buttons should be used when
a control or an array of controls is needed for mo-
mentary contact or for activation of a locking cir-
cuit, particularly in high-frequency-of-use situa-
tions.
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5.4.3.1.1.2 Shape. The push button surface should
normally be concave (indented) to fit the finger.
When this is impractical, the surface shall provide
a high degree of frictional resistance to prevent
slipping. 70

The following excerpts applicable to emergency stop-

ping devices are from the Military Handbook Human Factors 

Engineering Design for Army Material, MlL-HDBK-759A(MI):

1.1 CONTROLS .

1.1.1 General Criteria

1.1.1.3 Arrangement and Grouping

1.1.1.3.1 Primary Controls - The most important and
frequently used controls should have the most favor-
able positions with respect to ease of reaching and
grasping...

1.1.1.3.4 Emergency Controls - Emergency function
controls should be located where they can be iden-
tified and reached quickly. However, their location
should not be such that accidental use or inadvertent
contact could result in serious system malfunction
and/or ultimate injury to personnel.

1.1.1.3.5 Consistency - When functionally similar
control interfaces appear in more than one operator
station within the same or similar systems, control
locations and arrangements should also be the same
or at least similar.

1.1.1.4 CODING.

1.1.1.4.1 Factors to be Considered. Many methods of
coding are available. The choice of coding should
be based on such factors as:

70Military Standard Human Engineering Design. Criteria
for Military Systems, Equipment and Facilities, MIL-STD-
1472C (Washington, D.C., 1981), pp.64-69, 84, 87.



61

(a) Types of coding already being used.

(b) Kinds of information to be used.

(c) Nature of the tasks to be performed, and
the conditions under which they will be performed

(d)Number of coding steps or categories avail-
able (e.g., the number of different knob shapes
available, and how many of those shapes users can
discriminate easily).

(e) Need for redundant or combination coding.

(f) Standardizing coding methods.

Any coding method that is selected should be used
consistently, and with consistent meaning, through-
out the system. Consideration should be given to
coding used in other systems which the operator may
be employed (either separately from or in conjunction
with the system being designed). The method should
allow controls to be identified easily by sight or
touch and discrimination from each other by color,
size, shape and location.

1.1.1.4.2 Color.

1.1.1.4.2.3 Emergency Controls. All emergency con-
trols should be coded red. To give these emergency
controls the visual emphasis they demand, only a
bare minimum of other, less important controls should
be color coded. Colors used to code critical con-
trols should contrast sharply with those used for non-
critical controls.

1.1.1.4.2.5 Control-Panel Contrast. Control color
should contrast with the panel on which they are
mounted.

1.1.1.4.3 Shape.

1.1.1.4.3.1 Design. Coding - The primary reason for
shape coding controls is to facilitate identification
by "feel." However, shapes should be identifiable
both visually and tactually. When shape coding is
used, the coded feature should not interfere with
the ease of control manipulation. Shapes should be
equally identifiable regardless of the position of
the control knob or handle,...

1.1.1.4.3.2 Similar Functions. Controls with similar
purposes or functions should have the same shape.
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1.1.1.4.3.3 Dimensions. When operators must distin-
guish controls by touch alone, the shape of the con-
trol should be free of sharp edges or corners and at
least:

(a) Height: 	 13 mm or larger

(b) Width: 	 13 mm or larger

(c) Depth: 	 6.5 mm or larger

1.1.1.4.4 Size.

1.1.1.4.4.1 Discrimination of sizes. When coding con-
trols by size, it is important to make sure sizes
differ enough that users are not likely to confuse
them. Users can learn to discriminate two or three
different sizes of controls; if more coding steps
are needed, another coding system should be used.
When coding knobs with diameters between 13 mm and
100 mm by size, each knob's diameter should be at
least 20% larger than the next smaller one.

1.1.1.4.4.2 Similar Functions. Code sizes should
be consistent when controls have similar functions
on different items of equipment.

1.1.1.5 Labels.

1.1.1.5.1 General. Controls should have labels (on
panel or control) that:

(a) Identify what they control.

(b) Show how to operate the control.

1.1.10 Push Button Switches (Hand-Operated) 

1.1.10.1 Application - Push button controls should be
used primarily when a simple switching between two
conditions are required, selection of alternate on-
off functions from an array of related conditions,
or subsystems functions,...

1.1.10.5 Push Button Cap Shape - Cap surfaces should,
in general, be flat, but with rounded edges. How-
ever, for proper finger centering, which must be in-
sured, the cap surface may be concave. General cap
shapes may be round, square, or rectangular as long
as they provide adequate finger, thumb or hand con-
tact area, and are compatible with identification or
legend requirements.
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1.3.6 Control/Display Integration.

1.3.6.6 Importance of Use. Controls and displays
which are critical to operation should be placed
in preferential positions...

1.3.6.8 Emergency Use. Emergency displays and con-
trols should be located where they can be seen and
reached with minimum delay (e.g., warning lights
within a 30-degree cone about the operator's nominal
line of sight; emergency controls close to the near-
est available hand in its nominal operating posi-
tion. 71

Military Standards Summary

As can be seen from these excerpts, military require-

ments for system controls are very much influenced by hu-

man factors principles (ergonomics). The relationships

of human factors to emergency response are covered in de-

tail in chapter III so they will not be examined here.

However, some important principles can be gleaned from

these military requirements; in review, the following re-

commendations with regard to emergency stopping devices

can be made:

(1) The most important controls, including emer-

gency controls, should have the most favor-

able positions on a control panel.

(2) Consistency in location, size, and shape should

71Military Handbook Human Factors Engineering Design
For Army Material, MIL-HDBK-759A(MI) (Washington, D.C.,
1981), pp. (1-1), (1-7)-(1-12), (1-43), (1-49), (1-168),
(1-173).



be maintained from panel to panel throughout

each system.

(3) Consistency between systems is highly desir-

able.

(4) No more than three different sizes of con-

trols should be used.

(5) Emergency controls should be coded red.

(6) A minimum of other controls should be color

coded to provide emphasis to emergency con-

trols. Most controls should be black or gray.

(7) Control panels should be colored to provide

good contrast with controls.

(8) Methods of protecting controls from inad-

vertent activation should not impair operation

within the time required.

(9) Pushbuttons should be shaped to fit the finger/

hand or surfaces should provide a good grip.

(10) Shape coded controls should be discriminable

both visually and tactually.

(11)Minimum pushbutton size for tactual discrimi-

nation should be 13 mm (each edge, diameter,

etc.) and 6.5 mm in depth.

(12) Size coded controls should be limited to three

different sizes. Each knob diameter should be

20% or more larger than the next smaller dia-

meter.

(13) Controls should be labeled.

64



CHAPTER III

HUMAN FACTORS AFFECTING AN EMERGENCY RESPONSE

Response Timex Human-Machine Systems 

The question: how fast can a human being respond in

an emergency is universally asked. Everyone working under

the forces of nature or the laws of physics governing man-

made machines needs to respond to changing environmental

and mechanical conditions. In normal daily events there

might not be any life-threatening emergency requiring an

immediate response; and no one needs to know exact times

required to perform mundane tasks, but a general under-

standing of human limitations, especially the delays that

occur within a human-machine system during emergency re-

sponse is required.

After many accidents a statement is made regarding

what should have been done to prevent the damage. Often

these comments seem ridiculous in contrast with the seri-

ous effects of the event, but the notion that "hindsight

is clearer than foresight" does present one important con-

cept: the realization that if someone had reacted correct-

ly before some critical time, the disaster could have been

avoided, or loss and suffering could have been minimized.

In other words, there is always some time period during

which a correct response can change the outcome of an

65
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impending disastrous event. Machines can be stopped be-

fore they break down. Water can be drained before a dam

breaks and towns can be evacuated before a volcano erupts.

Clearly, the question then becomes: does the human being

in a position to avert this disaster have the ability to

recognize the danger and the time to make the correct de-

cision and respond?

Any human emergency response assumes that the follow-

ing processes have occurred: receptor stimulation, neural

conduction to the brain, perception and recognition, neu-

ral conduction to the muscles, and muscular contraction. 72

These activities take time. "The human operator has a

limited response speed, frequency, and flexibility." 73

In effect there is a minimum time delay that can be ex-

pected from any person required to detect an input signal,

process the information, select a course of action, and

complete the required physical motions. This is known as

the response speed. There is also a limitation to the

frequency of data input that can be analyzed and the num-

ber of responses that can be made from that data in any

increment of time. Lastly, human flexibility is limited

in the number of sensory channels that can be simultane-

ously processed (i.e., audible, visible, tactile, etc.). 74

72Michael J. Wargo, "Human Operator Response Speed,
Frequency, and Flexibility: A Review and Analysis," Human
Factors, 9(3) (June, 1967),223.

p. 221. 	 74Ibid.
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Total response time of any human-machine system has

been reported to consist of various delays and lags that

are operator and system imposed; these are

(1) Display lags and delays

(2) Human input acquisition and receptor delays

(3) Neural transmission delays

(4) Central processing delays

(5) Muscle activation time

(6) Movement time

(7) System dynamics lags and delays 75

Items (1) and (7) represent delays that result due

to the mechanical and electrical characteristics of the

system design. ltems (2) through (6) represent delays

that result due to the human factor in the human-machine

system and these must be considered in the design of any

emergency controls.

Operator Delays During Response to Emergency Stimuli 

Human input acquisition and receptor delays occur as

a function of the person's level of vigilance, the form,

intensity, quality, and surround of the input signal, and

as a function of the chemical/electrical transduction pro-

75Wargo, p. 222.
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cess of the particular sense organ. 76

Neural transmission delays occur as a result of the

time required for neural impulses to traverse the chain

of individual nerve cells (neurons). This is a biochem-

ical energy conversion process. For any human stimulus-

response action two neural transmissions are required:

the afferent, the impulse that travels from the receptor

to the cerebral cortex, and the efferent that travels

from the cortex to the voluntary muscles. 77 Delays occur

as a function of fiber composition, diameter, length, and

the number and complexity of synaptic connections. 78

Central processing delays occur as a result of the

time required to perceive, recognize, discriminate, and

identify a particular emergency situation as different

from the norm. 79 These are the result of the thinking

and decision making processes and generally are the most

variable. When the complexity of the situation increases

such as when there is a choice of responses that can be

made, the time required for central processing can in-

crease dramatically. 80

Muscle activation time is defined by Wargo as the

time required for peak muscle tension to be developed

after the myoneural junction is stimulated. 81 This time

is known to vary as a function of muscle type, mass, and

76Wargo, p. 223.	 777Ibid.	 78Ibid.

