Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

Title of Thesis:

ENHANCEMENT OF THE THERMOPHYSICAL CAPABILITY OF THE CHEMICAL ENGINEERING SIMULATION SYSTEM

Joydeep Banerjee, Master of Science in Chemical Engineering, 1985 Thesis directed by:

Dr. Edward C. Roche, Jr., Professorof Chemical Engineering

The CHESS (<u>Chemical Engineering Smulation System</u>) is a generalized steady-state, sequential-modular chemical process simulation program. In this thesis, the thermophysical data prediction capability of CHESS has been expanded by: incorporating more accurate thermodynamic phase-behavior models, by utilizing these models in generating a wider range of thermophysical properties, and providing an updated and expanded database for purecomponent physical properties.

The overall performance of the simulation system's thermophysical package has been evaluated using the study of a subprocess consisting of various rotational equipment modules.

In this work, the Chao-Seader liquid phase activity coefficient model has been reinstalled in conjunction with the original Redlich-Kwong equation of state for the vapor phase. As an alternative, the Soave-Redlich-Kwong equation of state has also been used as a vapor phase model with the Chao-Seader activity coefficient model to generate vaporliquid equilibrium constants and other properties. The Peng-Robinson equation of state has also been included as an option to predict vapor and liquid phase behavior.

The data-library approach of the original version of CHESS has been reinstated. The library has also been updated to provide a expanded database of pure component properties. The overall property prediction procedure has been expanded to provide: liquid and vapor enthalpy departure functions, liquid and vapor entropy departure functions, vapor phase specific heat departure functions and liquid densities.

The limited results of the subprocess simulation indicate that no single model(s) can be used to represent all the thermophysical properties under the conditions normally encountered in natural gas processing, that is high pressure and low temperature. The Peng-Robinson model has been found to be more accurate in the prediction of most of the properties, such as equilibrium constants, specific heat departures and vapor entropy departures. However, the Redlich-Kwong/ Chao-Seader and the Soave-Redlich-Kwong/ Chao-Seader combinations have predicted enthalpy departures more accurately.

ENHANCEMENT OF THE THERMOPHYSICAL CAPABILITY OF

THE CHEMICAL ENGINEERING SIMULATION SYSTEM

BY

JOYDEEP BANERJEE

A THESIS

PRESENTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE

OF

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

AT

NEW JERSEY INSTITUTE OF TECHNOLOGY

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passages must not be copied without permission of the Institute and without credit being given in subsequent written or published work.

> Newark, New Jersey 1985

 \bigcirc \langle

APPROVAL OF THESIS

ENHANCEMENT OF THE THERMOPHYSICAL CAPABILITY OF

THE CHEMICAL ENGINEERING SIMULATION SYSTEM

BY

JOYDEEP BANERJEE

FOR

DEPARTMENT OF CHEMICAL ENGINEERING

NEW JERSEY INSTITUTE OF TECHNOLOGY

BY

FACULTY COMMITTEE

APPROVED : ______

NEWARK, NEW JERSEY SEPTEMBER, 1985 Name: Joydeep Kumar Banerjee.

Permanent Address:

Degree and date to be conferred: M.S.Ch.E , 1985.

Date of Birth:

Place of Birth:

Secondary Education: Ballygunge Govt. High School,

Calcutta, India, 1976.

Collegiate Institutions Attended	Dates	Degree	Dates of Degree
New Jersey Institute of Technology Newark, New Jersey.	9/81 -9/85	M.S.Ch.E	1985
Indian Institute of Technology, Kharagpur, India.		B. Tech (Hons) in	

DEDICATION

Dedicated to the memory of my father, Late Shri Bhabatosh Banerjee

ACKNOWLEDGEMENT

I would like to express my gratitude to Professor Edward C. Roche Jr. for the guidance and help he has provided me during this work. I would like to thank him for the reference material and the software modules he has provided for this thesis.

I would like to take this opportunity to express my appreciation to the members of the faculty of the Chemical Engineering Department of the New Jersey Institute of Technology for their guidance during the course of my study at the institute.

I would like to express my thanks specially to Dr. Dana Knox, Dr. Harpreet Singh Chawla and Timothy Roche for their help.

TABLE OF CONTENTS

			Page
DEDI	CATI	ON	ii
ACKI	NOWLEI	DGEMENT	iii
TABI	LE OF	CONTENTS	iv
LIST	OF !	TABLES	viii
LIST	r of 1	FIGURES	ix
СНАН	PTER		
1	INTR	ODUCTION	1
2	EXTE	NSION OF THE THERMOPHYSICAL SUPPORT OF CHESS	6
	2.1	Importance of Thermodynamics in Process	
		Simulation	6
	2.2	The Original-CHESS approach	7
	2.3	The Previous Modification at NJIT	7
	2.4	Modifications Performed in This Work	8
	2.5	Equilibrium Constant Calculation Procedure	9
	2.6	Need for incorporating Newer Equations of	
		State in CHESS	13
	2.7	Need for the Modified Chao-Seader Activity	
		Coefficient Model	20
	2.8	Need for Updating the COMPID Thermophysical	
		Database	26
3	THEO	RETICAL ASPECTS OF THE ADDED THERMOPHYSICAL	
	MODU	LES	32
	3.1	General Expressions for Thermophysical	
•		Properties	32

.

TABLE OF CONTENTS (Continued)

CHAPTER

	3.1.1	Various Methods of Calculating	
		the Equilibrium Constants	34
	3.1.2	Fugacity Coefficients : for Vapors	
		and Liquids	36
	3.1.3	Enthalpy Departure Function : for	
		Vapors and Liquids	37
	3.1.4	Entropy Departure Function : for	
		Vapors and Liquids	38
	3.1.5	Departure of Vapor Specific Heat	
		at Constant Volume	39
	3.1.6	Difference Between Vapor	
		Specific Heats	39
	3.1.7	Departure of Vapor Specific Heat	
		at Constant Pressure	40
3.2	The Re	dlich-Kwong Equation of State	41
3.3	The So	ave-Redlich-Kwong Equation of State	44
3.4	The Pe	ng-Robinson Equation of State	52
3.5	Vapor	Mixture Heat Capacity Functions	60
	3.5.1	Soave-Redlich-Kwong Equation	61
	3.5.2	Peng-Robinson Equation	64
	3.5.3	Specific Heat Departures :	
		Some Thermodynamic Issues	66
3.6	The RK	/SRK : Chao-Seader Liquid Phase Models	67

v

TABLE OF CONTENTS (Continued)

CHAPTER

	3.7	Pure Component Thermophysical Database	80
4	SYST	EM ORGANIZATION AND COMPUTATIONAL ASPECTS	89
	4.1	System Organization and Simulation Strategy	89
		4.1.1 Process Simulation Methodology	90
		4.1.2 Organization of CHESS	94
		4.1.3 Computational Scheme	103
	4.2	Unit Computation and Information Flow	107
		4.2.1 Unit Computation in CHESS	108
		4.2.2 Flow of Information	112
	4.3	Data Structure and Program Control	114
		4.3.1 Data Structure	114
		4.3.2 Standard Component Properties'	
		Database	116
		4.3.3 User-Defined Execution Parameters	117
	4.4	Input Data Specification	119
	4.5	'ADD' Modules and Key Variables	124
	4.6	Output Features	126
	4.7	System Capacity and Constraints	126
5	SIMU	LATION STUDY OF AN ILLUSTRATIVE SUBPROCESS	128
	5.1	Formulation of the Test Problem	128
	5.2	Analysis of Results	135
		5.2.1 Correctness of generated thermodynamic	
		Data	135

vi

TABLE OF CONTENTS (Continued)

CHAPTER			
5.2	2.2 Performan	ce of Computational Mo	dules 150
6 CONCLUS	ION		154
APPENDIX A	ENTHALPY A	ND ENTROPY DEPARTURE	
	VIA PENG-RO	OBINSON EQUATION	157
APPENDIX B	VAPOR MIXTO	URE HEAT CAPACITY	
	DEPARTURE I	FUNCTIONS	162
APPENDIX C	OUTPUTS OB	TAINED FROM THE SIMULA	TION
	STUDY : TE	ST CASE FOR	
	ROTATIONAL	EQUIPMENTS	171
APPENDIX D	PROGRAM LIS	STINGS OF SELECTED	
	MODULES		226
BIBLIOGRAPHY	Z		296

BIBLIOGRAPHY

vii

	LIST OF TABLES	
TABLE 3.1.	Interaction Parameters for the Peng- Robinson	Page
3 • 7 •	Equation	56
3.2	Temperature Dependant Factors for (1<>1)	
512	Interactions	57
4.1	Executive Modules of CHESS3	97
4.2	Thermophysical Modules of CHESS3	99
4.3	Equipment and Computational Modules	
	of CHESS3	101
4.4	Control Blocks of CHESS3	102
4.5	Arrangement and Specification	
	of Input Data	120
4.6	Description of Input Data	122
4.7	Some Key Variables	125
5.1	Feed Conditions and Equipment	
	Specifications	133
5.2	Stream Conditions : Isothermal Flash	140
5.3	Equilibrium Constants : Isothermal Flash	141
5.4	Liquid Phase Fugacity Coefficients :	
	Isothermal Flash	142
5.5	Vapor Phase Fugacity Coefficients :	
	Isothermal Flash	143
5.6	Specific Heat Departure Functions :	
	Streams 1 and 2	149

LIST OF FIGURES

FIGURE

4.1.	CHESS3 : Organizational Chart	96
5.1	Flowsheet of the Subprocess	131
5.2	Information Flow Diagram	132

CHAPTER 1

INTRODUCTION

The application of digital computation for solving problems in the area of chemical engineering has grown significantly over the recent years. This progress has evolved in parallel with those made in computer hardware and software. The chemical engineering applications cover the entire spectrum of interest, ranging from fundamental research on molecular structures to real-time analysis and control of industrial processes. The area of process design, situated somewhat in the middle of this spectrum, has undergone vast changes in approach and methodology, necessitated largely by economic and environmental factors.

In computer-aided design of steady state chemical processes, processing entities are represented by a mathematical model that integrates the information on the qualitative behavior of the units, with quantitative relations, represented by equations, into a programmable module. A processing system is simulated by defining the interconnection of such modules through specified operating conditions and functional parameters. In such an interrelationship, the modules can be thought of as stand-alone entities, requiring inputs to calculate outputs, or they may be made to interact with each other simultaneously, in which

1

case the entire system is thought of as an aggregation of their individual mathematical models. Earlier simulators had adopted the first approach, whereas recent trends indicate a shift towards the second, or a combination of the two approaches. The '<u>Ch</u>emical Engineering Simulation System', known as CHESS, belongs to the first group of simulators.

CHESS was developed originally in the University of Houston (Motard and Lee, 1971). It has been used in various organizations, including NJIT. As newer processes came into perspective and as advancements in the scientific understanding of chemical engineering principles are being achieved, CHESS has undergone successive enhancements in scope here at NJIT. Such activities have encompassed all the components of the original system, such as computational algorithms, mathematical models for units and thermophysical predictive procedures.

The role of thermophysical property computation in chemical engineering simulation is of utmost importance. Key design decisions, such as equipment sizing, amounts of heat and work transformed in mechanical and thermal equipments, phase seperation strategy in single or multistage operations, are guided almost entirely by thermophysical property predictions. The accuracy of such decisions rely on the ability of thermophysical models to describe the complexity of natural phase behavior under widely varying conditions of temperature, pressure, composition etc. These

2

thermophysical models may exibit any degree of sensitivity to one or many of the process parameters. The difficulty is furthered by the objectivity of numerical stability and computational convenience towards efficient simulation. Recently developed processes such as synthetic fuels, supercritical extraction, bio-conversion etc. have triggered the need for process simulators to be adept in handling processing conditions beyond the ordinary. Hence, much importance has been given in recent times to the enhancements of thermophysical property prediction in existing process simulators.

The primary motivation behind this work has been the necessity of incorporating current thermodynamic models into CHESS. In order to support these, the physical properties database of the original version has been expanded and updated. The second objective was to validate these models in conjunction with the rotational equipment modules.

The original-CHESS approach of grouping all the thermophysical models into one general module, had been discarded in the previous work at NJIT (Andreyuk, 1983). This modification has been followed in our work. However, we have restored the original approach of a system-resident databank of physical properties, keeping intact the earlier modification towards a time-consuming read-in procedure as an option. Existing data were updated and a major portion was appended.

In the original form, the thermodynamic prediction package of CHESS was limited. Although it had embodied models which were found to be the best at that time, thermodynamic research has outgrown these models. Similar revisions have taken place for pure-component properties In the original version, the RK/ Chao-Seader method also. for calculating equilibrium ratios. The enthalpy of both the liquid and vapor phases were calculated based on the Redlich-Kwong equation. We have introduced an extended form of the Chao-Seader activity coefficient model with Flory-Huggins size corrections, and have utilized it to predict liquid phase enthalpy and entropy departure functions and molal volumes. For the vapor phase, we have introduced the Soave modification of the Redlich-Kwong (SRK) equation of state as a replacement for the RK equation, with the liquid phase represented by the Chao-Seader correlations.

The Peng-Robinson equation of state has been introduced to represent both the vapor phase and the liquid phase behavior in an extensive manner. This equation is considered to be very successful in modelling various process environments.

The RK / SRK : Chao-Seader and the Peng-Robinson models, together with some others already incorporated in the previous extension of CHESS at NJIT (Andreyuk, 1983), will provide the users with a powerful thermophysical package.

In the area of simulating work-intensive equipments, the original version was quite limited. A generalized module was used to simulate both pumps and compressors. Gas expanders and Hydraulic Turbines were not included. Such restrictions were removed in the previous extension. For example, while the original version had assumed a constant polytropic coefficient of 1.26, the modified Compressor routine has used the Redlich-Kwong equation to evaluate specific heat departure functions at any given state. In this work, we have integrated the rotational equipment modules and the rest with the expanded thermophysical package.

5

Finally, the updated thermophysical capability of CHESS and the performance of the rotational equipment modules have been tested with the simulation study of a low temperature and high pressure process. In this way, we have substantiated the performance of both and some previously unnoticed errors have been removed. This study has also helped us in providing a guideline about selecting one thermodynamic model over another, in the specific case of the simulation of cryogenic processes.

CHAPTER 2

EXTENSION OF THE THERMOPHYSICAL SUPPORT OF CHESS

2.1 Importance of Thermodynamics in Process Simulation

The design of industrial chemical processes requires knowledge of the phase behavior of liquid and vapor mixtures, sometimes accompanied by the presence or formation of solids or ions. The phase behavior of a pure substance or that of a mixture is represented by certain thermophysical variables. We can characterize a substance by its physical constants and can predict its thermodynamic behavior by generalized equations. Many of the properties vary with process conditions or phase environments. In order for a simulation program to evaluate phase behavior accurately, a set of thermophysical models and associated data required should be provided. The correctness of the results obtained through simulation depends largely on the accuracy of these predictive procedures. In some modern chemical processes, a wide range of conditions are encountered. A present day simulation system would need to gather information extending over a range of -260 F to 1000 F and from near-atmospheric pressure to 10000 psia (Peng, Robinson, Ng 1978-79). Hence, the simulation system should have appropriate models to represent various thermophysical conditions, in order to be truly generic in nature.

6

In the following topics, we will substantiate the need for extending the thermophysical section of CHESS.

2.2 The Original-CHESS Approach

The original version of CHESS (Motard and Lee, 1971) incorporated a straightforward approach to the thermophysical models. It used the Redlich-Kwong equation (RK equation) for vapor phase and the Chao-Seader correlation for liquid phase computations. Pure-component data was provided for some 98 standard chemical components. The program-design methodology adopted in the original version of CHESS for the thermophysical properties was a complicated single subprogram named KZHT. This routine was used by the simulation system at different stages of computation via multiple entry points. Although it was execution-efficient, from a programming standpoint, it failed to provide even a minimum level of structured organization, making maintenance virtually impossible. From a thermodynamic point of view, it was inadequate in representing thermophysical states over wider ranges of conditions accurately.

2.3 The Previous Modification at NJIT

There has been a tremendous impetus for research in applied thermodynamics as processes grew in complexity and new processes were developed in the last decade. This was facilitated by the comming of age of the computer era and improvments in the analytical tools. Thus, it was necessary to update and improve the thermophysical support of CHESS (Andreyuk, 1983). In this previous modification of CHESS at NJIT, the following changes were performed :

- The KZHT approach was discarded in favor of a modularized method. In this method, the thermophysical models are seperated into individual modules, such that maintenance is easy. It also had incorporated an open-ended structure, where new modules could be added easily.
- The Virial equation of state was added to the set of vapor phase models.
- The Redlich-Kwong equation of state had been included in an enhanced fashion.
- The Wilson, the NRTL and the UNIQUAC liquid phase activity coefficient models were incorporatred.
- The original pure-component database (COMPID) was deleted in favor of a data-read-in procedure (CDATA).

2.4 Modifications Performed in This Work

The following modifications were performed in this work:

The Soave-Redlich-Kwong equation of state has been introduced. It has been used as a vapor phase model with the Chao-Seader liquid phase correlation, and to generate vapor phase enthalpy and entropy departure

8

functions.

- The Chao-Seader model has been reinstalled in a modified form. It has also been used for the determination of liquid phase enthalpy and entropy departure functions, and molal volumes.
- The Peng-Robinson equation of state has been included to predict for both the vapor phase and liquid phase behavior.
- The original CHESS module COMPID has been reinstalled. The database has been updated for the existing properties and many new properties have been added to it.
- The vapor phase specific heat departure functions have been evaluated by the Peng-Robinson, the SRK and the RK equation.
- 2.5 Equilibrium Constant Calculation Procedure

Chao-Seader Approach

In the Chao-Seader (1961) approach, followed in the original CHESS and retained in this version, the equilirium compositions in a vapor liquid (VLE) system is expressed as a ratio, which requires the value of the liquid phase purecomponent fugacity coefficient. This ratio, termed as the equilibrium constant, is evaluated via models describing the phases. The method due to Chao and Seader uses the Redlich-Kwong equation for the vapor phase fugacity coefficient. The Chao-Seader definition of the equilibrium ratio follows from fundamental thermodynamic relationships and is described as follows :

where :

K = Equilibrium ratio of component i
i
y,x = Vapor and liquid phase composition of i
0 = Vapor phase fugacity coefficient of i
iV
7 = Activity coefficient of i in liquid phase
i

f = Liquid phase pure component fugacity
i_I

The original version of CHESS used the Redlich-Kwong equation of state to calculate the vapor phase fugacity coefficient. For the liquid phase, the Chao-Seader correlation for the fugacity ratio and Hildebrand's regular solution approach for the activity coefficients were implemented. The Yen and Wood's correlation was used for obtaining the liquid phase densities and hence, molal volumes. The Redlich-Kwong equation was also used for predicting the enthalpy departure functions of both the phases. In this work, the Chao-Seader approach has also been used, but with the SRK vapor phase model.

Again, in this modification of CHESS, we have included the Chao-Seader method in an extensive way. It has been used as an model for the liquid phase to predict liquid phase fugacity coefficients, enthalpy and entropy departures and liquid molal volumes. The Hildebrand activity coefficient model has been retained but the Flory-Huggins correction is applied uniformly. We have also used the Chao-Seader models to obtain liquid phase enthalpy and entropy departure functions.

The Modular Thermodynamic Approach : Activity Coefficients

The approach followed in Andreyuk's modification evaluates the liquid phase fugacity coefficient from an equation of state using system temperature and component vapor pressure. According to this method, the equilibrium ratio is expressed as following :

wh

saturation pressure of component i at T Ρ i P, T = system pressure and temperature

{P.F} = Poynting Factor

Poynting Factor = exp [$\int_{\bullet}^{-1} \{ V (T,P) / RT \} dP]$ i

For a condensible component, this can be approximated by the following expression :

Poynting Factor = exp[V(P-P) / RT]

where :

L V = liquid molar volume of component i

In VLE systems where temperature is much below the critical values of its components, a liquid is considered incompressible. The effect of pressure on the liquid phase fugacity is negligible unless the pressure is very high or the temperature is very low (Reid, Sherwood, Prausnitz: 1977). To account for the large difference between the system pressure and the component vapor pressures, especially in high-pressure environments, a correction factor is to be applied. This correlction is known as the Poynting Factor.

This pressure affected term is important for simulation of high-pressure systems. The original CHESS did not account for this. Successive modifications have included this correction in the equilibrium ratio calculations, while using the Virial equation and the RK equation as the vapor phase models.

Equation of State Approach : the Peng-Robinson Equation

The Peng-Robinson equation of state is applicable to both the liquid phase and the vapor phases in VLE calculations. The equilibrium constants are evaluated from the basic definition, as shown below :

$$K = \emptyset / \emptyset = (f / (x P)) / (f / (y P))$$

$$i I_L i_V i_L i i_V i$$

$$= y / x \text{ at equilibrium.}$$

According to this method, which was implemented in this work, the fugacity coefficients are evaluated for both the liquid and the vapor phases, with the appropriate phase compositions.

2.6 Need for Incorporating Newer Equations of State in CHESS

In this topic, the need for the provision of new equations of state in the CHESS is discussed. The original CHESS had implemented only the RK equation of state with the Chao-Seader correlation in a limited manner. In contrast, let us first describe the improvements intended in this work. Then, we can proceed to a comparative discussion about the various equations.

The thermodynamic properties which will be predicted with the newly-included equations of state are :

- Fugacity coefficients of pure components (liquid) and mixtures (vapor),
- . Enthalpy departure functions for vapor and liquid mixtures,

13

- Entropy departure functions for vapor and liquid mixtures,
- . Departure functions for specific heats of pure component and mixtures of vapors, at constant pressure and at constant volume.

Problems With the RK Equation : Original Version of CHESS

CHESS in its original form was quite limited in its capability to predict thermodynamic properties. The Redlich-Kwong equation (RK equation) was used as the only model to represent vapor phase behaviour. Until the time CHESS was concieved, it was found to be the best, among the available generalized P-V-T correlations, for phase equilibrium prediction purposes. In CHESS, predictions were made for compressibility factors, specific volumes, fugacity coefficients and enthalpy departure functions of pure components or mixtures for both liquid and vapor phases using this model.

The RK equation gives large errors in predicting the VLE behaviour of multicomponent mixtures (Soave, 1972). This is due largely to the imperfections of the mixing rules which assume a molar arithmetic average for all mixture properties. The second drawback is in the assumption of temperature-independance of the inter-molecular attractionforce coefficient. This is manifested in its failure to predict mixture critical envelopes closely. The improper mixing rules yield widely errorsome results when polar species exist in a mixture. It was also demonstrated that agreement between experimental and predicted values for the vapor pressure is very poor. Thus, Soave presented a hypothesis that equations of state which predict saturation envelopes fairly closely, would work well with the prediction of mixture thermodynamic behaviour.

Soave Modified RK Equation (SRK equation)

In this work, the Soave-modified Redlich-Kwong equation (SRK equation) has been introduced into the set of P-V-T relationship models in the current versionof CHESS, which consisted of he Virial equation and the RK equation. Significant improvements in the prediction of thermophysical properties can be achieved utilizing this equation. It works extremely well with mixtures containing polar species. It also predicts vapor pressure values with a maximum deviation (Soave, 1979). The interaction parameters for polarof 2 % polar and polar-nonpolar pairs in systems having polar species have produced results which are much closer to experimental data. The correlation has temperature and composition dependent parameters by virtue of which the predicted values of thermophysical properties are very accurate. The idea of varying the coefficients in the RK equation for obtaining a better equation of state was first conceptualized by Soave (1972). Several other modifications

based on his approach has been attempted since then but only a few has been as widely accepted, particularly in the hydrocarbon industry, as his model.

Another aspect of the SRK equation which is of tremendous use for the simulation of synthetic fuel processes or the LNG processes, is that it can predict vapor-liquid-solid equilibria (VLSE) conditions very accurately. Soave (1979) observed that the values of interaction parameters obtained from VLE data work well with equilibrium systems containing components in the solid state also. Although CHESS does not support systems containing solids presently, this feature should be considered for future improvements.

The Peng-Robinson Equation of State

One of the most challenging tests for a newly proposed equation of state is its capability to represent phase behaviour at or near the critical point. Two-constant equations (like the RK equation) fail to predict the critical compressibility factors accurately enough. This was observed in a study made by Redlich (1975). The threeconstant equations (like the SRK), which include the critical compressibility factor as a parameter have been found to be very successful in this respect. The most accurate among these is a further extension of the RK equation proposed by Peng and Robinson (1976). The major shortcomming of the SRK equation is its failure to predict liquid volumes accurately. While vapor phase density predictions are fairly accurate, the estimated liquid density values exceed the experimental values in almost all cases. The deviations observed by Peng and Robinson were from 7% at reduced temperature below 0.65 to 27% in the vicinity of the critical points. It was found that the error for compounds with lower molecular weights (e.g Nitrogen, Methane) are tolerable but large errors occur for hydrocarbons having high molecular weights.

In its conception and structure, the Peng-Robinson equation is similar to the SRK equation. The temperaturedependence of the 'a' parameter (refer to Chapter 3) is described by a similar correlation in both of these, differing only in the values of the empirically-obtained numerical coefficients. This probably does not reflect difference between the approaches used. Soave used vapor pressure data at only two points for regression analysis: values at reduced temperatures of 0.7 and at the critical point. Peng and Robinson has made use of vapor pressure data over the entire range of practical interest, from the normal boiling point to the critical point. Improvements were observed for low-pressure systems involving natural gas condensates by Conrad and Gravier (1980). The authors also observed that the interaction parameters have a major influence on the prediced values of saturation pressures.

Under cryogenic conditions, the uncertainities associated with the predictions of enthalpy departures and VLE system K-values affect the process design significantly. In studies of such systems made by Klotz et.al (1983), the Peng-Robinson equation was found to be the most suitable model.

The values predicted for enthalpy departure functions in either of these equations have accuracies of the same order, but only the Peng-Robinson equation is known to give close estimates of vapor pressure. A few systems, having C_1 -- C_4 hydrocarbons paired with polar compounds, are presented in the original paper of Peng and Robinson,1976. The phase envelopes match the experimental P-T plots almost perfectly.

In many processes, the prediction of liquid-liquid equilibrium (LLE) systems is necessary. A variety of systems have been modelled successfully by Peng, Robinson and Ng (1978-1979) using their equation. These include VLE and LLE data prediction for three phase hydrocarbon systems containing water or other non-hydrocarbons, such as alcohols. Also included were VLSE systems with compositions defined by chemical equilibria such as systems where solid hydrates are formed. Predictions for unknown and undefined petroleum fractions containing C_7 and higher molecules were also found to be accurate. In various research projects undertaken recently at NJIT, systems containing immiscible liquid phases, VLSE systems and equilibrium systems having electrolytic components are being studied. The modified version of CHESS having the Peng-Robinson and the SRK equations of state models will be appropriate for the simulation study some of these systems. Further improvements should also include the Benedict-Webb-Rubin (BWR) equation of state.

The Virial Equation of State

In the previous extension of CHESS done at NJIT (Andreyuk, 1983), the Virial equation of state was implemented for predicting fugacity coefficients and vapor phase enthalpy departure functions. The Virial developed from a statistical mechanics equation was approach. The coefficients of the equation reflect interactions between two, three, four or more bodies (molecules) and are functions of temperature and composition. However, the Virial equation has some limitations. Erroneous results are obtained for phase conditions having vapor density figures above half the critical density. The Virial equation cannot handle systems with carboxylic acids. The most critical issue is the scarcity of data for the equation parameters. The Virial equation is universal in nature but not in the values of its coefficients. Each individual system is described by a unique set of parameters, the values of which are rarely

reported in the literature. Different research groups adopt widely varying techniques for arriving at the values of the parameters, which may become meaningless unless the precise technique and its assumptions are evaluated. While some empirical correlations are available for the second Virial coefficients (B_{ij}) values, or correlations for the third, (C_{ijk}), are very rare. There are two widely accepted correlations for B_{ij} , one by Tsonopoulos, and the second by Hayden and O'Connell respectively (Prausnitz et al, 1980).

Although the Virial equation is very accurate for strongly interacting systems, it is accurate for low pressure applications only (Tassios,1980). It is expected thatfurther research would lead to correlations for higher coefficients in the Virial power series equation, which would enable us to use it for accurate predictions of phase behaviour in high pressure VLE enviornments. As mentioned before, CHESS has been modified for this equation already, but user-defined data for the coefficients of any specific component are required.

2.7 Need for the modified Chao-Seader Activity Coefficient Model

The Activity Coefficient Models of the Previous NJIT Version

In the previous extension of CHESS performed at NJIT (Andreyuk, 1983), three new models for predicting the activity coefficients were incorporated. These were the

Wilson equation, the NRTL equation and the UNIQUAC equation. These equations are more consistently reliable than other generalized equations proposed earlier (Reid, Sherwood and Prausnitz, 1977). They can reproduce highly non-ideal behavior fairly accurately. The theoretical assumptions made in these models are similar and they express the excess Gibb's free energy with two or more binary interaction parameters. The Wilson equation is excellent for strongly interacting binary mixtures, for example, solutions of alcohols and hydrocarbons. However, it is unable to predict for immiscible systems where the liquid phase splits into two phases. In LLE systems, the behaviour of only one of the liquid phases can be predicted with the Wilson equation, but the interplay of the phases cannot be determined. Again, unlike the UNIQUAC and the NRTL equations, the Wilson equation is not applicable to Vapor-Liquid-Liquid Equilibria (VLLE) calculations. Although the UNIQUAC equation involves complex computations, it has a sound theoretical basis. Again, the UNIQUAC parameters do not vary much with temperature. The UNIQUAC equation is based upon volume and surface fractions rather than mole fractions and hence, is applicable for solutions containing larger molecules such as polymers. The calculations based on such parameter-dependant equations are widely used in industry. They can easyly handle mixtures containing polar species, by using two or more parameters. However, the parameters for any of these

models are obtained via regression analysis of experimental data and one has to use both plentiful and accurate data in order to obtain realistic results.

The Chao-Seader Method

The original version of CHESS used the Chao-Seader method for predicting activity coefficients of liquids, for both pure-components and mixtures. The Grayson-Streed modified empirical relationships were used, to make the model applicable to higher temperatures and pressures and with systems containing Hydrogen. The results obtained with this modification are quite accurate in general, especially at high pressure regions (Tassios, 1980).

In this extension of CHESS, we have redefined, generalized and increased the liquid-phase property prediction capacity of the Chao-Seader module. This was necessitated by the requirement of a model suitable for high pressure systems, which are frequently encountered in Hydraulic Turbines and other rotating equipments.

Although the Chao-Seader method, in general, works well for high-pressure systems, there may arise cases where erroneous results are obtained due to the implicit use of RK equation as the vapor phase model, as prescribed, for the Chao-Seader method (1961). Coward and Webb (1978) have found that spurious roots are present near the critical points of mixtures or high pressure systems. This amounts to more than one value predicted for the dew and bubble points and asymptotic nature of the phase envelope near the critical region, yielding no unique critical point. Thus, two or more states may be predicted for a single temperature and pressure combination. In this work, we have applied the SRK equation instead of the RK equation, and simulation results appear to be consistent with the RK equation, as will be shown in Chapter 5.

The Chao-Seader models originates in the 'regular solution theory' originally proposed by van der Waals and van Laar. The theory has been developed by Scatchard and Hildebrand (Henley and Seader, 1981). The principal assumption underlying the theory is that molecules are randomly dispersed in a solution, such that unequal molecular attractive forces between like and unlike pairs are counter-balanced by erratic movements due to thermal energy which tend to seperate them. This results in local compositions which are identical to the overall composition of the solution. Regular solutions have zero entropy of mixing and endothermic enthalpy of mixing in contrast to athermal solutions which have zero enthalpy of mixing. 'Regular Solution' theory assumes that excess Gibb's free energy is independent of temperature, while the 'Athermal Solution' theory assumes that mixing occurs at constant temperature. According to Reid, Sherwood and Prausnitz (1977), none of these assumptions are valid.

Using the regular solution theory, one arrives at the conclusion that the activity coefficient of a specie in a mixture is a function of its pure component properties only. Another important assumption is made in the definition of the 'solubility parameter' used by the model.

Solubility Parameter: $\delta = (\Delta U / V)$ $i \qquad i \qquad L_i$ $= [(\Delta HV - RT) / V]$ $i \qquad L_i$

where :

The approximation that ΔU equals ΔHv , is acceptable only for temperatures much below the critical for most of the compounds.

The original version of CHESS did not include the Flory-Huggins correction for solutions where molecular sizes differ appreciably. In such systems, substantial athermal behaviour is expected. This situation arises when polymers are present in a solution. The Flory-Huggins correction applied on the Chao-Seader model improve predictions significantly, as observed by Henley and Seader (1981). They present a test result for n-Heptane - Tolune system at one atmospere pressure. The corrected equation reduces deviations in the predicted values of activity coefficients from 12% to 6%. In this work, we have applied this correction uniformly for all the included models. The following models derived from the Chao-Seader correlation are included in this work :

- Liquid phase activity coefficients.
- Liquid phase pure-component fugacity ratios.
- Liquid phase enthalpy departures.
- Liquid phase entropy departures.
- Liquid phase molal volumes.

A major discrepancy in the original CHESS was in the prediction of liquid phase enthalpies. These were calculated from the RK equation. This approach makes the liquid phase prediction inconsistent and error-prone, as the RK equation is not suitable for liquid phases. Again, liquid molal volumes were calculated using the Yen and Wood's correlation giving rise to another inconsistency and a possible source of error. In order to be consistent , we have incorporated the liquid molal volume correlation suggested by Chao-Seader's model. The enthalpy and entropy departure functions can be derived from fundamental relationships and we have adopted this strategy. Similar treatment was used by Henley and Seader (1981).

While the Chao-Seader method is generally expected to give better estimates, its applicability is limited to solutions having no polar components. Certain other restrictions exist.

In systems where polar components are present, especially in those having electrolytes, the regular solution assumption of segregation of molecules can not be expected to hold true. The Chao-Seader correlations are restricted to system conditions not exceeding 260 C and 1000 psia. In mixtures involving hydrocarbons, the reduced critical temperatures of any system component should not lie outside the range of 0.5 to 1.3. The reduced mixture critical pressure figures should be less than 0.8. This restriction is not applicable for Methane however. Systems having Methane and/or Hydrogen are accurately predicted for reduced mixture temperature below 0.93. However, predicted values are inaccurate above Methane mole-fraction concentrations of 0.3 and the mole-fraction of other dissolved gases should be lesser than 0.2. In any general system, the liquid phase aromatics' mole-fraction should not exceed 0.5 in the presence of paraffins and olefins.

2.8 Need for Updating the COMPID Thermophysical Database

In the previous research on CHESS (Andreyuk,1983), the original pure-component thermophysical data module, COMPID, was deleted from the system. The modifications were undertaken with a specific application in perspective and hence, all the required data on thermophysical properties of components were defined using a special input module.

In this work, we have restored the origial CHESS approach of creating a thermophysical database for 98 standard components defined by CHESS (Motard and Lee,1971). There is a provision for the input of alternate data sets or when the simulation involves non-standard components. The original database needed updating in most of its values, since more accurate data has been published later. Also, a set of property-data has been included for previously omitted properties.

Revision of Data

The values of many pure-component properties had to be updated. Previously, the Chao-Seader modified accentricity factors were stored. We have changed these to the data presented by Reid, Sherwood and Prausnitz (1977). We have retained the Chao-Seader modified Hildebrand solubility parameters and liquid molar volumes but have used correlated data for the Flory-Huggins' equation. The Hildebrand parameters are used for enthalpy and entropy departure functions for the liquid phases. The values of the critical constants and those for coefficients of ideal-vapor heat capacity are updated likewise in accordance with data obtained from Reid, Sherwood and Prausnitz's text (1977).

Enlargement of the Database

We have enlarged the database for additional physical properties' data which did not exist before. Some were required for the added computational modules, while others were provided for future applications. For the calculation of vapor pressures, we have used a six-parameter Antoine equation rather than the equations of state. Reid, Sherwood and Prausnitz (1977) have recommended this approach, as the reliability of the equations of state in vapor pressure predictions is low. The data provided in this modification to CHESS was extracted from Reid, Sherwood and Prausnitz's reference (1977), which include only the values of the first three coefficients for the library components.

We have included the Rackett parameters for estimation of saturated liquid density values. The original version assumed that liquid densities are constant and hence only unique values were stored. In reality however, the liquid density is a weak function of temperature and pressure and the Rackett equation is one of the best relationships to reflect this.

The data available for liquid specific heat coefficients is very limited. We have combined three sources in order to provide data for all the standard components. These will be described in the next chapter. The values of heats of vaporization at constant normal boiling points are also included. CHESS now has an extensive support for enthalpy predictions. An interesting use of mixture enthalpy data would be to extrapolate VLE data to higher or lower temperatures by the use of Gibbs-Helmholtz equation in future work. This equation can be described as follows :

$$h = -T \left[\partial (g/T) / \partial (1/T)\right]_{P,Y}$$

This relationship can be used to establish the validity of VLE data or to generate these under low-temperature conditions.

The enthalpy of phases are referred to the standard state of ideal gas conditions, for both liquids and vapors. A departure function is added to the ideal gas enthalpy at a particular temperature, to correct for pressure. For vapor components, the equations of state predict the departure values. For liquids, the derivative of the natural logarithm, of the system-pressure standard state pure component fugacity coefficient, with respect to temperature at constant composition and pressure, yields the enthalpy departure term (refer to Chapter 3 : Chao-Seader models). The fugacity coefficient is determined from correlations dependent on vapor pressure data, vapor phase corrections and liquid phase densities (Prausnitz, Anderson et al, 1980). The Chao-Seader models include this. Although, there is an order of uncertainity about the experimental data used for such correlations, good predictions are obtained, in general, using this approach (Prausnitz,1980). The original CHESS applied the idea of using the RK equation for

estimating the liquid phase enthalpy. This method is inaccurate for a generalised situation and can be applied only for a specific component whose experimental data is to be analysed. We cannot use the SRK equation, as the temperature dependence of binary interaction parameters in the liquid phase is not accurately known (Prausnitz, Anderson et al, 1980). We have provided algorithms based on the equations of state to calculate departure functions and included updated values of zero-pressure ideal gas specific heat coefficients obtained from data collected by Prausnitz, Reid and Sherwood (1977).

The polytropic ratio (C_p/C_v) of a gas is required for evaluating the power requirements of a compressor. For isentropic compression paths, it is equal to the ratio of specific heats of the gas at constant pressure (C_p) and at constant volume (C_v) . The departure functions in C_p and C_v and the difference between them can be estimated from basic thermodynamic identities utilizing an equation of state. We have utilized these with the newly-added equation of state modules for the rotating equipment routines, which are those for staged compression, hydaulic expansion, gas expansion and liquid pumping. A mention is appropriate here about the possibility of using these values for enthalpy estimation purposes. As described earlier, this approach is not accurate in general, according to Prausnitz et al (1980).

In the evaluation of (C_p / C_v) through the

equations of state, one needs to know the critical temperature for a mixture accurately. Based on recommended made by Reid, Sherwood and Prausnitz (1977), we have chosen the Chueh Prausnitz method for this purpose. This method needs five pure-component parameters. These must be passed appropriately to the Chueh Prausnitz module, when non-standard components are used in a study.

Although the extension of the CHESS dataset was appropriate for the current work, these can be utilized for modules other than the rotating equipments and other thermophysical modules which may be introduced in future.

CHAPTER 3

THEORETICAL ASPECTS OF THE ADDED THERMOPHYSICAL MODULES

In this chapter, the thermodynamic basis of the various models implemented in this work is discussed. These will include the equations describing the models, equations of thermophysical properties derived from these models and principles involved in deriving them.

As a review, the various thermodynamic identities utilized in the derivations of the equations representing the changes of thermodynamic properties will be presented. We will also review the RK equation and the relationships arrived at through the use of it, since the SRK and the Peng-Robinson equations are related to it in principle.

3.1 General Expressions for Thermodynamic Properties

The thermodynamic state of a pure substance is described by a set of independant variables, temperature and pressure. Associated with each of these states is a set of characteristic properties. These are directly dependant on the independant variables only. Thus, the variations in such properties between two thermodynamic states are independant of the path chosen for the variation and are functions of the end-states alone. Furthermore, the properties of a

mixture is determined by some aggregate of the individual properties of its constituents. Enthalpy, internal energy, entropy, fugacity coefficient and their derivatives are some important thermodynamic properties for describing chemical systems undergoing changes of material and energy contents in a processing environment.

In this section, the various thermodynamic identities needed to relate the properties to the state variables are summarized. These relations are obtained from the fundamental definition of either of the two free energy expressions (Gibbs and Helmholtz), in their integralform. The reference state would be that of an ideal gas under the same system conditions of temperature and pressure, thus yielding the departure functions for the respective properties. In conjunction with an equation of state or an activity coefficient model, these relations would be utilized in relating the respective properties to state variables, temperature (T) and pressure (P). The expressions would be presented in their final forms. The details are given in Reid, Sherwood and Prausnitz's text (1977) and Henley and Seader's text (1981), amongst several references. We have followed an uniform strategy in dealing with the phase condition calculations : the vapor and liquid phase models utilized in the VLE computations, are also used to generate other properties, for example, enthalpy and entropy departures, of the respective phases.

3.1.1 Various Methods of Calculating the Equilibrium Constants

Chao-Seader Approach

In this approach, followed in the original CHESS and retained in this version, the equilirium compositions in a vapor liquid (VLE) system is expressed as a ratio. This ratio, termed the equilibrium constant, is evaluated via models describing the phases. The values of the liquid phase fugacity coefficients and activity pure- component coefficients are expressed via the Chao-Seader correlation and the Hildebrand regular solution theory, respectively. The method due to Chao and Seader uses the Redlich- Kwong equation for the vapor phase fugacity coefficient. In this extension to CHESS, the Soave-Redlich_Kwong equation (SRK equation) has been implemented as an alternative vapor-phase model in conjunction with the Chao-Seader liquid phase models. The RK-Chao Seader approach has been retained only the vapor-phase mixture fugacity unaltered, coefficients are evaluated, alternatively, by the SRK equation. The Chao-Seader definition of the equilibrium ratio is described as follows :

where

:

K i = Equilibrium ratio of component i

y ,x = Vapor and liquid phase composition of i i i Ø = Vapor phase fugacity coefficient of i i_V γ = Activity coefficient of i : liquidphase i f = Liquid phase pure component fugacity i_I

The Activity Coefficient Approach

According to this method, the equilibrium ratio is expressed as the following equation :

$$K = \frac{P \varphi \otimes \{P.F\}}{i \quad i \quad i}$$

$$K = \frac{P \varphi}{i_{V}}$$

$$(3.2)$$

where :

P = saturation pressure of component i at T
i

P , T = system pressure and temperature

{P.F} = Poynting Factor Poynting Factor = $exp[\int_{0}^{i} {V (T,P)/RT} dP]$ P

For a condensible component, the P.F can be approximated by the following expression :

where :

L V = liquid molar volume of component i

This approach, followed in Andreyuk's modification to CHESS, evaluates the liquid phase fugacity coefficient from vapor pressure, saturation-pressure fugacity coefficient and the Poynting effect. The fugacity coefficients for the vapor phase are evaluated by an equation of state : RK / Virial. The liquid phase activity coefficients are evaluated from a generalized correlation, such as, NRTL, Wilson or UNIQUAC.

Equation of State Approach : Peng-Robinson

The Peng-Robinson equation of state is applicable to both the liquid phase and the vapor phases in VLE calculations. The equilibrium constants are evaluated from the basic definition, as shown below :

$$K = \hat{\emptyset} / \hat{\emptyset} = (\hat{f} / (x P)) / (\hat{f} / (y P))$$

$$i_{L} \quad i_{V} \quad i_{L} \quad i \quad i_{V} \quad i$$

$$= y / x \quad \text{at equilibrium.}$$

$$i \quad i \quad (3.3)$$

According to this method, which was implemented in this work, the fugacity coefficients are evaluated for both the liquid and the vapor phases, with the appropriate phase compositions and compressibility factors.

3.12 Fugacity Coefficients : for Vapors and Liquids

For a pure component vapor or liquid, the expression for the fugacity coefficient is given by : $\frac{f}{\ln(---)} = (Z - 1) + \int_{\infty}^{V} \{P - RT/V\} dV - \ln Z \quad (3.4)$

where :

f = Fugacity of the component at temperature of T and pressure of P f/P = Fugacity coefficient (or ratio) Z = Compressibility Factor = (PV/RT) V = Volume of the component at T and P R = Universal Gas Constant.

For a component (i) in a mixture, vapor or liquid, the fugacity coefficient is expressed as the following :

RT ln
$$\hat{\theta}_{i} = - \int_{\infty}^{V_{t}} \frac{\partial P}{[(----)]} - (-----) dV - RT ln Z$$

where :
 $\hat{\theta}_{i} = (-----) = Fugacity Coefficient of component i$
 $\hat{\theta}_{i} = (-----) = Fugacity Coefficient of component i$
 $\hat{f}_{i} = Fugacity of component i in the mixture$

N = Total moles of i present in the mixture = y = Ni V = Total volume of the mixture = $\sum_{i=1}^{N} N = V$ i i i

3.1.3 Enthalpy Departure Function : for Vapours and Liquids

In the integral form, the enthalpy departure function for a liquid or a vapor phase is given by :

where : 0 H,H = Enthalpies, of the real fluid (f : liquid f v or vapor : l or v) and zero-pressure ideal gasrespectively, bothat system P and T. In the case of a mixture, the enthalpy departure is the sum of the enthalpy departures of the individual components.

 $H_{f} = \{\sum_{i=1}^{n} [c_{H}] \} + \{H_{f} - H_{i}\}$ (3.7) where : $c_{i} = Fractional concentration of species i in f :1/v$ $H_{f} = Enthalpy of the 'f' phase, liquid or vapor$ f $H - H_{i} = Enthalpy Departure for the 'f' phase, to be$ obtained from eqn. (3.6), with mixture Z, V.

3.1.4 Entropy Departure Function : for Vapors and Liquids

The departure in entropy is related to the departure in enthalpy and the fugacity coefficient, as follows :

 $\begin{array}{c} 0 \\ (S-S)/R = (H-H)/RT - \ln(f/P) \\ 0 \\ \end{array}$ where P is the pressure in the ideal-gas reference state.

The corresponding final form of the integral expression is given as follows :

$$S - S = \int_{\infty}^{0} \frac{\partial P}{[(----)]} - \frac{R}{(---)]} dV + R \ln Z \quad (3.8)$$

$$\sum_{\infty}^{\infty} \frac{\partial P}{\partial T} V \quad V$$

In the case of a mixture, the total volume and the mixture compressibility factor are used for V and Z respectively.

3.1.5 Departure of Vapor Specific Heat at Constant Volume

The departure in vapor specific heat at constant volume is obtained from the following expression in differencial form :

$$\begin{array}{c|c} \partial C & 2 \\ \hline V & \partial P \\ (-----) & = & T & (-----) \\ \hline \partial V & T & 2 & V \\ \hline \partial T & \partial T \end{array}$$
 (3.9)

where :

С

= Specific heat at constant volume.

In order to obtain the departure function, the above equation is integrated between an initial state at ideal gas conditions ($V^0 = R T / P$) and a final state at the system conditions (V = Z R T / P). Direct utilization of this identity requires an equation of state expressed appropriately in both the pressure-explicit and volumeexplicit forms.

3.1.6 Difference Between the Vapor Specific Heats

The difference between vapor specific heats at

constant pressure and at constant volume, for a real gas, is expressed as follows :

$$C_{P} - C_{V} = T \left(\frac{\partial P}{\partial T} \right) \left| \begin{array}{c} \partial V \\ (-----) \\ \partial T \end{array} \right|_{V} \left(\frac{\partial P}{\partial T} \right) \left|_{P} \right|_{P}$$
$$= -T \left(\frac{\partial P}{\partial T} \right) \left| \begin{array}{c} \partial P \\ (-----) \\ \partial T \end{array} \right|_{V} \left(\frac{\partial P}{\partial V} \right) \left|_{T} \left(3.10 \right) \right|_{P}$$

where :

C = Specific heat at constant pressure

For an ideal gas, this difference is a constant, equal to R, the Universal Gas Constant. The theoretical basis for ideal gas behavior is the kinetic theory of gases.

$$C_{\rm P}^{0} - C_{\rm V}^{0} = R \qquad (3.11)$$

3.1.7 Departure of Vapor Specific Heat at Constant Pressure

The departure in specific heat at constant pressure is obtained from the departure in specific heat at constant volume and the difference between them, as presented in the following identity, obtained from equation (3.11) :

$$\begin{array}{cccccccc} & & & & & & & & & & & \\ C & - & C & & & C & - & C & & \\ P & P & & & V & V & P & V & \\ (------) & = & (------) & + & (------) & - & 1 & (3.12) & \\ R & & & R & & R & \end{array}$$

Thus, equations (3.9) and (3.10) are used in obtaining values for this departure function.

3.2 The Redlich-Kwong Equation of state

The Redlich-Kwong (RK) equation was the first major modification of the van der Waals equation of state for real gases, which gained wide applicability in the chemical industry. Other successful models developed recently, like the Soave-modified RK equation (SRK) and the Peng-Robinson equation, are guided by the RK methodology, although incorporating three parameters instead of two. In this section, the RK equation and the expressions derived from it are summarized.

The Equation

In the pressure -explicit form, the equation is expressed as :

Mixture Combination Rules

The parameters 'a' and 'b' are defined for a mixture via the following mixing rules :

The Compressibility Factor : for Vapor Phase Only

The compressibility factor is obtained from the following Z-explicit, cubic equation form of RK equation :

For mixtures, a_{mix} and b_{mix} are used in place of a and b.

Fugacity Coefficients : for Vapor Phase Only

For a pure component, the fugacity coefficient is expressed as :

 $\frac{f}{\ln(---)} = (Z - 1) - \ln(Z - \overline{B}P) - (\overline{A}^2 / \overline{B}) \ln(1 + \overline{B}P / Z)$

where :

 $\frac{1}{A}^{2} = (0.4274802 / P T)$ $\frac{1}{B} = (0.0866404 / P T)$ $\frac{1}{C} T = T / T$ r = C

Fora componentiinamixture, the fugacity coefficient

Enthalpy Departure Function : Vapor Phase Only

For a pure specie in the vapor phase, the departure in enthalpy is given by the following equation :

 $\begin{array}{c} 0 \\ H - H = R T(Z - 1) - (3 / 2)(a / b T) \ln\{ (V + b) / b \} \end{array}$

For a mixture containing n components, the sum of the departures in individual components is taken to be the overall departure. The expression is given below :

$$H - \sum_{i=1}^{2} y H = RT (Z - 1) - (3/2)(A/B) \{ ln(1 + BP/Z) \}$$

Entropy Departure Function : Vapor Phase Only

The entropy departure function for a pure component in the vapor phase is expressed as the following :

3/2 S - S = R ln[(V- b)/V] - (a/ b T)ln[(V+ b)/V] - RT lnZ For a mixture, the mixture 'a' and 'b' parameters as well as the mixture compressibility factor, 'Z', is to be used in the above equation.

3.3 The Soave-Redlich-Kwong Equation of State

The Equation

n

In the pressure-explicit form, the equation of state is represented as follows :

 $P = \frac{RT}{(V-b)} V(V+b)$

Parameter a(T) is a function of temperature and depends on the accentricity factor of a component. The parameters a and b are dimensionless as their values depend on the reduced properties of a component. The first accounts for the attractive forces between molecules and the second corrects for the molecular volumes of a real gas. For a pure substance, these are given by the following

correlations

$$a(T) = a_{C} a(T)$$

$$b = 0.08664 (P_{r} / T_{r})$$

$$a_{C} = 0.42747 (P_{r} / T_{r})$$

$$P_{r} = P / P_{C} = Reduced Pressure$$

$$T_{r} = T / T_{C} = Reduced Temperature$$

$$T_{C} = Critical Temperature$$

$$P_{C} = Critical Pressure.$$

The constants in a_c and b are the same as the RK equation. The temperature-dependant factor a was determined through regression analysis of vapor-liquid equilibrium (VLE) data. The correlation is given by the following equation :

 $\alpha(T) = \{ 1 + m(\omega) [1 - T_r] \}$

Thus, the value of α depends on the Pitzer accentricity factor, ω also, unlike the RK approach. However, there is a discrepancy among many published literature on the correlation for the term m(ω). According to the original article (Soave, 1972), Reid, Sherwood and Prausnitz (1977) and Henley and Seader (1981), it is given by:

 $m(\omega) = 0.480 + 1.574 \omega - 0.176 (\omega)$

In another paper published more recently by Soave (1979), it is presented as follows :

 $m(\omega) = 0.47979 + 1.576 \ \omega \ -0.1925 \ (\omega) + 0.025 \ (\omega)$

The reason for this discrepancy lies in the method used to arrive at the correlation. The first form was correlated against non-polar components alone, whereas the second study had included systems with slightly polar species and also systems containing components in the solid phase. We have decided to implement the second correlation in view of its improved generality and since it was published more recently. A third version of the same equation is presented by Ferrel et al(1983) :

 $m(\omega) = 0.48508 + 1.55171\omega - 0.15613(\omega)$

The regression criteria employed to arrive at this correlation were not mentioned in the paper.

The Mixture Combination Rules

As mentioned in the previous chapter, the success of the SRK equation in predicting VLE or vapor pressure data is due mainly to two aspects : the temperature dependance of one parameter and the accurate nature of mixing rules.

In order to predict accurately for a mixture, especially those containing polar components, Soave proposed a greatly improved set of mixture combination rules for the parameters in his equation. He introduced the concept of a binary interaction parameter for estimating 'a' in the already widespread notion of using a mole-fraction-weighted quadratic average. The following is the expression for the mixture 'a' parameter, denoted by 'A':

 $a_{mix} = A = \sum_{i=1}^{n} \sum_{j=1}^{n} y_{j} y_{i} a_{ij}$

where:

$$a = a = a (1 - K)$$
ij i j ij

The value of K_{ij}, the 'interaction parameter' is nonzero for mixture-pairs (i,j) of which at least one is a polar compound. It is zero for the other pairs existing in the system. In the later case, a simple quadratic average is sufficient to reflect the mixing effect. Thus, interaction is significant for polar:polar and non-polar:polar pairs in the mixture. This binary interaction parameter was found to be adequate in predicting phases containing non-polars (Reid, Sherwood and Prausnitz, 1977). The values of the parameter for some commonly encountered hydrocarbon-polar pairs are given in Reid, Sherwood and Prausnitz's text (1977). The polar components for which data is available are: Nitrogen, Carbon Monoxide, Hydrogen Sulphide anð Carbon Dioxide. No data is available for Water, which exibits a strong dipole moment and hence, polar behavior. We have supplied the available values to our program and assumed no interaction for other pairs, including those containing Water.

Better results can be obtained from a temperaturedependent correlation for K_{ij} . This was observed in a study of methanol-containing systems made by Ferrel et al(1983). A linear relationship between the interaction parameter and temperature was obtained. For a given system, one can arrive at such results provided accurate VLE data is available together with a regression program. Such procedures could be made an integral part of a simulation package. For the present, we will supply constant values, for the interaction pairs whose data is available.

For the second parameter in the equation of state, a simple mole-fraction average is found to suffice for mixtures (Soave,1972).

$$b = B = \sum_{i=1}^{n} y_{i} b$$

However, in the article by Ferrel, it is mentioned that some research is currently under way to find an expression for b_{mix} having an interaction parameter. No significant improvement has yet been achieved. The Compressibility Factor : for Vapor Phases Only

The compressibility factor, Z, is a measure of nonideality for a vapor. The SRK equation written in the Zexplicit form is :

 $Z = \frac{PV}{RT} = \frac{V}{V-b} - \frac{\Omega_{a}}{\Omega_{b}} + \frac{b}{V+b}$ where: $\Omega_{a} = 0.42747$

> $\Omega_{b} = 0.08664$ F = [1 + m(\omega).(1 - T_{r})] / T_{r}

Since the measurement and prediction of volume is associated with large errors, one can eliminate V from the above equation, using V = ZRT/P. Upon rearrangement, one obtains the following cubic equation for the compressibility factor:

A cubic equation has three roots that can have real, or imaginary values depending on the value of the coefficients. For a two phase system, under supercritical conditions, only one positive real root is obtained, the other two are imaginary. For two-phase subcritical conditions, all the roots are real, the largest being for the vapor phase and the smallest for the liquid phase. Thus, there is at least one real root, which would approach a value of zero for a liquid phase component and one for a vapor phase component. Since we will apply this module for the vapor phases only, an iterative procedure starting at a value of 1.00 for the vapor phase is adopted. A Newton's iterative algorithm is employed to solve for Z.

The Fugacity Coefficients : for Vapor Phases Only

The fugacity coefficient of a component 'i' in a mixture is derived from the definition and fundamental relationships given in equations (3.4) and (3.5). Expressing the SRK equation in terms of the total volume, one obtains the following :

	2
NRT	a N (3.14)
V - N b	V (V + Nb) (3.14)
Т	тт

From equations (3.5) and (3.14) we obtain the fugacity coefficient :

$$\hat{\emptyset} = \exp \{ (Z - 1) (B / B) - \ln (Z - B) - (A / B) \\ \ln ((Z + B) / Z) [2 (A / A) - (B / B)] \}$$

In the case of a pure component, the application of equation (3.4) yields the following relationship :

$$f = \exp [(Z-1) - \ln(Z-b) - (a / b) \cdot \ln\{(Z + b)/Z \}$$

i i i i

The Enthalpy Departure Function : for Vapor Phases Only

The enthalpy departure function of a real fluid is defined as the difference between its enthalpy and the enthalpy of ideal gas at the same temperature. When equation (3.13) is applied to equations (3.6) and (3.7), we obtain the following expression for the enthalpy departure of a mixture :

 $(H - H) = R T \{(Z - 1) - (1 / B), ln((Z + B) / Z)\}$

 $\begin{array}{c} \cdot \left(\sum_{i=1}^{n} \sum_{j=1}^{n} y_{i} y_{j} (1 - K) \right) & \cdot \left(a \ a \right) \\ \cdot \left(1 - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{j} \right) \right) \\ \cdot \left(1 - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{j} \right) \right) \\ \cdot \left(1 - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{j} \right) \right) \\ \cdot \left(1 - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{j} \right) \right) \\ \cdot \left(1 - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{i} \right) \right) \\ \cdot \left(1 - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{i} \right) \right) \\ \cdot \left(1 - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{i} \right) \right) \\ \cdot \left(1 - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{i} \right) \right) \\ \cdot \left(1 - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{i} \right) \right) \\ \cdot \left(1 - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{i} \right) \right) \\ \cdot \left(1 - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{2} \left(\frac{T_{r}}{i} \right) \right) \\ \cdot \left(1 - \frac{m}{2} \left(\frac{T_{r}}{i} \right) - \frac{m}{$

The Entropy Departure Function : for Vapor Phases Only

The entropy departure of a real fluid from that of an ideal gas at the same temperature is expressed in the fundamental equation given by (3.8). When this equation is applied to the SRK equation, we arrive at the following expression for entropy departure of a mixture :

$$(S - S) = R [ln((V - B)/V) - (\gamma / B)]$$

. $\ln((V+B)/B) + \ln(V/V_0)$

where : $\gamma = - \begin{pmatrix} 1 \\ (---) \\ 2 \end{pmatrix} \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i} y_{j} (1 - K_{i}) (0.42747/ 0.08664)$ $\frac{1/2}{2 } \frac{1/2}{1/2} \frac{1/2}{1/2}$

52

and : $V_0 = R T / P_0$

We compute the volume, V, by an iterative procedure with the starting guess value of the ideal gas volume, V_0 .

3.4 The Peng-Robinson Equation of State

The Equation

The pressure-explicit form of the Peng-Robinson equation is given by the following relation :

 $P = \frac{R T}{V - b} = \frac{a(T)}{V(V + b) + b(V - b)}$

For pure substances, the parameters are expressed as follows :

 $a = a(T) = a(T) \cdot a(T)$ c r a(T) = 0.45724 (R T) / Pc c c

$$a(T) = \begin{bmatrix} 1 + K(\omega) & (1 - T) \end{bmatrix}$$

$$b = 0.0778 & (R T / P)$$

$$C C$$

$$K(\omega) = 0.37464 + 1.54226 & - 0.26992 & \omega$$

Although these equations do not seem to reflect it, there is a considerable difference between the approaches taken in the Peng-Robinson and the Soave-Redlich-Kwong methods. While Soave used vapor pressure data only at the critical point and at $T_r = 0.7$ in order to arrive at his coefficients, Peng and Robinson regressed data over the entire range, starting at the normal boiling point and proceeding to the critical point. The justification of the Soave method lies in the definition of the Pitzer accentricity factor, which is a function of vapor pressure at reduced temperature of 0.7. Since Soave had proposed the dependance of the 'a' parameter on the accentricity factor, he had used the same conditions for consistency. The accentricity factor is used in both the correlations and both assumes that the parameter 'a' depends on it.

Mixture Combination Rules

In the case of a mixture, the parameters are to be evaluated according to the following mixing rules :

$$a = A = \sum_{i=1}^{n} \sum_{j=1}^{n} y_{j} y_{i} a_{j}$$

$$a_{ij} = (1 - \delta) a_{ij} a_{i$$

54

Thus, a geometric molal average with an interaction parameter for the parameter 'a' and a mole-fraction average for the parameter 'b' is used. This approach apparently is the same as that adopted in SRK equation. However, Soave considered binary interaction significant only in the presence of polar species. Peng and Robinson have included all types of components in the consideration of interaction. In this extension of CHESS, we have included data for 19 components, which are $C_1 - C_{10}$ aliphatic hydrocarbons, Carbon Dioxide, Hydrogen Sulphide, Nitrogen, Cyclo-Hexane, Benzene, Toluene and Water. The values of the interaction parameters are shown in Table 3.1. The authors have successfully applied their equation to a variety of prediction purposes, including vapor pressures and liquid volumes. However, the success of a regression-oriented model depends largely on the regression objective function used. The regression-criterion chosen by Peng and Robinson was that of minimum deviation in bubble point pressure predictions, with regressions on the the interaction parameters and the correlation-parameters 'a' and 'b'of the equation of state.

Another important aspect of the Peng-Robinson

methodology is that in certain situations, unary interaction is represented by 1 - 1 binary parameters. Thus, in the case of adiabatic flash calculations for systems where a watersoluble gas is present, components such as Methane, Water and Hydrogen Sulphide are assumed to interact with themselves. Moreover, the 1 - 1 interaction parameters are temperature-dependent relationships, having the form of polynomials in temperature. The coefficients are presented in Table 3.2. These 1 - 1 interacting pairs seem to be very realistic for polar molecules. The SRK model does not consider this aspect.

It can be conjured that better results in VLE predictions can be obtained through equations of state which takes into account multicomponent interaction. With the binary interaction parameter approach, where the effective interaction is assumed to be the sum of all the binary interactions, one assumes that interactions between molecules take place in pairs, unaffected by the presence of other molecules. For strongly interactive mixtures, this couldbeonlya poor of thephysical situation.

The Virial equation incorporates the idea of multicomponent-interactions, but it carries out an addition of the effects of unary, binary, ternary, etc. interactions, upto a number of terms equal to the number of components present in the system. Only an additive procedure, however, may not represent the phase behavior adequately.

TABLE 3.1

Interaction Parameters for the Peng-Robinson Equation

	N ₂	со ₂	H ₂ S	с ₇ н ₈		су-с ₆ н ₁		
				- 201 212 202 202 202 202 202 202	- 10 10 10 10 10 10 10		: I= II = II = II = II	
Methane	0.036	0.100	0.085	0.040	0.040	0.035	0.500	
Ethane	0.050	0.130	0.084	0.020	0.020	0.020	0.500	
Propane	0.080	0.135	0.075	0.020	0.020	0.020	0.480	
I-Butane	0.095	0.130	0.050	0.000	0.000	0.000	0.480	
N-Butane	0.090	0.130	0.060	0.000	0.000	0.000	0.480	
I-Pentane	0.095	0.125	0.060	0.000	0.000	0.000	0.480	
N-Pentane	0.100	0.125	0.065	0.000	0.000	0.000	0.480	
N-Hexane	0.100	0.125	0.060	0.000	0.000	0.000	0.480	
N-Heptane	0.100	0.100	0.060	0.000	0.000	0.000	0.480	
N-Octane	0.100	0.115	0.055	0.000	0.000	0.000	0.480	
N-Nonane	0.100	0.110	0.050	0.000	0.000	0.000	0.480	
N-Decane	0.100	0.110	0.045	0.010	0.010	0.010	0.000	
Nitrogen		-0.02	0.180	0.180	0.160	0.100	0.000	
C0 ₂	-0.02		0.100	0.090	0.075	0.100	0.000	
H ₂ S	0.180	0.100		0.000	0.000	0.000	0.000	
Toluene	0.180	0.090	0.000		0.000	0.000	0.000	
Benzene	0.160	0.075	0.000	0.000		0.000	0.000	
$Cyclo-C_6H_{12}$	0.100	0.100	0.000	0.000	0.000		0.000	
Water	0.000	0.000	0.000	0.000	0.000	0.000		

TABLE 3.2

Temperature-Dependant Factors for (1<-->1) Pair Interactions

Interaction Parameter = A + B T + C T

Units of T :: Degrees Kelvin.

Component	A	2 B X 10	5 C X 10
Methane	-1.5240	0.5328	-0.3982
Ethane	-0.9682	0.3384	-0.2354
Propane	-1.0380	0.3166	-0.2333
I- Butane	-0.9931	0.3166	-0.2333
N- Butane	-0.9246	0.3045	0.2276
Nitrogen	-2.2380	0.6700	-0.4686
co ₂	-0.5572	0.1879	-0.1274
H ₂ S	-0.3896	0.1565	-0.1142

The Compressibility Factor : for Vapors and Liquids

The Peng-Robinson equation, rearranged in the Zexplicit form, is :

Eliminating volume and redefining the constants, one arrives at the following equation :

 $\frac{3}{2} - (1 - \overline{B})^{2} + (\overline{A} - 3\overline{B}^{2} - 2\overline{B})^{2} - (\overline{A} - \overline{B}^{2} - \overline{B}^{3}) = 0$ where : $\overline{A} = -\frac{a_{mix} P}{(R T)} = -\frac{A P}{(R T)}$ $\overline{B} = -\frac{b_{mix} P}{(R T)} = -\frac{B P}{(R T)}$

The vapor phase compressibility factor is given by the largest positive real root and the liquid phase compressibility factor is given by the smallest positive real root, for a two-phase system. A Newton-Raphson procedure, with a starting value of 1 for the vapor phase and 0 for the liquid phase, yields the desired root. The universal critical compressibility factor predicted by this equation is 0.307.

The Fugacity Coefficients : for Vapors and Liquids

The fugacity coefficient for a component i in amixture, calculated by applying the Peng-Robinson equation to equations(3.4) and (3.5), is :

$$\ln \hat{\emptyset}_{i} = \ln \left(\frac{f_{i}}{2}\right) = (b / B) (Z - 1) - \ln (Z - \overline{B})$$
$$- (\overline{A} / \overline{B} / 2. / \overline{2}) \left[(2 \sum_{j=1}^{n} y_{a}) / A - (b / B) \right]$$

. $\ln \left[(Z + 2.414B) / (Z - 0.414B) \right]$

where :

$$\overline{A} = a_{mix} P / (RT) = AP / (RT)$$

$$\overline{B} = b_{mix} P / (RT) = BP / (RT)$$

For a pure component, the fugacity coefficient expression has the following form :

 $\ln \phi = \ln(f/P) = (Z - 1) - \ln(Z - B) - (A/B/2\sqrt{2})$ $\cdot \ln [(Z + 2.414 B)/(Z - 0.414 B)]$

where :

* 2 A = a P / (RT) i B = b P / (RT) i

The Entropy Departure : for Vapors and Liguids

Starting from the basic thermodynamic identity in equation (3.8), we can establish that, for the Peng-Robinson equation, the entropy departure function is:

$$(S - S) = R \ln(Z - \overline{B}) + \frac{(\partial A / \partial T)}{2 \sqrt{2} B} \cdot \frac{Z + 2.414 B}{1000} + \frac{(\partial A / \partial T)}{2 \sqrt{2} B} \cdot \frac{Z + 2.414 B}{1000} + \frac{1000}{2} - \frac{1000}{2} + \frac{1000$$

The derivative of the mixture 'a' parameter, A, with respect to temperature is given by the following expression :

The derivations of these equations is presented in Appendix A.

The Enthalpy Departure : for Vapors and Liquids

From the thermodynamic identities (3.6) and (3.7) and the Peng-Robinson equation of state, we obtain the following expression for enthalpy departure for a mixture :

$$H - H = \{ \frac{3 A}{2\sqrt{2} B} \} \ln \{ \frac{Z + 2.414 \overline{B}}{Z - 0.414 \overline{B}} \} + R T(Z - 1)$$

The expression for the derivative was presented in the last section. The derivation of the enthalpy departure function is detailed in Appendix A.

3.5 Vapor Mixture Heat Capacity Functions

The heat capacity of a phase is a derivative

thermodynamic property. Heat, unlike work, is a thermodynamic property of a substance since its association with changes of state is path-independant. The derivative of heat with respect to temperature along a specified path is also a thermodynamic property.

The derivative of enthalpy with respect to temperatue along a constant pressure path is termed as specific heat at constant pressure, C_p . It is characteristic of a substance as different substances exibit different heat requirement or release along such paths. The derivative of heat, rather internal energy with respect to temperature for a constant volume process is termed as specific heat at constant volume, C_{tr} .

These pure component properties are extended to a mixture property with the additive molar assumption. These properties are related to each other. Their departure functions with respect to an ideal gas state can be predicted from basic thermodynamic relationships applied to an equation of state. Similarly, the difference between the two are predictable from thermodynamic identities. Again, all these are interrelated. The various relationships describing the evaluation of these properties from an pressure-explicit equation of state were presented in equations (3.9), (3.10) and (3.11).

Thus, starting with these equations and using an equation of state to express the derivatives, we can obtain

the following for vapors : (1) C values : р 0 0 From (C - C). C is obtained for each p p p component from zero-pressure heat content coefficients presented by Reid, Sherwood, Prausnitz('77) 0 a + bT + cT + dTC р (2) C values : (C - C) and Cp v p From p (3) Polytropic coefficients : (C / C), from the values obtained as

(C / C), from the values obtained as p v above.

Let us present the expressions derived from the equations of state.

3.5.1 Soave-Redlich-Kwong Equation

Vapor Heat Capacity Departure at Constant Volume

Starting with the SRK equation of state and equation (3.6), we arrive at the following expression :

2 0 С ΔC С Α 1 V v v V = -- (----) (MTA) ln(1+h)2 R R В 1 v

where :

$$\begin{array}{rcl}
2 \\
A \\
v \\
= & \left[\begin{array}{c} a_{mix} / (RT) \end{array} \right] = & \left[\begin{array}{c} A / (RT) \end{array} \right] \\
B \\
v \\
= & \left(\begin{array}{c} b_{mix} / (RT) \end{array} \right) = & \left(\begin{array}{c} B / (RT) \end{array} \right) \\
h \\
= & \left(\begin{array}{c} b / V \end{array} \right) = & \left(\begin{array}{c} B_{v} P / Z \end{array} \right) \\
& & 1^{2} \\
& & 1^{2} \\
\end{array}$$

$$\begin{array}{rcl}
MTA \\
= & m(\omega \\ 1 \\
& mix \\
& r \\
& mix \\
\end{array}$$

$$\begin{array}{rcl}
\omega \\
mix \\
= & \sum \\
y \\
w \\
mix \\
\vdots \\
T_{r_{mix}} \\
= & T / T_{c_{mix}} \\
\end{array}$$

$$\begin{array}{rcl}
\omega \\
mix \\
T_{c_{mix}} \\
\end{array}$$

$$\begin{array}{rcl}
\omega \\
D \\
= & T / T_{c_{mix}} \\
\end{array}$$

$$\begin{array}{rcl}
\omega \\
D \\
= & T / T_{c_{mix}} \\
\end{array}$$

obtained via the Chueh -Prausnitz correlation.

The derivation is presented in Appendix B.

Vapor Heat Capacity Difference

Applying the SRK equation to equation (3.10), we obtain the following expression :

$$\{ (C - C) / R \} = p v$$

$$\frac{2}{p v}$$

$$\frac{1+h}{(-\frac{1-h}{2})+2(-\frac{1-h}{2})(MTA)(-\frac{h}{2})+4(-\frac{h}{2})(MTA)(-\frac{1-h}{2})(MTA)(-\frac{1-h}{2})(MTA)(-\frac{1-h}{2})(-\frac{1-h}{2})(-\frac{1-h}{2})(-\frac{1-h}{2})(-\frac{1-h}{2})(-\frac{1-h}{2})(-\frac{1-h}{2})(-\frac{1-h}{2})(-\frac{1-h}{2})(-\frac{1-h}{2})(2+h)$$

$$\frac{2}{p v}$$

where :

$$MTA = m(\omega_{mix}) / a / T$$

64

The derivation is presented in Appendix B.

Vapor Heat Capacity Departure at Constant Pressure

From the two expressions given above, we can obtain the departure function for C_p by direct substitution. It follows from equation (3.12) and is given below :

3.5.2 Peng-Robinson Equation

Vapor Heat-Capacity Departure at Constant Volume

Starting from the Peng-Robinson equation of state and equation (3.9) we arrive at the following expression of the departure function for C_v :

The derivation is presented in Appendix B.

Vapor Heat Capacity Difference

When the Peng-Robinson equation is applied to the equation (3.10), we obtain the following expression for the difference between C_p and C_v :

 $\left\{ \begin{array}{ccc} C & - & C \end{array} \right\} / R = \\ p & V \\ & & 1 + h \\ (\frac{1 + h}{(----)}) + (\frac{-V}{(--)}) (MTB) \left\{ \frac{(1+h)}{(----)} \right\} \\ & & 1 - h \\ & & B_V \\ \end{array}$ $\left[\begin{array}{c} 1 + h \\ (\frac{----}{---}) - (\frac{-V}{(---)}) (\frac{-}{(----)}) \left\{ \frac{1 - h}{(-----)} \right\} \\ & & & I + 1 + I \\ \hline & & I + I + I \\ \hline & & I \\ \hline & & I + I \\ \hline & & I \\ \hline & & I + I \\ \hline & & I \\$

where

 $\begin{array}{rcl} MTB &=& MTB \cdot b &=& MTB \cdot B \\ 2 & 1 & mix & 1 \end{array}$

66

The derivation is presented in Appendix B.

Vapor Heat Capacity Departure at Constant Pressure

The heat capacity departure function is obtained directly from the two expressions presented above, as per equation (3.12). The final form is presented below :

$$(----)$$
 $(----)$ (MTB) $\ln[-----]$ - 1
5.656 B_v 1 $(1 - 0.414 h)$

 $\begin{bmatrix} 1 + \begin{pmatrix} A_V \\ --- \end{pmatrix} (MTB \end{pmatrix} \begin{bmatrix} (1-h) \\ ------ \end{bmatrix} \\ B_V 2 (1+2.214h)(1-0.414h)$

2

3.5.3 Specific Heat Departures : Some Thermodynamic Issues

In order to calculate the heat capacity functions

via the two equations of state described above, the SRK and the Peng-Robinson, we need to obtain certain physical properties of a vapor mixture. The equation of state parameters for the mixture would be available since the respective modules would have been invoked a priori. However, the accentricity factor and the critical temperature of the mixture are required to calculate the departure functions.

Based on suggestions made by Reid, Sherwood and Prausnitz (1977), we have used simple molal averaging to calculate the mixture accentric factor. The mixture critical temperatures are evaluated using the Chueh-Prausnitz method (Reid, Sherwood, Prausnitz, 1977). According to this method, the true critical temperature of a mixture depends on the surface fraction parameter, which is a function of the component critical volumes. The correlation makes use of certain binary interaction parameters for polar-nonpolar pairs. We have used the parameters which are available in Reid, Sherwood and Prausnitz's text(1977).

3.7 The RK/ SRK : Chao-Seader Liquid Phase Models

In this section, the Chao-Seader model for determining activity coefficients and the various thermodynamic expressions derived based on it will be presented.

Equilibrium Ratios : The Chao Seader-RK/ SRK Approach

In this method, the equilibrium ratios are calculated with the unsymmetric convention, as outlined previously, in the equations (2.2) and (3.2).

The activity coefficient is defined as the ratio of the activity in the liquid phase to the liquid phase concentration, x_i . The activity in the liquid phase is the ratio of the fugacity of a component in a mixture to its fugacity in some standard state. The standard state taken for computations in this work is the system conditions. The Chao-Seader correlation estimates the values of f_{iL} , the pure-component liquid phase fugacity coefficient.

The Chao-Seader activity coefficient model uses the RK equation of state for calculating vapor phase fugacity coefficients. The SRK equation of state has been supplied as an alternate vapor phase model. Scatchard and Hildebrand[s regular solution theory is used for predicting the liquid phase activity coefficients in conjunction with the RK vapor phase model. An extension of the Pitzer-Curl's corresponding state principle is used to determine the liquid phase fugacity ratios. We have included the Flory-Huggins modification of the regular solution theory to account for molecular size differences. The Grayson-Streed coefficients are used in this work in the determination of activity coefficients. This approach, originated by the original authors (Chao and Seader, 1961), has been successful particularly near critical conditions and higher pressures, practically for all hydrocarbon and light-gas containing systems. However, some limitations are applicable, which were discussed in Chapter 2, page 25.