79 Ibid., p. 224.	
80Ibid.	 81 Ibid.
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innervation (the arrangement or disposition of nerves

within the muscle). 82

Movement time occurs as a result of the distance be-

tween the body part to be used for control and the control

device. Delays occur as a function of distance, muscle

activation time, mass of the body part, inertia, and de-

sign of the control device. Frequently, movement time is

divided into two segments» the time required to complete

the gross movement, and the time to make fine adjustments;

these would be designated "primary" and "secondary" move-

ments. 83 Wargo estimates that primary movements tend to

reduce error to within 10% and secondary movements to with-

in 1% of the original distance; a minimum movement time of

0.3 second can be expected when making even a one inch mo-

tion with the hand, more than half the total response

time. 84

Reaction Time Experiments 

In laboratory experiments the simple reaction time

(RT) is defined as the time lag between stimulus onset and

the first visible sign of a response (i.e., the first de-

tectable movement). 85 Movement time is excluded. The dis-

junctive or choice reaction time is defined as the time

82Wargo, p. 224. 	 83Ibid., P. 233. 	 84lbid.

85Ibid., p. 225.
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lag between stimulus onset and first visible sign of re-

sponse when the correct response depends on which of a

variety of stimuli is presented. 86 For example: if the

presentation of a red or green colored light means that

a subject should press a corresponding red or green emer-

gency stop button, this would be a choice reaction time

measurement. Vargo summarizes operator delays for the

simple and choice reaction times as follows: 87

Delay Basis 	 One Choice 	 Disjunctive 

Receptor Delays 	 1-38 	 1-38

Afferent Transmission

Delays 	 2-100 	 2-100

Central Process Delays 	 70-100 	 90-300

Efferent Transmission

Delays 	 10-20 	 10-20

Muscle Latency and

Activation Time 	 30-70 	 30-70

Reaction Time or

Total Delay 	 113-328 	 133-528

(Times in milliseconds)

As can be seen from the table the best simple reaction

time that could be expected of an experimental subject

86,Wargo, p. 225. 87Ibid., p. 224.
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would be approximately 0.113 second. Furthermore, Wargo's

estimate presupposes that the subject is trained, in posi-

tion for the response, and also is prewarned a few seconds

prior to stimulus presentation; a situation that could

hardly be expected under actual emergency conditions. It

would be difficult to guess how an industrial operator

might compare with these estimates when reacting under an

actual emergency condition. It is likely that they have

other jobs to do besides vigilance of emergency stopping

procedures. They must observe, control, and record many

operating parameters during a shift; therefore, an aware-

ness of impending crisis cannot be assumed and the oper-

ator could not be expected to have his/her hand resting

on the control device prior to the emergency signal.

Receptor delays, neural transmission time, and mus-

cle activation time are factors that would not be expect-

ed to vary significantly with subjects performing multiple

experimental trials or industrial operators. These delays

are functions of the transduction process at the receptor

level, the composition and length of particular nerves in

the neural pathway, and the rate of biochemical informa-

tion transmission. Therefore, it would not be expected

that any operator training or practice could affect these

in any significant way. Central processing delays and

movement delays on the other hand would be expected to

vary with many factors, such as: the operator's cognizance

of the emergency situation, previous training, position
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with respect to the control, personal activity, and the

design of the control device. With individuals perform-

ing multiple experimental trials the effects of practice

and fatigue would be expected to affect experimental re-

sults.

Simulating Uncertainty

When testing human responses to emergency signals,

subjects often perform under minimum uncertainty. They

know what signal to expect and the required response.

Experimenters place subjects where response is made easy

and movements are practiced in advance. The emergency is

not real and no damage occurs if subjects respond incor-

rectly or too slowly. As a result, motivation during

testing conditions cannot approach the level encountered

in a crisis where panic can affect the outcome. Often

there is no real comparison between a test subject's re-

sponse and the response of an accident victim. A subject

knows that it's only a test, but a frightened worker

caught in a machine instantly senses the danger; a correct

response in the latter case is imperative, it may save

life or limb. Can a stop button even be reached? Perhaps

not.

A major problem when studying human emergency re-

sponse is how to experimentally produce sufficient un-

certainty to provide meaningful results. Time uncertainty
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is the only variable that can be easily controlled by an

experimenter and it is by definition the only uncertainty

a subject has during simple reaction time tests. 88 Un-

certainty results due to subjects' imperfect internal

clocks and variability of stimulus presentation. ln a

classic experiment Klemmer studied the relationship be-

tween reaction time and subjects' uncertainty about time

of stimulus presentation.

In a first series of tests a prestimulus warning

click was given at eleven second intervals with the stim-

ulus flash (neon light) presented thereafter. The time

period between click and flash was designated the "fore-

period" and foreperiod mean and variability were changed

between tests. In a second series of tests no prestimulus

warning was given at all and stimuli were presented at

identical intervals during each sequence of trials. Inter-

stimulus intervals were then changed for later sequences.

The results showed two important human tendencies:

(1) Reaction time increases with foreperiod vari-

ability and with mean foreperiod above some

small optimum value (less than one second).

(2) lt is not the immediate foreperiod that dra-

matically affects reaction time but the dis-

8 8Edmund T. Klemmer, "Time Uncertainty in Simple
Reaction Time," Journal of Experimental Psychology, 51(3)
(1956), 179.
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tribution of foreperiods in which it occurs. 89

It is doubtful that these short-term observations

could be extrapolated to explain human response during

very long interstimulus intervals that would be expected

for emergencies. Even in those industries that require

frequent emergency stops of machines due to jams, mis-

feeding of stock, misalignments, etc., interstimulus

intervals would likely be measured in minutes or hours

rather than seconds as in Klemmer's experiment. In any

event, there is one clearly established factor: that ex-

pectation can influence a person's state of readiness and

can potentially shorten response time. In an industrial

setting such prestimulus warnings could occur as changes

in pitch of machine sounds, increased vibrations, gauge

changes, etc., and these could warn an alert operator to

an impending emergency. However, there is no guaranty

that this will occur; a sudden entanglement in a machine

might occur without any conscious expectation.

Human Expectation in Emergencies 

This problem of expectation was studied by Johansson

and Rumar who tested automobile drivers' response to emer-

89Klemmer, p. 184.
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gency signals." The purpose of the experiment was two-

fold. First they wanted to obtain a correction factor

to be applied to brake reaction time data for estimating

the difference between situations where braking is ex-

pected and unexpected. Second they wanted to determine

the distribution of a random sample of drivers when the

drivers knew they would be required to brake their vehi-

cles suddenly at some time between two check-points.

The experiment was performed in two parts. During

the first part drivers of vehicles along a chosen road

were stopped by police and asked if they would partici-

pate in the experiment. lf they agreed, they were told

that at some time during their next ten kilometers of

travel they would hear a loud horn and at that signal

they were to immediately step on the brake. They were

not to completely stop their cars but when the horn stop-

ped they were to release the brake and continue on their

way. The horn signal was initiated by an experimental

assistant located five kilometers up the road. The as-

sistant recorded the reaction time of each driver by

pressing a stop key at the instant the vehicle's brake

lights were seen. The human variability of the assistant

was estimated at less than 4% of total recorded variabil-

ity and his mean response time was subtracted from each

90 Gunnar Johansson and Kare Rumar, "Drivers° Brake
Reaction Times," Human Factors, 13(1) (February, 1971),
23-27.
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of the data.

For the second part of the experiment, five experi-

enced drivers who had also participated in the first

phase of the experiment were chosen. Each driver's vehi-

cle was fitted with an electronic timer that would initi-

ate an alarm signal (buzzer) and record the elapsed time

for a braking response. The interstimulus intervals were

set to be in excess of one hour and, since the cars were

used mostly for short trips, drivers did not know during

which trip a signal could be expected; intersignal vari-

ability was known to be from a minimum of about one hour

to a maximum of more than a week which depended solely on

the car's use.

The results showed that the histogram of reaction

times for 321 expectant drivers (first phase of the ex-

periment) had a positively skewed appearance, although

the authors did not report this observation. The median

brake reaction time was 0.66 second with a range of 0.3

to 2.0 seconds. Mean reaction time was not reported but

can be estimated at about 0.74 second from the histogram

supplied. 91

For part two of the experiment all five drivers

tested showed longer brake reaction times when the sig-

nals occurred unexpectedly; however, it appears that the

authors did not test for statistical significance between

91 Johansson and Rumar, pp. 25-26.
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means, preferring rather to work with observed medians.

A correction factor was computed from the data and indi-

cated that the unalerted brake reaction time would be

about 1.35 times longer than the alerted time. 92

Due to the small number of drivers used for part two

of the experiment, and the authors' lack of rigor in sta-

tistical testing it is questionable if the data obtained

show truly significant differences between the expectant

and unexpectant conditions. However, the fact that the

distribution obtained in part one appears to be positive-

ly skewed is worth noting. The question might be asked:

is the observed skewness of drivers' reaction times re-

lated to expectancy? ln other words, when comparing re-

sponse time distributions from the expectant and unexpec-

tant parts of this experiment would it be found that the

unexpectant case is more positively skewed? Unfortunate-

ly the authors did not supply the distribution of data

from part two of the experiment so this comparison can-

not be made.

The answers to these questions could provide some

insight into how humans respond under true emergency con-

ditions. Real emergencies often occur with near zero ex-

pectancy (i.e., they are almost totally unexpected).

Those persons who know what to do respond immediately;

those who don't know, hesitate. Still others may freeze.

92Johansson and Rumar, p. 26.
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Therefore, it seems that the distribution of human re-

sponse times for unexpected occurrences should be skewed.

Infrequent Stimuli 

Since emergency response appears to be highly de-

pendent on human expectation and previous training the

questions remain: how is response affected when stimuli

occur very infrequently? What improvements could be seen

if subjects were conditioned to respond over an extended

time period? Warrick, Kibler, and Topmiller approached

these questions by asking secretaries to press a one inch

diameter pushbutton as quickly as possible after hearing

an emergency buzzer. 93 The buttons were located at the

lower left sides of the typewriters and identical arrange-

ments were made for five secretaries. The signal inten-

sity was measured to be at least thirteen decibels above

background noise level while typing but it was determined

by the experimenters that the sound did not elicit "star-

tle response."

The experiment lasted over 120 working days and each

subject received 48 signals at random times. Of the 48

signals only 36 were presented while secretaries were

actually typing and responses to these were used as data.

93Melvin J. Warrick, Austin W. Kibler, and Donald A.
Topmiller, "Response Time to Unexpected Stimuli," Human
Factors, 7(1) (February, 1965), 81 -86.
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The other responses were discarded; their inclusion in

the experiment served to increase temporal uncertainty.

Signals were presented with a mean interstimulus inter-

val of 2.5 days and a standard deviation of 1.73 days.

Also, as part of the experiment, two sets of control

trials were run in blocks of twenty trials; this was done

at the end of every twenty working days. One set was run

with the women typing but they were alerted two to five

seconds ahead of signal presentation. The other set was

run with the same alerted condition but subjects had

their fingers resting lightly on the stop buttons.

The results indicated a slight but consistent im-

provement in performance over the six month duration of

the experiment for the unexpectant condition. The 10th,

50th, and 90th percentile response times for the last six

unexpected signals were 0.51, 0.61, and 0.82 second. The

mean for all data in the unalerted condition was not giv-

en by the authors but was calculated from the frequency

distribution as 0.70 second. In considering the first

block of six trials per subject (first four weeks) as

representing minimum practice, 90% of the unalerted re-

sponse times were shorter than 1.0 second. As training

increased, the last block of six trials per subject (last

four weeks) showed 90% of the unalerted response times

were shorter than 0.8 second."'