Liquid Phase Component Fugacity Coefficient

The study made by Chao and Seader (1961) in developing their models involved a variety of equilibrium systems, usually hydrocarbons with light gases like Nitrogen and Hydrogen. The regression of the VLE data was performed in terms of reduced properties and accentricity factors, in order to obtain a correlation for the liquid-phase component fugacity ratios. For liquid conditions which are hypothetical, that is, when the system pressure is less than the saturation vapor pressure or when the temperature is greater than the critical temperature, extrapolated VLE data was used for the correlation coefficients. Although this could have been a source of serious error, the correlation is found to be very suitable for high pressure systems.

$$log f = log f + \omega log f \\ i_{L} = log f + \omega log f \\ i_{L} = log f + \omega log f \\ i_{L} = log f + \lambda_{1} / T_{r_{1}} + \lambda_{2} T_{r_{1}} + \lambda_{3} T_{r_{1}} \\ log f \\ i_{L} = \lambda_{0} + \lambda_{1} / T_{r_{1}} + \lambda_{2} T_{r_{1}} + \lambda_{3} T_{r_{1}} \\ + \lambda_{4} T_{r_{1}} + (\lambda_{5} + \lambda_{6} T_{r_{1}} + \lambda_{7} T_{r_{1}}) P_{r_{1}} \\ + (\lambda_{8} + \lambda_{9} T_{r_{1}}) P_{r_{1}} - log P_{r_{1}}$$

$$\log f = A_{10} + A_{11} T_r + A_{12} / T_r + A_{13} T_r + A_{14} (P_r - 0.6)$$

i_{r.} i i i i i

The values for the correlation coefficients A_{10} through A_{14} are taken from the original article. The Grayson Streed modified values for constants A_0 through A_9 are obtained fron Henley and Seader's text (1981). The revised values were obtained because Methane and Hydrogen were differentiated as 'simple fluids'. These were assumed to have an accentric factor of zero in order to reflect their behavior in hydrocarbon systems accurately.

The empirical equations presented above are applicable over a range of reduced temperatures of 0.5 to 1.3. Grayson and Streed have reset the reduced temperatures to 1 whenever the critical conditions were exceeded for a component. The same method was followed in the original CHESS. We had started without such restrictions, which gave rise to exponent overflows for values of $v_{iL}(1)$ under supercritical conditions. Hence the same method was reinstated.

Liquid Phase Activity Coefficients

The 'Regular Solution' theory is based on the assumption that liquids behave non-ideally due to the dissimilarities between the van der Waals' forces of attraction between the interacting molecules present in the solution. In contrast, an ideal solution theory assumes that intermolecular forces are equal and opposite, the species have molecules of uniform size and chemically, they are noninteractive. The key assumption in the regular solution theory is that the excess entropy of mixing is zero when mixing occurs at constant volume (Smith and van Ness, 1975). The molecules are assumed to be randomly dispersed, but unlike an ideal solution, unequal attractive and repulsive forces cause segregation of like molecules. The endothermic heat of mixing counterbalances this energy, yielding an entropy level identical with the ideal solution. An 'Ideal Solution' is described by Raoult's law.

For a multicomponent regular solution, the excess molal Gibb's free energy is given by :

 $(x v) [(1/2) \sum_{j=1}^{\infty} \sum_{j=1}^{n} \Theta \Theta (\delta - \delta)^{2}]$ ∑ i=1 g regular = where : Liquid molal volume of V $\mathbf{i}_{\mathbf{L}}$ component 'i', SolubilityParameterof 'i' δ i 1/2 $[(\Delta H_V - RT)/V]$ Energy of Vaporization at a $\Delta H_{\rm V}$ standard state, taken as 25 C and one atmosphere Additive volume fraction, θ i $= x V / \sum_{i i_{L}} x V_{i i_{L}}$

From the definition of excess molal free energy, it follows that :

In this modification of CHESS, the Flory-Huggins corrected form of the above equation is used. According to this approach, when the molecular size differences are appreciable, the solution behavior tends to be athermal rather than regular. This difference is reflected in the molal volume figures and such conditions are more realistic. The Flory-Huggins correction adds a term to the free energy representing the contribution of the size differences. It is given as follows :

 $\begin{array}{c} E \\ g \\ \text{correction} \end{array} = \sum_{i=1}^{n} \{ RT \times ln(\theta / x) \} \\ i \\ i \\ i \\ i \end{array}$

In order to represent the actual Gibb's free energy of the solution, the above correction is added to the regular solution contribution. Substituting the redefined free energy in the expression for the parrtial molal free energy of component 'i', yields the following final form for the equation for the activity coefficients :

Henley and Seader (1981) recommends the use of this equation for the activity coefficient, which was not present in the original version of CHESS.

Vapor Phase Component Fugacity Coefficients : RK/SRK Egns.

The Redlich-Kwong equation was used in the calculations of vapor phase fugacity coefficients while arriving at the Chao-Seader models (refer to sections 3.2). We have used the SRK equation instead (refer to section 3.3). The rationale behind this approach is that the SRK equation is structurally similar to the RK equation and was tested with similar equilibrium systems. It is evident from the results of our test cases that both of these equations are adequate in representing the vapor phase and they yield results that are close.

In a related study made with the use of Chao-Seader models, some computational problems were observed (Coward et al, 1978). The results for a Ethane(0.4) - Propane(0.4) - n-

Butane (0.2) system is presented. They showed that while the Benedict-Webb-Rubin equation of state creates a defined pressure-temperature envelope, the RK equation fails to do so. From the RK vapor phase model, a pair of dew and bubble points were obtained near the critical point of the mixture, resulting in a pair of divergent, asymptotic curves with no intersection and hence no critical state was reached. Such discontinuity is referred to as the 'spurious roots error'. Thus, the state of the system near the critical conditions becomes ambiguous and over extension of the correlation is to be avoided. Further research should investgate the performance of the SRK equation in this respect.

Various Liquid Phase Property Models Via Chao-Seader Models

Apart from the VLE calculations, our objective is to obtain the liquid-phase enthalpy and entropy departure functions and the liquid molar volumes based on the Chao-Seader activity coefficient and liquid phase fugacity coefficient correlations. The following topics would describe each of these in detail.

Enthalpy of Liquid Phase Mixtures

The liquid phase enthalpy relative to an ideal vapor condition is obtained from two terms : the partial molal excess enthalpy and the molal enthalpy departure. The vapor phase enthalpy is determined by a departure function

evaluated by a equation of state, RK or SRK, as described in sections 3.2 and 3.3.

The partial molal excess enthalpy is determined from the differential form of the Gibb's integral equation. It represents the heat of mixing effect. The following relationship is used to obtain the excess enthalpy of species 'i' :

$$\begin{array}{c|cccc} & \partial & \ln \gamma \\ \hline \partial & \Pi & \gamma \\ \hline - & H & = & R & T & \{ \begin{array}{c} & 2 & & i_L \\ - & -H & = & R & T & \{ \begin{array}{c} & ----- & -i_L \\ - & ----- & ---- & -i_L \\ \hline & \partial & T & & P, x_i & i_L & i_L \\ \end{array} \right) = H - H - H$$

The molal enthalpy departure represents the combined effects of pressure and the latent heat of vaporization. The following relationship is used to evaluate this term for a component 'i' in a mixture :

$$\begin{array}{c} \partial \ln f \\ \partial \ln f \\ H - H = RT \begin{bmatrix} -----iL \\ -----iL \end{bmatrix} \\ iV \quad iL \quad \partial T \quad | P \end{bmatrix}$$

The enthalpy of the liquid referred to an ideal gas condition is obtained from the two relations presented above. The following equation generates the departure function for the solution :

$$H - H = \sum_{i=1}^{H} x \left[(H - H) + \overline{H} \right]$$

The ideal gas enthalpy, H_V , is obtained through data published in Reid, Sherwood and Prausnitz's book (1977). For the terms on the right hand side of the equation

given above, the Chao-Seader correlations are applied to the respective equations given above. The following are the simplified results :

The first of the two expressions above, representing the partial molal excess enthalpy, is always negative as regular solutions have endothermic heats of mixing.

Liquid Phase Entropy Departure

The liquid phase entropy departure function is expressed in a manner identical to the enthalpy departure function, as shown below :

$$s - s = \sum_{L=V}^{n} x [(\Delta s) + (\overline{s})]$$

dep

For the regular solutions, the second term, the excess

entropy of mixing, is zero. Hence, we will have to evaluate only the first, the component entropy departure functions, in order to estimate the entropy departure for the solution.

The entropy departure, the enthalpy departure and fugacity coefficient are related through a basic thermodynamic identity :

 $\begin{bmatrix} H & - & H \end{bmatrix} / R T = \begin{bmatrix} S & - & S \end{bmatrix} / R - \ln \begin{bmatrix} f / P \end{bmatrix}$

In the case of a component 'i' in the liquid phase :

Fugacity coefficient, $f = F \times \gamma$ $i_L \quad i_L \quad i_1$ Standard state pressure, $P_0 = 1$ atm. Pure species Fugacity, F = f P $i_L \quad i_L$ Thus: $f = f \times \gamma P$ $i_L \quad i_L$

P = system pressure.

Hence, the expression for entropy departure can be presented in the following manner :

 $S - S = [(H - H) / T] - R[\sum_{i=1}^{H} x \ln{\{\gamma \ x \ f \ P\}}]$

Since the Chao-Seader models supply the values of the enthalpy departure, the pure species fugacity coefficient and the activity coefficients, we can estimate the entropy departure from the thermodynamic identity given above.

Liquid Phase Molal Volume

The liquid phase molal volume is obtained within the premise of the regular solution theory by summing species molal volumes and correcting for excess volume (Henley and Seader, 1981). The excess volume of mixing is proportional to the derivative of activity coefficient with respect to pressure. For regular solutions, activity coefficient can be assumed to be independent of pressure. Let us consider the identities involved in the following set of relationships :

$$V_{L} = \sum_{i=1}^{n} [x_{i} (V_{i} + \overline{V}_{i_{L}}^{E})]$$

$$\overline{V}_{L} = R T (-----\frac{i_{L}}{\partial P}) |_{T,x_{i}} = 0$$

$$\frac{\partial \ln f}{\partial P} |_{T,x_{i}} = 0$$

The equation is derived directly from the Chao-Seader model of pure component fugacity coefficients. Initially, we had started with this method for estimating molal volumes in the computation of activity coefficients. But it yielded computational problems. In the test case for rotating equipments, the simulation was carried out under high pressure and non-condensibles were present in the liquid phase. For light gases, there were exponent overflows in the computation of activity coefficients. It was observed that negative values were predicted for the volumes of the light gases. Hence, the modified Rackett approach was adopted for estimating molal volumes instead. However, under moderate conditions, comparable results were obtained from both these methods.

3.7 Pure Component Thermophysical Database

The original version of CHESS has a collection of thermophysical data for pure components, elements and compounds, in the form of a subprogram named 'COMPID'. A database was created for 98 standard components defined in CHESS. The data required for a simulation study is retrieved according to the identification numbers supplied by the user.

Although this standard component data library is limited compared to more recently published databanks (Prausnitz, Reid and Sherwood, 1977), it involves a wellselected group of substances frequently processed in the hydrocarbon and related industries. It has straight-chain hydrocarbons ($C_1 - C_{20}$), light gases(H_2 , N_2 , O_2 , H_2S etc), unsaturated hydrocarbons, common solvents, cyclic and aromatic compounds and some polymer base compounds (Motard and Lee, 1971).

The use of non-standard compounds requires that the user provide for all the physical properties' data in the format and order the system specifies. The units of input data must be compatible with CHESS, where the constants are stored in °C, atmospheres, cc/gram moles and calories.

We have retained this approach of obtaining physical properties' data in this modification of CHESS. In order to include up-to-date information, a large set of new pure-component data was added and existing data had to be modified. The data values for critical constants and idealgas heat capacity coefficients were revised based on data obtained from Reid, Sherwood and Prausnitz's collection (1977). The values for Chao-Seader modified accentricity factors, Hildebrand solubility parameters and molal volumes, molecular weights, molal volumes at 25 C and liquid densities at 15 C were not modified over the years and were hence, kept unchanged in this version. However, any of such properties' data is liable to be updated as new data is published. Successive modifications have to consider this aspect first.

The Chao-Seader modified accentricity factors are equal to the Pitzer's accentricity factors up to thesecond significant digit for most of the components. As we needed to have the Pitzer's constants for the newly created modules, we have integrated this property data in a single set of Pitzer's accentricity factors.

In this extension of the data library, a few new constants were added. This was necessitated by the various modules introduced. We will discuss these and related thermodynamic issues under this topic.

Modified Rackett Parameters for Saturated Liquid Volumes

Based on recommendations made by Reid, Sherwood and Prausnitz (1977), Prausnitz and co-workers (1980), we have chosen the Spencer-Danner modified Rackett parameters to represent saturated liquids for volume calculations.

The Rackett equation, as it was first proposed, is expressed in the following manner :

> $1 / \rho = [R T / P] Z$ S C C C

where :

 ρ = saturated liquid density

T ,P = critical constants c c

 $T_r = T / T_c$

 Z_c = critical compressibility factor

Following the idea presented in this correlation, a total of ten correlations were published until 1972. Spencer and Danner(1972) had evaluated all of these with 64 Hydrocarbons and 47 other organic and inorganic compounds. They analyzed published data over a wide range of temperatures, from the triple-point to the critical points of components. Based on this study, a new correlation was proposed which has proved itself to be the best till date.

We have incorporated this model in our version of CHESS. The correlation is expressed as follows :

 $\frac{2}{7}$ $1 / \rho = [RT / \rho] Z$ S C C RAwhere :

p = liquid density at the critical state
c

Z = modified Rackett parameters RA evaluated from volumetric data

The authors published data for this parameter for a number of components which they analysed. Most of the standard components of the CHESS library are included in the list. For components for which no data is available, the authors have recommended the use of the critical compressibility factor instead. Errors are expected in the range of only 3 to 4 % in such cases. We have followed this and have obtained data from Reid, Sherwood and Prausnitz's text (1977).

Heats of Vaporization at Normal Boiling Points

This pure component property is frequently used in thermodynamic correlations. According to Reid, Sherwood and Prausnitz (1977), quite a few methods for estimation of this property exist that are generally accurate and convenient to use. The correlations are usually based upon critical constants and the normal boiling point. We have obtained data for all the standard components from the source mentioned above.

Antoine Vapor Pressure Coefficients

Vapor pressure correlations are generally based on the Clausius-Clapeyron equation which is a fundamental equation utilising the equality of chemical ponential, temperature and pressure in equilibrium phases. Although many correlations are available for predicting vapor pressures given temperature and in some cases, critical constants and normal boiling points, only a few has been tested over a wider range of applicability and hence, accepted (Reid, Sherwood and Prausnitz, 1977).

The Antione correlation is the most widely used and is very accurate within the temperature ranges in which the constants are evaluated. However, it is specified by Reid, Sherwood and Prausnitz (1977) that the equation should not be used above 1500 to 2000 mm Hg pressure, above which the presumed linear relationship between log of vapor pressure and the inverse of temperature fails in general.

The later versions of CHESS developed at NJIT have used a six constant form of the Antoine equation, expressed in the following manner :

P = saturation vapor pressure
 at temperature, T .

Units are : mm Hg and degrees Kelvin.

We have introduced the data for the first three coefficients for all the standard components. The data was obtained from Reid, Sherwood and Prausnitz's text. To obtain better accuracy over higher pressure ranges, one has to regress physical data to obtain values for all the coefficients. The above equation is a combination of some newer correlations mentioned in Reid, Sherwood and Prausnitz's text. It takes into account the non-linearity up to the second order as well as dependance of vapor pressure on the logarithm of temperture.

Coefficients of Specific Heats of Liquids

The specific heats of liquids is an important thermophysical data needed for simulation. The approach of using departure functions (Henley and Seader 1981) works well with equations of state which predict for the liquid phases accurately, such as the Peng-Robinson equation. However, departure functions predicted based on liquidphase activity coefficient models are found to be erroneous frequently (Roche). In this modification, we have introduced coefficients for determining liquid specific heats for low temperatures (up to 325 K) and near-atmospheric pressures. The prediction of the liquid heat capacities is one of the most thoroughly investigated areas in chemical engineering. Unfortunately, it is also an area where not much published data, experimental in particular, is available.

The literature data, in general, is correlated against polynomials in absolute temperature. The difficulty that one has to face in assimilating whatever data is available is that of non-uniformity of the correlations and/or the different units used in different correlations. We have collected data from three sources, each of which was not compatible with the others. Hence, it was necessary to use internal conversion in the code to make the final value uniform with the units used in the rest of CHESS.

The first source of data is provided by Tamplin and Zuzic (1967). They have used a trinomial equation to express specific heat in calories per degrees celcius per gram -mole against temperature, which was in the units of degrees celcius instead of the usual practice of using absolute scale. They report that absolute deviation of predicted values from the experimental data is of the order of 0.01 to 0.1. A large number of the standard components of CHESS was included in this study.

For a few components, data was obtained from the collection made by Yaws. This source was found to be useful specially for inorganic components. The correlation is a four-constant, third-degree polynomial where specific heat has the unit of calories per degree Kelvin per gram and temperature was expressed in degrees Kelvin unit. Internal conversion to the molar unit was required.

For the rest of the components, it was necessary to generate our own data through a correlation. The Lyman-Danner correlation was chosen as the model. The accuracy is expected to be within 5 % (Reid, Sherwood and Prausnitz, 1977). This method predicts for the departure function, with respect to ideal-gas conditions and the parameters used are the association factors (a function of reduced normal boiling points, critical pressures and radii of gyration), the radii of gyration and the reduced temperatures. These properties were obtained from Reid. Sherwood and Prausnitz's text. We have used arbitraily chosen intervals between the freezing points and the normal boiling points of each component. We have obtained four coefficients for a trinomial equation for the specific heats in calories per gram-mole per degrees Kelvin versus temperatures in degrees Kelvin.

Future modifications of CHESS should attempt to create a uniform data-source for these constants. The Lyman-Danner procedure could be used for such purposes with a good degree of confidence.

Another important aspect should be noted here. A typical simulation program of today must have capability to obtain data for supercritical fluids. The only notable research in this respect was done by Peter (1949). He had produced charts for a few well-known components used in the hydrocarbon industry. It is required to arrive at a correlation based on his approach. The difficult part of this approach is to guess the point much beyond the critical conditions where the saturation-enthalpy curves meet. As a first trial, these may be assumed to be linear. The curve, however is parabolic in nature as is evident from Peter's charts. Such data is required for light gases like Ethylene, which exist in liquid phases beyond their critical states as dissolved gases, or for some other components which are found in the vapor phase above their saturation pressures.

Normal Boiling Points

This property is an useful data for many thermodynamic correlations. Initially we had used it for heats of vaporization using the Clausius-Clapeyron equation. But it was found to yield very inaccurate results under higer pressures. Thus, the original CHESS data-source of Hildebrand solubility parameters was implemented for the Chao-Seader models. However, this would be available for any possible use in the future.

The data was taken from Reid, Sherwood and Prausnitz's text (1977).

SYSTEM ORGANIZATION AND COMPUTATIONAL ASPECTS

CHADTER

Simulation is the basic tool used by chemical engineers in process analysis and process synthesis. In the analysis of processes, a system is decomposed into a finite number of subsystems and each is studied to ascertain its effect on the entire system. In systhesis applications, subsystems are combined into systems, with the objective of arriving at the best process sequence. Apart from the complexities in the application of chemical engineering principles, a simulation program needs considerable attention in its computational aspects. A major part of these deals with the organizational aspects of the simulation system. In this chapter, a comprehensive review of CHESS is attempted. Illustration of some of the computational aspects of the simulator is presented.

4.1 System Organization and Simulation Strategy

The design issue of aggregating program-components into an organised process simulator is closely linked with a particular strategy adopted for solving a simulation problem. In this section, these aspects are presented.

4.1.1 Process Simulation Methodology

The most widely used approach in solving process flowsheeting problems is the 'sequential modular' approach. CHESS (the Chemical Engineering Simulation System) is based on this principle. In this approach, each process step is represented by a mathematical model. The mathematical model is a representation of one or more unit operations found in the process industries. These computational modules calculate the physical output(s) from a set of physical input(s). The unit modules are calculated sequentially, starting from known feed conditions. The calculation follows a specified unit-by-unit order. Iterative adjustments of selected recycle streams are performed together with iterations around portions of the process in order to accomodate design specifications. Network partitioning and tearing algorithms are used in conjunction with a variety of convergence algorithms to support them.

The inherent drawback of this method is that complete specifications of all equipment parameters and the conditions of the feed streams must be available at the time of unit module evaluation. For a design study, many of the equipment-conditions can be expected to be unknown. A useriterated simulation study may be a solution for such difficulties, but that may not be desirable in a given situation. A solution strategy employed is to use systemdefined control blocks to enforce convergence on design specifications, by manipulating specific design variables. The CHESS uses this method

Another approach to process simulation is associated with general non-linear equation solving algorithms. Some contemporary simulators have made use of this strategy, known as the 'simultaneous-modular' approach. The key idea in this is to solve simultaneously those equations which result from torn recycle streams together with those resulting from design specifications through only one level of iteration (Perkins, 1979). In this way, the interactions between stream variables and equipment parameters are taken into account so as to avoid conflicting iterations.

A summary of some other approaches in process simulation is appropriate at this point, before we describe CHESS in detail, so that a comparative view is obtained.

The 'equation-oriented' approach treats the entire flowsheet model as a large simultaneous equation-set that is solved by recently-developed sparse matrix solution algorithms (Clark and Reklaitis, 1984). Each unit is represented as a set(s) of equations. In the equationoriented approach, the equations representing units are not grouped under seperate procedures calculating outputs given a set of inputs. In solving the flowsheet, the equations describing the units are assembled into an aggregate set and these are solved simultaneously, using iterative numerical techniques. Future investigation in the quasi-linearization aspects of the newly developed equation oriented modules is envisioned for obtaining a truly general solution scheme.

In the successive linearization approach, also known as the simultaneous-modular approach, the basis is the use of an already-existing set of sequential modular unit modules, but introducing an equation-oriented strategy. These are used to generate, automatically, the coefficients of linear or specially-simplified, non-linear models. The resulting approximate model of the flowsheet is iterated upon, until convergence in key recycle streams and design parameters is arrived at. The limitation of this strategy is that it has been tested on mostly linear or closely-linear systems so far (Clark and Reklaitis, 1984). There are two inherently different methods in this approach. In one, an approximate equation-oriented model of the process is used alternately with the rigorous procedure-based model. Such a combinatorial strategy can perform either preliminary design calculations (the mass balance only) or rigorous design calculations (mass and energy balances). The same strategy is implemented in the state-of-the-art simulator program called ASPEN (Evans et al, 1979). In the preliminarycomputation step, the sequential modular strategy is utilized to generate quasi-linear models for each unit. The detailed-design step works on these to solve for the nonlinear flowsheet equations simultaneously. In a given

application, either of the two modes can be invoked, but the second depends on the first implicitly. This approach has resulted in faster convergence for various example problems, as noted by Timer and coworkers (1984). In the second type of simultaneous-modular flowsheeting, a simple but rigorous strategy of solving simultaneously, all the torn recycle streams and design objectives, is achieved. An advantage of significant importance for system synthesis applications is that optimization studies can be done easily within the framework of these simulators. In future, such an extension should be considered for incorporation into CHESS.

In the 'non-sequential modular' simulators (HYSIM of Hyprotech), interactive use of the simultaneous modular approach is adopted, with a variable program structure.

In order to improve on design productivity, some commercial simulators are adopting a data-based approach. The emphasis in these is on data organization, where the simulator has access to non-process data such as project objectives, mechanical design specifications and process control goals. Such integrated systems are more meaningful in a real design environment. In one such system, CHESS was used as the host simulator (Tsubaki and Motard,1979). A reduction in the software overhead of up to 25% was achieved. In essence, a suitably programmed interface between project data base and CHESS data structures was established. In another approach, a list-oriented data structure was used to facilitate flexibility in establishing topological variations efficiently. This also is a refinement of the sequential-modular approach (Thompson, 1982). Such simulators are useful for instructional purposes.

4.1.2 Organization of CHESS

The internal control structure of the system is of a fixed nature. In fixed-structure simulators, usually adopting a sequential-modular simulation strategy, the executive program does not depend on the nature of the problem whose solution is sought for. In contrast, the executive program is tailored for a specific application purpose in variable-structured simulators. The executive module of CHESS determines the path of computation through the program, if not defined by the user, and matches streams to unit modules based on data supplied by the user. Although there is considerable storage overhead for loading all of the modules each time the program runs, a fixed-structure simulator is considered to be more efficient for shorter problems (Motard, 1975).

In either of these structures, the same modules may be used in different points of a flow network with differing process conditions. This is implemented by the use of an environment of subprograms. Thus, in CHESS, a particular network structure determines a specific subprogram-calling sequence.

The system is organized around two types of subprograms, the executive and the supportive modules. Table 4.1 presents the executive modules and their functions. Tables 4.2, 4.3 and 4.4 list all the supportive modules. The overall system linkage is explained in Figure 4.1.

The executive subprograms decide the computation sequences, control recycle calculations, initialize variables and perform input and output operations. The supportive programs can be broadly classified into three classes: the thermophysical modules, the equipment modules, and the control blocks.

The executive subprograms are driven by a main program segment. It allows for extension of any of the modules including itself. Additional modules can be added when wished, provided such changes are incorporated throughout the system in a consistent manner.

TABLE 4.1

Executive Modules of CHESS3

CDATA	<u>-</u>	Alternative input routine, collects
		user-defined pure components data
COMPID	-	Identifies standard chemical components
		and supplies their pure-component data
CLEAN	-	Initializes all COMMON block data
		structures with zero values
DCHECK	-	Performs consistency and closure tests
		on the network adjacency list
DENETS	-	Evaluates tearing scheme and prepares
		recycle loop calculation list
DPRINT	-	Prints the input data list
DREAD	-	Interprets and stores input data
EPRINT	-	Prints the summary of energy transfer
		between the system and surroundings
EQCALL		Invokes a specific equipment module
EQUIP/REQUIP		Transfers evaluated process data to
		EQPAR(I,NE), updates i/o stream matrix
INIT	-	Initializes known input streams with
		thermophysical data
RCYCLE		Controls recycle loop computations
RESULT	-	Prints out the final column profiles
		for the staged-contact processes
SCAN		Detects computational status: feed,
		-

TABLE 4.1 (continued)

unknown or unused streams and equipments

Controls the path of computation SUBSET ---through the process network Recycle loop convergence controller TEST ----TPRINT Prints intermediate and final results TRANSF/TRANSX Transfers data from two-dimensional --arrays to vectors for printing purposes ZERO/ZEROX Initializes an array with zeros -

TABLE 4.2

Thermophysical Modules of CHESS3

ACTVY		Invokes various activity coefficient
	N	modules
ADBF	-	Comprehensive equilibrium flash routine
AFLASH	-	Adiabatic flash module
BUBT	-	Predicts bubble point temperature
CHAOSD	-	Chao-Seader activity coefficient,
		enthalpy, entropy, volume, fugacity
		coefficient models for liquid phase
DELCP	-	Heat capacity departures by the RK eqn.
DELCPR	-	Heat capacity departure fuctions via
		the Peng-Robinson equation of state
DELCPS	-	Module for predicting heat capacity
		departure functions by the SRK equation
DEWT	-	Predicts dew point temperature
FLASH		Two phase VLE flash module
FUGCY	-	Selects a fugacity coefficient model
KCALC	-	Calculates equilibrium constants
KFAC	-	Calculates thermodynamic functions for
		distillation and absorption processes
LIQH		Calculates liquid phase enthalpy
ONEDI	-	Corrects for vapor phase dimerization
PENRCB	-	Peng-Robinson models for fugacity
		coefficient, enthalpy and entropy

TABLE 4.2 (continued)

departure, compressibility factors
(PEROBZ) and volumes(VOLME1) of liquid
and vapor phases

RENON	_	NRTL liquid phase activity coefficients
RKFUG	-	Redlich-Kwong vapor phase models for
		fugacity coeff.s & enthalpy departure
SRKFUG	-	Soave-Redlich-Kwong vapor and liquid
		phase models for fugacity coefficients,
		enthalpy and entropy departures,
		volume(VOLUME) and comp. factors(SRKZ)
TFLASH	-	Isothermal flash module
UNQAC	-	UNIQUAC activity coefficient model
VAPH	-	Calculates vapor phase enthalpy
VIRFG	-	Virial model for vapor phase fugacity
WILSN	-	Wilson model for activity coefficients
XHREN	-	Excess heat of liquid solutions by the
		NRTL model
XHUNQ		Excess heat of liquid solutions by the
		UNIQUAC model
XHWIL	-	Excess heat of liquid solutions by the
		Wilson model
XSHLQ	- (Calling module : excess heat of liquids
XSHVP	-	Calling module for vapor phase mixture
		enthalpy departure
ZCALC	-	Compressibility factors via the RK eqn.

TABLE 4.3

Equipment and Computational Modules of CHESS3

ABSR	-	Simplified absorber/ stripper module
ABSR1/ABSR2	-	Rigorous absorber/ stripper module
COMP	-	Stagewige gas compression module
DIST		Simple distillation unit
DISTIL		Rigorous distillation procedures
DVDR	-	Single-phase stream divider
GAUSL		Gauss-Jordan matrix solution unit
GSXP	-	Gas expander power recovery module
HTCL	-	Fired heater/ bulk cooler module
HXER	 , '	Detailed heat exchanger module
HYTR	-	Hydraulic turbine power recovery unit
MATRIX	-	Part of rigorous stagewise procedure
MIXR	-	One/ Two phase stream mixing unit
PUMP	-	Pump routine
REAC	-	Simple reactor module
VALV	-	Constant enthalpy downstream pressure
		controller
CORECT	-	Convergence accelerator for MATRIX
		solving procedure of Gauss-Jordan
WEG		Iteration convergence accelerator
		with the Wegstein procedure
DVDR	-	One/ Two phase, single-inlet
		mulpiple-outlet stream divider

TABLE 4.4

Control Blocks of CHESS3

-	Component	ratio,	temperature	anđ
	flowrate o	control	ler	

- Controlled condensation dividor
 for staged-column vapor overheads
- Two-phase, single inlet-double outlet
 vaporization controller/ general two phase stream divider

SPLT

OVHD

CTRL

4.1.3 Computational Scheme

In the simulation of a typical chemical process environment, the intermediate stream conditions are not known a priori. This is coupled with the uncertainity of conditions that recycle streams will assume. Hence it is necessary to solve a set of non-linear simultaneous equations representing relationships between nodes of the process network. The nodes, which represent unit computation modules in an information flow graph, interact with the network through their own, singly defined properties.

The first step in this iterative technique is to 'partition' the specified network to identify those nodes which are not included in the recycle nets and simultaneously, to identify the recycle nets. In the next step, the identified recycle streams undergo a 'tearing process' which separates each into an assumed/ calculated stream, albeit one or two streams. The convergence algorithm then tries to make both sides of the tear stream agree. In this procedure, one can make use of various convergence acceleration and testing algorithms.

The network partitioning schemes follow algorithms that are rooted in graph-theoretic principles. The criteria of choosing one over another are diverse. The most important ones are those suitable to a particular application and execution time and storage requirements. The consideration that is most significant for chemical engineering simulators is that partition and tearing be kept to minimum. Thus, an optimal computational order results from the partition analysis. In CHESS, the 'Path Searching' algorithm is implemented (Motard, 1975). The shortest path between all nodes within a recycle net and the existence of any articulation points is detected.

The minimum number of tear streams often yields an undesirable computational order. Thus the result of the path searching algorithm needs to be tested against such problems.

Partitioning

anđ

Algebraically, a set of simultaneous equations can be solved by partitioning if at least one equation of the set defines the value of a single variable uniquely. The remaining equations are then solved sequentially. These may be represented as :

 $P(x_k) = 0$ $p_i(x_i) = 0$

where: P is the set of p_i 's and the second equation defines the value of x_i alone.

Tearing

Once the network is partitioned, every recycle net is a function of its tear streams. The simultaneous equations representing tear streams cannot be partitioned into a set which is solvable sequentially through successive substitution. The solution strategy which is most simplified, chooses a tearing variable and applies iteration computation. The choice of this variable is guided by some predefined selection criteria.

Algebraically, a recycle net can be represented as the following set of equations :

$$F(X) = 0$$
 (4.1)

where : F is a set of N equations in the N sets of unknowns, X.

The set F is composed of two subsets. The first arises out of the torn recycle streams :

$$m_{i}(X) = x_{i} - n_{i}(X) = 0$$
 (4.2)

where x_i is an unknown in the recycle set.

The second subset occurs at each unspecified node, by virtue of unknown equipment parameters:

$$m_{i}(X) = s - q(X) = 0$$
 (4.3)

where s is the desired parameter and q is the estimated value.

Solution Procedure

In order to solve equation (4.1), various methods can be used. The methods of direct substitution and the Wegstein method are the most commonly used in process simulators. Recent developments indicate a trend towards the use of Broyden's method (Clark and Reklaitis ,1984). In this method, the Secant method is used with the Jacobian Matrix evaluated based on function values, or steps, generated during iteration. CHESS uses the Wegstein's approach for convergence acceleration. This method can be described as follows :

f(x) = x

Subscripts j refer to predicted values. Unsubscripted values are the computed results.

i is the current iteration count.

Thus a straight line extrapolation is used between the predicted values of the ith and the (i-1)th iteration steps. In practice, it is necessary to specify the upper and the lower bounds for q. In CHESS, this is set from 0.5 to -10. The choice is based upon the objective of preventing interaction of successive refinements which results in over-extrapolation and consequent oscillatory convergence paths. In addition, an algebraic sign check is performed on two subsequent q values. The value of x is updated only if they

have the same sign. Another important aspect is that CHESS applies Wegstein convergence only on the stream compositions for recycle calculations.

There are two ways to activate the tear-stream sequence scheme of CHESS. If the user does not specify a specific scheme, the network decomposition routine is invoked. The KE4 vector is used for this purpose, which will be discussed later.

In many problems, the user-supplied input stream conditions or equipment parameters may become the cause of oscillatory or divergent behaviour of computation. These problems are harder to debug and only the user can identify the cause. It should be noted though that an experienced process engineer may select additional tear streams and improve the overall computational effort because of a significant reduction in the number of computational steps.

4.2 Unit Computation and Information Flow

The area of steady state process simulation is primarily concerned with systems having components described in terms of lumped parameters. 'Lumped parameter' systems are represented by mathematical models describing the macroscopic material and energy conservation relationships between its components. The mathematical models are described in terms of algebraic equations, which can have various types : linear or non-linear, simultaneous or direct.

The implementation of a mathematical model and the associated algorithms for solving equations describing it is defined as a 'unit computational module' of a process simulator. A subsystem of the simulation model of a given process system may consist of an equipment node, a thermophysical model or a computational entity used by other subsystems. The thermophysical and computational modules of a process simulator work as supportive modules for the equipment or the executive modules. Each of the unit computation modules is unique in describing an operation at a given node of a process flow network. An information flow scheme represents the interrelationship between nodes and within a particular node sometimes, through descriptions of process variables associated and the computational scheme. This is uniquely defined for a particular process network and can be thought of as the paths in the network annotated with the process variables with the computational vectors describing them. The path itself is dependent on the order the system chooses for the computation to follow in completing the process flow network.

4.2.1 Unit Computation in CHESS

The unit computational modules in CHESS can be classified in three categories - the equipment modules, the thermophysical modules and the control blocks. These constitute an open-ended subsystem where users can accomodate additional modules. The capability of CHESS, or for that matter, any generalised simulator, in handling chemical reaction operations is limited. The basic reactor module in CHESS performs a stoichiometric material balance and adjusts for heats of reaction only. The users can specify up to fourteen additional modules in CHESS. These have to be coded in standard FORTRAN. They access and modify data primarily through the COMMON blocks. The appended modules must be compiled and then, linked with the system, after necessary changes are made in appropriate executive routines.

The equipment and control modules of original CHESS are outlined in the CHESS user's guide (Motard and Lee, 1971). The NJIT versions prior to this work is described in detail by Andreyuk (1983).

In this extension of CHESS, certain modules were added and some others were modified. ADBF, the equilibrium flash routine of CHESS2 was modified to supply additional mixture component information. The simple distillation module DIST of original CHESS was reinstalled. The COMPID module of original CHESS was used in creating an updated and extended database for standard component properties. CHESS2 (Andreyuk, 1983) used a special data-input subprogram, CDATA. We have reinstalled the DREAD routine of

original CHESS in order to handle standard components. The DREAD routine was modified to reflect additions to the database. The the rotating equipment modules, HYTR, PUMP, GSXP and COMP were modified to accept the new equation of state modules.

Extension of the thermophysical module-set was the primary goal of this work. The secondary aspect was to verify the computational reliability of the rotating equipment modules. The added modules are presented with the source code in Appendix D.

The CHAOSD module deals with the RK/SRK : Chao-Seader correlation and the related models. The existing equation of state modules VIRFUG and RKFUG, for the Virial and RK equations of state respectively, are kept intact. The SRKFUG and its component modules define the Soave-Redlich-Kwong equation of state procedure. The PENROB and associated modules predict thermodynamic properties via the Peng-Robinson equation. The modular-approach activity coefficient routines are kept intact, but access is via the alternative CDATA input procedure of CHESS2. These modules are : WILSN (Wilson model) RENON (NRTL model) and UNQAC (UNIQUAC model). The DELCPS and DELCPR modules predict specific heats at constant pressure and constant volume by using the SRK and the Peng-Robinson equations respectively.

During various tests, some difficulties were encountered with the flash routines, which were modified to

handle the newer equations of state models. A brief account of the purpose of each computational modules were presented in Tables 4.2, 4.3 and 4.4.

In general, a control block is an unit computational module placed in the information-flow graph in order to influence one or more units. In each equipment unit controlled, one or more process parameters or stream flow rates/ compositions are adjusted to attain user-desired specifications. These can be thought of as iterative feedback/feedforward controllers trying to minimize discrepency functions. Some of the functions achieved by these blocks are - ratio or flow control, feedback or recycle rate control, and vaporization or condensation control in stagewise contact processes. The module CTRL is a generalized block controlling the component ratios, stream temperatures and and flow simultaneously. It adjusts the input stream pressure and temperature to meet the designated control objective. When used as a temperature controller in the isothermal flash routine, the technique of 'Damped Control of Temperature' applied to is avoid oscillations in convergence. If the approach is below 20 C, a weighted average is used, as defined in the following :

T = old	Calcula	value	in	the	'i'th	
	iterati	lon.				
T = new	Value	for	the	(i-	-1)	th.
Hew	iterati	lon.				

In this method, when i=0, the control is equivalent to direct substitution, when i=1, the control is termed 'halving' and so on. When CTRL is used as a flow controller, the user must allocate any necessary make-up streams.

The block SPLT is used as a reboiler vaporization controller as well as a general two-phase splitter routine. The OVHD block controls the condensation process, whether partial or total, of the distillation modules.

Special mention is appropriate here about the ADBF and the DVDR modules of CHESS. These can represent an actual operation or can perform in other modes. For example, all the stream conditions are set by ADBF, while it is a generalized flash module. The DVDR module can perform specified stream splitting or it can work in conjunction with the CTRL block.

4.2.2 Flow of Information

The flow of information between CHESS modules follows the computational order evaluated by its executive routines or submitted directly by the user. The information flow scheme of a particular process being simulated may not have the desired material flow scheme. This is particularly evident for control block nodes.

In general, the flow of information between units is organised into three named COMMON blocks:STRMIN, STMOUT and STREAM. The block STRMIN contain inlet conditions for a stream input(s) to a computational module. The STMOUT block retains the output(s) stream properties after the computation is completed. The common block STREAM contains the properties and conditions of a stream used temporarily to evaluate thermodynamic conditions during execution. These blocks interface with the statically initialized or computed equipment parameter data, changing from node to node. The use of the common-blocked data structure of FORTRAN is applied ideally in this scheme.

The process or equipment units redefine the intensive and extensive properties of the streams. Apart from the above named three, there is an COMMON block called STMA which differentiates between the extensive and intensive properties of all the streams and stores them in two separate arrays. As unknown streams are converged on, the stream extensive property list, SEXTSV, and the stream intensive property list, SINTSV, matrices are updated. Thus, when the whole network is solved, one has, stored in these matrices, the final values of the conditions in each stream. The executive modules EQUIP and REQUIP performs this linkages, by moving the stream data from and to the general stream data bank and the localized equipment-oriented streams.

Descriptions of some components of a few of the COMMON blocks will be presented in Section 4.5.

4.3 Data Structure and Program Control

The data structure of CHESS is of a static nature, formed of arrays. Recently developed simulators like ASPEN (and the older FLOWTRAN) adopt a dynamic structuring strategy for both process data and network information. Although the later is better in storage and execution efficiency, it is more useful if a file-oriented or databased approach is implemented in system design. In CHESS, the data management is based on principles commonly used years ago which avoids abstraction. For an application programmer, abstraction can be more of a hazard than a help. Thus, as a research tool, CHESS has a definite place through its ease of understanding and use.

Using only a few input variables, a CHESS programmer can exert control on quite a few execution criteria. For process synthesis applications, it is very useful as the simulation trend cannot be predicted even to a minor degree.

4.3.1 Data Structure

The nature of computational data in CHESS can be

thought of as having two types - informative and referential. The referencing environment of global data through a blocked data structure was previously discussed.

The information about process entities, streams and computational nodes (unit operations), are also handled in arrays transmitted through data blocks. The network adjacency matrix is stored in a two-dimensional array, KPM(J,N). The stream numbers associated with an unit, its ID's and its node position in the network is stored in minor elements, with the node number N in the major for identification purposes. The data for the unit computational nodes are stored in another array, EQPAR(J,N). The minor elements contain defined values of process variables: pressure, temperature, etc, initiated by the user. The other elements of this array are completed as the computations converge on the specific node. Each unit module has a predefined order of arrangement of the parameters. These are described in detail by Motard and Lee (1971) and Andreyuk (1983).

The user-defined standard component identification numbers, pure component data and aggregate stream properties etc. are stored in separate common blocks. The executive routine controls the flow of information. The user-defined data (e.g CMPRO) are stored in common blocks separate from the data computed through node-to-node progress of execution (e.g STMA). Again, the thermophysical data associated with

streams are stored in other seperate blocks (e.g ZDATA). The data contained in variable-data blocks convey calculated information back to executive modules (via EQUIP/REQUIP) which reassign values to the respective stream intensive and extensive arrays. Thus, the variable-data blocks are used as dummy blocks to pass information.

Each equipment is also associated with a set of arrays which create a local environment of up to fourinput and output streams with important stream properties (STRMIN and STMOUT). Thus, the data structure limits the equipments to these conditions.

4.3.2 Standard Component Properties' Database

The source listing of the module COMPID, presented in Appendix D, illustrates the standard components and their componential property library data. The components present in a process study are identified by the user. The system retrieves the pure component properties. The data is organized in vectors indexed by the component numbers.

If the user specifies non-standard components or alternatively, wishes to use his own data, the convention of COMPID with respect to units, order and number has to be followed. This can be found in the NSCOMP namelist in COMPID.

The storage scheme employed in COMPID is inefficient because it requires the entire database of 98 standard components to be present whereas the system will need a maximum of 10 components in a given study. An efficient method would be either using a read-in procedure (CDATA in CHESS2), or a providing an external data-based, linked-list data structure. The user has an option to use the CDATA input program of CHESS2 which is retained in this version. Although the storage scheme in COMPID is inefficient, it is easily maintainable and considerable reduction of input-data preparation load is provided by it. It should be noted that the storage liability for COMPID can be lessened when the computer architecture utilize an overlay/ segmentation structure on virtual memory.

4.3.3 User Defined Execution Parameters

Program control by external means is provided for in CHESS. These include choice of thermophysical models, directives for computational limits and error-handling features.

The thermodynamic calculations can be controlled not only by vapor and liquid phase models, but also through the decision of using enthalpy and entropy departure functions in either phase. The possible combinations these can provide help in describing a physical situation very closely.

The control over program execution limits is the

most powerful tool a simulation study needs. In CHESS, the user can specify the maximum number of iterations trials and the tolerance limit for convergence, as well as execution (CPU) time. The simulator can be set up to run repeatedly without explicit system commands. The debugging aids provided are excellent. The user can get insights into sublevels of iterative calculations to decide a new strategy. The stream summaries for recycle loops or the column profiles for stagewise contact modules can be chosen to be printed out. Another use of the debugging aids is in documenting the final values for an error free run.

The tolerance for convergence is the most significant control parameter provided. This value is maintained constant throughout the simulation. Internally, it is assigned to a default value of 0.001, which can be overridden by specific input data.

CHESS allows for another powerful feature. The user can bypass the system-evaluated partition and tear scheme by providing his own sequence. This can reduce the executiontime requirements considerably, especially if the physical nature of the problem suggests a best partition and indicates the critical tear streams. This is then userspecified through the KE2 (partition scheme), KE3 (tear streams) and KE4 (Wegstein convergence tear streams) vectors.

4.4 Input Data Specification

The input data in CHESS is read on a format free basis. The NAMELIST input convention of standard FORTRAN is utilized in CHESS.

The summary of the order and contents of input data is presented in TABLE - 4.5. The CHESS variables associated with the input data are identified in capital letters in this table. The descriptions of some important data objects are presented in TABLE - 4.6.

If a computational module is added, it has to be declared properly in the input as well as in the code. The requirements of such additions is presented in the next topic.

The unused elements of all input vectors must be filled in with zeros in order to maintain the integrity of the NAMELIST data structure.

TABLE 4.5

Arrangement and Specification of Input Data

_____________________________ Group No.of Cards Description ______ Header Card : TITLE 1 1 Problem title in 20A4 format .Thermophysical Control Card : NOCOMP, IDLL, IDLV, IDH, LDBUG, NDIM .Component Identification Card : 2 3 NTCOMP(10) .Process Network Declaration Card: NOKPM, NOEQP, NOSEX, NOSIN, KUNITS Adjacency Data of Modules: KPM Node value, CHESS module name, Max 50 3 Process ID, Inlet & Outlet stream(s) Equipment Data Cards : .List of Unspecified Equipments: ENAME(50) Integers : One Card 1 + Max 50.Data for Specified Equipments(NE): EQPAR(J,NE): Total J 25, Total NE 50 Stream Condition Data Cards : .Stream Extensive Properties : . List of Unspecified Streams 1 SNAME(100) Integers 5(a) . Data for Specified Streams, J Max 100 SEXTSV(13,J)

TABLE	4.5	(continued)	
-------	-----	-------------	--

.Stream Intensive Properties : . List of Unspecified Streams 1 Integers SNAME(100) 5(b) . Data for Specified Streams,J Max 100 SINTSV(10,J) Coputational Parameter Cards : .Iteration and Print Control : LOOPS, NPFREQ, KTRACE, DERROR 2 6 .Partition and Tear Control : KE2(50), KE3(10), KE4(10)

TABLE 4.6

Description of Input Data

Group	Variable	Description
	NOCOMP	No. of chemical components present
	IDLL	Liquid phase model code, 0 6
	IDLV	Vapor phase model code, 0 6
	IDH	Enthalpy correction code, $0 2$
	LDBUG	System debug code, 0 2
	NDIM	Indicates if a component dimerizes
2	NTCOMP(10)	The component identification #s
	NOKPM	The number of computational modules
	NOEQP	The number of equipment units
	NOSEX	#Streams with known extensive prop.s
	NOSIN	#Streams with known intensive prop.s
	KUNITS	Input data physical units code
	KPM(50,10)	Node(1 50), Standard CHESS name,
		Given flowsheet name(A4), List of
3		input stream numbers, List of
5		output stream numbers [prefixed
		with aminus (-) sign for each].
ann ann des ann an der der der		Vapor products are listed first.
	EQPAR(J,NE) Parameters for a specified equi-
4		pment node,NE. Outlined by Motard
and and an an an an ar ar ar	r gan gan gan dar dar gan gan gan gan gan gan dar dar dar da	and Lee (1972) and Andreyuk (1983).

TABLE 4.6 (continued)

		TABLE 4.6 (CONTINUED)
	SEXTSV(13,J	() Extensive properties of known
5(a)		stream, J. Stream #, stream
σ (α)		enthalpy(optional), total molar
		flowrate, componetial flowrates.
	SINTSV(10,J) Intensive properties of the
5(b)		corresponding streams. Stream no.,
5(D)		stream flag (02), vapor
n forder Seiter eine statister Seiter eine statister		fraction, temp., press., enthalpy.
	LOOPS	Maximum number of recycle loop
		calculations allowed per run.
	NPFREQ	Iteration level when intermediate
		stream summaries are to be printed.
	KTRACE	Prints sequence of unit modules
		under program control if set > 0 .
		When =1, prints sequence trace,
6		when =2, prints all inlet states.
	DERROR	Tolerance in recycle computation :
		system default value = 0.0001
	KE2(50)	Ordered list of equipment numbers
		which are to be chosen for recycle
		computation (Optional)
	KE3(10)	Optional ordering oftearstreams
	KE4(10)	Stream#s which will be forced to
		converge with Wegstein procedure

4.5 'ADD' Modules and Key Variables

It is necessary for an appended module to communicate with the system data environment. This is accomplished via named COMMON blocks. The COMMON blocks required for a particular application is to be chosen from the set present in the source code of the MAIN calling program documented in Appendix D.

The key variables required to be known to the system are clarified in TABLE - 4.7 . These will identify the variables that are likely to be manipulated in an 'ADD' routine.

CHESS allows up to fourteen user-defined additional subprograms through these ADD modules.

Some Key Variables

COMMON block	Variable	Definition
	NIN	Nc. of input streams
	NOUT	No. of output streams
CONTL	NOCOMP	Total no. of componts
	NE	Current module node no.
	NEN	Dummy module number
	EQPAR(25,50) Parameters for the
EQPA		Equipment module
, agu an	SINUM(4)/SONUM	(4) Stream nos. for inlet
STRMIN/STMOUT		and outlet streams(1-
	Others	Self explanatory
	NC	Same as NOCOMP
CMPRO	L(10)	Phasecondition ID #
	CFL(10,4)/CPV(10,4) Specific heat coeffs
	ENP(10,10)	Ref. state sp.ht coeffs
	ANT(6,10)	Antoine vp. pr. coeffs.
	ADEL(10)	Hildebrand solubility
ZDATA	OMEGA(10)	Pitzer Acc. Factors
	AK(10,10)	EOS interaction paramtr
	VOL(10)	Liquid molal vol.s
	TB(10)	Normal B.P s
	VC(10),PC(10),T	C(10) Critical Constants

4.6 Output Features

The input data is printed out in a well fashioned manner so that input errors can be easily detected.

The output capability is expanded in this work to enable systematic examination of the final thermodynamic profile of the calculated streams. This section of the output contain the major thermophysical properties and the stream intensive and extensive conditions.

The system prints the stream conditions at the initial state of the simulation and after the simulation is completed.

The summary of energy exchanges is printed for each energy-intensive equipment when the simulation terminates.

Apart from these, the user can choose to print iterated values for recycle loops or stagewise column profiles. This was discussed under Tables 4.5 and 4.6.

4.7 System Capacity and Constraints

The CHESS is limited in certain respects because of the staic organisation of its data structures. These are :

- . It can handle a maximum of 100 streams.
- . It can have at most 50 computational nodes.
- . A stream can have a maximum of 10 components.
- . An equipment node may have no more than four

input and output streams.

However, if the situation demandsit, such restrictions can be easily removed by redefining the upper bounds of the arrays.

CHESS has various thermodynamic limitations. Apart from the inherent restrictions on the applicability of each of the models, there are functional drawbacks. The limitations of the models were discussed previously.

Major changes are required to incorporate capability to handle solids and two-liquid phase systems. Significant progress has been recently achieved at NJIT regarding systems having liquid phase-splits. This will be included into CHESS at a later time.

CHAPTER 5

SIMULATION STUDY OF AN ILLUSTRATIVE SUBPROCESS

In this chapter, we shall present the formulation of and the results obtained from the simulation study of a simple subprocess, utilizing the extended capacity of the CHESS program.

As a validity check, we have tested the CHESS3 using example problems #1 and #3 of the standard CHESS example set. These problems were formulated by Motard and Lee (1971) and are discussed fully in the original user's manual. We have not considered the other CHESS examples, since they involve the testings of a particular control block, or ADD module linkage, or the use of debugging tools, rather than the thermophysical capabilities of the system.

The validation of the new thermophysical routines with the new unit operation modules was accomplished with a single comprehensive test case.

5.1 Formulation of the Test Problem

The test problem is a hypothetical subprocess used to exemplify various thermophysical models as well as the new unit operation modules : COMP (Compressor), HYTR (Hydraulic Turbine), GSXP (Gas Expander) and PUMP (Pump).

The subprocess assumes as input a vapor stream and a liquid stream comming in for a low-temperature process step. The feed vapor stream is compressed and the feed liquid stream is expanded through a hydraulic turbine. These are then mixed and sent to a single-stage adiabatic flash unit. The vapor product is routed through a gas-expander for power recovery, while the liquid product is pumped to a higher pressure.

The input streams contain Nitrogen and Carbon Dioxide in a mixture of paraffinic hydrocarbons, forming a 10-component system. Such streams are normally encountered in natural gas processing. Our objective is to purge Nitrogen completely and combine the rest of the material into a single liquid stream.

There are no recycle streams in the process. The primary issue associated with this sample case is to find out which thermophysical models are appropriate in representing the high-pressure, low-temperature processing environment. The secondary issue is to validate the performance of each of the rotational equipment modules.

The flowsheet of the subprocess is presented in Figure 5.1. The inlet stream conditions and equipment specifications are tabulated in Table 5.1. The information flow diagram for the CHESS3 simulation model is presented in Figure 5.2.

The simulation results for various input

combinations of thermophysical models and choices of enthalpy corrections are presented in Appendix C. The fully formatted output is presented for the first set only, the Peng-Robinson equation of state applied to both the vapor and the liquid phases. Only the relevent portions are supplied for the subsequent combinations, the SRK / Chao-Seader (SRK/CS) model, RK / Chao-Seader (RK/CS) model and lastly, the ideal gas-ideal liquid assumption. This is done to in order to eliminate the repetition of the printout of virtually the same input data (except for the thermodynamicmodel codes : IDLL, IDLV and IDH) for the same test case.

FIGURE 5.2

Information Flow Diagram

Feed Conditions

	VAPOR 1.000 200.000 433.866	LIQUID 0.000 600.000 400.000
Components		
CO ₂	0.0205	0.0880
Nitrogen	0.1490	0.1490
Methane	28.4572	28.7860
Ethane	3.6273	20.1030
Propane	0.9263	24.9770
I-Butane	0.0384	2.8320
N-Butane	0.0896	10.2210
I-Pentane	0.0083	2.2240
N-Pentane	0.0061	2.3960
N-Heptane	0.0010	3.5890
Total	33.3236	95.3650

==

TABLE 5.1 (Continued)

Equipment Specifications

Unit ID	Unit operation		Discharge Pressure (atm)	Temp.	Stages	Stage Efficiency
C - 1	Compressor	13.61	28.24	241.05	3	0.85
E - 1	Gas Expander	20.41	3.20	-	1	0.60
P - 1	Pump	20.41	34.02	-	1	0.75
T - 1	Hyd. Turbine	20.41	28.24	222.07	1	0.60
V - 1	Valve	28.24	20.41			

5.2 Analysis of Results

In this section, the results obtained from simulating the test process will be discussed. The results are presented in a systematic manner in Appendix C in the form of the actual simulation outputs. In the following subsections, the issues pertinent to this work will be highlighted. These will include the performance of the newly included thermodynamic models in simulating the physical systems, the behavior of the rotational equipment modules and comparative evaluation of the interplay between them in terms of the simulated subsystem. We have restricted tabulation of the results already presented in Appendix C.

5.2.1 Correctness of Generated Thermodynamic Data

Fugacity and Activity Coefficients, Equilibrium Ratios

Let us consider Stream 6 (at the outlet of the expansion valve, V-1) for the analysis of the VLE data obtained through the various models.

The phase compositions and the adiabatic flash temperature predicted by the various VLE models are different. The temperature predicted by the Peng-Robinson equation is 222.526 K, compared to the values of 229.836 K and 230.926 K predicted by the RK/CS and SRK/CS combinations for the adiabatic expansion in the valve.

In order to compare the results, a common

basis is required. Let us use the results of the Peng-Robinson adiabatic flash, to consider a seperate isothermal flash calculation, at 20.414 atm. and 222.526 K (total stream composition equal to Stream 6), for all the VLE data models.

The phase conditions predicted by the RK/CS, SRK/CS and the Peng-Robinson models are presented in Table 5.2. The values of the equilibrium ratios, liquid phase fugacity coefficients and vapor phase fugacity coefficients are presented in Tables 5.3, 5.4 and 5.5 respectively.

The data presented in Table 5.2 indicate the following :

- The SRK/CS and RK/CS predictions of vapor-liquid phase compositons and vapor fractions agree closely.
- The phase compositions predicted by the Peng-Robinson model are similar to the other two models, except for Nitrogen. Consequently, a higher value of vapor fraction is obtained by the Peng-Robinson models.

The data presented in Tables 5.3, 5.4 and 5.5 indicate the following :

- Similar component K-values are obtained via all the models, except for Nitrogen and Methane.
- The correct trend of lower K-values for higher molecular weight hydrocarbons has been predicted by all the models.
- Almost identical results for the RK/CS and SRK/CS indicate that, in this system, the controlling factor

for the K-values are the liquid phase fugacity coefficients.

- The vapor phase fugacity coefficients obtained by the various models agree reasonably. Results indicate a high degree of non-ideality for components other than N_2 and CH_4 . This is the correct trend, since the other components have very low vapor pressure values at 222.53 K and are actually in subcooled states.

Let us determine the relative accuracy of the models.

- The Chueh-Prausnitz estimate of mixture reduced temperature for the stream under study is 1.052. Again, the liquid-phase Methane mole fraction is 0.3099. Both of these figures violate the Chao-Seader restrictions.
- Chao-Seader method is sensitive to the presence of dissolved gases like Nitrogen and Carbon Dioxide.
- SRK equation is error-prone in systems containing Carbon
 Dioxide (Holland, 1981).
- The K-value predicted for Carbon Dioxide by the Peng-Robinson model lies between those for Methane and Ethane. This is to be expected in an actual situation in low-temperature processing (Roche). The SRK/CS and RK/CS K-values for Carbon Dioxide almost equal those for Methane. This does not seem to be likely.
- The K-values of Nitrogen are very sensitive to low temperatures computations and are known to exibit maxima in the K-vs-T plots (Roche). Hence, a high value is very

likely to be predicted.

Considering the above, one can infer that the obtained Peng-Robinson prediction of VLE data is accurate, at least qualitatively. However, the sensitivity of the Peng-Robinson model to low liquid concentrations should be studied thoroughly in future.

Compressibility Factors

Let us take up Stream 2 for comparison among the various models, since all the models are subjected to an identical thermodynamic state and stream compositions via a specified aftercooler-exit temperature and pressure at the outlet of the Compressor.

- The vapor mixture compressibility factors predicted for Stream 2 via the various equations of state are :
 0.7837 by the Peng-Robinson equation, 0.8048 by the RK equation and 0.8038 via the SRK equation.
- As a rough estimate, let us make a comparison against pure-component compressibility factor charts evaluated by Nelson and Obert, as presented in Reid, Sherwood and Prausnitz's text (1977). The Chueh-Prausnitz method yields a mixture a value of 1.052 for the mixture reduced temperature. An estimate of the mixture reduced pressure of 0.63. The compressibility factor for Methane, the dominant component of Stream 2, at these reduced conditions is 0.79. Hence, we can

infer that all of our models have performed well in predicting vapor phase mixture compressibility factors.

Only the Peng-Robinson equation has been used to predict liquid phase mixture compressibility factors. Let us consider Stream 10. Its compressibility factor has been predicted as 0.123. This value could not be verified since data for compressibility factors of pure components are not given for liquid phase conditions.

<u>Stream Conditions : Isothermal Flash</u>

	Feed Condition	 	Predicto	ed Produ	uct Con	ditions	
Temperature, K Pressure, atm Vapor Fraction	20.414	20	2.53 .414 2062	222 20.4 0.2	414	222. 20.4 0.24	14
Composition	Composite	l Chao-	RK/ -Seader		RK/ Seader		eng- inson
Components	Feed	x 1 1=========	y i	x i ========	y i	x i =======	y i ======
CO ₂	0.84E-3	1.00E-3	2.93E-4	1.00E-3	2.94E-4	 1.12E-3	1.19E-3
Nitrogen	0.23E-2	2.36E-3	2.19E-3	2.36E-2	2.16E-3	0.5E-3	0.0841
Methane	0.4448	0.3098	0.9174	0.3099	0.9166	0.2629	0.8988
Ethane	0.1844	0.2186	0.0656	0.2185	0.0654	0.2457	0.0759
Propane	0.2013	0.2550	1.35E-2	0.2550	1.36E-2	0.2682	0.0142
i-Butane	2.23E-2	2.85E-2	5.27E-4	2.85E-2	5.35E-4	2.97E-2	4.7E-4
n-Butane	8.01E-2	0.1027	4.01E-4	0.1027	1.19E-3	0.1067	1.02E-3
i-Pentane	1.74E-2	2.23E-2	8.66E-5	2.23E-2	8.99E-5	2.31E-2	6.0E-5
n-Pentane	1.87E-2	2.40E-2	6.26E-5	2.40E-2	6.54E-5	2.49E-2	4.0E-5
n-Heptane	2.79E-2	3.60E-2	7.25E-0	5 3.58E-2	2 8.09E-6	3.72E-2	2.6E-6
=======================================		= = = = = = = = = = = = = = = = = = =					

Equilibrium Constants : Isothermal Flash

Temperature	222.53 K
Pressure	20.414 Atm

· · · · · · · · · · · · · · · · · · ·			
	RK/	SRK/	Peng-
	Chao-Seader	Chao-Seader	Robinson
CO ₂	3.1949	3.2389	1.0631
Nitrogen	1.0171	1.0069	18.4606
Methane	3.2574	3.2557	3.7669
Ethane	0.3282	0.3294	0.3403
Propane	0.0581	0.0589	0.0585
i-Butane	0.0202	0.0206	0.0174
n-Butane	0.0125	0.0128	0.0105
i-Pentane	0.0043	0.0044	0.0029
n-Pentane	0.0029	0.0030	0.0019
n-Heptane	0.0002	0.0003	0.0007
	=======================================		

NOTE-

*

_i

Compositions are presented in TABLE 5.2

#

Liquid Phase Fugacity Coefficients : Isothermal Flash

Temperature	222.53	K	

	Pressure	20.414 Atm	
	RK:Chao	SRK:Chao	Peng-
	Seader	Seader	Robinson
co ₂	0.25697	0.25697	0.86710
Nitrogen	1.01408	1.01408	18.24376
Methane	2.94961	2.94961	3.36366
Ethane	0.24528	0.24528	0.24777
Propane	0.03717	0.03717	0.03580
i-Butane	0.01141	0.01141	0.00926
n-Butane	0.00685	0.00685	0.00544
i-Pentane	0.00208	0.00208	0.00129
n-Pentane	0.00136	0.00136	0.00082
n-Heptane	0.00080	0.00080	0.00002
NOTES :			

NOTES

 The SRK/RK : Chao-Seader values represent products of activity coefficients and liquid phase pure-component fugacity coefficients (eqn.s 2.1 or 3.1).
 The Peng-Robinson values indicate the liquid-phasemixturefugacity coefficients.

- Compositions are presented in TABLE 5.2

#

Vapor Phase Fugacity Coefficients : Isothermal Flash

Temperature 222.53 K Pressure 20.414 Atm

Components	RK-Chao	SRK-Chao	Peng-
	Seader	Seader	Robinson
co ₂	0.80430	0.79339	0.81586
Nitrogen	0.98323	0.99310	0.98826
Methane	0.90552	0.90597	0.89293
Ethane	0.74729	0.74459	0.72807
Propane	0.63956	0.63144	0.61246
i-Butane	0.56460	0.55326	0.53281
n-Butane	0.55025	0.53623	0.51644
i-Pentane	0.48739	0.46827	0.44768
n-Pentane	0.47612	0.45291	0.43249
n-Heptane	0.36243	0.32267	0.30344

NOTE :

#

Stream compositions are presented

in TABLE 5.2.

Enthalpy Departure Functions

- Let us consider Stream 2, which has the same phase conditions: temperature, pressure and composition, as predicted by the various models. The RK estimate is -267.9 Cals/ Gm Mole as compared to -142.9 Cals/ Gm Mole predicted by the SRK equation and -104.4 Cals/ Gm Mole evaluated by the Peng-Robinson equation.
- As an approximate verification of these departure function values, let us consider the Yen-Alexander's charts (Reid, Sherwood, Prausnitz: 1977, Figure 5.5) as a reference. The mixture reduced pressure and reduced temperature of Stream 2 are 0.63 and 1.052 respectively. The Yen-Alexander charts predict -371.52 Cal/ Gm Mole as the enthalpy departure at this condition.
- Thus, the RK equation seems to have produced the closest values, while the SRK and the Peng-Robinson estimates do not seem to be accurate. However, all the predictions are much lower than expected.
- While the Yen-Alexander correlation is considered to be accurate, the values of the critical compressibility factors it uses conflict with RK/SRK/Peng-Robinson estimates.
- Again, we should consider that the enthalpy departure isotherms near the critical region are very sensitive to changes in pressure and exibit points of inflexion as well as steep maxima (Figures 5-2 to 5-5, Reid,

Sherwood, Prausnitz, 1977).

- Hence, a definitive conclusion can not be made regarding the accuracy of prediction, or applicability of any particular equation of state in these regions, as is the case in ous test problem.

The trends discussed above are for vapor stream enthalpy departure functions. Let us consider the liquid phase enthalpy departure predictions. In order to be consistent, let us compare the results of an isothermal flash on stream 4, with temperature, pressure and composition as determined by the Peng-Robinson equation, with the CS/RK or CS/SRK models.

The Peng-Robinson equation has predicted a much lower value than the Chao-Seader method. The respective values are -546.7 and -2302.3 Cals /Gm Mole respectively. Referring to the Yen-Alexander's charts, the dominant components of Stream 4 : Methane, Ethane, Propane and n-Butane have pure-component enthalpy departure values of -276.4, -3664.8, -5092.1 and -6122.8 Cals/ Gm Moles respectively. Hence, as a rough estimate, if we assume an additive molar average by Kay's rule, the value for Stream 4 should be -2900 Cals/ Gm Mole.

Thus, the Chao-Seader model has a closer proximity to accuracy. Thus, we can propose that the RK/ Chao-Seader model be used for near-critical phase enthalpy estimates. Let us discuss the applicability of the analytical approach of liquid phase enthalpy estimation.

 Analytical equations are frequently found to yield unsatisfactory results (Roche). However, specific heat data cannot be relied upon at higher pressures, because these are mostly generated under low pressure environments and limited ranges of temperature. Peter's chart extrapolations for supercritical phases are also errorsome. Thus, we have restricted the use of liquid specific heat data to near-atmospheric systems only.

Entropy Departure Functions

The vapor phase entropy departure of Stream 2, which has an uniform state with respect to all the models has been predicted well through the SRK and the Peng-Robinson equations of state. The SRK and RK eqns. have predicted values of -0.4578 Cals/Gm Mole. K and -7.465 Cals/Gm Mole. K, whereas the Peng-Robinson equation has estimated a value of -6.9271 Cals/Gm Mole. K. Let us consider the Lee-Kesler Tables as a basis of comparison (Reid, Sherwood, Prausnitz, 1977). This method yields an aproximate value of -8.720 Cals/Gm Mole. K as the entropy departure value for Stream 2. Thus, we can observe that the SRK and the Peng-Robinson equation is very accurate and the RK equation has

failed to produce accurate values.

However, for liquid streams, dissimilar results are obtained. For Stream 10, the Peng-Robinson estimate of entropy departure is -7.3126 Cals/ Gm Mole. K, whereas the RK/Chao-Seader estimate of -9.938 Cals/ Gm Mole. K. The Lee-Kesler tables predict an approximate value of -13.82 Cals/ Gm Mole. K. Thus, for liquid phases, the Peng- Robinson value is inacccurate. Again, we observe that although the Chao-Seader method has worked well for enthalpy departures, it is much inaccurate for entropy departures. Similarly, the RK and SRK equations can not be recommended for vapor phase entropy departure estimations. Though entropy as a state property is seldom used, one should be careful about selecting the right model when required.

Vapor Mixture Specific Heat Departure Functions

The vapor mixture specific heat departure functions for the inlet and outlet streams, 1 and 2, as predicted by the various equations of states are presented in Table 5.6. Let us compare the C_p values with the Lee-Kesler estimation method (Reid, Sherwood, Prausnitz, 1977). Considering the dominating components of Stream 1 : Methane, Ethane, Propane and i-Butane, we find that the individual departures in C_p are 0.2632, 0.6506, 5.7253 and 9.667 Cal/ Gm Mole. K respectively. A molar average of these would yield a value of 1.4487 Cals/ Gm Mole. K. Comparing this value with results obtained (Table 5.6), we observe that only the Peng-Robinson prediction has produced acceptable values. The SRK value is too large and the RK value is erroneous, since it is negative.

Again, for Stream 2, the SRK equation has predicted negative values of C_p departure and the difference between C_p and C_v . The RK equation predicts negative C_p departures for both the inlet and outlet conditions. However, the RK estimate is somewhat closer to the Peng-Robinson estimate for $(C_p - C_v)$ values. Thus only Peng-Robinson equation has produced the right values.

As there is no reference available in literature on the c_v and the $(C_p - C_v)$ values, we can't ascertain the accuracy of predictions with the eqns. However, the Peng-Robinson equation has predicted a C_p value of 8.4232 and a C_v value of 6.2937. This results in a polytropic ratio of 1.3384. Although this value is a bit high for heavy, polyatomic gases (1.1 - 1.2 usually), it is reasonably satisfactory for the light gases we have studied (1.2 - 1.4 usually). Hence, the Peng-Robinson equation can be relied upon as an accurate source of C_v values.

Specific Heat Departure Functions : Streams 1 and 2

0

Unit : Calories/ Gram Mole/ K

		ب منی میں میں ہیں ہیں جو میں ا				
		Departui	e Func	ction	Values	
Equations	 	Stream #	*		Stream #	*, + 2
of State	c _p	$(c_p - c_p)$	(c _p -c _v)	Cp	(c _p -c _p)	$(c_p - c_v)$
			===========	-========		
Peng-Robn.	8.2809	0.1423	2.1295	9.0681	0.1022	2.0894
SRK Eqn.	8.2809	4.2597	6.2469	8.9081	-2.6963	-0.7091
RK Eqn.	8.2809	-0.1725	2.6509	9.3296	-0.1876	2.7465

NOTES :

- Stream states and compositions are given in Appendix C, same for all the models.
- + : Stream temperatures shown in Appendix C is at the aftercooler exit, actual temperature is higher than the compressor inlet stream, # 1.

5.2.2 Performance of Computational Modules

Rotational Equipment Modules

The performance of the rotational equipment modules have been determined largely by the behavior of different thermodynamic models. An overview of such results for each of the three thermophysical models are presented in Appendix C, where energy requirements are tabulated for each equipment.

For the Compressor (Unit 1), each of the equations of state have predicted for a single stage compression strategy. A stage-compression ratio of 2.075 is thus estimated uniformly. Based on our discussions of results obtained for specific heat departure functions under the previous topic, we can infer that only the Peng-Robinson esimate of 10.611 HP is the correct estimate of the compression power. Another result which should be discussed is the temperature at the exit of the Compressor. Its value, -54.6879 F, is lower than the inlet value of -25.7978 F. This anomaly is caused by the need of excessive cooling to be employed in the aftercooler of the compression stage. This was necessary because we tried to minimize the temperature difference between the two inlet streams of the Mixer (Unit 3), one of which is the vapor stream at the exit of the Compressor.

For the Hydraulic Turbine (Unit 2), all the models

have predicted the same value of recoverable power, 1.698 HP. The reason for such results is that the Hydraulic Turbine module, HYTR, does not depend on any liquid phase model for estimating energy recovery. It calculates available energy differencial as the product of the specified pressure differential and the flowrate. One can also observe that outlet temperatures predicted by various models are different, though close in the values. This temperature is determined by an adiabatic flash, the target enthalpy of which is established from the specified fractional efficiency.

Results have disagreed considerably for the Gas Expander (Unit 6). The SRK model has predicted an outlet temperature of -214.05 F and a value of 11.096 HP for the recoverable power. The RK equation has predicted a value of -258.4 F for the exit temperature of the Gas Expander and a value of 13.726 HP for the recoverable power. The Peng-Robinson equation has predicted a temperature of -225.9 F at the exit of the Gas Expander and a value of 11.514 HP as the recoverable power. Hence, the RK equation has not performed well. The reason is that the RK equation is not suitable for calculating entropy departures at low temperatures, accuracy in the estimate of this property is requisite for the GSXP module. In our case, the RK-predicted exit condition is inside the two-phase envelope rather than in the superheated region. Thus, a large part of the high recoverable-energy value is contributed by latent heat of condensation. Since we have established earlier that the SRK and the Peng-Robinson equations are correct in predicting for the entropy departures, we can infer that the value of 11.096 or 11.514 HP, predicted by the SRK and the Peng-Robinson equations respectively, is the correct value of power recovery from Unit 6.

The power requirement of the Pump (Unit 7) have been predicted well by both the liquid phase models. While the Chao-Seader value is 3.785 and 3.784 HP (for the RK and the SRK combinations respectively), the Peng-Robinson equation has predicted a value of 4.22 HP.

Thus, in conclusion, we can say that the Peng-Robinson equation has been the most successful among all the models in predicting the behavior of the rotational equipments. Its use is recommended for simulating similar conditions of low temperatures and high pressures of actual cryogenic process plants.

Thermophysical Modules

In this section, a few important restrictions imposed on certain thermophysical modules will be discussed.

As discussed earlier, the RK equation has predicted a very low exit temperature for the Gas Expander unit. This had resulted in a thermodynamic state for the mixture where enthalpy departure values fluctuate widely over ranges of even 10 K temperature. Such behavior is confirmed by the grahical data presented in Reid, Sherwood and Prausnitz's text (1977), where isotherms in enthalpy departure functions exibit points of inflection and steep maxima. This results in the adiabatic flash calculations in AFLASH to get trapped in oscillations about a convergence. To prevent this, we have introduced a redefined stepsize of 5 K instead of 20 K, or the value estimated by the Wegstein's algorithm. This strategy has produced accurate convergence, whereas none was obtained before. In future modifications of CHESS, one should incorporate measures in all the modules which iterate on entropy or enthalpy values.

Secondly, as mentioned earlier, we have restricted the use of liquid specific heat coefficient data upto states of 1 Atm. pressure and 300 K temperature. This was necessitated by the occurance of large errors in low temperature and high pressure conditions.

CHAPTER 6

CONCLUSION

Based on the analysis of results obtained from the simulation of the test problems using modified CHESS, we can conclude that the newly-incorporated modules are operational. The integration of these models with the overall simulation system has been successful. The rotational equipment modules have represented actual operations fairly closely.

As for the relative performance of the various thermophysical models, the results indicate that some of them are more successful in predicting certain properties than the rest. The Chao-Seader model has performed very well in predicting liquid enthalpy departures, but is grossly inaccurate in estimating entropy departures. The assumption that the SRK equation could be a substitute for the RK equation in providing a vapor phase model for the Chao-Seader method, has been found to be correct. Except for specific heat departure functions, the SRK and the RK equations have produced similar results. Considering the overall performance in predictions of properties and phase behavior, the Peng-Robinson equation is found to be accurate in most occations, for both the liquid and the vapor phases, except for enthalpy departure functions.

Hence, it is recommended that future extensions would make it possible for an user to select a model for a specific phase, or an equipment, or a property, rather than an uniform model throughout.

The task remains for all these models to be tested under various other phase environments and processing conditions, in order to ascertain their capacity fully.

Further attention will be needed to update the equipment module set. A major improvement can be made if optimization algorithms are incorporated as a part of the system. Optimization techniques should be applied not only to determine lowest-investment processing strategies, but also to decide upon intra-unit configurations, such as heat-exchanger networks, compressor and gas-expander staging etc.

CHESS is still somewhat limited in the area of control blocks. Future work have to concentrate on the development of stream flow ratio control and composition control, whereby remotely situated modules can communicate information. The control modules of FLOWTRAN can be used as a guideline. Again, apart from component ratio and temperature, other stream properties such as enthalpy, should be considered as candidates for manipulation. In parallel, the convergence algorithms in control blocks in general and in particular equipment modules should be replaced with recently developed methods, such as the Broyden's algorithm. Attention should also be given to update the distillation algorithms.

Some rethinking in organizational aspects is also necessary. Efforts should be made towards improving time and storage efficiency by incorporating dynamic storage facility and variable-sized load modules via the use of a preprocessor language. Such improvements will also make system more user-friendly and would reduce input coding time. A certain ammount of computer graphics should increase the marketibility of the package. There should also be an effort to produce microcomputer compatible, interactive versions. As such, a shift towards a databased organization may be made.

Future work should also yield the capability to handle solids and VLSE systems. It is recommended to update the physical properties' package periodically. CHESS also needs to have modules to handle unsteady state or batch processing as well as prediction procedures for dynamic behavior of steady state processes.