94Warrick, Kibler, and Topmiller, pp. 84-86.
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The Startle Response 

In the preceding discussion it has been seen how

temporal uncertainty and human expectation can affect

times for response to emergency signals. In general,

many observed experimental response times have been some-

what longer than Wargo estimated. Considering a reaction

time of 0.33 second (from Wargo's maximum simple reaction

time estimate) and an expected movement time of 0.30 sec-

ond for simple hand motions, the total would be 0.63 sec-

ond. 95 Nonetheless, many experiments, including the

Warrick, Kibler, Topmiller study indicate that some sub-

jects' response times to emergency signals can exceed 

this estimate. In fact, the above authors removed one

subject's data from the computations because her response

times (median = 1.58 seconds) consistently exceeded the

90th percentile of the distribution for the other five

subjects. 96 Is it fair to assume that her data do not

represent normal expected variability within the human

population? Certainly not; but it's true her data might

seriously bias the mean of an extremely small sample (6

subjects).

Although these intersubject differences could be at-

tributed to normal human variability which might include

95Wargo, pp. 224, 233.

96Warrick, Kibler, and Topmiller, pp. 83-84.
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physical or mental differences between subjects, the pos-

sibility exists that subjects' emotional states could

also affect the response. Perhaps the above mentioned

subject was naturally slow to respond due to an unhur-

ried emotional state. In this case the alarm might not

have been sufficiently intense for her to experience the

true sensation of emergency.

lt has been shown that reaction time becomes shorter

as stimulus intensity increases. 97 Furthermore, if a

subject is experiencing a continuous stimulus, it has

been shown that reaction time becomes shorter as the mag-

nitude of change in stimulus intensity increases. 98 The

most extreme example of this phenomenon could occur in an

industrial accident where stimulus intensity could in-

crease dramatically from some low level (i.e., an im-

pulse). The sudden shock of an electrical explosion

could be an example. Teichner, however, claims that the

observed decrease in response time is a non-linear

effect. 99 The question then becomes: what type of func-

tion is the response? It is here that the experimental

data are not quite clear. One possibility suggested by

Teichner is a parabolic function. 100 If this were the

case then response times could be expected to increase

97Warren H. Teichner, "Recent Studies of Simple
Reaction Time," Psychological Bulletin, 51(2) (1954),
132.

100lbid .99Ibid., P. 132.98Ibid., P. 133.
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with louder or more sudden stimuli after some minimum is

reached. This could explain the freezing effect as dem-

onstrated by some persons in extreme emergencies.

Motor effects of very strong audible stimuli were

studied by Davis (i.e., the startle response). 101 In his

experiment subjects were asked to lie down and relax in a

noise-free environment. Active electrodes were placed

two to three inches above the elbows on both forearms and

normal background activity potentials were determined.

After approximately five minutes of relaxation a sudden

sound stimulus (shock wave) of 500 hertz was generated.

Three levels of approximately 90, 95, and 99 decibels

were used in the experiment. Subjects had been previous-

ly instructed to do nothing in response to the sounds.

Stimulus duration was four seconds for test A and two sec-

onds for test B.

The first test was designed to study the effects of

stimulus intensity and duration on muscular action poten-

tials while the second was to observe the effects of pre-

stimulus tension (a weight held in the hand) on the re-

sponse. The following results were obtained:

(1) The startle response consists of two distinct

responses designated by Davis as a and b.

101 R. C. Davis, "Motor Effects of Strong Auditory
Stimuli," Journal of Experimental Psychology, 38 (1948),
257-275.
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(2) The a-response has a latency of about 0.1

second, peaks during the next 0.1 second,

and almost disappears during the next 0.5

second.

(3) The a-response rapidly adapts and practically

disappears with six or more stimulations.

(4) The a-response varies with stimulus intensity

and has a threshold below which it would prob-

ably not appear.

(5) The b-response reaches a maximum at about 1

second after stimulus onset, remains at that

level for about 1 second, and then declines

slowly.

(6) The b-response appears not to be affected by

stimulus intensity or repetition.

(7) Both a- and b-responses are related to the

state of muscular tension existing just prior

to stimulus onset. 102

Everyone has felt the startling effect of a sudden

event so the results of Davis' work are not that surpris-

ing. But the notion that there may be two combined and

distinct responses is interesting indeed. ln considering

the a-response, it is particularly short-lived and could

explain the visible jump humans emit when surprised. How-

102Davis, pp. 274-275'
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ever, a problem could develop with human response to

startling emergencies due to tensions induced in mus-

cles not essential for making the response. Studies of

extraneous tension during reaction time have generated

conflicting conclusions when relating tension to time of

response. 103 The possibility exists that a startled op-

erator might react slower if the initial shock is suffi-

cient to elicit an a-response.

The b-response was shown to be much longer in dura-

tion and appeared to be unrelated to stimulus intensity

or repetition. lt could be a prolonged state of readi-

ness to react brought on by the stimulus. Since it does

not appear to die out with repetition, in those industries

where operators are subjected to repeated loud sounds

(a punch press operator for example), it could bring on

a level of tension and annoyance incompatible with proper

emergency response.

Visual Feedback

In most reaction time studies subjects respond to a

signal by reaching to and activating some type of control.

The verification that the response is complete usually

occurs due to a combination of visual, audible, and tac-

tile feedback. But what of the time period during which

10 3Teichner, pp. 139-140.



85

the reaction takes place? lt has often been suggested

that human response, control of precise hand and arm

motions, is analogous to "servo-response." 104 ln other

words, human response involves the continuous comparison

of input and output with the error between the two used

as the basis for control. Arm motions, under this theo-

ry, are guided by a series of visual error measurements

between the actual hand position and the desired target;

changes in position result from an effort to reduce this

error to zero. It is further assumed that motions made

without visual feedback (i.e., blindfolded) require some

form of mental imagery as a substitute.

The value of this visual feedback was questioned in

an experiment by Taylor and Birmingham. They devised an

experiment to suddenly disrupt subjects' visual feedback

on a manual tracking task. In a first test subjects were

presented with a visual target which jumped quickly to

the left or right and could be brought back to center

with proper manipulation of a joystick. After several

successful maneuvers of the target suddenly the joystick

was disconnected and the target would no longer respond.

The experimenters observed that the subjects' now futile

response pattern did not change even though the target

could not be brought back to center. For a second test

1 0 4Rube Chernikoff and Franklin V. Taylor, "Reaction
Time to Kinesthetic Stimulation Resulting From Sudden Arm
Displacement," Journal of Experimental Psychology, L3(1)
(January, 1952), 1.
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the target was suddenly made to respond in the opposite

direction. The subjects' initial response pattern did

not change although a second opposite motion of the joy-

stick was ultimately made. 105

These studies led the experimenters to reject the

servo hypothesis and conclude that visual feedback during

a first reaction time period could not affect a response

already in progress. Once a quick response was started

it ran to completion; any adjustments were made during a

later and distinct time period. 106

Further analysis of the servo hypothesis was made by

Chernikoff and Taylor. 107 They devised an experiment to

test reaction time to kinesthetic stimulation (sudden mo-

tion of a body part). The kinesthetic stimulus was pro-

vided by attaching a subject's arm to a splint which was

held by an electromagnet. The splinted arm was allowed

to drop from a high starting point and the subject re-

sponded by either stopping the arm motion (one part of

the experiment) or pressing a button with the opposite

hand. In the first part of the experiment a subject's

response was indicated by the onset of the change in ac-

celeration as measured electronically.

The results indicated: "that kinesthetic reaction

time is too long to permit continuous voluntary control

105Chernikoff and Taylor, p. 1. 	 106 Ibid.

107Ibid., pp. 2-8.
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of short duration hand and arm movements by information

furnished through feedback." 108 The authors proposed a

dual hypothesis of control where "volitional processes"

issue orders for body movements and "nonvoluntary lower

centers" execute the movements without further instruc-

tion. 109

The human factors demonstrated in these two impor-

tant experiments bear a direct relationship to human emer-

gency response. In an industrial accident requiring a

manual activation of an emergency stopping device, a hu-

man being's initial response will likely follow through

to completion, whether or not the response is in error

(i.e., if a stopping device is missed or not pushed hard

enough). lf an error is made another separate and dis-

tinct response will be required after feedback confirms

the failure. lf the accident involves an entanglement

in a machine which could impart enough energy to throw

the person off balance, the probability of missing the

stopping device could greatly increase. A correct ini-

tial response would require instant human recognition of

body position and acceleration with respect to the ma-

chine and an evaluation of where the body will be (with

respect to the stopping device) when the response is in-

itiated. In other words, the victim will, in effect, be

required to hit a moving target; not because the stopping

109Ibid.108Chernikoff and Taylor, p. 8.
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device is in motion, but rather, because his/her body is

in motion with respect to the target. The difficulties

in performing this feat while simultaneously coping with

the fear and pain of entanglement could cause delay or

ineffectual response if the stopping device is not in a

familiar position, readily accessible, and easily acti-

vated.

Motor Reaction

One of the motor reactions commonly required in any

human control operation is the movement of a limb (often

an arm) as quickly as possible from one position in space

to another. 110 The purpose of the motion, however, is

more than just to accurately locate the limb in space;

frequently the hand or foot is required to operate some

type of mechanical control such as a knob, switch, push-

button, or lever. Therefore, it is often desired to reach

the control location both as quickly as possible and with

a minimum of error and tremor. 111

It has already been stated that positioning motions

can be divided into primary and secondary movements. Pri-

mary or gross movements merely transport the limb to the

110 Judson S. Brown and Arthur T. Slater-Hammel, "Dis-
crete Movements in the Horizontal Plane as a Function of
Their Length and Direction," Journal of Experimental Psy-
chology, 39 (1949), 84.

111Ibids
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general vicinity of required activity while secondary or

fine adjustments are necessary to compensate for any re-

sidual error. In an experiment by Brown and Slater-Hammel

these primary and secondary motions were studied.

For the experiment subjects were asked to move a

pointer, at the sound of a buzzer, as quickly and accu-

rately from one position in space to another along a

marked board. Through a reduction pulley arrangement,

motions of the pointer were transferred to a pen on a

strip recorder, thereby providing a continuous record of

pointer velocity and acceleration. The results showed

that in all records the onset of the stimulus was follow-

ed by a brief interval (the reaction time), then a rapid

acceleration and an apparent uniform period of high veloc-

ity before decelerating to zero; smooth changes were noted

between phases of increasing acceleration, relative uni-

form velocity, and deceleration. Most records showed

that the primary movement ended with the pointer either

short of or beyond the terminal line and secondary move-

ments resembled the familiar graphs of underdamped, crit-

ically damped, or overdamped oscillations. 112

For the experiment the following important conclu-

sions were reached:

(1) The primary movement, which consists of a rapid

112Brown and Slafer-Hammel, pp. 84-95.
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initial acceleration and a period of relatively

uniform velocity may on occasion terminate at

the exact desired point, but usually does not.

(2) A secondary corrective motion will usually be

required which may take on one of the typical

patterns of damped oscillation.

(3) Increases in length of movement were associated

with corresponding increases in duration of pri-

mary movement, velocity of movement, and varia-

bility in both time and speed.

(4) Secondary corrective movements remained relative-

ly constant for total movements within the range

of approximately 10 to 40 centimeters.

(5) Short excursion primary movements were usually

followed by long duration secondary move-

ments. 113

The important concept of this experiment in relation

to emergency stop motions is that overshoot or undershoot

of a limb in motion will occur in the majority of cases.

If the emergency stopping device is not sufficiently

large to allow for error, the initial movement of the

hand (or foot) may miss the device causing a delay in

activation.

113Brown and Slater-Hammel, pp. 94-95.
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Training

The discussion of relevant human factors so far has

focused on some of the aspects of actually reaching for

a control device. This assumes that the operator knows

where the control is and does not need to select the de-

vice from among other controls that may be located in the

same vicinity. For example: the secretaries in the

Warrick, Kibler, Topmiller experiment did not need to

discriminate between controls. If the typewriter keys

are excluded, there were no other devices to be confused

with the stop button during emergency response. When the

signal was given there was only one thing to do; no deci-

sion had to be made. Likewise, in the Johansson and Rumar

experiment drivers did not need to discriminate. To an

experienced driver reaching for the brake pedal is a nor-

mal event and the only mental process required during the

experiment was an association of the audible signal with

a need for a braking response.

However, in the industrial environment things may

not be that easy; controls are becoming increasingly more

complex. lt is not uncommon to find seemingly incompre-

hensible arrays of lights, switches, and knobs on the

same panel; lights flash different colors, knobs and

switches control different functions, and alarms sometimes

call for immediate attention. How then can an operator

in an emergency quickly decide which control to use?
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Quite often training is an important factor. As was

shown in the experiment with secretaries, response time

significantly decreased with practice over the six month

period. The effect has also been noted in other studies

of simple reaction time. 114 However, the simple reaction

time does not require any complicated decision making

process; Teichner proposed that any improvement observed

with practice might be due, not to the effect of learning

on the reaction itself, but on learning the proper pre-

paratory interval. 115

The choice reaction time would more nearly corre-

spond to an industrial environment where operators need

to decide when and what response is required depending

on conditions observed. Many studies have found a sig-

nificant correlation between the number of choices and

the time needed to react. 116 It has been determined that

decision reaction time varies as a direct function of the

number of choices available. 117 The following data have

been reported assuming each choice has an equal proba-

bility of occurrence:

114Teichner, p. 139. 	 115Ibid., pp. 139-140.

116Wargo, p. 225.

117Ernest J. McCormick and Mark S. Sanders, Human
Factors in Engineering and Design (New York, 1982),
p. 198.
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Number of Choices Reaction Time

1 0.20

2 0.35

3 0.40

4 o.45

5 0.50

6 0.55

7 0.60

8 0.60

9 0.65

10 0.65118

It is here that the effects of training have not been

clearly established as most studies concerning choice re-

action times allow subjects the advantage of practice runs

before experimental data is taken. However, industrial

engineers have long recognized the importance of practice

in repetetive motions and the improvement in time of per-

formance is firmly established. 119 In general, the reduc-

tion in time is attributable to a general familiarity with

the required movements and a reduction in the number of

consecutive eye fixations required.120  After practicing

118McCormick and Sanders, p. 198.

119Ralph M. Barnes, Motion and Time Study Design and 
Measurement of Work (New York, 1980), pp. 197-201.

120 Ibid.
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a less defined visual picture of terminal location is

needed during movement and grasping; a better coordination

results. Learning curve theory has shown that the effects

of practice generally produce a hyperbolic curve when

plotting cumulative trials versus cumulative average

time; also, it may take many hundreds of trials before an

operator's learning curve begins to flatten out. 121 In

an industrial environment requiring an emergency stop mo-

tion, faster response would be expected if the operator

was familiar with the exact motions required. This would

seem to indicate that the emergency stop motion should be

utilized during routine stopping of equipment. This would

be especially true if the emergency stopping response had

to be discriminated from among a variety of other normal

motions.

Discrimination 

The ability to recognize the required control from

among all other non-essential devices in the immediate

vicinity is an important task within the context of a

manual emergency stop. As was previously mentioned, prac-

ticing a movement has always shown improvements in speed

of discrimination, coordination, reaction, and a general

121Gavriel Salvendy, ed., Handbook of Industrial 
Engineering (New York, 1982), p. (4.4.10).
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reduction in the amount of visual feedback required to

complete a response. Just as a trained automobile driver

can learn to reach instinctively for required controls,

so too can the industrial operator. However, with the

complexity of modern equipment it cannot be assumed that

all operators have had the necessary training or could

instantaneously produce an emergency stop motion when

required to do so. Therefore, for those persons not ca-

pable of instinctive response, the ability to discriminate

becomes very important.

Color coding has always been an important factor in

proper discrimination of controls. Historically, the

emergency stop control has been colored bright red to be

consistent with human expectations from other coding

schemes using red as the symbol for danger or stop. Red

as significant to danger is clearly established and is

derived from blood; in war, red flags as symbols of com-

bat have been used for many centuries. 122 Red has also

been found superior for distant discrimination even though

its apparent brightness shifts with low illumination. 123

Color as a coding dimension for displays has been an

effective means for reducing search time . 124

122Arnold Whittick, Symbols, Signs and Their Meaning
and Uses in Design (Newton, Massachusetts, 1971), p. 301.

123Mari Riess Jones, "Color Coding," Human Factors,
4 (1962), 363.

124 Ibid. pp. 358, 364.
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In an experiment by Hitt et al subjects were asked to

search numerals, letters, geometric shapes, colors, and

configurations for five types of tasks: identification,

counting, comparing, locating, and verification. Both

color and numeric codes were shown to be superior in the

locate task. 125 In a second experiment, the same group

found that color coded targets on maps were located and

counted significantly faster than when numerals and en-

closed shapes were used as a coding dimension. 126 In an

experiment by Shontz et al with color coding for inorma-

tion location (again using maps) it was found that sub-

jects were able to locate checkpoints significantly faster

than if non-coded maps were used. 127

Although color coding has proven effective in pro-

viding ease of discrimination among targets, it has also

been found that the nature and number of coded but non-

searched objects in a display (clutter) can seriously de-

grade the response time performance. 128 A search situa-

tion invariably involves more than one stimulus in a

field of view with only one target of superior importance.

Furthermore, the same targets may become unimportant in

succeeding trials. Therefore, any coding scheme that in-

125Jones, p. 359. 	 126 Ibid.

127 William D. Shontz, Gerals A. Trumm, and Leon G.
Williams, "Color Coding for Information Location," Human
Factors, 13(3) (June, 1971),237-246.

128Jones, pp. 359-360.
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creases discriminability may also increase the distract-

ing effect of non-targets if it is applied equally to all

objects in the display. For example: an industrial con-

trol panel may consist of five pushbuttons with five re-

spective warning lights. If all objects on the panel are

the same size and merely differ in color, then the nine

non-searched objects, all brightly colored and distinct,

could increase confusion during an emergency response. A

panicked operator might try inadvertently to push a warn-

ing light rather than its corresponding pushbutton.

In studying this effect, Smith found that when tar-

gets differed both in size and contrast, median search

time was significantly shortened than for contrast or size

differences alone. 129 Weitz reported a similar observa-

tion; he found that the response time to control levers

was faster if they differed in both color and shape than

if they differed only in color or shape. 130 Eriksen and

Hake expanded the experiment to include brightness so

their targets differed in three dimensions. The results

showed that multidimensional stimuli were much easier to

discriminate than when only single dimensional differ-

ences were used. 131

129 Jones, p. 360.

130Charles W. Eriksen and Harold W. Hake, "Multi-
dimensional Stimulus Differences and Accuracy of Dis-
crimination," Journal of Experimental Psychology, 50(3),
153.

131 Ibid., p. 159.
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Geometric forms have also been studied in regard to

this question of discriminability. Sleight studied the

relative discriminability of geometric forms when they

constituted a complex panorama with which subjects had

to deal. Both efficiency in terms of sorting time and

the relative attention-getting value were considered.

In all, six each of twenty-one different geometric fig-

ures were used (see figure 3-1) for a total of 126 ob-

jects. 132 The task of the experiment required subjects

to sort each set of these forms and place them in com-

partments on a display board as quickly and accurately

as possible. All geometric shapes were sized to be the

largest that would fit into a one inch circle; areas were

therefore not the same. The following results were ob-

tained:

(1) Discriminability was approximately ten times

faster for the first ranking figure compared

with the last as measured by sorting time.

(2) On the basis of significant differences it

was possible to identify four separate groups

of geometric forms each of which was equally

discriminable. The best group consisted of:

swastika, circle, crescent, airplane, cross,

1 32Robert B. Sleight, "The Relative Discriminability
of Several Geometric Forms," Journal of Experimental Psy-
chology, 43(4) (April, 1952), 325-326.
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Source: Robert B. Sleight, "The Relative Discrimin-
ability of Several Geometric Forms," p. 325.

Figure 3-1
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and star.

(3) A high positive correlation was found between

sorting time and ranking based on subjects'

order of selection (attention-getting value). 133

In general, the results of these studies seem to in-

dicate that an emergency stop device will be more easily

and quickly discriminated from other controls on a panel

if it differs in color, size, and shape. Furthermore,

the vicinity of the emergency stopping device should not

be cluttered with other controls which might reduce dis-

criminability under emergency conditions. Evidence from

human experimentation suggests that relatively unimpor-

tant or seldomly used controls on the same panel should

receive a lower level of coding, thereby reducing dis-

traction during emergency response. Since the circle was

shown to be one of the most discriminable shapes in

Sleight's experiment, the total evidence of these studies

suggests that a large, red, round, pushbutton on a panel

of smaller, non-red objects could be superior in terms

of ease of discrimination during emergency response.

133Sleight, p. 328.
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Summary

The preceding discussion of human factors has focused

on the effects normal human tendencies may have on an

emergency response. A life time of observation might in-

duce an engineer to surmise that some people would be nat-

urally slow or error prone in producing an emergency re-

sponse and not much could be done to improve their per-

formance. Although this might seem to be confirmed when

experimental reaction time data show skewing of response

times, the truth is, much can be done during the design

of equipment to compensate for these slower individuals

if normal human tendencies are studied and the principles

applied. According to Wargo, a human being "... is placed

in a system's control loop when any one or any combination

of, ... , sensing, pattern recognition, decision making,

and planning ability is unequaled by existing electro-

mechanical devices of comparable cost, weight, and

size." 134 Therefore, if positive human traits are to be

exploited, then an allowance must be made for error, es-

pecially in those areas where human judgement or response

might prove faulty. In other words, when utilizing human

beings as control operators the good must be accepted with

the bad and equipment designed accordingly.

134Wargo, p. 221.
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Therefore, with these thoughts in mind, the follow-

ing major chapter conclusions are summarized:

(1) Almost every disaster has some critical time

period during which a response can minimize

or avert damage.