APPENDIX A

Enthalpy and Entropy Departure via Peng- Robinson Equation

A.1 The Entropy Departure Function

A.2 The Enthalpy Departure Function

A.1 Derivation of the Entropy Departure Function

The pressure-explicit form of the Peng-Robinson eqn. is given as follows :

$$P = ----- - - ----- (A-1)$$

$$V - b V(V + b) + b(V - b)$$

For a pure component :

$$a(T) = a(T) \cdot a(T) = A \qquad (A-2)$$

c r

$$a(T) = 0.45724 (R T) / P (A-3)$$

$$a(T) = [1 + K(\omega) (1 - T)]$$
 (A-4)

$$b(T) = 0.0778 (RT / P) = B$$
 (A-5)
C C

$$K(\omega) = 0.37464 + 1.54226 \omega - 0.26992 \omega \qquad (A-6)$$

For a mixture :

$$a = A = \sum_{i=1}^{n} \sum_{j=1}^{n} y_{j} y_{i} a$$
 (A-7)

$$a = (1 - \delta) a a$$
(A-8)
ij ij i j

$$b = B = \sum_{i=1}^{n} y b \qquad (A-9)$$

For the compressibility factor of a mixture :

$$z^{3} = (1 - B)z^{2} + (A - 3B - 2B)z^{2} - (A - B - B) = 0$$

(A-10)

where : AP a_{mix} P Ā (A-11) 2 2 (R T) (R T) b_{mix} P BP B (A - 12)(R T) (R T) From (A-1): R (∂A/∂T) ∂ P (----) V(V + B) + B(V - B)**∂**TIV V-B R V - B ∂A/∂T V - 0.414 B (-----)(-----) (A-13) 2.828 B V + 2.414 B (by partial fractions) From eqns. (3.8) and (A-13) : $S - S = \int_{-\infty}^{V} \left[\left\{ \frac{\partial P}{\partial T} \right\}_{V} - \left\{ \frac{R}{\partial T} \right\}_{V} \right] dV$ (A-14) $= R \ln(V-B) - R \ln(V) - (----) (--) \ln(-----) + R \ln(----)$ 2.828B **∂**T V + 2.414B v_o $B P = 1 \quad \partial A \quad ZRT = 0.414 BP$ $= R \ln\{Z = (----)\} - (-----) (-----) \ln(--------)$ RT 2.828B 2 T ZRT + 2.414 BP [as $(V/V_0) = (PV / RT) = Z$] Thus : (A - 15)where : 2 2 $\overline{A} = a_{mix} P / (RT) = A P / (RT)$ $= b_{mix} P/(RT) = B P/(RT)$ В

The derivative of the 'a' parameter w.r.t temperature for the general case of a mixture is obtained as follows : From eqn. (A-7) and (A-8) :

$$\frac{\partial A}{\partial T} = \frac{\partial}{\partial T} \left[\sum_{i=1}^{n} \sum_{j=1}^{n} x x_i (a a) \frac{1/2}{(1 - \delta)} \right]$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} (1 - \delta) (1/2) (a a) \frac{-1/2}{(1 - \delta)} \frac{\partial}{\partial T} \left[a a \right]$$
Differentiating eqn. (A-4) w.r.t temperature :
$$\frac{1/2}{2} = \frac{-1/2}{2}$$

$$(\partial a / \partial T) = a_{C_{i}} \cdot 2[1 + k(\omega)(1 - T_{r_{i}})] \{(-0.5)K(\omega)(T_{r_{i}} / T_{C_{i}})\}$$

i i i i i i i

Again :

$$\partial \qquad \partial a_j \qquad \partial a_i \\ ----(a a) = a(-----) + a(-----) \\ \partial T i j \qquad i \ \partial T \qquad j \ \partial T$$

Thus :

A.2 Derivation of the Enthalpy Departure Function

From equation (3.6) : $H - H = \int_{\infty}^{V} [T(-\frac{\partial P}{\partial T}) - P] dV + RT(Z - 1)$ (A-17) From equations (A-13) and (A-17) :

$$H - H = \int_{-\infty}^{0} \frac{V}{[-\{T(\partial A/\partial T) - A\}/\{V(V+B)+B(V-B)\}]} dV$$

The derivative term is obtained by and replaced with eqn. (A-16).

APPENDIX B

Vapour Mixture Heat Capacity Departure Functions

B.1 Soav	e-Redli	ch-Kwong Equation
B .	1.1	Departure in C V
В.	1.2	Difference between C and C p v
Β.	1.3	Departure in C P

B.2 Peng Robinson Equation B.2.1 Departure in C V Difference between C and C B.2.2 р Departure in C B.2.3 р

v

B.1.1 Departure in Specific Heat at Constant Volume

The pressure- explicit form of the equation of state proposed by Soave is :

 $P = \frac{R T}{V - b} \frac{a(T, \omega)}{V (V + b)}$

Therefore :

- ---

$$\begin{array}{ccc} \partial P & R & (\partial A/\partial T) \\ (----) & = & ----- & - & ------ \\ \partial T & V & V - B & V(V + B) \end{array}$$
(B-1)

where A and B represents the parameters for a pure component or a mixture, as the case may be.

Differentiating (B-1) w.r.t T and substituting in (3.9), we obtain :

$$\begin{array}{cccc} & & & \partial & R & (\partial A / \partial T) \\ (----) & = & T \begin{bmatrix} --- & \{ ------ & --------- \} \end{bmatrix} \\ \partial V & T & \partial T & V - B & V & (V + B) \end{array}$$
 (B-2)

Let us derive the derivative of the parameter A for a mixture.

Let : $A = A_C \qquad a \qquad (B-3)$ mix mix

where A stands for the mixture parameter

defined by the Peng- Robinson mixing rules. Thus :

164

We know:

$$a = [1 - m(\omega) (T / T_{C})]$$

mix
 mix
 mix
 mix
 mix
 $(B-31)$
Hence:
 $(\partial A / \partial T) = -a A_{C} / m(\omega) / T / T_{C}$
 mix
 $(B-5)$
From (B-2), (B-3), (B-4) and (B-5), we obtain:
 $\frac{1/2}{-1/2}$
 $\frac{-1/2}{-1/2}$
 $\frac{-1/2}{-1/2}$
 $\frac{-1/2}{-1/2}$
 $\frac{-1/2}{-1/2}$
 $\frac{-1/2}{-1/2}$
 $\frac{-1/2}{-2}$
 $\frac{-1/2}{-2}$

Here, B refers to the mixture parameter. Integrating (B-6) over an isothermal path between states 1 and 2, we obtain :

1/2A_c m(w)α V_2 $\int \frac{1}{V_1 + V(V + B)}$ mix mix mix đV С С V 1/2 V 2(T.T_C mix 1 2) (B-7)

The integrand in (B-7) is the following :

(V + B) / V $\frac{1}{(---)} \ln [-----]$ $\frac{1}{B} (V + B) / V$ $\frac{1}{1} 1$

If we define state 2 as that of the system(P, V, T) and state 1 as the ideal gas state (P-->0, V--> ∞ ,T = T) :

$$\begin{array}{cccc}
 V + B \\
 1 \\
 limit & [ln(----)] = 0 \\
 V_1 & --> & V \\
 & & 1
\end{array}$$

Substituting in eqn.(B-7) and rearranging :

1/2 m(w)(T_r / a) mix mix mix) Α V + B -----) (B-8) C 2 B R T v Upon further rearrangement, we obtain the final form : Q 2 ΔC C С Α v 1 V -- (----) (MTA)ln(1+ h) R R 2 В 1 v (B-9) where : 2 2 $(a_{mix}/RT) = (A/RT)$ **A** . . . = V = $(b_{mix} / RT) = (B / RT)$ В v $(b / V) = (B_v P / Z)$ h = 1/2 1/2 MTA m(ω) T α 1 mix mix) i ω y ω i i mix T / T_C mix T_r mix

B.1.2 Difference Between the Heat Capacities

Differentiating the SRK equation w.r.t volume at constant temperature, we obtain :

$$\begin{array}{cccc} \partial P & 1 & 2 & A & 1 & 2 & 1 & 2 \\ (-----) & = & RT & (----) & - & (----) & [(----) & - & (-----) &] \\ \partial V & T & V - B & B & V & V + B \end{array}$$

Substituting equations (B-3) and (B-31) in equation (B-1) and squaring both sides :

1/2 2R A_C m(ω)(α/T_r) mix mix mix $\begin{array}{ccc} A_{c} & m(\omega) & (\alpha/T_{r}) \\ mix & mix & mix \end{array}$ dP 2 mix mix R ---)+ (----___) 2 V- B **T6** 2 2 2 $T_{C} V (V - B)$ $T_{C} V (V + B)$

Using these two equations for the thermodynamic identity in eqn.(3.10) and rearranging, we obtain the difference function as follows :

 $\{C - C / R\} = p v$

A_v 1+h h h (----)+2(---)(MTA)(----)+4(---)(MTA)(----)(----)в_v 1-h b_{mix} Bv 2 2 b_{mix} 1 - h 1 + h (-----) $A_v = h = 1 - h$ (----)(----)(2 + h) 1 - h Bv b_{mix} 1 + h(B-10)

where :

 $MTA = m(\omega_{mix}) / \alpha / T$

B.1.3 Heat Capacity Departure at Constant Pressure

Applying (B-9) and (B-10) to equation (3.11) ,we obtain the following function for departure in C_p :

A_v Av 1+h ² h ² 1 + h h (----)+2(----) (MTA) (----)+4 (----) (MTA) (----) (----) 1-h ^bmix Bv 1 – h Bv 2 2 b_{mix} 1 + h A_v h 1 - h (----)(----)(2 + h) (----) 1 – h b_{mix} 1 + h Bv 2 A (B-11) 1 v -- (----) (MTA)ln(1+h) - 1 2 В 1

B.2 Peng- Robinson Equation of State

B.2.1 Heat-Capacity Departure at Constant Volume

The pressure- explicit form of the Peng- Robinson equation of state is :

a(T) RТ P (B-12) V - b V(V + b) + b(V - b)Differentiating with respect to T at constant V : 9 P $[\partial a(T)/\partial T]$ R (----) (B-13) **J**T V V - b V(V + b) + b(V - b)The derivative of mixture 'a' parameter w.r.t T is : 1/2 (B-14) A 6 -1/2 Differentiating (B-13) and substituting (B-13) and (B-14) in (3.9), we obtain, upon rearrangement : - 10

$$\frac{\partial C}{\partial C} = \frac{A}{Mix} \frac{K(\omega) [\alpha / T T_{C}]}{Mix} \frac{Mix}{Mix} \frac$$

Integrating (B-15) between states 1 and 2 over an isothermal path :

4 1 4

If the state 1 is taken as the ideal gas state :

$$\lim_{V_1 \to \infty} \{ \ln \left[\left(\frac{V_1 - 0.414 \text{ B}}{V_1 - 0.414 \text{ B}} \right) \right] \} = 0 \quad (B-17)$$

$$V_1 \to \infty \quad V_1 + 2.414 \text{ B}$$

Substituting eqn. (B-17) in (B-16) and rearranging, we obtain the following final form of the departure function :

W

С

1 mix r_{mix} mix

B.2.2 Difference Between the Heat Capacities

Differentiating eqn (B-12) w.r.t volume, V,at constant

temperature, we arrive at the following expression

Squaring both sides of eqn. (B-13), then applying it together with eqn. (B-19) to equation (3.10), we arrive at the expression for the function yielding the difference in the specific heats at constant pressure (C_p), and that at constant volume (C_v). Upon rearrangement, we obtain the equation presented in the following :

B.2.3 Heat Capacity Departure at Constant Pressure

Substituting equations (B-18) and (B-20) in equation (3.11), we obtain the following departure function for heat capacity at constant pressure :

APPENDIX C

OUTPUTS OBTAINED FROM THE SIMULATION STUDY : TEST CASE FOR ROTATIONAL EQUIPMENTS THE OUTPUTS FROM THE PENG-ROBINSON EQUATION

C	**************************************		SIMULATION HPEE 5	*** ***		
C	CHESS3 10	• TEST CASE FOR 6 6	ROTATIONAL 0	EQUIPMENTS O	0	
0	4 9 8	46 2 11	3	4	5 6	7
2 N.	7	6 2	4	1		
(-	2 H 3 M	RK READ OMP U-1 YTR U-2 IXR U-3 ALV U-4		- •	0 0 0 0 0 0 0 0	
	5 Al 6 GS 7 PL	DBF U-5 SXP U-6 UMP U-7 PLETE	6 -7 -9 7 -8 (9 -10 (
<u>_</u>	BEGIN EQUIPN					- -
	3 0 0 0 0 0			0 0 0 0 0		
	0	0				
	1.0000 0.00000 0.00000 0.00000 0.00000	28.239 0.00000 0.00000 0.00000	225.00 0.00000 0.00000 0.00000	0.85000 D.00000 0.00000 0.00000	3.0000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000
	2.0000 D.00000 D.00000 D.00000 D.00000 D.00000	28.239 0.00000 0.00000 0.00000	0.60000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000	0.0000 <u>c</u> 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000
	4.0000 0.0000 0.0000 0.0000 0.0000 0.0000	20.414 0.00000 0.00000 0.00000	0.00000 0.0000 0.0000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000	0.00000 00000.0 00000.0 00000.0	0.00000 0000000 0000000 00000000
•	5.0000 0.0000 0.0000 0.0000 0.00000 0.00000	2.0000 0.00000 0.00000 0.00000	0.00000 000000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000	0.00000 0.0000 0.0000 0.0000	0.0000.0 0.0000 0.0000.0 0.0000.0
	00000.0 00000.0 00000.0 00000.0 00000.0	3.2023 C.00000 C.00000 D.00000	0.60000 0.60000 C.50000 C.00000	0.00000 0.00000 0.00000 0.00000	0.0000.0 0.0000.0 0.0000.0 0.0000.0	0.00000 0.00000 0.00000 0.00000
	7.000C CCCCC.C	34.023 J.50000	D.750C0 D.00000	0.00000	0.00000 0.0000	0.00000 0.00000

.....

		· · · · · · · · · · · · · · · · · · ·						1/4	•
	0.0000 0.0000 0.0000 0.0000	5.00000 0.0000	כ	C.DCDCD D.DDDDD	0.00000		0.00000	0.00000	
	EQUIPMENT DAT	A COMPLETE	I						
	BESIN STREAM	EXTENSIVE		READ					
,	~ 2 D	4 D	5 0	6. 0	7 0	8 0	9	10	
	_ C _ 0	0	Э	C	Ō	Э	D D	0 0	
	<u> </u>	0 0	ວ ວ	0 C	0	0 0	0	0	
	C	C	Ð	0	0	0	0	0	
(0	0 0 0 0	0 0	C 0	0	0 0	0	0 0	
	0 0	0	0 0	0	0	0	C	0	
	0	0	D	0	0 0	0	0	0	
	. D	6 0	0	Û	ō	õ	Õ	0	
			U	D					
-	1.0000 1646.8 0.45400	C.00000 420.54		15129. 17.434	9.3070 40.678		67.646 3.7680	12920. 2.7590	
7 5	3.0000 9126.8 1629.4	0.00000 11340.		43296. 1285.7	39.952 4640.3		67.646 1009.7	13069. 1087.8	
	STREAM EXTENS	IVE LIST CO	OMPLE	TE					
	BEGIN STREAM I	NTENSIVE L	IST	READ					
1	2 0	4	5	6	7	9	0.0	0	
	ŏ	0 C	0 0	0	0	0 0	0 0	0 0	
	ב ס	0	0	0	0	0	0	D	
	0	Ō	0	0 G	0 0	0 0	0 0	0 0	
, , ¹	с р	С 0	ר ס	D 0	0 0	0 0	0	o	
	D D D	Ũ	0	D	0	0	0	0 0 0	
1	5	0	0 0	0 0	0	0 0	0 0	0 0	
	C D	C 0	0 0	D	Ō	õ	õ	õ	
		-	5	-					
	1.0000 D.00000	1.0000 0.00000		1.0000 C.00000	241.05 0.00000		13.609	0.00000	
	3.0000 0.00000	1.000C C.00000		0.00000 0.00000	222.07 00000.0		40.827	0.0000	
	0000.8 00003.C	2.0000 0.00000		0.00000 C.00000	0.00000	(0.0000	0.00000	
	1€+000 0.00000 Stream intensin	2.0000 C.00000 Ve list com	1	0.00000 C.00000 E	0.00000 0.00000	(0.0000	0.00000	
2	BESIN CALCULATI 20 D.10000e-03	ION DATA RE 5	C A D						
`	G	0	0	0.	0	0	0	G	
	0 2	C O	3	D	0	0	0	0 0 0	
	0	0	00000	0	0	0 0	0 (1	0 0	
	0	0	C	D	0	D	ò	õ	

0 D 0 0 0 0 C CALCULATION DATA COMPLETE G \cap

Ċ

** DECOMPOSITION OF NET(S) WILL FOLLOW ** PRECURSOR LIST.. 11 C D 21 1 D С $(\cap$ 3 2 5 6 7 D, Ō .**-**... ō Ō ć 9 ** THIS CASE HAS NO RECYCLE STREAM **

~

 \cap

Ç

÷,

~

VAPOR-LIQUID EQUILIBRIUM DATA CODES: LIQUID = 6 VAPOR = 6 ENTHALPY = 0

 \mathbf{C}

 \mathbf{C}

Ċ

. -

 $\langle \bar{} \rangle$

(

Ċ.

(

(

 $\langle _{-}$

VAPOR PHASE MODEL : PENG-RODINSON EQN. Liquid phase moodel :peng-rodinson eqn. Enthalpy correction : for both phases. 177

مريفات فسيستم فيوديونه راما الالان والار

CHESS3 ... TEST CASE FOR ROTATIONAL EQUIPMENTS

.

..

 \cap

C

(

<u>(</u>`.

"PROCESS VECTORS"

~		EQUIPMENT .			STREAM	NUMB	ERS
Ĩ.,	NUMBER	SUBROUTINE	NAME				
<i>_</i>	1	COMP	U-1	1	-2	0	
\bigcirc	2	HYTR	U-2	3	-4	0	
	3	MIXR	U-3	2	4	-5	
	4	VALV	U-4	5	-6	Ō	
- - -	5	ADB F	U-5	6	-7	-9	
	5	GSXP	U-6	7	8	0	
C	7	PUMP	U-7	9	-10	0	

178

·- · · · ·

CHESS3 ... TEST CASE FOR RUTATIONAL EQUIPMENTS

.

 $(\)$

C

C

C

2

C

Ç.

 C_{2}

:

1

~

STREAM CONNECTIONS

STREAM	EQUII From	PMENT:
1	0	1
3	0	2
5	3	4
0 7 8	5 6	5
9	5	07
10	n na series Series	0

.

المداد السراب استعادته ويهجه مورا يهم الم

.....

CHESS3 ... TEST CASE FOR ROTATIONAL EQUIPMENTS "OTHER SYSTEM VARIABLES" NUMBER OF COMPONENTS COMPONENT NUMBERS USED 49, 46, 2, 3, 4, 5, 6, 7, 8, 11, TOLERANCE, "DERROR" MAX. LOOPS IN RECYCLE CALC. 20

د. الدينية، والمحادة الم ويوسم ميرده وم

 $\langle \cdot \rangle$

C

ί.

<u>(</u>].

180

.

INPUT DATA" .0 CHESS3 ... TEST CASE FOR ROTATIONAL EQUIPMENTS C STREAM NUMBER 1 2 3 4 \cap EQUIP CONXION 0 TO 1 1 TO 3 FR FR FR 0 TO 2 FR 2 TO 3 FR VAPOR FRACTION 1.0000 0.0000 0.0000 0.0000 TEMPERATURE, F -25.7978 0.0000 -59.9618 C.0000 .مر PRESSURE, PSIA 199.9979 0.0000 599.9934 C.0000 ENTHALPY, K.BTU 179.4818 0.0000 533.8254 0.0000 1 COMPOSITION, LB-MOLES/UNIT TIME CDZ 0.02052 0.00000 0.08808 0.00000 . . . NITROSEN 0.14913 0.00000 0.14913 0.00000 METHANE 28.48314 0.00000 28.81215 0.00000 ETHANE 3.63050 0.00000 20.12111 0.00000 PROPANE 0.92711 0.00000 25.00037 0.00000 I-BUTANE 0.03843 C.00000 2.83448 0.00000 N-BUTANE 0.08963 0.00000 10.23009 0.00000 I-PENTANE 0.00831 0.00000 2.22600 0.00000 N-PENTANE 0.00610 0.00000 2.39818 0.00000 N-HEPTANE 0.00100 0.00000 3.59221 0.00000 ------TOTAL 33.35390 0.00000 95.45181 0.00000 ------STREAM NUMBER 5 6 . 7. 8 EQUIP CONXION 4 TO 5 FR 3 TO 4 FR FR 5 TO 6 FR 6 TO Ω FR VAPOR FRACTION 0.0000 0.0000 0.0000 0.0000 TEMPERATURE, F 0.0000 0.0000 0.0000 0.0000 PRESSURE, PSIA 0.0000 0.0000 0.0000 0.0000 ENTHALPY, K.BTU 0.0000 0.0000 0.0000 C.0000 COMPOSITION, LB-MOLES/UNIT TIME C 0 2 0.00000 0.00000 0.00000 0.00000 NITROSEN 0.00000 0.00000 0.00000 0.00000 METHANE 0.00000 0.00000 0.00000 0.00000 ETHANE 0.00000 0.00000 0.00000 0.00000 PROPANE 0.00000 0.00000 0.00000 0.00000 I-BUTANE 0.00000 0.00000 0.00000 0.000000 N-BUTANE 0.00000 0.00000 0.00000 00000.0 I-PENTANE 0.00000 0.00000 0.00000 0.00000 N-PENTANE 0.00000 0.00000 0.00000 00000.3 N-HEPTANE 0.00000 C.00000 0.00000 0.00000 -------TOTAL 0.00000 0.00000 0.00000 0.00000

181

. . .

-

STREAM NUMBER 9 10 (EQUIP CONXION FR 5 TO 7 FR 7 10 Ö FR 0.0000 VAPOR FRACTION 0.0000 TEMPERATURE, F 0.0000 0.0000 \cap PRESSURE, PSIA 0.0000 0.0000 ENTHALPY, K.BTU 0.0000 0.0000 \mathbf{C} COMPOSITION, LB-MOLES/UNIT TIME C 0 2 0.0000 0.00000 $\hat{\boldsymbol{\boldsymbol{\cdot}}}$ NITROGEN 0.00000 0.00000 METHANE 0.00000 0.00000 ETHANE. 0.00000 0.00000 PROPANE 0.00000 0.00000 I-BUTANE 0.0000 0.00000 N-BUTANE 0.00000 0.00000 I-PENTANE 0.00000 0.00000 N-PENTANE 0.00000 0.00000 N-HEPTANE 0.0000.00 0.00000 --------TOTAL 0.00000 0.00000

الاحتجاب والتوم بتعادي تعديه ومحمدين والمرمومي ماداته

Ĉ

 $\langle \cdot \rangle$

 \cap

<u>,</u>

. .

.../

1

ر

C FOLLOWING TABLES TRACE THE CHANGES IN THE THERMODYNAMIC PROPERTIES. C THE STREAM CONDITIONS AT THE OUTLET OF EACH EQUIPMENT NODE ARE TABULATED IN CASES OF TWO-PHASE CONDITIONS, THE SECOND \bigcirc PHASE CONDITIONS ARE REPORTED SOME UNCALCULATED VALUES ARE REPORTED AS ZERO UNITS ARE : GM.MOLE CALORIES OK ATM CC ID = STANDARD COMPONENT IDENTIFICATION # OF CHESS X, Y = LIQUID AND VAPOR COMPOSITIONS FUG, GAMA= FUGACITY AND ACTIVITY COEFFICIENTS K = EQUILIBRIUM RATIOS VP= VAPOR PRESSURES VIA ANTOINE EQN. VZ= COMP. FACTOR FOR COMPONENTS M.VOL= MOLAL VOLUMES \bigcirc ********* STREAM NUMBER 2 ************ TEMPERATURE : 225.000 PRESSURE : 28.2390 VAPOR FRACTION : 1.0000 X Y FUG GAMA ID K VP VZ M.VOL 47 0.00000 0.00062 0.00000 0.00000 0.00000 8.6173 0.0000 84.3288 0.00000 0.00447 0.00000 0.00000 0.00000 277.3489 45 0.0000 42.4503 0.85397 0.00000 0.00000 0.00000 87.2802 C.10885 0.00000 0.00000 0.00000 5.8066 0.62780 0.00000 0.00000 0.00000 0.7580 2 0.00000 0.0000 46.1448 0.00000 3 G.000p 130.3393 0.00000 4 0.0000 168.7855 5 00000. 0.00115 0.00000 0.00000 0.00000 0.1844 0.0000 209.0497 0.00000 -5 0.00259 0.00000 0.00000 0.00000 D.1041 0.0000 204.5101 0.00000 D.60025 D.00000 D.60000 D.00000 0.0124 0.0000 241.3936 0.00000 0.00018 0.00000 0.00000 0.00000 8 0.0305 0.0000 242.1529 11 0.00000 0.00003 0.00000 0.00000 0.00000 0.0003 0.0000 318.4167 TOTAL MOLAR FLOWRATE : TOTAL MOLAR FLOWRATE : 15129.00000 ENTHALPY : VAPOR -8- LIQUID 2797.5112000 0.0000000 ENTHALPY DEPARTURE :VAPOR -6- LIQUID -104.41481 ENTROPY DEPARTURE :VAPOR -5- LIQUID -0.6116470 6.00000 -6.9270887 VAP/LIG/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 0.783710 ********** STREAM NUMBER 4 ************** TEMPERATURE : 221.565 PRESSURE : 28.2390 VAPOR FRACTION : 0.0000

ID X Y FUG GAMA K VP VZ M.VOL

 49
 C.C0092
 0.C0000
 C.D0C00
 0.00000
 7.1817
 0.C000
 83.9549

 46
 C.00156
 0.C0000
 0.C0000
 0.00000
 267.3669
 0.C000
 42.4435

 2
 C.30185
 C.C0000
 0.00000
 0.00000
 82.5111
 0.0000
 46.1219

 3
 C.21080
 0.C0000
 0.00000
 0.00000
 5.2313
 C.CC00
 129.7704

 4
 C.26192
 C.C0000
 C.00000
 0.00000
 0.00000
 0.6593
 0.0000
 168.0628

 5
 C.02970
 0.00000
 0.00000
 0.00000
 0.1564
 C.0000
 2C5.206

 \cap 0.6593 0.0000 168.0628 0.1564 0.0000 200 0.0873 0.0000 C.10718 0.00000 0.00000 0.00000 0.00000 0.0873 6 203.6839 C.02332 0.00000 0.00000 0.00000 0.00000 0.0100 0.0000 240.4371 7 8 C.32512 C.CO000 C.D0003 0.33000 3.30000 11 C.03763 0.00000 0.00000 0.00000 0.00000 0.0248 0.0000 241.1901 0.0002 0.0000 317.1748 TOTAL MOLAR FLOWRATE : 43296.00000 ENTHALPY : VAPOR -&- LIQUID 0.0000000 3083.8850000 ENTHALPY DEPARTURE :VAPOR -&- LIQUID 0.000000 -534.65258 ENTROPY DEPARTURE :VAPOR -&- LIQUID -7.6318169 -7.6318169 VAP/LIQ/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 0.101947 (********* STREAM NUMBER 5 0 *** ******** TEMPERATURE : 225.320 PRESSURE : 28.2390 VAPOR FRACTION : 0.1611 ID X Y FUG GAMA K VP VZ M.VOL 49 0.00086 0.00071 0.75842 0.67738 0.89314 8.7881 0.0000 41.5669

 46
 C.D0114
 0.01326
 0.9884512.4916412.63754
 278.4453
 C.0000
 42.5319

 2
 0.34074
 C.90844
 0.85926
 2.48076
 2.88708
 87.8097
 D.0000
 45.3917

 3
 0.21956
 0.06264
 0.64957
 0.20069
 D.30896
 5.8698
 D.0000
 64.9616

 4
 C.23967
 C.01328
 0.51296
 0.023077
 D.05999
 D.7694
 D.0000
 179.8276

 5
 D.02656
 C.G0048
 0.42433
 D.00822
 D.01938
 D.1877
 D.0000
 222.4325

 C 6 C.09539 O.00107 O.40640 O.00495 D.01218 O.1061 0.0000 217.5286 r 0.02065 C.00007 D.33451 O.00122 D.00364 D.0127 C.02222 D.CC005 D.31908 D.00078 D.00246 D.0311 7 0.0000 256.4563 B C.02222 D.CCDC5 D.31908 D.00078 D.D0246 D.0311 11 C.03321 C.00000 D.19627 D.CCCC2 D.00012 D.0003 0.0000 257.3115 0.0000 337.9641 TOTAL MOLAR FLOWRATE : 58425.00000 ENTHALPY : VAPOR -8- LIQUID 2646.2861000 3079.4807000 ENTHALPY DEPARTURE :VAPOR -8- LIQUID -533.40551 -533.40551 ENTROPY DEPARTURE :VAPOR -8- LIQUID -7.4981556 -7.4981556 VAP/LIG/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 0.099084 ******************************** STREAM NUMBER 6 ********** TEMPERATURE : 222.526 PRESSURE : 20.4140 VAPOR FRACTION : 0.2498 ID X Y FUG GAMA K VP VZ M.VOL.

 49
 C.00112
 C.00108
 C.21526
 O.8671C
 1.06280
 7.3906
 C.0000
 84.3696

 45
 C.00050
 O.00841
 C.9863218.2434118.45900
 268.9143
 O.0000
 42.4510

 2
 C.26228
 C.89879
 O.89294
 3.36363
 3.76692
 83.2442
 C.0000C
 46.1472

 3
 C.24569
 C.07590
 D.72799
 O.24777
 O.34035
 5.3177
 O.0000
 13C.4C12

 4
 C.26820
 O.C1423
 O.61232
 O.03580
 D.05847
 O.6740
 O.0000
 13C.4C12

 5
 C.02972
 C.00047
 O.53264
 O.00926
 D.01739
 O.1650
 0.0000
 209.1425

 5
 C.10675
 C.00102
 O.51626
 D.01054
 D.08977
 O.0000
 204.6022

 7
 D.62311
 C.00006
 O.44748
 O.00129
 D.02289
 D.0103
 0.0000
 241.4980

 8
 C.02487
 O.00004
 O.43229
 O.00082
 0.00189
 D.2256
 C.00002
 24.2577

 11
 C.03717
 O.00000
 C.30324
 O.0000 \cap C (C TOTAL MOLAR FLOWRATE TOTAL MOLAR FLOWRATE : 58425.00000 ENTHALPY : VAPOR -8- LIQUID 2645.2377000 3131.1689000 ENTHALPY DEPARTURE : VAPOR -8- LIQUID -551.38623 -551.38623 C ENTROPY DEPARTURE : VAPOR -8- LIQUID -8.2840776 -8.2840776 VAP/LIQ/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 0.074068 ************************** STREAM NUMBER 7 ******** TEMPERATURE : 222.526 PRESSURE : 20.4140 VAPOR FRACTION : 1.0000 ID X Y FUG GAMA K VP VZ M•VOL

 47
 0.00000
 0.00108
 0.00000
 0.00000
 7.3906
 0.00000
 84.0132

 46
 0.00000
 0.00841
 0.00000
 0.00000
 0.00000
 268.9143
 0.00000
 42.4446

 2
 0.00000
 0.69879
 0.00000
 0.00000
 0.00000
 83.2442
 0.0000
 45.1256

 3
 0.00000
 0.00000
 0.00000
 0.00000
 5.3177
 0.0000
 129.8591

 4
 0.00000
 0.00000
 0.00000
 0.00000
 0.6740
 0.00000
 169.1925

 5
 0.00000
 0.00000
 0.00000
 0.00000
 0.00000
 0.00000
 208.3322

 5
 0.00000
 0.00000
 0.00000
 0.00000
 0.0897
 0.00000
 203.8126

 7
 0.00000
 0.00000
 0.00000
 0.00000
 0.0256
 0.00000
 240.5863

 3
 0.00000
 0.00000
 0.00000
 0.00000
 0.00000
 240.5863

 3
 0.00000
 0.00000
 0.00000
 0.00000
 0.00000
 240.5863

 3
 0.00000
 0. TOTAL MOLAR FLOWRATE : 14595.64000 ENTHALPY : VAPOR -8- LIQUID 2645.2392000 3131.1672000 ENTHALPY DEPARTURE :VAPOR -5- LIQUID -551.38623 -551.38623 ENTROPY DEPARTURE :VAPOR -8- LIQUID -8.2840700 -8.2840700 VAP/LIG/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 0.074068 ***** STREAM NUMBER 9 *********** TEMPERATURE : 222.526 PRESSURE : 20.4140 VAPOR FRACTION : 0.0000 ID X Y FUG GAMA K VP VZ M.VOL

 49
 0.00112
 0.00000
 0.00000
 0.00000
 7.3906
 0.0000
 64.0132

 46
 0.00000
 0.00000
 0.00000
 0.00000
 2.88.9143
 0.0000
 42.4446

 2
 0.26288
 0.00000
 0.00000
 0.00000
 0.00000
 83.2442
 0.0000
 46.1256

	3	C . 2	4569	0.00	0000	0.0000	0.0000	0 0.0000	0 5.3177	0.0000	129.85
	4	C+20	6820 2972		0000	0.00000	0.0000	0.0000	0 0.6740 0 0.1606	C.COOO	
	5		0675		0000	0.00000		0.0000	0 0.1606	0.0000	
-	7		2311	0.00	0000	0.00000		0 0.0000	D 0.0897 D 0.0103	0.0000 C.COOD	
	3		2487	0.00		0.000000			0 0.0256	0.0000	
	11		3717	0.00	000	0.0000	0.0000	0 0.0000	D D.0002	0.000.0	
Ċ										0.000	J / • J
\cap	FNTH.		AR 1	FLOWRA	TE::	I TOUTS	43828.3	5500	00		
	ENTH	ALPY	DEP	A FUR	-0- •v	LIGUIU	- 1 10011	4 2 • 2 3 7 2 UI	-551.38623	1.1672000	51.38623
	ENTRO	DPY	DEP	RTURE	:v	APOR -8	- LIQUIC		-8.2840700		284070
\bigcirc			ND F	HASE	MIX.	COMPRE	SSIBILI	Γγ FACTO	R : 0.0740	68	
C											
	****1	****	*****	****	****	******	******	r ★ ★			
<u> </u>			STR	EAM	NUMB	ER 8					
	*****	****	****	*****	****	******	******	***			
(
(TEMP	PERAT	URE	: 129	.863	PRESSU	RE: 3.	2023 V	POR FRACTI	DN : 1.0000)
Ċ				=====	= = = =						
	ID		X		Y		GAMA	K K	C VP	٧Z	M . V
· ·	49	r. 00	000	0.00	==== 1 n s	========	0.00000		7.3906	0.0000	
	45	0.00	000	0.00	841	0.000000	0.00000		268.9143	0.0000	84.01
	2	0.00	000	C.89	878	0.00000	0.00000	0.00000	83.2442	0.0000	46.12
		0.00						0.0000		0.0000	
		0.00		0.014	423 1	0.00000	0.00000	0.00000	0:6740	0.0000	
- •.								0.0000		0.0000	
		0.00		0.00	102 (0.00000	0.00000	0.0000	0.0897 0.0103	0.0000	203.81
	7	0.00	000	0.000	006 (0.00000	0.00000	0.0000	0.0103	0.0000	
÷ .		0.00	000	0.000	004 (0.00000	0.0000	0.0000	0.0256	0.0000	
·	11	C.00	000	6.000	000 0	0.00000	0.0000	0.00000	50000	0.0000	317.36
	TOTAL	MOL	AR F	LOWRAT	E :		14596.64	000			
	ENTHA	LPY	: V	APOR -	-8- L	IQUID	213	5.980700	0 0		
		LPT	DEPA	RTURE	:	APOR -3	- LIQUID		-24.28484		0.00000
-	ENTRO	71 I 10/21	UEPA	KIUKE Mase M	: V/ . 7 v	COMPOSI	- LIQUID		-0.2058045 : 0.91123	-8.	2840700
	TAPIL	14/21		HAJE P	11.4.0	CUMPRES	STRIFTI	TPACIUR	: 0.91123	U.	
	*****	** * * 1	****	* * * * * *	****	******	*******	**			
						R 10					
	*****	****	****	*****	****	******	******	* *			
	TEMP	ERATI	URE :	222.	093	PRESSUR	E : 34-1	0230 VA	POR FRACTIO	N + 0-000	
							·				
-											
	ID		 X			FUG	GAMA	: K	VP	**************************************	
		0.001						0.00000		0.0000	84.013
		<u>. nor</u>	050	0.000	00 0	.00000	0.00000	0.00000	268.9143		42.44
						22202	0.0000	0 00000	83.2442	0.0000	46.125
	45 0	2.262							03 • 2 4 4 2		
	45 (2 (3 (2.262	69	0.000	0 00	.00000	0.00000	0.00000	5.3177	0.0000	129.859
	45 (2 (3 (4 (2.262 2.245 .268	69 20	0.000	0 CC 0 CC	.00000 .00000	0.00000	0.00000 0.00000	5.3177 0.6740	0.000	129.859
	46 (2 (3 (4 (5 (2.262	69 20 72	0.000 0.000 0.000	0 00 0 00 0 00	00000 00000 00000	0.00000	0.00000 0.00000 0.00000	5.3177	0.0000	129.859 168.192 208.333 203.812

7 C.C2311 D.CC000 D.D0000 D.D0000 D.D0000 0.0103 0.0000 240.5863 ۰. B C.02487 D.CCDDO D.DDOOD D.CDOOC D.DDOOD D.0256 11 C.03717 C.CCDDO C.22000 D.CDOOD D.DDOOC D.DDOOC D.DDOOC C.CODC 241.34C4 D.CODO 317.3684 *************** r . TOTAL MOLAR FLOWRATE : 43828.35500 ENTHALPY : VAPOR -8- LIGUID 0.0000000 3146.61660 ENTHALPY DEPARTURE :VAPOR -8- LIGUID 0.00000 ENTROPY DEPARTURE :VAPOR -5- LIGUID -7.3126326 3146.6166000 \cap -529.57519 -7.3126326 VAP/LIG/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 0.123004

*** SUBSET LOOP COMPLETE ***

 \sim

, . .

(

N¹

C

~

<u>_</u>

Ś

187

<i></i>	FINAL RESULTS				
	CHESS3 TEST	CASE FOR BOT	ATTONAL FOUTOM	F 11 m -	
$\langle \rangle$		CASE FOR RUI	ATIONAL EQUIPM	ENTS	
	STREAM NUMBER	1	2	3	4
$\widehat{}$	EQUIP CONXION	FR D TO 1	FR 1 TO 3		· · · · · · · ·
	VAPOR FRACTION	1.0000	FR 1 TO 3 1.0000	FR 0 T0 2 0.0000	FR 2 TO 3 FR 0.0000
<i>.</i> ~.	TEMPERATURE, F	-25.7978	-54.6879	-59.9615	-60.8703
	PRESSURE, PSIA	199.9979	415.0000	599.9934	415.0002
	ENTHALPY, K.BTU	179.4818	167.8440	533.8254	529.5044
** .			COMPOSITION, L	B-MOLES/UNIT T	IME
			· · · · · · · ·		
	CO2 NITROGEN	0.02052	0.02052	0.08808	0.03808
	METHANE	0.14913 28.48314	D.14913 28.48314	0.14913	0.14913
-	ETHANE	3.63050	3.63050	28.81215 20.12111	28.81215 20.12111
Ċ	PROPANE	0.92711	0.92711	25.00037	25.00037
	I-BUTANE	0.03843	0.03843	2.83448	2.83448
\sim	N-BUTANE	D.08968	C.08968	10.23009	10.23009
١.	I-PENTANE N-PENTANE	0.00831	0.00831	2.22600	2.22600
	N-HEPTANE	0.00610 0.00100	0.00610 0.00100	2.39818 3.59221	2.39818
(***		0.00100	0.00100	3.34221	3+59221
. ~.	TOTAL	33.35393	77 75700		
		576666	33.35390	95.45181	95.45181
C					
` • ·					
(
	STREAM NUMBER	5	6	7	8
	EQUIP CONXION	FR 3 TO 4	FR 4 TO 5	FR 5 TO 6	FR 6 TO D FR
	VAPOR FRACTION	0.1611	0.2498	1.0000	1.0000
	TEMPERATURE, F	-54.1116	-59.1410	-59.1410	-225.9336
	PRESSURE, PSIA ENTHALPY, K.BTU	415.0000 697.3484	300.0042 697.3481	300.0042	47.0610
		07103464	07/03451	153.1234	123.8179
		c	OMPOSITION, LB	-MOLES/UNIT TI	ME
	C D Z	0.10860	0.10860	0.03844	0.779//
	NITROGEN	0.29826	0.29826	0.29826	D.J3844 D.29826
	METHANE	57.29530	57.29530	31.88199	31.88199
	ETHANE	23.75160	23.75160	2.69223	2.69223
1. 2	PROPANE	25.92747	25.92747	0.50487	0.50487
	I-BUTANE N-BUTANE	2.87291	2.87291	0.01664	0.01664
2	I-PENTANE	10.31976 2.23431	10.31976 2.23431	0.03624 0.03215	0.03624
-	N-PENTANE	2.40429	2.40429	0.00151	0.00215 0.00151
	N-HEPTANE	3.59321	3.59321	0.00009	0.00009
	*****				·
	TOTAL	128.80571	125.80571	32.18024	32.18024

بالمتعاصف فالمتعاد المراجع

~					
	STREAM NUMBER	9	10		
\cdot	EQUIP CONXION	FR 5 TO 7	FR 7 TO D		
	VAPOR FRACTION	0.000			
	TEMPERATURE, F		0.0000		
\cap	PRESSURE, PSIA	-59.1410	-59.9213		
	ENTURION - DTH	300.0042	500.0017		
	ENTHALPY, K.BTU	544.2334	546.9187		
\sim			COMPOSITION,		
				LD HOLESTUNI	I IIME
~	C 0 Z	0.10860	0.10860		•
	NITROGEN	0.04852	0.04852		
	METHANE	25.41331	25.41331		
	ETHANE	23.75160	23.75160		
- (î.	PROPANE	25.92746	25.92746		
	I-BUTANE	2.87291			
	N-BUTANE	10.31974	2.87291		
(I-PENTANE		10.31974		
` .	N-PENTANE	2.23431	2.23431		
		2.40429	2.40429		
C	N-HEPTANE	3.59320	3.59320		
Υ.	TOTAL	96.62546	04 435/4		
	10142	/0.02340	96.62546		

-

ζ.,

(

 $\langle \cdot \rangle$

Ċ

~

189

.

190

```
CHESS3 ... TEST CASE FOR ROTATIONAL EQUIPMENTS
```

SUMMAPY OF ENERGY REQUIREMENTS:

 \sim

C

.

```
-----
  ----
. - . .
  UNIT NUMBER = 1
  COMPRESSOR
λ, Î
  NUMBER OF STAGES =
                  1
  COMPRESSION RATIO PER STAGE = 2.075
BREAK HORSEPOWER = 10.611
STAGE DISCHARGE TEMP. DEG F HEAT EXCH.DUTY: K-BTU
C
   1
                57.6
                                34.694
  -----
                                      ------
C
  UNIT NUMBER =
              2
```

```
RECOVERABLE HORSEPOWER = 11.514
```

-

```
UNIT NUMBER = 7
Pump
Break Horsepower = 4.220
```

THE OUTPUTS FROM THE CHAO-SEADER : SRK MODEL

		CHESS FLOW SHE Version June 1	THREE)N *** ***		
$\widehat{}$	CHESSI 10	••• TEST CASE F	OR ROTATIONA 3 D	L EQUIPMENTS	0	
)	49 8	46 11	2 (State 3)	5 50 4 5	5 6	7
\mathbf{C}	7	6	2 alter of 14 p	na an 1 7 an 11		
1	BESIN NET 1 2	WORK READ COMP U-1 NYTR U-2	12 1 - −2	0 0 0	DD	
(*	2 3 4 5	MIXR U-3 VALV U-4 ADBF U-5	3 -4 2 4 5 -6 6 -7	0 0 0 -5 0 0 0 0 0 -9 0 0		
Ċ	5 7 Network Co	GSXP U-6 PUNP U-7 DMPLETE	7 -8 9 -10	-9 0 0 0 0 0 3 0 0	D 0 D D D D	
C.	BESIN EQU	IPMENT DATA REAL				
C	0 0 0	0	0 0 0 0 0 0	0 0 0 0	0 0 0 0 0 0	0 0 0 0
1	0 0 0	0 0 0	0 0	0 0	0 C 0 C	0 0
C C	1.0000 0.00000 0.00000 0.00000 0.00000	D.00000 0.00000 0.00000	225.00 0.00000 0.00000 0.00000	0.85000 0.00000 0.00000 0.00000	3.0000 0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000
r r	2.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	28.239 D.00000 O.00000 D.00000 D.00000	0.60000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000
	4.0000 0.0000 0.0000 0.0000 0.0000 0.0000	20.414 0.00000 0.00000 0.00000	0.0000 0.0000 0.0000 0.0000 0.0000	0.00000 0.00000 0.0000 0.0000	0.00000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000 0.00000
	5.3000 0.00000 0.00000 0.00000 0.00000	2.0000 0.00000 0.00000 G.00000	0.00000 0.0000 0.0000 0.0000 0.0000	0.0000 0.00000 0.00000 0.00000	0.00000 0.00000 0.00000 0.00000	D.00000 0.00000 0.00000 D.00000
- -	00000 000000 000000 00000 00000 000000	3.2023 0.00000 C.00000 0.00000	D.62000 C.00000 O.00000 D.00000	0.00000 0.00000 0.00000 0.00000	0.0000 0.0000 0.0000 0.0000 0.0000	0.00000 0.00000 0.00000 0.00000
	7.0000 0.00000_	34.023 C.00000	0.75000	0.00000	000000.0 	0.00000 0.00000

•

٠

.....

.

•

.

192

```
VAPOR-LIQUID EQUILIBRIUM DATA CODES:
LIQUID = 4
VAPOR = 3
ENTHALPY = 0
```

.

ي يديد يحد ال

- -

.

 $\widehat{\mathbf{C}}$

 \mathcal{C}

(^.

 \mathbf{C}

 $\left(\cdot \right)$

Ĉ

¢,

· . _ ·

LIQUID PHASE MODEL : CHAO-SEADER EQN. VAPOR PHASE MODEL : SOAVE-REDLICH-KWONG EQN. ENTHALPY CORRECTION : FOR BOTH PHASES.

ي يەھىرىيە مەر

يرهد بالمشترين معاصر والمعالم الم

· · · ·	
	n 1917 - Andrea Standard, ann an Anna an Anna Anna anna a
÷.,	FOLLOWING TABLES TRACE THE CHANGES IN THE THERMODYNAMIC PROPERTIES.
Ć	THE STREAM CONDITIONS AT THE OUTLET OF EACH EQUIPMENT NODE ARE TABULATED
	IN CASES OF TWO-PHASE CONDITIONS, THE SECOND
с. С	PHASE CONDITIONS ARE REPORTED
C	
	SOME UNCALCULATED VALUES ARE REPORTED AS ZERO
•	ID = STANDARD COMPONENT IDENTIFICATION # OF CHESS X, Y = LIQUID AND VAPOR COMPOSITIONS
-	FUG, GAMA= FUGACITY AND ACTIVITY COEFFICIENTS K = Equilibrium ratios
$\hat{\mathbf{C}}$	VP= VAPOR PRESSURES VIA ANTOINE EQN. VZ= CCMP. FACTOR FOR COMPONENTS
	M.VOL= MOLAL VOLUMES
,	
r	
¥.,	
Ċ	**************************************
_	************
	TEMPERATURE : 225.000 PRESSURE : 28.2390 VAPOR FRACTION : 1.0000
•	
	ID X Y FUG GAMA K VP VZ M.VOL
· ·	47 C.00000 D.00062 D.00000 D.00000 D.00000 8.6173 C.0000 84.3288
C	46 0.00000 0.00447 0.00000 0.00000 0.00000 277.3489 0.0000 42.4503 2 C.00000 0.85397 0.00000 0.00000 0.00000 87.2802 0.0000 46.1448
ŗ	3 9.50000 0.10885 0.00000 0.00000 0.00000 5.8046 0.0000 130.3393 4 0.00000 0.02780 0.00000 0.00000 0.00000 0.7580 0.0000 168.7855
	5 C.DDOCC 0.DD115 0.00000 0.00000 0.00000 0.1844 C.DDOC 209.0497 5 0.DDDCO 0.DD269 C.DDDDD 0.DDCDD 0.00000 0.1041 0.0000 204.5101
	7 C.00000 D.0C025 D.00C00 D.00000 D.00000 D.0124 C.0000 241.3936
	8 0.00000 0.00018 C.00000 0.00000 0.00000 0.0305 0.0000 242.1529 11 0.00000 0.00003 0.000000 0.00000 0.00000 0.00003 0.0000 318.4167
(.	TOTAL MOLAR FLOWRATE : 15129.00000
	ENTHALPY : VAPOR -8- LIQUID 2759.0117000 0.000000
	ENTHALPY DEPARTURE :VAPOR -8- LIQUID -142.91447 0.00000 ENTROPY DEPARTURE <td:vapor< td=""> -8- LIQUID -0.4578047 -9.5337563</td:vapor<>
,	VAP/LIG/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 0.803780
,	

															19
1. N. 4. Š	···· .	•			- -									-	. ,
			· ·					e en la Area Area Area de La Area de	- 1997 - 1997	ala di salat Nationalia					
ID			x			(FUG		GAMA		K	VP	v2		-
47	. C	. 000)9 Z	0.0	00000	0.0	00000	0.0	0000	0.0000	00	7.1817	0.000		?
46	0	301	05	0.0	00000) 0.3	00000	0.0	0000	0.0000)D 8	57.3669 52.5111	0.0000	46.1219	
5	0	261	92	0.0	0000	0.0	00000	0.0	0000	0.0000	D:	5.2313 D.6593			
5 5			18							0.0000 D.0000		0.1564			
7 5	0. D.	023	32	0.0	0000			0.0	0000 0000	0.0000	0	0.0100	0.0000	240.4371	
11			63							0.0000		0.0002	0.0000		
TOT	A 1	101.4			ATE	•		4329	4 00	300					
ENT	HALF	γ	: V	POR	-8-	LIG	UID			0.0000.0	-		5.7353000		
ENT	ROPI	D	EPA	RTUR	E :	VAPO	R -8	- L1	aŭid		-0.4	• COODO • 578047	-9	03.47820 .5900469	
VAP	/[14	172N	0 19	4 A S E	. MIX	• 00	MPRE	2218	ILIT	Y FACTO	R :	0.80378	80		
***	* * * *	***	****	***	****	****	****	****	****	• •					
***	* * * *	***	STR		NUM	BER	5	****							
•••															
	1768	A 1 U	RE :	. 23	2.01	2	2330	KE I	20 • 6	2390 V	APUR	FRACIIO	IN : 0.145	5	
		= = =	= = = =		= = = =	== = = =					****		============		
								====						M.VOL =========	
47		015	64	0.0	1454	0.9	9726	1.00	0000	1.0027	4 30	3.0815	0.0000		
46		7 / 7										9.2507		45.3917 64.9615	
2	0.		۵۵				7301		476	J. 55/8.	/	7.3593	0_0077		
234	C. C.	212 231	83	6.0	1564	0.5	6464	0.04	109	0.0727	7	7.3593	0.0000	179.8576	
2 3 4 5 5	0. 0. 0. 0.	212 231 025 092	83 69 27	0.0° 0.00	1564 0067 0154	0.5 0.4 0.4	6464 7894 6068	0.04	109 349 830	D.D727 D.D281 D.J1802	7 7 2	1.0413 0.2679 0.1555	0.0000 0.0000 0.0000	179.8576 222.4323 217.5286	
2 3 4 5 6 7 8		212 231 025 092 092 019 021	83 69 27 98 50	0.0° 0.00 0.00 0.00	1564 0067 0154 0013 0010	0.5 0.4 0.4 0.3 0.3	6464 7894 6068 8888 7304	0.04 0.01 0.00 0.00	109 349 830 268 179	D.D727 D.D281 D.D180 D.C0690 D.D0480	7 7 2 0 0	1.0413 0.2679 0.1555 0.0202 0.0484	0.000 0.000 0.000 0.000 0.000 0.000	179.8676 222.4323 217.5286 256.4563 257.3115	
234567B		212 231 025 092 092 019 021	83 69 27 98 50	0.0° 0.00 0.00 0.00	1564 0067 0154 0013 0010	0.5 0.4 0.4 0.3 0.3	6464 7894 6068 8888 7304	0.04 0.01 0.00 0.00	109 349 830 268 179	0.0727 0.0281 0.0180 0.00690	7 7 2 0 0	1.0413 0.2679 0.1555	0.000 0.000 0.000 0.000 0.000 0.000	179.8676 222.4323 217.5286 256.4563	
2 3 4 5 5 7 8 11	0. 0. 0. 0. 0. 0.	212 231 025 092 019 021 032	83 69 27 98 50 13 R FL	G • O' O • O(D • O(O • O(D • O(D • O(C • O(O • R)	1564 0067 0154 0013 0010 0001	0.5 0.4 0.4 0.3 0.3 0.2	6464 7894 6068 3888 7304 4465 	0.04 0.01 0.00 0.00 0.00	109 349 830 268 179 012	0.0727 0.0281 0.0180 0.00690 0.00480 0.00480	7 2 0 1 0 0 0 0	1.0413 0.2679 0.1555 0.3232 0.0484 0.0036	0.000 0.000 0.000 0.000 0.000 0.000 0.000	179.8676 222.4323 217.5286 256.4563 257.3115	
2 3 4 5 7 8 11 TOT/ ENTH	0. 0. 0. 0. 0. 0. 0.	212 231 025 092 019 021 032	83 69 27 98 50 13 R FL XA	G • 0° D • 00 D • 00	1564 0067 0154 0013 0010 0001	0.5 0.4 0.4 0.3 0.3 0.2	6464 7894 6068 8888 7304 4465 	0.04 0.01 0.00 0.00 0.00	109 349 830 268 179 012 	0.0727 0.0281 0.0180 0.00690 0.00480 0.00480 0.00050 0.00050		1.0413 0.2679 0.1555 0.0202 0.0484 0.0005	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	179.8576 222.4323 217.5286 255.4563 257.3115 337.9641	
2 3 5 5 7 8 11 TOT/ ENTH ENTH	0. 0. 0. 0. 0. 0. 0. 0. 0.	212 231 025 092 019 021 032 01A Y Y D	839 278 503 FLAR EPAR	G - D' D - D(D - C(D - C(D - C(D - C(D - C(POR TURE TURE	1564 0067 0154 0013 0010 0001 ATE : -8- E :\ E :\	0.5 0.4 0.4 0.3 0.3 0.2 LIQI VAPOI	6464 7894 6068 8888 7304 4465 4465 UIC R -8-	0.04 0.01 0.00 0.00 0.00 0.00 58425 - L19	109 349 830 268 179 012 •000 2679 UID	D.D727 0.D281 0.D180 0.C0699 0.D0480 0.D0480 0.0055 		1.0413 0.2679 0.1555 0.0202 0.0484 0.0006 1512 .07259 598736	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	179.8676 222.4323 217.5286 256.4563 257.3115	
2 3 4 5 6 7 8 11 TOT/ ENTH ENTH ENTH	0. 0. 0. 0. 0. 0. 0. 0. 0.	212 231 025 092 019 021 032 014 Y Y D	839 278 503 FLAR EPAR	G - D' D - D(D - C(D - C(D - C(D - C(D - C(POR TURE TURE	1564 0067 0154 0013 0010 0001 ATE : -8- E :\ E :\	0.5 0.4 0.4 0.3 0.3 0.2 LIQI VAPOI	6464 7894 6068 8888 7304 4465 4465 UIC R -8-	0.04 0.01 0.00 0.00 0.00 0.00 58425 - L19	109 349 830 268 179 012 •000 2679 UID	D.D727 0.D281 0.D180 0.C0699 0.D0480 0.D0480 0.0055 		1.0413 0.2679 0.1555 0.0202 0.0484 0.0005	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	179.8576 222.4323 217.5286 255.4563 257.3115 337.9641	
2 3 4 5 6 7 8 11 TOT/ ENTH ENTH ENTH	0. 0. 0. 0. 0. 0. 0. 0. 0.	212 231 025 092 019 021 032 014 Y Y D	839 278 503 FLAR EPAR	G - D' D - D(D - C(D - C(D - C(D - C(D - C(POR TURE TURE	1564 0067 0154 0013 0010 0001 ATE : -8- E :\ E :\	0.5 0.4 0.4 0.3 0.3 0.2 LIQI VAPOI	6464 7894 6068 8888 7304 4465 4465 UIC R -8-	0.04 0.01 0.00 0.00 0.00 0.00 58425 - L19	109 349 830 268 179 012 •000 2679 UID	D.D727 0.D281 0.D180 0.C0699 0.D0480 0.D0480 0.0055 		1.0413 0.2679 0.1555 0.0202 0.0484 0.0006 1512 .07259 598736	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	179.8576 222.4323 217.5286 255.4563 257.3115 337.9641	
234567811 567811 TONTHEENTE	C. C. C. C. C. C. C. C. C. C. C. C. C. C	212 231 025 092 019 021 019 021 9 7 9 7 0 14 7 7 0 14 7 7 0	839278802788003 FLAR EPAR EPAR	G • 0° D • 00 D • 00	1564 0067 0154 0013 0010 0001 ATE : -8- E :\ E :\ MIX.	D.5 D.4 D.4 D.3 D.3 D.2 LIQI VAPOI	6464 7894 60888 7304 4 10 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 8 9 8 8 9 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8	0.04 0.01 0.00 0.00 0.00 0.00 58425 - L19	109 349 830 268 179 012 .000 2679 UID UID LITY	D.D727 D.D281 D.D1802 D.D0480 D.D0480 D.D0480 D.D050 .293700 FACTOF		1.0413 0.2679 0.1555 0.0202 0.0484 0.0006 1512 .07259 598736	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	179.8576 222.4323 217.5286 255.4563 257.3115 337.9641	
2 3 4 5 5 7 8 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C. C. C. C. C. C. C. C. C. C. C. C. C. C	212 231 025 092 019 021 021 019 021 019 021 019 021 019 021 019 021 019 021 019 021 019 021 021 021 021 025	8399513 FLAR EPAR EPAR FTRE	G - D' D - D(D - G(D - G)))))))))))))))))))))))))))))))))))	1564 0067 0154 0013 0010 0001 ATE : -8 - E :\ MIX.	D.5 D.4 D.4 D.3 D.3 D.2 LIQ VAPOI CC	6464 7894 8888 8304 10 8 8 9 8 9 8 9 8 9 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 8 9 8 9 8 9 4 9 4	0.04 0.01 0.00 0.00 0.00 0.00 58425 - L19 58425	109 349 830 268 179 012 .000 2679 UID UID LITY	D.D727 D.D281 D.D1802 D.D0480 D.D0480 D.D0480 D.D050 .293700 FACTOF		1.0413 0.2679 0.1555 0.0202 0.0484 0.0006 1512 .07259 598736	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	179.8576 222.4323 217.5286 255.4563 257.3115 337.9641	
2 3 4 5 5 7 8 11 TOT/ ENTH ENTH ENTH ENTH ENTH	C. C. C. C. C. C. C. C. C. C. C. C. C. C	212 231 025 092 019 021 014 7 7 0 21 0 21 0 21 0 21 0 21 0 25 0 25 0 25	8399 6278 513 FLAR EPAR FLAR FLAR FLAR FLAR FLAR FLAR FLAR FL	G • 0' D • 00 D	1564 0067 0154 0013 0010 0001 KTE : -8- E :\ MIX.	D.5 D.4 D.4 D.3 D.3 D.2 LIQ VAPOI . CC	6464 7894 6888 8304 4 10 8 8 9 8 9 8 8 9 8 8 9 8 8 8 8 8 8 8 8	0.04 0.01 0.00 0.00 0.00 0.00 58425 - L19 551E1	109 349 830 268 179 012 .000 2679 UID UID LITY	D.D727 D.D281 D.D1803 D.C0690 D.D0480 D.D053 D.D055 C.293700 FACTOF	7 7 10 10 10 10 10 10 10 10 10 10 10 10 10	1.0413 0.2679 0.1555 0.0202 0.0484 0.0005 1512 .07259 598736 0.87984	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	179.8676 222.4328 217.5286 256.4563 257.3115 337.9641	

•

196

																•		•	- 1				
												n de sta Normalia	n is No			•							
																Ng -						· . ·	1
- 1997		===:	====	====	===		===:	===;	813	==:	====	====	===	====	===	===	====	===	===				**=**
		45	Ο.	0095	38	0.00	2864	.0.	995	94	1.0	000	0 1	.00	408	2	97.	818	6	0.		42	.6814 .4655
	,	3	- C •	2397	8	0.88	1934	. 0.	768	63	0.3	180	0 1	241	513		7.	101	n	0 /	0000	4 4	• 1944 • 9413
	С	5	C.	2017	0	0.00	074	0	589	12	0.0	168	1 0	.D79 .D28	949 557		0.	992 253	8 3	C.(0000	170	•4525 •0644
	<u> </u>		1/ .			1				"	11 - 11		× n					n 4 0	7	0.0			•4701 •6625
	\mathbf{C}	8 11	0. 0.	0242 0362	7 7	0.00	01001	0.	492	55 59	0.0 0.0	021 001	9 D. 4 D.	.004 .000	44		0.	045	2	C•0 D•0	0000	244	• 4359
	<u> </u>	TOTA	L M	DLAR	FL	OWRA	TE	:			842	5.0	0000)									
	_ 1	ENTH	ALP	Y DE	PAR	TURE	:	VAP	OR -	- 8 -	LI	QUI	D			-6	4.9	823	>	2783(1.48	25.0
	5. C	ENTR	OPY	DE	PAR	TURE ASE	:	VAP	OR -	- 6 -	LI	QUI	2			-0-	180	943	र			5454	
															U.N.	•							
		***	****	***	*** TRE	****	*** NUM	***	****	**	***	* * * *	**										
(Ç. *	***	****	د * * * *	***	****	***	***	7 * * * *	**	***1	****	: * * *,										
·		TEM	PERA	TUR	E :	230	.92	6 P	RESS	UR	E :	20.	414	0	VÁP	OR	FR	IT J	ON	: 1.	0000		
(0																						
,		ID		,	X		Y		FU	G	6	5 A M A			ĸ			VP			V 7	=====	VAL
Ĺ	. =	===: 47	_C• 0	0000) (0.000	D42	0.0	0000	C	0.00	0000	0.	000	00	1	2.2	829			====:)0)	===== 39.	====
(0	46 2	_J.D	0000	וכ	0.008 0.880	864	0.0	0000	0 (0.00	0000	0.	000	00	29	7.8	184			000	42.	4632
		3	C • D	0000	2 (0+089 0+018	734	0.0	0000	DC	0.00	000	• D • 3	200	00		7.1	010		0.00	000	61.	7572
(.	5 5	C.0	0000) (0.000	74	0.0	1000	ЭC	0.00	000	0.1	000	00		0.Z	533		0.00	000	170.	7541
C		7	0.0	0000) (.000	113	0.0	000	0 0	.00	000	0.1	0000	סכ		0.0	464 187		0.00 0.00	000	206. 243.	3131
C.		5 11	0.0	0000		000.000	010	0.0	0000	0 C 0 C	0.00 0.00	000	D.1		00 00			452 006		0.00		244.	
Ç																							
	EI	NTHA	LPY	:	VAF)⊌RAT POR -	- 8 -	LIQ	UID			269	7.75	5780	000			136	4.2	77800	n		
	E E	NTHA NTRO	LPY PY	DEP	ART	URE	: V : V	APO	R -8	4 - 2 -	LIQ	UID				-64	.98	260 440		-	2411	• 486	
	V /	AP/L	10/2	2ND	PHA	SEM	IX.	C 0	MPRE	SS	IEI	LIT	Y FA	CTC	R	: (.9	124	98		-1.1	4343:	
Ĺ																							
r			***1		REA		UMB	-	**** Q	* * *	* * * '	* * * 1	* *										
	**	***				* * * *																	
	T	'E₩P	ERAT	URE	:	230.	926	PR	ESSU	RE	: 2	20.4	140	V	APC)R P	RA(110)N :	0.0	000		
	I	D		X			Y		FUG		67	AMA			ĸ			VP			V 7		V 01
	== 4	=== 7	==== C. 00		= = = N	• 6001	===:	===:	====	= = :	====		===	===	z = =			:===		====	====	=====	===
	4	5	0.00	958	0	.0000	00 (D.û(0000	0	.000	000	0.0	202	0	297	.81	29 84		D.00	00	39.5	632
		د .	L•2!	150	U	.000	10 :	1.00	1000	0.	. 200	20	ŋ•0	וחחר	D	97	• 34	58		0.00		45.1	

197

 3
 C.23978
 0.00000
 D.00000
 D.00000
 D.00000
 7.1010
 C.00000
 61.7572

 4
 C.26175
 G.00000
 0.00000
 D.00000
 D.9927
 C.00000
 170.1958

 5
 C.02900
 G.00000
 D.00000
 D.00000
 D.2533
 D.0000
 210.7541

 6
 C.10418
 G.60000
 G.00000
 D.00000
 D.1464
 D.0000
 206.1620

 7
 O.02256
 G.60000
 C.00000
 D.00000
 D.0187
 D.00000
 243.3131

 3
 C.02427
 O.00000
 D.00000
 D.0452
 D.00000
 244.0842

 11
 C.03627
 O.00000
 D.00000
 D.00000
 D.00000
 320.9087

 TOTAL MOLAR FLOWRATE :
 44499.83500

 ENTHALPY :
 VAPOR -8- LIQUID
 2697.7578000
 1364.2778000
 ENTHALPY DEPARTURE : VAPOR -8- LIQUID -64.98260 -2411.48683 ENTROPY DEPARTURE : VAPOR -8- LIQUID -0.1899440 -7.5454383 ENTROPY VAP/LIG/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 0.912498 \bigcirc ********************************* STREAM NUMBER 8 *********** TEMPERATURE : 136.466 PRESSURE : 3.2023 VAPOR FRACTION : 1.0000 ID X Y FUG GAMA K VP VZ M.VOL

 49
 0.00000
 0.00000
 0.00000
 0.00000
 12.2829
 0.0000
 39.5681

 46
 0.00000
 0.00864
 0.00000
 0.00000
 297.8184
 0.0000
 42.4632

 2
 0.00000
 0.88026
 0.00000
 0.00000
 97.3458
 0.0000
 46.1572

 3
 0.00000
 0.00000
 0.00000
 0.00000
 7.1010
 0.0000
 61.7572

 4
 0.00000
 0.00000
 0.00000
 0.00000
 0.00000
 1.00000
 61.7572

 4
 0.00000
 0.00000
 0.00000
 0.00000
 0.00000
 1.00000
 1.00000
 61.7572

 5
 0.00000
 0.00000
 0.00000
 0.00000
 0.00000
 1.00000
 1.00000
 1.00000
 1.00000
 1.00000
 1.00000
 1.00000
 1.00000
 1.00000
 2.00000
 2.00000
 2.00000
 2.00000
 2.00000
 2.00000
 2.00000
 2.00000
 2.00000
 2.00000
 2.00000
 2.00000
 2.00000
 2.00000
 2.00000
 2.00000
 2.00000
 2.00000
 2.00000
 2.00000
 2.00000

 TOTAL MOLAR FLOWRATE :
 13925.16000

 ENTHALPY :
 VAPOR -8- LIQUID
 2186.3720000
 0.000000

 ENTHALPY DEPARTURE :
 VAPOR -8- LIQUID
 -35.85309
 0.00000

 ENTROPY DEPARTURE :
 VAPOR -8- LIQUID
 -0.1619433
 -7.5454328

 VAP/LIQ/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 0.922442 ********* STREAM NUMBER 10 ************ TEMPERATURE : 209.600 PRESSURE : 34.0230 VAPOR FRACTION : 0.0000 ID X Y FUG GAMA K VP VZ M.VOL

 49
 0.00110
 0.00000
 0.00000
 0.00000
 12.2829
 0.0000
 39.5681

 45
 0.00958
 0.00000
 0.00000
 0.00000
 297.8184
 0.0000
 42.4632

 2
 0.27150
 0.00000
 0.00000
 97.3458
 0.0000
 46.1872

 3
 0.23978
 0.00000
 0.00000
 97.3458
 0.0000
 61.7572

 4
 0.26175
 0.00000
 0.00000
 0.00000
 0.9927
 0.0000
 170.1955

 5
 0.92900
 0.00000
 0.00000
 0.00000
 0.2533
 0.00000
 210.7575

 6
 0.10418
 0.00000
 0.00000
 0.00000
 0.00000
 0.1464
 0.0000
 206.1680

 7
 0.02256
 C.00000
 0.00000
 0.00000
 0.0187
 0.0000
 243.3129

 3
 C.02427
 C.00000
 0.00000
 0.00000
 0.0452
 0.0000
 244.0842

 11
 C.03627
 C.00000
 D.00000
 0.00000
 0.00000
 0.00000
 0.00000
 320.9087

 TOTAL MOLAR FLOWRATE :
 44499.83500

 ENTHALPY : VAPOR -8- LIQUID
 0.000000
 1377.9199000

 ENTHALPY : VAPOR -8- LIQUID
 0.000000
 1377.9199000

 ENTHALPY DEPARTURE :VAPOR -8- LIQUID
 0.000000
 1377.9199000

 ENTROPY DEPARTURE :VAPOR -8- LIQUID
 0.000000
 -2114.98820

 VAP/LI3/2ND PHASE MIX. COMPRESSIBILITY FACTOR :
 0.922442

*** SUBSET LOOP COMPLETE ***

.

.....

 $\langle \cdot \rangle$

Ç

Ċ.

Ċ

Ç

.

÷.,

.

FINAL RESULTS

CHESS3 ... TEST CASE FOR ROTATIONAL EQUIPMENTS STREAM NUMBER 1 2 3 4 EQUIP CONXION FR D TO 1 FR 1 TO 3 FR D TO 2 2 TO 3 FR FR VAPOR FRACTION 1.0000 0.000 1.0000 0.0000 TENPERATURE, F -25.7978 -54.6879 -59.9618 -62.1620 199.9979 PRESSURE, PSIA 415.0000 599.9934 415.0002 ENTHALPY, K.BTU 178.7560 228.5163 165.5341 224.1954 \bigcirc COMPOSITION, LB-MOLES/UNIT TIME CDZ 0.02052 0.02052 0.08808 0.08508 NITROGEN 0.14913 0.14913 0.14913 0.14913 METHANE 28.48314 28.48314 28.81215 28.81215 ETHANE. 3.63050 3.63050 20.12111 23.12111 PROPANE 0.92711 0.92711 25.00037 25.00037 I-BUTANE 0.03843 0.03843 2.83448 2.83448 N-BUTANE 0.08968 0.08968 10.23009 10.23009 $(\cap$ I-PENTANE 0.00831 0.00831 2.22600 2.22600 N-PENTANE 0.00610 0.00610 2.39818 2.39818 N-HEPTANE 0.00100 0.00100 3.59221 3.59221 \bigcirc ------TOTAL 33.35390 33.35390 95.45181 95.45181 -------Ç 1 STREAM NUMBER 5 7 6 ő. EQUIP CONXION FR 3 TO FR 4 TO 5 5 TO 6 TO 4 FR 0 FR - 6 FR VAPOR FRACTION 0.1453 0.2383 1.0000 1.0000 TEMPERATURE, F -42.0668 -44.0215 -44.0215 -214.0486 PRESSURE, PSIA 415.0000 300.0042 300.0042 47.0610 ENTHALPY, K.BTU 389.7292 389.7292 148.9796 120.7391 COMPOSITION, LB-MOLES/UNIT TIME C 0 2 0.10860 0.10860 0.01456 0.01456 NITROGEN 0.29826 0.29826 0.29826 0.29826 METHANE 57.29533 57.29530 30.40161 30.40161 ETHANE 23.75160 23.75160 3.08541 3.08541 1.1 PROPANE 25.92747 25.92747 0.64495 0.64495 I-BUTANE 2.87291 2.87291 0.02568 0.02568 N-BUTANE 10.31976 10.31976 0.05830 0.05830 I-PENTANE 1.1 2.23431 2.23431 0.00452 0.00452 N-PENTANE 2.40429 2.40429 0.00334 0.00334 N-HEPTANE 3.59321 3.59321 0.00044 0.00044 -------TOTAL 128.80571 128.80571 30.67987 30.69987 ----

STREAM NUMBER 9 10 C EQUIP CONXION 5 TO 7 0.0000 FR FR 7 TO 0 FR VAPOR FRACTION 0.0000 TEMPERATURE, F -44.0215 -82.4079 $\overline{}$ PRESSURE, PSIA ENTHALPY, K.BTU 300.0042 500.0017 240.7603 243.1678 \cap COMPOSITION, LE-MOLES/UNIT TIME C D 2 0.10860 0.10860 . ~ NITROGEN 0.94928 0.94928 METHANE 26.89369 26.89369 ETHANE 23.75160 23.75160 Ç PROPANE 25.92746 25.92746 I-BUTANE 2.87291 2.87291 N-BUTANE 10.31974 10.31974 Ċ I-PENTANE 2.23431 2.23431 2.40429 N-PENTANE 2.40429 N-HEPTANE 3.59321 3.59321 Ċ ----

98.10583

98.10583

TOTAL

 \bigcirc

С

 \bigcirc

 \bigcirc

C

C

11

Ċ.

 \mathbb{C}

7

. .

and an experimental of the second second

CHESS3 ... TEST CASE FOR ROTATIONAL EQUIPMENTS \cap SUMMARY OF ENERGY REQUIREMENTS: 100 . \sim UNIT NUMBER = 1 COMPRESSOR NUMBER OF STAGES = 1 COMPRESSION RATIO PER STAGE = 2.075 BREAK HORSEPOWER = 10.421 STAGE DISCHARGE TEMP. , DEG F HEAT EXCH.DUTY: K-BTU BREAK HORSEPOWER = \bigcirc 1 40.6 30.826 ----------------------C ********* -----UNIT NUMBER = 2 C' HYDRAULIC TURBINE RECOVERABLE HORSEPOWER = 1.698 ------------C UNIT NUMBER = 6 GAS EXPANDER RECOVERABLE HORSEPOWER = 11.096 C: UNIT NUMBER = 7 PUMP BREAK HORSEPOWER = 3.784 ÷.

1

(...

· ,

۰*ـ*ـ

~~~

THE OUTPUTS

FROM THE C

CHAO-SEADER : RK MODEL

|   | ~            | han an tha an             | CHESS FLOW SH<br>VERSION<br>JUNE                                   | T        | HREE                                             | • • • • • • • • • • • • • • • • • • •    |                                                    |                                               |
|---|--------------|---------------------------------------------------------------|--------------------------------------------------------------------|----------|--------------------------------------------------|------------------------------------------|----------------------------------------------------|-----------------------------------------------|
|   |              | CHESS3 .<br>10                                                | •• TEST CASE                                                       | FOR<br>2 | ROTATIONAL E                                     | QUIPMENTS<br>D                           | 0                                                  |                                               |
|   | · · ·        | 4 9<br>8                                                      | 46<br>11                                                           | 2        | 3                                                | 4                                        | 5 6                                                | 7                                             |
|   |              | 7                                                             | 6                                                                  | 2        | 4                                                | 1                                        |                                                    |                                               |
|   | $\sim$       | 1<br>2                                                        | ORK READ<br>COMP U-1<br>HYTR U-2                                   |          | 1 -2 0<br>3 -4 0                                 | 0 0                                      | 0 D<br>0 D                                         |                                               |
|   |              | 4<br>5<br>6<br>7                                              | MIXR U-3<br>VALV U-4<br>ADBF U-5<br>GSXP U-6<br>PUMP U-7<br>MPLETE |          | 2 4 -5<br>5 -6 0<br>6 -7 -9<br>7 -8 0<br>9 -10 0 | 0 0<br>0 0<br>0 0<br>0 0                 | 0 0<br>0 0<br>0 0<br>0 0<br>0 0                    |                                               |
|   | C            | BEGIN EQUI                                                    |                                                                    | AD       |                                                  |                                          |                                                    |                                               |
|   | Ç            | 3<br>0<br>0                                                   | C<br>0<br>0                                                        | 0000     |                                                  | 0<br>0<br>0<br>0                         | 0 0<br>0 0<br>0 0<br>0 0                           | 0<br>0<br>0                                   |
|   | Ċ            | 000                                                           | 0<br>0<br>0                                                        | 0<br>0   | 0<br>0                                           | 0<br>0                                   | 0 0<br>0 0                                         | 0                                             |
|   |              | 1.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000            | 28.239<br>0.00000<br>0.00000<br>0.00000                            |          | 225.00<br>0.00000<br>0.00000<br>0.00000          | 0.85000<br>0.0000<br>0.00000<br>0.00000  | 3.0000<br>0.00000<br>0.00000<br>0.00000            | 0 • 0 0 0 0 0<br>0 • 0 0 0 0 0<br>0 • 0 0 0 0 |
|   | $\mathbf{C}$ | 2.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000 | 28.239<br>0.00000<br>C.00000<br>0.00000                            |          | D.60000<br>O.00000<br>C.00000<br>D.00000         | 0.00000<br>0.00000<br>0.00000<br>0.00000 | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000     | 0.00000<br>0.00000<br>0.00000<br>0.00000      |
| - | C<br>C       | 4.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000      | 20.414<br>C.00000<br>O.00000<br>O.00000                            |          | 0.00000<br>0.00000<br>0.00000<br>C.00000         | 0.00000<br>0.00000<br>0.00000<br>0.00000 | 0.00000<br>0.0000<br>0.0000<br>0.0000<br>0.0000    | 0.00000<br>0.00000<br>0.00000<br>0.00000      |
|   |              | 5.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000            | 2.0000<br>0.00000<br>0.00000                                       |          | 0.00000<br>0.0000<br>0.0000<br>0.0000<br>0.0000  | D.D0000<br>D.D0000<br>D.D0000<br>D.D0000 | 0.00000<br>0.00000<br>0.0000<br>0.0000<br>0.0000   | 00000.0<br>00000.0<br>00000.0<br>00000.0      |
|   | · · · · ·    | 0000.0<br>00000.0<br>00000.0<br>00000.0<br>00000.0            | 3.2023<br>6.00000<br>6.00000<br>0.00000                            |          | 0.60000<br>0.00000<br>0.00000<br>0.00000         | 0.00000<br>0.00000<br>0.00000<br>0.00000 | C.CODCO<br>C.ODCO<br>O.CODCO<br>C.ODCOO<br>C.OCCOO | 0.00000<br>0.00000<br>0.00000<br>0.00000      |
|   | Name I       | 000 <b>1.7</b><br>00003.0                                     | 34.023<br>6.00000                                                  |          | 0.75000<br>0.00000                               | 0.00000<br>D.00000                       | 0.00000<br>0.00000                                 | 0.000000                                      |

المتراكر المع

يوتواده ومراد المكافو والتاريب

- Line -

.....

. . . .

203 · · -·

```
VAPOR-LIQUID EQUILIBRIUM DATA CODES:

LIQUID = 4

VAPOR = 2

ENTHALPY = 0

LIQUID PHASE MODEL : CHAO-SEADER EQN.

VAPOR PHASE MODEL : REDLICH-KWONG EQN.

ENTHALPY CORRECTION : FOR BOTH PHASES.
```

· . ~ .

5

 $C^{+}$ 

 $\odot$ 

 $\bigcirc$ 

Ċ

1

: .

 $\gamma_{\rm e}$  /

1

\_\_\_\_\_

-

204

.

. . . . . .

FOLLOWING TABLES TRACE THE CHANGES IN THE THERMODYNAMIC PROPERTIES. THE STREAM CONDITIONS AT THE OUTLET OF EACH EQUIPMENT NODE ARE TABULATED IN CASES OF TWO-PHASE CONDITIONS, THE SECOND  $\sim$ PHASE CONDITIONS ARE REPORTED SOME UNCALCULATED VALUES ARE REPORTED AS ZERO UNITS ARE :GM.MOLE CALORIES OK ATH CC.  $\bigcirc$ ID = STANDARD COMPONENT IDENTIFICATION # OF CHESS X. Y = LIQUID AND VAPOR COMPOSITIONS FUS, GAMA= FUGACITY AND ACTIVITY COEFFICIENTS K = EQUILIBRIUM RATIOS VP= VAPOR PRESSURES VIA ANTOINE EQN. VZ= COMP. FACTOR FOR COMPONENTS M.VOL= MOLAL VOLUMES C  $\sim$ \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* STREAM NUMBER 2 TEMPERATURE : 225.000 PRESSURE : 28.2390 VAPOR FRACTION : 1.0000 ID X Y FUG GAMA K VP V7 M-VOL 
 49
 C.00000
 0.00062
 0.00000
 0.00000
 8.6173

 45
 0.00000
 0.00447
 0.00000
 0.00000
 0.00000
 277.3459
 1.0000 84.3288 1.0000 42.4503 0.00000 0.85397 0.00000 0.00000 0.00000 2 87.2802 1.0000 46.1448 3 0.00000 0.10885 0.00000 0.00000 0.00000 5.8046 1.0000 130.3393 4 C.00000 0.02780 0.00000 0.00000 0.00000 0.7580 1.0000 168.7855 0.00115 0.00000 0.00000 0.00000 5 0.00000 0.1844 1.0000 209.0407 0.00000 0.00259 0.00000 0.00000 0.00000 5 0.1041 204.5101 1.0000 0.00025 0.00000 0.00000 0.00000 0.00000 0.0124 241.3936 1.0000 0.00000 0.00018 0.00000 0.00000 0.00000 8 0.0305 1.0000 242.1529 11 0.00000 0.00003 0.00000 0.00000 0.00000 0.0003 1.0000 318.4167 TOTAL MOLAR FLOWRATE : 15129.00000 ENTHALPY : VAPOR -8- LIQUID 2634.0612000 0.0000000 ENTHALPY DEPARTURE :VAPOR -&- LIQUID -267.86499 C ENTROPY DEPARTURE :VAPOR -&- LIQUID -7.4649525 0.00000 -7.4649525 -9.5337563 VAP/LIQ/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 0.804796 \*\*\*\*\*\*\* STREAM NUMBER 4 \*\*\*\*\*\*\*\*\*\*\*\*\* TEMPERATURE : 220.948 PRESSURE 1.29.2390 VAPOR FRACTION : 0.0000

ID X Y FUG GAMA K VP VZ M.VOL 
 49
 C.00092
 0.00000
 0.00000
 0.00000
 7.1817
 1.0000

 45
 C.00156
 C.00000
 C.00000
 C.00000
 267.3669
 1.0000
 83.9549 42.4435 C.30185 0.00000 0.00000 0.00000 0.00000 82.5111 1.0000 46.1219 2 C.21080 0.00000 0.00000 0.00000 0.00000 5.2313 1.0000 129.7704 3 1.0000 9.26192 0.00000 0.00000 0.00000 0.00000 0.6593 168.0828 6 . O 0.02970 0.00000 0.00000 0.00000 0.00000 0.10718 0.00000 0.00000 0.00000 0.00000 5 0.1564 1.0000 208.2006 1.0000 203.6839 0.0873 5 0.02332 0.00000 0.00000 0.00000 0.00000 0.0100 1.0000 240.4371 7  $\cap$ 8 0.02512 0.00000 0.00000 0.00000 0.00000 0.0248 1.0000 241.1901 11 0.03763 0.00000 0.00000 0.00000 0.00000 0.0002 1.0000 317.1748 . Q TOTAL MOLAR FLOWRATE : 43296.00000 ENTHALPY : VAPOR -8- LIQUID 0.0000000 1305.7353000 
 ENTHALPY DEPARTURE
 :VAPOR
 -8 LIQUID
 0.00000
 -2303.47820

 ENTROPY
 DEPARTURE
 :VAPOR
 -8 LIQUID
 -7.4649525
 -9.5900469
 VAP/LIQ/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 0.804796 C  $\cap$ STREAM NUMBER 5 С TEMPERATURE : 230.883 PRESSURE : 28.2390 VAPOR FRACTION : 0.1401 1: \_\_\_\_\_\_  $\mathbf{C}$ ID X Y FUG GAMA K VP VZ M•VOL 49 0.00091 0.00029 0.75953 0.25751 0.33904 12.2525 1.0000 41.5669 C 0.01598 0.01514 0.98254 1.00000 1.01777 297.6702 1.0000 42.5319 45 97.2717 1.0000 46.3917 2 1.0000 D.21101D.06707D.69293D.23665D.341527.09101.000064.9616D.23034C.01480D.56911D.03929D.06903D.99091.0000179.8576C.02552D.00063D.48642D.01283D.02638D.25271.0000222.4325D.09168D.00143D.47060D.00787D.01673D.14611.0000217.5286 3 <u>\_</u>\_\_\_ 6 5 6 r . 1.0000 255.4553 0.01985 0.00012 0.40393 0.00253 0.00626 0.0187 7 1.0000 0.0450 0.0006 0.02136 C.00009 0.39212 0.00168 0.00429 257.3115 8 1.0000 0.03192 6.00001 0.27823 0.00011 0.00041 337.9641 11 ------58425.00000 TOTAL MOLAR FLOWRATE : ENTHALPY : VAPOR -8- LIQUID 2573.9140000 1498.3305000 ENTHALPY DEPARTURE :VAPOR -8- LIQUID -181.65636 -2161.4328G ENTROPY DEPARTURE :VAPOR -8- LIQUID -7.1847075 -6.755312G VAP/LIQ/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 0.876312 STREAM NUMBER 6 TEMPERATURE : 229.836 PRESSURE : 20.4140 VAPOR FRACTION : 0.2343 -------ID X Y FUG GAMA K VP VI M.VOL

|     |               |                                |                        |                                                     |                           |                           |                           |                                        |           |                                      |                 |               |                     |           |              |              |                  |                   |             | 20             |
|-----|---------------|--------------------------------|------------------------|-----------------------------------------------------|---------------------------|---------------------------|---------------------------|----------------------------------------|-----------|--------------------------------------|-----------------|---------------|---------------------|-----------|--------------|--------------|------------------|-------------------|-------------|----------------|
|     |               | 47                             |                        | 0109                                                | ·                         | ====<br>0004              | 0 0.                      | 820                                    | 59 D      | •335                                 | ====<br>61 D    | ====<br>•4 38 | ===<br>99           | ===<br>11 | ====<br>•523 | = = = =<br>5 | = = = =<br>1 • 0 | <br>600           | =====<br>39 |                |
|     | $\widehat{}$  | 2                              | - U • Z                | 1402                                                | . U.                      | 8840                      | 4 0.                      | 914                                    | 56 3      | •000<br>•262                         | 66 3            | - 5 6 8       | 26                  | 95        | .452         | 5            |                  | 000<br>000        |             | .4031          |
|     |               | 4                              | - C • Z                | 6053                                                | 0.                        | 0177                      | 70.                       | 6668                                   | 33 0      | .308                                 | 44 D            | .075          | 65                  |           | •848<br>•945 |              |                  | 000               | 61          | .7497          |
|     | $\widehat{}$  | 5<br>5                         | C • O                  | 2887                                                | ' O.                      | 0007                      | οο.                       | 5956                                   | 57 0      | •016<br>•0098                        | ת זר            | -026          | on                  | 0         | •239<br>•137 | 3            |                  | 200               | 210         | .7415          |
|     |               | 7<br>8                         | C • D.                 | 2245<br>2416                                        | • Q • 1                   | 0001                      | 20.                       | 5213                                   | 52 0      | 0031<br>0023                         | 10 0            | .005          | 94                  | Õ         | .017         | 4            | 1.0              | 000               | 243         | .1562          |
|     | <u> </u>      | 11                             |                        | 3611                                                |                           | 5000                      | 1 0.                      | 3987                                   | 2 0       | 00001                                | 13 0            | .000          | 03<br>33<br>        | -         | 042<br>0000  |              |                  | 000<br>000        |             | .0704<br>.8906 |
|     | $\mathcal{O}$ | TOTA                           | L 401                  |                                                     | FLOW                      | RATE                      | :                         |                                        | 584       | 425.0                                | 0000            | כ             |                     |           |              |              |                  |                   |             |                |
|     | $\sim$        | E 14 I 11                      | ALPY                   |                                                     | <b>a</b> K I I I I I      | KE.                       | VAP                       | 0R -                                   | 8- L      | .IQUI                                | D               |               |                     |           | 13:<br>7581  |              |                  |                   | 6.30        | 150            |
|     | (_ /          | ENTR                           | OPY<br>LIQ/2           | DEPI                                                | AR TUP                    | RE :                      | VAP                       | OR -                                   | 2-1       | TOUT                                 | Ð               |               | - 4                 | 704       | 9097         | )            | -                | -7.               | 5506        | 163            |
|     |               |                                |                        |                                                     |                           |                           |                           |                                        |           |                                      |                 |               |                     |           |              |              |                  |                   |             |                |
|     | $\sim$        | ****                           | *****                  | ***1                                                | ****                      | ****                      | ***                       |                                        |           |                                      | <b></b>         |               |                     |           |              |              |                  |                   |             |                |
|     |               | ****                           |                        | STR                                                 | REAM                      | NUM                       | BER                       | 7                                      |           |                                      | ***             |               |                     |           |              |              |                  |                   |             |                |
| ,   | $\bigcirc$    |                                |                        |                                                     | ****                      | ****                      | ****                      | ****                                   | ****      | ****                                 | ***             |               |                     |           |              |              |                  |                   |             |                |
| ,   |               | TEMF                           | PERAT                  | URE                                                 | : 22                      | 9.83                      | 6 PF                      | RESSI                                  | URE       | : 20                                 | .414            | 0 1           | APO                 | RFR       | ACTI         | 0N :         | 1.0              | 000               |             |                |
| • ( | C             |                                |                        |                                                     |                           |                           |                           |                                        | a stiller |                                      |                 |               |                     |           |              |              |                  |                   |             |                |
|     | <i>C</i> .    | ID                             |                        | <b>.</b>                                            |                           | T                         |                           | F110                                   | <b>.</b>  | - G A M .                            | A               |               | ~                   |           |              |              |                  |                   |             |                |
|     |               |                                | 0.00                   | 000                                                 | 0.0                       | 0040                      | - U • U                   | 1000.                                  | 1 0.      | onooo                                |                 | oooo          | 0                   | 11.       | ちつてら         |              | ====<br>1.00     | == ==<br>N n      |             | =====          |
|     | ~             |                                | 0.00                   | 000                                                 | 0.0                       | 0881                      | 0.0                       | 0000                                   | ) 0.      | 00000                                | ) 0.1           | 0000          | n :                 | 94.       | 0266         |              | 1.00             | 0Ĉ                | 42.         | 4609           |
|     |               |                                | 0.000                  | 000                                                 | 0.00                      | 8649                      | 0.0                       | 0000                                   | 0.0       |                                      | ) ).            | 0000          | ۵                   | 6.1       | 8483         | •            | 1.00<br>1.00     | 20                | 61.         | 1797<br>5596   |
| (   |               | 5                              | C.000                  | 000                                                 | 0.00                      | 070                       | 0.0                       | 0000                                   | 0.1       | 2000                                 | 0.0             | המהכ          | n                   | 0.1       | 9458<br>2393 | •            | • 00             |                   | 169.210.    |                |
|     |               |                                | 0.000                  |                                                     | 0.00                      | 1012                      | n.a                       | 2000                                   | 0.1       | າດດດເ                                | ) n <i>.</i> (r | ות ההר        | n                   | 0.1       | 1377         |              | . 001<br>. 001   | 00                | 205.        | 8043           |
|     |               | B<br>11                        | 0.000                  | 200                                                 | 0.00                      | 0009                      | 0.0                       | 0000                                   | 0.1       | הההרנ                                | 0.0             | nnn           | n                   | 0.0       | 0421         | 1            | .000             | 00                | 243.        | 7303           |
|     |               |                                |                        |                                                     |                           |                           |                           |                                        |           |                                      |                 |               |                     |           | 1005         | ſ            | .000             |                   | 320.        | 4517           |
|     |               | TOTAL<br>ENTHAL                | LPY                    | : VA                                                | POR                       | -8-                       | LIQ                       | UID                                    |           | 262                                  | 4.67            | 1600          | ממ                  |           | 1350         | .627         | 6 D.D.F          | ٩                 |             |                |
|     | E             | ENTHAL                         | PY D                   | EPAR                                                | TURE                      | : V                       | APOP                      | 2 -2                                   | - 11      | QUID                                 |                 |               | -12                 | 9.75      | 826          |              | - 2              | 4 96              | .3010       |                |
|     | 1             | VAP/L]                         | (Q/2N                  | D PH                                                | ASE                       | MIX.                      | C 0 *                     | PRE                                    | SSIE      | ILIT                                 | Y FA            | CTOR          | - <b>0</b> +<br>? : | 0.9       | 0976         | 2            | -                |                   | 5061(       | 5              |
|     |               |                                |                        |                                                     |                           |                           |                           |                                        |           |                                      |                 |               |                     |           |              |              |                  |                   |             |                |
|     |               |                                |                        |                                                     |                           |                           |                           |                                        |           |                                      |                 |               |                     |           | · .          |              |                  |                   |             |                |
|     | 1             |                                |                        |                                                     | ****                      | * * * *                   | * * * *<br>E R            | ****<br>9                              | ****      | ****                                 | * *             |               |                     |           |              |              |                  |                   |             |                |
|     | •             | *****                          | ****                   | STRE                                                | AM                        | NUMB                      |                           |                                        |           |                                      |                 |               |                     |           |              |              |                  |                   |             |                |
|     |               | *****                          | ****                   | * * * *                                             | ****                      | ****                      | ****                      |                                        |           |                                      |                 |               |                     |           |              |              |                  |                   |             |                |
|     |               | *****<br>*****<br>TEMPE        | ****                   | * * * *                                             | ****                      | ****                      | ****                      |                                        |           |                                      |                 | VA            | POR                 | FRA       | CTIO         | N = 1        | 0.00             | 00                |             |                |
|     | =             | TEMPE<br>=====<br>ID           | :R A T U<br>:= = = = : | * * * *<br>R E :<br>= ====<br>X                     | * * * *<br>2 2 9<br>====: | ****<br>•836<br>====      | * * * *<br>PRE<br>= = = = | SSUF                                   | E :       | 20.4                                 | 4140            | ====          | ====                | ===:      | ====         | ====:        | ****             | ====              |             |                |
| ب   | . =           | TE "PE<br>=====<br>ID<br>===== | :R A T U<br>:= = = = : | * * * * *<br>R E :<br>= = = = =<br>X<br>= = = = = = | ****<br>229<br>====:      | ****<br>•836<br>====<br>¥ | * * * *<br>PRE<br>= = = = | S S U F<br>= = = =<br>F U G<br>= = = = | E :       | 20.4<br>=====<br>5.4 <sup>m</sup> .4 | 414C            | ====<br>K     | = = = =             | ===:      |              |              | ****             | ====<br>2<br>==== |             | V O L<br>= = = |

•

|     |                                                                |                                                                                                                                     |                                                                         | 20                                                                                                                            |
|-----|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
|     | 3 C.23806<br>4 C.26053<br>5 C.02887                            | 0.0000 0.00000 0.0000<br>0.0000 0.00000 0.00000                                                                                     | 0+00000 0+9458<br>0+00000 0+2393                                        | 1.0000 61.5596<br>1.0000 169.9375<br>1.0000 210.4419                                                                          |
| -   | 5 0.10370<br>7 0.02245<br>8 0.02416<br>11 0.03611              | 0.0000 0.0000 0.0000<br>0.0000 0.0000 0.0000<br>0.0000 0.0000 0.0000<br>0.0000 0.0000 0.0000                                        | 0.00000 0.0174<br>0.00000 0.0421                                        | 1.0000         205.8643           1.0000         242.9614           1.0000         243.7303           1.0000         320.4519 |
|     | ENTHALPY : V                                                   |                                                                                                                                     | .6716000 1350.6                                                         |                                                                                                                               |
|     | ENTROPY DEPA                                                   | RTURE :VAPOR -&- LIQUID<br>RTURE :VAPOR -&- LIQUID<br>HASE MIX. COMPRESSIBILITY                                                     | -6.3819580                                                              | -2406.30100<br>-7.5506105                                                                                                     |
|     | *********                                                      |                                                                                                                                     |                                                                         |                                                                                                                               |
| κ.  | S T R :                                                        | EAM NUMBER 8                                                                                                                        |                                                                         |                                                                                                                               |
|     | TEMPERATURE                                                    | : 111.8D3 PRESSURE : 3.2                                                                                                            | 2023 VAPOR FRACTION                                                     | : 1.0000                                                                                                                      |
|     | ID X                                                           | Y FUG GAMA                                                                                                                          | K VP                                                                    | VZ M.VOL                                                                                                                      |
|     | 47 C.00000                                                     |                                                                                                                                     |                                                                         | <b>1.000</b> 0 <b>39.4467</b>                                                                                                 |
|     | 46 0.00000<br>2 0.00000<br>3 0.00000<br>4 0.00000              | C.CO881 D.CO000 D.CO000<br>0.88404 D.CO000 D.CO000<br>D.C8649 D.C0000 D.C0000<br>D.C8649 D.C0000 D.C0000<br>D.C1777 D.C0000 0.C0000 | D.00000 294.0266<br>D.00000 95.4527<br>D.00000 6.8483<br>D.00000 0.9458 | 1.0000 42.4609<br>1.0000 46.1797<br>1.0000 61.5597<br>1.0000 169.9375                                                         |
|     | 5 0.00000<br>6 0.00000<br>7 0.00000<br>3 0.00000<br>11 0.00000 | 0.00070 0.0000 0.0000<br>0.00158 0.00000 0.00000<br>0.00012 0.0000 0.00000<br>0.00009 0.00000 0.00000<br>0.00001 0.00000 0.00000    | 0.00000 0.1377<br>0.00000 0.0174<br>0.00000 0.0421                      | 1.0000 210.4419<br>1.0000 205.8643<br>1.0000 242.9614<br>1.0000 243.7307<br>1.0000 320.4519                                   |
| · . | TOTAL MOLAR FL                                                 | LOWRATE : 13718.378<br>APOR -8- LIQUID 1982                                                                                         |                                                                         | 00000                                                                                                                         |
| Ļ   | ENTHALPY DEPAR<br>ENTROPY DEPAR                                | RTURE :VAPOR -B- LIQUID<br>RTURE :VAPOR -B- LIQUID<br>HASE MIX. COMPRESSIBILITY                                                     | -84.81599<br>-2.8055820                                                 | 0.02000<br>-7.5506105                                                                                                         |
| ·.  |                                                                | ******                                                                                                                              | •                                                                       |                                                                                                                               |
|     | STRE                                                           | EAM NUMBER 10                                                                                                                       | • •                                                                     |                                                                                                                               |
|     | TE*PERATURE :                                                  | : 208.433 PRESSURE : 34.0                                                                                                           | 235 VAPOR FRACTION                                                      | : 0.0000                                                                                                                      |
|     | ID X                                                           | Y FUG GAMA                                                                                                                          | K VP                                                                    | VZ M.VOL                                                                                                                      |
|     | 45 C.DD963<br>2 C.27482<br>3 C.23866                           |                                                                                                                                     | 0.00000 294.0266<br>0.00000 95.4527<br>0.00000 6.5483                   | 1.0000 39.4467<br>1.0000 42.4609<br>1.0000 46.1797<br>1.0000 61.5597<br>1.0000 146.9375                                       |
|     |                                                                | 00000.0 00000.0 00000.0<br>00000.0 00000.0 00000.0<br>00000.0 00000.0 00000.0                                                       | 0.00000 0.2393                                                          | 1.0000 169.9375<br>1.0000 210.4419<br>1.0000 205.8643                                                                         |

 7
 C.02245
 C.00000
 D.00000
 D.00000
 D.0174
 1.0000
 242.9614

 8
 C.02416
 C.00000
 D.00000
 D.00000
 D.0421
 1.0000
 243.7307

 11
 D.03611
 D.00000
 D.00000
 D.00005
 1.0000
 320.4519

TOTAL MOLAR FLOWRATE : 44706.61700 ENTHALPY : VAPOR -8- LIGUID 0.00000000 1364.2094000 ENTHALPY DEPARTURE :VAPOR -8- LIGUID 0.00000 -2109.33710 ENTROPY DEPARTURE :VAPOR -8- LIGUID +2.8055820 -9.9385748 VAP/LIG/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 0.855825

\*\*\* SUBSET LOOP COMPLETE \*\*\*

· ~.

Ĉ

Ċ.

(

(

1

١,

ì,

1.1

المحاصية محاصيا بالارار الارار

مسائلا شاما متعاديات

غابا بالشارات

| ~                       | FINAL RESULTS                   |                               |                    |                                       |           |    |
|-------------------------|---------------------------------|-------------------------------|--------------------|---------------------------------------|-----------|----|
|                         |                                 |                               |                    |                                       |           |    |
|                         |                                 |                               |                    | • • • • •                             |           |    |
| $\sim$                  | CHESS3 TEST                     | CASE FOR ROT                  | ATIONAL EQUIPH     | LNTS                                  |           |    |
|                         | STREAM NUMBER                   | 1                             | 2                  | 3                                     | ▲         |    |
|                         | STREAM NUMBER                   | ľ                             | •                  |                                       |           |    |
| $\frown$                | EQUIP CONXION                   | FR D TO 1                     | FR 1 TO 3          | FR D TO 2                             | FR 2 TO 3 | FR |
|                         | VAPOR FRACTION                  | 1.0000                        | 1.0000             | 0.000                                 | 0.0000    |    |
|                         | TEMPERATURE, F                  | -25.7978                      | -54.6879           | -59.9618                              | -62.1620  |    |
| $\cap$                  | PRESSURE, PSIA                  | 199.9979                      | 415.0000           | 599.9934                              | 415.0002  |    |
|                         | ENTHALPY, K.BTU                 | 175.7751                      | 158.0374           | 228.5163                              | 224.1954  |    |
| <i></i>                 |                                 |                               |                    |                                       |           |    |
|                         |                                 |                               | COMPOSITION, L     | B-MOLES/UNIT T                        | ME        |    |
|                         | 60.7 ···                        | 0.00050                       | 0.02052            | 0.02808                               | 0.08808   |    |
| . ~                     |                                 | D.C2052<br>0.14913            | D.14913            | 0.14913                               | 0.14913   |    |
| •                       | NITROGEN<br>Methane             | 28.48314                      | 28.48314           | 28.81215                              | 28.81215  |    |
|                         | ETHANE                          | 3.63050                       | 3.63050            | 20.12111                              | 20.12111  |    |
|                         | PROPANE                         | D.92711                       | 0.92711            | 25.00037                              | 25.00037  |    |
|                         | I-BUTANE                        | 0.03843                       | 0.03843            | 2.83448                               | 2.83448   |    |
|                         | N-BUTANE                        | 0.08968                       | 0.03968            | 10.23009                              | 10.23009  |    |
| <i>.</i>                | I-PENTANE                       | 0.00831                       | 0.00831            | 2.22600                               | 2.22600   |    |
|                         | N-PENTANE                       | 0.00610                       | 0.00610            | 2.39818                               | 2.39818   |    |
|                         | N-HEPTANE                       | 0.00100                       | 0.00100            | 3.59221                               | 3.59221   |    |
|                         |                                 |                               |                    |                                       |           |    |
|                         | ****                            |                               |                    |                                       |           |    |
| ć                       |                                 | 33.35390                      | 33.35390           | 95.45181                              | 95.45181  |    |
| <b>`</b> •              | TOTAL                           | 53655570                      |                    | <pre></pre>                           |           |    |
|                         |                                 |                               |                    |                                       |           |    |
| 0                       |                                 |                               |                    |                                       |           |    |
|                         |                                 |                               |                    |                                       |           |    |
|                         |                                 |                               |                    |                                       |           |    |
| f .                     |                                 |                               | The second states  | _                                     |           |    |
|                         | STREAM NUMBER                   | 1 <b>5</b> S <sub>22</sub> (1 | 0                  | · · · · · · · · · · · · · · · · · · · | 8         |    |
| -                       | TOUTO CONVION                   | FR 3 TO 4                     | FR 4 TO 5          | FR 5 TO 6                             | FR 6 TO D | FR |
|                         | EQUIP CONXION<br>VAPOR FRACTION | 0.1401                        | 0.2348             | 1.0000                                | 1.0000    |    |
|                         | TEMPERATURE . F                 | -44.0921                      | -45.9834           | -45.9834                              | -258.4431 |    |
|                         | PRESSURE, PSIA                  | 415.0000                      | 300.0042           | 300.0042                              | 47.9610   |    |
|                         | ENTHALPY, K.BTU                 | 382.2327                      | 382.2324           | 142.7912                              | 107.8568  |    |
|                         |                                 |                               |                    |                                       |           |    |
|                         |                                 |                               | COMPOSITION, L     | B-MOLES/UNIT TI                       | ME        |    |
|                         |                                 |                               | - 400/0            | 0.01363                               | 0.01363   |    |
| è                       | C02                             | 0.10860                       | C.10860<br>C.29326 | C.29826                               | 0.29820   |    |
|                         | NITROGEN                        | D.29826<br>57.29530           | 57.29530           | 29.94574                              | 29.94574  |    |
|                         | METHANE<br>ETHANE               | 23.75160                      | 23.75160           | 2.92959                               | 2.92959   |    |
| $\langle \cdot \rangle$ | PROPANE                         | 25.92747                      | 25.92747           | 0.60184                               | 0.60184   |    |
| · ·                     | I-BUTANE                        | 2.87291                       | 2.87291            | 0.02372                               | 0.02372   |    |
|                         | N-BUTANE                        | 10.31976                      | 10.31976           | 0.05345                               | 6.05345   |    |
|                         | I-PENTANE                       | 2.23431                       | 2.23431            | 0.00408                               | 0.00405   |    |
|                         | N-PENTANE                       | 2.40429                       | 2.40429            | 0.00298                               | 0.00298   |    |
|                         | N-HEPTANE                       | 3.59321                       | 3.59321            | 0.00037                               | 0.00037   |    |
|                         |                                 |                               |                    |                                       |           |    |
|                         |                                 |                               |                    |                                       |           |    |
|                         |                                 |                               |                    |                                       |           |    |
|                         | TOTAL                           | 128,80571                     | 128-80571          | 30.24399                              | 30.24399  |    |
|                         | TOTAL                           | 128.80571                     | 128.80571          | 30.24399                              | 30.24399  |    |

210

-

211

|        | STREAM NUMBER   | 9         | 10             |                                            |
|--------|-----------------|-----------|----------------|--------------------------------------------|
| ~      | EQUIP CONXION   | FR 5 TO 7 | FR 7 TO D      | FR: 100 100 100 100 100 100 100 100 100 10 |
|        | VAPOR FRACTION  | 0.0000    | 0.0000         |                                            |
|        | TEMPERATURE, F  | -45.9834  | -84.5091       |                                            |
|        | PRESSURE, PSIA  | 300.0042  | 500.0017       |                                            |
|        | ENTHALPY, K.BTU | 239.4590  | 241.8670       |                                            |
|        |                 |           | COMPOSITION, L | B-MOLES/UNIT TIME                          |
|        | C02             | 0.10860   | 0.10860        |                                            |
|        | NITROGEN        | 0.95798   | 0.95798        |                                            |
|        | METHANE         | 27.34956  | 27.34956       |                                            |
|        | ETHANE          | 23.75160  |                |                                            |
|        | PROPANE         | 25.92746  | 23.75160       |                                            |
|        | I-BUTANE        | 2.87291   | 25.92746       |                                            |
|        | N-BUTANE        | 10.31975  | 2.87291        |                                            |
|        | I-PENTANE       | 2.23431   | 10.31975       |                                            |
|        | N-PENTANE       | 2.40429   | 2.23431        |                                            |
|        | N-HEFTANE       | 3.59320   | 2.40429        |                                            |
| λ,     |                 | 3.34320   | 3.59320        |                                            |
|        |                 |           |                |                                            |
| •<br>• | TOTAL           | 98.56171  | Q8 54171       |                                            |

.

Ć

. . 98.56171

212

. . . . . . . . . . . .

```
CHESS3 ... TEST CASE FOR ROTATIONAL EQUIPMENTS
\cap
  SUMMARY OF ENERGY REQUIREMENTS:
\cap
  1
  \langle \hat{} \rangle
  UNIT NUMBER = 1
 COMPRESSOR
C NUMBER OF STAGES = 1
  COMPRESSION RATIO PER STAGE = 2.075
BREAK HORSEPOWER = 10.909
STAGE DISCHARGE TEMP., DEG F HEAT EXCH.DUTY: K-BTU
  1
             85.5
                             48.079
                -----
  ----
                              -----
  UNIT NUMBER =
           2
  HYDRAULIC TURBINE
  RECOVERABLE HORSEPOWER =
                   1.698
  S ------
             C UNIT NUMBER = GAS EXPANDER
           6
  RECOVERABLE HORSEPOWER = 13.726
  0 -----
 UNIT NUMBER = 7
 PUMP
  BREAK HORSEPOWER = 3.785
  -------
                         _____
```

### THE OUTPUTS FROM THE IDEAL MODELS

|                |                    |                            |               |             |                         |                            |                  |             | · .         |              |                               |
|----------------|--------------------|----------------------------|---------------|-------------|-------------------------|----------------------------|------------------|-------------|-------------|--------------|-------------------------------|
|                |                    |                            |               |             |                         |                            |                  |             |             |              | 2                             |
|                |                    |                            |               |             |                         |                            |                  |             |             |              | 2                             |
|                |                    |                            |               |             |                         |                            |                  |             |             |              |                               |
| ~              | *** ***            | CHESS FLOW                 | SHEET         | SI          | MULATIO                 | רא <b>ה</b>                |                  |             |             |              |                               |
|                |                    | VERSI                      | ON T<br>E 193 | HREI        |                         |                            |                  |             |             |              |                               |
|                | CHESS 3<br>10      | ••• TEST CASE              | E FOR<br>D    | ROI         | TATIONA<br>2            | LEQ                        | UIPMEN<br>D      | TS          | 0           |              |                               |
| · · · · ·      | 4 9<br>8           | 46                         | 2             |             | 3                       |                            | 4                |             | 5           | 6            | 7                             |
|                | 7                  | 6                          | 2             |             | 4                       |                            | 1                |             |             |              |                               |
| C              | BEGIN NET<br>1     | WORK READ<br>COMP U-       | -<br>-        |             |                         | - 141<br>- 14 <u>8</u> - 1 |                  |             |             |              |                               |
|                | 2                  | COMPU-<br>HYTRU-<br>MIXRU- | 2             | 1           | -2                      | 0                          | 0                | 0           | D<br>D      | 0            |                               |
| .**            | 4                  | VALV U-<br>ADBF U-         | 4             | 2<br>5<br>6 | -6<br>-7                | -5<br>0<br>-9              | 0<br>0<br>0      | 0           | 2           | 0            |                               |
| ~              | 6<br>7             | GSXP U-<br>PUMP UL         | 6             | 7           | -8<br>-10               | 0                          | 0                | 0<br>0<br>0 | 0<br>0<br>0 | 0            |                               |
|                | NETWORK C          | OMPLETE                    | •             |             | 10                      | U                          | 0                | U           | U           | 0            |                               |
| <sup>م</sup> ر | BEGIN EQU<br>3     | IPMENT DATA R              | EAD<br>D      |             | 0                       |                            | 0                |             | 0           | •            |                               |
|                | 0                  | 0                          | D<br>D        |             | C<br>D                  |                            | 0                |             | 0           | 0<br>0<br>0  | 0                             |
|                | 0                  | 0                          | 0<br>0        |             | C<br>C                  |                            | 0<br>0           |             | 0           | 0            | 0                             |
|                | 0                  | 0                          | D             |             | D                       |                            | Ō                |             | D           | 0            | 0                             |
| <i>*</i> ,     | 1.000              |                            |               | i           | 225.00                  |                            | 0.850            | 00          | 3           | .000         | 0.00000                       |
| r              | 0.00000            | 0.0000                     | )             | 0.          | 00000                   |                            | 0.000            | 00          | 0.          | 00000        | 0.00000<br>0.00000            |
| •              | D.00000<br>D.00000 |                            | )             | 0.          | 00000                   |                            | 0.000            | 00          | 0.          | 00000        | 0.00000                       |
| ~              | 2.0000<br>2.0000   |                            |               | 0.          | 60000                   |                            | 0.000            | 00          | 0.          | 0000         | 0.00000                       |
| ~              | 0.0000             | 0.00000                    |               | 0.          | 00000<br>00000<br>00000 |                            | 0.0000           | 00          | 0.1         | 00000        | 0.00000<br>0.00000            |
|                | 0.00000            |                            |               | J.          | 11100                   |                            | 0.000            | 00          | 0.:         | 0000         | 0.0000                        |
| -              | 4.0000<br>0.00000  |                            |               |             | 00000                   |                            | 0.0000           |             |             | 0000         | 0.00000                       |
| <u>_</u>       | D.00005<br>C.C0000 | 0.00000                    |               | 0.          | 00000                   |                            | 0.0000           | 00          | 0.0         | 00000        | 0.00000<br>0.00j00            |
|                | D.00000            |                            |               |             |                         |                            |                  | 0           | 0.1         | 0000         | 0.00000                       |
| 1              | 5.000<br>0.0000    | 2.0000<br>0.00000          |               |             | 00000<br>00000          |                            | 0.0000           |             | 0.0         | 0000         | 0.00000                       |
| <i>(</i>       | 0.00000<br>0.00000 | 0.00000<br>6.00000         |               | 0.          | 00000                   |                            | 0.0000           | 0           | 0.0         | 0000         | 0.00000<br>0.00000<br>0.00000 |
|                | 0.0000             |                            |               |             |                         |                            |                  | -           | 5.0         |              |                               |
| 194<br>194     | 6.0000<br>0.00000  | 3.2023<br>0.00000          |               | 0.0         | 60000<br>0000           |                            | 0.0000           |             |             | 2000<br>2000 | D.00000<br>D.00000            |
|                | 0.00000            | C.00006<br>C.00000         |               |             | 00000<br>00000          |                            | 0.0000           |             | 0.0         | 0000<br>0000 | D.00000<br>D.00000            |
|                | 0.0000             | •,                         |               | -           |                         |                            |                  |             |             |              |                               |
|                | 0000.7<br>00003.0  | 34.023<br>0.00000          |               | C.7<br>C.C  | 5000<br>00000           |                            | 0.0000<br>0.0000 |             |             | 0000<br>0000 | 0.00000<br>0.00000            |
|                |                    |                            |               |             |                         |                            |                  |             |             |              |                               |

•

-



.....

VAPOR-LIQUID EQUILIBRIUM DATA CODES: LIQUID = 0 VAPOR = 0 ENTHALPY = 2

 $\sim$ 

- .

C

**(**\_\_\_\_\_\_\_\_

a 4,

1.

(\_\_\_\_

IDEAL GAS AND IDEAL LIQUID STATE MODELS ENTHALPY CORRECTIONS ARE NOT CALCULATED

FOLLOWING TABLES TRACE THE CHANGES IN THE THERMODYNAMIC PROPERTIES. THE STREAM CONDITIONS AT THE OUTLET OF EACH EQUIPMENT NODE ARE TABULATED IN CASES OF TWO-PHASE CONDITIONS, THE SECOND PHASE CONDITIONS ARE REPORTED SOME UNCALCULATED VALUES ARE REPORTED AS ZERO UNITS ARE : SM.MOLE CALORIES OK ATM CC ,**-**-ID = STANDARD COMPONENT IDENTIFICATION # OF CHESS X, Y = LIQUID AND VAPOR COMPOSITIONS FUG, GAMA= FUGACITY AND ACTIVITY COEFFICIENTS K = EQUILIBRIUM RATIOS VP= VAPOR PRESSURES VIA ANTOINE EQN. VZ= COMP. FACTOR FOR COMPONENTS M.VOL= MOLAL VOLUMES (\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* 0 STREAM NUMBER 2 \*\*\*\*\*\*\*\*\*\* TEMPERATURE : 225.000 PRESSURE : 28.2390 VAPOR FRACTION : 1.0000 X FUG GAMA ĸ V P 47 C.00000 C.00062 D.00000 0.00000 0.00000 8.6173 D.C000 84.3288 0.00000 0.00447 0.00000 0.00000 0.00000 277.3489 0.0000 2 0.00000 42.4503 0.85397 0.00000 0.00000 0.00000 87.2832 0.0000 46.1448 3 0.00000 0.10855 0.00000 0.00000 0.00000 5.8046 0.0000 130.3393 0.0000.0 0.02780 0.00000 0.00000 0.00000 0.7580 0.0000 C.C0115 0.00000 0.00000 0.00000 168.7855 0.00000 5 0.1844 0.0000 209.0497 C.00259 D.00000 D.00000 D.00000 0.00000 0.1041 0.0000 0.00000 0.00025 0.00000 0.00000 0.00000 204.5101 D.0124 8 0.0000 241.3936 00000.0 0.00018 0.00000 0.00000 0.00000 C.CDDCO C.00003 0.00000 0.00000 0.00000 0.0305 0.0000 242.1529 11 0.0003 0.0000 318.4167 🥪 TOTAL MOLAR FLOWRATE : 15129.00000 ENTHALPY : VAPOR -8- LIQUID 2901.9262000 ENTHALPY DEPARTURE :VAPOR -S- LIQUID 0.00000 ENTROPY DEPARTURE :VAPOR -S- LIQUID 0.0000000 0.0000000 0.00000 VAP/LIG/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 1.000000 0.0000000 \*\*\*\*\*\*\*\*\*\* STREAM NUMBER 4 \*\*\*\*\*\*\*\*\*\*\*\* TEMPERATURE : 220.085 PRESSURE : 28.2390 VAPOR FRACTION : 0.0000

| ====                                                                                                    |                                                                                                                                        | = = = =<br>X                                                                                                                                                                                       | =====                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = = = =<br>Y                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ====<br>FUG                                                  | ======<br>G A M A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                     | ======================================                                                                                                                       | EEEEEEE<br>VZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| ====                                                                                                    |                                                                                                                                        | = = = =                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = = = = = :                                                  | =======                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                     | ===================                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |
| 47<br>45                                                                                                | C.000<br>0.001                                                                                                                         | 92<br>54                                                                                                                                                                                           | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0000                                                         | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00000                                                                                                                                             | 7.1817<br>267.3669                                                                                                                                           | C.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83.954                                                                                       |
| 2                                                                                                       | 0.301                                                                                                                                  | 85                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0000                                                         | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000                                                                                                                                              | 82.5111                                                                                                                                                      | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46.121                                                                                       |
| 3 4                                                                                                     | 0.210                                                                                                                                  |                                                                                                                                                                                                    | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0000                                                         | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00000                                                                                                                                             | 5.2313<br>0.6593                                                                                                                                             | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 129.770                                                                                      |
| 5                                                                                                       | 0.261                                                                                                                                  | 70                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0000                                                         | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00000                                                                                                                                             | 0.1564                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 208.20                                                                                       |
| 6                                                                                                       | 0.107                                                                                                                                  |                                                                                                                                                                                                    | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0000                                                         | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000                                                                                                                                              | 0.0873                                                                                                                                                       | 0.000C<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 203.68                                                                                       |
| 7<br>8                                                                                                  | 0.023                                                                                                                                  |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00000                                                                                                                                             |                                                                                                                                                              | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 241.19                                                                                       |
| .11                                                                                                     | 0.037                                                                                                                                  | 63                                                                                                                                                                                                 | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0000                                                         | 0.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00000                                                                                                                                             | 0.0002                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 317.17                                                                                       |
|                                                                                                         |                                                                                                                                        |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |
| TOTA                                                                                                    |                                                                                                                                        |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              | 43296.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 000                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |
|                                                                                                         |                                                                                                                                        |                                                                                                                                                                                                    | POR -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              | - LIQUID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                     | 0 3599.9<br>0.00000                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00000                                                                                      |
| ENTR                                                                                                    | OPY D                                                                                                                                  | EPAR                                                                                                                                                                                               | TURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : ۷                                                                                                                                                                                          | APO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>२ −</b> &-                                                | - LIQUID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                     | 0.00000000                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0000000                                                                                      |
| VAP/                                                                                                    | L19/2N                                                                                                                                 | D PH                                                                                                                                                                                               | ASE M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | HIX.                                                                                                                                                                                         | . coi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MPRE                                                         | SSIBILIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Y FACTOR                                                                                                                                            | : 1.00000                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |
|                                                                                                         |                                                                                                                                        |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |
|                                                                                                         |                                                                                                                                        |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |
| ****                                                                                                    | *****                                                                                                                                  | * * * *                                                                                                                                                                                            | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***                                                                                                                                                                                          | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ****                                                         | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | **                                                                                                                                                  |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |
|                                                                                                         |                                                                                                                                        | STRE                                                                                                                                                                                               | AM N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NUME                                                                                                                                                                                         | BER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |
| ****                                                                                                    | ******                                                                                                                                 | * * * *                                                                                                                                                                                            | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ****                                                                                                                                                                                         | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ****                                                         | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | **:                                                                                                                                                 |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |
| TE "                                                                                                    | PERATU                                                                                                                                 | RE :                                                                                                                                                                                               | 220.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 965                                                                                                                                                                                          | 5 PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ESSU                                                         | RE : 28.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2390 VA                                                                                                                                             | POR FRACTION                                                                                                                                                 | : 0.1567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                              |
|                                                                                                         |                                                                                                                                        |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |
|                                                                                                         | =====                                                                                                                                  |                                                                                                                                                                                                    | ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                     | ======================================                                                                                                                       | = = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ======<br>M .V                                                                               |
| 10                                                                                                      |                                                                                                                                        | X<br>= = = = =                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Y<br>= = = =                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FUG<br>====                                                  | 6 A M A<br>=======                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | K<br>========                                                                                                                                       | ¥ -<br>==================                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |
| 49                                                                                                      | 0.000                                                                                                                                  |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                     |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                              |
| 45                                                                                                      |                                                                                                                                        |                                                                                                                                                                                                    | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ]22                                                                                                                                                                                          | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0000                                                         | 1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.23712                                                                                                                                             | 6.6961                                                                                                                                                       | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41.56                                                                                        |
|                                                                                                         | 0.001                                                                                                                                  | 58                                                                                                                                                                                                 | 0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 415                                                                                                                                                                                          | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0000                                                         | 1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.23712 9.33556                                                                                                                                     | 6.6961<br>263.6267                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41.56<br>42.53                                                                               |
| 23                                                                                                      | 0.001<br>0.343<br>0.218                                                                                                                | 58<br>92<br>31                                                                                                                                                                                     | 0.014<br>0.942<br>0.037                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 415<br>291<br>726                                                                                                                                                                            | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0000                                                         | 1.00000<br>1.00000<br>1.00000<br>1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.23712<br>9.33556<br>2.85946<br>0.17799                                                                                                            | 6.6961<br>263.6267<br>80.7482<br>5.0262                                                                                                                      | 0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41.56<br>42.53<br>46.39<br>64.96                                                             |
| 234                                                                                                     | 0.001<br>G.343<br>D.218<br>0.238                                                                                                       | 58<br>92<br>31<br>31                                                                                                                                                                               | 0.014<br>0.942<br>0.037<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 415<br>291<br>726<br>506                                                                                                                                                                     | 1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | 1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.23712<br>9.33556<br>2.85946<br>0.17799<br>0.02213                                                                                                 | 6.6961<br>263.6267<br>80.7482<br>5.0262<br>0.6249                                                                                                            | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41.56<br>42.53<br>46.39<br>64.96<br>179.86                                                   |
| 23                                                                                                      | 0.001<br>0.343<br>0.218                                                                                                                | 58<br>92<br>31<br>31<br>41<br>85                                                                                                                                                                   | 0.014<br>0.942<br>0.037<br>0.005<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 415<br>291<br>726<br>506<br>013<br>026                                                                                                                                                       | 1.00<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | 1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.23712<br>9.33556<br>2.85946<br>0.17799<br>0.02213<br>0.00520<br>0.00520                                                                           | 6.6961<br>263.6267<br>80.7482<br>5.0262<br>0.6249<br>0.1468<br>0.0815                                                                                        | 0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.56<br>42.53<br>46.39<br>64.96<br>179.86<br>222.43<br>217.52                               |
| 2<br>3<br>4<br>5<br>6<br>7                                                                              | 0.001<br>C.343<br>D.218<br>0.238<br>0.026<br>C.094<br>C.020                                                                            | 58<br>92<br>31<br>31<br>41<br>85<br>54                                                                                                                                                             | 0.014<br>0.942<br>0.037<br>0.005<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 415<br>291<br>726<br>506<br>013<br>026                                                                                                                                                       | 1.00<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              | 1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.23712<br>9.33556<br>2.85946<br>0.17799<br>0.02213<br>0.00520<br>0.00520<br>0.00032                                                                | 6.6961<br>263.6267<br>80.7482<br>5.0262<br>0.6249<br>0.1468<br>0.0815<br>0.0092                                                                              | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41.56<br>42.53<br>46.39<br>64.96<br>179.86<br>222.43<br>217.52<br>256.45                     |
| 2<br>3<br>4<br>5<br>6<br>7<br>8                                                                         | 0.001<br>0.343<br>0.218<br>0.238<br>0.026<br>0.026<br>0.094<br>0.020<br>0.022                                                          | 58<br>92<br>31<br>31<br>41<br>85<br>54<br>10                                                                                                                                                       | 0.014<br>0.942<br>0.037<br>0.005<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 415<br>291<br>726<br>506<br>013<br>026<br>001                                                                                                                                                | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              | 1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.23712<br>9.33556<br>2.85946<br>0.17799<br>0.02213<br>0.00520<br>0.00520<br>0.00032<br>0.00032                                                     | 6.6961<br>263.6267<br>80.7482<br>5.0262<br>0.6249<br>0.1468<br>0.0815                                                                                        | 0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.56<br>42.53<br>46.39<br>64.96<br>179.86<br>222.43<br>217.52<br>256.45<br>257.31           |
| 2<br>3<br>4<br>5<br>6<br>7                                                                              | 0.001<br>C.343<br>D.218<br>0.238<br>0.026<br>C.094<br>C.020                                                                            | 58<br>92<br>31<br>31<br>41<br>85<br>54<br>10                                                                                                                                                       | 0.014<br>0.942<br>0.037<br>0.005<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 415<br>291<br>726<br>506<br>013<br>026<br>001                                                                                                                                                | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              | 1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.23712<br>9.33556<br>2.85946<br>0.17799<br>0.02213<br>0.00520<br>0.00520<br>0.00032                                                                | 6.6961<br>263.6267<br>80.7482<br>5.0262<br>0.6249<br>0.1468<br>0.0815<br>0.0092<br>0.0230                                                                    | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41.56<br>42.53<br>46.39<br>64.96<br>179.86<br>222.43<br>217.52<br>256.45<br>257.31           |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>11                                                                   | 0.001<br>C.343<br>D.212<br>0.238<br>0.026<br>C.094<br>C.020<br>0.022<br>C.033                                                          | 58<br>52<br>31<br>31<br>41<br>85<br>54<br>10<br>3                                                                                                                                                  | 0.014<br>0.942<br>0.037<br>0.005<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 415<br>291<br>726<br>506<br>513<br>526<br>501<br>502<br>500                                                                                                                                  | 1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              | 1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.23712<br>9.33556<br>2.85946<br>D.17799<br>0.02213<br>0.00520<br>0.00032<br>0.00032<br>0.00001                                                     | 6.6961<br>263.6267<br>80.7482<br>5.0262<br>0.6249<br>0.1468<br>0.0815<br>0.0092<br>0.0230<br>0.0002                                                          | 0.0000<br>C.0000<br>C.0000<br>0.0000<br>C.0000<br>C.0000<br>C.0000<br>C.0000<br>C.0000<br>C.0000<br>C.0000<br>C.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 41,56<br>42,53<br>46,39<br>64,96<br>179,86<br>222,43<br>217,52<br>256,45<br>257,31           |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>11<br>TOTA<br>ENTH                                                   | 0.001<br>C.343<br>D.218<br>0.228<br>0.026<br>C.094<br>C.020<br>0.022<br>0.022<br>0.033<br>L MOLA<br>ALPY                               | 58<br>92<br>31<br>31<br>45<br>54<br>10<br>54<br>10<br>54<br>10<br>54<br>10<br>54<br>10<br>54<br>10<br>54<br>10<br>58<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52<br>52 | 0.014<br>0.942<br>0.037<br>0.005<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.000000                                                                                                                                                            | 415<br>291<br>726<br>506<br>513<br>526<br>501<br>502<br>500<br>100<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500                                                                   | 1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                              | 1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>58425.00<br>268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.23712<br>9.33556<br>2.85946<br>0.17799<br>0.02213<br>0.00520<br>0.00032<br>0.00032<br>0.00001<br>                                                 | 6.6961<br>263.6267<br>80.7482<br>5.0262<br>0.6249<br>0.1468<br>0.0815<br>0.0092<br>0.0230<br>0.0002                                                          | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000000                                                                                                                                                                                                         | 41.56<br>42.53<br>46.39<br>64.96<br>179.86<br>222.43<br>217.52<br>256.45<br>257.31<br>337.96 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>11<br>TOTA<br>H                                                      | 0.001<br>C.343<br>0.218<br>0.228<br>0.026<br>C.094<br>C.020<br>0.022<br>C.033<br>L MOLA<br>ALPY<br>ALPY                                | 58<br>52<br>31<br>31<br>45<br>54<br>03<br>85<br>40<br>03<br>85<br>40<br>03<br>85<br>40<br>03<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85                         | 0.014<br>0.942<br>0.037<br>0.005<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.000000                                                                                                                                                                      | 415<br>291<br>726<br>506<br>513<br>526<br>501<br>502<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500                                                                          | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 |                                                              | 1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>58425.00<br>268<br>- LIQUID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.23712<br>9.33556<br>2.85946<br>0.17799<br>0.02213<br>0.00520<br>0.00032<br>0.00032<br>0.00081<br>0.00001                                          | 6.6961<br>263.6267<br>80.7482<br>5.0262<br>0.6249<br>0.1468<br>0.0815<br>0.0092<br>0.0230<br>0.0002                                                          | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41.56<br>42.53<br>46.39<br>64.96<br>179.86<br>222.43<br>217.52<br>256.45<br>257.31<br>337.96 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>11<br>TOTA<br>H<br>ENTH<br>ENTH                                      | 0.001<br>C.343<br>0.218<br>0.228<br>0.026<br>C.094<br>C.020<br>0.022<br>C.033<br>L MOLA<br>ALPY<br>ALPY D<br>OPY D                     | 58<br>52<br>31<br>31<br>54<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0                                                                                            | 0.014<br>0.942<br>0.037<br>0.005<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.000000                                                                                                                                                                                                     | 415<br>291<br>726<br>506<br>013<br>026<br>001<br>002<br>000<br>TE =<br>-8 - V                                                                                                                | 1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000J<br>000D<br>000D<br>000D<br>000D<br>000D<br>000D<br>000D | 1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>58425.00<br>268<br>- LIQUID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.23712<br>9.33556<br>2.85946<br>0.17799<br>0.02213<br>0.00520<br>0.00032<br>0.00032<br>0.00081<br>0.00001<br>                                      | 6.6961<br>263.6267<br>80.7482<br>5.0262<br>0.6249<br>0.1468<br>0.0815<br>0.0092<br>0.0230<br>0.0002                                                          | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41.56<br>42.53<br>46.39<br>64.96<br>179.86<br>222.43<br>217.52<br>256.45<br>257.31<br>337.96 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>11<br>TOTA<br>H<br>ENTH<br>ENTH                                      | 0.001<br>C.343<br>0.218<br>0.228<br>0.026<br>C.094<br>C.020<br>0.022<br>C.033<br>L MOLA<br>ALPY<br>ALPY D<br>OPY D                     | 58<br>52<br>31<br>31<br>54<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0                                                                                            | 0.014<br>0.942<br>0.037<br>0.005<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.000000                                                                                                                                                                                                     | 415<br>291<br>726<br>506<br>013<br>026<br>001<br>002<br>000<br>TE =<br>-8 - V                                                                                                                | 1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000J<br>000D<br>000D<br>000D<br>000D<br>000D<br>000D<br>000D | 1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>58425.00<br>268<br>- LIQUID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.23712<br>9.33556<br>2.85946<br>0.17799<br>0.02213<br>0.00520<br>0.00032<br>0.00032<br>0.00081<br>0.00001<br>                                      | 6.6961<br>263.6267<br>80.7482<br>5.0262<br>0.6249<br>0.1468<br>0.0815<br>0.0092<br>0.0230<br>0.0002                                                          | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41.56<br>42.53<br>46.39<br>64.96<br>179.86<br>222.43<br>217.52<br>256.45<br>257.31<br>337.96 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>11<br>TOTA<br>H<br>ENTH<br>ENTH                                      | 0.001<br>C.343<br>0.218<br>0.228<br>0.026<br>C.094<br>C.020<br>0.022<br>C.033<br>L MOLA<br>ALPY<br>ALPY D<br>OPY D                     | 58<br>52<br>31<br>31<br>54<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0                                                                                            | 0.014<br>0.942<br>0.037<br>0.005<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.000000                                                                                                                                                                                                     | 415<br>291<br>726<br>506<br>013<br>026<br>001<br>002<br>000<br>TE =<br>-8 - V                                                                                                                | 1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000J<br>000D<br>000D<br>000D<br>000D<br>000D<br>000D<br>000D | 1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>58425.00<br>268<br>- LIQUID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.23712<br>9.33556<br>2.85946<br>0.17799<br>0.02213<br>0.00520<br>0.00032<br>0.00032<br>0.00081<br>0.00001<br>                                      | 6.6961<br>263.6267<br>80.7482<br>5.0262<br>0.6249<br>0.1468<br>0.0815<br>0.0092<br>0.0230<br>0.0002                                                          | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41.56<br>42.53<br>46.39<br>64.96<br>179.86<br>222.43<br>217.52<br>256.45<br>257.31<br>337.96 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>11<br>TOTA<br>H<br>ENTH<br>ENTH                                      | 0.001<br>C.343<br>0.218<br>0.228<br>0.026<br>C.094<br>C.020<br>0.022<br>C.033<br>L MOLA<br>ALPY<br>ALPY D<br>OPY D                     | 58<br>52<br>31<br>31<br>54<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0                                                                                            | 0.014<br>0.942<br>0.037<br>0.005<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.000000                                                                                                                                                                                                     | 415<br>291<br>726<br>506<br>013<br>026<br>001<br>002<br>000<br>TE =<br>-8 - V                                                                                                                | 1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000J<br>000D<br>000D<br>000D<br>000D<br>000D<br>000D<br>000D | 1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>58425.00<br>268<br>- LIQUID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.23712<br>9.33556<br>2.85946<br>0.17799<br>0.02213<br>0.00520<br>0.00032<br>0.00032<br>0.00081<br>0.00001<br>                                      | 6.6961<br>263.6267<br>80.7482<br>5.0262<br>0.6249<br>0.1468<br>0.0815<br>0.0092<br>0.0230<br>0.0002                                                          | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41.56<br>42.53<br>46.39<br>64.96<br>179.86<br>222.43<br>217.52<br>256.45<br>257.31<br>337.96 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>11<br>TOTA<br>H<br>ENTH<br>ENTH                                      | 0.001<br>G.343<br>0.218<br>0.238<br>0.026<br>C.0294<br>C.020<br>0.022<br>G.033<br>L MOLA<br>ALPY<br>DOPY<br>DUI<br>19/2N<br>******     | 58<br>52<br>31<br>31<br>54<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0<br>54<br>0                                                                                            | 0.014<br>0.942<br>0.037<br>0.005<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.000000                                                                                                                                                            | 415<br>291<br>726<br>506<br>506<br>506<br>506<br>506<br>506<br>506<br>506<br>506<br>50                                                                                                       | 1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(<br>1.0(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 000J<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>000  | 1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>58425.00<br>268<br>- LIQUID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.23712<br>9.33556<br>2.85946<br>0.17799<br>0.02213<br>0.00520<br>0.00032<br>0.00032<br>0.00081<br>0.00001<br>                                      | 6.6961<br>263.6267<br>80.7482<br>5.0262<br>0.6249<br>0.1468<br>0.0815<br>0.0092<br>0.0230<br>0.0002                                                          | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41.56<br>42.53<br>46.39<br>64.96<br>179.86<br>222.43<br>217.52<br>256.45<br>257.31<br>337.96 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>11<br>TOTA<br>H<br>ENTH<br>ENTH                                      | 0.001<br>G.343<br>0.218<br>0.238<br>0.026<br>C.094<br>C.020<br>0.022<br>C.033<br>L MOLA<br>ALPY<br>ALPY D<br>OPY D<br>LIQ/2N           | 58<br>52<br>31<br>31<br>45<br>54<br>10<br>7<br>8<br>5<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7<br>8<br>7                                                         | 0.014<br>0.942<br>0.037<br>0.005<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.000000                                                                                                      | 415<br>291<br>726<br>506<br>506<br>502<br>506<br>506<br>506<br>506<br>506<br>506<br>506<br>506<br>506<br>506                                                                                 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 000J<br>0000<br>0000<br>0000<br>0000<br>0000<br>0000<br>000  | 1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>58425.00<br>268<br>- LIQUID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.23712<br>9.33556<br>2.85946<br>0.17799<br>0.02213<br>0.00520<br>0.00032<br>0.00032<br>0.00081<br>0.00001<br>                                      | 6.6961<br>263.6267<br>80.7482<br>5.0262<br>0.6249<br>0.1468<br>0.0815<br>0.0092<br>0.0230<br>0.0002                                                          | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41.56<br>42.53<br>46.39<br>64.96<br>179.86<br>222.43<br>217.52<br>256.45<br>257.31<br>337.96 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>11<br>TOTA<br>HENTH<br>ENTH<br>ENTH<br>VAP/                          | 0.001<br>6.343<br>0.218<br>0.228<br>0.026<br>C.094<br>C.020<br>0.022<br>0.022<br>0.033<br>L MOLA<br>ALPY<br>ALPY D<br>OPY D<br>LIQ/2N  | 58<br>52<br>31<br>31<br>41<br>85<br>41<br>0<br>85<br>41<br>0<br>7<br>85<br>41<br>0<br>7<br>85<br>85<br>4<br>10<br>7<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85  | 0.014<br>0.942<br>0.037<br>0.005<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.000000                                                                           | 415<br>291<br>726<br>506<br>506<br>506<br>506<br>506<br>506<br>506<br>500<br>500<br>75<br>50<br>78<br>13<br>78<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 000J<br>0000<br>0000<br>000J<br>000J<br>000J<br>000J<br>000  | 1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.000000<br>1.000000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.000000<br>1.000000<br>1.000000<br>1.000000<br>1.00000000<br>1.000000<br>1.000000<br>1.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.23712<br>9.33556<br>2.85946<br>D.17799<br>D.02213<br>0.00520<br>D.00289<br>0.00032<br>D.00001<br>D.00001<br>0.0001<br>4.477000<br>Y FACTOR        | 6.6961<br>263.6267<br>80.7482<br>5.0262<br>0.6249<br>0.1468<br>0.0815<br>0.0092<br>0.0230<br>0.00002<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>1.000000 | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 41.56<br>42.53<br>46.39<br>64.96<br>179.86<br>222.43<br>217.52<br>256.45<br>257.31<br>337.96 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>11<br>TOTA<br>HENTH<br>ENTH<br>ENTH<br>VAP/                          | 0.001<br>6.343<br>0.218<br>0.228<br>0.026<br>C.094<br>C.020<br>0.022<br>0.022<br>0.033<br>L MOLA<br>ALPY<br>ALPY D<br>OPY D<br>LIQ/2N  | 58<br>52<br>31<br>31<br>41<br>85<br>41<br>0<br>85<br>41<br>0<br>7<br>85<br>41<br>0<br>7<br>85<br>85<br>4<br>10<br>7<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85  | 0.014<br>0.942<br>0.037<br>0.005<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.000000                                                                           | 415<br>291<br>726<br>506<br>506<br>506<br>506<br>506<br>506<br>506<br>500<br>500<br>75<br>50<br>78<br>13<br>78<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14<br>14 | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 000J<br>0000<br>0000<br>000J<br>000J<br>000J<br>000J<br>000  | 1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.000000<br>1.000000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.000000<br>1.000000<br>1.000000<br>1.000000<br>1.00000000<br>1.000000<br>1.000000<br>1.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.23712<br>9.33556<br>2.85946<br>D.17799<br>D.02213<br>0.00520<br>D.00289<br>0.00032<br>D.00001<br>D.00001<br>0.0001<br>4.477000<br>Y FACTOR        | 6.6961<br>263.6267<br>80.7482<br>5.0262<br>0.6249<br>0.1468<br>0.0815<br>0.0092<br>0.0230<br>0.0002                                                          | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 41.56<br>42.53<br>46.39<br>64.96<br>179.86<br>222.43<br>217.52<br>256.45<br>257.31<br>337.96 |
| 2<br>3<br>4<br>5<br>6<br>7<br>8<br>11<br>TOTTA<br>H<br>ENTTR/<br>V<br>* * * * *<br>* *<br>* *<br>* TE * | 0.001<br>G.343<br>0.218<br>0.228<br>0.026<br>C.094<br>C.020<br>0.022<br>G.033<br>L MOLA<br>ALPY<br>DOPY D<br>LIQ/2N<br>+++++<br>PERATU | 58<br>592<br>331<br>455<br>455<br>455<br>455<br>455<br>455<br>455<br>455<br>455<br>45                                                                                                              | 0.014<br>0.942<br>0.037<br>0.005<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.000000 | 415<br>291<br>726<br>506<br>506<br>506<br>506<br>506<br>506<br>506<br>500<br>500<br>78<br>- * * *                                                                                            | 1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00<br>1.00 | 000J<br>0000<br>0000<br>000J<br>000J<br>000J<br>000J<br>000  | 1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.000000<br>1.00000<br>1.00000<br>1.00000<br>1.00000<br>1.00000000<br>1.000000<br>1.000 | 0.23712<br>9.33556<br>2.85946<br>D.17799<br>D.02213<br>0.00520<br>D.00289<br>0.00032<br>D.00081<br>D.00001<br><br>000<br>6.477000<br>Y FACTOR<br>** | 6.6961<br>263.6267<br>80.7482<br>5.0262<br>0.6249<br>0.1468<br>0.0815<br>0.0092<br>0.0230<br>0.00002<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>1.000000 | C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.COCO<br>C.CCCO<br>C.CCCO<br>C.CCCO<br>C.CCCO<br>C.CCCO<br>C.CCCO<br>C.CCCO<br>C.CCCO<br>C.CCCO<br>C.CCCC<br>C.CCCC<br>C.CCCC<br>C.CCCC<br>C.CCCC<br>C.CCCC<br>C.CCCC<br>C.CCCC<br>C.CCCC<br>C.CCCC<br>C.CCCC<br>C.CCCC<br>C.CCCC<br>C.CCCC<br>C.CCCCC<br>C.CCCCC<br>C.CCCCC<br>C.CCCCCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 41.56<br>42.53<br>46.39<br>64.96<br>179.86<br>222.43<br>217.52<br>256.45<br>257.31<br>337.96 |

. i

217

. . . . .

 

 49
 0.00114
 0.00035
 1.00000
 1.00000
 0.32799
 6.6956
 C.0000
 83.8134

 46
 0.00068
 0.00824
 1.00000
 1.0000012.91382
 263.6223
 C.0000
 42.4409

 2
 0.25041
 0.92550
 1.00000
 1.00000
 3.95544
 80.7463
 D.0000
 46.1130

 4
 0.24978
 C.05746
 1.00000
 1.00000
 0.24620
 5.0250
 0.0000
 129.5551

 5
 0.3021
 0.00020
 1.00000
 0.33061
 0.6248
 0.0000
 167.8168

 5
 0.13853
 0.00041
 1.00000
 1.000399
 0.3815
 0.0000
 203.3710

 7
 0.02350
 C.00001
 1.00000
 0.00399
 0.3815
 0.0000
 203.3710

 8
 0.32528
 0.00003
 1.00000
 0.00045
 0.0092
 C.0000
 240.0748

 11
 0.03779
 0.00003
 1.00000
 0.00001
 0.00001
 0.0002
 240.8256

 TOTAL NOLAR FLOWRATE : 58425.00000 ENTHALPY : VAPOR -8- LIQUID 2688.1188000 3679.0754000 ENTHALPY DEPARTURE :VAPOR -8- LIQUID 0.00000 C.CO000 ENTROPY DEPARTURE :VAPOR -8- LIQUID 0.0000000 C.CO000000 VAP/LIG/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 1.303000 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* STREAM NUMBER 7 \*\*\*\*\*\*\*\*\*\* TEMPERATURE : 220.964 PRESSURE : 20.4140 VAPOR FRACTION : 1.0000 ID X Y FUG GAMA K VP VZ 

 

 49
 0.00000
 0.00005
 0.00000
 0.00000
 6.6956
 0.0000
 83.8132

 46
 0.00000
 0.00824
 0.00000
 0.00000
 263.6228
 0.0000
 42.4409

 2
 0.00000
 0.92550
 0.00000
 0.00000
 80.7463
 0.0000
 46.1130

 4
 0.00000
 0.00780
 0.00000
 0.00000
 5.0260
 0.0000
 129.5547

 4
 0.00000
 0.00000
 0.00000
 0.00000
 0.6248
 0.0000
 167.8166

 5
 0.00000
 0.00000
 0.00000
 0.00000
 0.01468
 0.0000
 207.8786

 5
 0.00000
 0.00000
 0.00000
 0.00815
 0.00000
 203.3705

 7
 0.00000
 0.00000
 0.00000
 0.00000
 0.00230
 240.6745

 6
 0.00000
 0.00000
 0.00000
 0.00000
 0.00000
 0.00000
 240.6745

 7
 0.00000
 0.00000
 0.00000
 0.00000
 0.00000
 0.00000
 240.6745

 8
 0.00000
 0.000000
 0.00000
 0.0 \*\*\*\*\*\*\* TOTAL MOLAR FLOWRATE : 15323.23400 ENTHALPY : VAPOR -8- LIQUID 2688.1186000 ENTHALPY DEPARTURE :VAPOR -S- LIQUID 0.00000 0.000000 ENTROPY DEPARTURE :VAPOR -S- LIQUID 0.0000000 0.0000000 VAP/LIG/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 1.000000 STREAM NUMBER 9 \*\*\*\*\*\*\*\*\*\* TEMPERATURE : 220.964 PRESSURE : 20.4140 VAPOR FRACTION : 0.0000

 $\sim$ 

. . .

C

(

 $( \ )$ 

 $\langle \cdot \rangle$ 

(\_

ID X Y FUG GAMA K VP VZ M.VOL 

 47
 0.00114
 0.00000
 0.00000
 0.00000
 6.6956
 0.00000
 83.8132

 45
 0.00068
 0.00000
 0.00000
 0.00000
 263.6228
 0.00000
 42.4409

 2
 0.25041
 0.00000
 0.00000
 0.00000
 50.7463
 0.00000
 46.1130

 

 3
 0.24978
 0.00000
 0.00000
 0.00000
 5.0260

 4
 0.27267
 0.00000
 0.00000
 0.00000
 0.00000
 0.6248

 5
 0.03021
 0.00000
 0.00000
 0.00000
 0.00000
 0.1468

 5
 0.10853
 0.00000
 0.00000
 0.00000
 0.00000
 0.0815

 7
 0.02350
 0.00000
 0.00000
 0.00000
 0.00000
 0.0092

 3
 0.02528
 0.00000
 0.00000
 0.00000
 0.00000
 0.0230

 C.0000 129.5547 0.0000 167.8166 0.0000 207.8785 0.0000 203.3705 C. 0000 240.0745 0.0000 240.8253 11 C.03779 D.DDDDD D.0000D D.0000D D.0000D J.00002 0.0000 316.7039 TOTAL MOLAR FLOWRATE : 43101.76100 TOTAL MOLAR FLOWRATE : 43TUT./0100 ENTHALPY : VAPOR -8- LIQUID 2688.1186000 3679.0751000 ENTHALPY DEPARTURE :VAPOR -3- LIQUID 0.000000 0.000000 ENTROPY DEPARTURE :VAPOR -8- LIQUID 0.0000000 0.0000000 WAP/LID/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 1.000000 VAP/LIG/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 1.000000 \*\*\*\*\*\* STREAM NUMBER 8 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* TEMPERATURE : 177.961 PRESSURE : 3.2023 VAPOR FRACTION : 1.0000 ID X Y FUG GAMA K VP VZ M.VOL 

 49
 C.00000
 0.00035
 0.00000
 0.00000
 0.00000
 6.6956
 0.0000
 83.8132

 46
 C.00000
 0.00824
 0.00000
 0.00000
 263.6223
 0.0000
 42.4409

 2
 C.00000
 C.92550
 0.00000
 0.00000
 0.00000
 80.7463
 0.0000
 46.1130

 3
 C.00000
 C.05746
 0.00000
 0.00000
 5.0260
 C.0000
 129.5547

 4
 C.00000
 C.00780
 C.00000
 0.00000
 0.00000
 0.6248
 0.0000
 167.8166

 5
 C.00000
 C.00000
 0.00000
 0.00000
 0.1468
 C.00000
 203.3705

 6
 0.00000
 C.00000
 0.00000
 0.00000
 0.00000
 203.3705

 7
 C.00000
 C.00001
 0.00000
 0.00000
 0.00000
 2.00000
 240.0745

 8
 C.00000
 C.00000
 0.00000
 0.00000
 0.00000
 0.00000
 240.0745

 7
 C.00000
 C.00000
 0.00000
 0.00000
 0.00000
 0.00000
 240.8253

 <t TOTAL MOLAR FLOWRATE :15323.23400ENTHALPY :VAPOR -8- LIQUID2454.2766000ENTHALPY DEPARTURE :VAPOR -8- LIQUID0.00000ENTROPY DEPARTURE :VAPOR -8- LIQUID0.000000 0.0000000 0.00000 0000000.0 VAP/LIG/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 1.00000

\*\*\*\*\*\*\*\*\* STREAM NUMBER 10 -----

 $\bigcirc$ 

C

 $\sim$ 

C.

TEMPERATURE : 222.263 PRESSURE : 34.0230 VAPOR FRACTION : 0.0000

|             |                                                                                        |                                                                |                                                      |                                                     | ==========                                                                                      | **********                                                            |                                                         | =======                                                                       |
|-------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------|
| ID          | x                                                                                      | Y                                                              | FUG                                                  | GAMA                                                | ĸ                                                                                               | VP                                                                    | VZ                                                      | M.VOL                                                                         |
| 3<br>4<br>5 | C. 00114<br>C. 00068<br>p. 25 C4 1<br>2. 24 978<br>C. 27267<br>C. 03 C2 1<br>0. 1085 3 | 00000.0<br>00000.0<br>00000.0<br>00000.0<br>00000.0<br>00000.0 | CCCCCCC<br>CCCCCCCC<br>CCCCCCCC<br>CCCCCCCC<br>CCCCC | 0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000 | 0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000 | 6.6956<br>263.6228<br>80.7463<br>5.0260<br>0.6248<br>0.1463<br>0.0815 | 000000<br>000000<br>000000<br>000000<br>000000<br>00000 | 83.8132<br>42.4409<br>45.1130<br>129.5547<br>167.8166<br>207.8786<br>203.3705 |

7 C.02350 G.0C00C D.00000 D.00000 D.00000 D.0092 C.0000 240.0745 8 C.02528 D.00000 D.00000 D.00000 D.00000 D.00000 11 C.03779 C.00000 D.00000 D.00000 D.00000 D.00000 D.00000 316.7039 TOTAL MOLAR FLOWRATE : 43101.76100 ENTHALPY : VAPOR -8- LIQUID D.000000 3694.6679000 ENTHALPY DEPARTURE :VAPOR -8- LIQUID D.000000 0.00000 ENTROPY DEPARTURE :VAPOR -8- LIQUID D.000000 0.000000 VAP/LIQ/2ND PHASE MIX. COMPRESSIBILITY FACTOR : 1.000000 \*\*\* SUBSET LOOP COMPLETE \*\*\*

 $\cap$ 

•

 $\mathcal{C}$ 

 $\bigcirc$ 

¢,

° C

(

 $\langle \cdot \rangle$ 

Ó

Ċ

. .

ं

1.2

1

-------

•

|                | FINAL RESULTS                     |                     |                     | a<br>Aliante de la companya de la company<br>Aliante de la companya |                      |    |
|----------------|-----------------------------------|---------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----|
|                |                                   |                     |                     |                                                                                                                                                                                                                                          |                      |    |
| $\sim$         | CHESS3 TEST                       | CASE FOR ROT        | ATIONAL EQUIPH      | ENTS                                                                                                                                                                                                                                     |                      |    |
|                | STREAM NUMBER                     | 1                   | 2                   | 3                                                                                                                                                                                                                                        | •<br>•               |    |
| Ç              | EQUIP CONXION                     | FR D TO 1           |                     | FR O TO 2                                                                                                                                                                                                                                | FR 2 TO 3            | FR |
|                | VAPOR FRACTION<br>TEMPERATURE . F | 1.0000<br>-25.7978  | 1.0000<br>-54.6879  | 0.0000<br>-59.9618                                                                                                                                                                                                                       | 0.0000<br>-63.5349   |    |
| $(\mathbf{C})$ | PRESSURE, PSIA                    | 199.9979            | 415.0000            | 599.9934                                                                                                                                                                                                                                 | 415.0002             |    |
|                | ENTHALPY, K.BTU                   | 181.9505            | 174.1086            | 622.4309                                                                                                                                                                                                                                 | 618.1101             |    |
|                |                                   | ÷                   | COMPOSITION, LE     | B-MOLES/UNIT T                                                                                                                                                                                                                           | ME                   |    |
| e e            | C02                               | 0.02052             | 0.02052             | 0.02808                                                                                                                                                                                                                                  | 0.08808              |    |
|                | NI TROGEN<br>METHANE              | 0.14913<br>28.48314 | 0.14913<br>28.48314 | 0.14913<br>28.81215                                                                                                                                                                                                                      | 0.14913<br>28.81215  |    |
| <i></i>        | ETHANE                            | 3.63050             | 3.63050             | 20.12111                                                                                                                                                                                                                                 | 20.12111<br>25.00037 |    |
| •              | PROPANE<br>I-BUTANE               | 0.92711<br>0.03843  | 0.92711<br>0.03843  | 25.00037<br>2.83448                                                                                                                                                                                                                      | 2.83448              |    |
| ~              | N-BUTANE                          | 0.08968             | 0.08968             | 10.23009                                                                                                                                                                                                                                 | 10.23009             |    |
| ,              | I-PENTANE<br>N-PENTANE            | 0.00831<br>0.00610  | 0.00831<br>0.00610  | 2.22600<br>2.39818                                                                                                                                                                                                                       | 2.22600<br>2.39818   |    |
| 6              | N-HEPTANE                         | 0.00100             | 0.00100             | 3.59221                                                                                                                                                                                                                                  | 3.59221              |    |
| ••             |                                   |                     |                     |                                                                                                                                                                                                                                          |                      |    |
| Ċ.             | TOTAL                             | 33.35390            | 33.35390            | 95.45181                                                                                                                                                                                                                                 | 95.45181             |    |
| ·              |                                   |                     |                     |                                                                                                                                                                                                                                          |                      |    |
| Ċ              |                                   |                     |                     |                                                                                                                                                                                                                                          |                      |    |
| ⊷.             |                                   |                     |                     |                                                                                                                                                                                                                                          |                      |    |
|                | STREAM NUMBER                     | 5                   | 6                   | 7                                                                                                                                                                                                                                        | 8                    |    |
| <b>.</b>       | EQUIP CONXION                     | FR 3 TO 4           | FR 4 TO 5           | FR 5 TO 6                                                                                                                                                                                                                                | FR 6 TO D            | FR |
|                | VAPOR FRACTION<br>TEMPERATURE, F  | 0.1567<br>-61.9513  | 0.2623<br>-61.9535  | 1.0000<br>-61.9535                                                                                                                                                                                                                       | 1.0000<br>-139.3581  |    |
|                | PRESSURE, PSIA                    | 415.0000            | 300-0042            | 300.0042                                                                                                                                                                                                                                 | 47.0610              |    |
|                | ENTHALPY, K.BTU                   | 792.2185            | 792.2185            | 163.3513                                                                                                                                                                                                                                 | 149.1412             |    |
|                |                                   |                     | COMPOSITION, LB     | -MOLES/UNIT TI                                                                                                                                                                                                                           | ME                   |    |
|                | C02                               | 0.10860             | C.10860             | 0.01266                                                                                                                                                                                                                                  | 0.01266              |    |
| `              | NITROGEN<br>Methane               | 0.29826<br>57.29530 | 0.29826<br>57.29530 | 0.29826<br>33.48386                                                                                                                                                                                                                      | 0.29826<br>33.48386  |    |
| ,              | ETHANE                            | 23.75160            | 23.75160            | 2.07893                                                                                                                                                                                                                                  | 2.07893              |    |
|                | PROPANE<br>I-BUTANE               | 25.92747<br>2.87291 | 25.92747<br>2.87291 | 0.28213                                                                                                                                                                                                                                  | 0.28213<br>0.00735   |    |
|                | N-BUTANE                          | 10.31976            | 10.31976            | 0.01465                                                                                                                                                                                                                                  | C.01465              |    |
|                | I-PENTANE                         | 2.23431<br>2.40429  | 2.23431<br>2.40429  | 0.00036<br>0.00096                                                                                                                                                                                                                       | 0.00036<br>0.00096   |    |
|                | N-PENTANE<br>N-HEPTANE            | 3.59321             | 3.59321             | 0.00001                                                                                                                                                                                                                                  | D.00001              |    |
|                |                                   |                     |                     |                                                                                                                                                                                                                                          |                      |    |
| -              | TOTAL                             | 128.60571           | 128.80571           | 33.78210                                                                                                                                                                                                                                 | 33.78210             |    |
|                |                                   |                     |                     |                                                                                                                                                                                                                                          |                      |    |

a the second states in the

أساسه أنعلها المش

-----

بعا بالمرتجب النبيع حبا بالتلك

STREAM NUMBER

 $\sim$ 

Ć

 $\bigcirc$ 

. .

·",

3 - C

----

1.0

Ċ.

. . .

10

| Ć   | EQUIP CONXION   | FR 5 TO 7 | FR 7 TO D FR |
|-----|-----------------|-----------|--------------|
|     | VAPOR FRACTION  | 0.0000    | 0.0000       |
|     | TEMPERATURE, F  | -61.9535  | -59.6143     |
|     | PRESSURE, PSIA  | 300.0042  | 500.0017     |
|     | ENTHALPY, K.öTU | 628.8650  | 631.5303     |
| , c | PRESSURE, PSIA  | 300.0042  | 500.0017     |

# COMPOSITION, LB-MOLES/UNIT TIME

المواجدة والمتباطين جماعهمي الواجد وأحيار العاري

| CO2<br>NITROGEN<br>METHANE<br>ETHANE<br>PROPANE<br>I-BUTANE<br>N-BUTANE<br>I-PENTANE<br>N-PENTANE<br>N-HEPTANE | D.10860<br>0.06497<br>23.81145<br>23.75160<br>25.92746<br>2.87291<br>10.31974<br>2.23431<br>2.40429<br>3.59321 | C.10860<br>O.06497<br>23.81145<br>23.75160<br>25.92746<br>2.87291<br>10.31974<br>2.23431<br>2.40429<br>3.59321 |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| TOTAL                                                                                                          | 95.02359                                                                                                       | 95.02359                                                                                                       |

-----

CHESS3 ... TEST CASE FOR ROTATIONAL EQUIPMENTS

الارتقاص فالعند الروار

SUMMARY OF ENERGY REQUIREMENTS: 

~

(

0

r

r

- 2

2

------

\_\_\_\_\_ -----------UNIT NUMBER = 1 COMPRESSOR  $( \Box )$ NUMBER OF STAGES = 1 COMPRESSION RATIO PER STAGE = 2.075 BREAK HORSEPOWER = 10.570 C STAGE DISCHARGE TEMP., DEG F HEAT EXCH.DUTY: K-BTU 1 53.7 30.780 30.780 ---------- $( \cdot )$ -----

UNIT NUMBER = 2 (HYDRAULIC TURBINE RECOVERABLE HORSEPOWER = 1.695 \*\*\*\*\*\*\*\*\*\* UNIT NUMBER = 6 GAS EXPANDER s., RECOVERABLE HORSEPOWER = 5.583 \*\*\*\*\* ..... UNIT NUMBER = 7 PUMP BREAK HORSEPOWER = 4.189

223

. . . . .

AN EXAMPLE OF INPUT DATA : IDLL=4, IDLV=3, IDH=0