(2) Every human response consists of various pro-

cesses including: receptor stimulation, recog-

nition, decision, neural conduction, muscle

activation, etc. These processes take time.

(3) Any human response consists of a reaction time

and a movement time which are distinct and

separable quantities.

(4) Expectation can dramatically influence a per-

son's state of readiness and can seriously

affect response time.

(5) The distribution of human emergency response

times during periods of low expectancy could

be severely skewed due to those persons who do

not immediately know what to do.

(6) Consistent improvements in performance are gen-

erally seen when human beings practice response

motions.

(7) Humans are often startled by rapid changes in

stimulus intensity and this may or may not im-

prove response time performance due to extra-

neous muscle tensions developed.
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(8) Repeated loud sounds can increase muscular

tension levels in humans for indefinite time

periods. This could prevent an immediate re-

cognition of an emergency thereby slowing or

preventing emergency response.

(9) Visual feedback does not seem to control re-

sponses already in progress. If an error is

made, a second and distinct reaction time will

likely be needed to make any corrections.

(10) Kinesthetic feedback appears to take too long

to allow continuous control of short duration

limb movements. It appears that volitional pro-

cesses issue orders for body movements and non-

voluntary processes execute these movements with-

out further instruction.

(11) Motor reaction of a limb will almost always con-

sist of a gross movement and an oscillatory

secondary movement.

(12) An industrial control response would more nearly

correspond to a choice reaction time. Choice re-

actions have been shown to require dramatic in-

creases in decision time with total number of

choices available.

(13) Under choice reaction time conditions effects

of practice could be expected to improve re-

sponse time and accuracy.

(14) Color coding has been shown to be superior in
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improving discriminability of objects in a dis-

play if all objects are not coded equaly.

(15) Multidimensional coding has proven to be

superior to single dimensional coding in

improving discrimination.

The following recommendations are made about design

and placement of emergency stopping devices and machine

design to be consistent with human expectations and

established ergonomic principles.

(1) Provide audible warnings of impending system

malfunctions requiring manual emergency stops

whenever practical.

(2) Allow operators to practice the emergency stop

motions regularly by utilizing these motions

for routine stopping of equipment.

(3) Utilize the minimum power necessary, including

mechanical power and electrical voltage to pro-

duce the desired result.

(4) Minimize audible vibration of equipment.

(5) Locate the emergency stopping device in a

familiar position and make it easily activated

and readily accessible.

(6) Standardize the location of emergency stop

controls on different pieces of equipment.

(7) Make the emergency stop device sufficiently



large to minimize misses when undershoot or

overshoot of the response limb occurs.

(8) Color code the emergency stop device red.

Do not use red coding on any other control.

(9) Make the emergency stop device round when-

ever practical.

(10) Make the emergency stop device larger than

other controls on a panel.

(11) Segregate the emergency stop device from

other controls on a panel.

105



CHAPTER IV

THE EXPERIMENTAL METHOD

Introduction

One major difficulty encountered in any experiment

which would attempt to analyze human responses to emer-

gencies is how to accurately reproduce the desired con-

dition in a laboratory setting. For this study, the

problem of simulating the industrial accident requiring

manual activation of an emergency stopping device was

considered.

It was hoped that the methods used by previous

experimenters would suggest some practical way to approach

this problem. However, the nature of the task and the

seriousness of the event under study have forced experi-

menters to remain far short of generating actual emergen-

cies. Situations that would approach the severity of a

runaway industrial machine, a human arm caught in a gear,

or a major electrical short-circuit cannot be safely con-

trolled or reproduced; therefore, they cannot be system-

atically studied without a serious risk of injury to

subjects and experimenters. Because of the dangers and

complexities there has been a necessary reluctance to

study this very important problem. Furthermore, the data

that are collected are often very specific and do not

106
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apply to varied industrial situations.

Many factors in the environment can contribute to

the overall response time of an individual during an

accident. How fast can a human being respond to an

emergency stimulus and take the proper corrective steps

is a very practical and frequently asked question. The

truth is, we can't really say for sure because of the

effects of unforseeable variables. Has the operator

been forwarned to an impending crisis or has the situation

gone critical unexpectedly? Has the operator been ex-

posed to similar emergencies before? Are there extraneous

stimuli present that could impede recognition of an emer-

gency signal? What is the operator's level of motivation

and is he/she tired or distracted? These and other human

factors can be expected to affect the person's response

time to an industrial accident. Furthermore, with indus-

trial operators often required to perform many duties

simultaneously, he/she might not even be physically within

reach of the emergency stopping device; thus the problem

is often seriously compounded.

Therefore, it is the purpose of this experiment to

test human response times to actuate different types of

emergency stopping devices (pushbuttons) that are commonly

used on industrial equipment. Statistically significant

differences in response times and miss frequencies are

related to design and a modification of the standard

mushroom style button is made in an effort to reduce miss
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frequency.

Subjects 

Thirty-one subjects with ages ranging from 16 to 61

years participated in the experiment. The mean age was

33.2 years with a standard deviation of 13.8 years. Six-

teen subjects were male, fifteen were female and none were

considered by the experimenter to have any qualifications

or training that would make their response times to emer-

gency stopping devices non-representative of the population

in general. Some exceedingly fast and some exceedingly

slow subjects' individual and average response times were

noted among those sampled. These were attributed to nor-

mal human variability, differences in motivation (subjects'

attitudes and recognition of the importance of an emergency

response}, and deliberateness (subjects' attempts to per-

form accurately by utilizing conscious deliberate control

of arm motions). It was assumed that all data collected

represented normal variability within the general popula-

tion and no attempts were made to eliminate any subject's

average or individual response times.

Design

The experimental design consisted of two different

emergency stop pushbuttons that were mounted on individual
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consoles. The first console contained a standard 7/8 inch

collar protected pushbutton that had been modified to allow

collar removal. See figures 4-1 and 4-2. The second con-

sole contained a standard 7/8 inch collar protected push-

button that was fitted with a standard 3 inch diameter

mushroom head. See figures 4-3 and 4-4. The mushroom

head was allowed to rock within its mount thereby allowing

an emergency stop activation to occur by either rocking the

button or pressing straight on. An alternate 3 inch dia-

meter experimental mushroom head was designed by the exper-

imenter and built to accept an identical set of mounting

hardware. See figures 4-4 and 4-5.

The experiment was divided into two phases. During

phase I each subject was tested for response times to four

different arrangements. These were called tests A, B, C,

and D. During phase II subjects were tested on four dif-

ferent arrangements designated tests E, F, G, and H. Phase

I and phase 11 were completed for each subject at a differ-

ent sitting and all subjects performed phase I testing

before proceeding to phase Il. Variability was from one

to six weeks between phases.

For each test arrangement (A - H) the subject was

seated in front of a console and was directed to actuate

the device upon hearing an audible signal. After several

trial runs to familiarize the subject with each arrangement

the experiment began and each emergency stop arrangement

was activated twenty times in response to randomly timed



Standard Pushbutton - Exploded View
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Standard 7/8 Inch Collar Protected Pushbutton With Modification

Figure 4- 2
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Figure 4-3



Standard 3 Inch Diameter Mushroom Head Pushbutton and Experimental Design

Figure 4-4
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Figure 4-5
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emergency signals.

Subjects' attention during the experiment was diverted

from the emergency stopping task by having an assistant

ask them questions from a popular game of trivia. There-

fore, in addition to staying alert for the alarm signal,

each subject was required to continuously answer a stream

of questions that were completely irrelevant to the imme-

diate experimental task. In this way a diversity of men-

tal activity was obtained and concentration on response

time was interrupted.

Randomness was achieved by varying the number of

questions asked between trials. A random number table was

used to generate lists of random numbers between 0 and 4

and these lists were used to determine the number of ques-

tions to be asked between trials. Initiation of the audi-

ble signal occurred during the asking or answering of the

last question according to the experimenter's discretion.

Since the experimental assistant was trained not to rush

the subject with a flurry of questions, quite often a

discussion about some particular answer would develop,

thereby increasing normal variability between questions.

Although intertrial elapsed time was not recorded, no

trials were observed to take longer than three minutes

to complete.

Ordering of arrangements presented was randomized

during each phase of the experiment to reduce the effects

of practice and fatigue on the results. There are twenty-
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four possible combinations of four arrangements and each

of the first twenty-four subjects was given a different

combination. Combinations were chosen at random for sub-

jects twenty-five and up.

Apparatus 

The materials used in the experiment were red emer-

gency stop pushbuttons commonly used on industrial devices.

The buttons were arranged on two identical consoles as

shown in figures 4-6 and 4-7. For phase I the four ex-

perimental arrangements consisted of:

Test A - 7/8 inch collar protected button

Test B - 7/8 inch button with collar removed

Test C - 3 inch standard mushroom button

Test D - 3 inch standard mushroom button
(subjects were instructed to use
their non-favored hand for response)

Spring tension and travel distance were adjusted to

be equal on both consoles. Activation force required

was 3 pounds straight on and activation distance was 1/8

inch. These parameters were measured with a Dillon 25

pound capacity, 1/4 pound division compression force gauge,

a vernier caliper, and an electronic ohm-meter to verify

electrical switch contact.

For phase II of the experiment subjects were fitted
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Figure 4-6



Second Console
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Figure 4-7



119

with a surgeon's style rubber glove on their favored hand.

The glove and the emergency stop pushbutton under test

were thoroughly sprayed with silicone lubricant before

each test was started. Pushbutton surfaces used for

phase II testing had been previously prepared by sanding

to bare metal with 400 grit paper and painting with four

coats of glossy red spray enamel. Paint was baked dry

and buttons were examined to ensure identical surfaces.

Spring tension was adjusted within each mounting mechanism

to increase required activation force to 7-1/2 pounds.

Activation distance remained unchanged. The four experi-

mental arrangements consisted of:

Test E - 3 inch standard mushroom button

Test F - 3 inch experimental button

Test G - 3 inch standard mushroom button
(Subjects were blindfolded)

Test H - 3 inch experimental button
(Subjects were blindfolded)

The tester's console for activation of the audible

alarm and timer is shown in figure 4-8. The wiring of

this console and its interface with the experimental con-

soles and timer is shown in figure 4-9. The timer used

was a Lafayette Instrument Company model 58007 with a

precision of 0.01 second. The alarm was a Floyd Bell

Associates continuous tone device.

An overall block diagram of how the experiment was
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Figure 4- 8



Wiring Diagrams for Normally Open

and Normally Closed Pushbuttons
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Figure 4-9
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conducted is shown in figure 4-10. The design of the con-

soles resulted in both the audible alarm and timer being

activated by the experimenter through the operation of

one switch. Likewise, both the alarm and timer were

stopped simultaneously by activation of the pushbutton

on the subject's console.

Procedure 

Each subject was seated in front of a pushbutton con-

sole and was told that he/she was in control of an indus-

trial machine. This machine could be any type of device

he/she could imagine, such as: an industrial robot, auto-

matic arc-welder assembling automobiles, a nuclear re-

actor, a conveyor, hydraulic press, etc. Each subject

was then given the following instructions:

(1) Please face the console with your hands placed

on the table to the sides of the console. You

may not rest them directly on the console.