```
CHESS3 ... TEST CASE FOR ROTATIONAL EQUIPMENTS
10, 4, 3, 0, 0, 0,
  49, 46, 2, 3, 4, 5, 6, 7, 8, 11,
49, 46, 2, 3, 4, 5, 0, 7, 0, 1,

7, 6, 2, 4, 1,

1, "COMP", "U=1", 1, -2, 5+0,

2, "HYTR", "U-2", 3, -4, 5+0,

3, "MIXR", "U-3", 2, 4, -5, 4+0,

4, "VALV", "U-4", 5, -6, 5+0,

5, "ADBF", "U-5", 6, -7, -9, 4+0,

6, "GSXP", "U-6", 7, -8, 5+0,

7, "PUMP", "U-7", 9, -10, 5+0,

3- 49+0.
 3, 49+0,
 1, 28.239, 225.0, 0.85, 3, 20*0.0,
                                                             2, 28.239, C.60, 22+0.0,
4, 20.414, C.C, 22+0.0,
5, 2.0, 23*0.0,
5, 3.2023, 0.60, 22*0.0,
7, 34.023, C.75, 22*0.0,
2, 4, 5, 6, 7, 8, 9, 10, 92*C,
1, 0.0, 15129.0, 9.307C, 67.646, 12920.0, 1646.8, 420.54,
17.434, 40.678, 3.768), 2.7690, 0.454,
3, 0.0, 43296.0, 39.952, 67.646, 13069.0, 9126.8, 11340.0,
            1285.7, 4640.3, 1009.7, 1087.8, 1629.4,
2, 4, 5, 6, 7, 9, 94*0,
1, 1.0, 1.0, 241.05, 13.609, 0.0, 4*0.0,
3, 1.0, 0.0, 222.07, 40.827, 0.0, 4*0.0,
8, 2.0, 8+0.0,
10, 2.0, 8+0.0,
20, 5, 0, 0.0001,
50+0,
50+0,
```

5

50+0,

## APPENDIX D

# PROGRAM LISTINGS OF SELECTED MODULES

FORTRAN IV **VER 59** SOURCE LISTING: 08/16/85 15:01:31 1 PROGRAM CHESS3 2 C 3 C\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* 4 C \* CHESS :3 . 5 C+. N.J.1.T • MAY, 1985 6 C\* . 7 C\* JOYDEEP BANERJEE . 8 [\*\*\*\* 9 COMMON /CNTRL/ NCR,NPRT 10 COMMON /CONTL/ NIN, NOUT, NOCOMP, NE, NEN, KUNITS 11 EQPAR(25,50), NEMAX, MAXEQP COMMON /EQPA/ 12 COMMON /EQPB/ NECALL (50), NEXEGN (50), NAME (50) 13 COMMON /MTST/ ISAVEX(100), SAVEQ(50) 14 COMMON /41X/ FMIX,ZMIX,BMIX,AA1,39,BB1,ZMX 15 COMMON SEXTSV(13,100),SINTSV(10,100),NSMAX,MAXSEX,MAXSI /STMA/ 16 COMMON /STRMIN/ SINUH(4), SIFLAG(4), SIVPFR(4), SITENP(4), SIPRES(4) 17 SIENTH (4), SIVISC (4), SITHK (4), SIZ (4), SIS (4), 18 SIMOLE(4), SICOMP(10,4), SIKV(10,4) 19 /STMOUT/ SONUM (4), SOFLAG (4), SOVPER (4), SOTEMP (4), SOPRES (4) COMMON 20 SOENTH(4), SOVISC(4), SOTHK(4), SOZ(4), SOS(4), 21 SOMOLE(4), SOCOMP(10,4), SOKV(10,4) 22 /SYSAA/ COMMON TITLE(20), COMPNT(10), KOMNAH(40) 23 COMMON /SYSA/ KPM(10,50), KSEM(3,100), N3HAX 24 COMMON /SYSB/ KE1(50), NE1MAX, KE2(50), NE2MAX, KE3(10), NE3MAX, 25 KE4(10), NE4MAX, KRET, KRET2, KRET3 26 COMMON /SYSC/ LA, LB, LC, LOOP, LOOPS 27 COMMON /SYSD/ KEFLAG (50), KSFLAG (100), KTRACE, DERROR, NPFRED. 28 \* IPUNCH NC. NCM1, IDLL, IDLV, IDH, LDBUG, ISW, NPNRBL, NDIM, 29 COMMON /CMPRO/ 30 . ZNAME(2,10), L(10), NTCOMP(10), ITR, ITRMAX, 31 \* NST, NSTM1, NK1, NK2, NK11, NK21, NCASE, NFEED, 32 ۰ NFTOP, NFBTH, LF(8), IDCODE, ICODE, CPCODE(10) 33 COMMON /ZDATA/ CPL(10,4),CPV(10,4),ENP(10,10),ANT(6,10),ADEL(10) 34 W(10), AX, BX, OMEGA(10), AVAL(10), BVAL(10), HODEAF, ٠ 35 \* AK(10,10), R(10), Q(10), XL(10), VOL(10), TB(10), 36 . C(180), ALPHA(45), VC(10), TC(10), PC(10), EVAP(10), 37 OA(10), OB(10), AA(10,10), G(10,10), ZRA(10) \* 38 COMMON /STREAM/  $T_{P}$ , Z(10), Y(10), X(10), FRACV, ZVAP, 39 \* EK(10), VP(10), FUG(10), GAH(10), VZ(11), SVAP, 40 ٠ HOFZ, HVAP, HLIQ, DHV, DSV, XSH, DSL, NOBUB, NODEW 41 C 42 C WRITE (6,99999) 43 C9999 FORMAT( ", 113X, "PROGRAM CHESS 3") 44 C 45 C SYSTEM LIMITS 46 C **10 COMPONENTS** 47 C 50 STREAMS 48 C 100 NODES(PIECES OF EQUIPMENT) 49 C 50 NC R= 5 51 NPRT=6 "MODEAF" IS A SWITCH USED BY THE PENG-ROBINSON 52 C 53 C EQN. TO CALCULATE INTERACTION PARAMETERS. IT IS SET ON BY THE ROUTINE "AFLASH" FOR 54 C 55 C ADIABATIC FLASH CALCULATIONS. 56 C

 $\bigcirc$ 

....

C

(

C

----

**.**..

ं

,

228 FORTRAN IV VER 59 SOURCE LISTING: CHESS3 PROGRAM 08/16/85 15:01:31 57 MODEAF=0 58 C 59 C KODE = O REQUIRES AN INITIALIZATION OF ALL VARIABLES 60 C KODE = -1 IMPLIES A VARIATION OF THE PREVIOUS CASE 61 C KODE = 1 PROBLEM DATA HAS ERROR - TERMINATE PROGRAM 52 C 63 KODE=0 56 10 CALL DREAD (KODE) 65 IF (KODE) 12,11,20 66 C 67 C CALL NETWORK ANALYZER ROUTINE ... DENETS 68 C 11 CALL DENETS (\$10) 69 70 C 71 C 72 C----CODES FOR LIQUID AND VAPOR PHASE MODELS 73 C 74 C LIQUID PHASE 75 C 0 = IDEAL 1 = VIRIAL EQUATION OF STATE 2 = "NRTL" MODEL OF RENON & PRAUSTNIZ 76 C 77 C 78 C 3 = UNIQUAC EQUATION OF STATE 79 C 4 = CHAO-SEADER PROCEDURE 80 C 5 = SPECIAL LIBRARY #1 (NRTL) 81 C 6 = PENG-ROBINSON EQUATION OF STATE 82 C VAPOR PHASE 83 C 84 C 0 = IDEAL 85 C 1 = VIRIAL EQUATION OF STATE 86 C 2 = REDLICH KWONG EQUATION OF STATE 87 C 3 = SOAVE - REDLICH -KWONG EQUATION OF STATE 58 C 4 = UNDEFINED NOW. 89 C 5 = SPECIAL LIBRARY #1 (RK) 90 C 6 = PENG-ROBINSON EQUATION OF STATE 91 C 92 IF (IDLL.LT.O .OR. IDLL.GT.6) IDLL=0 93 IF (IDLV.LT.D .OR. IDLV.GT.6) IDLV=0 94 C 95 12 IF (KODE.EQ.-1) 60 TO 14 96 C 97 C ACCESS DATA RETRIEVAL PROGRAM 98 C 99 WRITE (NPRT,13) 100 13 FORMAT ("1") 101 IF (IDLV.EQ.5) CALL ZPVT 102 IF (IDLL.EQ.5) CALL ZNRTL IF (IDLL.EG.6.AND.IDLV.EG.6) CALL COMPID 103 104 IF (IDLL.EQ.4.AND.IDLV.EQ.4) CALL COMPID 105 IF (IDLL.ER.4) CALL COMPID 106 IF (IDLL.EQ.4.AND.IDLV.EQ.2) CALL COMPID IF (IDLL.EQ.O.AND.IDLV.EQ.D) CALL COMPID 107 108 IF (IDLL.EQ.4.AND.IDLV.EQ.3) CALL COMPID 109 IF (IDLV.EQ.6) CALL COMPID 110 IF (IDLV.EQ.3) CALL COMPID 111 IF (IDLL.ER.5.AND.IDLV.ER.5) CALL CDATA 112 C

 $( \ )$ 

~.

÷.

· ()

• · · · · ·

FORTRAN IV VER 59 SOURCE LISTING: CHESS3 PROGRAM DB/16/85 15:01:31 . 113 C\*\*\*\*\* PRINTOUT FOR CHOSEN PHASE MODEL CODES 114 C 115 14 WRITE (NPRT, 15) IDLL, IDLV, IDH 15 FORMAT ("DVAPOR-LIQUID EQUILIBRIUM DATA CODES:"/ 116 5X, 'LIQUID =', I4 / 5X, 'VAPOR =', I5/ 5X, 'ENTHALPY =', I2/) 117 118 ٠ 119 ٠ IF (IDLL.EQ.4) WRITE(6,155) 120 121 IF (IDLL.EQ.D.AND. IDLV.EQ.D)WRITE(6, 156) 122 IF(IDLV.EQ.3)WRITE(6,157) IF (IDLV.EQ.2)WRITE(6,158) 123 124 IF (IDLV.EQ.6) WRITE(6,159) 125 IF (IDLL.EQ.6)WRITE (6,160) 126 IF (IDH.EQ.D) WRITE(NPRT, 161) 127 IF (IDH.EQ.1) WRITE(NPRT, 162) IF (IDH.EQ.2) WRITE(NPRT,163) 128 IF (IDH.EQ.2) WRITE(NPRT,163) FORMAT('D', 'LIQUID PHASE MODEL :',' CHAO-SEADER EQN.') FORMAT('D', 'IDEAL GAS AND IDEAL LIQUID STATE MODELS') FORMAT('D', 'VAPOR PHASE MODEL : SOAVE-REDLICH-KWONG EQN.') FORMAT('D', 'VAPOR PHASE MODEL :',' REDLICH-KWONG EQN.') FORMAT('D', 'LIQUID PHASE MODEL :',' PENG-ROBINSON EQN.') FORMAT('D', 'LIQUID PHASE MODEL :', 'PENG-ROBINSON EQN.') FORMAT('D', 'ENTHALPY CORRECTION : FOR BOTH PHASES.') FORMAT('D', 'ENTHALPY CORRECTION : FOR VAPORS ONLY') FORMAT('D', 'ENTHALPY CORRECTIONS ARE NOT CALCULATED') 129 155 130 156 131 157 132 158 133 159 134 160 135 161 136 162 137 163 138 C 139 C++++ \*\*\*\*\* \*\*\*\*\*\* 140 C 141 IF (KODE.EG.-1) 60 TO 18 142 C INITIALIZE ALL DEFINED STREAMS & CHECK STREAM FLAGS 143 C 144 C 145 CALL INIT 146 CALL DCHECK (KODE) 147 IF (KODE.EQ.1) 60 TO 20 148 C 149 C PRINT OUT THE FLOW SHEET NETWORK & THE ASSOCIATED STREAMS 150 C 151 18 WRITE (NPRT,13) 152 CALL DPRINT 153 C 154 C 155 C---- THE FOLLOWING SUPPLIES THE HEADING FOR 156 C----THE TABLES TO BE PRINTED FOR SUMMARIZING 157 C----STREAM CONDITIONS AND PROPERTIES AT THE 158 C----OUTLET OF EACH EQUIPMENT. 159 C----COULD BE REMOVED WITH IPT<>1. 160 C 161 IPT=1152 IF (IPT.NE.1)GO TO 67 163 WRITE(6,13) 164 WRITE(6,133) 165 133 FORMAT("DFOLLOWING TABLES TRACE THE CHANGES IN THE THERMODYNAMI 166 + PROPERTIES.") 167 WRITE(6,1331) 158 1331 FORMATCOTHE STREAM CONDITIONS AT THE OUTLET OF EACH ".

(

<u>.</u>

*...* 

229

The second se

FORTRAN IV VER 59 SOURCE LISTING: CHESS3 PROGRAM 08/16/85 15:01:31 169 ; "EQUIPMENT NODE ARE TABULATED") WRITE(6,134) Format("OUNITS ARE : 6M.MOLE CALORIES OK ATM 170 171 134 () 22 172 WRITE(6,136) 173 136 FORMATE OID = STANDARD COMPONENT IDENTIFICATION # OF CHESS') WRITE(6,137) FORMAT(" X, Y = LIQUID AND VAPOR COMPOSITIONS") 174 175 137 176 WRITE(6,138) 177 138 FORMAT(" FUG, GANA= FUGACITY AND ACTIVITY COEFFICIENTS") WRITE(6,1381) Format(" K = Equilibrium Ratios") 178 179 1381 WRITE(6,139) Format(" VP= VAPOR PRESSURES VIA ANTOINE EQN.") 150 181 139 WRITE(6,141) Format(" VZ= COMP. FACTOR FOR COMPONENTS") 182 183 141 WRITE(6,142) FORMAT(" M.VOL= NOLAL VOLUMES") 184 135 142 186 WRITE(6,1335) 187 1335 FORMAT("0") 188 C\*\*\*\* \*\*\*\*\*\* \*\*\*\*\*\* 189 C 190 C EVALUATE THE NETWORK INCLUDING ALL RECYCLES 191 C BY CALLING SUBSET 192 C 193 67 CALL SUBSET 194 C 195 C PRINT OUT THE FINAL RESULTS 196 C WRITE (NPRT, 100) 197 198 100 FORMAT ( 1H1, "FINAL RESULTS" ) 199 CALL TPRINT 200 CALL EPRINT 201 KODE = -1202 60 TO 10 203 C 204 20 STOP 205 END

2

C

C

C

.

· ()

Ċ

(

Ċ,

<u>e</u> ~.

٢.

 $\mathcal{E}$ 

230

and we can approximate and an experimental second second second second second second second second second second

FORTRAN IV **VER 59** SOURCE LISTING: 08/16/85 15:01:31 1 SUBROUTINE ADBF 2 C 3 COMMON /CNTRL/ NCR, NPRT 4 COMMON /CONTL/ NIN, NOUT, NOCOMP, NE, NEN, KUNITS 5 COMMON /MIX/ FMIX, ZMIX, BMIX, AA1, BB, BB1, ZMX 6 7 COMMON KET(SD), NETHAX, KE2(SD), NE2MAX, KE3(10), NE3MAX, /SYSB/ KE4(10), NE4MAX, KRET, KRET2, KRET3 8 COMMON KEFLAG(50), KSFLAG(100), KTRACE, DERROR, NPFREG, /SYSD/ 9 IPUNCH 10 COMMON /EQPA/ EQPAR(25,50),NEMAX,MAXEQP 11 COMMON / CMPRO/ NC, NCH1, IDLE, IDLV, IDH, LDBUG, ISW, NPNRBL, NDIM, 12 • ZNAME(2,10), L(10), NTCOMP(10), ITR, ITRMAX, 13 NST, NSTAT, NK1, NK2, NK11, NK21, NCASE, NFEED, 14 . NFTOP,NFBTM,LF(8),IDCODE,ICODE,CPCODE(10) 15 CPL(10,4), CPV(10,4), ENP(10,10), ANT(6,10), ADEL(10), COMMON /ZDATA/ 16 W(10), AX, BX, OHEGA(1)), AVAL(10), BVAL(10), HODEAF, 17 AK(10,10),R(10),Q(10),XE(10),VOL(10),TB(10), 18 C(180), ALPHA (45), VC (10), TC (10), PC (10), EVAP(10), ٠ 19 DA(10),08(10),AA(10,10),6(10,10),ZRA(10) 20 COMMON /STRMIN/ SINUM(4),SIFLAG(4),SIVPFR(4),SITEMP(4),SIPRES(4) 21 SIENTH(4), SIVISC(4), SITHK(4), SIZ(4), SIS(4), 22 SIMOLE(4), SICOMP(10,4), SIKV(10,4) 23 /STMOUT/ SONUM(4),SOFLAG(4),SOVPFR(4),SOTEMP(4),SOPRES(4) COMMON 24 \* SOENTH(4), SOVISC(4), SOTHK(4), SOZ(4), SOS(4), 25 \* SOMOLE(4), SOCOMP(10,4), SOKV(10,4) 26 COMMON /STREAM/ T, P, Z(10), Y(10), X(10), FRACV, ZVAP, 27 \* EK(10), VP(10), FUG(10), GAH(10), VZ(11), SVAP 28 HOFZ, HVAP, HLIQ, DHV, DSV, XSH, DSL, NOBUB, NODEW . 29 REAL TR(10) 30 LOGICAL NONCRE(10) 31 C 32 C EQPAR(1,NE) = EQUIPMENT NUMBER 33 C EQPAR(2,NE) = MODE OF FLASH CALCULATION 34 C 35 C 36 C---- NONCBF(1) ARE FLAGS ,SET TRUE IF NON-CONDENSIBLES 37 C----EXIST IN A STREAM. FOLLOWING COMPONENTS ARE CLASSIFIED: 38 (----H2,02,N2,NH3,S02,H2S,C0,C02,C2H2. 39 C 40 C 41 C---- NPNRBL IS THE SWITCH USED BY THE PENG-42 C---- ROBINSON MODULES TO DECIDE WHETHER THE VAPOR 43 C---- OR THE LIQUID PHASE IS BEING HANDLED 44 C 45 NPNRBL=0 46 C 47 C 48 DO 75 I=1,NC 49 NONCBF(I)=.FALSE. 50 IF (NTCOMP(I).EQ.1) NONCBF(I)=.TRUE. 51 (NTCOMP(I).EQ.46) NONCBF(I)=.TRUE. IF 52 IF. (NTCOMP(I).ER.47) NONCBF(I)=.TRUE. IF (NTCOMP(I).EQ.48) NONCBF(I)=.TRUE. 53 54 IF (NTCOMP(I).EQ.49) NONCBF(I)=.TRUE. 55 IF (NTCOMP(I).ER.50) NONCBF(I)=.TRUE. 56 IF (NTCOMP(I).EQ.51) NONCBF(I)=.TRUE.

The Ast & Hereitzen and the second se

Ċ

0

C

(

FORTRAN IV VER 59 SOURCE LISTING: ADBE SUBROUTINE 08/16/85 15:01:31 57 IF (NTCOMP(I).EQ.63) NONCBF(I)=.TRUE. IF (NTCOMP(I).EQ.65) NONCBF(I)=.TRUE. 58 59 75 CONTINUE 50 C 61 C 52 C IF (EQPAR(2, NE) . LE. D. D . OR. EQPAR(2, NE). GT. 6. D) EQPAR(2, NE) = 2. D 63 64 MODE=EQPAR(2,NE)+0.1 65 C 66 C----FLAG "MODEAF" IS USED BY PENG-ROBINSON MODULES. 67 C 58 MODEAF=0 59 C 70 C----FOLLOWING COMPUTES: .. VAPOR PRESSURES IN ATM . 71 (-----..SETS PHASE CLASSIFICATION CODE (L(I) VALUES) 72 C----L(I) = -1 FOR NON-VOLATILES 73 C-----= O FOR NON-CONDENSIBLES 74 [----z 1 FOR NORMAL PHASES(CONDENSIBLES PRESENT) 75 [----z i 2 FOR SUPERCRITICAL PHASES 76 C 77 C 78 DO 99 I=1,NC 79 PP=SIPRES(1) 80 TT=SITEMP(1) 81 PTEST=EXP(ANT(1,1)+ANT(2,1)/(ANT(3,1)+TT)+ANT(5,1)+TT 82 \* +ANT(6,1)+TT+TT+ANT(4,1)+ALDG(TT)) 83 PTEST=PTEST/760.00 84 VP(I)=PTEST 85 IF (PP.GE.PC(I).AND.TT.GE.TC(I)) 60 TO 91 IF (PP.LT.PC(I).AND.TT.GT.TC(I)) 60 TO 92 86 IF (PP.GT.PTEST.AND.PP.LT.PC(I).AND.TT.LT.TC(I)) GO TO 93 87 88 IF (TT.LT.TC(I).AND.PP.LT.PTEST)L(I)=1 89 L(I)=1 90 60 TO 99 91 91 L(I)=2 92 60 TO 99 93 92 IF (NONCBF(I)) GO TO 925 94 60 TO 91 95 925 L(I)=0 96 60 TO 99 97 93 L(I) = -1WRITE(6,901)TT,PP,PTEST,TC(I),PC(I),L(I) FORMAT( ADBF\*\*++\*\* T P VP TC PC L ^,5F10.5,I3) 98 6990 99 6901 100 99 CONTINUE 1D1 C----COMPUTES THE SATURATED LIQUID VOLUME AT 1D2 C----THE SYSTEM TEMP. USING THE RACKETT EQN. 103 C----MODIFIED BY SPENCER & DANNER. 104 DO 399 I=1,NC 105 TR(I)=SITEMP(1)/TC(I) 106 POWER1=1.00+(1.00-TR(I)++(2.0/7.0)) 107 POWER2=1.60+0.00693026/(TR(I)-0.655) 108 IF (TR(I).LT.J.75) 60 TO 391 VOL(I)=82.06/PC(I)+TC(I)+ZRA(I)++POWER2 109 110 60 TO 399 111 391 VOL(I)=82.06/PC(I)+TC(I)+ZRA(I)++POWER1 112 399 CONTINUE

المان الي المركبة المحدد المالية **المنظرة المحمول والمراجع والمراجع ا**لمالية الم

 $\langle \uparrow \rangle$ 

 $\sim$ 

<u>،</u> آ

23

232

يرا والصالحات الرابان والمالية مرتم محموم براما مرتجا متركب محمد والمراجع والمراجع المراجع

| FORTRAN    | ĪV | VER 59 SOURCE LISTING: ADBE                                                                                                                                                                                                                                                                                                                                                                       | SUBROUTINE | 08/16/85 | 15:01:3 |
|------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|---------|
| 113        |    | P=SIPRES(1)                                                                                                                                                                                                                                                                                                                                                                                       |            |          |         |
|            |    | SOPRES(1)=P                                                                                                                                                                                                                                                                                                                                                                                       |            |          |         |
| 115        |    | SOPRES(1) = P<br>T=SITEMP(1)<br>HOFZ=SIENTH(1)/SIMOLE(1)<br>FRACV=SIVPFR(1)<br>DO 10 I=1,NOCOMP<br>2(I)=SICOMP(I,1)<br>GO TO (11,12,13,14,15,16), MODE<br>CALL AFLASH<br>GO TO 19<br>CALL AFLASH<br>GO TO 19<br>CALL AFNODB<br>GO TO 19<br>CALL TFLASH<br>GO TO 19<br>CALL TFNODB<br>GO TO 19<br>CALL DEWT<br>GO TO 19<br>CALL BUBT<br>SIVPFR(1)=FRACV<br>SIENTH(1)=HOFZ*SIMOLE(1)<br>SITEMP(1)=T |            |          |         |
| 116        |    | 1- 311EMF(1)<br>H0 67-616NTU/1)/61M0+ F/AN                                                                                                                                                                                                                                                                                                                                                        |            |          |         |
| 117        |    | CDACH-CINDED(4)                                                                                                                                                                                                                                                                                                                                                                                   |            |          |         |
| 118        |    | FRACU-314FFR(1)                                                                                                                                                                                                                                                                                                                                                                                   |            |          |         |
| 119        |    | DU TU I=T,NOCOMP                                                                                                                                                                                                                                                                                                                                                                                  |            |          |         |
| 120 C      | 10 | 1 2(1) #SICOMP(1,1)                                                                                                                                                                                                                                                                                                                                                                               |            |          |         |
| 120 6      |    |                                                                                                                                                                                                                                                                                                                                                                                                   |            |          |         |
| 121<br>122 |    | 60 TO (11,12,13,14,15,16), MODE                                                                                                                                                                                                                                                                                                                                                                   |            |          |         |
| 122        | 11 | CALL AFLASH                                                                                                                                                                                                                                                                                                                                                                                       |            |          |         |
| 123        |    | 60 TO 19                                                                                                                                                                                                                                                                                                                                                                                          |            |          |         |
| 124        | 12 | CALL AFNODB                                                                                                                                                                                                                                                                                                                                                                                       |            |          |         |
| 125        |    | 60 TO 19                                                                                                                                                                                                                                                                                                                                                                                          |            |          |         |
| 126        | 13 | CALL TFLASH                                                                                                                                                                                                                                                                                                                                                                                       |            |          |         |
| 127        |    | 60 TO 19                                                                                                                                                                                                                                                                                                                                                                                          |            |          |         |
| 128        | 14 | CALL TENODB                                                                                                                                                                                                                                                                                                                                                                                       |            |          |         |
| 129        |    | 60 TO 19                                                                                                                                                                                                                                                                                                                                                                                          |            |          |         |
| 130        | 15 | CALL DEWT                                                                                                                                                                                                                                                                                                                                                                                         |            |          |         |
| 131        |    | 60 TO 19                                                                                                                                                                                                                                                                                                                                                                                          |            |          |         |
| 132        | 16 | CALL BUBT                                                                                                                                                                                                                                                                                                                                                                                         |            |          |         |
| 133 C      |    |                                                                                                                                                                                                                                                                                                                                                                                                   |            |          |         |
| 134        | 19 | SIVPFR(1)=FRACV                                                                                                                                                                                                                                                                                                                                                                                   |            |          |         |
| 135        |    | SIENTH(1)=HOFZ+SIMOLE(1)                                                                                                                                                                                                                                                                                                                                                                          |            |          |         |
| 136        |    | SITEMP(1)=T                                                                                                                                                                                                                                                                                                                                                                                       |            |          |         |
| 137        |    | SOTEMP(1)=T                                                                                                                                                                                                                                                                                                                                                                                       |            |          |         |
| 138 C      |    | SITEMP(1)=T<br>SITEMP(1)=T<br>IF (NOUT.EQ.2) 60 TO 30<br>SO VPFR(1)=FRACV<br>SOMOLE(1)=SIMOLE(1)<br>SO ENTH(1)=SIENTH(1)<br>DO 20 I=1.NOCOMP                                                                                                                                                                                                                                                      |            |          |         |
| 139        |    | IF (NOUT.E9.2) 60 TO 30                                                                                                                                                                                                                                                                                                                                                                           |            |          |         |
| 140        |    | SO VP FR (1) = FRACY                                                                                                                                                                                                                                                                                                                                                                              |            |          |         |
| 161        |    | SOMOLE(1) = SIMOLE(1)                                                                                                                                                                                                                                                                                                                                                                             |            |          |         |
| 142        |    | SOENTH(1) = STENTH(1)                                                                                                                                                                                                                                                                                                                                                                             |            |          |         |
| 143        |    | D0 20 I=1,NOCOMP<br>S0COMP(I,1)=SICOMP(I,1)<br>G0 T0 50<br>S0VPFR(1)=1.0<br>S0VPFR(2)=0.0<br>S0PRES(1)=P                                                                                                                                                                                                                                                                                          |            |          |         |
| 144        | 20 | SOCOMP(1,1)=STCOMP(1,1)                                                                                                                                                                                                                                                                                                                                                                           |            |          |         |
| 145        |    | 60 TO 50                                                                                                                                                                                                                                                                                                                                                                                          |            |          |         |
| 146 C      |    |                                                                                                                                                                                                                                                                                                                                                                                                   |            |          |         |
| 147        | 30 | SOVP FP (1) =1.0                                                                                                                                                                                                                                                                                                                                                                                  |            |          |         |
| 148        |    |                                                                                                                                                                                                                                                                                                                                                                                                   |            |          |         |
| 149        |    | SOPRES(1)=P                                                                                                                                                                                                                                                                                                                                                                                       |            |          |         |
| 150        |    | SOTEMP(1)=T                                                                                                                                                                                                                                                                                                                                                                                       |            |          |         |
| 151        |    | COBB [ [ / ] -0                                                                                                                                                                                                                                                                                                                                                                                   |            |          |         |
| 152        |    | SOTENP(2)=T                                                                                                                                                                                                                                                                                                                                                                                       |            |          |         |
| 153        |    | SOMOLE(1)=SIMOLE(1)+FRACY                                                                                                                                                                                                                                                                                                                                                                         |            |          |         |
| 154        |    | SUMULE(I)=SIMULE(I)=FRACY                                                                                                                                                                                                                                                                                                                                                                         |            |          |         |
| 155        |    | SOMOLE(2)=SIMOLE(1)+(1.0-FRACV)                                                                                                                                                                                                                                                                                                                                                                   |            |          |         |
|            |    | SOENTH(1)=HVAP+SOMOLE(1)                                                                                                                                                                                                                                                                                                                                                                          |            |          |         |
| 156        |    | SOENTH(2) =HLIQ+SOMOLE(2)                                                                                                                                                                                                                                                                                                                                                                         |            |          |         |
| 157        |    | SOZ(1)=ZVAP                                                                                                                                                                                                                                                                                                                                                                                       |            |          |         |
| 158        |    | SOZ(2)=ZVAP                                                                                                                                                                                                                                                                                                                                                                                       |            |          |         |
| 159        |    | DO 40 I=1,NOCOMP                                                                                                                                                                                                                                                                                                                                                                                  |            |          |         |
| 160        |    | SOCOMP(I,1) = Y(I) + SOMOLE(1)                                                                                                                                                                                                                                                                                                                                                                    |            |          |         |
| 161        | 40 | SOCOMP(I, 2) = X(I) + SOMOLE(2)                                                                                                                                                                                                                                                                                                                                                                   |            |          |         |
| 152 C      |    |                                                                                                                                                                                                                                                                                                                                                                                                   |            |          |         |
|            | 50 | RETURN                                                                                                                                                                                                                                                                                                                                                                                            |            |          |         |
| 164        |    | END                                                                                                                                                                                                                                                                                                                                                                                               |            |          |         |

-

~

 $\gamma \sim$ 

~

. ~-

•. •

,

. .

.

•

FORTRAN IV **VER 59** SOURCE LISTING: 08/16/85 15:03:37 1 SUBROUTINE FLASH WRITE (6,99999) 2 C 3 C9999 FORMAT(" ", 113X, "SUBROUTINE FLASH") 4 C 5 C FLASH ROUTINE... PRESSURE AND TEMPERATURE ARE GIVEN 6 C 7 ۵ DETERMINES THE FRACTION VAPORIZED FOR A ONE LIQUID PHASE SYSTEM 8 C 9 C 10 COMMON /CNTRL/ NCR, NPRT 11 NC,NCM1,IDLL,IDLV,IDH,LDBUG,ISW,NPNRBL, NDIM, COMMON /CMPRO/ 12 ٠ ZNAME(2,10), L(10), NTCOMP(10), ITR, ITRMAX, 13 ٠ NST, NSTM1, NK1, NK2, NK11, NK21, NCASE, NFEED, 14 \* NFTOP, NFBTM, LF(8), IDCODE, ICODE, CPCODE(10) /STREAM/ T, P, Z(10), Y(10), X(10), FRACV, ZVAP, EK(10), VP(10), FUG(10), GAM(10), VZ(11), SVAP, 15 COMMON 16 ٠ 17 HOFZ, HVAP, HLIQ, DHV, DSV, XSH, DSL, NOBUB, NODEW \* 18 REAL xx(10), sx(10), xc(10), yy(10), sy(10), yc(10) 19 ٠ 20 C 21 EQUIVALENCE (R,FRACV) 22 C 23 DATA CONV /1.DE-3/, CONV1 /1.DE-4/ 24 DA TA SMALL /0.00001/ 25 C 26 C R IS VAPOR FRACTION 27 C IF R IS APPROXIMATELY 1.0, SYSTEM IS ALL VAPOR 28 C IF R IS APPROXIMATELY 0.0, SYSTEM IS ALL LIQUID 29 C 30 HV AP=0.0 31 HL 19=0.0 32 X S H= 0.0 33 DHV=0.0 34 H0 FZ=0.0 35 C 36 KNT=0 37 IDx=138 ISW=0 39 C 40 RMIN=0.0 41 RMAX=1.0 42 C 43 UY =0 .0 44 UX = 0.0 45 00 2 I=1,NC 46 UY = UY + Y(I)47 2 UX = UX + X(I)48 IF (UY+UX .GT. 0.0) 60 TO 13 49 C 50 DO 9 I=1,NC 51 IF (L(I)) 6,7,8 52 C NON-VOLATILE 6 RMAX=RMAX-Z(I) 53 54 Y(1) = 0.055 X(I)=Z(I) 56 60 TO 9

----

-

 $\sim$ 

~

. "

.

FORTRAN IV VER 59 SOURCE LISTING: FLASH SUBROUTINE 08/16/85 15:03:37 57 C NON-CONDENSIBLE 58 7 RMIN=RMIN+Z(I) 59 Y(I)=Z(I)60 X(I) = 0.061 60 TO 9 NORMAL AND SUPERCRITICAL 62 C 53 8 Y(1)=Z(1)/2.0 64 X(I)=Y(I) 55 9 CONTINUE 66 R= (RMIN+RMAX)/2.0 67 UY =0.0 68 UX =0.0 59 DO 12 I=1,NC 70 UY = UY + Y(I)71 12 UX = UX + X(I)72 C 73 13 DO 14 I=1.NC 74 Y(I)=Y(I)/UY 75 14 X(I)=X(I)/UX 76 CALL KCALC 77 ISH=1 78 60 TO 21 79 C 50 20 CALL KCALC 81 C 82 21 KNT=KNT+1 IF (LDBUG.EQ.D) GO TO 29 WRITE (NPRT,25) T, R, KNT 25 FORMAT ("FLASH T/R", 2F15.5,11D) 83 84 85 86 C 87 29 K=0 88 30 AMAX=RMAX 89 AMIN=RMIN 90 C IF (R.E0.1.0) R=0.999999 91 IF (R.EQ.1.0) R=1.0-1.0E-7 92 IF (R.EQ.0.0) R=1.0E-7 93 F=0.0 94 DF=0.0 DO 80 I=1,NC 95 96 IF (L(I))40,50,60 97 C NON-VOLATILE 98 40 S=1.0/(1.0-R) 99 60 TO 70 NON-CONDENSIBLE 100 C 101 50 S=-1.0/R 102 GO TO 70 103 C NORMAL AND SUPERCRITICAL 104 60 S=(1.0-EK(I))/(1.0+R\*(EK(I)-1.0)) 105 70 F=F+Z(I)+S 106 80 DF=DF+Z(I)\*S\*S 107 DR = -F/DF108 K=K+1 109 C 110 IF (LDBUG.EQ.D) 60 TO 90 111 WRITE (NPRT,85) F,DR,R 85 FORMAT (SX, "F-DR-R", 3E14.5 ) 112

: : :

1.14

.

235

. . . . . .

FORTRAN IV VER 59 SOURCE LISTING: FLASH SUBROUTINE 08/16/85 15:03:37 113 IF (LDBUG.EQ.1) 60 TO 90 D0 86 J=1,NC 114 115 86 WRITE (NPRT,87) J,EK(J),VP(J),FUG(J),GAM(J) 116 87 FORMAT (120,4620.6) 117 C 118 90 IF (K-20) 99,190.91 119 91 WRITE (NPRT, 92) 92 FORMAT ("OFLASH CALCULATION TERMINATED"/ 120 + CALCULATION CONTINUING" ///) 121 122 60 TO 320 123 C 99 IF (ABS(F).LT.CONV1) 60 TO 190 124 125 C IF (F) 100,190,110 126 C 100 AMIN=R 127 C 60 TO 120 128 C 110 AMAX=R 129 C 120 IF ((AMAX-AMIN).LT.CONV1) GO TO 170 130 IF (ABS(R-AMIN).LT.CONV1 .OR. ABS(R-AMAX).LT.CONV1) GO TO 190 131 130 RNEXT=R+DR 132 IF (RNEXT.GE.AMIN) GD TO 150 133 140 DR=DR/2.0 134 60 TO 130 135 150 IF (RNEXT.GT.AMAX) GO TO 140 136 R=RNEXT 137 C 138 IF (ABS(DR).GT.CONV1) GO TO 3D 139 C 140 C 170 DO 180 I=1.NC 141 C 180 X(I) = (X(I) + SX(I))/2.0142 C 60 TO 20 143 C 190 IF (LDBUG.GE.2) WRITE (NPRT,200) R 144 145 200 FORMAT (5x, "R", E14.5) 146 00 240 I=1,NC 147 IF (L(I))210,220,230 148 C NON-VOLATILE 149 210 XX(I)=Z(I)/(1.0-R) 150 YY(I)=0.0 151 60 TO 240 NON-CONDENSIBLE 152 C 153 220 XX (I)=0.0 154 YY(I)=Z(I)/RGO TO 240 155 156 C NORMAL AND SUPERCRITICAL 157 230 XX(I)=2(I)/(1.0+R+(EK(I)-1.0)) 158 YY(I) = EK(I) + XX(I)159 240 CONTINUE 160 C 161 IF (IDLL+IDLV.EQ.0) 60 TO 320 162 C 163 250 IF (KNT.EQ.50) 60 TO 91 154 60 TO (340,260), IDX 155 C 250 IF (IDLL.EQ.0) 60 TO 290 156 IF ((ABS(R).LT.CONV1 .OR. ABS(R-1.D).LT.CONV1) .AND. KNT.GE.10) 157 158 \* GO TO 290

- ----

0

 $\widehat{\phantom{a}}$ 

ŝ,

236

. ... ... ....

.

| - UR IRAN    | 1.       | VER 59 SOURCE LISTING: FLASH SUBROUTINE D8/16/85 15:03:       |
|--------------|----------|---------------------------------------------------------------|
| 169          |          | DO 280 I=1,NC                                                 |
| 170          |          | IF (L(I).EQ.D .OR. Z(I).LT.SMALL) GO TO 280                   |
| 171          |          | IF (ABS(X(I)-XX(I))/X(I) .GT. CONV) 60 TO 410                 |
| 172          | 280      | ) CONTINUE                                                    |
| 173 C        |          |                                                               |
| 174          | 290      | ) IF (IDLV.NE.1) 60 TO 320                                    |
| 175          |          | IF ((ABS(R).LT.CONV1 .OR. ABS(R-1.D).LT.CONV1) .AND. KNT.GE.1 |
| 176          |          | ÷ 60 TO 320                                                   |
| 177          |          | DO 310 I=1,NC                                                 |
| 178          |          | IF (L(I).LT.D .OR. Z(I).LT.SHALL) 60 TO 310                   |
| 179          |          | IF (ABS(Y(1)-YY(1))/Y(1) .6T. CONV) 60 TO 410                 |
| 150          | 310      | CONTINUE                                                      |
| 181 C        |          | · · · · · · · · · · · · · · · · · · ·                         |
| 182          | 320      | UX=0.0                                                        |
| 183          |          |                                                               |
| 184          |          | DO 322 I=1,NC                                                 |
| 185          |          | X(I)=XX(I)                                                    |
| 186<br>187   |          | A(I)=AA(I)                                                    |
| 188          | ***      | UX = UX + X (I)<br>UY = UY + Y (I)                            |
| 189          | 222      | D0 325 I=1,NC                                                 |
| 190          |          | DU 525 1=1,NC<br>X(I)=X(I)/UX                                 |
| 191          | 175      | X(1)=X(1)/UX<br>Y(1)=Y(1)/UY                                  |
| 192          | 222      | ISW=0                                                         |
| 193          |          | IS                                                            |
| 194          |          | DO 327 J=1.NC                                                 |
|              | 127      | Y(J)=Z(J)                                                     |
| 196          | <b>.</b> | CALL VAPH                                                     |
| 197          |          | Y(J)=Z(J)<br>Call Vaph<br>Go To 337                           |
|              | 330      | JE (ARS(D) ET CANVI) EA VA TTE                                |
| 199          | 550      | IF (ABS(R).GT.CONV1) GO TO 335<br>DO 333 J=1,NC               |
|              | 333      | X(J)=2(J)                                                     |
| 201          |          | CALL LIGH                                                     |
| 202          |          | GO TO 337                                                     |
|              | 335      | CALL VAPH                                                     |
| 204          |          | CALL LIGH                                                     |
| 205          | 337      | HOET HUADADAHI TOACA DADA                                     |
| 206          |          | IF (LDBUG.EQ.O) 60 TO 339                                     |
| 207          |          | WRITE (NPRT, 338) HOFZ, HVAP, HLIQ                            |
| 208          | 338      | FORMAT (20X, 3F20.4)                                          |
|              | 339      | RETURN                                                        |
| 210 C        | _        |                                                               |
|              | 340      | IF (IDLL.EQ.D) 60 TO 370                                      |
| 212          |          | DO 360 I=1,NC                                                 |
| 213          |          | SX (1)=X(1)                                                   |
| 214          |          | XC(I)=XX(I)                                                   |
|              | 360      | X(1)=(XX(1)+X(1))/2.0                                         |
| 216 C        |          |                                                               |
| 217          | 570      | IF (IDLV.NE.1) GO TO 400                                      |
| 218          |          | DO 390 I=1,NC                                                 |
| 219          |          | SY(I)=Y(I)                                                    |
| 220          |          | YC(I)=YY(I)                                                   |
|              |          | X(I)=(XX(I)+X(I))/5*0                                         |
|              |          | ID X=2                                                        |
| 223<br>224 C |          | 60 TO 20                                                      |
|              |          |                                                               |

-

~

r.

^.

Ĉ

**.**•.

. .

...

.....

.....

-- -- -- --

and a second as the second second

د در در ۲۰ میر مید امیر

| ORTRAN | IV  | VER 59          | SOURCE   | LISTING:    | FLASH    | SUBROUTINE    | 08/16/55 | 15:03:3 |
|--------|-----|-----------------|----------|-------------|----------|---------------|----------|---------|
| 225    | 410 | IF (IDLL        | .EQ.0) 6 | 0 TO 450    |          |               |          |         |
| 226    |     | UX = 0 • 0      |          |             |          |               |          |         |
| 227    |     | DO 430 I        |          |             |          |               |          |         |
| 228    |     | IF (L(I)        | .EQ.D .O | R. Z(I).    | T. SHALL | ) 60 TO 430   |          |         |
| 229    |     | IF (ABS(        | X(I)-XX( | I))/X(I)    | .LE. CO  | NV) 60 TO 42  | 5        |         |
| 230    |     | CALL WEG        | (X(I),X  | X(I),SX()   | (),XC(I) | )             |          |         |
| 231    |     | 60 TO 42        |          |             |          |               |          |         |
| 232    |     | X(1)=XX(        |          |             |          |               |          |         |
| 233    | -   | UX = UX + X ( ) | D        |             |          |               |          |         |
| 234    | 430 | CONTINUE        |          |             |          |               |          |         |
| 235    |     | DO 440 I        | =1,NC    |             |          |               |          |         |
| 236    | 440 | X(1)=X(1)       | /UX: 👘   |             |          |               |          |         |
| 237 C  |     |                 |          |             |          |               |          |         |
| 238    | 450 | IF (IDLV.       | NE.1) 6  | 0 TO 20     |          |               |          |         |
| 239    |     | UY =0 . D       |          |             |          |               |          |         |
| 240    |     | DO 470 I=       | 1,NC     |             |          |               |          |         |
| 241    |     |                 |          | R. Z(I).L   | T.SHALL  | ) SO TO 470   |          |         |
| 242    |     | IF (ABS()       | (1)-44(  | 1))/((1)    | LE. CO   | NV) 60 TO 455 |          |         |
| 243    |     | CALL WEG        | (Y(1),Y  | Y(I).SY(I   | ).YC(I)  | )             |          |         |
| 244    |     | 60 TO 459       |          | - • • • • • |          | т.<br>- А.    |          |         |
| 245    | 455 | ¥(1)=¥¥(1       | )        |             |          |               |          |         |
| 246    | 459 | UY=UY+Y(I       | >        |             |          |               |          |         |
| 247    | 470 | CONTINUE        |          |             |          |               |          |         |
| 248    |     | DO 480 I=       | 1.NC     |             |          |               |          |         |
| 249    | 480 | Y(I)=Y(I)       |          |             |          |               |          |         |
| 250    |     | 60 TO 20        |          |             |          |               |          |         |
| 251 C  |     |                 |          |             |          |               |          |         |
| 252    |     | END             |          |             |          |               |          |         |

... .

Č

· •

238

ı

FORTRAN IV VER 59 SOURCE LISTING: 08/16/85 15:03:37 P 1 SUBROUTINE AFLASH 2 C WRITE (6,99999) ",113X, "SUBROUTINE AFLASH") 3 C9999 FORMAT(" 4 C 5 C ADIABATIC FLASH 6 C 7 COMMON /CMPRO/ NC,NCH1,IDLL,IDLV,IDH,LDBUG,ISW,NPNRBL, NDIH, 8 ZNAME(2,10), L(10), NTCOMP(10), ITR, ITRMAX, \* 9 \* NST, NSTHI, NKI, NK2, NKII, NK21, NCASE, NFEED, NFTOP, NFBTM, LF(8), IDCODE, ICODE, CPCODE(10) 10 \* /ZDATA/ CPL(10,4),CPV(10,4),ENP(10,10),ANT(6,10),ADEL(10), 11 COMMON 12 \* W(10), AX, BX, OMEGA(10), AVAL(10), BVAL(10), MODEAF, AK(10,10), R(10), R(10), XL(10), VOL(10), TB(10), C(180), ALPHA(45), VC(10), TC(10), PC(10), EVAP(10), 13 ٠ 14 \* 15 OA(10), OB(10), AA(10,10), G(10,10), ZRA(10) ٠ 16 /STREAM/ T, P, 2(10), Y(10), X(10), FRACV, ZVAP, COMMON 17 \* EK(10), VP(10), FUG(10), GAM(10), VZ(11), SVAP, 18 HOFZ, HVAP, HLIQ, DHV, DSV, XSH, DSL, NOBUB, NODEW \* 19 COMMON /CONTL/ NIN,NOUT,NOCOMP,NE,NEN,KUNITS 20 C 21 DATA CONV/1.E-4/ 22 C 23 DIMENSION RETAIN(5) 24 C 25 C 26 C FRACV = VAPOR FRACTION 27 C SUPERHEATED VAPOR 2 28 C -1 SUBCOOLED LIQUID 29 C 30 NODB=0 60 TO 1 31 32 C 33 ENTRY AFNODB 34 NODB = 135 C 36 1 HSAVE=HOFZ 37 TSAVE=T 38 IS¥=0 39 STEP=20.0 40 C 41 MODEAF=1 42 NPNRBL=0 43 SUM=0.0 44 DO 5 J=1,NC 45 X(J) = 0.046 Y(J)=0.0 47 5 SUM=SUM+Z(J) · , 48 DO 6 J=1.NC 49 6 Z(J)=Z(J)/SUM 50 C 51 IF (FRACV.EQ.1.0) GO TO 10 IF (FRACV.EQ.0.0) GO TO 115 52 53 IF (ABS(FRACV-2.0) .LT. CONV) GO TO 10 54 IF (ABS(FRACV-(-1.0)) .LT. CONV) GO TO 115 55 IF (NODB.NE.)) GO TO 199 56 C

5

....

(

١.

FORTRAN IV VER 59 SOURCE LISTING: AFLASH SUBROUTINE D8/16/85 15:03:37 57 CALL DEWT 58 IF (NODEW.EQ.2) 60 TO 10 59 IF (NODEW.NE.D) 60 TO 100 60 TDEW=T 61 HD EW=HVAP IF (HSAVE.LT.HDEW) 60 TO 100 62 63 60 TO 15 64 C 65 10 TD EW=273.16 66 DO 11 J=1,NC 67 11 Y(J) = Z(J)68 CALL VAPH 69 HD EW=HVAP 70 C 71 15 ST=TDEW 72 SH=HDEW-HSAVE 73 T= TD EW+20.0 74 C 75 C----THE FOLLOWING COUNTERS, JK AND NOSC, ARE PROVIDED TO PREVENT 76 C----OSCILLATORRY BEHAVIOUR DUE TO MAXIMA IN "DHV" VALUES 77 C----NEAR THE CRITICAL POINTS 78 C 79 C----IF CONVERGENCE IS NOT ACHIEVED WITHIN 20 ITERATIONS, 80 C----10 MORE ITERATIONS ARE PERMITTED WITH A STEP SIZE 81 C----OF 5 DEGREES TO BEGIN WITH. IF NO CONVERGENCE 82 C----IS ARRIVED AT AFTER 3D ITERATIONS, THE LOOP 83 C---- IS EXITED AND THE AVERAGE OF THE LAST FIVE 54 C---- VALUES ARE TAKEN TO BE THE FINAL. 85 N0 SC = 0 86 C 87 JK =0 88 C 89 20 CALL VAPH 90 H= HVAP-HSAVE 91 IF (ABS(H/HSAVE) .LT. CONV) 50 TO 30 SLOPE=(SH-H)/(ST-T) 92 93 DT =- H/SLOPE 94 IF (ABS(DT) .LT. 0.50) 60 TO 30 95 SH=H 96 ST=T 97 C 98 NOSC=NOSC+199 JK = JK + 1IF (JK.EQ.6) JK=1 100 101 RETAIN(JK)=T 102 C 103 C 104 IF (NOSC.GT.20) STEP=5.D 1 105 IF (NOSC.GT.30) 60 TO 25 106 C 107 C 108 IF (ABS(DT) .GT. STEP) DT=SIGN(STEP.DT) 109 T=T+DT 110 60 TO 20 111 C 112 C

-

· .

.

.

FORTRAN IV VER 59 SOURCE LISTING: AFLASH SUBROUTINE D8/16/85 15:03:37 P 113 25 RTSUM=0.0 114 C 115 DO 26 1=1,5 116 26 RTSUM=RTSUM+RETAIN(I) 117 C 118 T=RTSUM/5.0 119 CALL VAPH 120 C 30 FRACV=1.0 121 DO 40 J=1,NC 122 40 X(J)=0.0 123 124 HL 10=0.0 XSH=0.0 125 126 HVAP=HSAVE 127 HOFZ=HSAVE 128 60 TO 300 129 C 130 100 CALL BUBT IF (NOBUB.EQ.2) 60 TO 110 131 IF (NOBUB.NE.D) GO TO 200 132 133 110 TBUB=T 134 HBUB=HLIQ 135 IF (HSAVE.GT.HBUB) GD TO 200 136 60 TO 116 137 C 138 115 TB UB=273.16 139 DO 111 J=1,NC 140 111 X(J)=2(J) 141 CALL LIGH 142 HBUB=HLIQ 143 C 144 116 ST=TBUB 145 SH=HBUB-HSAVE 146 T= TBUB-20.0 147 120 CALL LIGH 148 H=HLIQ-HSAVE IF (ABS(H/HSAVE) .LT. CONV) 60 TO 130 149 150 SLOPE = (SH-H)/(ST-T) 151 DT=-H/SLOPE 152 IF (ABS(DT) .LT. 0.50) GO TO 130 153 SH =H 154 ST=T 155 IF (ABS(DT) .GT. STEP) DT=SIGN(STEP,DT) 156 T=T+DT 157 60 TO 120 158 C 159 130 FRACV=0.0 HVAP=0.0 150 DHV=0.0 151 162 DO 140 J=1,NC 163 140 Y(J)=0.0 164 HLIQ=HSAVE 155 HOFZ=HSAVE GO TO 300 166 157 C 158 200 IF (NODEW.EQ.D .AND. NOBUB.EQ.D) GO TO 203

.

....

("

<u>.</u>

ć

241

. .

FORTRAN IV VER 59 SOURCE LISTING: AFLASH SUBROUTINE D8/16/85 15:03:37 . 169 IF (NOBUB.EQ.D) GO TO 201 170 IF (NODEW.EQ.D) GO TO 202 171 199 T=273.16 172 TBUB=0.0 173 TD EW=2000.0 174 60 TO 205 175 201 T= TBUB+20.0 176 60 TO 205 177 202 T=TDEW-20.0 178 60 TO 205 179 203 T=TBUB+(HSAVE-HBUB)+(TDEW-TBUB)/(HDEW-HBUB) 180 205 DO 206 J=1,NC 181 Y(J) = 0.0152 206 X(J)=0.0 183 10=1 154 210 CALL FLASH 185 60 TO (220,230), ID 186 220 SH=HOFZ-HSAVE 187 ST=T 158 T=T-SIGN(10.0,SH) 189 ID=2 190 60 TO 238 191 230 H=HOFZ-HSAVE 192 IF (HSAVE.NE.0.0) 60 TO 232 193 IF (ABS(H) .LT. 0.1) GO TO 240 194 60 TO 234 195 232 IF (ABS(H/HSAVE) .LT. CONV) 60 TO 240 196 234 SLOPE=(SH-H)/(ST-T) 197 DT=-H/SLOPE 198 IF (ABS(DT) .LT. D.D1) 60 TO 240 199 SH=H 200 ST=T IF (ABS(DT) .GT. STEP) DT=SIGN(STEP,DT) 201 202 T=T+DT 238 T=AMIN1(T,TDEW-D.S) 203 204 T=AMAX1(T,TBUB+D.5) 205 60 TO 210 236 240 HOFZ=HSAVE 207 C 208 300 RETURN 209 END

٠.,

 $\sim$ 

~

 $\mathbf{C}$ 

÷.

242

F

SUBROUTINE PENROB(T, P, Y, VP, FUG, DHV, DSV) C----THIS SUBPROGRAMME USES THE "PENG-ROBINSON" EQN. C----OF STATE TO PREDICT; .PURE COMPONENT C----FUGACITY RATIO, .MIXTURE FUGACITIES, .THE C----ENTHALPY DEPARTURE, .THE ENTROPY DEPARTURE. C-----THE BINARY INTERACTION PARAMETERS ARE C----CALCULATED IN SUBROUTINE DELTIJ . C C C Y (10), VP (10), FUG (10), AM (10), TR (10), REAL PR(10), AP(10), AC(10), A(10), B(10), TERM(10), \* AT(10), ACIJ(10,10), ACIJO(10,10), TEMP(10), \* \* YAT(10), YATT(10), SA(10), AL(10), BL(10), INTR(10,10),AIJ(10,10),DLT(10),SAB(10) NC,NCM1,IDLL,IDLV,IDH,LDBUG,ISW,NPNRBL, COMMON /CMPRO/ NDIM, ZNAME (2, 10), L(10), NTCOMP(10), \* ITR, ITRMAX, NST, NSTM1, NK1, NK2, NK11, NK21, NCASE, NFEED, NFTOP, NFBTM, LF (8), IDCODE, ICODE COMMON /STREAM/ T21, P1, Z1(10), Y1(10), X(10), FRACV, ZVAP, \* EK(10), VP1(10), FUG1(10), GAM(10), VZ(11), SVAP, ٠ HOFZ, HVAP, HLIQ, DHV1, DSV1, XSH, DSL, NOEUB, NODEW COMMON /ZDATA/ CPL(10,4), CPV(10,4), ENP(10,10), ANT (6,10), ADEL(10), W(10), AX, BX, OMEGA(10), AVAL(10), BVAL(1C), MODEAF, AK(10,10),R(10),Q(10),XL(10),VOL(10),TB(10), \* ٠ C(180), ALPHA(45), VC(10), TC(10), PC(10), EVAP(10), 0A(10),0B(10),AD(10,10),G(10,10),ZRA(10) COMMON /SYSAA/ TITLE(20), COMPNT(20), KOMNAH(20) COMMON /MIX/ FMIX,ZMIX,BMIX,AA1,BB,BB1,ZMX C С С AA=0.0 33=0.0 DERV=0.0T1=SQRT(1./T) DO 10 J=1,NC C----A(J), E(J) PARAMETERS IN THE P-R EQN.OF STATE C----AC(J) :COMPONENT PROPERTY DEPENDENT FACTOR OF A(J) (----AP(J) :TEMP.DEPENDENT FACTOR OF A(J) C AM(J)=0.37464+(1.54226-0.26992+OMEGA(J))+OMEGA(J) TR(J) = T/TC(J)PR(J) = P/PC(J)AP(J)=(1.+AM(J)+(1.-SQRT(TR(J)))++2 AC(J)=0.457235\*(0.082057\*TC(J))\*\*2/PC(J) (L) qA + (L) JA = (L) A3(J)=0.077796+0.082057+TC(J)/PC(J) AT(J) = AM(J)/SQRT(TC(J)) (L)TA + (L)Y = (L)TAYYATT(J)=Y(J)=(1.0+AP(J))+T1-YAT(J) ACIJO(J, J) = AC(J)(L) DA = (L, L) LIDAINTF(J,J)=C.0 AL(J)=A(J) +P/(0.082057+T)++?

•

```
BL(J)=B(J)*P/0.082057/T
        AIJ(J,J) = ACIJ(J,J) + AP(J)
        FUG(J)=1.0
 10
        CONTINUE
 IF(NC.EQ.1) GO TO 60
C----ROUTINE DELTIJ SUPPLIES THE INTERACTION
 C----PARAMETERS.
 C
       CALL DELTIJ(INTR, DLT)
       DO 20 1=2,NC
       11 = 1 - 1
       DO 20 J=1,11
 C----ACIJ(I,J),ACIJO(I,J): A PART OF THE TERM TO BE SUMMED
 C
                   UP TOWARDS THE MIXTURE A PARAMETER
 C----AIJ(I,J) : PART OF MIXTURE 'A' PARAMETER,
 C----INTR(I,J): THE BINARY INTERACTION PARAMETER
 C
                   USED IN THE MIXTURE A VALUE & THE
 C
                   DEPARTURE FUNCTIONS
 C----DLT(I)
                 INTERACTION PARAMETERS FOR CERTAIN
 C
                  1<--->1 INTERACTING COMPOUNDS
 C
 C
       ACIJO(1, J)=SQRT(AC(I)+AC(J))
       ACIJ(1,J)=ACIJO(1,J) + (1.-INTR(1,J))
       ACIJO(J,I) = ACIJO(I,J)
       INTR(J,I)=INTR(I,J)
       (L,I)LIDA=(I,L)LIDA
 20
       CONTINUE
       DO 30 I=2,NC
       ACIJ(I,1)=ACIJ(I,1)+(1.0+DLT(I))
       ACIJ(1,I)=ACIJ(I,1)
30
       CONTINUE
       DO 35 I=1,NC
       11 = 1 - 1
       DO 35 J=1,11
       AIJ(I,J)=ACIJ(I,J)+SQRT(AP(J)+AP(I))
35
      (L,I) LIA = (I, L) LIA
      DO 50 I=1.NC
      SA(I)=0.0
      DO 40 J=1,NC
C
C----COMPUTES THE MIXTURE A & B PARAMETERS
C----ALSO DETERMINES A FACTOR OF THE D(A(I))/D(T) DERIVATIVE
C----DERV-
C
C
      D1=Y(J)+YAT(I)+SQRT(AP(J))+Y(I)+YAT(J)+SQRT(AP(I))
      DERV=DERV+D1+T1+ACIJ(I,J)
      SA(I) = SA(I) + \gamma(J) + AIJ(I,J)
40
      AA = AA + SA(I) + Y(I)
      33=36+Y(1)*B(1)
50
      CONTINUE
55
      ZMIX = NC+1
      881=6B
      38=38 +P/0.082057/T
      A A 1 = A A
      AA=AA +P/ (0.082057+T) ++2
C
```