(2) You will be asked questions concerning every-

day subjects which have been taken from a pop-

ular trivia game.

(3) At random times during the questioning you will

hear an emergency signal which sounds like this:

(experimenter momentarily activates the alarm).

(4) Upon hearing the alarm you are to press the
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emergency stop button as quickly as you can

to silence the alarm.

(5) Please activate the device (experimenter

activates the alarm, subject presses the

button).

(6) If you miss or do not press the button hard

enough and the alarm continues, please press

it again until the alarm stops.

(7) Do you have any questions?

Subjects were allowed to ask questions about the

experiment and practice several activations of the emer-

gency stopping device. When they were ready the testing

began. After twenty trials were completed on the first

arrangement and response times recorded on the data sheet

the experimenter replaced the first arrangement with the

second. Again, the subject was allowed to make several

practice activations of the device and when he/she was

ready the testing began. Third and fourth arrangements

were done identically.

The experimental assistant began asking questions

each time that the subject indicated he/she was ready to

begin a test. Using a list of random numbers the experi-

menter counted questions and activated the alarm and

timer. Upon proper activation of the emergency stopping

device by the subject the alarm and timer were stopped.

The experimenter then recorded each response time in the



125

appropriate column on the data sheet and reset the timer

for the next trial. During each trial the experimenter

carefully observed the response of the subject and noted

any deviations on the data sheet. If the subject was

distracted and failed to respond immediately to the alarm,

a notation of "distracted" was recorded next to the re-

sponse time. lf the subject needed two or more tries to

silence the alarm then a "miss" was recorded and if the

subject experienced visible manual difficulty but only

needed one try then the notation "slipped" was recorded.

The experimenter recorded a deviation only when mentally

certain that one had actually occurred. When any uncer-

tainty existed the trial was considered normal. All re-

sponse times, regardless of recorded deviations, were re-

corded as registered and every response was considered a

legitimate trial.

The conditions in the room where the experiment was

conducted simulated an ideal industrial environment. It

was well lighted and subjects faced their control consoles.

The experimental assistant sat directly alongside the sub-

ject and the experimenter sat behind the subject's field

of view.

Statistical Analysis 

For each phase of the experiment subjects were asked

to respond to audible signals by immediately pressing an
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emergency stopping device, thereby deactivating an armed

electrical circuit. The total elapsed time for the system

response (including the human element) was recorded as the

response time and sets of twenty trials for each subject

were used to compute an average. Subjects activated dif-

ferent devices and/or responded under different experi-

mental conditions depending on the testing arrangement.

For example: by comparing tests A and B it can be seen

that both tests utilized the same 7/8 inch pushbutton

device but the mechanical conditions were changed; namely,

the protective collar was removed for the second arrange-

ment. For another pair of tests, subjects activated dif-

ferent devices but mechanical conditions were left un-

changed. For example: by comparing tests B and C it can

be seen that there was a change from a 7/8 inch unguarded

pushbutton to a 3 inch unguarded mushroom style pushbutton.

It is assumed that the protective collar used on the

7/8 inch pushbutton was included in the design to prevent

accidental activations (bumping); but one of the disadvan-

tages to a guarded pushbutton is the requirement for an

operator to use a single finger for activation. The

blind frightened swipe of a palm during an extreme emer-

gency might not be reliably expected to activate this type

of device. In other words, it might be hypothesized that

a guarded pushbutton would, on the average, take longer

to activate thereby increasing the severity of damage or

human trauma in an accident.
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The question of interest for the comparison of the

guarded and unguarded pushbutton is: can the observed dif-

ference in average human response time be attributed to

chance or is it statistically significant? Likewise, for

the other testing arrangements of this experiment the pur-

pose of the comparisons is to see if observed differences

in response times can be considered statistically signif-

icant.

Standard statistical methods of testing sample means

for significant differences usually require that indepen-

dent samples be taken. For this experiment that would

mean eight different sets of human subjects would be need-

ed, one for each experimental arrangement. However, for

identical samples (i.e., humans performing an identical

number of trials under different testing arrangements)

paired statistical comparisons can be made. The paired

situation alludes to the common "before and after" type

of test. Therefore, the following paired comparisons of

response time data are made for this experiment:
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(1) For n subjects over twenty trials the average

response times RiA and RiB are computed.

(2) Paired differences are computed.

(3) Deviations di = (Di - D) are assumed normally

and independently distributed with population

mean equal to zero.

(7) For the paired data:

the null hypothesis is tested against the

alternative hypothesis using the t statistic.

Analysis of Miss Frequencies 

When studying human response to different arrange-

ments of emergency stopping devices, the question might

occur; could a particular arrangement increase the like-

135 George W. Snedecor and William G. Cochran,
Statistical Methods (Ames, Iowa, 1967), pp. 92-97.
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lihood of a missed response? In other words, could the

design of the device occasionally prevent a human operator

from completing an emergency stop? For example: in compar-

ing the guarded and unguarded buttons it might be hypothe-

sized that the guard increases the probability that an

operator could fail to activate the device on the first

attempt. If so, the miss would increase the delay in

stopping a machine and could increase the severity of

damage or human trauma in an accident.

The question of interest is: can the observed differ-

ences in frequencies of miss response for this experiment

be attributed to chance or are they statistically signif-

icant? Therefore, the following paired comparisons of

miss frequency data are made for this experiment:

The statistical procedure used in comparing miss

frequencies is identical to that used for response times.

The variable Mi is used in place of the average response

time Ri in the previous example and the same procedure is

used to test null and alternative hypotheses. For all

comparisons made in this experiment a null hypothesis is

rejected only after the computed t value indicates the
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95% level of statistical significance is exceeded.

In counting missed/slipped trials during the experi-

ment it was realized that a rather subjective judgement

by the experimenter was required each time a miss/slip

was recorded. Although the visible and audible effects

of a miss/slip were often very evident, it was concluded

that errors could be made in judgement. Furthermore, it

was determined that the most detrimental effect of missing

or slipping was a lengthened elapsed time of response. If

the subject actually missed or slipped on the response but

then recovered with sufficient speed to prevent an exces-

sive elapsed time then there would be no detrimental ef-

fect. Trials such as these should not be considered a

deviation. Therefore, the following procedure was used

to eliminate these non-excessive deviations:

(1) Each subject's response times for each test ar-

rangement were used to compute a mean (x) and

standard deviation (s) for the twenty trials.

Missed/slipped trials were not included.

(2) The value x + 2s was then compared to the re-

sponse time of each missed/slipped trial.

(3) If the recorded time exceeded two standard

deviations above this mean, the elapsed time

was considered excessive. If not, then this

particular trial was ignored in the miss fre-

quency analysis.
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The purpose of this procedure was to ensure that

miss responses used in the statistical analysis were

truly excessive in terms of elapsed time of response.

If only those trials showing elapsed times greater than

two standard deviations above the mean were counted as

miss responses then 97.7% of other trials (including

those where subjects responded slowly due to distraction)

would be faster than each miss response. Although this

had the effect of eliminating 10% of all missed/slipped

trials, it was considered a necessary procedure.

Summary

For the experiment, the following hypotheses about

common emergency stop pushbuttons were made:

(1) It was suspected that inclusion of a finger

guard around a standard pushbutton could in-

crease both the average human response time

for activation and the probability of a miss

response.

(2) It was suspected that a large mushroom push-

button could prove superior to a smaller but-

ton in terms of average response time and miss

frequency.

(3) It was suspected that further improvements

in average human performance could be achieved



by redesigning the standard mushroom push-

button.

The experiment was designed to test the validity

of these arguments.
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CHAPTER V

EXPERIMENTAL RESULTS

The following results for the eight different

arrangements of emergency stop devices were obtained:

Mean Response Times (X) in 1/100 Seconds

Arrangement X s

A - 7/8 Inch Guarded
Pushbutton

83.65 10.40

B - 7/8 Inch Unguarded
Pushbutton

72.75 12.79

C - 3 Inch Standard
Mushroom Pushbutton

67.92 11.57

D - 3 Inch Standard
Mushroom Pushbutton
(Opposite Hand)

69.13 13.81

E - 3 Inch Standard
Mushroom Pushbutton
(Greased)

72.30 15.93

F - 3 Inch Experimental
Mushroom Pushbutton
(Greased)

71.71 11.59

G - 3 Inch Standard
Mushroom Pushbutton
(Greased + Blindfold)

76.19 16.12

H - 3 Inch Experimental
Mushroom Pushbutton
(Greased + Blindfold)

7.73 14.32

Table 5-1

133



Statistical Significance  of Observed  Differences

Test Pair Test Parameter Value 1 Value 2 Difference Si: ificance Level

A - B Means 83.65 72.75 10.90 99.9%

B - C Means 72.75 67.92 4.83 99.5%

C - D Means 67.92 69.13 -1.21 not significant

E - F Means 72.30 71.71 0.59 not significant

G - H Means 76.19 74.73 1.46 not significant

A - B Misses 20 8 12 96.7%

B - C Misses 8 9 -1 not significant

C - D Misses 9 6 -3 not significant

E - F Misses 21 14 7 not significant

G - H Misses 38 13 25 99.9%

Note: Not significant means that the statistical significance did not exceed 95%.

Table 5-2
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Computed "t" Values of Paired Comparisons 

Test Pair Test Parameter Computed "t" Value

A - B Means 9.73

B - C Means 3.31

C - D Means 1.19

E - F Means 0.37

G - H Means 1.21

A - B Misses 2.26

B - C Misses -0.23

C - D Misses 0.83

E - F Misses 1.10

G - H Misses 3.76

Table 5-3
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Response Frequencies

Arrangement
Response
Time
1 100 sec G

31 - 35 0 0 0 0 0 0 0 1

36 - 40 0 1 1 0 7 1 3 5

41 - 45 0 5 7 8 11 8 9 10

46 - 50 3 22 17 37 20 26 20 23

51 - 55 4 47 77 59 49 29 30 31

56 - 6o 15 61 95 80 77 80 62 58

61 - 65 30 95 122 107 99 88 77 79

66 - 70 65 86 114 110 95 113 82 71

71 - 75 86 81 55 68 83 91 73 81

76 - 80 110 74 58 60 50 60 69 77

81 - 85 77 46 21 24 27 37 50 43

86 - 90 63 35 15 20 28 29 45 38

91 - 95 42 22 6 14 20 17 29 35

96 - 100 49 17 7 6 18 10 16 19

101 - 105 30 8 4 6 7 10 9 17

106 - 110 15 6 5 5 5 2 13 6

111 - 115 12 3 2 1 3 3 9 7

116 - 120 3 4 4 4 2 7 3 4

121 - 125 2 0 3 2 4 1 3 4

126 - 130 7 2 0 1 1 2 1 1

131 - 135 0 1 2 3 3 0 2 0

136 - 140 4 2 2 1 1 1 5 3

141 - 145 0 0 1 1 1 2 1 2

146 - 150 0 0 0 0 1 0 1 1

151 - 155 0 1 0 0 0 0 1 1

156 - 160 0 0 0 1 1 0 2 0

161 - up 3 1 2 2 5 3 5 3

Table 5-4
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Miss Responses 

Arrangement Frequency Mean Response Time (3) s

A 20 122.5 39.20

B 8 115.0 21.63

C 9 123.3 20.65

D 6 131.7 19.33

E 21 122.2 29.95

F 14 128.5 28.55

G 38 130.4 51.80

H 13 125.4 17.78

Note: Mean response times in 1/100 seconds.