```
C----COMPUTES THE COMP.FACTOR OF THE MIXTURE
 C----VIA SUBROUTINE CALLS
 C
       CALL PEROBZ(AA, BB, ZMIX1)
       VZ(11)=ZMIX1
       ZMX = ZMIX1
       ZMIX=ZMIX1
       Z=ZM1X1
       GO TO 70
 C----FOLLOWING DEFINES PURE COMPONENT PARAMETERS
 C----FOR ONE -COMPONENT STREAMS
 C
 60
       AA=0.457235*(0.082057*TC(1))**2/PC(1)*AP(1)
       BB=0.077796+0.082057+Tc(1)/Pc(1)
       GO TO 55
 70
       DERV= (-1./2.) +DERV
       TERM1=ALOG((Z+2.414+BB)/(Z-0.414+BB))
       TERM1=TERM1/2.828
       IF (661.60.0.0) 881=1.0E-8
       TERM1=TERM1/BB1
 C----THE DEPARTURES OF ENTHALPY AND ENTROPY ARE ESTIMATED.
 C
       DHV=1.9872+T+(ZMX-1.0)+TERM1+(T+DERV-AA1)
       DHV1=DHV
       DSV=1.9872 + ALOG (ZMX-BE) + TERM1+ DERV
       DSV1=DSV
      CONTINUE
789
 С
[----
        NPNREL
                = LIQ. PHASE SWITCH FOR THIS MODULE
                             VAPOUR PHASE MIXTURES
C-----
                 =
                   0
                         :
C----
                   98
                             LIQUID PHASE MIX. FUGACITY COEFF.
                 Ξ
                         :
C----
                 =
                    99
                             LIQUID PHASE EXCESS ENTHALPY OF MIXING
                         :
C
      IF (NPNRBL.EQ.99) RETURN
      Z = NC + 1
      CALL PEROBZ(AA, BB,Z)
      VZ(11)=ZMIX1
      ZMIX2=Z
      IF (NPNREL.EQ.94) RETURN
      IF (NPNREL.EQ.95) RETURN
      Z38=Z-88
      TERM2=-ALOG(ZBB)
      TERM3=AA *ALOG((Z+0.414*BB)/(Z+2.414*BB))
      DO 90 I=1,NC
C
C----FUG(J)=FUGACITY COEFFICIENT FOR COMPONENTS
C
             IN A MIXTURE
С
      BIB=B(I)/BB1
      SAB(I)=SA(I)+2./AA1-BIB
      TERM(I)=(2-1.)+PIB+TERM3+SAB(I)/BB/2.823
      TERM4=TERM2+TERM(I)
      FUG(1)=1.0
      FUG(I)=FUG(I)/EXP(TERM4)
90
      CONTINUE
      IF (NDIM.EQ.D)GO TO 100
      CALL ONE DI (P,T,Y(NDIM), AK, ZDIM, ZNOD)
      DO 95 J=1.NC
95
     FUG(J)=FUG(J)/ZNOD
      FUG(NDIM)=1./ZDIM
100
      RETURN
```

END

245

FORTRAN IV VER 59 SOURCE LISTING: PEROBZ SUBROUTINE 08/16/85 15:03:37 1 SUBROUTINE PEROBZ(A,B,Z) 2 C 3 C----THIS SUBROUTINE PREDICTS THE COMPRESSIBILITY FACTORS 4 C-----USING PENG-ROBINSON EQN. (CUBIC FORM) 5 C-----NEWTON-RAPHSON ALGORITHY IS UTILIZED; TOLERANCE 6 C----FIGURE OF !DZ!/Z <=0.001 IS SPECIFIED. 7 C----DEBUGGING AID; COMPONENT# UPON INVOCATION 8 C-----ITERATION LIMIT :100 LOOPS 9 C 10 C 11 COMMON /CMPRO/ NC,NCM1,IDLL,IDLV,IDH,LDBUG,ISW,NPNRBL, 12 NDIM, ZNAME(2,10), L(10), NTCOMP(10), \* ITR, ITRMAX, NST, NSTM1, NK1, NK2, NK11, 13 ٠ 14 \* NK21, NCASE, NFEED, NFTOP, NFBTM, LF(8), 15 \* IDCODE, ICODE 16 C 17 C 18 C 19 K=Z Z=1.0 20 21 IF (NPNRBL.EQ.99) Z=1.DE-2 22 IF (NPNRBL.EQ.98) Z=1.0E-2 J=0 23 24 AB1=A-3.+B+B-2.+B 25 AB 2= A+B-B+B-B+B+B AB 3=1.-B 26 FN=Z++3-2++2+AB3+2+AB1-AB2 27 150 DF=3.+Z+Z-2.+Z+AB3+AB1 28 29 DZ=-FN/DF 30 J= J+1 31 IF (J.6T.100) 60 TO 200 IF (ABS(DZ)/Z.LT.0.001)60 TO 250 32 DZ =S IGN (AMIN1 (ABS (DZ), 0.1+Z, 0.1), DZ) 33 34 Z= Z+ DZ 35 60 TO 150 36 200 IF (NPNRBL.GT.D)Z=AMAX1(Z,0.1) IF (LDBUG.EQ.2) WRITE (6,300)K,A,B,P,J,Z FORMAT ( \*\*\*PEROBZ\*K,A,B,P,J,Z\*\*\*,I5,3G15.6,I5,G15.6) 37 250 38 300 RETURN 39 40 END

 $\overline{}$ 

 $(\neg$ 

Ċ

.

١.

 $\bigcirc$ 

 $\langle$ 

 $\bigcirc$ 

C

C

С

r

FORTRAN IV VER 59 SOURCE LISTING: DELTIJ SUBROUTINE OB/16/85 15:03:37 1 SUBROUTINE DELTIJ(DIJ,DELTA) 2 C 3 C----THIS SUBROUTINE SUPPLIES THE INTERACTION PARAMETERS 4 C----FOR 20 COMPOUNDS SPECIFIED BY PENG-ROBINSON. S C----THE VALUES ARE DERIVED EMPERICALLY THRU' 6 C----BINARY VLE DATA.FOR THE REMAINING COMPOUNDS, 7 C----THE VALUE IS ASSUMED TO BE ZERO. 8 C 9 C 10 REAL DIJ(10,10), DELTA(10) 11 COMMON /CMPRO/ NC,NCM1,IDLL,IDLV,IDH,LDBUG,ISW,NPNRBL, 12 NDIN, ZNAME (2,10), L(10), NTCOMP(10), ٠ 13 \* ITR, ITRMAX, NST, NSTM1, NK1, NK2, NK11, 14 ٠ NK21,NCASE,NFEED,NFTOP,NFBTH,LF(8), 15 IDCODE,ICODE COMMON /ZDATA/CPL(10,4), CPV(10,4), ENP(10,10), ANT(6,10), ADEL(10), 16 17 W(10), AX, BX, OMEGA(10), AVAL(10), BVAL(10), MODEAF, • 18 \* AK(10,10),R(10),Q(10),XL(10),VOL(10),TB(10), 19 \* C(180), ALPHA(45), VC(10), TC(10), PC(10), EVAP(10), 20 0A(10),08(10),A0(10,10),6(10,10),ZRA(10) \* 21 COMMON /SYSAA/ TITLE(20),COMPNT(20),KOMNAM(20) 22 COMMON /EQPA/ EQPAR (25,50), NEMAX, MAXEQP 23 COMMON /CONTL/ NIN, NOUT, NOCOMP, NE, NEN, KUNITS 24 REAL AIN(19D)/66+0.0.0.036.0.05.0.08.0.095. 25 0.09,0.095,7=0.1,0.13,0.135,2=0.13, 26 3+0+125+0+1+0+115+2+0+11+-0+02+0+085+ ٠ 27 ٠ 0.084.0.075.0.05.2+0.06.0.065.2+0.06. 28 ÷ 0.055,0.05,0.045,0.18,0.1,0.34,2\*0.02,8\*0.0, 29 \* 0.01,0.18,0.09,0.0,0.04,2+0.02,8+0.0, 30 \* 0+01+0+16+0+075+2+0+0+0+035+2+0+02+8+0+0+ 31 0.01,2+0.1,3+0.0,2+0.5,9+0.48,26+0.0/ 32 INTEGER COMPN1(10)/10+0/ 33 REAL \$(60)/-1.5240.0.5328E-02.-0.3982E-05.-0.9682. 34 0.3384E-02,-0.2354E-05,-1.038, 35 0.3601E-02,-0.2739E-05,-9.9931. 36 D.3166E-02,-D.2333E-05,-D.9931, . 37 0.3166E-02,-0.2333E-05,-0.9246, 38 \* 0.3045E-02,0.2276E-05,21+0.0, 30 \* -2.238,0.67E-02,-0.4686E-05,-0.5572, 40 \* J.1879E-D2,-D.1274E-D5,-D.3896, 41 0.1565E-02,-0.1142E-05,15+0.0/ 42 C 43 C 44 C 45 DO 100 I=1.NC 46 C 47 C---THE PURE COMPONENT ID#S ARE MATCHED 48 C IN THIS LOOP. THE COMPONENTS 49 NOT ENCOUNTERED REMAIN WITH AN ID# ٦. 50 C OF ZERO. 51 C 52 COMPN1(1)=0IF (NTCOMP(I) + EQ + 2) COMPN1(I)=1 53 54 IF (NTCOMP(I).EQ.3)COMPN1(I)=2 55 IF(NTCOMP(I),EQ.4)COMPN1(I)=3 56 IF (NTCOMP(I).EQ.5)COMPN1(I)=4

. . .

· · · · ·

<u>\_\_\_</u>

----

.

Ĺ

C

/~~

~

١,

|            | -                     |                                                                                                                  |                                                                                                                  |              |                  |
|------------|-----------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------|------------------|
|            |                       |                                                                                                                  |                                                                                                                  |              |                  |
|            |                       |                                                                                                                  |                                                                                                                  |              |                  |
|            |                       |                                                                                                                  |                                                                                                                  |              | 248              |
| . 1        | an terraria and an an |                                                                                                                  | المراجعة (مراجع المراجع المراجعة) (م. 1993)<br>مراجع المراجع (م. 1993)<br>مراجع المراجع (م. 1994) (م. 1994)      |              |                  |
|            |                       |                                                                                                                  |                                                                                                                  |              |                  |
|            |                       |                                                                                                                  |                                                                                                                  |              |                  |
| <u>_</u>   | FORTRAN IV            | VER 59 SOURCE                                                                                                    | LISTING: DELTIJ                                                                                                  | SUBROUTINE D | 8/16/85 15:03:37 |
|            | 57                    | IF (NTCOMP(I).EQ.                                                                                                |                                                                                                                  |              |                  |
| $\sim$     | 58<br>59              | IF (NTCOMP(I).EQ<br>IF (NTCOMP(I).EQ                                                                             |                                                                                                                  |              |                  |
|            | 60                    | IF (NTCOMP(I).EQ.                                                                                                |                                                                                                                  |              |                  |
| ,          | 61<br>62              | IF (NTCOMP(1).EQ                                                                                                 | 11)COMPN1(I)=9<br>12)COMPN1(I)=10                                                                                |              |                  |
|            | 63                    |                                                                                                                  | 13)COMPN1(I)=11                                                                                                  |              |                  |
| $\sim$     | 64<br>55              |                                                                                                                  | 14)COMPN1(I)=12<br>46)COMPN1(I)=13                                                                               |              |                  |
| ~          | 66                    |                                                                                                                  | 49)COMPN1(I)=14                                                                                                  |              |                  |
| $\sim$     | 57<br>68              |                                                                                                                  | 5D)COMPN1(I)=15<br>(41)COMPN1(I)=16                                                                              |              |                  |
|            | 69                    |                                                                                                                  | 40) COMPN1(I)=17                                                                                                 |              |                  |
|            | 70<br>71              | and the second | 38) COMPN1(I)=18<br>62) COMPN1(I)=19                                                                             |              |                  |
|            | 72 100                | CONTINUE                                                                                                         |                                                                                                                  |              |                  |
| <b>.</b>   | 73<br>74              | IF (NC.EQ.1)60 TO<br>NC 1=NC-1                                                                                   | 375                                                                                                              |              |                  |
|            | 75                    | DO 300 II=1,NC1                                                                                                  |                                                                                                                  |              |                  |
|            | 76                    | I=COMPN1(II)                                                                                                     |                                                                                                                  |              |                  |
| · <b>_</b> | 77<br>78              | NC2=II+1<br>DIJ(II,II)=0.0                                                                                       |                                                                                                                  |              |                  |
|            | 79                    | DO 300 JJ=NC2,NC                                                                                                 |                                                                                                                  |              |                  |
| 1          | 80<br>81              | J=COMPN1(JJ)<br>IF(J.LT.I)60 TO                                                                                  | All Law States and the second second                                                                             |              |                  |
|            | 82                    | KIJ=1+(J-1)+(J-2                                                                                                 |                                                                                                                  |              |                  |
|            | 83<br>84 250          | 60 TO 270<br>KIJ=J+(I-1)+(I-2                                                                                    | )/2                                                                                                              |              |                  |
|            | 85 270                | DIJ(JJ,II)=AIN(K                                                                                                 | IJ) - Constant of the                                                                                            |              |                  |
| 1          | 86<br>87 300          | DIJ(II,JJ)=DIJ(J<br>Continue                                                                                     |                                                                                                                  |              |                  |
| , ·        | 88                    | IF (MODEAF.NE.1)                                                                                                 |                                                                                                                  |              |                  |
| (          |                       | -IN THE CASES OF<br>                                                                                             |                                                                                                                  |              |                  |
|            | 91 C<br>92            | -COEFFICIENTS ARE                                                                                                | REDEFINED.                                                                                                       |              |                  |
|            | 93                    | 00 310 I=2,NC<br>IF(COMPN1(I).EQ.                                                                                | D)60 TO 310                                                                                                      |              |                  |
|            | 94<br>95              | J=COMPN1(I)<br>KK=3+(J-1)                                                                                        |                                                                                                                  |              |                  |
|            | 96                    |                                                                                                                  | +(S(KK+2)+T+S(KK+                                                                                                | -3))+T       |                  |
|            | 97 310<br>98          | CONTINUE<br>Go to 400                                                                                            |                                                                                                                  |              |                  |
|            | 99 315                | CONTINUE                                                                                                         |                                                                                                                  |              |                  |
|            | 100                   | DO 350 MN=1,NC                                                                                                   |                                                                                                                  |              |                  |
|            | 101<br>102            | IF (NTCOMP(MN).NE<br>DO 350 I=2.NC                                                                               | • 62) 60 TU 35U                                                                                                  |              |                  |
|            | 103                   | DELTA(I)=DIJ(I,1                                                                                                 |                                                                                                                  |              |                  |
|            | 1 0 4<br>1 0 5        | IF (NTCOMP(MN).NE<br>DELTA(I)=S(4D)+(                                                                            |                                                                                                                  |              |                  |
| 1          | 106                   | 60 TO 350                                                                                                        |                                                                                                                  |              |                  |
|            | 107 320<br>138        | IF (NTCOMP(MN).NE<br>DELTA(I)=S(43)+(                                                                            | • JUJGO TO 350<br>S(44)+S(45)+T)+T                                                                               |              |                  |
|            | 109 350               | CONTINUE                                                                                                         |                                                                                                                  | •<br>•       |                  |
|            | 110<br>111 375        | GO TO 400<br>DELTA(1)=0+0                                                                                        |                                                                                                                  |              |                  |
|            | 112                   | DIJ(1,1)=0.0                                                                                                     | and the second |              |                  |
|            | 113 400<br>114        | RETURN                                                                                                           | n da karana ara                                                                                                  | * 198        |                  |
|            |                       |                                                                                                                  |                                                                                                                  |              |                  |

.

|           |           |                               |                                        |                    |                |               | 249      |
|-----------|-----------|-------------------------------|----------------------------------------|--------------------|----------------|---------------|----------|
| • •       |           |                               |                                        |                    |                |               | 245      |
| -         |           |                               |                                        | · · ·              |                |               | •        |
|           |           |                               |                                        |                    |                |               |          |
|           |           |                               |                                        |                    |                |               |          |
|           | FORTRANIV | VER 59                        | SOURCE LIST                            | ING: SPK7          | SUBROUTINE     | NP / 1 / / PC | 45 05 55 |
| $\subset$ |           |                               |                                        |                    | JOBROUITHE     | 08/16/85      | 15:03:37 |
|           | 1         | SUBROUTI                      | NE SRKZ(AS,B                           | S.P.T.7)           |                |               |          |
| ~         | 2 C       |                               |                                        |                    |                |               |          |
| · · ·     | 3 C       |                               |                                        |                    |                |               |          |
|           | 4 C       | -THIS SUB                     | ROUTINE USES                           | THE NEWTON-        | -RAPHSON       |               |          |
| ~         | 5 L       | -ALGORITH                     | M TO SOLVE T                           | HE SPRS FOR        | LEOD (TH       |               |          |
|           | 0 [       | -INF COBI                     | C FORM)COMPRI                          | ESSIBILTY A        | ATTAD TO       |               |          |
|           | / [       | THE TULE                      | RANCE LIMIT :                          | [5:1071/7<0.       | .0.01          |               |          |
|           | 8 L       |                               | IT FAILS TO I                          | CONVERSE UT1       | THIT N         |               |          |
| ۰.        | y [       | -50 ITERAT                    | TIONS THE MAY                          | . OF 0.3 OR        | LAST           |               |          |
|           | 10 [      | -Z VALUE                      | IS CHOSEN.                             |                    |                |               |          |
| 1.        | 11 C      |                               |                                        |                    |                |               |          |
| C         | 12 C      |                               |                                        |                    |                |               |          |
|           | 13        | COMMON/CN                     | ITRL/NCR, NPRT                         |                    |                |               |          |
| <i></i>   | 14        | COMMON/CM                     | PRO/NC,NCM1,                           | IDLL.IDLV.I        | DH.LDBUG, ISW, | NONDOL NAT    | t an     |
| 6         | 15        | *                             | **********                             | - リレノ タレく パレノ の利   | 1.0MP(10).1TP  | TTD MAY.      |          |
|           | 16        | *                             | M2144214                               | <b>T,NKT,NKZ,N</b> | K11.NK21.NCAS  | F.NEFED.      |          |
|           | 17        | *                             | NFTOP, NF                              | BTH, LF(8), I      | DCODE.ICODE    |               |          |
| · -       | 18 C      |                               |                                        | - • •              |                |               |          |
|           | 19 C      |                               |                                        |                    |                |               |          |
| C         | 20 [      | -Z WAS INI                    | TIALIZED TO                            | J OR NC+1 B        | EFORE          |               |          |
| C         | 21 1      | -INVOCATIO                    | N: SO THAT T                           | F THILS PANT       | TME            |               |          |
|           | 22 [      | -DOES NOT                     | CONVERGE . THE                         | VALUE OF M         | MOULE          |               |          |
| C         | 23 (      | -INDILATE                     | (FOR A MIYTH                           | REL A DIIDE I      | TAND DECORAT   | IVEL Y)       |          |
| <b>`</b>  | 25 C      | THE COMPO                     | NENT WHOSE Z                           | FAILED TO (        | CONVERGE.      |               |          |
|           | 26        | ×- 3                          |                                        |                    |                |               |          |
| 1         | 27        | K= Z<br>J= 0                  |                                        |                    |                |               |          |
|           | 28        | - T- T                        |                                        |                    |                |               |          |
|           |           | A=AS<br>B=BS                  |                                        |                    |                |               |          |
| C         |           | D= (A -B -B +                 | a the second second                    |                    |                |               |          |
| · -       |           |                               |                                        |                    |                |               |          |
|           | 32        | Z=1.                          | NITIALIZED TO                          | 7.                 |                |               |          |
|           |           |                               | **2+0*2-A*8                            |                    |                |               |          |
|           |           | DF=3.+Z+Z-                    |                                        |                    |                |               |          |
|           | -         | DZ = -FN/DF                   | -2•=2+0                                |                    |                |               |          |
|           |           | J= J+1                        |                                        |                    |                |               |          |
|           |           |                               | 0100 70 70                             |                    |                |               |          |
|           |           | 17 (J+01+)<br>15(ADC(N7)      | 50)60 TO 30<br>/Z.LT.0.001)            |                    |                |               |          |
| ,*<br>(   |           | 17 (RDJ(D2)<br>17 = 5 1 CN/AN | ///*********************************** | 60 TO 50           |                |               |          |
|           | 40        | Z= Z+ DZ                      | IN1(ABS(DZ),                           | U+1*Z,U+1),        | DZJ            |               |          |
|           |           | 60 TO 10                      |                                        |                    |                |               |          |
| C         | 42 30     | Z=AMAX1(Z,                    | 0 3)                                   |                    |                |               |          |
|           |           |                               |                                        | 687 /814 -         | <b>.</b>       |               |          |
|           | 44 50 1   | FORMATICAL                    | EQ.2)WRITE(N                           | PRI,0U)K,A,        | 8, P, J, Z     |               |          |
|           |           | RETURN                        | -JECKLUTTER,                           | ~,¤,P,J,Z**        | : ,15,3615.6,  | 15,615.6)     |          |
|           |           | END                           |                                        |                    |                |               |          |
|           |           |                               |                                        |                    |                |               |          |

. \_\_\_\_\_

.

•

.

## SUBROUTINE FUGCY (T,P,Y,VP,F,DH) C C REAL Y(10), VP(10), F(10) C COMMON /CMPRO/ NC, NCM1, IDLL, IDLV, IDH, LDBUG, ISJ, NPNREL, NCIM, ZNAME(2,10), L(10), NTCOMP(10), ITR, ITRMAX, NST, NSTM1, NK1, NK2, NK11, NK21, NCASE, NFEED, NFTOP, NFBTM, LF(8), IDCODE, ICODE, CPCODE(10) /ZDATA/ CPL(10,4), CPV(10,4), ENP(10,10), ANT(6,10), ADEL(10), COMMON W(10), AX, EX, OMEGA(10), AVAL(10), BVAL(10), MODEAF, AK(10,10), R(10), Q(10), XL(10), VOL(10), TB(10), C(180), ALPHA(45), VC(10), TC(10), PC(1C), EVAP(10), OA(10), OB(10), AA(10,10), G(10,10), ZPA(10) ٠ C C GO TO (10,20,30,20,20,60), IDLV C 10 CALL VIREG (T.P.Y.VP.F.DH) 60 TO 100 20 CALL RKFUG (T,P,Y,VP,F,DH,DSV) 60 TO 100 30 CALL SRK FUG (T,P,Y,VP,F,DH,DSV) 60 TO 100 60 NPNR5L=0 CALL PENROE (T, P, Y, VP, F, DH, DSV) DO 62 I=1,NC 62 CONTINUE NPNRBL=0 C 100 RETURN END SUBROUTINE SRKFUG(T, P, Y, VP, FUG, DHV, DSV) C C C C----THIS SUBPROGRAM USES THE "SOAVE-REDLICH-KWONG" C-----EQUATION OF STATE TO PREDICT; .FUGACITY C----COEFFICIENTS FOR PURE COMPONENTS & C----AND FOR COMPONENTS IN A VAPOR MIXTURE, • THE C----ENTHALPY 8 .THE ENTROPY DEPARTURE FUNCTIONS C----FOR A VAPOR MIXTURE. C-----CORRECTIONS ARE ALSO DONE WHEN DIMERS ARE C----EXPECTED TO BE PRESENT IN THE VAPOR PHASE. C C C Y(10), VP(10), FUG(10), F(10) REAL AP(10), AM(10), TR(10), PR(10), A(10), E(10) REAL C C /CMPRO/ NC,NCM1,IDLL,IDLV,IDH,LDBUG,ISH,NPNRBL, COMMON

Ċ

NDIM, ZNAME(2,10), L(10), NTCOMP(10), ITR, ITRMAX, NST, NSTM1, NK1, NK2, NK11, \* NK21, NCASE, NFEED, NFTOP, NFBTM, LF(8), ÷ IDCODE, ICODE COMMON /ZDATA/ CPL(10,4), CPV(10,4), ENP(10,10), ANT (6,10), ADEL(10), W(10), AX, BX, OMEGA(10), AVAL(10), BVAL(10), MODEAF. ٠ AK(10,10),R(10),Q(10),XL(10),VOL(10),TB(10), \* C(180), ALPHA(45), VC(10), TC(10), PC(10), EVAP(10), OA(10), OB(10), AD(10, 10), G(10, 10), ZRA(10) \* COMMON /STREAM/ TX, PX, Z1(10), Y1(10), X(10), FRACV, ZVAP, EK(10), VP1(10), FUG1(10), GAM(10), VZ(11), SVAP, HOFZ, HVAP, HLIQ, DHV1, DSV1, XSH, DSL, NOEUE, NODEW COMMON /SYSAA/ TITLE(20), COMPNT(20), KOMNAM(80) COMMON /MIX/ FMIX, ZMIX, BMIX, AA1, BB, BB1, ZMX C C C C UNITS USED HERE: C PEATM C V=CC/GRAM-MOLE C T=DEGREES KELVIN C C С AA=0.0 39=0.0 HH=0.0 CC=0.0 TT=0.0 DO 100 J=1,NC C----A(J), E(J) : PARAMETERS IN THE SRK-EQN. OF STATE (----AM(J) :TEMP+DEPENDENT FACTOR OF A(J) C IT IS A FUNCTION OF ACCENTRIC FACTOR ALSO. С AM(J)=0.47979+((0.025+0MEGA(J)-0.1925)+0MEGA(J)+1.574)+0MEGA(J) TR(J) = T/TC(J)P1=1.0+AM(J)+(1.-SQRT(TR(J)))AP(J)=P1++2 PR(J) = P/PC(J) $A(J) = 0.42747 \pm AP(J) \pm PR(J) / TR(J) / TR(J)$ 100 CONTINUE DO 150 J=1,NC C----HERE, THE SUGGESTED MIXING RULES ARE APPLIED C----TO DETERMINE THE PARAMETERS FOR A MIXTURE. C-----ALSO CALCULATED ARE: A PART OF THE ENTHALPY C-----AND ENTROPY DEP.FUNCTIONS . THE MIXTURE "F" FACTOR. C BB=BB+B(J)+Y(J)F(J) = AP(J) / TR(J) $HHJ=0.5 \pm AM(J) \pm SQRT(TR(J)/AP(J))$ DO 150 I=1,NC D1 = SQRT(A(I) + A(J)) + (1 - AK(I, J)) $AA = AA + D1 \pm Y(I) \pm Y(J)$ HH=HH+(1.0-HHJ-0.5+AM(I)+S@RT(TR(I)/AP(I)))+D1+Y(J) 150 CONTINUE A A 1 = A A IF (IDLL.EQ.4) GO TO 31

and a second a second second

-

```
00 30 J=1,NC
        IF(Y(J).EQ.D.D)GO TO 33
       Z = J
       VZ(J)=1.0
 C----L(J)=
                -1 FOR NON-VOLATILES
 C
                 O FOR NON-CONDENSIBLES
 C
                 1 FOR NORMAL CONDITIONS
 C
                 2 FOR SUPER-CRITICALS
 C
       IF (L(J)-1)30,20,10
 10
       FUG(J)=EXP(VOL(J) +P/82.05/T)
       GO TO 30
 20
       CALL SRKZ(A(J), B(J), VP(J), T,Z)
       VZ(J) = Z
       FUG(J)=EXP(Z-1.0)/((Z-B(J))+((1.0+B(J)/Z)++(A(J)/B(J))))
                        *FUG(J)
 30
       CONTINUE
 31
       Z = NC + 1
 C----THE "Z" FACTOR FOR A MIXTURE
 C
       CALL SRKZ (AA, BB, P, T, Z)
       ZMIX=Z
       ZMX=ZMIX
       VZ(11)=Z
       FN=(2-1.0)/88
       DF=ALOG(Z-BE)
       DZ=AA/BB +ALOG(1.0+BB/Z)
 C----THE MIXTURE ENTHALPY DEPARTURE, DHV
C
      WRITE(6,1228) HH,AA,BB
FORMAT(****SRKFUG++++*,* HH AA BB*,F20.6,F20.10,F20.13)
C
1228
       DHV=1.9872*T*(Z-1.-HH/BB*ALOG(1.0+BB/Z))
       DHV1=DHV
       DO 40 J=1,NC
       IF (IDLL.EQ.4) FUG(J)=1.0
      FUG(J)=FUG(J)/EXP(FN+B(J)+DF-DZ+(2.+SQRT(A(J)/AA)-B(J)/
              BB))
      *
40
      CONTINUE
      DO 50 J=1,NC
41
      TT=TT+Y(J)+TC(J)/PC(J)
      DO 50 I=1,NC
      C1=TC(I) *TC(J)/PC(J)/PC(J)*F(I)*F(J)
      C2=SGRT(C1)
      C3=Y(I)+Y(J)+(1,-AK(I,J))+C2
      CC=CC+C3
50
      CONTINUE
      FMIX=CC/TT
C----MIXTURE ENTROPY DEPARTURE
C
      SS=HH-2*NCOUNT
      SS=SS/BB
      BPRT=88+P/T/1.9872
      DSV=1.9872+(ALOG(1.0-BPRT/2)-SS+ALOG(1.0+BPRT/2)+ALCG(2))
      DSV1=DSV
      IF (NDIM.EQ.0)GO TO 70
      CALL ONEDI (P, T, Y(NDIM), AK, ZDIM, ZNOD)
      DO 60 J=1,NC
C----IF DIMERS WERE EXPECTED
      FUG(J)=FUG(J)/ZNOD
60
      FUG(NDIM)=1.0/ZDIM
70
      RETURN
      END
```

252

```
SUBROUTINE KCALC
 C WRITE (6,99999)
C9999 FORMAT(" ',113X, "SUEROUTINE KCALC")
 С
        ROUTINE TO CALCULATE K VALUES
 C
 С
 C
        COMMON
                          TITLE(20), COMPNT(10), KOMNAM(40)
                /SYSAA/
       COMMON
                /SYSC/
                          LIMIT, LIMIT2, LIMIT3, LOOP, LOOPS
        COMMON
                /CMPRO/
                          NG, NCM1, IDLL, IDLV, IDH, LDBUG, ISW, NPNREL, NDIM,
                          ZNAME(2,10), L(10), NTCOMP(10), ITR, ITRMAX,
                          NST, NSTM1, NK1, NK2, NK11, NK21, NCASE, NFEED,
                          NFTOP, NFBTM, LF(8), IDCODE, ICODE, CPCODE(10)
                /ZDATA/ CPL(10,4),CPV(10,4),ENP(10,10),ANT(6,10),ADEL(10),
       COMMON
                          W(1C), AX, EX, OMEGA(10), AVAL(1C), BVAL(10), MODEAF,
      ٠
                          AK(10,10), R(10), Q(10), XL(10),VOL(10),TE(10),
                          C(180), ALPHA (45), VC (10), TC (10), PC (10), EVAP(10),
      •
                          OA(10), OB(10), AA(10,10), G(10,10), ZRA(10)
                /STREAM/ T, P, Z(1C), Y(1D), X(1D), FRACV, ZVAP,
       COMMON
                          EK(10), VP(10), FUG(10), GAM(10), V2(11), SVAF,
                          HOFZ, HVAP, HLIQ, DHV, DSV, XSH, DSL, NOEUE, NODEW
       REAL KOMNAM
       REAL
                      XSAT(10), PSFUG(10), SFUG(10)
       INTEGER
                          COMPNT
 C
 C
       TT=T
 C
       DHV=0.0
       NPNRBL=0
 C
       IF (ISW.NE.D) GO TO 10
       DO 9 J=1,NC
       FUG(J)=1.0
       GAM(J)=1.0
       VP(J)=EXP(ANT(1+J)+ANT(2+J)/(ANT(3+J)+T)+ANT(5+J)+T+ANT(6+J)*T
             +T+ANT(4, J) +ALOG(T))
      VP(J)=VP(J)/760.00
    9 CONTINUE
C
   10 IF (NDIM+EQ+0) GO TO 40
       CALL ONEDI (P.TT.Y(NDIM), AKA, ZDIM, ZNODIM)
       VP(NDIM)=(SQRT(1.C+4.0+AKA+VP(NDIM))-1.0)/2.0/AKA
C
С
   40 IF (IDLV.EG.D) GO TO 100
      CALL FUGCY (TT,P,Y,VP,FUG,DHV)
C
  100 IF (IDLL.EQ.0) GO TO 140
      CALL ACTVY (TT, X, GAM)
      IS₩=0
  140 DO 150 J=1,NC
C
C----IF IDLV=4 : CHAO- SEADER DEFINITION IS USED
C
(----FUG(J)
                 HAS INVERSE OF VAP. PHASE MIX. FUGACITY
(----
                 COEFFICIENTS.
C
  145 EK(J)=VP(J)/P+GAM(J)+FUG(J)
      IF (IDLV.E4.6) EK(J) = FUG(J) + GAM(J)
      IF (IDLV.EG.G.AND.IDLL.EQ.J)EK(J)=VP(J)/P
150
      IF(IDLL \cdot EG \cdot 4)EK(J) = GA^{M}(J) + FUG(J)
200
      CONTINUE
      RETURN
      END
                                                       -----
```

```
SUBROUTINE ACTVY (T, X, G)
 C
 C
       REAL
                    G(10), NU(10), XRET(10), PFUG(10), GFUG(10), X(10)
 C
       COMMON
               /CMPRO/
                         NC,NCM1,IDLL,IDLV,IDH,LDBUG,ISW,NPNRBL, NDIM,
                         ZNAME(2,10), L(10), NTCOMP(10), ITR, ITRMAX,
                         NST, NSTM1, NK1, NK2, NK11, NK21, NCASE, NFEED,
                         NFTOP, NFBTM, LF(3), IDCODE, ICODE, CPCODE(10)
               /ZDATA/ CPL(10,4),CPV(10,4),ENP(10,10),ANT(6,10),ADEL(10),
       COMMON
                         W(1C), AX, BX, OMEGA(10), AVAL(1C), BVAL(10), MO DEAF,
      ٠
                         AK(10,10), R(10), Q(10), XL(10), VOL(10), TE(10),
      ÷
                         C(180), ALPHA(45), VC(10), TC(10), PC(10), EVAP(10),
      *
                         OA(10), OB(10), AA(10,10), G1(10,10), ZRA(10)
       COMMON
               /STREAM/ T, P, Z(10), Y(10), X1(10), FRACV, ZVAP,
                         EK(10), VP(10), FUG(10),GAM(10),VZ(11),SVAP,
                         HOFZ, HVAP, HLIG, DHV, DSV, XSH, DSL, NOBUB, NODEW
C
      50 TO (10,20,30,40,20,50), IDLL
   10 CALL WILSN (T,X,G)
      GO TO 100
   20 CALL RENON (T, X, G)
      GO TO 100
   30 CALL UNGAC (T, X, G)
      60 TO 100
40
      CALL CHAOSD (T, P, X, Y, NU, G, DHL, DSL)
      SO TO 100
50
      NPNRBL=98
C-----THIS SWITCH IS FOR LIQUID PHASE
C-----COMPUTATIONS IN "PENROB"
      DO 70 J=1,NC
      VP(J)=EXP(ANT(1,J)+ANT(2,J)/(T+ANT(3,J))+ANT(4,J)+ALOG(T)
     *
                   +ANT (5, J) *T +ANT (6, J) *T *T)
      VP(J)=VP(J)/760.00
70
      CONTINUE
      CALL PENROB(T,P,X,VP,PFUG,XSH,DSL)
      DO EO 1=1,NC
      G(I)=1.0/PFUG(I)
80
      CONTINUE
C
      NPNRBL=0
  100 RETURN
      END
```

|             |                       |            | . N.                 | ··· .    |                                      | -                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
|-------------|-----------------------|------------|----------------------|----------|--------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|-------------|
|             |                       |            |                      |          |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
|             |                       |            |                      |          | n de la composition<br>a composition |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
|             |                       |            |                      |          |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             | 255         |
|             |                       |            |                      |          |                                      | en e |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
| -           |                       |            |                      |          |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
|             | OPTP                  | AN IV      | VER 59               | SOUPCE   |                                      | NG: CHAO                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | NR 14 ( 18 F                | 41          |
| -           | r UN IN               |            | VER JY               | SUUKLI   | E LISII                              | NGI CHAU                                 | 12D 208M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OUTINE               | 08/16/85                    | 15:03:37    |
|             | · 1.                  | Ċ          | SUBROUT              | INE CHA  | DSD(T,P                              | • X • Y • NU •                           | GAMA . DHL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,DSL)                |                             |             |
|             | 3                     |            |                      |          |                                      |                                          | Sec. St.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                             |             |
|             | 4                     | C          |                      |          |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
| •••         | 5                     | ( == = - · | EMPERIC              | SPRUGRAP | 9 E9PLO<br>Elation                   | S & THE                                  | CHAD-SEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DER                  |                             |             |
|             | 7                     | C          | SOLUTIO              | THEORY   | TO PR                                | EDICT;                                   | .ACTIVIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                             |             |
| $\sim$      | 8<br>9                | C          | (GAMA)<br>LIQUID     | HASE FL  | JOACITY                              | COFFETC                                  | TENT (NIL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COMPID<br>• • ENTH   |                             |             |
|             | 10                    | C          | DEPARTUI             | E(DHL)   | ENT                                  | ROPY DEP                                 | ARTURE (D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SL).                 |                             |             |
| ·           | 11                    | [          | THE I                | UG.COEF  | FICIEN                               | TS FOR V                                 | APOR MIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TURES IS             |                             |             |
|             | 13                    | C          | CHAO-SE              | DER.     |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
| •.          | 14<br>15              | -          |                      |          |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
|             | 16                    |            |                      |          |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
|             | 17                    |            | REAL                 | NUCTO    | ),PHI(                               | 10),LAHD                                 | A(10), DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LTA(10),             | DELZV(10)                   |             |
|             | 19                    |            | REAL                 | CH(10    | D.CH2(                               | 10).DE(1                                 | BR(10),V<br>0,10),CP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (10.15)              | (10)                        |             |
| . <b></b> . | 20                    |            | REAL                 | X(10)    | ,Y(10)                               | ,K(10),6                                 | AHA(10),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FUG(10)              |                             |             |
|             | 21<br>22              |            | COMMON/S<br>COMMON/C |          | TITE<br>NC::N                        | E(20),CO<br>CM1.IDLL                     | MPNT(20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,KOMNAMC<br>Hildbug. | 8D)<br>ISW <b>,</b> NPNR BL | NOTM.       |
|             | 23                    |            | •                    |          | ZNAH                                 | E(2,10),                                 | L(10);NT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COMP(10)             | ,ITR,ITRM/                  | ιx,         |
| X           | 24<br>25              |            | *<br>*               |          |                                      |                                          | 1,NK2,NK<br>LF(8),ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | NCASE,NFEE                  | D .         |
| ,           | 26                    |            | COMMON /             | ZDATA/C  | PL(10,                               | 4),CPV(1                                 | 0,4),ENP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (10,10),             | ANT(6,10),                  | ADEL (10) , |
| 1           | 27                    |            | *                    | V        | (10),A                               | X,BX,OME                                 | GA (10) , A'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | VAL(10).             | BVAL(10),<br>L(10),TB(1     | IDDEAF.     |
| ·           | 29                    |            | *                    | C        | (180),                               | ALPHA(45                                 | ),VC(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,TC(10),             | PC(10),EV/                  | P(10),      |
| (~ <b>`</b> | 30<br>31              |            | # DATA               |          |                                      |                                          | (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, 10), (10, |                      | ,ZRA(10)<br>CT10/10±0.      |             |
|             | 32                    |            | DATA                 | CH1.CM   | 1, CN 1,                             | CN2, CN3/                                | 5+0.0/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                             |             |
| ~           | 33<br>34              |            | REAL                 | CPD(1    |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 82,0.08852                  | •           |
|             | 35                    |            | *                    |          | -4.2                                 | 23893,8.0                                | 2,-0.003:<br>65808,-1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2205,-3              | 15244                       |             |
| •           | 36<br>37              |            | *<br>REAL            | ( 84/4   | -0.0                                 | 025,2.05                                 | 135/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | 0.008585.                   |             |
|             | 38                    |            | *                    | CPICI    |                                      | ),1.50709                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01.0.0.0           | ,0.008585,                  |             |
| urte<br>Ne  | 39<br>40              |            | REAL                 | CP2(1    | 5)/-1.5                              | 54831.0.0                                | 0.02889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0107               | 75,                         |             |
|             | 41                    | c          |                      |          | 0+104                                | • 6 0 • <sup>-</sup> U • U 4             | 2529,8+0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0,1.3682            | 227                         |             |
| · •         | 42                    |            |                      |          |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
|             | 43<br>44              | L          | DO 100 I             | =1.NC    |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
|             | 45                    |            | IF (NTCO             | 4P(1).E  |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
|             | 46<br>47              |            | IF (NTCO<br>DO 103 J |          | R.Z)GD                               | TO 102                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
|             | 48                    |            | CP(I,J)=             |          |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
|             | 49 <sup>-</sup><br>50 | 103        | GONTINUE             | h        |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
|             | 51                    | 101        | DO 111 J             |          |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
|             | 52 <sup>-</sup><br>53 | 111        | CP(I,J)=<br>D0 1111  |          |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
|             | 54                    |            | CP(I,J)=             |          |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
|             |                       | 1111       | CONTINUE             |          |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
| <u> </u>    | 56                    |            | CP(I,15)             |          | ,                                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
|             |                       |            |                      |          |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |
|             |                       |            |                      |          |                                      |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                             |             |

- - .....

ł

- ...

. .

FORTRAN IV VER 59 SOURCE LISTING: CHAOSD SUBROUTINE 03/16/85 15:03:37 57 GO TO 100 58 102 DO 112 J=1,9 59 112 CP(I,J)=CP2(J)50 DO 1122 J=10,14 61 CP(I,J)=CPO(J)62 1122 CONTINUE 63 CP(1,15)=CP2(15) 54 100 CONTINUE 65 C 56 C 67 SMALL=1.0E-20 68 C 59 C 70 DO 200 I=1,NC 71 IF (X(I).LE.SMALL) GO TO 200 72 C-----VL(I) GIVES THE PURE SPECIES MOLAL VOLUME 73 C----CORRECTED FOR THE EXCESS VOLUME OF MIXING, 74 C----AS SUGGESTED IN THE EMPERICAL CORRELATION. 75 C----IT IS ASSUMED TO BE A FUNCTION OF TEMP., 76 C----PRESSURE & ACCENTRICITY ONLY. 78 C----FOR CHAO-SEADER EQUATIONS (LIQ. PHASE FUGACITY, 79 C----MOLAL VOLUME, ENTHALPY & ENTROPY). THE VALUES 80 C----FOR ALL COMPOUNDS EXEPT METHANE & HYDROGEN 51 C----ARE THE SAME. 82 C-----NU(I) ARE THE PURE SPECIES LIQ.PHASE B3 C----FUGACITY COEFFICIENTS. 84 C----- PART OF ENTHALPY DEPARTURE IS ALSO 85 C----CALCULATED (CH(I)) IN THIS LOOP. 86 C 87 C 88 TR(I)=T/TC(I) 89 PR(I) = P/PC(I)90 CT1=CP(1,6)+TR(1) 91 CT2=CP(I,7)+TR(I)+TR(I) 92 CT3=2.+(CP(I,8)+CP(I,9)+TR(I)) 93 CT 4=CP(I,5)+CT1+CT2+OMEGA(I)+CP(I,14)+CT3 94 VL(I)=CT4+2.30258+82.053+T/PC(I) 95 CT5=CP(1,11)-CP(1,12)/TR(1)/TR(1) CT5=CT5+3.+CP(1,13)+TR(1)+TR(1) 96 97 CT6=CT5+OMEGA(I) 98 CT7=2.+CP(1,7)+TR(1)+CP(1,6) 99 CT8=2.\*CP(1,3)+3.\*CP(1,4)\*TR(1) 100 CT9=CP(I,2)-CP(I,1)/TR(I)/TR(I) 101 CT10=CP(I,9)\*PR(I)\*PR(I) 102 CH1=CT9+TR(I)+CT8 103 CH1=CH1+CT7+PR(I) 104 CH1=CH1+CT10+CT6 105 CH(I)=2.30258+1.987+CH1+T+TR(I) 106 CN1=CP(1,15)+CP(1,1)/TR(1)+CP(1,2)+TR(1) CN1=CN1+CP(1,3)+TR(1)+TR(1) 107 108 CN1=CN1+CP(I,4)+TR(I)++3 CN1=CN1-ALOG(PR(I))/2.30258 109 110 CN2=CP(I,5)+CP(I,6)+TR(I)111 CN2=CN2+CP(1,7)+TR(1)++2 112 CN2=CN2+PR(I)

-

 $\bigcirc$ 

(

 $( \cdot )$ 

(\*

 $\sim$ 

(

.....

. . . . . . .

FORTRAN IV **VER 59** SOURCE LISTING: CHAOSD SUBROUTINE 08/16/85 15:03:37 113 CN3=CP(I,8)+CP(I,9)+TR(I)114 CN 3= CN3\*PR(I)\*\*2 115 CN1=CN1+CN2+CN3 IF (TR(I).GE.1.0) TR(I)=1.0 116 117 C----THIS MODIFICATION IS IN ACCORDANCE WITH 118 C----GRAYSON & STREED :REF- CHESS' ORIGINAL VERSION. 119 C----THE FACTOR OF OMEGA IN LOG(NU(I)) IS EVALUATED 120 C----ONLY UPTO THE CRITICAL TEMP. BEYOND WHICH 121 C----IT BECOMES ERRONEOUS TO USE TR(I) > 1 VALUES. CM1=CP(I,10)+CP(I,11)+TR(I) 122 123 CH1=CH1+CP(1,12)/TR(1) CH1=CH1+CP(I,13)+TR(I)++3 124 125 CM1=CM1+CP(I,14)+(PR(I)-.6) 126 NU1=CN1+OMEGA(I)+CM1 NU(I)=(10.00)++(NU1) 127 128 200 CONTINUE 129 AX =0.0 130 DO 320 I=1,NC IF (X(I).LE.SMALL) 60 TO 320 131 132 C----DELTA(I) IS THE SOLUBILITY PARAMETER. 133 C-----AX IS THE LIQ.-PHASE MOLAL VOLUME. 134 C 135 C 136 DELTA(1) = ADEL(1) + SQRT(82.057/1.987) 137 AX = AX + X(I) + VL(I)138 320 CONTINUE 139 IF (AX.EQ.0.0) AX=0.0001 140 DO 400 I=1,NC 141 IF (X(I).LE.SMALL) GO TO 400 142 C----PHI(I) IS THE VOLUME FRACTION 143 C----ASSUMING ADDITIVE MOLAL VOLUMES. 144 C 145 PHI(I)=X(I)+VL(I)/AX 146 400 CONTINUE 147 SUMD=0.0 DHL=0.0 148 149 DSL=0.0 150 DO 500 I=1,NC 151 IF (X(I).LE.SMALL) GO TO 500 152 C----SUMD IS THE SECOND PART OF THE 153 C----ENTHALPY DEP. FUNCTION 154 C 155 SUMD=SUMD+PHI(I)+DELTA(I) 156 500 CONTINUE 157 DO 510 I=1,NC 158 IF (X(I).LE.SMALL) GO TO 510 159 C----GAMA(I) IS THE ACTIVITY COEFF. IN THE 150 C----REGULAR SOLUTION; INCLUDES FLORY-HUGGINS" 161 C----CORRECTION. 162 C----DHL IS ENTHALPY DEPARTURE. 163 C 164 C 165 D1=DELTA(I)-SUMD 156 D1=D1++2 167 IF (VL(I).LE.0.0)VL(I)=VOL(I) 158 D2 = VL(I) + D1/T/82.053

٩, -

ς.

1.1.3

 $\bigcirc$ 

C

(

~

FORTRAN IV VER 59 SOURCE LISTING: CHAOSD SUBROUTINE 08/16/85 15:03:37 169 GAMA(I)=EXP(D2+1.-VL(I)/AX+ALOG(VL(I)/AX)) 170 C----THE NUMERATOR OF THE "K-FACTOR" EXPRESSION 171 C----IS LUMPED IN THE FOLLOWING : 172 GAMA(I)=GAMA(I)+NU(I) 173 C 174 CH(I) = -CH(I)175 CH2(I)=VL(I)+D1 176 DHL=DHL+X(I) + (CH(I) + CH2(I)) 177 510 CONTINUE 178 DO 650 I=1,NC 179 IF (X(I).LE.SMALL) GO TO 650 180 DELTI=DELTA(I) 181 00 650 J=1,NC 182 IF (X(J).LE.SMALL) GO TO 650 183 DELT1=(DELT1-DELTA(J)) 184 DE (1,J)=DELT1++2 185 650 CONTINUE 186 DSUM=0.0 187 GSUM=0.0 188 HSUM=0.0 189 DO 750 I=1,NC 190 IF (X(I).LE.SHALL) GO TO 750 191 DO 750 J=1.NC 192 IF (X(J).LE.SMALL) GO TO 750 193 C----GSUM IS THE DEPARTURE IN THE GIBB'S 194 C----FREE ENERGY. 195 C-----DSL IS THE ENTROPY DEPARTURE 196 C----ESTIMATED BY DEFINITION, T+SS=HH-GG. 197 C 198 C 199 DSUM=DSUM+DE(I,J)\*PHI(I)\*PHI(J) 200 HSUM = HSUM + x(I) + CH2(I)201 750 CONTINUE 202 DO 700 I=1,NC 203 IF (X(I).LE.SMALL) GO TO 700 204 GSUM=GSUM+.5+DSUM+X(I)+VL(I) 205 700 CONTINUE 206 DSL1=(HSUM-GSUM)/T DSL2=0.0 207 208 DO 850 I=1,NC 209 IF (X(I).LE.SMALL) GO TO 850 210 PGFAC = GAMA(I) \*P\*X(I) 211 DSL2=DSL2+X(I)+((CH(I)+CH2(I))/T-1.9872+ALOG(NU(I)+PGFAC)) 212 850 CONTINUE 213 DSL=DSL1+DSL2 214 RETURN 215 END

1.0

0

 $\langle \hat{} \rangle$ 

١

FORTRAN IV **VER 59** SOURCE LISTING: DELCPS FUNCTION 08/16/85 15:03:37 1 FUNCTION DELCPS(T,P,Y,CPCV) 2 C 3 C 4 C----THIS FUNCTION PREDICTS THE HEAT CAPACITY FUNCTIONS FOR A S C----REAL GAS MIXTURE USING THE SOAVE-REDLICH-KNONG EQUATION. 6 C 7 C 8 TITLE (20), COMPNT(10), KOMNAM(40) COMMON /SYSAA/ 9 COMMON /CONTL/ NIN, NOUT, NOCOMP, NE, NEN, KUNITS COMMON /STRMIN/ SINUM(4),SIFLAG(4),SIVPFR(4),SITEMP(4),SIPRES(4), 10 11 \* SIENTH(4),SIVISC(4),SITHK(4),SIZ(4),SIS(4), 12 SIMOLE(4), SICOMP(1), 4), SIKV(10, 4) 13 COMMON /CMPRO/ NK, NCM1, IDLL, IDLV, IDH, LDBUG, ISW, NPNRBL, NDIM, 14 ZNAME(2,10), L(10), NTCOMP(10), ITR, ITRMAX, 15 \* NST, NSTM1, NK1, NK2, NK11, NK21, NCASE, NFEED, 16 \* NFTOP, NFBTM, LF(8), IDCODE, ICODE, CPCODE(10) 17 COMMON /ZDATA/ CPL(10,4), CPV(10,4), ENP(10,10), ANT(6,10), ADEL(10), 18 . W(10), AX, BX, OMEGA(10), AVAL(10), BVAL(10), MODEAF, 19 AK(10,10),R(10),Q(10),XL(10),VOL(10),TB(10), \* C(180), ALPHA(45), VC(10), TC(10), PC(10), EVAP(10), 20 ٠ 21 ÷ 0A(10),08(10),A(10,10),6(10,10),ZRA(10) 2.5 COMMON /MIX/ FMIX,ZMIX,BMIX,AA1,98,881,ZMX 23 REAL Y(10), THETA(10), B(10), TAU(10, 10), FF(10), VP(10) 24 C WRITE(6,99999) 25 C9999 FORMAT(" ', FUNCTION DELCPS") 26 C 27 C 28 OM M= 0.0 29 BMIX=0.0 30 SUM1=0.0 31 SUM2=0.0 32 SUM3=0.0 33 DO 10 I=1,NOCOMP 34 OMM=OMM+Y(I) +OMEGA(I) 35 THETA(1)=Y(1)+VC(1)++(2./3.) 36 SUM1=SUM1+THETA(I) 37 B(I)=0.08664+82.057+TC(I)/PC(I) 38 VP(I)=EXP(ANT(1,I)+ANT(2,I)/(ANT(3,I)+T)+ANT(5,I)+T+ 39 ٠ ANT(6,1) + T + T + ANT(4,1) + ALOG(T)) 40 **VP(I)=VP(I)/760.00** 41 10 CONTINUE DO 20 I=1,NOCOMP 42 43 BMIX=BMIX+B(1) 44 THETA(I)=THETA(I)/SUM1 SUM2=SUM2+THETA(I)+TC(I) 45 20 46 DO 30 I=1,NOCOMP DO 30 J=1,NOCOMP 47 48 K=NTCOMP(I) 49 DEL=ABS((TC(I)-TC(J))/(TC(I)+TC(J))) TAU(1, J)=SHI(K, DEL)+(TC(1)+TC(J))/2.0 50 51 IF (1.EQ.J) TAU(1,J)=0.0 52 30 CONTINUE 53 DO 40 I=1,NOCOMP 54 DO 40 J=1,NOCOMP SUM3=SUM3+THETA(I)+THETA(J)+TAU(I,J) 55 40 56 TC M=SUM2+SUM3

.. ....

-

 $\bigcirc$ 

.

FORTRAN IV VER 59 SOURCE LISTING: DELCPS FUNCTION 03/16/85 15:03:37 57 TRM=T/TCM 58 YTPC=D.D. 59 DO 41 J=1,NOCOMP 60 41 YTPC=YTPC+Y(J)+TC(J)/PC(J) 61 PCM=TCM/YTPC 52 AL 1=0.48+((0.025+0HH-0.1925)+0HH+1.576)+0HH 63 AL2=1.0+AL1+(1.0-SQRT(TRM)) 54 ALFM=AL2+AL2 65 CALL SRKFUG(T,P,Y,VP,FF,DD,SS) 66 AMIX=AA1 67 ACMIX=AMIX/ALFM 68 AL3=AL1+SQRT(TRM) 69 AMEG1=AL3+(AL3-AL1-1.0) 70 H=BMIX+P/ZMIX 71 T1 = (1.0+H)/(1.0-H)72 T2=2.0+ACMIX+AMEG1+H/BMIX/82.057/T 73 T3=(H+ACMIX+AMEG1/BMIX/82.057/T)++2/T1 74 T4=H+(2.0+H)+ACHIX+ALFM/BMIX/82.057/T T4=T4/T1 75 76 CPCV=(T1-T2+T3)/(T1-T4) 77 T5=ACMIX+AL1+(AL1+1.D)+ALOG(1.0+H) T5=T5+SQRT(TRM)/BMIX/T/2.0/82.057 78 79 DELCPS=(T5+CPCV-1.0)+1.9872 80 CPCV=CPCV+1.9872 51 RETURN 82 END

~~

 $(\mathbf{\hat{-}})$ 

- .

ŧ.....

 $\mathbb{C}$ 

( '

....

ŝ.

|                                                          |          |    |                                        |                                   |                                       |                               | ۰.                                            |                                 |                            |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
|----------------------------------------------------------|----------|----|----------------------------------------|-----------------------------------|---------------------------------------|-------------------------------|-----------------------------------------------|---------------------------------|----------------------------|------------|-------------------|---------|-----|------------|-----|------------|------------|-----|----------|------------|------------|------------|-----|------------|------------|-----|-----|-----|------------|-----|---|---------|-----|----------|----|-----|-----------|------------|---|---|----------|------------|----------|----------|----|-----|-----|---|
|                                                          |          |    |                                        |                                   |                                       |                               |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
|                                                          |          |    |                                        |                                   |                                       |                               |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    | 2   | 6   | 1 |
|                                                          |          |    |                                        |                                   |                                       |                               |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    | 4   | 0   | Ŧ |
|                                                          | ċ        |    |                                        |                                   |                                       | - ")<br>- ")                  |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
|                                                          |          |    |                                        |                                   |                                       |                               |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| FORTR                                                    | AN       | IV | VE                                     | R                                 | 59                                    | )                             |                                               | sc                              | ັບ                         | R (        | :E                | i       | . I | s 1        | 11  | N          | 6:         |     | DE       | EĹ         | CI         | R          | r.  | 1          | FU         | IN  | c 1 | I I | 0          | N   |   |         | (   | 09       | 1  | 1   | 6         | 18         | 5 |   |          | 1          | 5        | :0       | )3 | :   | 37  | , |
|                                                          |          |    | -                                      |                                   |                                       |                               |                                               |                                 |                            |            |                   |         | _   | _          |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 1 2                                                      | c        |    | FL                                     | INC                               | 11                                    | .01                           | 4                                             | DE                              | EL                         | C P        | PR                | C       | , I | P          | Ţ   | •          | C P        | Ċ   | V        |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
|                                                          | c        |    |                                        |                                   |                                       |                               |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 4                                                        | C        |    |                                        |                                   |                                       |                               |                                               |                                 | _                          |            |                   |         |     |            |     |            |            |     |          |            | ·          |            | -   | _          |            | _   |     | _   |            |     |   | _       | _   |          |    |     | _         |            |   |   |          |            |          |          |    |     |     |   |
| ><br>*                                                   | С.<br>с. |    |                                        |                                   |                                       |                               |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            | T          | т   | HE  | 5   | 5          | PE  | C | I       | F   | 1(       |    | H   | E         | Ţ          | ſ |   | ·        |            |          |          |    |     |     |   |
| 7                                                        | C        |    | -10                                    |                                   |                                       |                               | • 3                                           | ,                               | Ū                          | ~          |                   |         |     | ~.         | •   | 91         | - 3        | ,   | m 4      | -          |            |            |     | •          |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
|                                                          | C        |    |                                        |                                   |                                       |                               |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 9<br>10                                                  |          |    |                                        | ) 원원<br>) 원원                      |                                       |                               |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     | NC       |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          | ÷. |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 11                                                       |          |    |                                        | H M                               |                                       |                               |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    | Ē   | MS        | > (        | 4 | ) |          | S          | ÍF       | 2 8      | E  | s   | (4  | ) |
| 12                                                       |          |    | *                                      |                                   |                                       | -                             | -                                             |                                 |                            | -          |                   |         |     |            |     |            |            |     | , S      |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    | •   | • • | - |
| 13                                                       |          |    | *                                      |                                   |                                       |                               | • •                                           |                                 | _                          |            |                   |         |     |            |     |            |            |     | • 5      |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   | _ |          |            |          |          |    |     |     |   |
| 14                                                       |          |    | •<br>•                                 | MM                                | ON                                    | /                             | Z                                             | DA                              | LT.                        | <b>x</b> / |                   |         |     |            |     |            |            |     | СР<br>Х, |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     | ) |
| 16                                                       |          |    | *                                      |                                   |                                       |                               |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     | (1       |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    | r   | •   |   |
| 17                                                       |          |    | ŧ                                      |                                   |                                       |                               |                                               |                                 |                            |            | C                 | (1      | 8   | 0)         |     | ٨L         | .P         | H   | A (      | 4          | 5 )        | ),         | ۷   | <b>c</b> ( | (1         | 0   | ),  | T   | C          | (1  | Ö | )       | , F | °C       | (  | 1   | 0)        | ,          | E | ۷ |          |            |          |          | )) | •   |     |   |
| 18                                                       |          |    | * :<br>                                |                                   | ~                                     |                               |                                               | -                               |                            |            | 0                 | A (     | 1   | 0)         |     | 06         | )(         | 1   | 0)       | •          | A (        | (1         | 0   | •1         | 10         | )   | , G | ; ( | 1          | 0,  | 1 | 0       | ),  | , Z      | R  |     | Ċ         | 10         | ) |   | _        |            |          |          |    |     |     |   |
| 19<br>20                                                 |          |    | .U<br>*                                | 判判                                | UN                                    |                               | 1                                             | CM                              | 111                        | κU         | 1                 |         | 7   | K ,<br>N / | M   | M (<br>F ( | . A<br>( 2 | 1   | 10       | ס<br>וס    |            | • •        | 1   | D L<br>1 ( | . V<br>) ) |     | 1 D | 1 M | • I<br>C I |     | 5 | ()<br>( | 11  | נו<br>נו | S  | W   | • ħ<br>77 | 1 P<br>1 P | N | R | 1 1<br>1 | L 1<br>T 2 | •<br>> # | N<br>I A |    | 1 - | •   |   |
| 21                                                       |          |    | <b>*</b> .                             |                                   |                                       |                               |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     | M 1      |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     | D   | , |
| 22                                                       |          |    | *                                      |                                   |                                       |                               |                                               |                                 |                            | -          |                   | N       | F   | T O        | P   | ,          | N          | F   | BT       | H          | <b>, L</b> | . F        | C   | 8)         | •          | 11  | DĊ  | 0   | D          | E,  | 1 |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     | · |
| 23                                                       | r        |    | CO                                     | ĦĦ                                | ON                                    | 1                             | H                                             | IX                              | /                          | F          | 1                 | IX      |     | ZĦ         | I   | X 1        | B          | Ħ   | IX       | ٠          | A A        | 1          |     | B 8        | ,          | 83  | 31  | 1   | ZI         | ٩X  |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 25                                                       | -        |    |                                        |                                   |                                       |                               |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 26                                                       | -        |    | RE                                     | AL                                |                                       |                               |                                               |                                 |                            | Y          | C                 | 10      | )   | <b>,</b> T | H   | E 1        | A          | (   | 10       | )          | <b>,</b> T | <b>` A</b> | U   | (1         | D          | •1  | 10  | )   | ,۱         | /P  | ( | 1:      | ))  |          | F  | F   | F (       | 1          | 0 | ) |          |            |          |          |    |     |     |   |
| 27                                                       | -        |    |                                        |                                   |                                       |                               |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 28<br>29                                                 | L        |    | ÓM                                     | 68                                | =0                                    | .0                            |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 30                                                       |          |    | SU                                     |                                   |                                       |                               |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 31                                                       |          |    | SU                                     | _                                 | -                                     |                               |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 32<br>33                                                 |          |    | SU                                     | -                                 | -                                     |                               |                                               |                                 | ~                          | • •        |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 33                                                       |          |    | DO<br>OM                               |                                   |                                       |                               |                                               | -                               |                            |            |                   |         | E   | 5 A        | c   | 1)         | 1          |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 35                                                       |          |    | TH                                     |                                   |                                       |                               |                                               |                                 |                            |            |                   |         |     |            |     | ·          |            | /3  | 3.       | )          |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 36                                                       |          |    | SU                                     |                                   |                                       |                               |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     |          |            | <u>.</u>   |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 37<br>38                                                 |          |    | VP.                                    | (1                                | )=                                    |                               |                                               | C A<br>N T                      |                            |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     | ) 4        | F A | N | T (     | ( 5 |          | 1  | ) 1 | t T       | •          |   |   |          |            |          |          |    |     |     |   |