Frequency Distribution: Arrangement A, 7/8 inch Guarded Pushbutton

Figure 5-1



Frequency Distribution: 	 Arrangement B, 7/8 inch Unguarded Pushbutton

Figure 5-2



Frequency Distribution: Arrangement C, 3 inch Standard Mushroom Pushbutton

Figure 5-3



Frequency Distribution; Arrangement D, 3 inch Standard Mushroom Pushbutton (Opposite Hand)

Figure 5-4



Frequency Distribution: Arrangement E, 3 inch Standard Mushroom Pushbutton Greased) 

Figure 5-5



Frequency Distribution: Arrangement F, 3 inch Experimental Mushroom Pushbutton (Greased) 

Figure 5-6



Frequency Distribution: Arrangement G, 3 inch Standard Mushroom Pushbutton

(Greased + Blindfolded'

Figure 5-7



Frequency Distribution: Arrangement H, 3 inch Experimental Mushroom Pushbutton
(Greased + Blindfolded) 

Figure 5-8



CHAPTER VI

DlSCUSSION AND CONCLUSIONS

Experiment Phase I 

For the four different arrangements of emergency

stopping devices tested in phase I of the experiment,

the following major conclusions were reached:

(1) The inclusion of a protective collar guard around

a standard 7/8 inch pushbutton seriously detracts

from a human being's ability to quickly and con-

sistently activate the device. This was shown

by a 15% increase in average system response

time with a statistical significance well in ex-

cess of the 99.9% level. Furthermore, inclusion

of the guard was shown to increase the frequency

of miss response by a factor of 2.5 to 1, this

being in excess of the 95% level of statistical

significance. The effect of a miss was observed

to be an increase in total system response time

from an average of 0.84 second to an average of

1.23 seconds or an increase of about 46% for the

guarded pushbutton. Probability of a miss re-

sponse was 0.032 for the guarded pushbutton and

0.013 for the identical button with the guard
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removed. Lastly, one subject was observed to

miss the guarded pushbutton twice in succession

during a single trial. Total response time for

this trial was 2.45 seconds. A double miss was

not observed at any other time during the 4,960

trials of this experiment.

(2) The 3 inch standard mushroom style pushbutton

was observed to have a shorter mean response time

than the unguarded 7/8 inch button by about 6.6%;

the null hypothesis that the means were the same

was rejected at greater than 99.5% level of

statistical significance. The null hypothesis

that frequencies of miss response were the same

for these two devices could not be rejected and,

in fact, they were observed to be about equal.

Probability of a miss response for the 3 inch

standard mushroom pushbutton was 0.015 compared

with 0.013 for the 7/8 inch unguarded button.

(3) The null hypothesis that mean response times

were the same when using favored versus non-

favored hands to activate a 3 inch standard

mushroom style pushbutton could not be rejected

at greater than 95% level of significance. This

occurred in spite of a small observed increase

in mean response time (1.8%) when shifting to

the non-favored hand. Many more trials would be

needed to show a significant difference, indeed
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if any difference actually exists. Miss proba-

bility was 0.010 for the non-favored hand and

it was concluded that mean system response time

and miss frequency for this device are not de-

pendent on the hand used for activation.

For phase I of the experiment one obvious conclusion

is: a 7/8 inch unguarded pushbutton is superior to a guard-

ed button in terms of the average human-machine system re-

sponse time for activation. Secondly, the larger mushroom

style pushbutton is superior to the smaller button. It is

assumed that the larger surface area encourages use of a

somewhat faster (although less precise) palm strike and

off-center hits are effective in activating this device

because of rocking motion. Time consuming secondary move-

ments are thereby minimized. Palm strikes can also be

used on the unguarded smaller button but this may not be

as obvious. Many subjects were observed using fingertips

on this device while very few, if any, used anything but

palm strikes on the large mushroom pushbuttons. Finally,

a near threefold reduction in miss frequency can be ob-

tained by using an unguarded device. This could become

a critical factor during a true emergency response.
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Experiment Phase II 

During testing for this experiment it was expected

that the 3 inch standard mushroom style pushbutton would

give superior results in terms of average response time.

Indeed, during analysis of phase I data this hypothesis

was shown to be statistically significant and did not come

as a surprise; but miss frequency did not prove superior

with this device. From personal experience and research

by the experimenter it was suspected that, whatever type

of device is used, under emergency conditions, manual stop-

ping of equipment will always be associated with some prob-

ability (no matter how small) that the human being respond-

ing will not complete the response. ln other words, the

person might fail to stop the machine on the first try

(miss) under some combination of physical and emotional

stress. Furthermore, the developing situation might not

allow time for this person to try again. This situation

was deemed the most serious, therefore, an effort was made

to improve the standard mushroom button design in order to

reduce miss frequency.

It has already been concluded that the standard mush-

room button allows more rapid activation because of its

sensitivity to off-center hits. Also, as shown in the ex-

periment by Brown and Slater-Hammel, secondary movements,

similar to those needed to position fingertips in space

for the 7/8 inch pushbutton, can often add significantly
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to system response time. These movements do not seem to

be associated with the palm strikes commonly used on

large mushroom pushbuttons; however, occasionally a hit

will be sufficiently off-center that a hand will slip off

the rounded edge of the button before electrical switch

contact is made. The result is a miss.

It was suspected that the surface of curvature should

not be consistent along the entire cross section of the

device. In other words, if the standard mushroom button

were cut vertically through the center and a side view

drawn, the surface of the button would form an arc of a

perfect circle. It was decided to modify this arc by in-

cluding a horizontal edge; a button of this shape was man-

ufactured and the resultant forces during off-center hits

for the two devices are shown in figure 6-1.

In order to test the hypothesis that the surface of

the experimental mushroom head was superior to the standard

head, some method of increasing frequency of miss for both

devices was needed. It was decided to adjust the system

variables as follows:

(1) Spring pressure to activate the device was

increased; this had the effect of requiring

harder strikes to make electrical switch con-

tact. This condition was not considered un-

reasonable because, with age, accumulation of

dirt, and degradation of sliding surfaces,
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pressure required for activation of industrial

pushbuttons could easily increase.

(2) Surfaces were made extremely slippery by thor-

oughly coating with silicone spray lubricant.

This condition did not seem unreasonable be-

cause many manufacturing environments use spray

silicone or other lubricants on work parts and

machines. Excess lubricant could easily coat

the emergency stop button and/or the operator's

hands without notice.

(3) Subjects were blindfolded for parts of the ex-

periment. It was thought that this condition

would increase the probability that palm strikes

would be sufficiently off-center to produce miss

responses. This was considered a reasonable sim-

ulation of an emergency situation (such as a human

entanglement) where the person involved must reach

instinctively for the emergency stop device with-

out being able to see it.

The major conclusion from phase Il of the experiment

was that miss frequencies were higher for the standard

mushroom pushbutton design. The null hypothesis that miss

frequencies were the same for the standard and experimental

designs during blindfolded response was rejected at greater

than 99.9% level of statistical significance. lt was con-

cluded that the experimental head was superior in prevent-
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ing misses during the extreme conditions of this part of

the experiment; namely, the high activation force required,

slippery surfaces, and lack of visual contact. Miss prob-

abilities were 0.061 and 0.021 for the standard and exper-

imental heads respectively.

Although, in the non-blindfolded condition, miss prob-

abilities were observed to be 0.034 and 0.023 for the stan-

dard and experimental heads respectively, the observed

difference was not sufficient to reject the null hypothesis

at greater than 95% level of significance. It was con-

cluded that many more trials would be needed to show a

significant difference in this case.

As expected, average response times for the standard

and experimental heads did not differ sufficiently for re-

jection of the null hypothesis. It was concluded that,

since both mushroom heads were 3 inches in diameter, there

would be no reason to expect any differences in average

response times; therefore, it was concluded that they were

equal.

Frequency Distributions 

Frequency distributions for each of the eight exper-

imental arrangements are included in chapter V. Analysis

of these distributions indicates that there is likely some

minimum value of response time before which no human emer-

gency response could ever be expected. Clearly, faster
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responses than this minimum, which appears to be about 0.3

second for this experiment, could indicate some anticipa-

tory condition to stimulate response before the alarm.

Non-stimulated responses of this type were noted several

times during the experiment when subjects pressed the

button without any signal being given. However, it is

believed that good performance by the experimental assist-

ant at keeping subjects occupied with the auxiliary task

prevented anticipation from affecting the results.

These distributions also indicate that there is likely

no corresponding maximum value of response time after which

no human emergency response could ever be expected. The

longest response time observed for this experiment was

4.40 seconds. This occurred during a trial when the sub-

ject was deeply engrossed in some particular train of

thought. This distracted condition combined with miss

responses and periods of indecisiveness could conceivably

skew frequency distributions even more seriously under

true emergency response situations. No attempt was made

to analyze these positively skewed distributions any fur-

ther than the above speculations.

Conclusion

For this study, many major conclusions were reached

regarding emergency stop pushbuttons commonly used on in-

dustrial machines. These will not be repeated here; the
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reader is referred to the summaries in chapters II and

III and the previous discussion. However, the clear

superiority of an unguarded pushbutton and especially the

large mushroom style button in both average system response

time and miss frequency provides the focus for a concluding

argument.

Guarded pushbuttons should not be used as emergency

stopping devices on machines. If prevention of accidental

stopping of machines (bumping) is a machine design crite-

rion, then emergency stop pushbuttons should be guarded

by location. Furthermore, the location should be easily

accessible and within reach of an operator in the normal

operating position. lf this is incompatible with the

need to prevent bumping of emergency stop buttons, then

bumping as a criterion should be sacrificed in favor of

operating convenience.

Also, the author has seen many cases where dangerous

machinery is stopped and started by two adjacent guarded

pushbuttons on one panel; frequently the dual pushbutton

station shown in chapter I is used. These should be re-

placed. The increase in system response time and miss

frequency for guarded pushbuttons plus the possibility

that a frightened operator could push the wrong button,

justify rejection of this popular arrangement as a con-

trol panel.

Since the experiment in this study utilized emer-

gency stop pushbuttons mounted on an angled control pan-
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el which could be considered an optimum location for ac-

tivation, no attempt was made to apply the results to

buttons mounted in non-optimum locations. This is left

for further investigation. However, it could be surmised

that the experimental head used in phase II of this ex-

periment might show an even greater improvement in miss

frequency when mounted in a less optimum location such

as on a vertical panel. On this type of panel the ana-

tomical posture of the wrist might be incompatible with

palm strikes; therefore, on vertical panels, operators

might be encouraged to use fingertips to activate mush-

room pushbuttons. Fingertip strikes would likely require

more secondary movement than palm strikes and this could

affect miss frequency. Therefore, the hypothesis that

the experimental head mounted on a vertical panel could

reduce miss frequency remains to be tested.