| 39                                                       |          |    | VP                                     | (1                                | )=                                    |                               |                                               |                                 |                            | -          |                   |         |     | - 1        | •   | - 11       |            |     | • •      | •          | , -        | -          |     | 00         |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 40                                                       | 10       |    | CO                                     |                                   |                                       |                               |                                               |                                 | •                          | -          |                   |         | -   |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 41                                                       |          |    | 00                                     |                                   |                                       |                               |                                               | -                               |                            |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 42                                                       | 20       |    | TH<br>SU                               | -                                 |                                       |                               |                                               |                                 |                            |            |                   |         |     |            |     |            | >          |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 23                                                       | - 0      |    | 00                                     |                                   |                                       |                               |                                               |                                 |                            |            |                   |         |     | '          | •   | • •        |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 43<br>44                                                 |          |    | DO                                     | 3                                 | 0                                     | j =                           | 1                                             | , N                             | 00                         |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 44                                                       |          |    | K=                                     | NT                                |                                       |                               |                                               |                                 |                            | •          | _ •               | • •     |     | • •        | `   | , ;        | ÷.         | r   | ( •      | ۱.         |            | ~          | •   | , \<br>, \ | ,          | `   |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 44<br>45<br>46                                           |          |    |                                        |                                   |                                       |                               |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     | )   |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 44<br>45<br>46<br>47                                     |          |    | DE                                     |                                   | I                                     |                               |                                               |                                 |                            |            |                   |         |     |            |     |            |            |     |          |            |            | -          | - • |            | -          | - • | -   |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 44<br>45<br>46                                           |          |    |                                        | U C                               |                                       |                               |                                               | ")                              |                            |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 44<br>45<br>46<br>47<br>48<br>49<br>50                   | 30       |    | DE<br>TA<br>IF<br>CO                   | U (<br>(<br>NT                    |                                       | E Q<br>U E                    |                                               |                                 |                            | _          |                   | _       |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 44<br>45<br>46<br>47<br>48<br>49<br>50<br>51             | 30       |    | DE<br>TA<br>IF<br>CO<br>DO             | U (<br>(<br>NT<br>4               | I.<br>IN<br>0 2                       | E Q<br>U E<br>I =             | 1                                             | , N                             | 00                         |            |                   |         |     |            |     |            |            |     |          |            |            |            |     |            |            |     |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52       |          |    | DE<br>TA<br>IF<br>CO<br>DO<br>DO       | U (<br>(<br>NT<br>4               | I . (<br>I . (<br>0 . 2<br>0 .        | 29<br>UE<br>1=<br>J=          | 1,                                            | , N<br>, N                      | 00                         | 0          | M P               | •       | ) = | • <b>T</b> | H   | T          |            | ( ) | )        | <b>* 1</b> | T A I      | U          | ()  |            | J          | )   |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 44<br>45<br>46<br>47<br>48<br>49<br>50<br>51             |          |    | DE<br>TA<br>IF<br>CO<br>DO             | U (<br>(<br>NT<br>4<br>1<br>4     | I . 1<br>I N 1<br>0 2<br>= S 1        | E Q<br>UE<br>I =<br>J =<br>UN | 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,      | , N<br>, N<br>+ T               | 0 C<br>0 C<br>H E          | 0<br>T     | M P               | •       | ) 1 | T          | H E | ET         | A          | ()  | )        | ÷1         | T A        | U          | (1  | ,          | J          | )   |     |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |
| 44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53 |          |    | DE<br>TA<br>IF<br>CO<br>DO<br>DO<br>SU | U (<br>NT<br>4<br>M3<br>M=1<br>=0 | I . 1<br>I N 1<br>D 2<br>S U 1<br>. 3 | E 9<br>UE<br>J=<br>UM<br>74   | 1 - 3 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 | • N<br>• N<br>• T<br>5 U<br>4 + | 00<br>00<br>HE<br>M3<br>(1 | 0<br>T     | M P<br>A (<br>5 4 | ,<br>[] |     |            |     |            |            |     |          |            |            |            |     |            |            |     | M   |     |            |     |   |         |     |          |    |     |           |            |   |   |          |            |          |          |    |     |     |   |

.

~

-.

.

-、

 $C_{\rm c}$ 

-

~ •

-

.

•

## FORTRAN IV **VER 59** SOURCE LISTING: DELCPR FUNCTION 08/16/85 15:03:37 ALFH=1.0+KH+(1.0-TRH) 57 58 AMAL=ALFM+ALFM 59 CALL PENROB(T,P,Y,VP,FFF,DDD,SSS) 60 ACH=AA1/AMAL 61 H=BB/ZMX H1=1.0+2.414+H 62 63 H2=1.0-0.414+H 64 H3=2.414-H 55 H4 =0 .414+H 66 T1 = A CH + KM + ALFM + (1.0-H) + TRM + (H/BB1) 57 T1=T1/0.082057/T/H3/H4 68 T1=(1.0+T1)++2 69 T2=2.0+ACH+AMAL+(1.0+H)+(1.0-H)++2 70 T2=T2/0.082057/T/(H1+H2)++2 71 T2=1.0-T2 72 TE RM1=T1/T2 73 T3=ACH+KH+(1.0+KH)/4.0/1.414/0.082057 74 T3=T3/881/TCM/TRM 75 TERM2=T3+ALOG(H1/H2) 76 DELCPR=1.9872+(TERM1+TERM2-1.0) 77 CPCV=1.9872 +TERM1 78 RETURN

بحاربة يرجاره والانوحار مرجر الرا

1

....

<u>ر</u> .

 $(\cdot$ 

Ć

705 55 - 79

. . . . . . . . . . . . . . . .

-----

.....

END

. . . . .

. .

| RTRAN IV     | VER 5      | 9      | SOUR   | CE LI       | ISTI          | NG:              | SHI            |              | FL            | INCT   | ION     |               | 08/     | 16/8      | 35    | 15   | 03:37  |
|--------------|------------|--------|--------|-------------|---------------|------------------|----------------|--------------|---------------|--------|---------|---------------|---------|-----------|-------|------|--------|
| 1            | FUNCT      | ION    | SHIC   | I,DL)       | )             |                  |                |              |               |        |         |               |         |           |       |      |        |
| 2 C          |            |        |        |             |               |                  |                |              |               |        |         |               |         |           |       |      |        |
| 3 C          |            |        |        |             |               |                  |                |              |               |        |         |               |         |           |       |      |        |
| 4 0          |            |        |        |             |               |                  |                |              |               |        |         |               |         |           |       |      |        |
| 5 [          | THIS       | FUNC   | TION   | ESTI        | MAT           | r s              | ME I           |              | ME T          | e b    | Heilin  | 11. e         |         | *         |       |      |        |
| 6 [          | TERM       | TAU    | (1.1)  |             |               |                  | MILE:          |              |               |        | 2 1 1   |               | UK      | I HE      |       |      |        |
| 7 (          | FORCI      | LI CHI |        |             | · • • • •     |                  | HUC!           | 1 - F P      | NU3           | 110    | 4 -     | EIN           | 0 D     |           |       |      |        |
| 8 C          | TT TC      | Heri   | 5 T.N. | 10 HI       |               |                  | <b>N 1 1 1</b> |              |               | MPE    | RATU    | RES           | •       |           |       |      |        |
| 9 [          | .95 5 . 7  | 2000   |        |             |               |                  | DELI           | . "3         | 6             | DE     | LCPR    | •             |         |           |       |      |        |
| 9 C          | NET. I     | RUPE   | 28115  | :5 07       | 6A3           | 55               | AND            | LIG          | UID           | S~,    | 3RD.    | EDN           | • B Y • | - R : S   | : P   |      |        |
| 11 0         |            |        |        |             |               |                  |                |              |               |        |         |               |         |           |       |      |        |
|              |            |        |        |             |               |                  |                |              |               |        |         |               |         |           |       |      |        |
| 12 C         | FOLLO      | ING    | ARE    | THE         | CONS          | TAN              | TS N           | EED          | ED            | FOR    | THE     | HE            | THOD    | ).        |       |      |        |
|              | - <b>-</b> |        |        |             |               |                  |                |              |               |        |         |               |         |           |       |      |        |
| 14           | REAL       | (98)   | /39+   | 0.00        | 76,6          | <b>*</b> 0•      | 0219           | ,2+          | 0.0           | 076    | .O.D    | 077           | .a.o    | 953       | . n.  | n4Ż  | 0.     |
|              |            |        | 14*    | 0.00        | 76.0          | .07              | 85.4           | <b>*</b> 0 - | 0.77          | A . O. | • N . N | 210           | . 20.   |           | 0 74  |      |        |
| 16           | REAL B     | (98)   | /39*   | 0.28        | 7,6+          | 1.2              | 27.2           | +0.          | 287           | 0      | .095    | . 2 . 4       | 185.    | -5.       | 725   | . 14 | • 0 70 |
|              |            |        |        | .122        |               | . 78             | 7.9.           | 1.7          | 27.           | 20+1   | 7 20    | 7/            |         |           |       |      |        |
| 18           | REAL C     | (98)   | /39+   | 1.34        | 3.6*          | 24.              | 277.           | 2 * 5        |               | ₹. ₹.  | 528     | . 470         |         |           | 4 4 4 | 7.4  | -      |
| 19 +         |            |        | 14+    | 5.44        | 37            | 22.              | 676            | 4+5          |               | 7.04   | 147     | 477           |         |           | 101   | • 21 | ¥ •    |
| 20           | REAL D     | (98)   | 139+   | 5-44        | 3.6*          | 147              | . 673          |              | 5.4           |        |         |               | 992U    | · • 2 • 1 | 443   | / .  |        |
| 21 *         |            |        | -16    | 1.31        | 9.94          | +5               | 1.1.2          |              | 2 • • •       |        |         |               | 7.0     | 00,       |       |      |        |
| 22 +         |            |        | 20+    | 5.44        | $\frac{1}{2}$ | - 2 .            |                | -12          | <b>C + D</b>  | /0,4   | **>*    | 4431          | 9 * 1   | 47.       | 573   | •    |        |
| 23           | RFAL F     | ( 89 ) |        |             |               | 250              | 1 7 7          | •            | • •           |        |         |               |         | -         |       | 1    |        |
| 24 *         | REALE      |        | 137-   | 010)<br>010 | 0 + 0 = 1     | 6 J Y (<br>5 N / |                | • U • 1      |               | 04.3   | 22,     | <b>U • D </b> | 14*     | 3.0.      | 58,   | 0.0  | •      |
| 25 C         |            |        | 4-2    | •038        | ,             | 34.4             |                | 20=          | <b>5 -</b> 02 | 587    |         |               |         |           |       |      |        |
| 26 C         |            |        |        |             |               |                  |                |              |               |        |         |               |         |           |       |      |        |
|              |            |        |        |             |               |                  |                |              |               |        |         |               |         |           |       |      |        |
| • • •        | SH I = ((  | (-E(   | 1)+D   |             | []]+[         | DL-C             | $(\mathbf{I})$ | ) + D I      | .+B (         | (1))   | +PL-    | -ACI          | )       |           |       |      |        |
| 28 f<br>29 f | RETURN     |        |        |             |               |                  |                |              |               |        |         |               |         |           |       |      |        |

-

(`

(

Ċ

Ċ

ζ

τ.

. •

.

- - - -

| FORTRAN I           | V VER 59 SOURCE                       | LISTING:                                                |                                   |
|---------------------|---------------------------------------|---------------------------------------------------------|-----------------------------------|
|                     |                                       |                                                         | 08/16/85 15:01:31 F               |
| 1                   | SUBROUTINE COMP                       |                                                         |                                   |
| 2 C<br>3 C          |                                       |                                                         |                                   |
| 4                   | COMMON / CNTRI /                      |                                                         |                                   |
| 5 5                 | COMMON /CNTRL/<br>COMMON /CONTL/      |                                                         |                                   |
| 6                   |                                       |                                                         | N, KUNITS                         |
| 7                   | COMMON /SYSC/                         | FMIX,ZMIX,BMIX,AA1,3B,B<br>LA,LB,LC,LOOP,LOOPS          | B1,ZMX                            |
| 8                   | COMMON /SYSD/                         | KEFLAG(50) .KSFLAG(100                                  | ),KTRACE, DERROR, NPFREQ,         |
| 9                   | •                                     | IFUNCH.                                                 | -                                 |
| 10<br>11            | COMMON /EQPA/                         | EQPAR (25,50) ,NEMAX, HA                                | XEQP                              |
| 12                  | COMMON /STRMIN/                       | SINUH(4),SIFLAG(4).SI                                   | PFR(4) STTEMP(4) ETDOROUS         |
| 13                  | -<br>*                                | ~~~~~                                                   | [[ME[4].5T7//\\ 676//\\           |
| 14                  | COMMON /STMOUT                        |                                                         |                                   |
| 15                  | *                                     | SOFNTH(4), SOFEA6(4), SO                                | /PFR(4) + SOTEMP(4) + SOPRES(4) - |
| 16                  |                                       | SOENTH (4), SOVISC (4), SC<br>SOMOLE (4), SOCOMP (10,4) | 11 HK(4), SDZ(4), SOS(4),         |
| 17                  | COMMON /ZDATA/                        | CPL(10,4), CPV(10.4), ENE                               | (13,13), ANT(6,10), ADEL(10),     |
| 18                  | *                                     |                                                         | AVAL (10) RVAL (10) MANFAF        |
| 19<br>20            | *                                     | - MRVIUSIUS, KVIUS, BVID                                | 3. XI (10) . VOL (10) TO (40)     |
| 21                  |                                       |                                                         | 3.TC(10).PC(10) EVAD/400          |
| 22                  | COMMON /CMPRO/                        | VALIDJ, UBLIDJ, AA(10.                                  | 10 = 6(10, 10), 784(10)           |
| 23                  |                                       |                                                         | LDBUGYTSW.                        |
| 24                  | •                                     | NPNRBL, NDIM, ZNAME (2, 10)                             | +L(10),NTCOMP(10),                |
| 25                  | *                                     | ITR,ITRMAX,NST,NSTM1,NK<br>NCASE,NFEED,NFTOP,NFBTM      | 1, NK 2, NK 11, NK 21,            |
| 26                  | *                                     | ICODE, CPCODE(1D)                                       | +LF(0),IDCODE,                    |
| 27 C                |                                       |                                                         |                                   |
| 28<br>29            | DIMENSION                             | Y(10)                                                   |                                   |
| 30 c                | REAL                                  | SIDUM(4,11), SODUM(4,1                                  | 1), SIC(10), SID(11)              |
| 31                  | EQUIVALENCE                           |                                                         |                                   |
| 32 C                |                                       | (SINUM, SIDUM), (SONUM,                                 | SODUM)                            |
| 33 C                | EQPAR(1.NE) =                         | EQUIPMENT NUMBER                                        |                                   |
| 34 C                | EWPAR(Z,NE) =                         | POWNSTREAM PRESSURE, A                                  | 179                               |
| 35 C                | EQPAR(3,NE) =                         | INTERCOOLER/AFTERCOOLE                                  | R TEMPERATURE, NEC -              |
| 36 C<br>37 C        |                                       |                                                         |                                   |
| 38 C                | EQPAR(4+NE) =                         | EFFICIENCY (FRACTION)                                   |                                   |
| 39 C                | EDDAD(E NE) -                         | DEFAULT=0.80                                            |                                   |
| 40 C                | EQPAR(A.NE) =                         | # OF STAGES OF COMPRES<br>Compression Ratio Per         | SION                              |
| 41 C                | $EQPAR(7 \cdot NE) =$                 | TOTAL BRAKE HP, CAL                                     | STAGE                             |
| 42 C                | ••••                                  | TOTAL DARKE AF, CAL                                     |                                   |
| 43 C                | EQPAR(11-15,N                         | E) = HEAT REMOVED PER S                                 | TĂCÊ, CAL                         |
| 44 C                | EQPAR (16-20, N                       | E) = COMPRESSOR DISCHAR                                 | GE TEMPERATURE, NEC V             |
| 45 C<br>46 C        |                                       |                                                         | The chardney bed k                |
|                     | WRITE (6,99999)                       | • · · · · · · · · · · · · · · · · · · ·                 |                                   |
| 48                  | FORMAT( ',113x, '<br>IF (KUNITS.EQ.1) | SUBROUTINE COMP")                                       |                                   |
| 49                  | EQPAR(2, NE) = EQPAR                  | 60 TO 4<br>(2 NE)(4/ /D/                                |                                   |
| 50                  | IF (EQPAR(3.NE)_F                     | 2.0.0) EQPAR(3,NE)=120.                                 | 8                                 |
| 51                  | EQPAR(3,NE)=(EQPA                     | 2(3,NE)-32,0)/1,8+272 4                                 |                                   |
| 52                  | IF (EQPAR(4,NE).E(                    | 0.0.0) EQPAR(4,NE)=0.80                                 |                                   |
| 53                  | EQPAR(25,NE)=0.0                      |                                                         |                                   |
| 54 <u>c</u><br>55 c |                                       |                                                         |                                   |
| 55 C                | LUAD THE OUTPUT SI                    | REAM WITH THE INPUT ST                                  | REAM                              |
|                     |                                       |                                                         |                                   |

<u>\_\_\_</u>

 $\hat{\mathbf{c}}$ 

17

۰.

.

-

. . . . . . .

· . . . . . . . .

-

•

| · .     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | FORTRAN IV | VER 59 SOURCE LISTING: COMP SUBROUTINE 08/16/85 15:01:31 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.4     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 57 4       | DO 5 I=3,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\sim$  |            | SODUM(1,I)=SIDUM(1,I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | 59         | DO 10 I=1,NOCOMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | 60 10      | SOCOMP(I,1)=SICOMP(I,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | 61         | IF (EQPAR(2,NE).LT.D.1 .OR. SIPRES(1).GT.EQPAR(2,NE)) 60 TO 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <u></u> | 62         | ESAVE=EQPAR(2.NE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 63 C ·     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |            | ACTERMANE THE MAYTMIN NUMBER OF STAFES OF FORBESSTON CO THAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ~       | 54 L       | DETERMINE THE MAXIMUM NUMBER OF STAGES OF COMPRESSION SO THAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |            | THE STAGE COMPRESSION RATIO IS < 6.0. MAXIMUM NUMBER OF STAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | 66 C       | IS FIVE (5).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | 57 C       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 68         | N= 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | 69         | RATIO=EQPAR(2,NE)/SIPRES(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         | 70 20      | N=N+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | 70 20      | IF (RATIO++(1.0/FLOAT(N)) .6T. 6.0) 60 TO 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ň.      | 71         | $\mathbf{I} = \{\mathbf{R} \in [\mathbf{U}, \mathbf{U}, $ |
|         |            | NS TA GE=N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | 73         | IF (NSTAGE.GT.5) GO TO 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1       | 74         | EQPAR(5.NE)=NSTAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| · •     | 75         | FQPAR(6.NE) = RATIO + (1.O/FLOAT(NSTAGE))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | 76         | EQPAR(5,NE)=NSTAGE<br>EQPAR(6,NE)=RATIO++(1.0/FLOAT(NSTAGE))<br>EQPAR(7,NE)=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 70.        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 77 C       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 78         | YKK=D.O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | 79 [       | -PUT VAPOR MOLE FRACTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | 80         | DO 21 KK=1,NC<br>YKK=SICOMP(KK,1)+YKK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | 81 21      | YKK#SICOMP(KK.1)+YKK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | 82 C       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2       | 52 6       | 00 212 KK=1,NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | 53         | DO 212 KK=1,NC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |            | Y(KK)=SICOMP(KK,1)/YKK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | 85 C       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 86 C       | SAVE THE FEED STREAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | 87 C       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 88         | DO 22 I=3,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |            | SID(I)=SIDUM(1,I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 90         | DO 23 I=1,NOCOMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | 91 23      | SIC(I)=SICOMP(I,1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | 92 C       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 93 C       | EACH STAGE OF COMPRESSION IS ACCOMPLISHED IDENTICALLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | 94 C       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |            | T3=EQPAR(3,NE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| •       |            | DO 55 N=1,NSTAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |            | INLET CP-CV VALUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 98         | T1=SITEMP(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         | 99         | P1 = SIPRES(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         | 100        | CP1=0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         | 101        | DO 32 I=1,NOCOMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | 102        | CP1=CP1+SICOMP(I,1)*(((CPV(I,4)*T1+CPV(I,3))*T1+CPV(I,2))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 103        | * *T1+CPV(I,1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -       |            | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         | 105        | IF (IDLV.EQ.2.OR.IDLV.EQ.4.OR.IDLV.EQ.1)DCP=DELCP(T1,P1,CPCV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|         | 106        | IF (IDLV.EQ.3)DCP=DELCPS(T1,P1,Y,CPCV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | 107        | IF (IDLV.EQ.6)DCP=DELCPR(T1.P1.Y.CPCV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|         | 108        | IF $(IDLV.EQ.D)DCP=0.0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|         |            | 1F (1DLV.EQ.D)CPCV=1.9872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | 109        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | 110        | CP1=CP1/SIMOLE(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         | 111 C      | WRITE(6,333) CP1,DCP,CPCV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         | 112 333    | FORMAT( COMP ', INLET CPO,DCP,CP-CV',3F15.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

بغر

FORTRAN IV **VER 59** SOURCE LISTING: COMP SUBROUTINE 08/16/85 15:01:31 F 113 CP1=CP1+DCP 114 CV1=CP1-CPCV 115 61=CP1/CV1 116 EXP1=(61-1.0)/61 117 H1=SIENTH(1) 118 C OUTLET CP/CV VALUE ... INITIALLY ASSUME A 100K TEMPERATURE RISE P2=P1+EQPAR(6,NE) 119 120 T2=T1+100.0 121 NTIME=0 122 40 CP2=0.0 123 DO 42 I=1,NOCOMP 124 CP2=CP2+SICOMP(1,1)+(((CPV(1,4)+T2+CPV(1,3))+T2+CPV(1,2)) 125 +T2+CPV(1,1)) \* 42 CONTINUE 126 127 IF (IDLV.EQ.1.OR.IDLV.EQ.2.OR.IDLV.EQ.4)DCP=DELCP(T2,P2,CPCV) 128 IF (IDLV.EQ.3)DCP=DELCPS(T2,P2,Y,CPCV) 129 IF (IDLV.EQ.6) DCP=DELCPR(T2,P2,Y,CPCV) 130 (IDLV.EQ.0) DCP=0.0 IF 131 IF (IDLV.EQ.0)CPCV=1.9872 132 CP2=CP2/SINOLE(1) 133 C WRITE (6,335) CP2,DCP,CPCV 134 335 FORMAT ( OUTLET CPO DCP CP-CV (,3F20.10) 135 CP2=CP2+DCP 136 CV2=CP2-CPCV 137 62 = CP2/CV2138 EXP2=(62-1.0)/62 139 C COMPUTE DISCHARGE TEMPERATURE FROM THE COMPRESSOR STAGE 140 EXPAVG=(EXP1+EXP2)/2.0 141 FACTOR=EQPAR(6,NE) ++ EXPAVG 142 TCALC=T1+FACTOR 143 NTIME=NTIME+1 144 IF (NTIME.EQ.20) GO TO 48 145 IF (ABS(T2-TCALC) .LT. 1.0) 60 TO 48 146 T2=TCALC 147 60 TO 40 148 48 EQPAR(N+15,NE)=T2 149 C COMPUTE HP REQUIREMENT FOR STAGE SCFMIN=SIMOLE(1)/453.59/60.0+379.0 150 151 TSUCR=T1+1.8 152 BHP=TSUCR/S20.0+0.0643/EXPAVG+SCFMIN+(FACTOR-1.0)/EQPAR(4,NE) EQPAR(7, NE) = EQPAR(7, NE)+BHP+2545.1+252.16 153 154 C CALCULATE ENTHALPY AT COMPRESSOR DISCHARGE 155 SIPRES(1)=P2 156 SITEMP(1)=T2 157 EQPAR(2, NE) =4.0 158 SIVPFR(1)=1.0159 CALL ADBF 160 H2=SIENTH(1) 161 C CALCULATE ENTHALPY AT EXIT OF HEAT EXCHANGER 162 P3=P2 163 SIPRES(1)=P3 164 SITEMP(1)=T3165 EQPAR(2,NE)=4.0166 SIVPFR(1)=1.0167 CALL ADBE 158 H3=SIENTH(1)

and an an end of the second second

 $\sim$ 

٦.

-、

VER 59 SOURCE LISTING: COMP SUBROUTINE 08/16/85 15:01:31 P FORTRAN IV 169 SIENTH(1)=H2 CALCULATE AND STORE THE EXCHANGER HEAT DUTY 170 C 171 ERPAR(N+10, NE) = ABS(H2-H3)55 CONTINUE 172 173 C 174 C RESTORE INPUT STREAM ... OUTPUT STREAM LOADED BY FLASH ROUTINE 175 C 176 C WRITE (6,892) H1,H2,H3 FORMAT( === COMP H1 H2 H3=== ,3F20.10) 177 892 178 DO 64 I=3,11 179 64 SIDUM(1,I)=SID(I) 150 DO 65 I=1,NOCOMP 181 65 SICOMP(I,1)=SIC(I) 152 EQPAR(2, NE) =ESAVE 183 RETURN 184 C 185 200 WRITE (NPRT,210) NE 210 FORMAT ("O\*\*\*\*\* CONP PRESSURE OR TEMPERATURE WAS NOT SPECIFIED, NE 186 \* =", I3, ", INPUT TRANSFERED TO OUTPUT") 187 RETURN 188 189 END

مدماد بدائما

-----

...

 $\sim$ 

ч**.**~

÷ .

....

<u>ر</u>

\_

ť

٠.,

. . . . .

. .

267

\_ \_ -

۰.

FORTRAN IV **VER 59** SOURCE LISTING: 08/16/85 15:01:31 1 SUBROUTINE GSXP WRITE (6,99999) FORMAT( - 113x 2 C 3 69999 ,113x, SUBROUTINE GSXP") 4 C 5 COMMON /CNTRL/ NCR,NPRT COMMON /CONTL/ NIN, NOUT, NOCOMP, NE, NEN, KUNITS 6 7 COMMON KEFLAG(50), KSFLAG(100), KTRACE, DERROR, NPFREQ, /SYSD/ 8 IPUNCH 9 COMMON /EQPA/ EQPAR(25,50), NEMAX, MAXEQP SINU4(4), SIFLAG(4), SIVPFR(4), SITEMP(4), SIPRES(4) 10 COMMON /STRMIN/ 11 SIENTH(4), SIVISC(4), SITHK(4), SIZ(4), SIS(4), 12 • SIMOLE(4), SICOMP(10,4), SIKV(10,4) 13 COMMON /STMOUT/ SONUM(4), SOFLAG(4), SOVPFR(4), SOTEMP(4), SOPRES(4) 14 SOENTH(4), SOVISC(4), SOTHK(4), SOZ(4), SOS(4), 15 SOMOLE(4), SOCOMP(10,4), SOKV(10,4) ٠ 16 COMMON /CMPRO/ NC,NCM1,IDLL,IDLV,IDH,LDBUG,ISW,NPNRBL, 17 NDIM, ZNAME (2,10), L(10), NTCOMP(10), ITR, 18 ITRMAX, NST, NSTM1, NK1, NK2, NK11, NK21, NCASE, \* 19 NFEED, NFTOP, NFBTH, LF (8), IDCODE, ICODE, CPCODE(10) /ZDATA/ CPL(10,4),CPV(10,4),ENP(10,10),ANT(6,10),ADEL(10) 20 COMMON 21 W(10), AX, BX, OMEGA(10), AVAL(10), BVAL(10), MODEAF, 22 \* AK(10,10), R(10), Q(10), XL(10), VOL(10), TB(10), 23 C(180), ALPHA(45), VC(10), TC(10), PC(10), EVAP(10), ٠ 24 ٠ OA(10), OB(10), A(10,10), G(10,10), ZRA(10) 25 COMMON /STREAM/ T, P, Z(10), Y(10), X(10), FRACV, ZVAP, 26 \* EK(10), VP(10), FUG(10), GAM(10), VZ(11), SVAP, 27 \* HOFZ, HVAP, HLIQ, DHV, DSV, XSH, DSL, NOBUB, NODEW 28 C 29 REAL SIDUM(4,11), SODUM(4,11), SIC(10), SID(11) 30 REAL NU(20) 31 C 32 EQUIVALENCE (SIDUM, SINUM), (SODUM, SONUM) 33 C 34 C EQPAR(1,NE) = EQUIPMENT NUMBER 35 C EQPAR(2,NE) = DOWNSTREAM PRESSURE, ATM 36 C EQPAR(3,NE) = EFFICIENCY (FRACTION) 37 C EQPAR(4,NE) = THEORETICAL HP, CAL 38 C EQPAR(5,NE) = RECOVERABLE HP, CAL 39 ٢ 40 C OUTLET STREAM ESTABLISHED VIA AN ADIABATIC FLASH 41 C 42 IF (KUNITS.EQ.1) 60 TO 1 43 EQPAR(2, NE) = EQPAR(2, NE)/14.696 44 EQPAR(25,NE)=0.0 45 C 46  $1 \quad 00 \quad 5 \quad I=3, 11$ 47 5 SODUM(1,I)=SIDUM(1,I) 48 DO 10 1=1,NOCOMP 49 SOCOMP(I,1)=SICOMP(I,1) 10 50 IF (EQPAR(2,NE).LT.0.0001) 60 TO 400 51 SOPRES(1)=EQPAR(2.NE) 52 IF (SIPRES(1).LE.SOPRES(1)) GO TO 400 53 IF (EQPAR(3,NE).EQ.0.0) EQPAR(3,NE)=0.75 54 C 55 S=0.0 56 SIN=0.D

100

<u>ر</u>

Ń.

£.

 $\langle 1 \rangle$ 

-----

268

. . . . ...

FORTRAN IV VER S9 SOURCE LISTING: 65XP SUBROUTINE 08/16/85 15:01:31 | 57 T=SITEMP(1) 58 P=SIPRES(1) 59 IF (IDLV.EQ.0)60 TO 150 GO TO (80,80,50,80,80,70), IDLV 60 51 50 CALL SRKFUG(T,P,Y,VP,FUG,DHV,SIN) 62 60 TO 150 63 70 CALL PENROB(T,P,Y,VP,FUG,DHV,SIN) 64 60 TO 150 D=T++1.25 65 80 AA=0.0 66 67 BB=0.0 58 DO 110 J=1, NOCOMP 69 Y(J)=SICOMP(J,1)/SIMOLE(1) 70 IF (Y(J).EQ.D.D) GO TO 110 71 AA = AA + OA (J) / D + Y (J)BB = BB + OB(J) / T + Y(J)72 73 **110 CONTINUE** 74 ZVAP=NOCOMP+1 75 CALL ZCALC (AA, BB, P, ZVAP) 76 DF=ALOG(ZVAP-BB+P) 77 DZ=(AA+AA/BB)+ALOG(1.0+BB+P/ZVAP) SIN=1.9872+(DF-ALOG(P)-0.5+DZ) 78 79 150 CALL VAPH 80 C 81 C FOR 100% EFFICIENT GAS-EXPANDER FIND DISCHARGE TEMPERATURE 82 TIN=T 83 T=T-50 84 HIN=HVAP P=SOPRES(1) 85 ID = 186 87 NTIME=0 IF (IDLV.EQ.D)60 TO 240 88 60 TO (205,205,201,205,205,203) ,IDLV 89 200 CALL SRKFUG(T,P,Y,VP,FUG,DHV,S) 90 201 60 TO 215 91 92 203 CALL PENROB(T,P,Y,VP,FUG,DHV,S) 93 60 TO 215 94 205 D=T++1.25 95 AA=0.0 96 88=0.0 97 DO 210 J=1, NOCOMP 98 IF (Y(J).EQ.0.0) 60 TO 210 99 AA = AA + OA(J) / D + Y(J)100 BB = BB + OB (J) / T + Y (J)101 210 CONTINUE 102 ZVAP=NOCOMP+1 CALL ZCALC (AA, BB, P, ZVAP) 103 104 DF=ALOG(ZVAP-BB+P) DZ=(AA+AA/BB)+ALOG(1.0+BB+P/ZVAP) 105 106 S=1.9872\*(DF-ALOG(P)-0.5\*DZ) 107 215 IF (ABS(S-SIN).LT.0.01) GO TO 240 108 216 GO TO (220,230), ID 109 220 ID=2 110 SSAVE=S 111 TSAVE=T 112 T=T-SIGN(10.0, S-SIN)

-

 $\sim$ 

~

. ....

 $e^{-k_{\pi}}$ 

· ^

۰...

269

- -

FORTRAN IV **VER 59** SOURCE LISTING: GSXP SUBROUTINE 08/16/85 15:01:31 113 60 TO 200 114 230 SLOPE=(SSAVE-S)/(TSAVE-T) 115 DT =- (S-SIN) /SLOPE 116 SSAVE=S 117 TSAVE=T 118 IF (ABS(DT).6T.20.0) DT=SIGN(20.0,DT) 119 T=T+DT 120 C WRITE(6,199) T.DT FORMAT ("XX T AND DTXX",2F20.10) 121 199 122 NTIME=NTIME+1 123 IF (NTIME.EQ.20) GO TO 240 124 60 TO 200 125 240 CALL VAPH 126 HL OW=HVAP 127 C 128 C POWER RECOVERY 129 THP= (HIN-HLOW) + SIMOLE (1) 130 EGPAR(4,NE)=THP 131 EQPAR(S, NE) = EQPAR(4, NE) + EQPAR(3, NE) QVALUE=EQPAR(5,NE) 132 133 C 134 C DETERMINE EXPANDER DISCHARGE CONDITIONS WRITE(6,3111)SIENTH(1),QVALUE 135 C 136 3111 FORMAT("++INLET ENTH & QVALUE++",2F25.5) 137 C 138 C----IF LIQUID REGION IS REACHED, WE ASSUME 139 C----100% EFFICIENCY TO AVOID A PHASE SPLIT 140 C 141 SOENTH(1)=SIENTH(1)-QVALUE 142 IF (SIENTH(1).LT.QVALUE) SOENTH(1)=HLOW+SIMOLE(1) 143 C 144 DO 312 I=3,11 SID(I)=SIDUM(1,I) 145 312 SIDUM(1,1)=SODUM(1,1) 146 147 DO 313 I=1,NOCOMP 148 SIC(I)=SICOMP(I,1) 149 313 SICOMP(I,1)=SOCOMP(I,1) 150 SIVPFR(1)=1.00 151 C----ONLY SUPERHEATED VAPORS ARE TREATED 152 C 153 ESAVE=EQPAR(2.NE) 154 EQPAR(2.NE)=2.0 155 C 156 C---- ADBF' BYPASSED FOR TEMPS < 50 K 157 IF (T.LT.50) 60 TO 3135 158 CALL ADBF 159 3135 EQPAR(2,NE)=ESAVE 160 DO 314 I=3,11 161 314 SIDUM(1,I)=SID(I) 162 DO 315 I=1, NOCOMP 163 315 SICOMP(1,1)=SIC(1) 164 60 TO 450 165 C 156 400 WRITE (NPRT,418) NE 418 FORMAT ("O+++++ GAS EXPANDER PRESSURE WAS NOT SPECIFIED, NE =", + I3, ", INPUT TRANSFERRED TO OUTPUT.") 157 168 169 C 170 450 RETURN 171 END

~

 $\sim$ 

 $\sim$ 

~

,---

j,

Ç

الدائي سواسو الأ

271

|            |     |          |                  |                   | <b>,</b> 6   |                             |              |
|------------|-----|----------|------------------|-------------------|--------------|-----------------------------|--------------|
|            | • • |          |                  |                   |              | 00 / 0 / 10                 | E 45.04.74   |
| FURTRAN    | IV  | VER 59   | SOURCE           | LISTING:          |              | 05/10/8                     | 5 15:01:31   |
| 1          |     | SUBROUT  | INE HYTR         |                   |              |                             |              |
| 2 5        |     |          | 6,99999)         |                   |              |                             |              |
|            |     |          |                  | SUBROUTINE        | HYTR")       |                             |              |
| 4 c        |     |          |                  |                   |              |                             |              |
| 5 6        |     |          | A                |                   |              |                             |              |
| 6          |     | COMMON   | /CNTRL/          | NCR, NPRT         |              |                             |              |
| 7          |     |          |                  | NIN, NOUT, N      |              | NEN-KUNITS                  |              |
| 8          |     | COMMON   | /SYSD/           |                   |              | DD), KTRACE, DERRO          | R,NPFREQ,    |
| 9          | •   | •        |                  | IPUNCH            |              |                             | · - ·        |
| 10         |     | COMMON   | /EQPA/           | EQPAR (25,5       | D) , NEMAX , | MAXEQP                      |              |
| 11         |     | COMMON   | /STREAM/         | / T, P, Z(10      | ), Y(10),    | X(10), FRACV, Z             | VAP,         |
| 12         | 1   | ŧ.       |                  | EK(10), VP        | (10),FUG(    | 10), GAM (10), VZ(1         | 1),SVAP,     |
| 13         | 1   | <b>F</b> |                  | HOFZ, HVAP        | HLIQ, DHV    | ,DSV,XSH,DSL,NOB            | UB, NODEW    |
| 14         |     | COMMON   | /STRMIN/         |                   |              | SIVPFR(4)+SITEMP            |              |
| 15         | ۱   | •        |                  | SIENTH(4),        | SIVISC(4)    | <pre>,SITHK(4),SIZ(4)</pre> | ,SIS(4),     |
| 16         | 1   | •        |                  |                   |              | ,4),SIKV(10,4)              |              |
| 17         |     | COMMON   | /STMOUT/         | / SÖNU4(4),S      | OFLAG(4),    | SOVPFR(4),SOTEMP            | (4),SOPRES(4 |
| 18         | 1   | ŧ.       |                  | SOENTH(4),        | SOVISC(4)    | ,SOTHK(4),SOZ(4)            | ,SOS(4),     |
| 19         | 1   |          |                  |                   |              | ,4),SOKV(10,4)              |              |
| 20         |     | COMMON   | /ZDATA/          |                   |              | ENP(13,10), ANT(6           |              |
| 21         | 1   | •        |                  |                   |              | 0),AVAL(10),BVAL            |              |
| 22         | 1   | 2        |                  |                   |              | (10), XL(10),VOL            |              |
| 23         | 1   | •        |                  |                   |              | (10),TC(10),PC(1            |              |
| 24         | 1   |          |                  |                   |              | 10,10), 6(10,10)            |              |
| 25         |     | REAL     |                  | SIDUM(4,11        | ), SODUM(    | 4,11), SIC(10),             | SID(11)      |
| 26 C       |     |          |                  |                   |              |                             |              |
| 27 C       |     |          |                  | <b>_</b>          |              |                             |              |
| 28         |     | EQUIVAL  | ENCE             | (SIDUM,SIN        | U4), (SODI   | UM,SONUM)                   |              |
| 29 C       |     |          |                  |                   |              |                             |              |
| 30 C       |     |          |                  | = EQUIPMENT       |              |                             |              |
| 31 C       |     |          |                  | = DOWNSTREA       |              |                             |              |
| 32 C       |     |          |                  | = EFFICIENC       |              |                             |              |
| 33 C       |     |          |                  | = THEORETIC       |              |                             |              |
| 34 C       |     | FALL     | AK() +NEJ        | = RECOVERAB       | LE MP, LAI   | L                           |              |
| 35 C       |     | <b></b>  |                  |                   |              |                             |              |
| 36 C       |     | 0071     | LEI SIREA        | W FRIARTICH       | ED VIA AN    | ADIABATIC FLASH             |              |
| 37 C       |     |          |                  | ~~ ~~ ~           |              |                             |              |
| 38<br>39   |     |          | (TS.EQ.1)        |                   | 404          |                             |              |
| 40         |     |          | , NE) = 0.0      | R(2,NE)/14.       | 090          |                             |              |
| -          |     | EMPARIES | , NE J= U • U    |                   |              |                             | •            |
| 41 C<br>42 |     | 00 5 I=3 |                  |                   |              |                             |              |
| 43         |     |          | ,;;;<br>,]=SIDUM | (1.1)             |              |                             |              |
| 44         |     |          | 1,NOCOMP         |                   |              |                             |              |
| 45         |     |          | (,1)=SICO        |                   |              |                             |              |
| 46         |     |          |                  | LT.0.0001)        | 50 TO 17     |                             |              |
| 47         |     |          | )=EQPAR(         |                   | 50 10 11     |                             |              |
| 48         |     |          |                  | .SOPRES(1))       | 50 TO 17     |                             |              |
| 49 C       |     | TL COTLE |                  | • 307 N L 3 ( 177 |              |                             |              |
| 50         |     | DELTADES | TPRESITY         | -SOPRES(1)        |              |                             |              |
| 51         |     | FLOW=0.0 |                  |                   |              |                             |              |
| 52         |     |          | ,<br>=1.NOCOMP   |                   |              |                             |              |
| 53         |     |          | •                | (I,1) + VOL (I    | <b>)</b>     |                             |              |
| 53         |     |          |                  | EQ.0.0) EQP       |              | 1. <b>70</b>                |              |
| 55         |     |          |                  | 24.218E-3         |              |                             |              |
| 56         |     | EQPAR(4, |                  |                   |              |                             |              |
| 20         |     |          |                  |                   |              |                             |              |

-

(1)

1.2

-

 $\widehat{\phantom{a}}$ 

.- ~

.---

| -          | FORTRAN    | IV                                    | VER 59             | SOURC                      | E LISTIN | G: HYTR | SUE                                   | ROUTI  | E 05  | /16/85  | 15:0  | 1:31 |
|------------|------------|---------------------------------------|--------------------|----------------------------|----------|---------|---------------------------------------|--------|-------|---------|-------|------|
|            | 57<br>58 c |                                       | EQPAR(5            | , NE) = TH                 | P*EQPAR( | 3,NE)   |                                       |        |       |         |       |      |
| ~.         | 59         |                                       | QVALUE=            | EQPAR(5                    | NF)      |         |                                       |        |       |         |       |      |
|            | 60         |                                       | SO EN TH (         | 1) = SIEN1                 | H(1)-QV  | ALUE    |                                       |        |       |         |       |      |
| ~          | 61<br>52   |                                       | DO 12 I            | =3,11<br>SIDUM(1,          | • >      |         |                                       |        |       |         |       |      |
| ·-         | 63         | 12 :                                  | SIDUM(1            | ,I)=SODU                   | M(1,1)   |         |                                       |        |       |         |       |      |
| $\odot$    | 64<br>65   | 1                                     | DO 13 I<br>Str(1)= | =1,NOCOP<br>SICOMP()       | IP<br>1  |         |                                       |        |       |         |       |      |
|            | 66         | 13 9                                  | SICOMP(            | I, 1) = SO(                | OMP(1,1  | 5       |                                       |        |       |         |       |      |
| $\sim$     | 67<br>58   | 9                                     | SIVPFR(            | 1)=0.0<br>qpar(2,n         |          |         |                                       |        |       |         |       |      |
| <u> </u>   | 69         | E                                     | EQ PAR (2)         | ,NE)=2.C                   |          |         |                                       |        |       |         |       |      |
|            | 70<br>71   |                                       | ALL AD             | BF<br>NE)=ESA              | ve       |         |                                       | •      |       |         |       |      |
| ,          | 72         | D                                     | 0 14 1             | =3,11                      |          |         |                                       |        |       |         |       |      |
| Ċ          | 73<br>74   | 14 5                                  | IDUM(1             | , I) = SID(<br>= 1 , NOCOM | 1)       |         |                                       |        |       |         |       |      |
| <b>`</b> . | 75         | 15 S                                  | ICOMP()            | [,1)=SIC                   | (I)      |         |                                       |        |       |         |       |      |
| Č          | 76<br>77 c |                                       | O TO 20            |                            |          |         |                                       |        |       |         |       |      |
| <u>`</u>   | 78         | 17 🖬                                  | RITE (N            | IPRT, 18)                  | NE       |         |                                       |        |       |         |       |      |
| <b>.</b>   | 79<br>80   | 18 F                                  | ORMAT (            |                            | HYDRALL  | TE TUPR | THE DO                                | ESSURE | WAS I | NOT SPE | CIFIE |      |
|            | 81 C       | -                                     | , 13,              | • INPUT                    | TRANSFE  | RRED TO | OUTPU                                 | 1)     |       |         |       |      |
| <b>~</b> . | 52<br>83   |                                       | ETURN<br>Nd        |                            |          |         |                                       |        |       |         |       |      |
|            |            |                                       |                    |                            |          |         |                                       |        |       |         |       |      |
| × *        |            | E                                     |                    |                            |          |         |                                       |        |       |         |       |      |
|            |            | E                                     | n y                |                            |          |         |                                       |        |       |         |       |      |
| C          |            | -                                     | -                  |                            |          |         |                                       |        |       |         |       |      |
|            | ·····      | -                                     | -                  |                            |          |         |                                       |        |       |         |       |      |
|            |            | -                                     | -                  |                            |          |         |                                       |        |       |         |       |      |
|            | ·····      | -                                     | -                  |                            |          |         |                                       |        |       |         |       |      |
|            |            | -                                     | -                  |                            |          |         |                                       |        |       |         |       |      |
|            |            | -                                     | -                  |                            |          |         | • • • •                               |        |       |         |       |      |
|            |            | -                                     | -                  |                            |          |         | • • • • • • • • • • • • • • • • • • • |        |       |         |       |      |
|            |            | -                                     | -                  |                            |          |         | •                                     |        |       |         |       |      |
|            |            | -                                     | -                  |                            |          |         | • • • • •                             |        |       |         |       |      |
|            |            | -                                     | -                  |                            |          |         |                                       |        |       |         |       |      |
|            |            | -                                     | -                  |                            |          |         | •                                     |        |       |         |       |      |
|            |            | -                                     | -                  |                            |          |         | •                                     |        |       |         |       |      |
|            |            | · · · · · · · · · · · · · · · · · · · |                    |                            |          |         |                                       |        |       |         |       |      |
|            |            | · · · · · · · · · · · · · · · · · · · | -                  |                            |          |         |                                       |        |       |         |       |      |
|            |            | · · · · · · · · · · · · · · · · · · · |                    |                            |          |         |                                       |        |       |         |       |      |
|            |            | · · · · · · · · · · · · · · · · · · · |                    |                            |          |         |                                       |        |       |         |       |      |
|            |            | · · · · · · · · · · · · · · · · · · · |                    |                            |          |         |                                       |        |       |         |       |      |
|            |            | · · · · · · · · · · · · · · · · · · · |                    |                            |          |         |                                       |        |       |         |       |      |
|            |            | · · · · · · · · · · · · · · · · · · · |                    |                            |          |         |                                       |        |       |         |       |      |

FORTRAN IV VER 59 SOURCE LISTING: 08/16/85 15:01:31 F 1 SUBROUTINE PUMP 2 C WRITE (6,99999) 3 C9999 FORMAT(" -, 113X, SUBROUTINE PUMP") 4 C 5 C 6 COMMON /CNTRL/ NCR, NPRT 7 NIN, NOUT, NOCOMP, NE, NEN, KUNITS COMMON /CONTL/ 8 COMMON /EQPA/ EQPAR(25,50) NEMAX, MAXEQP 9 COMMON /STRHIN/ SINUM(4),SIFLAG(4),SIVPFR(4),SITEMP(4),SIPRES(4), 10 SIENTH(4), SIDUMI(16), SIMOLE(4), SICOMP(10,4) ٠ 11 COMMON /STMOUT/ SONUM(4),SOFLAG(4),SOVPFR(4),SOTEMP(4),SOPRES(4), 12 SOENTH(4), SODUMO(16), SOMOLE(4), SOCOMP(10,4) /ZDATA/ CPL(10,4),CPV(10,4),ENP(10,10),ANT(6,10),ADEL(10), 13 COMMON 14 W(10), AX, BX, OHEGA(10), AVAL(10), BVAL(10), MODEAF, AK(10,10), R(10), Q(10), XL(10), VOL(10), TB(10), 15 \* C(180), ALPHA(45), VC(10), TC(10), PC(10), EVAP(10), 16 \* 17 • OA(10), OB(10), AA(10,10), G(10,10), ZRA(10) SIDUM(4,11), SODUM(4,11), SIC(10), SID(11) 18 REAL 19 C 20 C 21 EQUIVALENCE (SIDUM, SINUA), (SODUM, SONUM) 22 ER R=0.0 23 C 24 C EQPAR(1,NE) = EQUIPMENT NUMBER 25 C EQPAR(2, NE) = DOWNSTREAM PRESSURE, ATM 26 C EQPAR(3,NE) = EFFICIENCY (FRACTION) 27 C EQPAR(4, NE) = THEORETICAL HP, CAL 28 C EQPAR(5,NE) = BRAKE HP, CAL 29 C 30 C OUTLET STREAM ESTABLISHED VIA AN ADIABATIC FLASH 31 C 32 C TESTING INPUT STREAM VAPOR FRACTION 33 IF (KUNITS.EQ.1) GO TO 1 34 EQPAR(2,NE) = EQPAR(2,NE)/14.696 35 EQPAR(25,NE)=0.0 36 C 37 1 IF (SIVPFR(1).LT.0.01)60 TO 4 38 IF (SIVPFR(1).GE.D.99) GO TO 25 39 60 TO 181 40 4 DO 5 I=3.11 41 5 SODUM(1,I)=SIDUM(1,I) 42 IF (ERR.EQ.1.0) GO TO 20 43 DO 10 I=1,NOCOMP 44 10 SOCOMP(I,1)=SICOMP(I,1) 45 IF (EQPAR(2,NE).LT.0.0001) 60 TO 17 46 SOPRES(1) = EQPAR(2, NE)67 IF (SOPRES(1).LE.SIPRES(1)) 60 TO 17 48 C 49 DELTAP=SOPRES(1)-SIPRES(1) 50 FLOW=0.0 51 DO 11 1=1,NOCOMP 52 11 FLOW=FLOW+SICOMP(I,1)+VOL(I) 53 IF (EQPAR(3,NE).EQ.0.0) EQPAR(3,NE)=0.80 54 THP=FLOW+DELTAP+24.218E-3 55 EQPAR(4, NE) = THP 56 EQPAR(5, NE) =THP/EQPAR(3, NE)

 $\mathbf{r}$ 

~

Ċ.

1

. .

٠.

----

Ċ

*...* 

÷.,

27

...

•• •

273

----

| ORTRAN      | IV  | VE           | ₹_5<br>    | 9                | SOURC      | ELIS             | STING:   | PUMP     | SL            | UBROUT   | INE   | 08/16/85 | 15:01:3 |
|-------------|-----|--------------|------------|------------------|------------|------------------|----------|----------|---------------|----------|-------|----------|---------|
| 57 C        |     | ÷            |            |                  |            |                  |          |          |               |          |       |          |         |
| 58          |     |              |            |                  | PAR (5     |                  |          |          |               |          |       |          |         |
| 59          |     |              |            |                  |            | THC13            | +QVAL    | UE       |               |          |       |          |         |
| 60          |     |              |            |                  | 5,11       |                  |          |          |               |          |       |          |         |
| 61          |     | SIC          | ) (I       | )=5]             | DUM(1      | ,1)              |          |          |               |          |       |          |         |
| 62          | 12  | SIC          | UM         | (1, 1)           | )=SOD      | UMC1,            | , I)<br> |          |               |          |       |          |         |
| 63<br>64    |     | <b>D</b> 0   | 13         | 1=1              | ,NOCO      | M P              | (1,1)    |          |               |          |       |          |         |
| 55          |     | 510          | . (1.      | )=51             | COMPE      | 1,7)             |          |          |               |          |       |          |         |
| 55<br>66    | 13  | 510          |            | P(1,             | 1) ±50     | COMPO            | (1,1)    |          |               |          |       |          |         |
| 67          |     | E 2 A        | AF.        | = E & P<br>/ 7   | AK (2)     | NEJ              |          |          |               |          |       |          |         |
| 68          |     | EW7          | A K        | 129M             | -0.0       | U .              |          |          |               |          |       |          |         |
| 69          |     | 514          |            | NDB F            | =0.0       |                  |          |          |               |          |       |          |         |
| 70          |     |              |            |                  |            | AUE              |          |          |               |          |       |          |         |
| 71          |     | 50           | 44         | 1 E 9 M<br>T = T | E) = ES    | AVE              |          |          |               |          |       |          |         |
| 72          | 14  |              |            |                  | )=SID      | ( + )            |          |          |               |          |       |          |         |
| 73          |     | 210          | 15         | 191<br>7#9       | •NOCO      | HD .             |          |          |               |          |       |          |         |
| 74          | 9 6 |              |            |                  | 1) = S I ( |                  |          |          |               |          |       |          |         |
| 75          |     | 60           |            |                  | 11-91      |                  |          |          |               |          |       |          |         |
| 76 C        |     |              | ••         | 20               |            |                  |          |          |               |          |       |          |         |
| 77          | 17  | <b>UD 1</b>  | <b>T</b> E | -                |            | NE               |          |          |               |          |       |          |         |
| 78          | 18  | FOP          | <br>       | · / ·            | N          | r ni⊑<br>⊳ Diima |          | CHER     |               | AT       |       | ED, NE = |         |
| 79          |     | <b>,</b> ? ] | 1.         | PIT              | TDANS      |                  | D TO C   | NIT DILT | - 2 M         | 01 371   |       | EUT NE = | ,13,    |
| 80          |     | 60           |            |                  |            |                  | 5 10 0   | 01-01    | • /           |          |       |          |         |
| 81 18       | 1   | LPT          | <br>T E (  | PDD.             | T. 1871    |                  |          |          |               |          |       |          |         |
| 82 18       | 2   | FOR          | MAT        | 10               | ******     | PPOP             | CONDI    | -        | * * * * * *   | NONT     | -     |          |         |
| 83          | -   | HA S         |            | PF               | THAN 1     | TY VA            | POR FR   |          | NC. 71        | APUI :   | SIREA | п        |         |
| 84          |     |              |            |                  | 7,183)     |                  |          |          | 136 /         |          |       |          |         |
|             | 3   | FOR          | MAT        | (-0-             | *****      | NPIIT            | TRANS    | FEDDE    | N TA          | AHT 2011 |       |          |         |
| 86          |     | ERR          |            |                  |            |                  | 10019    |          | 5 10          | UTFUI    |       |          |         |
| 87          |     | 60           |            | -                |            |                  |          |          |               |          |       |          |         |
| 88 C        |     | •••          |            | •                |            |                  |          |          |               |          |       |          |         |
| 89 25       |     | WR I         | TE         | (NPI             | RT.26)     |                  |          |          |               |          |       |          |         |
| 90 26       |     | FOR          | 4ÅT        | (10)             | *****      | RROR             | ***SH0   | ULD A    | E A' C        | OMPERS   | sae-  | )        |         |
| 91          |     | ERR          | =1.        | 0                | -          |                  |          |          |               |          |       | • • • •  |         |
| 92          |     | WRIT         |            | -                | 1.27)      |                  |          |          |               |          |       |          |         |
|             |     |              |            |                  |            | NPUT             | TRANS    | FERREI   | <b>ь то</b> ( |          | ->    |          |         |
|             |     |              |            |                  |            |                  |          |          |               |          |       |          |         |
| 93 27<br>94 |     | 60 1         |            |                  | -          |                  |          |          |               |          |       |          |         |
| 93 27       |     |              | 01         | 4                | -          |                  |          |          |               | •••••••  |       |          |         |

**.** -

. .

-----

·\* / · · ·

. • •

۰.

.

.\_\_

\_

.. ..

F

275

| DRTRAN I       | V VER 59 SOURCE LISTING: D8/16/85 15:01                             | :31 |
|----------------|---------------------------------------------------------------------|-----|
| 1              | SUBROUTINE VALV                                                     |     |
| 2 C            | WRITE (6,9999)                                                      |     |
|                | P99 FORMAT(" ", 113X, "SUBROUTINE VALV")                            |     |
| 4 C            |                                                                     |     |
| SC             |                                                                     |     |
| 6              | COMMON /CNTRL/ NCR,NPRT                                             |     |
| 7              | COMMON /CONTL/ NIN, NOUT, NOCOMP, NE, NEN, KUNITS                   |     |
| 8              | COMMON /SYSC/ LA,LB,LC,LOOP,LOOPS                                   |     |
| 9              | COMMON /SYSD/ KEFLAG(50),KSFLAG(100),KTRACE, DERROR, NPFREG         | •   |
| 10             | ÷ IPUNCH                                                            |     |
| 11             | COMMON /EQPA/ EQPAR(25,50),NEMAX,MAXEQP                             |     |
| 12             | COMMON /STRMIN/ SINUM(4),SIFLAG(4),SIVPFR(4),SITEMP(4),SIPR         |     |
| 13             | <pre>* SIENTH(4),SIVISC(4),SITHK(4),SIZ(4),SIS(4),</pre>            |     |
| 14             | <pre>* SIMOLE(4),SICOMP(10,4),SIKV(10,4)</pre>                      |     |
| 15             | COMMON /STMOUT/ SONUM(4),SOFLAG(4),SOVPFR(4),SOTEMP(4),SOPR         |     |
| 16             | SOENTH(4), SOVISC(4), SOTHK(4), SOZ(4), SOS(4),                     |     |
| 17             | <pre>* SOMOLE(4),SOCOMP(10,4),SOKV(10,4)</pre>                      |     |
| 18             | COMMON /ZDATA/ CPL(10,4),CPV(10,4),ENP(10,10),ANT(6,10),ADE         |     |
| 19             | # W(10), AX, BX, OMEGA(10), AVAL(10), BVAL(10), HOD                 |     |
| 20             | * AK(10,10), R(10), Q(10), XL(10), VOL(10), TB(                     |     |
| 21             | * C(180), ALPHA(45), VC(10), TC(10), PC(10), EVAP(                  |     |
| 22<br>23       | * OA(10), OB(10), AA(10,10), G(10,10), ZRA(10                       | )   |
| 24 C           | REAL SIDUM(4,11),SODUM(4,11),SIC(1D),SID(11)                        |     |
| 24 L           | EQUIVALENCE (SIDUM, SINUM), (SODUM, SONUM)                          |     |
| 26 C           | EADIANCENCE (JIDDH,JINDH), (JUDDH,JUNDH)                            |     |
| 27 C           | EQPAR(1.NE) = EQUIPMENT NUMBER                                      |     |
| 28 C           | EQPAR(2,NE) = DOWNSTREAM PRESSURE, ATM                              |     |
| 29 C           | EQPAR(3,NE) = INEFFICIENCY (FRACTION)                               |     |
| 30 C           | EQPAR(4,NE) = ENERGY INCREASE DUE TO EXPANSION. CAL                 |     |
| 31 C           |                                                                     |     |
| 32 C           | DEFAULT FOR EQPAR(3.NE) IS OX INEFFICIENCY                          |     |
| 33 C           |                                                                     |     |
| 34 C           | OUTLET STREAM ESTABLISHED VIA AN ADIABATIC FLASH                    |     |
| 35 C           |                                                                     |     |
| 36             | IF (KUNITS.EQ.1) 60 TO 1                                            |     |
| 37             | EQPAR(2,NE) = EQPAR(2,NE)/14.696                                    |     |
| 38             | EQPAR(25, NE)=0.0                                                   |     |
| 39             | EQPAR(3,NE)=0.0                                                     |     |
| 40             | EQPAR(4, NE) = 0.0                                                  |     |
| 41 C           |                                                                     |     |
|                | 1 DO 5 I=3,11                                                       |     |
|                | 5  sodum(1,1)=sidum(1,1)                                            |     |
| 44             | DO 10 I=1,NOCOMP                                                    |     |
|                | 10 SOCOMP(I,1)=SICOMP(I,1)                                          |     |
| 46             | IF (EQPAR(2,NE).GE.SIPRES(1)) GO TO 17                              |     |
| 47             | SOPRES(1) = EOPAR(2, NE)                                            |     |
| 48             | DELTAP=SIPRES(1)-SOPRES(1)                                          |     |
| 49<br>50 r     | FLOW=0.0                                                            |     |
| 50 C<br>51     | WRITE(6,+) SIPRES(1),SOPRES(1)                                      |     |
|                | DO 11 I=1,NOCOMP<br>11 FLOW=FLOW+SICOMP(I,1)+VOL(I)                 |     |
|                | $IF (EQPAR(3.NE) \cdot EQ \cdot 0 \cdot 0) EQPAR(3.NE) = 1 \cdot 0$ |     |
| 57             |                                                                     |     |
| 53<br>54       | TN P= 51 AN+A51 TAP+74, 7985+3                                      |     |
| 53<br>54<br>55 | THP=FLOW+DELTAP+24。218E-3<br>qvalue=ThP+(1。D-Eqpar(3。NE))           |     |

12

**`**.

 $\bigcirc$ 

~

.

-----

1911 - St. 🖕

<u>\_</u>\_\_\_\_

 $\langle \cdot \rangle$ 

. .

, er

FORTRAN IV VER 59 SOURCE LISTING: VALV SUBROUTINE 03/16/85 15:01:31 F 57 SCENTH(1)=SIENTH(1)+QVALUE 58 DO 12 I=3,11 SID(I)=SIDUM(1,I) 59 50 12 SIDUM(1,I)=SODUM(1,I) 61 DO 13 I=1,NOCOMP 62 SIC(I)=SICOMP(I,1) 13 SICOMP(1,1)=SOCOMP(1,1) 63 64 ESAVE=EQPAR(2,NE) 65 C----MODIFIED ON CHESS II, 83 66 EQPAR(2, NE) = 2.067 C----MODIFIED FROM CHESS II, 83 68 C 69 C 70 C DO 1112 K=1,NC WRITE(6,1111) I,X(I) FORMAT("VALV",110,F10.8) 71 C 72 1111 73 1112 CONTINUE 74 IF (LOOP.GT.2) EQPAR(2,NE)=2.0 75 CALL ADBE 76 EQPAR(2, NE) =ESAVE 77 DO 14 I=3,11 14 SIDUM(1,I)=SID(I) 78 79 DO 15 I=1,NOCOMP 80 15 SICOMP(I, 1)=SIC(I) 81 60 TO 20 82 C 53 17 WRITE (NPRT, 18) NE 84 18 FORMAT ("O\*\*\*\*\* VALVE PRESSURE NOT SPECIFIED, NE =", I3, \* ", INPUT TRANSFERRED TO OUTPUT") 85 86 C 87 20 RETURN 88 END

ي م الم

Ċ

· + .

.

~

- - - -- - - -