The focus of this study has been on ergonomic prin-

ciples and their proper application to design and place-

ment of emergency stopping devices. One might wonder how

so much emphasis can be placed on such simple devices;

for clearly, there is not much that can be done to im-

prove what is already in use. However, the fallacy of

this notion becomes apparent when the results of this

experiment are considered. How many machines today still

use the standard 7/8 inch guarded pushbutton as an emer-

gency stopping device? Even for such a simple device, im-

provements can be made when ergonomic principles are ap-
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plied and concern for the human operator is given during

design of machines.



CHAPTER VII

CRITICAL ANALYSIS: READERS' COMMENTS

An important aspect of technical report writing is

the solicitation of constructive criticism regarding the

research. These comments, when given by persons knowl-

edgeable in the field, can be used not only to evaluate

the work but also to generate further interest. Histor-

ically it has been shown that questions have often arisen

during the course of technical research which could not

have been answered without further study. Later experi-

menters often explored these themes. Therefore, readers'

comments are important for evaluation and to promote con-

tinued interest in the field.

The following readers have provided comments and

their critiques are included for reference:

Professor James L. Smith, Ph.D., P.E.
Industrial Engineering Department
Texas Tech University

Mr. Frank Bastion, CIH
Certified Industrial Hygienist
Clayton Environmental Consultants, Inc.

Mr. Nabil J. Bejjani, MS
Civil Engineer
Louis Berger & Associates
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Texas Tech University
Department of Industrial Engineering

Lubbock Texas 79409-4130/(806) 742-3543

April 5, 1986

Mr. Robert P. Guinter

Dear Mr. Guinter

I ha ve read your thesis and found it to be we I 1 written and an
appropriate research effort for a Master's degree with an
ergonomics speciaIity. The literature rev iew was extensive and
provided the appropriate background for the thesis

"The experimental method was adequate, a I though it did produce a
few Quest ions that 1 feel should be resolved. At one poi nt you
stated that, "the experimenter recorded a dev Tat ion only when
absolutely certain that one had occurred" (p. 20 of CH 4), yet 5
pages later you describe a procedure to test the "legitimacy  of
any suspected dev i at ion". These statements appear to be i n
conflict and I woui d suggest a brief rational e of why the
legitimacy test was felt necessary, and the effect of the
procedure on the data, i e., how many "M I SSES" were e 1 imi nated
us i ng this procedure? Another point that I fee 1 needs to be
addressed i s the manner in which a "normal diversity of
industr i a I act i v ity was s i mu I ated". You hypothesize that "no
mental concentration on response time could be maintained"
a 1 though later on the same page (p. 10, CH 4) you state that, "no
tr i a is were observed to take 1 onger than three minutes to
complete". Is the three ml flute max i mum tr I al time I ong enough to
remove Z-1 11 anticipation by the subject and to indeed simulate  the
"normal diversity of industrial activity"?

The statistical  analysi 5 seemed appropriate for the experiment.
I would 1 i ke to see explanations for a couple of items in your
results section. First, in Tables 5-2 and 5-3, why weren't the
MI SSES for the C-D response comparison included? You appear to
di scuss the C-D comparison in your Discussion of Results section.
Second I y, how can the B-C MISSES in Tab 1 e 5-2 be "not
si gn f i cant" if in Table 5-3 the "t" value for B-C MISSES was
"not computed"? If it was, in fact, not computed., why not offer

brief explanation for its exclusion?
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Page 2

The conclusions seem to logically follow from the results of the

experiment. 	 I think that CHAPTER 5, Discussion of Results, is in
real ity a part of the conclusions. 	 I would suggest that the
Discussion of Results section address issues such as what data

were included and excluded from analysis and why, and the

rationale for the manner in which the data are represented, i e.,

tables, response frequencies, and frequency distributions.

Final Iv. a suggestion: Here at. Texas Tech we have started to

require that students include their raw data in an appendix so

that future re s earchers can use the data if they desire.

Overall 1 I feel that the thesis was we 1 I done and hope that you
find my comments he I have enclosed a brief description of
our ergonomics program here at Texas Tech to provide you with a
little background on the kinds of ergonomics efforts in which I

am involved. I would like to receive a final copy of your thesis

when it becomes available. If I can be of further ass i stance,
P lease let me know. Good luck on your defense and with your
Future endeavors in the ergonomics area.

Sincerely,

James L. Smith, Ph.D., P.E.,

Associate Professor
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Professor James L. Smith, Ph.D., P.E.
Department of Industrial Engineering
Texas Tech University

Dear Professor Smiths

After speaking with my thesis advisor concerning your
many valuable comments and suggestions, it was decided
that I should write you a formal letter addressing these
issues and include a copy with your critique in the final
report. Therefore, this letter is in addition to the
thank-you letter I already sent and may contain some of
the same information.

Concerning the question of raw data being included with
the report, it was decided that the quantity of pages
would seriously increase the size of an already lengthy
report. Therefore, raw data will not be included. How-
ever, my advisor requested that the raw data be included
with your copy of the final draft and the original data
sheets will be kept on file in the Industrial Engineering
department here at NJIT. If anyone should need these data
for further research the department will make them avail-
able on request.

As to the conflicting statements in chapter IV you are
absolutely correct. After considering this point I real-
ized that my wording did not accurately convey the idea
I was trying to communicate. How could an experimenter
sitting behind the subject be "absolutely certain" that
a miss/slip had occurred? In reality, there is no way to
be absolutely certain unless each response was videotaped
and later scrutinized in detail. Since this was not done,
the experimenter could only become mentally convinced that
a deviation had occurred after considering the visual and
audible effects of each response and the recorded elapsed
time of each trial. Therefore, each suspected deviation
required a mental decision on the part of the experimenter
which did allow some small probability of error. I believe
this idea is more clearly established in the revised word-
ings. Also, it was concluded that, even if a subject
missed or slipped during a response this event only became
important if it seriously increased the total elapsed time
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Professor James L. Smith, Ph.D., P.E.
Page 2
April 17, 1986

of response. If a miss occurred but then the subject
recovered within a sufficiently short time period to
stop the clock quickly, then the trial should not be
included with the miss frequency analysis because, clear-
ly, it would not have seriously degraded a true emergency
response. Only those misses/slips that seriously in-
creased the elapsed time of response were wanted. This
was the reason a procedure for eliminating non-excessive
deviations was devised. Hopefully, this idea is now more
clearly conveyed after rewording.

Tables 5-2 and 5-3 have been expanded to include the data
for B-C and C-D misses that were not included in your copy
of the draft. After reading your comments, I decided that
a "t" test of this information was indeed required if the
result was later to be reported as "not significant." It
was not a good scientific method to assume a statistical
result no matter how trivial the computation or obvious
the result might appear. Also, the typographical error
in table 5-3 was corrected; it was B-C misses that should
have been labeled "not computed," not A-B misses. Now all
"t" values have been computed and reported in the table.

Your comments about the discussion and conclusions have
resulted in these two chapters being combined. Also, ex-
cept for the procedure to eliminate non-excessive missed/
slipped trials from the miss frequency analysis, there was
no attempt made at any time to eliminate any subjects'
individual or averaged response times. The comments on
pages 80 and 108 reflect my opinions on this matter.

Finally, for the rationale of data representation in chap-
ter V, these tables and figures were included to represent
the data in every way that seemed logical and informative.
During my literature search I found that many experiment-
ers failed to include significant information about their
data. Perhaps this reflects a need for fewer pages and
concise data representation for journal publication. In
writing a thesis, I am not restricted in this manner and
my tables and figures were included so that future exper-
imenters will not be hampered when reviewing my research
(as I was when reviewing others').
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Page 3
April 17, 1986

Again, I would like to express my gratitude for your
timely and extensive comments concerning my research
effort. I have had ample time to address each issue
you raised and many pertinent changes to the final
draft have been made. I expect to have copies of the
final draft made within the next two weeks and I will
send you one shortly thereafter. Thanks again and I
extend my very best regards.

Very truly yours,

Robert P. Guinter
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Robert P. Guinter 	 may 5, 1986

Dear Bob:

I read your thesis 'Emergency Stop Devices For Industrial
machines And The Human Factors Of Emergency Response' and
found it an interesting and informative study of an important
safety issue.

Clearly, there is more that can be done to minimize
the incidence and severity of industrial machine accidents.
The lack of uniformity in emergency stop devices points up
the need for safety and design professionals to cooperate in
incorporating ergonomic principles in the design and retrofit
of industrial machines.

The experiments described affirmed the dogmatic belief
that small, guarded stop buttons are more difficult to success-
fully activate than large, unguarded buttons. Beyond this, how-
ever, the study defines and quantifies different human response
factors involved. For example, the total human response time
includes contributions due to recognition of the emergency,
the motion to activate the stop device, the possibility of
missing or slipping-eff the stop button, the possibility of
identifying the wrong button, and the physical action required
such as single digit versus palm activated buttons. This detailed
treatment brings to light new ideas such as the proposed revised
mushroom button design which can decrease the response time.

I have a suggestion regarding the motivation of experi-
ment subjects. Ideally, subjects will respond in the experi-
ment the same as they would in an emergency situation. The
question is how to elicit crisis motivation without endanger-
ment. A possible solution would be to chose the subject popula-
tion from a group that is motivated by monetary gain (eg. college
students). The subject would compete for a reward of some sort.
I'm not certain just how this would be implemented, but I
think the idea of trying to simulate some of the emotions
which motivate a real-life operator in a crisis situation
could benefit future experiments.
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I believe this thesis is a worthy addition to the body of
information concerning industrial safety. My best wishes for
your continued success.

Sincerely,

B.F. Bastian, CIH
Clayton Environmental Consultants, Inc.
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Nabil J. Bejjani, M.S.C.E.

May 5, 1986

Mr Robert Paul Guinter

Dear Mr Guinter:

I had the pleasure to read your Master Thesis on "Emergency Stop Devices
and Human Response".

The work was done with professionalism reflecting a well structured
handling and discussion of a very relevant and up-to-date topic in Ergonomics.
Moreover, the good syntax helped the refined English writing style in
presenting the subject matter as a clear and easy to understand one, although
some ideas were stated in an ambiguous way. The formatting and presentation
are inviting and clean, except for some drawings (figures) which lack
explanation and mainly captions.

Although not displayed in a standard form., the scientific aspect of the
experiments and their results are accurate and sufficiently elaborate for the
purpose of the study. The statistics part could include a tabulation of
Means, Standard Deviations and Ranges (i.e. minima and maxima) of the
corresponding results and observed data, in order to be more technical.

But most of all, as the intent of this thesis is to serve as a reference
material to the industry, an economical additive, coupled with a sharp safety
measure advice against vandalism will make your findings even more attractive
to Management in the industrial world.

All the aforementioned remarks do not interfere with the intrinsic value
of the research work, which is very informative about the subject treated. It
is thoroughly backed by relevant references and exhaustively encompasses all
the sides of the "Emergency Stop Devices and Human Response" issue.

I wish you good luck, with confidence,

yours truly,

Nabil t.Bejjani
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