```
FORTRAN IV
             VER 59
                        SOURCE LISTING:
                                                                 08/16/85
                                                                            15:03:37
    1
             SUBROUTINE VAPH
    2 C
             WRITE (6,99999)
             FORMAT ( ", 113X, "SUBROUTINE VAPH")
      C9999
    3
    4
      C
    5
                      /CMPRO/
                                NC,NCM1,IDLL,IDLV,IDH,LDBUG,ISW,NPNRBL, NDIM,
             COMMON
                                ZNAME(2,10), L(10), NTCOMP(10), ITR, ITRMAX,
NST, NSTM1, NK1, NK2, NK11, NK21, NCASE, NFEED,
    6
            *
    7
            ÷
    8
                                NFTOP, NFBTM, LF(8), IDCODE, ICODE, CPCODE(10)
            ÷
                      /ZDATA/ CPL(10,4),CPV(10,4),ENP(10,10),ANT(6,10),ADEL(10)
    9
             COMMON
   10
            *
                                W(1D), AX, BX, OMEGA(10), AVAL(10), BVAL(10), MODEAF,
   11
            ÷
                                AK(10,10), R(10), R(10), XL(10), VOL(10), TB(10),
   12
                                C(180), ALPHA(45), VC(10), TC(10), PC(10), EVAP(10),
            ٠
   13
                                OA(10), OB(10), A(10,10), G(10,10), ZRA(10)
   14
             COMMON
                      /STREAM/ T, P, Z(10), Y(10), X(10), FRACV, ZVAP,
   15
                                EK(10), VP(10), FUG(10), GAM(10), VZ(11), SVAP,
            ٠
   16
                                HOFZ, HVAP, HLIG, DHV, DSV, XSH, DSL, NOBUB, NODEW
            ٠
  17 C
   18 C
  19
             NPNRBL=0
  20
             DHV=0.0
  21
             DSV=0.0
             HVAP=0.0
  22
  23 C
             WRITE (6,876) T
             FORMAT( *****TEMP - VAPH*** , F10.5)
  24 876
  25
             DO 10 J=1,NC
  26
         10 HVAP=HVAP+Y(J)+((((ENP(J,10)+T+ENP(J,9))+T+ENP(J,8))+T+ENP(J,7))+
                  T+ENP(J,6))
  27
            *
  28
             IF (IDH.EQ.2) RETURN
  29
             CALL XSHVP(T,P,X,Y,VP,DHV,DSV)
            WRITE(6,99) HVAP, DHV
FORMAT("++++VAPH --HVAP & DHV++",2F25.6)
  30 C
  31 99
  32 30
             HVAP=HVAP+DHV
  33 C
  34
             RETURN
  35
             END
```

, •**•** 

. -

 $\bigcirc$ 

 $\mathcal{C}$ 

(

(

٠.

Ű

. . .

08/16/85 FORTRAN IV **VER 59** SOURCE LISTING: 15:03:37 SUBROUTINE LIGH 1 2 C 3 COMMON /CMPRO/ NC, NCH1, IDLL, IDLV, IDH, LDBUG, ISW, NPNRBL, NDIM, ZNAME(2,10), L(10), NTCOMP(10), ITR, ITRMAX, 4 ۰ 5 NST, NSTM1, NK1, NK2, NK11, NK21, NCASE, NFEED, ٠ 6 NFTOP, NFBTM, LF(8), IDCODE, ICODE, CPCODE(10) ٠ 7 COMMON /ZDATA/ CPL(10,4),CPV(10,4),ENP(10,10),ANT(6,10),ADEL(10) W(10), AX, BX, ONEGA(10), AVAL(10), BVAL(10), MODEAF, 8 \* 9 AK(10,10), R(10), R(10), XL(10), VOL(10), TB(10), C(180), ALPHA(45),VC(10),TC(10),PC(10),EVAP(10), DA(10), OB(10), AA(10,10), G(10,10), ZRA(10) 10 \* 11 \* 12 COMMON /STREAM/ T, P, Z(10), Y(10), X(10), FRACV, ZVAP, EK(10), VP(10), FUG(10), GAM(10), VZ(11), SVAP, 13 ٠ 14 HOFZ, HVAP, HLIQ, DHV, DSV, XSH, DSL, NOBUB, NODEW 15 C 16 C WRITE (6,99999) 17 C9999 FORMAT( ~,113X, SUBROUTINE LIGH") 18 C XSH=0.0 19 20 05L=0.0 21 HL19=0.0 22 IF (P.GT.1.00.0R.T.GT.300.0)60 TO 20 23 DO 10 J=1,NC HLIQ=HLIQ+X(J)+((((ENP(J,5)+T+ENP(J,4))+T+ENP(J,3))+T+ENP(J,2))+ 24 25 T+ENP(J,1)) 26 IF (CPCODE(J).EQ.2.0)HLIQ=HLIQ-CPL(J,2)+273.16+T +T+CPL(J,3)+273.16++2-273.16+CPL(J,3)+T+T 27 \* 28 10 CONTINUE WRITE(6,99)HLIQ 29 C \*\*",F20.8) 30 99 FORMAT( "++LIGH 60 TO 30 31 32 20 DO 25 K=1,NC HLIQ=HLIQ+X(K)+((((ENP(K,10)+T+ENP(K,9))+T+ENP(K,8))+T 33 25 34 X +ENP(K,7))+T+ENP(K,6)) IF (IDLL.GE.1 .AND. IDH.EQ.D) CALL XSHLQ (T,P,X,Y,VP,XSH,DSL) 35 WRITE(6,199)HLIQ,XSH FORMAT( LIQH ++HL 36 C 37 199 \*\*HLIQ XSH \*\*\*,2F20.6) HLIQ=HLIQ+XSH 38 39 C 40 30 CONTINUE 41 C 42 RETURN 43 END

(

0

C

 $\bigcirc$ 

. .

 $\cap$ 

 $\mathbf{C}$ 

(

77

FORTRAN IV SOURCE LISTING: DREAD **VER 59** SUBROUTINE 08/16/85 15:01:31 SUBROUTINE DREAD (KODE) 2 C WRITE (6,99999) 3 C9999 FORMAT(" ", 113X, "SUBROUTINE DREAD") 4 C 5 C 6 COMMON /CNTRL/ NCR, NPRT 7 COMMON /CONTL/ NIN, NOUT, NOCOMP, NE, NEN, KUNITS 8 COMMON /SYSA/ KPM(10,50), KSEM(3,100), N3MAX 9 COMMON /EQPA/ EQPAR(25,50), NEMAX, MAXEQP 10 COMMON /STMA/ SEXTSV(13,100),SINTSV(10,100),NSMAX,MAXSEX,MAXSI' 11 REAL KOMNAM 12 COMMON /SYSAA/ TITLE(20), COMPNT(10), KOMNAM(40) 13 COMMON /SYSB/ KE1(50), NETHAX, KE2(50), NE2MAX, KE3(10), NE3HAX, 14 KE4(10), NE4MAX, KRET, KRET2, KRET3 15 COMMON /SYSC/ LIMIT, LIMIT2, LIMIT3, LOOP, LOOPS 16 COMMON KEFLAG(50), KSFLAG(100), KTRACE, DERROR, NPFREQ, /SYSD/ 17 ٠ **TPUNCH** 18 NECALL (50) , NEXEQN(50) , NAME (50) COMMON /EQP8/ 19 COMMON /CMPRO/ NC, NCM1, IDLL, IDLV, IDH, LDBUG, ISH, NPNRBL, NDIM, 20 ٠ ZNAHE(2,10), L(10), NTCOMP(10), ITR, ITRMAX, 21 ٠ NST, NSTM1, NK1, NK2, NK11, NK21, NCASE, NFEED, 22 \* NFTOP, NFBTH, LF(8), IDCODE, ICODE, CPCODE(10) 23 INTEGER SNAHE(100), ENAME(50), NMLIST(20), KPHKPH(10), 24 COMPNT 25 REAL SEX(13), SIN(10), EQP(25) 26 C AVAILABLE '20' EQUIPMENT SUBROUTINE NAMES; DATA NMLIST /'DVDR','DIST','MIXR','ADBF','REAC','VALV','HXER' \* ,'PUMP','ABSR','COMP','HTCL','OVHD','BOTT','HYTR','CTRL','GSXP', \* 'SPLT','ADD3','ADD2','ADD1'/ 27 C 28 29 30 31 C 32 1 FORMAT (819) 2 FORMAT (2x,6613.5) 3 FORMAT ( \*) 33 34 35 C 36 IF (KODE.ER.D) CALL CLEAN 37 READ (NCR, 5, ERR=5000, END=5000) TITLE 38 5 FORMAT (20A4) 39 C 40 WRITE (NPRT, 10) 41 10 FORMAT ( 1 +++ +++ CHESS FLOW SHEET SIMULATION \*\*\* \*\*\*\*/ 42 \* VERSION THREE 1 43 ٠ -) JUNE 1985 44 C 45 WRITE (NPRT,22) TITLE 46 22 FORMAT ("0", 1944, 43) 47 C 48 C 49 C BASIC CONTROL PARAMETERS ... READ IN START 50 C 51 C NOCOMP NUMBER OF COMPONENTS 52 C 53 C IDLL LIQUID PHASE CLASSIFICATION CODE 54 C ٥ IDEAL 55 C 1 VIRIAL 56 C 2 NRTL

تودار مسمار

-

 $\mathbf{C}$ 

Ç

Ĉ

 $\bigcirc$ 

С,

 $\sum_{i=1}^{n}$ 

. ..

λ.

. . .

----

279

- - - ------

FORTRAN IV **VER 59** SOURCE LISTING: DREAD SUBROUTINE D8/16/85 15:01:31 F 57 C 3 UNIQUAC 58 C 4 CHAO-SEADER 59 C 5 = SPECIAL LIBRARY #1 (NRTL) 60 C 6 PENG-ROBINSON 51 C 62 C IDLV VAPOR PHASE CLASSIFICATION CODE 63 C 0 = IDEAL 64 C 1 = VIRIAL EQUATION OF STATE 65 C 2 = REDLICH KWONG EQUATION OF STATE 66 C 3 = SOAVE - REDLICH -KNONG EQUATION OF STATE 57 C 4 = CHAD-SEADER EQN. 58 C 5 = SPECIAL LIBRARY #1 (RK) 69 C 6 = PENG-ROBINSON EQN. OF STATE 70 Ć 71 C IDH ENTHALPY CORRECTION 72 C 0 CORRECT BOTH PHASES 73 C CORRECT VAPOR PHASE ONLY 1 74 C 2 NO CORRECTION 75 C 76 C LDBUG DEBUG CODE 77 C MINIMUM PRINT OUT OF SEPARATION SYSTEM 0 78 Ċ COMPONENT DATA AND FINAL COLUMN PRO-1 79 C FILES PRINTED 80 C 2 CODE 1 + INTERMEDIATE COLUMN PROFILES 51 C PRINTED 82 C 83 C 84 C 85 C KUNITS = 0 ---> PSIA, DEG K , MBTU/HR 86 C KUNITS = 1 ---> ATM, DEG K, KCAL/HR 57 C 88 C 89 C SEXTSV(2, STREAM) = STREAM FLAG; D=INTERMEDIATE 90 C 1=FEED. 2=PRODUCT 91 C 92 C 93 C 94 C COMPNT COMPONENT IDENTIFICATION NUMBERS 95 C 96 IF (KODE.ER.-1) 60 TO 30 READ (NCR,+) NOCOMP, IDLL, IDLV, IDH, LDBUG, NDIM 97 98 NDIM = 0 99 WRITE (NPRT,1) NOCOMP, IDLL, IDLV, IDH, LDBUG, NDIM 100 WRITE (NPRT,3) 101 READ (NCR, +) (COMPNT(I), I=1, NOCOMP) 102 WRITE (NPRT,1) (COMPNT(I),I=1,NOCOMP) 103 WRITE (NPRT,3) 104 NC =NOCOMP 105 NCM1=NC-1 106 DO 25 I=1, NOCOMP 107 25 NTCOMP(I)=COMPNT(I) 108 C 109 30 READ (NCR, +) NOKPM, NOEGP, NOSEX, NOSIN, KUNITS 110 WRITE (NPRT,1) NOKPM, NOEQP, NOSEX, NOSIN, KUNITS 111 C 112 C READ PROCESS MATRIX

 $\bigcirc$ 

 $\sim$ 

ੇ

. جس

 $(\mathbf{h})$ 

(

.

.,

ς.,

280

• • • • • • • • • • • • •

FORTRAN IV VER 59 SOURCE LISTING: DREAD SUBROUTINE D8/16/85 15:01:31 113 C 114 IF (KODE.EQ.-1) GO TO 63 115 WRITE (NPRT,301) 301 FORMAT ("OBEGIN NETWORK READ") 116 00 402 K=1,NOKPM 117 118 READ (NCR.+) KPMKPM 119 IF (MOD(K,5).EQ.5) WRITE (NPRT,3) WRITE (NPRT,400) KPMKPM 120 121 400 FORMAT (15,2(6X,A4),715) 122 I=KPMKPM(1) 123 DO 401 J=1.10 401 KPM(J,I)=KPMKPM(J) 124 125 402 CONTINUE 126 WRITE (NPRT,302) 302 FORMAT (" NETWORK COMPLETE") 127 128 MAXSEX=NOCOMP+3 129 MAXSIN=10 130 MAXEQP=25 131 C 132 C SET UP EQUIPMENT SUBROUTINE CALLING NUMBER FROM EQUIPMENT NAME 133 C 134 KVOID=0135 51 00 56 K2=1,50 136 IF (KPM(1,K2).EQ.0) 60 TO 56 137 NEX=KPM(1,K2) 138 NEMAX=K2 139 C 140 C NEX IS EQUIPMENT NUMBER OF PROCESS MATRIX ROW 1- KPM(1,K2) 141 C KPM(3,K2) IS THE EXTERNAL NAME GIVEN TO THIS UNIT. 142 C 143 1=1 144 53 IF (KPM(2,K2).EQ.NMLIST(I)) GO TO 55 IF (1.GT.20) GO TO 54 145 146 I=I+1 147 GO TO 53 54 WRITE (NPRT,108) NEX,KPM(2,K2) 108 FORMAT('11N ''DREAD'' EQUIPMENT NUMBER ''',13,''' HAS BEEN GIVEN ' 148 149 150 \*. // PROBLEM HAS BEEN VOIDED. ) 151 152 KVOID=1 153 55 NECALL(NEX)=I 154 NAME(NEX)=KPH(2.K2) 155 NEXEQN(NEX)=KPM(3,K2) 156 56 CONTINUE 157 C 158 C IF THE NUMBER OF EQUIPMENT SUBROUTINE NAMES OR AN EQUIPMENT SUBROU-159 C TINE NAME ITSELF IS CHANGED, SUBROUTINE "EQCALL" MUST BE MODIFIED. 160 C DO 62 J=1,NEMAX 161 IF (KPM(1,J).EQ.D) GO TO 62 152 163 DO 61 I=2,8 61 KPM(I,J)=KPM(I+2,J) 154 165 62 CONTINUE 166 C 157 C READ 'EQPAR' (BY USING EQP1-EQP25) AND 'ENAME'. 168 C

-----

...

C

 $\langle \hat{} \rangle$ 

· . · .

~. FORTRAN IV VER 59 SOURCE LISTING: DREAD SUBROUTINE 08/16/85 15:01:31 169 63 IF (NOEQP.EQ.D) GO TO 67 CALL ZEROX (ENAME, 50) 170 3 171 WRITE (NPRT,303) 303 FORMAT ("OBEGIN EQUIPMENT DATA READ") 172 READ (NCR.+) ENAME 173  $\cap$ WRITE (NPRT,1) ENAME 174 175 C 176 DO 412 K=1,NOEQP ୍ 177 READ (NCR, +) EQP WRITE (NPRT,3) 178 179 WRITE (NPRT,2) ERP 180 I = E Q P(1) + 0.1181 EQP(25)=KUNITS 00 411 J=1,25 182 183 411 EQPAR(J,I)=EQP(J) 62 184 412 CONTINUE 185 WRITE (NPRT,304)  $\bigcirc$ 304 FORMAT (" EQUIPMENT DATA COMPLETE") 186 187 DO 65 I=1,NEMAX 188 J=ENAME(I) IF (J.EQ.0) 60 TO 65 ()189 IF (ABS(EQPAR(1,J)).LT.1.E-20) EQPAR(1,J)=J 190 191 C WRITE (NPRT,66) J,(EQPAR(K,J),K=1,25) ( 192 65 CONTINUE 193 C 66 FORMAT (" EQPAR(1, ",12,")=",10610.2/(13x,10610.2)) 194 C CALL ZEROX (KEFLAG, 5D) 195 196 C READ 'SEXTSV' (BY USING SEX1-SEX50) AND 'SNAME' 197 C Ĉ 198 C 199 67 IF (NOSEX.EQ.D) GO TO 71 200 CALL ZEROX (SNAME, 100) WRITE (NPRT,305) 201 4 305 FORMAT ("OBEGIN STREAM EXTENSIVE LIST READ") 202 READ (NCR, +) SNAME 203 204 WRITE (NPRT,1) SNAME 205 C 206 DO 422 K=1,NOSEX 207 READ (NCR,+) SEX WRITE (NPRT,3) 208 209 WRITE (NPRT,2) SEX I = SEX(1) + 0.1210 211 IF (KUNITS.EQ.1)GD TO 418 212 C 213 SEX(2)=SEX(2)+252.16/453.59 214 SEX(3)=SEX(3)+453.59 DO 419 J=1, NOCOMP 215 419 SEX(3+J)=SEX(3+J)+453.59 216 217 C 218 418 DO 421 J=1,13 219 421 SEXTSV(J,I)=SEX(J) 220 422 CONTINUE WRITE (NPRT, 306) 221 306 FORMAT (" STREAM EXTENSIVE LIST COMPLETE") 222 D0 68 I=1,100 223 224 J=SNAME(I)

and the second strategy and th

FORTRAN IV VER 59 SOURCE LISTING: DREAD SUBROUTINE 08/16/85 15:01:31 225 IF (J.EQ.0) GO TO 68 226 IF (ABS(SEXTSV(1, J)).LT.1.E-20) SEXTSV(1, J)=J WRITE (NPRT,69) J, (SEXTSV(K,J), K=1,13) 227 C 228 **58 CONTINUE** 229 C 69 FORMAT( SEXTSV(1, ,12, )= ,2F3.0,11G10.3/30x,10G10.3) 230 C 231 IF (KODE.EQ.-1) GO TO 71 232 DO 70 I=1,100 233 70 IF (ABS(SEXTSV(1.I)) .6T. 1.E-20) NSMAX=I 234 C 235 C READ 'SINTSV' (BY USING SIN1-SIN50) AND 'SNAME' 236 C 237 71 IF (NOSIN.EQ.D) 60 TO 75 CALL ZEROX (SNAME, 100) 238 239 WRITE (NPRT,307) 240 307 FORMAT ("OBEGIN STREAM INTENSIVE LIST READ") 241 READ (NCR, +) SNAME 242 WRITE (NPRT,1) SNAME 243 C 244 DO 432 K=1,NOSIN READ (NCR,+) SIN 245 246 WRITE (NPRT.3) 247 WRITE (NPRT,2) SIN 248 I=SIN(1)+0.1 249 IF (KUNITS.EQ.1)GD TO 43D 250 C 251 IF (SIN(4).NE.0.0) SIN(4) = (SIN(4) - 32.0)/1.8 + 273.16252 SIN(5)=SIN(5)/14.696 253 SIN(6)=SIN(6)+252.16 254 C 255 430 DO 431 J=1.10 256 431 SINTSV(J,I)=SIN(J) 257 432 CONTINUE 258 WRITE (NPRT,308) 259 308 FORMAT (" STREAM INTENSIVE LIST COMPLETE") 250 DO 72 1=1,NSMAX 251 J=SNAME(I) 262 IF (J.EQ.0) 60 TO 72 IF (ABS(SINTSV(1, J)).LT.1.E-20) SINTSV(1, J)=J 263 264 C WRITE (NPRT,73) J,(SINTSV(K,J),K=1,10) 265 . 72 CONTINUE 266 C 73 FORMAT (' SINTSV(1, ', 12, ')=', F3.D, F4.D, 8610.3) 257 C 268 CALL ZEROX (KSFLAG, 100) 269 C 270 C READ EQUIPMENT LISTS FOR RECYCLE CALCULATIONS, KE2, KE3 AND KE4 THEIR CONTROL CONSTANTS NE2MAX, NE3MAX AND NE4MAX. WILL BE CALC. 271 C 272 C 273 75 WRITE (NPRT, 309) 274 309 FORMAT ("OBEGIN CALCULATION DATA READ") 275 READ (NCR, +) LOOPS, NPFREQ, KTRACE, DERROR 276 WRITE (NPRT, 1) LOOPS, NPFRER, KTRACE 277 WRITE (NPRT,2) DERROR 278 WRITE (NPRT,3) 279 READ (NCR,+) KE2 280 WRITE (NPRT,1) KE2

الراب والمسترج والانتهام والمستهم والمروم ومناجع ومراري والمناطر والاسترجاب والمستحصر والمتحاصة والمتعام والمستعان

 $i^{-}$ 

. ``

~~

 $\bigcirc$ 

10

۰.

.....

0

Ċ

• .

:

4

1 C

FORTRAN IV VER 59 SOURCE LISTING: DREAD SUBROUTINE 08/16/85 15:01:31 281 WRITE (NPRT,3) 282 READ (NCR, +) KE3 WRITE (NPRT,1) KE3 WRITE (NPRT,3) 283 284 285 READ (NCR,+) KE4 WRITE (NPRT,1) KE4 286 287 WRITE (NPRT,310) 310 FORMAT (" CALCULATION DATA COMPLETE") 288 289 C 290 NE 2MAX=0 291 NE 3MAX=D 292 NE 4MAX=D 293 DO 76 1=1,50 294 IF (KE2(I).EQ.D) GO TO 77 295 76 NE2MAX=NE2MAX+1 296 77 00 78 1=1,10 297 IF (KE3(1).E0.0) 60 TO 79 298 78 NE 3MAX=NE3MAX+1 299 79 DO 80 I=1,10 300 IF (KE4(I).EQ.0) 60 TO 81 301 80 NE4MAX=NE4MAX+1 302 C 81 N3 MAX=8 303 304 DO 83 K=2,8 305 I=10-K 306 DO 82 J=1,NEMAX IF (KPM(I,J).NE.D) GO TO 85 307 308 82 CONTINUE 309 83 N3MAX=N3MAX-1 310 **85 CONTINUE** 311 C 312 C BUILD UP THE STREAM CONNECTION MATRIX KSEM. 313 C 314 DO 187 M1=1,NEMAX 315 IF (KPM(1,M1).LE.0) GO TO 187 316 188 M2=KPM(1,M1) 317 DO 189 M3=2,N3MAX 318 IF (KPM(M3,M1)) 191,187,190 190 M4=(KPM(M3,M1)) 319 320 IF (M4.GT.50)G0 TO 3000 321 KSEM(3, M4)=M2 322 60 TO 192 323 191 M4=-(KPM(M3.M1)) IF (M4.GT.50)GO TO 3000 324 325 KSEM(2,M4)=M2 326 192 KSEM(1,M4)=M4 189 CONTINUE 327 328 **187 CONTINUE** 329 C IF (KV0ID.GT.0) 60 TO 5000 330 331 C WRITE (NPRT,1000) 332 C1000 FORMAT ("1") 333 60 TO 5001 334 3000 WRITE (NPRT,4000) M1 4000 FORMAT (" KEYPUNCH ERROR, KPM", 13, " PROBLEM VOIDED.") 335 336 5000 KODE=1 337 C 5001 RETURN 338 339 END

ار ایران در استارد ار همه هم دسته در معمق می مربع **معمولات وامار والی والی در**ان از ا

5

| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FORTRAN IN   |                  |                       |                  | NG:            |                |           |         | 08/16/85                           | 15:03:37                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|-----------------------|------------------|----------------|----------------|-----------|---------|------------------------------------|---------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1<br>2 C     | SUBROL           | ITINE COM             | PID              |                |                |           |         |                                    |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3 C          |                  |                       |                  | ***            | ** CO          | MPID **   | ***     |                                    |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 C<br>5 C   | PURE COM         | PONENT I              | D NUMBE          | R S            |                |           |         |                                    |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 C          |                  |                       |                  |                |                | <b>.</b>  |         |                                    |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 C          | 1. HYD           |                       |                  |                |                |           |         | 1-HEXENE<br>CYCLOPENT              | ANE                       |
| C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8 C<br>9 C   | 2. MET<br>3. ETH |                       |                  | N-PEN<br>N-HEX |                | ANE .     | 30.     | METHVICYC                          | LOPENTANE                 |
| 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - | 10 C         |                  | PANE                  |                  | N-HEP          |                | ANE       | 38.     | CYCLOHEXA                          | NE                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 C         |                  | UTANE                 |                  | ETHYL          |                |           | 39.     | METHYLCYC                          | LOHEXANE                  |
| С С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 C         |                  | BUTANE                |                  | PROPY          |                |           |         | BENZENE                            |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13 C         | 7. I-F           | PENTANE               | 24.              | 1-BUT          | ENE            |           | 41.     | TOLUENE                            |                           |
| ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14 C         | 8. N-F           | PENTANE               | 25.              | CIS-Z          | -BUTE          | NE        | 42.     | 0-XYLENE                           |                           |
| 5 a.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15 C<br>16 C |                  | I-PENTANE             |                  | I -BUT         |                |           |         | N-XYLENE<br>P-XYLENE               |                           |
| · .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 17 C         | 11. N-H          | IEPTANE               | 28.              | 1.3-8          | UTADI          | ENE       | 45.     | ETHYLBENZ                          | ENE                       |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18 C         | 12. N-C          | CTANE                 | 29.              | 1-PEN          | TENE           |           | 45.     | NITROGEN                           |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19 C         | 13. N-N          | IONANE                | 30.              | CIS-2          | -PENT          | ENE       | 47.     | NITROGEN<br>OXYGEN                 |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20 C         | 14. N-0          | DECANE                | 31.              | TRANS          | -2-PE          | NTENE     | 48.     | CARBON MC<br>CARBON DI<br>HYDROGEN | NOXIDE                    |
| с <b>ма</b> .<br>1945 г.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21 C         | 15. N-L          | INDECANE              | 32.              | 2-MET          | HYL-1          | -BUTENE   | 49.     | CARBON DI                          | OXIDE                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 22 C<br>23 C | 10. N-0          | DUDECANE              | 33.              | 3-HEI<br>3-HET | HTL=1<br>HTL=2 | -SUIENE   | 50.     | SULFUR DI                          | SULFIDE                   |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23 C<br>24 C | 1/. 4-0          | TTTTTTT               | • <b>-</b> C<br> |                |                |           |         | 30LFUK 01                          | UAIDE                     |
| × .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25 C         | 52. 2-           | ETHYL-C5              | 56.              | 1-HEP          | TENE           |           | 60.     | C2-CYCLO-                          | · C6                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26 C         | 53. 3-1          | IETHYL-CS             | 57.              | PROPA          | DIENE          |           |         | ISOPRENE                           |                           |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27 C         | 54. 2,2          | 2-DI-C1-C             | 4 58.            | 1,2-8          | UTADI          | ENE       | 62.     | WATER                              |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28 C         | 55. 2,3          | 5-DI-C1-C             |                  | C2-C4          | CL0-C          | 5         |         |                                    |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29 C<br>30 C | 63. AM           |                       |                  |                | 4-7-6          |           | NE 97   | • 1-OCTENE                         |                           |
| \$. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31 C         | 64. CAF          |                       |                  |                |                |           |         | . CYCLOPEN                         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 32 C         |                  | TYLENE                |                  | 5. 1.2         | .3-ME          | SITYLEN   | E 85    | . TNS-1,3-                         | -DI-C1CYC6                |
| $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33 C         | 66. PR(          | DPYNE                 | 7                | 6. 1,2         | ,4-HE          | SITYLEN   | E 86    | . CIS-1,4-                         | DI-C1CYC6                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34 C         | 67. 1-8          | BUTYNE                | 7                | 7. 1,3         | ,5-ME          | SITYLEN   | E 87    | • TNS-1,4-                         | DI-C1CYC6                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 35 C       | 68. 2-1          | RETHYLPRO             | PENE 7           | 8. N-8         | UTYLB          | ENZENE    | 88      | • 1,1-DI-0                         | 1-0405                    |
| Ć,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 36 C         | 69. CY(          | LOPENTEN              | E 7              | 9. 2-8         | ETHTL          | HEXANE    | 59.     | • CIS=1,2"                         | DI-C1CY-C6                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37 C<br>38 C | 71. 1+6          | PROPILSEN             | ZENE O<br>ZENE Ř | 1. 2-1         | FTHYL          | HEPTANE   | 91      | • N-OCTADE                         | CANE                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39 C         | 72. 1-0          | 1-2-C2-B              | ENZENES          | 2. 2.2         | -4-TR          | IMETHYL   | C592    | . N-NONADE                         | CANE                      |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40 C         |                  |                       |                  |                |                |           |         |                                    |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 41 C         | 93. N-8          | EICOSANE              | 9                | 5.CIS-         | 1,2-D          | 1-01-04   | C597    | • CIS-1,3-                         | DI-C1-CYC5                |
| ί (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42 C         | 94.1,1-          | -DIMETHYL             | -CYC5 9          | 6.TNS-         | ·1,2-D         | 1-01-04   | C 5 9 8 | • TNS-1,3-                         | -DI-C1-CYC5               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43 C         |                  |                       |                  |                | -              | -         |         | r                                  |                           |
| · 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44<br>45     |                  | N /CONTL/<br>N/SYSAA/ |                  |                |                |           |         |                                    |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46           |                  | N /CNTRL/             |                  |                |                | ••••••••• |         |                                    |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47           |                  |                       |                  |                | .IDLV          | ,IDH,LD   | BUG,    | ISW, NP NRB                        | NDIM,                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48           | *                |                       |                  |                |                |           |         | ,ITR,ITRM/                         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49           | *                |                       |                  |                |                |           |         | NCASE, NFEI                        |                           |
| ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50           | *                |                       |                  |                |                |           |         | ODE, CP CODI                       |                           |
| ť.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 51           |                  | N /ZDATA/             |                  |                |                |           |         |                                    | 10),ADEL(1)<br>)),MODEAF, |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 52<br>53     | *                |                       |                  |                |                |           |         | .VOL(10),1                         |                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 54           | *                |                       |                  |                |                |           |         |                                    | EVAP(10),                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 55           | *                |                       | OA(10)           | ,08(10         | ),,,,(         | 10,10),   | G(10    | ,10),ZRA('                         | 0)                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 56           | REAL             |                       |                  |                |                | 1000 11   | A       |                                    | (20), LNNU(2              |

-

·--、

| FORTRAN IV | VER 59          | SOURCE LISTI                          | ING: COMPID SUBROUTINE D8/16/85 15:03:37                                                                                     |
|------------|-----------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
|            |                 |                                       |                                                                                                                              |
| 57         | REAL            |                                       | T(20),GAM(20),DTA(20)                                                                                                        |
| 58         | REAL            | ¥AM(5D)*HM(                           | (20) +ALD(20)                                                                                                                |
| 59 C<br>60 | TNTCCCO         | COUNT, COMPNT                         |                                                                                                                              |
| 61         | LOGICAL         |                                       |                                                                                                                              |
| 62 C       | COGICAL         | EAFLAG                                |                                                                                                                              |
| 63 C       | STANDAR         | D COMPONENT NA                        | A H E C                                                                                                                      |
| 64 C       | <b>UTANU</b> AA | D CORFORCET NA                        |                                                                                                                              |
| 65         | INTEGER         | SCNAME(392)                           |                                                                                                                              |
| 66         | INTEGER         | SANAME(156)/*                         | HYD ROGE NT TO BETT THANK 2+1 TO B                                                                                           |
| 67         | 1H", ANE        | ", ", ", " PR                         | HYD', ROGE', N', ', MET', HANE',2*'', E<br>RO', PANE',2*'', I-B', UTAN', E', ', N-B'                                         |
| 68         | 2" 11 TAN" -    |                                       | ていてもれてんてい かいてい アンダームニャク アナロティア アロドア・アンターアン・レー                                                                                |
| 69         | J + -PEN        | • TANE • • •                          | NHH SEXAN SELECT NHH SEPTATIONET T                                                                                           |
| 70         |                 |                                       |                                                                                                                              |
| 71         | 5 N-U,          | NDEC, ANE,                            |                                                                                                                              |
| 72         | 6E , ,          | N-T', ETRA',                          | DECAT, "NE", N-P", "ENTA", DECAT, NE", N-H"                                                                                  |
| 73         | 7"EXAD",        | ECAN', E', N                          | N-H", "EPTA", "DECA", "NE", " ETH", "YLEN", "E", "                                                                           |
| 74<br>75   | 8 PRO           | PYLE NE                               | N-H', 'EPTA', 'DECA', 'NE', 'ETH', 'YLEN', 'E',<br>, '1-B', 'UTEN', 'E', ', 'CIS', '-2-B', 'UTEN'                            |
| 76         |                 | nn <b>f n</b> a-c f -D                | DUI & ENE & 195 & UIEN'A F'A' 'A' 1.5' - AUT                                                                                 |
| 77         | AT ADIE         | 9 NE 9 1-P 9                          | ENTE, NE, CIS, -2-P, ENTE, NE, T<br>2-C, 1-1-, BUTE, NE, 3-C, 1-1-, BUT                                                      |
| 78         |                 | C & NIEN & E'y<br>7 7-67 74-7-7       | 2-C, 1-1-, BUTE, NE, 3-C, 1-1-, BUT                                                                                          |
| 79         | DET. NTA        | 2-6 9 1-2- 9                          | BUTE , NE , 1-H , EXEN , E , , CYC, LC<br>CYCL , O-CS , , CYC , LOHE , XANE , ,                                              |
| 80         | ET CI-T         | CYCL , 0-C6 ,                         | FUTURE OFUS STATES CYC SLOHE SXANE STATES                                                                                    |
| 81         | TNTEGER         | SANANE(02)                            | / BEN', ZENE', ', ', TOL', 'UENE', 2*'                                                                                       |
| 82         | F. 0-1          | YIFN FF.                              | THE MEXT, THERE FET, F. F. DAMF PHICH F. F. P.                                                                               |
| 83         | G. ETH          | YLBE NZEN                             | ', E', NIT', ROGE', N', ', OXY', GEN', 2*'<br>H2S', 3*', SO2', 3*', 2-M', ETHY'<br>HY', L-C5', ', 2,2', -DI-', C1-C', 4', 2, |
| 84         | H. CO.          | 3+                                    | Star H25-3*1 1-1 S021-3+1 1-1 2-81.1554                                                                                      |
| 85         | I'L-C5",        | 3-H . ET                              | THY . L-C5 2.2DI (1-C1-C4 2.                                                                                                 |
| 56         | J", "-DI-"      | · · · · · · · · · · · · · · · · · · · | 1-H, EPTE, NE, PRO, PADI, ENE,<br>NE, C2-, CYCL, O-C5, C2-, CYCL                                                             |
| 87         | K, 1,2"         | -BUT", ADIE"                          | "NE", C2-", CYCL", O-C5", C2-", CYCL"                                                                                        |
| 58         | L U-LO +        | • 150 • PR                            | (EN's'E's' 's' WAT's'ER',7*'''/                                                                                              |
| 89         | INTEGER         | SDNAME(144)/~                         | AMM TONIAT 2 * TOT CARTS RONT. 2 * TOT AFET                                                                                  |
| 1 90       | TITLE .         | NE PRO                                | ) • PYNE • 2 * • • 1 + B • UTYN • FE • • 2 + 4 ·                                                                             |
| . 91       | 2ETHY", "L      | PRO PENE,                             | CYC , LOPE , NTEN , E', N-C', 3-BE', NZEN                                                                                    |
| 92         | 3 E , 1         | C, 3-8E, NZ                           | EN , E , 1-C , 1-2-, C2-B , ENZN , 1-C ,                                                                                     |
| 93<br>94   | 41-5-1,         | C2-B, ENZN,                           | 1-C', 1-4-', C2-B', ENZN', 1,2', 3ME',<br>,4ME', SITY', LENE', 1,3', 5ME', SITY',                                            |
| 95         | 2 2117 g        | LENE y Tyd y                          | AHE', SITY', LENE', 1,3', SHE', SITY',                                                                                       |
| 96         | 7 3-M           |                                       | BENZ', ENE', 2-M', ETHY', LHEX', ANE',<br>ANE', 2-M', ETHY', LHEP', TANE', 2,2',',4                                          |
| 97         | 87              |                                       | AND A COM A CINY A LHEP A TANE A CALL A A                                                                                    |
| 98         | 9" TNS          | -1.35.501015.5                        | O', CTEN', E', ', CYC', LOPE', NTEN', E',<br>CYC6', CIS', -1,4', DIC1', CYC6', TNS', -                                       |
| 99         | A.4 . DIC       | 1                                     | +1', -DI-', C1-C', YC6', CIS', -1,2', DIC1'                                                                                  |
| 100        | BCYC61.1        | · EIS1.3                              | TOTES SEVERS NOT STANS SECANS SEC. NON                                                                                       |
| 101        | C. ONAD.        | TECAN TO TET T                        | N-E SILOS SANFS STATISTICATION TO THE STATE                                                                                  |
| 102        | D'YC5-,-        | CIS                                   | DIC1 - CYC5 - TNS 1.27. DIC1 - CYC5 - C                                                                                      |
| 103        | ES , -1, 3      | 5°, DIC1°, CYC                        | 5', TNS', -1.3'. DIC1'. CYC5'/                                                                                               |
| 104        | EQUIVALE        | INCE (SCNAME(1)                       | ), SANAME(1)), (SCNAME(157), SBNAME(1))                                                                                      |
| 105        | EQUIVALE        | NCE (SCNAME(24                        | 49) FSDNAME)                                                                                                                 |
| 106 C      |                 |                                       |                                                                                                                              |
| 107 0      | AC CENTRI       | C FACTORS :RE                         | EFERENCED FROM REID-SHERWOOD-PRAUSNITZ                                                                                       |
| 108        | REAL ADM        | E6(98)/220                            | 008,.098,.152,.176,.193,.227,.251,.197,.296,                                                                                 |
| 109        | 1.35394         | ,.444,.49,.535                        | 5 562 623 679 706 742 77 085 148 18                                                                                          |
| 110        | 2,.202,.2       | 14,.19,.195,.2                        | 245,.24,.237,.232,.239,.285,.285,.192,.239,                                                                                  |
| 111        | 3+213+26        | 9++212++257++3                        | 314,.331,.324,.301,.04,.021,.049,.225,.1,                                                                                    |
| 112        | 4+629+279       | , / >, . 231, . 24                    | 47,.358,.313,.255,.283,.243,.164,.344,.25,0.                                                                                 |

-

 $\bigcirc$ 

1

 $\bigcirc$ 

 $\bigcirc$ 

 $\widehat{\phantom{a}}$ 

.

. .

 $\langle \cdot \rangle$ 

1

<u>,</u>\_\_\_

\*

FORTRAN IV VER 59 SDURCE LISTING: COMPID SUBROUTINE 08/16/85 15:03:37 \*.184,.218,.05,.19,.24,.344,.335,.294,.36,.322,2\*.39,.398,.392,.33 113 6.289.378.303.386.24.189.234.242.235.236.236.224.77.827. 114 115 7.907,273,4+.269/ 116 C CHAO-SEADER MODIFIED HILDEBRAND SOLUBILITY PARAMETER 117 C 118 C (CAL./ML.)\*\* 1/2 REAL DEL(98)/3.25,5.45,5.88,6.00,2\*6.73,3\*7.021,7.266,7.43,7.551, 119 1.649,7.721,7.79,7.84,7.89,7.92,7.96,7.99,8.03,5.8,6.2,4\*6.76,6.94 120 26+7.055,7.4,8.107,7.849,8.196,7.826,9.158,8.915,8.987,8.818,8.769 121 38.787,2.58,4.,3.13,6.,5.634,6.,7.018,7.132,6.712,6.967,7.168,6.85 122 4,7.95,7.739,7.743,7.277,7.39, 123 A 6.64, 1.00, 4.55, 7.52, 7.56, 6.76, 8.24, 8.64, 8.53, 8.88, 8.72 124 B 8.67, 9.08, 8.88, 8.78, 8.52, 7.21, 7.29, 7.35, 6.85, 7.60, 8.24 125 c 7.81, 7.79, 7.56, 7.69, 7.93, 7.68, 7.44, 7.41, 7.38, 7.56, 7.89 126 D 7.64, 7.57, 7.62/ 127 128 C 129 C VOLUME AT 25 DEG.C. , ML./ G-MOLE REAL V25(98)/31.,52.,68.,84.,105.5,101.4,117.4,116.1,123.3,131.6, 130 1147.5,163.5,179.6,196.,212.2,228.6,244.9,261.3,277.8,294.1,310.4, 131 261.,79.,95.3,91.2,93.8,95.4,88.,110.4,107.8,109.,108.7,112.8,106. 132 3,125.8,94.7,113.1,108.7,128.3,89.4,106.8,121.2,123.5,124.,123.1, 133 4 36.0,28.4,35.2,53.6,43.6,45.2,132.9,130.6,122.7,131.2,141.7,61.6 134 5 83.7,128.8,143.1,100.37,18.076, 135 A 54.6, 1.0, 42.8, 64.3, 84.1, 95.4, 91.8,140.2,140.3,137.1,139.7 B140.2,135.0,137.9,139.6,156.8,148.6,146.7,164.6,166.1,157.9, 91.8 136 137 c143.8,144.1,148.0,144.5,141.6,145.6,327.5,344.7,360.5,130.9,127.8 138 139 D131.5,132.6,131.9/ 140 C CHAO-SEADER CHARACTERISTIC MOLAR VOLUMES - ML./ G-MOLE 141 C REAL VW(98)/.955,5.,7.88,10.35,13.37,13.,15.36,15.27,15.89,17.64, 142 10.05,22.49,24.94,27.42,29.9,32.39,34.88,37.39,39.89,42.41,44.92,6 143 288,9.69,12.17,11.71,12.,12.17,11.27,14.55,14.26,14.41,14.31,14.77 144 314.14,16.9,12.72,15.33,14.87,17.67,12.26,14.83,17.03,17.28,17.34, 145 4 47.23,2.534,2.871,2.584,6.365,5.081,6.516,17.727,17.473,16.297, 146 517.519,19.223,7.721,10.936,17.713,19.916,13.297,2.552, 147 6 6.908, 0.001, 4.983, 8.074,11.091,12.169,12.327,19.745,19.714, 148 719.392, 19.660, 19.730, 19.178, 19.517, 19.683, 22.229, 20.077, 19.907, 149 150 822 • 5 5 5 , 22 • 6 22 , 21 • 6 9 7 , 12 • 3 27 • 19 • 987 • 20 • 0 29 • 20 • 5 3 1 , 20 • 0 73 • 19 • 7 23 • 920.218,47.517,50.152,52.579,17.868,17.548,17.986,18.136,18.041/ 151 152 C 153 C----THE FOLLOWING ARE THE CRITICAL CONSTANTS, 154 C-----UPDATED VALUES FROM REID-SHERWOOD-PRAUSNITZ'S 155 C---- "PROPERTIES OF GASES AND LIQUIDS" THIRD EDITION 156 C---- ARE USED. 157 C CRITICAL TEMPERATURES. DEG. K. REAL ATC (98) /33.27, 190.6, 305.43, 369.8, 408.14, 425.17, 460.4, 469.6, 158 1433.76,507.4,540.16,568.8,594.6,617.5,638.8,658.3,675.8,694.,70 159 27.,717.,733.,282.4,365.,419.6,435.6,428.6,418.,425.,464.7,476.,47 160 3.,465.,450.,470.,504.0,511.6,532.7,553.4,572.1,562.1,591.7,630.2, 161 417.,616.2,617.1,126.2,154.6,132.9,304.2,373.2,430.8,497.5,504.4, 162 163 5488.7.499.9.537.2,393.,443.7,569.5.609.,484.,647.3,405.6.0.,308. 63,402.4,463.7,417.9,506.,638.3,631.,651.,537.,640.,664.5,649.1,6 164 737.3,660.5,530.3,535.2,559.6,543.9,566.6,506.,2+598.,590.,591.,6 165 806 ... 591 ... 745 ... 756 ... 767 ... 547 ... 564 ... 5. 3 + 553 ... 2/ 166 167 C CRITICAL PRESSURES, ATM. 168 C

and a second second

and a second second

میں اللہ اطلقہ کار الاسم عملو ہو الیوہ مماری ہے۔

----,

 $\widehat{}$ 

(

Ċ

C

C

1.

<u>,</u>,

(\*

Ć

ς.

FORTRAN TV **VER 59** SOURCE LISTING: COMPID SUBROUTINE D8/16/85 15:03:37 169 REAL APC(98)/12.8.45.4.48.2.41.9.36..37.5.33.4.33.3.31.6.29.3.27. 170 \*24.5,22.8,20.8,19.4,18.,17.,16.,15.,14.,13.,49.7,45.6,39.7,41.5, 171 20.5,39.5,42.7,40.,36.,36.,34.,34.,7,34.,31.3,44.5,37.4,40.2,34.3,4 172 3.3,40.6,36.8,35.,34.7,35.6,33.5,49.8,34.5,72.8,88.,77.8,29.7,30. \*30 • 4 • 30 • 9 • 28 • • 54 • • 44 • 4 • 33 • 5 • 30 • • 38 • • 217 • 6 • 111 • 3 • 0 • • 60 • 6 • 55 • 5 • 46 • 5 173 174 539.5,55.6,5.6,31.6,31.7,30.,28.,29.,34.1,31.9,30.9,28.5,27.,27.8 624 +5 +25 +3 +25 +9 +55 +6 +6 + 29 +3 +11 +9 +2 +11 + +5 +34 +/ 175 176 C 177 C CRITICAL VOLUMES, CC./GNOLE REAL AVC(98)/65.,99.,148.,203.,263.,255.,306.,304.,303.,370.,432. 178 179 +492.,548.,603.,660.,713.,780.,830.,2+880.,1000.,129.,181.,240., 180 +234.,238.,239.,221.,3+3D0.,294.,30D.,318.,350.,260.,319.,308.,362 181 +,259.,316.,369.,376.,379.,374.,89.5,73.4,93.1,94.,98.5,122.,367., +367.,359.,358.,440.,162.,219.,375.,450.,276.,56.,73.,0.,113.,164. 182 183 \*220.,239.,254.,440.,428.,460.,490.,470.,2\*430.,433.,497.,421., +404 . , 488 . , 468 . , 464 . , 254 . , 6 + 416 . , 3 + 779 . , 360 . , 368 . , 3 + 362 . / 184 185 C 186 C MOLECULAR WEIGHTS 187 REAL AMW(98)/2.016,16.042,30.068,44.094,2+58.12,3+72.146,86.172, 188 1100.198,114.224,128.25,142.276,156.302,170.328,184.354,198.38, 2212.406,226.432,240.458,28.052,42.078,4+56.104,54.088,6+70.13, 189 384.156,70.13,2+84.156,98.182,78.108,92.134,4+106.16,28.016,32.,28 190 401,44.01,34.08,64.06,4\*86.2,98.2,40.1,54.1,98.2,112.2,68.1,18.02, 191 192 A 17.03,12.01,26.036,40.062,54.088,56.104,58.114,8+120.186,134.212 193 B 2+100.198, 2+114.224,112.208,68.114, 6+112.208,254.48,268.51, 194 C 282.54,5+98.182/ 195 C 196 C DENSITIES AT 15 DEG. C., G./ML. 197 REAL DENS (98) / . 07, . 2, . 376, . 5076, . 5633, . 5847, . 6246, . 63089, . 5967, . 6 198 1384,.68801,.70654,.72146,.7339,.7440,.7525,.7600,.7663,.7720,.773 199 2,.7780,.3490,.5226,.6014,.6271,.61,.6005,.6274,.64565,.6607,.6534 200 3.6558,.6326,.6776,.67779,.75018,.7534,.78314,.77371,.88417,.87146 4.88440,.86836,.86532,.87141,.808,1.140,.804,1.101,.790,1.434,.657 201 202 5,.669,.654,.6664,.7015,.657,.658,.771,.7922,.6861,1.0, 203 A.6173,1.000,.6150,.6300,.6500,.6004,.7505,.8660,.8660,.8852,.8690 204 8.8657,.8987,.8802,.8689,.9650,.6830,.6915,.7021,.6963,.7194,.7505 205 C.7892,.7873,.7670,.7854,.8006,.7803,.7856,.7892,.7924,.7593,.7774 206 0.7562,.7490,.7535/ 207 C 208 C \*\*\*\* COEFFICIENTS OF ZERO PRESSURE HEAT CONTENT. \*\*\*\*\* \*\*\*\*REVISED DATA-REID-SHERWOOD-PRAUSNITZ :3RD.EDN\*\*\*\*\* 209 C 210 C-----EQN. IS: CP(0)=APHA+BETTA+T+GAMA+T++2+DELTA+T++3 211 C-----UNITS ARE: CP IN CALS/GRAM.MOLE-DK ,T IN DK 212 C 213 REAL APHA (98) /6.483,4.598,1.292,-1.009,-0.332,2.266,-2.275, 214 **\*-0.866, -3.963, -1.054, -1.229, -1.456, 0.751, -1.89, -2.005, -2.228, \*-2.499.-2.623.-2.846.-3.109.-3.336.0.909.0.886.-0.715.0.105.** 215 216 +4.375,3.843,-0.403,-0.032,-3.414,0.465,2.525,5.193,2.819,-0.417, **\***-12.808,-11.968,-13.027,-14.789,-8.101,-5.817,-3.786,-6.966, 217 218 \*-5 .993, -10 . 294, 7 . 44, 6 . 713, 7 . 373, 4 . 728, 7 . 629, 5 . 697, -2. 524, -0. 57, 219 \*-3.973,-3.489,-0.789,2.366,2.675,-13.211,-15.26,-0.815,7.701, 220 \*6.524,0.,6.41,3.513,2.997,3.834,-9.915,-7.473,-9.402,-3.93,-6.926 221 **\*-6.523,-1.658,-1.115,-4.679,-5.491,-9.408,-1.683,-21.435,-1.782,** \*-. 979, -9.915, -15.323, -15.323, -16.806, -17.22, -16.33, -15.564, -3.456 222 223 \*-3.7,-5.346,-13.827,-13.29,-13.022,-13.022,-13.022/ 224 C

 $\cap$ 

C

 $\odot$ 

 $\bigcirc$ 

٠.

 $(\mathbf{\hat{f}})$ 

Ċ

•``\

÷ .

| FORTRAN IV | VER 59 SOURCE LISTING: COMPID SUBROUTINE                                                       | 08/16/85 15:03:37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FURIKAN IV | VER JY SUURCE EISTING: COMPTY SUBNOUTINE                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.25       | REAL BETTA (98) /2.215E-3,1.245E-2,4.254E-2,7.3                                                | 15E-2.9.189E-2.7.913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 225        | E-2,1.21E-1,1.166E-1,1.326E-1,1.39E-1,1.615E-                                                  | -1.1.842E-1.1.618E-1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 226        | 2.295E-1,2.517E-1,2.744E-1,2.974E-1,3.195E-1,                                                  | 3.422E-1.3.652E-1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 227        | 3.879E-1,3.74E-2,5.602E-2,8.436E-2,7.054E-2,6                                                  | 173F-7.6.698F-7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 228        | 165E-2,1.034E-1,1.099E-1,9.988E-2,9.547E-2,                                                    | $Q_{1}^{2} Q_{2}^{2} Q_{2}^{2} Q_{3}^{2} Q_{3$ |
| 229        | 18.165E-2,1.U54E-1,1.U99E-1,9.900E-2,9.04E-2,                                                  | -1 1 1375-1 1 2245-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 230        | E-2,1.268E-1,1.296E-1,1.524E-1,1.46E-1,1.873E                                                  | -0.8705-60.3075+2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 231        | 1.424E-1,1.504E-1,1.443E-1,1.689E-1,-0.324E-2                                                  | 5075-4 4 (405-4 4 50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 232        | 1.754E-2,3.431E-4,1.6E-2,1.477E-1,1.359E-1,1.                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 233        | E-1,4.273E-2.6.51E-2.1.794E-1.2.124E-1.1.095E                                                  | ;-1,2.092E-3,4.092E-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 234        | 0.0,1.81E-2,4.453E-2,6.553E-2,6.698E-2,1.106E                                                  | -1,1.(00E-1,1.5/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 235        | E-1,1.671E-1,1.742E-1,1.714E-1,1.513E-1,1.49E                                                  | -1,1.6U0E-1,1.693E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 236        | 1, 2.064E-1, 1.633E-1, 2.967E-1, 1.858E-1, 1.729E-                                             | -1,1.1U6E-1,2*2.1U8E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 237        | .2.181E-1,2.149E-1,2.143E-1,2.111E-1,4.101E-1                                                  | 1,4.329E-1,4.632E-1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 238        | 1.832E-1,1.813E-1,3+1.813E-1/                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 239 C      |                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 240        | REAL GAMA(98)/-3.298E-6,2.86E-6,-1.657E-5,-3.                                                  | ,789E-5,-4.4D9E-5,-2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 241        | *47F-56_519E-56.163E-57.879E-57.449E-5                                                         | 5,-8,72E-5,-1.002E-4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 242        |                                                                                                | 15E-4,-1.773E-4,-1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 243        | E-4,-2.039E-4,-2.169E-4,-1.994E-5,-2.771E-5,-                                                  | -4.754E-5,-2.431E-5,-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 244        | • 675E-5, -2.607E-5, -5.589E-5, -5.534E-5, -6.068E                                             | E-55.201E-54.648E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 245        | -5, -4.794E-5, -2.667E-5, -6.933E-5, -7.239E-5, -8                                             | 8.599E-56.027E-51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            | *06 E-4, -7 * 206E-5, -6 * 605E-5, -8 * 224E-5, -8 * 95E-5;                                    | -8.058F-51.149F-4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 246        | *6. 4E-6, 4. 17E-6, 6. 662E-6, -1. 338E-5, 5. 809E-5, -1                                       | 1.1856-58.5336-56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 247        | **************************************                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 248        | •.854 E-5, -8. 314 E-5, -8. UD3E-5, -8. JDDE-5, -2. OCCC                                       | 1 104 Em5 -2 803 Em5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 249        | 4, -1.22E-4, -7.971E-5, 2.521E-6, 4.078E-6, 0.0, -1                                            | 1 = 1702 = 33 = 2 = 00002 = 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 250        | -3.69E-5,-2.607E-5,-6.16E-5,-1.1E-4,-1.215E-4                                                  | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 251        | -1.01E-4,-7.945E-5,-7.793E-5,-8.819E-5,-1.050                                                  | L=4,=1.JU/L=4,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 252        | -8.92E-5,-2.808E-4,-1.024E-4,-9.641E-5,-6.16                                                   | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 253        | -1.268E-4,-1.199E-4,-1.227E-4,-1.178E-4,-2.25                                                  | 71E-4,-2.424E-4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 254        | +-2 .667E-4,-1.075E-4,-1.071E-4,-1.07E-4,-1.07                                                 | E+4,-1.U/E-4/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 255 C      |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 256        | REAL DELTA(98)/1.826E-9,-2.703E-9,2.08E-9,7.0                                                  | 678E-9,6.915E-9,-0.5/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 257        | *E-9,1.367E-8,1.267E-8,1.823E-8,1.551E-8,1.825                                                 | 9E-8,2.115E-8,-7.121E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 258        | *9,2.701E-8,2.954E-8,3.246E-8,3.558E-8,3.817E                                                  | -8,4.108E-8,4.418E-8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 259        | +4, 715-8, 4, 1925-9, 5, 2665-9, 1, 3665-8, +3, 147E-9;                                        | <b>,-2.147E-9,2.173E-9</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 260        | +1.513F-R.1.118F-8.1.303E-8.1.052E-8.7.915E-9                                                  | ,9.579E-9,-1.387E-9,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 251        | +1, 444F-R, 1, 549F-R, 1, 914E-8, 3, 156E-9, 2, 237E-8,                                        | , 1. 703E-8, 1. 1/3E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 252        | +8.1.708F-8.7.205F-8.1.629F-8.3.107E-82.79E                                                    | -9,-2.5448-9,-3.0378-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 263        | +0.4.N07F+0.+7.81F-9.3.172E-9.1.931E-8.1.2D2E                                                  | -8,1.6362-8,1.6292-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 264        | +8.1.817F-8.6.645E-9.7.378E-9.2.398E-8.2.634E                                                  | -8,2.3892-8,-0.8592-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 265        | +-2 _ 83r - 0 - 0 - 0 - 3 - 373r - 9 - 7 - 701 E - 9 - 8 - 24E - 9 - 2 - 173                   | E-9,1.298E-8,2.582E-c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 266        | +3.084F-8.2.228F-8.2.388E-8.2.2798E-8.1.579E-                                                  | 8,1.5232-8,1.8392-8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 267        | +2.0475-8.4.3865-8.1.8715-8.1.103E-7.2.191E-8                                                  | ,2.072E-8,1.298E-8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 258        | *2*2.552E-8,2.758E-8,2.461E-8,2.624E-8,2.436E                                                  | -8,4.964E-8,5.267E-8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 259        | *6.039E-8,2.413E-8,2.422E-8,3*2.429E-8/                                                        | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 270 C      |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 271 C      | -NORMAL BOILING POINTS, DEG. K                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | REAL ATB(98)/20.4,111.7,184.5,231.1,261.3,27                                                   | 2.7.301309.2.282.6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 273        | 1341.9,371.6,398.8,424.,447.3,469.1,489.5,508                                                  | .6.426.7.543.8.560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 274        | 2575.2,169.4,225.4,266.9,276.9,274.,266.3,268                                                  | 7.303.1.310.1.309.5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 275        | 2575.2,169.4,225.4,266.9,276.9,274.,266.3,266<br>3304.3,293.3,311.7,336.6,322.4,345.,353.9,374 | 1.353.3.383.8.417.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 276        | 3304.3,293.3,311.7,356.6,522.4,545.555.9,574<br>4412.3,411.5,409.3,77.4,90.2,81.7,194.7,212.8  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 277        | 4412.3,411.5,409.5,77.4,90.2,01.7,174.7,212.0                                                  | 177 5 570.7.0 .180.7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 278        | 59, 331.2, 366.8, 238.7, 284., 376.6, 404.9, 307.2, 3                                          | 1 2 6 5 6 2 7 8 7 9 U 4 9 1 0 7 8 6 9<br>8 1 2 8 3 1 1 1 0 4 9 1 0 7 8 6 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 279        | 6250.,281.2,266.3,317.4,432.4,425.5,438.3,434                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 280        | +437.9,456.4,363.2,365.,390.8,372.4,394.4,317                                                  | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            |                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

. . . . . .

· ·

. . . .

. . . . .

•

 $\sim$ 

- ~

 $\cap$ 

 $\cap$ 

. ]

·**--** ,

<u>,</u>

~

, T

-

:

~

|        |                                          |                           |                                         |                                                       | 290                                      |
|--------|------------------------------------------|---------------------------|-----------------------------------------|-------------------------------------------------------|------------------------------------------|
| -<br>- | n en | ere de la Caraci          |                                         | ر<br>المسجوع المالية المراجع ال                       | n an |
|        |                                          |                           |                                         |                                                       |                                          |
| •      | FORTRAN IV                               | VER 59 S                  | OURCE LISTING:                          | COMPID SUBROUTINE D                                   | 8/16/85 15:03:37                         |
|        | 251                                      | 8392.7,402.               | 9,393.3,589.5,6                         | 03.1.617.,361.,372.7,                                 | 3+365-1                                  |
| ~      | 282 C<br>253 C                           |                           |                                         |                                                       |                                          |
|        | 284 C                                    |                           |                                         |                                                       |                                          |
| ~      | 285 [                                    | THE FOLLOW                | ING ARE THE RACI                        | ETT PARAMETERS .                                      |                                          |
|        | E20 [                                    | TTIMESE MAVE              | • DATA REGRESSI<br>PROVED EQUATION      | FD AV CDENFED P                                       |                                          |
|        | 200 [                                    | -SAT. LIQUI               | D DENSITY <sup>M</sup> Journ            | AL OF FURNITAL                                        |                                          |
|        | 259 [                                    | AND ENGINE                | ERING DATA :17.1                        | 2.1972 .                                              |                                          |
|        | 290 C                                    |                           | CRITICAL COMPI                          | ESSIBILITY FACTORS<br>E FROM SPENCER & DANN           |                                          |
|        | 272 6                                    |                           | 13 HOL MANICABL                         | LE FROM SPENCER & DANN                                | IER                                      |
|        | 293 C<br>294                             |                           |                                         |                                                       |                                          |
|        | - · ·                                    | +0.2685.272               | (98)/.3199287                           | 6 2789 2763 275 2                                     | 728,.2716,                               |
|        | 296                                      |                           | ••• ~ ~ • ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | 2576, 2547, 2503, 24,                                 | 777                                      |
|        | 671                                      |                           | 4.2*0.28267                             | 7877874 5487 55                                       | 7 3734                                   |
|        |                                          |                           | 0                                       | 593 • 2589 • 2626 • 2905<br>268 • 267 • 273 • 272 • 2 |                                          |
|        | 200                                      |                           | +U+CDY+U+C/++Z6                         | 42292465.0.0271                                       | 2 2707                                   |
|        | 201                                      |                           | +6(/++265+4+0+2                         | 6 27 258 26. 2+0                                      | 1.                                       |
|        | 303 C                                    | *U•2>0,•26,•              | 266,.26,.277,6*                         | 0.25,3+0.336,5+0.27/                                  | •                                        |
|        | 304 C                                    |                           |                                         |                                                       |                                          |
|        | 305 C                                    |                           |                                         |                                                       |                                          |
|        | 307 [                                    | -THE FOLLOWI              | NG PARAMETERS I                         | NDICATES WHICH SOURCE<br>IC HEAT COEFFICIENTS         | IS                                       |
|        | J00 (                                    | - I=DATA                  | IS REGRESSED B                          | IC HEAT COEFFICIENTS<br>ETWEEN THE FREEZING P         | DATA :<br>T                              |
|        | 309 [                                    | - AND                     | THE NORMAL BOIL                         | ING PTS.OF THE COMPON                                 | ENT.                                     |
|        | 310 [                                    | – THE                     | LYMAN-DANNER P                          | REDICTION METHOD WAS                                  | ICEN                                     |
|        | 312 0                                    | - UNII:                   | S ARE :CPL>CA                           | LIQUIDS AND GASES",3<br>S/GM.HOLE/OK ,T>OK            |                                          |
|        | 313 c                                    | - Z=DATA                  | OBTAINED FROM '                         | "NYDROCARBON PROCESSI                                 | NG .46.8.1967.                           |
|        | 315 (                                    |                           | CITCLE RI-MOSTI                         | AMPLIN & D.A.ZUZIC.<br>T++3 ,IN CALS/GM.MOLI          |                                          |
|        | 316 C                                    | - CONVI                   | ERSIONS DUE TO 1                        | EMP. UNIT IS INCORDA                                  | ATEN TH CONF                             |
|        | 317 C                                    | - JEDAIA                  | UBTAINED FROM "                         | PHYSICAL PROPERTIES.                                  | A CHEMICAL                               |
|        | 319 [                                    | CHUIF                     | EERING PUBLICA<br>ARE :CPL IN C         | TION, BY-CARL L.YAWS.                                 |                                          |
|        | 320                                      | REAL CPTYPE               | . 78)/4=5.0.4=2.[                       | ALS/GH/DK, T IN DK<br>,1.0,7+2.0,1.0,3+2.0            | 1.0.2+3.0.                               |
|        |                                          | · J ~ C + U + I + U + Z + |                                         | 1.5#2.D.3.D.2.D (+1 D                                 | 4 0 7 0 5.4 0                            |
|        | 366 *                                    | *>* < + U + T + U + 4*    | 'C+U+C*3+D+1+D+4                        | *1.0,2.0,1.0,2.0,5*1.<br>,5*1.C,2.0,4*1.0/            | 0,2+2.0,1.0,2+2.0                        |
|        | >24 [                                    | THE FOLLOWIN              | G ARE THE COEFF                         | ICIENTS OF LTG. SPECT                                 | FTC NEAT -                               |
|        | 325 C<br>326 C                           | CPL=S                     | PHL1+SPHL2*T+SP                         | HL3+T++2+SPHL4+T++3                                   | , at ment .                              |
|        |                                          | REAL SPHLIC               | 8)/3.79.1.23.0.                         | 1388,0.3326,31.7993,3                                 | 4 8833 88                                |
|        | 220 -                                    |                           | /2/*************                        | X66.58.6015.65 8104 9                                 | 7 48/7 78 88 8/88                        |
|        |                                          | 01                        | 722.102.3007.11                         | D. 447.117.000/ 474 47                                | 37 .0 3705 /857                          |
|        |                                          | 67 03303966007            | (40+29+34//21                           | .7.77.0640.TT.8695 1/                                 | ADED DE BEAL                             |
|        |                                          |                           | /////////////////////////////////////// | 8789,28.4092,35.7877,<br>289,-D.8429,42.4591,-        |                                          |
|        |                                          | マン ナディブナンナニサロ             | 4                                       | 451.47.00.43.4 <b>ng</b> 4 25                         | 9978 /8 /857 44                          |
|        |                                          | 1601 29994666             | 1000+47+573+36+                         | 4949-R-4741 - 4 837 A                                 | 0 .40 04 4 444                           |
|        | 336 ±                                    | 49.142.58.11              | .55.225.50_8207                         | 076,39.181,51.309,51.<br>,-50.411,57.4676,59.9        | 051,57.503,49.733                        |
|        |                                          |                           |                                         | · · · · · · · · · · · · · · · · · · ·                 | c +27 + 333 c +27 + 5764                 |

. – .

. ر

 $\sim$ 

 $\sim$ 

. •

.

. -\.

ŧ

----

. . ..... **.**........ - . . .. .

| FORTR | AN I | V        | VE         | R            | 59         |             | S          | 01         | JR C         | E              | L              | IS         | TI  | N   | G :            | C          | 0 M        | Pj        | D            |              | SU         | BR         | ou                                      | TI           | NE         | Ξ            | 08   | /1         | 61             | 85       | 5              | 15         | :0         | 3:        | 37                 |    |
|-------|------|----------|------------|--------------|------------|-------------|------------|------------|--------------|----------------|----------------|------------|-----|-----|----------------|------------|------------|-----------|--------------|--------------|------------|------------|-----------------------------------------|--------------|------------|--------------|------|------------|----------------|----------|----------------|------------|------------|-----------|--------------------|----|
| 337   |      |          |            | E            |            |             | 2          |            | 56,          |                |                | 9 4        | 0   | L   | 7              | 17         | 93         | . (       |              | . n          | 51         | - 4        | 2.                                      | 07           | 5          | 14           | 7.   | 72         | 5.             | 47       | <b>.</b> .     | 70         | 7.         |           |                    |    |
|       |      | -        | 42         | 2            | -0         | 2.4         |            |            |              |                | ••             |            |     |     | 1              | 5          | 70         |           |              | • U .<br>7 7 | 77         |            | - <b>-</b> •                            | 22           | , ' i      |              |      |            |                |          |                |            |            | ,         |                    |    |
| 338   |      |          | 13         | 2.           | <b>7</b> 7 | 2,          | 41         | • 7        | 76           | 15             | • >            | <i>(</i> • | 40  | 0   | • 2            | ۷.         | 20         | 7 (       | r .          | 51           | • 4        | 21         | y ,                                     | ~ ~ ~        | •          | 101          |      |            |                |          |                |            |            |           |                    |    |
| 339   | C    |          |            |              | _          | <b>.</b>    |            |            |              |                |                | 20-        |     |     | _              |            | 2          | _         |              |              | _          |            |                                         |              |            |              |      |            | -              | -        | _              | 1.         |            | -         | _                  |    |
| 340   |      |          |            |              |            |             |            |            |              |                |                |            |     |     |                |            |            |           |              |              |            |            |                                         |              |            |              |      |            |                |          |                |            |            | E-        | Ζ,                 |    |
| 341   |      |          |            |              |            |             |            |            | 594          |                |                |            |     |     |                |            |            |           |              |              |            |            |                                         |              |            |              |      |            |                |          |                |            |            |           |                    |    |
| 342   |      |          | 8.         | 22           | 09         | E -         | 2,         | 8.         | 61           | 9              | 6E             | - 2        | , 8 | •   | 29             | 32         | E -        | 2         | ,7,          | •5!          | 83         | 6 E        | -2                                      | ,7           | • 7        | 774          | 4 E  | -2         | ,-             | 0.       | . 50           | 155        | 7,         | ,         |                    |    |
| 343   |      | *        | 8.         | 05           | 3E         | -2          | , 3        | . 9        | 90           | 17             | E              | 2,         | 3.  | 8   | 92             | 2 E        | -2         | •         | -0           | . 81         | 76         | 9,         | 6.                                      | 21           | 58         |              | 5,1  | •6         | 83             | Ε-       | -3,            | 5.         | 30         | 119       | E-2                | •  |
| 344   |      |          | 4.         | 84           | 11         | E -         | 2.         | 4.         | .33          | 6              | 2E             | -2         | .0  |     | 70             | 85         | .5         | . (       | 55           | 18           | E -        | 2.         | -0                                      | .3           | 66         | 538          | -1   | , 5        | .8             | 06       | 53E            | - 2        | .,6        | .2        | 33 E               | -  |
| 345   |      |          |            |              |            |             |            |            |              |                |                |            |     |     |                |            |            |           |              |              |            |            |                                         |              |            |              |      |            |                |          |                |            |            | -2        |                    |    |
| 346   |      |          |            |              |            |             |            |            |              |                |                |            |     |     |                |            |            |           |              |              |            |            |                                         |              |            |              |      |            |                |          |                |            |            |           | 961                |    |
| 347   |      | -        | -          | ĩ            | ÷-         | 14          | 40         | <b>E</b> - | . 2          | 5              |                | . 7        | 5   |     | . 1            | 5.         | ٦2         | έ.        |              |              | . 7        | 0.8        |                                         | τ.           | 25         | 4            | ÅF   |            | . 7            |          | 53             | ō.         | 10         | .3        | 4E-                | 3  |
|       |      | -        | <u>د</u> – | 2,           | 44         |             |            | E -        | - <b>C 9</b> | 5              | 7 • '<br>D = . |            | 6   | 2   | 45             | 6 .<br>0 e | 27         |           | 5            |              | • ·        | 7 U<br>E - |                                         | 51           | 2          |              | - 2  | ñ          | 1              | 7/       | . 7            | 7          | 20         |           | E-2                | 2  |
| 348   |      |          | :-         | 0.           | 11         | 72          | 1          |            | 04           | 5              | 9 E  <br>9 Z   | - 1        |     |     | 12             | 7 E<br>7 E | - 6        | • •       | •            | -            | 74         |            | · 4 •                                   |              |            | 326          |      | , 0        | • •            |          | • • •          | 4.4        | 70         | 4         | 70/                | •  |
| 349   |      |          |            |              |            |             |            |            |              |                |                |            |     |     |                |            |            |           |              |              |            |            |                                         |              |            |              |      |            |                |          |                |            |            |           | 794                |    |
| 350   |      | *        | 6.         | 45           | 8E         | <u>- 2</u>  | <u>,</u> 0 | • 6        | 540          | 4              | .0             | • 2        | 6.5 | 1   | E -            | Ζ,         | 0.         | 81        | 12           | 1E.          | -1         | • U        | • 4                                     | 43           | 51         | : -1         | 1    |            | 00             | 94       | : t =          | 1,         | • (        | 01        | 2E-                |    |
| 351   |      |          |            |              |            |             |            |            |              |                |                |            |     |     |                |            |            |           |              |              |            |            |                                         |              |            |              |      |            |                |          |                |            |            |           | .61                |    |
| 352   |      |          |            |              |            |             |            |            |              |                |                |            |     |     |                |            |            |           |              |              |            |            |                                         |              |            |              |      |            |                |          |                |            |            |           | -80                | 5  |
| 353   |      |          |            |              |            |             |            |            |              |                |                |            |     |     |                |            |            |           |              |              |            |            |                                         |              | Ε-         | -2,          | -0   | .2         | 37             | 4,       | -0             | .1         | 49         | 2.        |                    |    |
| 354   |      |          | -0         | .7           | 11         | E -         | 1,         | 0.         | .80          | 15             | 2E             | -1         | ,-  | 0   | .7             | 11         | E -        | 1.        | ,0,          | .81          | 05         | 2 E        | -1                                      | 1            |            |              |      |            |                |          |                |            |            |           |                    |    |
| 355   | C    |          |            |              |            |             |            |            |              |                |                |            |     |     |                |            |            |           |              |              |            |            |                                         |              |            |              |      |            |                |          |                |            |            |           |                    |    |
| 356   | -    | 1        | RE         | AL.          | S          | PH          | L3         | (5         | 28)          | 1              | 12             | 17         | 0.  | 9   | E - 1          | 6.         | 72         | • 0       | )E•          | -6           |            | 56         | .5                                      | 4 E          | -6         | 5            | 13   | .3         | 6E             | -6       |                | .0         | 44         | E-        | 4,                 |    |
| 357   |      | •        | 1.         | 01           | 03         | F -         | <u>.</u>   | 2.         | 70           | 3              | SE-            | - 4        | .2  |     | 38             | 66         | E -        | ٤.        | . 0          | .1           | 67         | 1 E        | -3                                      | . 5          |            | ) Ė -        | 4.   | 2.         | 09             | 06       | F-             | 4.         | 2.         | 73        | 64 E               | -  |
| 358   |      |          |            | ί.           | 76         | 81          | F -        | Ζ.         | 5            | 8              | 11             | 0F         |     |     | 10             | . 1        | 15         | 2 6       |              |              | 7          | 57         | 63                                      | F-           |            | ō.           | 15   | 11         | E-             | 2.       | 6.             | 79         | 96         | -4        | •                  |    |
| 359   |      |          |            |              |            |             |            |            |              |                |                |            |     |     |                |            |            |           |              |              |            |            |                                         |              |            |              |      |            |                |          |                |            |            | -4        |                    |    |
| 360   |      |          | 2          | 40           | 41         | 16          | 7          |            | 7 6          |                | te.            | - 6        | _   |     |                |            | E E        | 1         | , -          |              | 2.2        | 24         |                                         |              | 'n.        | 4 1          | 27   |            | ະັ             | 5        | 22             | 20         | 5-         |           | 1.7                | r  |
|       |      |          | ( •<br>-   | ، ٥          | 13         | 5           |            |            |              | ο.             | 25             | - 4        |     | 2   | • 3'           |            | 26         | ~ 1       |              |              | • 6        | 30         |                                         | 40           |            |              | 2    | 25         | <i>n</i> ,     | <u>د</u> |                | 3          | 0.0        | 15        | E-4                | -  |
| 361   |      |          | 25         |              | 14         | • 0         | 71         | 25         |              |                |                | , >        | 22  | E   |                | + 6        | • •        | 5         |              |              |            | 2 e<br>F - | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 47           | 0.5        |              |      | 27         | 6              | 70       |                | <b>C</b> • | 50         | 22        | .45                | •  |
| 362   |      |          | -2         | <b>?</b> •   | 15         | -0          | • 1        | • 4        | <b>4</b> 7   | -              |                | ••         | 0.  | 7   | 1              | 7 E        | - 4        |           |              |              |            |            | - <u>-</u>                              |              | 2          |              |      | 16         | +0<br>E r      | 10       |                | ~          | / E        | 40        | • 4 3<br>5 - 4     |    |
| 3 5 3 |      |          |            |              |            |             |            |            |              |                |                |            |     |     |                |            |            |           |              |              |            |            |                                         |              |            |              |      |            |                |          |                |            |            |           | E-1                | •  |
| 364   |      |          | -4         | 0.           | 28         | E -         | 6,         | 0.         | .44          | 96             | 5E ·           | - 3        | • 0 | •   | 25             | 74         | E-         | 5         | 0            | . 4 (        | 60         | 2 8        | -4                                      | • 1          | • (        | 03           | 25   | -4         | + 4            | • 7      | . 93           | O E        | - 4        |           |                    |    |
| 365   |      |          | -0         | .3           | 86         | 6 E         | - 2        | • 2        | 2.0          | 53             | 55             | E -        | 4,  | 2   | .1             | 12         | E          | 4 1       | 2            | 11           | 51         | 9 E        | - 4                                     | • 2          | • 6        | 44           | E-   | 4,         | -8             | • 3      | 71             | E -        | 6,         |           | _                  |    |
| 366   |      |          |            |              |            |             |            |            |              |                |                |            |     |     |                |            |            |           |              |              |            |            |                                         |              |            |              |      |            |                |          |                |            |            | 07        |                    |    |
| 367   |      | *        | E          | 4,           | -0         | .1          | 70         | 8 E        | -3           | ., (           | ).'            | 12         | 87  | 'E- | -4             | .0         | • 2        | 71        | 121          | E = 3        | 3,         | ٥.         | 30                                      | 33           | Ε-         | •3,          | 0.   | 48         | 86             | E -      | •3,            | 0.         | 90         | 55        | E-4                | •  |
| 368   |      | <b>*</b> | 3.         | 25           | 32         | E -         | 4,         | 0.         | 49           | 11             | 4E             | -3         | ,4  | •   | 11             | E          | 4,         | 2.        | .21          | 071          | E -        | 4,         | -0                                      | .3           | 82         | ? 5 E        | -2   | ,6         | •0             | 03       | 53E            | -4         | • 0        | .7        | 278                |    |
| 369   |      |          |            |              |            |             |            |            |              |                |                |            |     |     |                |            |            |           |              |              |            |            |                                         |              |            |              |      |            |                |          |                |            |            | -4        |                    |    |
| 370   |      |          | .9         | 16           | E -        | 3.          | .7         | 56         | 4 E          | -              | 5.             | 2.         | 25  | 7   | E = 1          | ٤.         | .3         | 54        | 51           | E = 1        | 5.         | -0         | .1                                      | 53           | 68         | -3           |      | 35         | 45             | E -      | -3.            | -0         | .1         | 53        | 6 E -              | 3  |
| 371   | r    |          | •••        | ••           | -          | - •         | • •        |            |              |                |                |            |     |     | -              |            |            | -         |              |              |            | -          |                                         |              |            |              | •    |            |                |          |                |            |            |           |                    |    |
| 372   | •    | 1        | DE         |              | e          | 80          | . 4        | 10         | 183          | 1.             |                |            | ٤.  | R   |                | ۰.         | - 1        | <b>n7</b> | . 1          | tF.          | - 0        | . 1        | 26                                      | .1           | F -        |              | 30   | .1         | 6F             | - Q      |                | *0         | • 0        | - 0       | .15                | ç  |
| 373   |      |          | -4         | ~ <b>`</b> 7 | <b>_</b>   | ۲n          | -          | 'n.        | 44           | 4              | 22.            | ŝ          | ેર  |     | n. 1           | n.         | 'n         | 5 4       |              | ίς.          | •Ś         |            | n.                                      | 17           | 11         |              | 5.   | 12         | λ.             | 3 F      | -0             |            | 4.         | 07        | F                  |    |
| 374   |      | -        | -0         | *:           | ~          | • U         | •          | 24         | 04           |                | - 5            | 5          | 10  |     | n              | 47         | n Z        | 5         |              | . 2 .        | • 0        | ľn         | . 3                                     | 2.           | 27         | , .<br>7 c - | 6.   | Ś.         | ñ.             | ñ.       | 1 2            |            | 5 5        | -9        | -                  |    |
| -     |      |          | 71         | 2-           | <b>`</b>   | <b>U †</b>  | <b>U</b> • | 10         |              |                | - J .<br>      |            | • • |     | •              | 1 (<br>n E | - U        | 5         | 4            |              | 2          | 20         | _0                                      |              |            | 101          |      | 1          | č              | 5        | 25             | -          | 6          | _ń        | 23                 | r. |
| 375   |      |          | 22         | 21           | • >        | E -         | 71         | 13         | ~~>          | :              | ΪΞ.            | - 7        | , 7 |     | 1 e  <br>7 e   | 72         | E          | 21        |              | 21.          | 2.         | 36         | - 7                                     | 10           |            |              | 4 7  | 7          | , , ,<br>, , , |          |                | 5          | 79         |           | 328                | -  |
| 376   |      | =        | È-         | 0,           | U •        | 19          | 21         | E -        | · ( •        | <u></u>        |                | • 🛈        | 10  | •   | (1)            | 00         | Ε-         | 21        |              | - U          | • •        | <u>,</u> ° | + 0                                     |              |            |              | 12   | ' <b>*</b> | 05             | ~        | · • •          | • U<br>4 r |            | 2         | 220                | -  |
| 377   |      | *(       | D,         | U.           | 14         | 61          | E -        | ο,         | -0           | •              | 121            | 58         | £ - | 0   | , -            |            | 14         | 4 0       | 26.          | -0           | :-         | 0.         | 22                                      | 10           | -0         |              |      |            | 17             | •••      | 20             |            | -0         | • -       | *).                | -  |
| 378   |      | *        | • 0        | 48           | 4Z         | E -         | 5,         | Ο.         | .0,          | -(             | ] • (          | <u> </u>   | 4 E | -   | <b>6</b> • ·   | 2*         | 0.         | 0         | •            |              | 25         | 42         | £ -                                     | 0,           |            | 1.4          | 51   | OE         | -0             | 1        | •U•            | دد         | TE         | -6        | <u>.</u>           |    |
| 379   |      | •        | ,-         | ٥.           | 58         | 78          | E -        | 6,         | -0           | •              | 68             | E -        | 6,  | D   | • 0            | ,-         | 0.         | 19        | 75           | 5E ·         | -6         | , 0        | • 3                                     | 71           | E -        | -6,          | -0   | • 1        | 95             | 5 E      | -0             | +0         | • 5        | 71        | E-6                | 1  |
| 380   | C    |          |            |              |            |             |            |            |              |                |                |            |     |     |                |            |            |           |              |              |            |            |                                         |              |            |              |      |            |                |          |                |            |            |           |                    |    |
| 381   | C    |          |            |              |            |             |            |            |              |                |                |            |     |     |                |            |            |           |              |              |            |            |                                         |              |            |              |      |            |                |          |                |            |            |           |                    |    |
| 382   | C    |          |            |              |            |             |            |            | ,            |                |                |            |     |     |                |            |            |           |              |              |            |            |                                         |              |            |              |      |            |                |          |                |            |            |           |                    |    |
| 383   | C    |          | HE         | AT           | 0          | F           | VA         | PC         | RI           | ZI             | AT:            | 10         | N   | ٧   | AL             | UE         | S          | A1        | 1            | THI          | Ē          | RE         | SP                                      | 'E C         | 11         | LVE          | N    | 0 R        | MA             | L        |                |            |            |           |                    |    |
| 384   | Č    |          | вО         | IL           | IN         | 6           | PT         | • S        | . R          | E              | FE             | RE         | NC  | Ε   |                | : "        | PR         | O F       | PEI          | RT           | IE         | S          | 0 F                                     | 6            | AS         | S E S        |      | ND         | L              | IC       | UI             | DS         | *3         | RD        |                    |    |
|       | c    |          |            |              |            |             |            |            | 2            |                |                |            |     |     |                |            |            |           |              | : c /        |            |            |                                         |              |            |              |      |            |                |          |                |            | -          |           |                    |    |
| 386   | -    |          |            | - '          |            |             |            |            |              |                |                |            | 1   | -   |                |            |            |           |              |              | _          |            |                                         |              |            | -            |      |            |                |          |                |            |            |           |                    |    |
| 387   | •    |          | 6 e        |              |            | <u>ы</u> л  |            |            | 190          |                | 24             | 4          | . • | a.  | 5 5            |            | <b>z</b> 5 | 1 4       |              |              | 6 R        | 7.         | ء د                                     | ne           | <b>b</b> . |              | 35   | 2.         | . <            | o r      | ۱ <b>೧</b> -   | . 6        | 14         | 0.        |                    |    |
| 388   |      | ا<br>ا   | 5 E        | 70           |            | 4 ₽<br>11 ¥ | n r<br>0 ∡ |            | 76/          | 7              | 6 F I<br>6     | • د<br>و   | 77  | 5   |                | • 7<br>8 9 | シマ         |           |              | 77'<br>781   | 70<br>R_   |            | 02                                      | n.           |            | 101          | in   |            | 10             | 01       | n.             | .1         | 12         | 80        | ¥<br>• •           |    |
|       |      |          | ۹۹.<br>۹۹  | 20           | :1         | 05          | 70         |            | 173          | • r €<br>- 4 * | 7 0 1<br>7 A C | 40         |     | 2   | * * '<br>) Z ' | 7          |            | • 1       | , <b>,</b> , | 100          | 52         | 77<br>79   | 7 6                                     | . U .<br>E E |            | 1 U 4        | 51   | 10         |                | 5 7      | ) 9 4<br>) 9 4 |            | 57         | 70        |                    |    |
| 389   |      |          | 11         | 52           | U •        | •1          | "          | 40         |              | 1              | C 0 4          | ÷ U        | • • | 2   | د ۲            | f .<br>E 7 | **         | 41        |              | • •          | 2          | ۍ د<br>ړ   | • •                                     | <br>. n      | 134        | / • •        | · 34 | ¥د.<br>ر   |                | 20       | .00            | • •        | ອ <b>ວ</b> | טיי<br>די | 440                |    |
| 390   |      |          | 6D         | 22           | • •        | 6 Z         | 40         | - 1        | 02           | 5              | 1.             | , Ó        | 09  | 4   | • •            | ) (        | οIJ        | • •       | 0            | 20           | <b>*</b> • | • 0        | 70                                      |              | , 0        | 226          |      | • 0        | 73             | Υ.       | , , (          | 10         |            | + (       | ل به <del>به</del> | •  |
| 391   |      |          | 73         | 52           | • •        | 79          | 30         | • •        | 88           | U              | 1.             | • 8        | 69  | 0   | • •            | 50         | 00         | • 1       | 5            |              |            | •1         | د د                                     | <u>э</u> .   | • ]        | 0.           | 0.   | +1         | 44             | 4.       | • • 4          | 10         | U.         | 1-        |                    |    |
| 392   |      | *        | 44         | 60           | • •        | 59          | 55         | • 1        | 66           | 4 (            | J •            | , 6        | 71  | 0   | • • !          | 6 Z        | 87         | • 1       | 6.           | >2           | J.         | ,7         | 43                                      | υ.           | , 4        | 45           | 0.   | , 5        | 80             | υ.       | ,,0            | • •        | 40         | 50        | • •                |    |
|       |      |          |            |              |            |             |            |            |              |                |                |            |     |     |                |            |            |           |              |              |            |            |                                         |              |            |              |      |            |                |          |                |            |            |           |                    |    |

....

;----

. .

(

~

 $\langle \cdot \rangle$ 

C

<u>(</u>

Č.

١,

. .

--

292

•---

.

| ORTR  | AŃ    | IV                                     | ١            | /E         | R               | 5              | 9            |            | S            | 01         | JR  | ĊE              | E I        | . 1      | S 1        | TI. | NG           | :        | C          | 0 M                     | ΡI           | D   |                | SU       | 9 6        | 10   | UT           | IN         | Ē            |            | 08              | 37           | 16         | 1   | 85       |            | 1          | 5 :      | 03  | 3:       | 37  | 7 |
|-------|-------|----------------------------------------|--------------|------------|-----------------|----------------|--------------|------------|--------------|------------|-----|-----------------|------------|----------|------------|-----|--------------|----------|------------|-------------------------|--------------|-----|----------------|----------|------------|------|--------------|------------|--------------|------------|-----------------|--------------|------------|-----|----------|------------|------------|----------|-----|----------|-----|---|
| 393   |       |                                        | ÷5           | :2         | on              |                | . •          | : 0        | 70           |            | E   | 7 8             | 4          |          |            | F   | 2            |          |            | , ~                     |              |     | ~ ~            | ~        | _          |      | • •          |            |              |            | _               |              |            | -   | _        |            |            |          |     |          | -   |   |
| 394   |       |                                        |              | 2          | 70<br>90        |                | , 2          | 2 7<br>2 7 | 10           | •          | • 2 | 20              | 0          | • •      | 24         | 12  | 0•           | • 5      | 11         | 40                      | • •          | 8   | 97             | 0.       | • 5        | 92 ' | 90           | • 1        | ,9           | 21         | 0.              | • • '        | 91         | 8(  | 0.       | • 5        | 75         | 70       | •   | ,        |     |   |
| 395   |       |                                        |              |            | 00              |                | *7           |            | 20           | • 1        | 77  | 20              | 0          | • •      | 22         | 22  | 0.           | * /      | 5          | DD.                     | • •          | 8   | 80             | 0.       | ,7         | 4    | 11           | • •        | 8            | 07         | 0.              | +1           | 64         | 5(  | D .      | • 8        | 30         | 90       | •   | , 8      | 07  | 7 |
| 396   |       |                                        | +3           |            | 70              |                | 21           | 6          | <b>7</b> 0   | • 1        | .0  | 04              | 0          |          | 15         | 54  | 0.           | • 3      | 5          | ΟZ                      | 0.           | •   | 13             | 39       | Ó.         | • •  | 13           | 74         | 0            | • •        | 72              | 4            | 0.         | •   | 75       | 76         | 5          |          |     |          |     |   |
| 397   | •     |                                        | • 3          | <b>, .</b> | 13              |                | 2.           | 0          | /            |            |     |                 |            |          |            |     |              |          |            |                         |              |     |                |          |            |      |              |            |              |            |                 |              |            |     |          |            |            |          |     |          |     |   |
| 398   |       |                                        |              |            |                 |                |              |            |              |            |     |                 |            |          |            |     |              |          |            |                         |              |     |                |          |            |      |              |            |              |            |                 |              |            |     |          |            |            |          |     |          |     |   |
|       |       |                                        |              |            |                 | •              |              |            |              |            |     | -               |            |          | <b>.</b>   |     |              |          |            |                         |              |     |                |          |            |      |              |            |              |            |                 |              |            |     |          |            |            |          |     |          |     |   |
| 399   |       |                                        |              | N          |                 | 1              | NE           |            |              | PO         | R   | P               | RE         | 5        | 5 U        | R   | Ē            | CO       | E          | F.F.                    | IC           | IE  | EN'            | ΤS       | :          | TI   | ΗE           | V          | AL           | U          | ES              | . (          | ) F        | 1   | ГH       | E          |            |          |     |          |     |   |
| 400   | -     |                                        |              |            | K2              | 1              |              |            | RE           | E          |     | RE              |            | V.       | AI         | 5   | A B          | LE       | •          | [F                      | D            | ES  | 51             | RE       | D,         | TI   | ΗE           | U          | S            | ER         | S               | UF           | PP         | L   | ΓE       | S          |            |          |     |          |     |   |
| 401   |       | •                                      | -1           | H          | E               | NE             | EX           | T          | . T          | HR         | E   | E .             | . P        | <u>}</u> | IS         |     | E N          | M        | I M F      | łG                      | 9            | T   | 1              | S        | IN         | 1    | ) E          | G          | K            | •          |                 |              |            |     |          |            |            |          |     |          |     |   |
| 402   | 5     |                                        | -!           | HI         | E<br>A A        | E              | U            | A          | F I          | ON         |     | US              | Ē          | :        |            |     |              |          |            |                         |              |     |                |          |            |      |              |            |              |            |                 |              |            |     |          |            |            |          |     |          |     |   |
| 403   | - C - |                                        | -L           | N          | (P              | 0)             | ) =          | A1         | <b>i +</b>   | A Z        | 27  | ( A             | 34         | T.       | ) +        |     |              | LN       | (1         | r) ·                    | + A          | 5 = | T              | ► A      | 6 *        | T    | **;          | 2          |              |            |                 |              |            |     |          |            |            |          |     |          |     |   |
| 404   | -     |                                        |              |            |                 |                |              |            |              |            |     |                 |            |          |            |     |              |          |            |                         |              |     |                |          |            |      |              |            |              |            |                 |              |            |     |          |            |            |          |     |          |     |   |
| 405   |       |                                        |              |            |                 |                |              |            |              |            |     |                 |            |          |            |     |              |          |            |                         |              |     |                |          |            |      |              |            |              |            |                 |              |            |     |          |            |            |          |     |          |     |   |
| 406   | Ç     |                                        |              |            |                 |                |              |            |              |            |     |                 |            |          |            |     |              |          |            |                         |              |     |                |          |            |      |              |            |              |            |                 |              |            |     |          |            |            |          |     |          |     |   |
| 407   |       |                                        | R            | E /        | HL.             |                | N            | T C        | ) (          | 1,         | 98  | 3)              | /1         | 3,       | • 6        | 3,  | , 1 :        | 5.       | 22         | 24                      | ,1           | 5.  | 66             | 54       | , 1        | 5.   | .7           | 26         | . 1          | 5          | •5              | 38           | 3.         | 15  |          | 67         | 82         | 2.       | 15  |          | 53  |   |
| 408   |       |                                        | <b>A</b> 1   | 2.         | • Ð.            | دد             | 55           | • 1        | 12.          | • 2        | Ut  | 59              | , 1        | 5.       | .8         | 36  | 6            | • 1      | 5.         | 87                      | 73           | 7.  | 15             | 5.       | 94         | 26   | 5            | 15         | _ Q          | 61         | 71              | . 1          | 6          | - 0 | 11       | 14         | . 1        | A I      | . 0 | 54       | 1.1 |   |
| 409   |       |                                        | •1           | ۰ ۵        | .1              | 13             | 54           | • 1        | 0            | • 7        | 35  | 55              | . 1        | 6.       | . 1        | 48  | 5'           | 16       | . 1        | 72                      | 26           | - 1 | 6.             | . 1      | 84         | 1.   | 11           | 5 -        | 1 5          | 1          | . 1             | 5.           | 5          | 3 6 | 8        | . 4        | 5          | 7        | n 🤊 | 7        |     |   |
| 410   |       |                                        | *1:          | >.         | , Z.            | 26             | \$4          | • 1        | 5.           | . 8        | 17  | 71              | • 1        | 5.       | . 8        | 17  | '7.          | .1       | 5.         | 74                      | 52           | Â.  | 15             | i. '     | 77         | 27   | 1.1          | 15         | . 7          | 6.4        |                 | . 4          | 5          | 9   | 5 6      |            | 4          |          | 0   | 04       | 4   |   |
| 411   |       |                                        | -1           | ς.         | .8.             | ۷ ۵            | ) <b>p</b> ' | 15         | •            | 71         | 79  | · • '           | 15         | • 5      | 7Z.        | 38  | • •          | 15       | . 8        | 05                      | 19           | . 1 | 5.             | . 8 '    | 57         | 4.   | 15           | š          | 8 🗖          | 23         | ۲.,             | 15           |            | 75  | 2        | 7.         | 15         | . ·      | 7 4 | Ω s      | :   |   |
| 412   |       |                                        | <b>= (</b> ) | ".         | . 71            | υu             | 10           | • I        | 0            | • U        | 12  | 57.             | • 1        | D.       | . 1        | 13  | Ô,           | ьΤ.      | 6.         | 13                      | 59           | - 1 | 6.             | ים.      | 96         | ٦.   | .1/          | ۲. I       | <b>n</b> 1   | 04         | ι.              | 11           | (          | 26  | 1:       | >          | 4 5        |          | ۸ ۱ | 75       |     |   |
| 413   |       |                                        | *14          | ĥ.,        | 51              | 68             | 10           | • 2        | Ζ.           | . 5        | 89  | 18.             | . 1        | 6.       | . 1        | 04  | 1            | 16       | .7         | 68                      | ۱. ۱         | 15  | 7              | 161      | 76         | . 1  | 5.           | . 7        | 70           | 1          | . 1             | € .          |            | 2 2 | 4        | 4          | c          |          | • • | •        |     |   |
| 414   |       | ,                                      | *1           | 5.         | 8               | 89             | 4            | <b>,</b> 1 | 3.           | . 1        | 56  | 3               | 1          | 6.       | .1         | 03  | ġ.           | 1        | 5.         | 85                      | 8            | . 1 | 5.             | 8        | 12         | š.   | 15           |            | RS           |            |                 | 18           | 1          | t n | 2/       |            | ، ر<br>۹ ۸ |          | 30  | 21       |     | 1 |
| 415   |       |                                        | <u> </u>     | D .        |                 | •0             |              | 12         | • (          | 26         | ۲ ک | •               | 10         | • 0      | 10         | 05  | • 1          | 15       | •7         | 52                      | 2Β.          | . 1 | 5.             | . 9 1    | 55         | 6.   | 16           | 5          | nn           | 62         | • _ •           | 15           | . (        | 37  | 2:       | >.         | 4 6        |          | 1 7 | 5 1      | t   |   |
| 416   |       | ,                                      | •1           | 6.         | 1               | 54             | 5.           | .1         | 6.           | 1          | 13  | 5.              | . 1        | 6.       | 2          | 12  | 1.           | 1        | 6 .        | 21                      | 0            | . 1 | 6.             | 25       | 20         | τ.   | 14           |            | 07           | 01         | 1               | 42           |            | 23  | 4        | •          | 10         | ٠.       | 16  | 23       | •   |   |
| 417   |       | 1                                      | •1           | 5.         | 97              | 27             | 8            | . 1        | 5.           | 6          | 85  |                 | 15         | . 9      | 16         | 3.  | 15           |          | 93         | 5 6                     |              | ŝŝ  | . 7            | 27       | 71         |      | 5.           | 7          | 22           | 7.         | 4               | 5            | 40         | 36  | 2        |            | 1)<br>5    | 4        |     | ) )<br>5 |     |   |
| 418   |       | 1                                      | •15          | 5.         | 74              | 63             | 8            | . 1        | 5.           | 7          | 47  |                 | 16         | .1       | 2          | 32  | .1           | 6        | .1         | 53                      | 1            | . 1 | λ.             | 1        |            | 5.   | 15           |            | 60           | 71         |                 | 7 8<br>4 6   | 2          | 70  | 71       | 7 F.<br>5  |            | 01       |     | 3,       | ,   |   |
| 419   |       | 1                                      | •3•          | +1         | 5.              | .7             | 59           | 94         | 1            |            | ••• | •               |            | •        |            |     |              |          | • •        |                         |              | ••• | ••             | -        |            |      | • •          |            |              | 12         |                 | 12           |            | '   | د ۲      |            |            |          |     |          |     |   |
| 420   | ٢.    |                                        |              |            |                 |                |              |            |              |            |     |                 |            |          |            |     |              |          |            |                         |              |     |                |          |            |      |              |            |              |            |                 |              |            |     |          |            |            |          |     |          |     |   |
| 421   | C     |                                        |              |            |                 |                |              |            |              |            |     |                 |            |          |            |     |              |          |            |                         |              |     |                |          |            |      |              |            |              |            |                 |              |            |     |          |            |            |          |     |          |     |   |
| 422   | C     |                                        |              |            |                 |                |              |            |              |            |     |                 |            |          |            |     |              |          |            |                         |              |     |                |          |            |      |              |            |              |            |                 |              |            |     |          |            |            |          |     |          |     |   |
| 423   |       |                                        | RE           | ĒĀ         | L               | T              | z (          | (2         | . 9          | 8          | )/  | 16              | 54         | . 9      | ٠.٤        | 3 7 | 7.           | 84       | 6          | 15                      | 11           |     | 42             | . 1      | 87         | ,,   |              |            |              | <b>n</b> 7 | 2               | 7            | 7          |     | 4 E      | ,          | •          | -        |     | ~ ~      |     | _ |
| 424   |       | 1                                      | 23           | 54         | ā.              | 6              | 7.           | . 2        | 03           | 4          | . 1 | Ś.              | 2          | 59       | ź.         | 5   | 5            | 20       | 51         | i.                      | ż            |     | 11             | 20       |            | 20   | • 7<br>7     | 20         | 9 6 :<br>3 4 | 20         | 5               |              | 39         | 2   | 12       | •          | • 7<br>• 4 | **       |     | //<br>~~ | •   | - |
| 425   |       | 4                                      | 37           | 7          | 4.              | 5              | 6.           | 3          | 89           | 2          |     | 1.              | 4          | 'nn      | Ŕ.         | 5   | 5.           | 4        | 12         | 1.                      | 51           |     | 2.7            | 14       |            | 57   | • J<br>1     | 20         | 57           | • 4<br>c   | 21              |              | 43         | -0- | • 0      |            | 20         | 14       | ••• | ۲ ر      | :   |   |
| 426   |       |                                        | 21           | 3          | 2.              | 4              | 2.           | 2          | 21           | ō.         | . ź | i.              | 2          | >1       | ž.         | ź   | 5.           | 21       | 12         | 5                       | 75           |     | 76             | 4 7      |            |      | 13           | 61         |              | • ?        | 21              |              | 34<br>1 E  | 5   | • U      | 1          | 1          | 50       |     | • 2      | 5   | , |
| 427   |       |                                        | 24           | 2          | 6.              | 6              | 2.           | 2          | 33           | 3.         | . 6 | 1.              | 2          | 52       | 1.         | 5   | τ.           | 21       |            | ί.                      | R 1          |     | 55             | 2 2      | 2          |      | * 6          | 71         | 13.          | . 7        | 21              | ) <u>C</u> ' | 4)<br>2    | 7   | • U<br>7 | 21         | 2          | 4 Y      | 2   | • ¥      | "   | 9 |
| 428   |       |                                        | 27           | 8          | 8.              | 5              | 1.           | 3          | no           | 6.         | 5   | ÷.              | 31         | ĩõ       | ŝ.         | 5   | 7.           | 21       | ( )        | ζ.                      | 00           |     | 27             | 50<br>14 | • 2        | 10   | + C<br>7     | 73         | 11           | •;         | 21              | 0  <br>E     | 0 e<br>0 o | ۰.  | 2,       | 27         | 2          | D •      | 04  | • •      |     | _ |
| 429   |       | 4                                      | 0.           | 2          | 2.              | 3              | 10           | 13         | . Á          | . 1        | 17  | 6 7<br>6 8      |            | 6        |            | ž   | <u>_</u>     | ៍រ       | 15         |                         | 77<br>41     | 1   | 73             | - 0<br>2 | 24         | 5    | 9 J<br>2     | ۲ م<br>۱ م |              | • •        | "               | 2            | 00<br>F    |     | r 2      | • '        | Ś          | <u>.</u> | 23  | 2.       | 2:  | 2 |
| 430   |       |                                        | ,1           | 0          | 54              |                | 72           |            | 23           | 07         |     | 24              |            | 0        | <u>.</u>   |     | 42           | . 1      | 111        | 2 Z                     |              | Ē   |                |          | 707        | 12:  | 3.           | 4 J<br>9 4 |              | 24         | د 0<br>,        | •            | ) <b>,</b> | 5   | > Y<br>E | 2.         |            | 4 :      | 22  | 59       | 2   | • |
| 431   |       |                                        | 18           | 5          | 0.              | 7              | . 2          | 2          | 71           | . 4        | . 2 | . 2             | 12         | şς       | . 7        | Š.  | 5            | 5.9      | τ.         | . n                     | 7.           | 24  | 1 C '          | 1        | 1 •<br>8 / | ٦.   | , J<br>, Z   | 2  <br>4 7 | 0            | 1 <b>4</b> | 4 y<br>7 c      | : C<br>: 7   | 13         | 2 0 | 2        | 9 L<br>7 E | ) •<br>    | * i      | 01  | 21       | • 1 | I |
| 432   |       | *                                      | 35           | 1          | 6               | 3              | 1.           | 30         | 67           | n.         | 2   | 5.              | ż          | 5        | 5.         | 5   | R .          | 74       |            |                         | 10           |     | 24             | , .<br>  | 2          |      | 20           | 03<br>/ E  |              | 7          | <i>כ</i> כ<br>ר | 13:          | ) •<br>= = | 22  |          | 22         | 2          |          | 08  | 2        |     |   |
| 433   |       | *                                      | 28           | 9          | 5.              | 2,             | 8.           | 3          | 11           |            | 5   | 2.              | 20         | 8        | ι.<br>τ.   | 01  | · •<br>7     | 20       | 101        |                         | 17<br>06     |     | 20.<br>LO:     | 2 C C    | • 7        |      | 20           | ⇒]<br>n/   | -            | 10         | <b>،</b> د      | 0            | 22         | •   | , õ      | • 5        | U.         | 19       | • 6 | 5        | :   |   |
| 434   |       | *                                      | 30           | 8          |                 | 0              | 5.           | 4          | 34           | 1.         | 7   |                 | 21         |          | n.         | 1   |              | 50<br>64 | 9 2<br>9 1 | ·•)                     | 73<br>L4     |     | , U :<br>5 9 - | 70<br>77 | • • •      | 7    | וב.<br>יר    | 00<br>0 0  | 2            | 14<br>14   | ٠:              | اد           | 94<br>20   | 2.  | 5        | 4,         | 5          | 14       | ŏ.  | 5        | 2 1 | , |
| 435 0 |       | -                                      | -0           | <b>.</b>   | • •             | 7.             | • •          | ٦.         | .0           | •          |     | * •             | - 4        |          | ••         | -   | • •          | +0       | 01         | <i>i</i> • 1            | <b>→</b> 0   | • 6 |                | J (      | • Y        | 4    | - 2          | 72         | 6            | 5          | • 5             | * 6          | 28         | 01  | •        | > 3        | 1          |          |     |          |     |   |
| 436 0 | -     |                                        |              |            |                 |                |              |            |              |            |     |                 |            |          |            |     |              |          |            |                         |              |     |                |          |            |      |              |            |              |            |                 |              |            |     |          |            |            |          |     |          |     |   |
| 437 0 | -     |                                        |              |            |                 |                |              |            |              |            |     |                 |            |          |            |     |              |          |            |                         |              |     |                |          |            |      |              |            |              |            |                 |              |            |     |          |            |            |          |     |          |     |   |
| 438   | •     |                                        | 9 E          |            |                 | E /            | 1 7          | . •        | 2 8          | ۱,         | 1   |                 | 3          |          | 7          | • - |              | _ •      | 7          |                         |              |     |                |          |            |      |              |            |              |            | <b>.</b> .      |              |            |     |          | _          |            | _        |     |          |     |   |
| 439   |       |                                        | RE<br>-4     | ŝ          |                 | د ۱<br>7       |              | 1          | 20           | //<br>70   |     | • 1<br>• E      | 7 9<br>4   |          | / *<br>1   |     | · • ·        | -!       |            |                         |              | -4  | : > :          | . 1      | 5.         |      | 22           | • 1        | 21           | -          | 54              | • 4          | ξŻ         | • " | -4       | 0.         | 0!         | 5,       | -3  | 9        | . 9 | , |
| 440   |       | -                                      | ີ            | í          |                 | 1              | 1            | - 6        |              | - 0<br>_ 4 | 1   | - <b>)</b><br>1 | u .<br>7   |          | 11         | -0  | 2            | • 0      | ي د<br>ه   | ، <del>م</del> ر<br>د م | r 1)<br>E    | • [ | 3              | 7        | ( 0<br>F   | • 5  | ) ( )<br>  - | 17         | 55           | •          | 5               | •            | -9         | 1.  | 5        | 1,         | -          | 78       | • ? | 3        | • - | • |
| 441   |       |                                        | 5.           | 21         |                 |                | . 1          | • ¢        | 4            | - 1<br>1   |     |                 | ' ;        | 4        | 12         | •   |              | -1       | 5.         |                         | 2,           | -2  | 0.             | 1        | >,         | -3   | 55           | • 1        | 5,           | -          | 56              | • 1          | 15         | • _ | -3       | 3.         | 1:         | 5.       | -3  | 3.       | • 1 |   |
| 642   |       |                                        | -3           | 50         | <i>ב</i> י<br>ו | τ"<br>5        | 2            | 7 8        |              | 2 9<br>7 5 |     | - 2             | • J<br>ว   | 2        | 2          | 41  | ) ()<br>- 72 | 10       | ;"         | 4                       | •            | ۇد  |                | - 5      | D .        | 53   | •            | -4         | 0.           | 3          | •               | -4           | 17         | • 3 |          | -4         | 1.         | ,7       | 9,  | -4       | 47  | , |
| 443   |       | -                                      | •-           | ノレ         | / •<br>}        | ) ;<br>4 :     | 2            | 2 I<br>-   |              | ( )<br>4   | 1   | ->              | د ،        | 20       | •          | -2  | 5            | • 0      | <b>(</b> • | -                       | . 9          | •4  | 0              | •        | 58         | • 0  | )4 (         | • "        | 57           | •          | 34              | • "          | -5         | 9.  | 9        | 5,         | -6         | 5.       | 6,  | -6       | 5.  | , |
| 445   |       | *                                      | .,           | 137        | · • ·           | 13             | •            |            |              | 0,         | - 4 | 0               | • ປັ<br>ວ  | 0        | <u>،</u> ۳ | 55  |              | 77       | :-         | 4                       |              | 28  | •              | - 4      | 6.         | 02   |              | -4         | 3.           | 8          | ,               | - 4          | 4          | • 2 | 5        | , -        | 53         | 5.       | 97  | •        |     |   |
| 645   |       |                                        | -7<br>-/     | <b>'</b> • | 7               | ( •            | -            | コレ         | ا د ا<br>د م | d Ö<br>E   | 1   | ->              | • ۲        | 4        | •          | - 5 | 5            | • 1      | 2,         |                         | 59           | • Ó | 4,             |          | 46         | • 1  | 5            | • •        | 32           | •          | 78              | • 0          | ).         | • - | 19       | •          | 77         | ,        | -4  | 4.       | . 0 |   |
| 46    |       | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | -4           | U.         | د ،<br>         | ; "            | -5           | 2.         |              | 2,         | - 3 | 9               | • 7        | •        | •6         | 6.  | •            | -6       | 3.         | 37                      | <b>,</b> , ' | -6  | 5.             | 8        | 5,         | -6   | 64.          | . 6        | 4,           | -(         | 54              | • 2          | 23         | , - | 60       | 5.         | 07         | •        | -6  | 4.       | . 5 | i |
| 47    |       | *                                      | -6           | . د        | 2               | ς,             | •            | 71         | •            | (7         | • ] | 5               | <u>:</u> ک | 6        | • •        | 53  | •            | 73       | • -        | 59                      |              | 46  | •              | -5       | 2.         | 41   | , -          | • 6        | 0.           | 4,         | , -             | 39           | •          | 7,  | -5       | 57         | • 7        | 6        | ,-  | 57       | •   |   |
| /     |       | - <b>-</b>                             | -)           | 4.         | . <b>&gt;</b> i | ٢,             | -            | 25         | •            | 5.         | -5  | 57              | • 3        | 1,       | , -        | 55  | • (          | 38       |            | 12                      | 29           | .9  |                | • 1 '    | 35         | - 6  |              | - 1        | 11           | . 1        | 1               | - 5          | 1          | . 2 |          | - 5        | >          | ٥.       | ,   |          |     |   |
| 48    |       |                                        | -5           |            | ,               | , <sup>`</sup> |              |            |              |            |     |                 |            |          |            |     |              |          | •          | •••                     | •••          | • • |                |          |            | •••  |              | •          |              |            |                 | -            |            |     |          | -          | ۰.         |          | ۰,  |          |     |   |

. . .....

<u></u>

- . .

<u>~</u>.

C

· •

..

1-

٠

N.,

1

FORTRAN IV **VER 59** SOURCE LISTING: COMPID SUBROUTINE 08/16/85 15:03:37 449 C 650 REAL DANTO(4,98)/98+0./ 451 C 452 REAL WANTO(5,98)/98+0./ 453 C 454 REAL ANTOX(6.98)/98+0./ 455 C 456 C----BINARY INTERACTION PARAMETERS FOR THE "SRK" EQN. 457 C----REF: "PROPERTIES OF GASES AND LIQUIDS"--REID-SHERWOOD-458 C----PRAUSNITZ. 3RD.EDN. PP-77. 459 C----INTERACTION IS SIGNIFICANT FOR THE FOLLOWING POLAR 450 C----COMPONENTS: H25, CO, CO2, N2. 461 C----FOR POLAR-POLAR & NON.POLAR-NON.POLAR PAIRS, 452 C----INTERACTION IS NEGLECTED (AK(I,J)=D) 463 C 454 REAL AKNTRO(98)/0.0.0.02,0.05,12+0.08,6+0.0.0.04,0.06,14+0.. 465 \* 8+0.08,53+0.0/ REAL AKCMON(98)/0.0,-0.02,46+0.0,-0.04,49+0.0/ 456 REAL AKCDOX(98)/0.0,0.12,6+0.15,0.0,6+0.15,6+0.0,0.15,0.08, 457 468 14+0.0,8+0.15,53+0.0/ ٠ 469 REAL AKHTOS (98) /0.0,0.08,2+0.07,4+0.06,0.0,0.05,2+0.04, 3+0+03,6+0+0,2+0+07,14+0+0,8+0+03, 470 \* 471 3+0.0,0.12,49+0.0/ \* 472 C 473 C 674 C 475 NAMELIST/NSCOMP/ PC,TC,VC,MW,OMEGA,ADEL,AVW,APH,BET,GAM,DTA 476 ZRA, VOL, TB, ALD, ANT, AK, CPL, CPV, EVAP, CP CODE 477 C 478 C WRITE (6,+) NOCOMP 479 C WRITE (6,+) COMPNT 480 C DO 10 I=1,NOCOMP 481 482 J=NTCOMP(I) 483 IF(J .6T.100) 60 TO 8 484 11 = 4 + (1 - 1) + 1485 C IF ((KOMNAM(I1)+KDMNAM(I1+1)+KOMNAM(I1+2)+KOMNAM(I1+3)) .NE. D) 486 C X 60 TO 7 487 IF (KOMNAM(I1).NE.D .AND. KOMNAM(I1+1).NE.D .AND. KOMNAM(11+2).NE.D .AND. KOMNAM(11+3).NE.D) GO TO 7 488 ٠ DO 6 COUNT=1,4 489 490 IK=I1+COUNT-1 491 IS=4+(J-1) + COUNT492 6 KOMNAM(IK) = SCNAME(IS) 493 C --FOLLOWING ARE THE COMPONENT PROPERTIES 494 7 PP = APC(J)495 TT=ATC(J) 476 OMEGA(I)=AOMEG(J) 497 ADEL(I)=DEL(J) 498 ZRA(I)=ZRAMSD(J) 499  $(L) \equiv V \equiv (1) \equiv V \equiv (J)$ 500 PC(I) = PP501 TC(I)=TT 502  $(L) \exists VA=(I) \exists V$ TX 1=ATB(J) 503 504  $T_{9}(1) = T_{1}^{1}$ 

.. ...

•••

, T

- -.

C

1

(

Ć

FORTRAN IV SOURCE LISTING: COMPID SUBROUTINE DB/16/85 15:03:37 VER 59 505 U(I)=AMU(J) 506 C----OA & OB ARE THE TRKT PARAMETERS 507 OA(I)=SQRT(0.42748+TC(I)++2.5/PC(I)) 508 OB(I)=0.08664+TC(I)/PC(I)509 C----FOLLOWING ARE THE ANTOINE EQN. CONSTANTS 510 ANT(1, I) = ANTO(1, J)511 ANT(2,I) = -TZ(2,J)512 ANT(3,1)=E(3,J) 513 ANT(4,I) = DANTO(4,J)514 ANT(5,1)=WANTO(5,J) 515 ANT(6,I)=ANTOX(6,J) 516 C----ALD ARE DENSITIES AT 25 DEG. 517 ALD(I)=DENS(J) 518 C----APH,.., DTA ARE THE IDEAL GAS HEAT CAPACITY COEFFT.S 519 APH(I)=APHA(J) 520 BET(I)=BETTA(J) 521 GAM(I)=GAMA(J) DTA(I)=DELTA(J) 522 523 C----CPV(I,N) ARE THE IDEAL GAS HEAT CAPACITY COEFFT.S 524 CPV(I,1) = APHA(J)525 CPV(I,2)=BETTA(J) 526 CPV(1,3) = GAMA(J)527 CPV(1,4)=DELTA(J) 528 C----CPL(I,N) ARE THE LIQUID SP.HEAT COEFFICIENTS 529 IF (CPTYPE(J).NE.3.0) 60 TO 701 530 CPL(I,1)=SPHL1(J)+ANW(J) 531 CPL(I,2) = SPHL2(J) + AHW(J) 532 CPL(I,3)=SPHL3(J)+ANW(J) 533 CPL(I,4)=SPHL4(J)+AMW(J) 534 60 TO 702 535 701 CPL(I,1)=SPHL1(J) 536 CPL(I,2)=SPHL2(J)537 CPL(I,3) = SPHL3(J)538 CPL(1,4) = SPHL4(J)539 C----EVAP IS THE ENTHALPY OF VAP. AT NORMAL B.P 540 702 EVAP(I)=AHVAP(J) 541 TR=ATB(J) 542 C----ENP(I,N) ARE THE REFERENCE-STATE ENTHALPY 543 C----COEFFIECIENTS OF VAPORS(IDEAL)&LIQUIDS AT REF.TEMP. OF NORMAL 544 C----BOILING POINTS. 545 ENP(1,10)=CPV(1,4)/4.0 546 ENP(1,9)=CPV(1,3)/3.0 547 ENP(1,8)=CPV(1,2)/2.0 548 ENP(I,7)=CPV(I,1)549 ENP(1,6)=EVAP(1)-(((ENP(1,10)\*TR+ENP(1,9))\*TR+ENP(1,8))\*TR+ 550 ٠ ENP(1,7)) + TR551 ENP(1,5)=CPL(1,4)/4.0 552 ENP(1,4)=CPL(1,3)/3.0 ENP(1,3)=CPL(1,2)/2.0 553 554 ENP(I,2)=CPL(I,1)555 ENP(I,1)=-(((ENP(I,5)+TR+ENP(I,4))+TR+ENP(I,3))+TR+ENP(I,2))+TR 556 1F (CPTYPE(J).NE.2.0) 60 TO 703 557 ENP(1,1)=ENP(1,1)-CPL(1,2)+273.16+TR+CPL(1,3)+273.16+273.16+TR ENP(I,1)=ENP(I,1)-TR+273.16+CPL(I,3)+TR 558 559 703 CPCODE(I)=CPTYPE(J) 560 C----FOLLOWING ARE THE 'SRK' EQN. INTERACTION PARAMETERS.

the second se

 $\cap$ 

 $\cap$ 

 $\sim$ 

ŝ,

(

•

(

294

SOURCE LISTING: COMPID SUBROUTINE 08/16/85 15:03:37 FORTRAN IV **VER 59** 561 C 562 DO 71 M=1,NOCOMP AK (I,M)=0.0 563 71 554 IF (J.EQ.46) GO TO 72 IF (J.EQ.48) 60 TO 73 565 IF (J.EQ.49) GO TO 74 566 IF (J.EQ.50)60 TO 75 567 568 60 TO 76 569 72 DO 721 K=1,NOCOMP LL=NTCOMP(K) 570 571 721 AK(I,K)=AKNTRO(LL) 60 TO 76 572 573 73 DO 731 K=1,NOCOMP LL = NTCOMP(K) 574 AK (I,K)=AKCMON(LL) 575 731 576 60 TO 76 DO 741 K=1,NOCOMP 577 74 LL=NTCOMP(K) 578 579 741 AK(I,K)=AKCDOX(LL) 580 60 TO 76 581 75 DO 751 K=1,NOCOMP 582 LL=NTCOMP(K) 583 751 AK (I,K)=AKHTOS(LL) 584 76 60 TO 9 585 C----DEBUGGING AID 586 8 TT=TC(I) 587 PP = PC(I)9 BASEB(I)=.0867+TT/PP 588 VC(I)=VC(I) + .45359/28.32 589 ZCD(1)=PP+VC(1)/(10.73 +TT) 590 591 C WRITE (6,100) 1,J 592 C 100 FORMAT ("DFTN # 100", 5x,2110) WRITE (6,101) PP,TT 593 C 594 C 101 FORMAT ("OFTN # 101",5X,2620.5) 595 TT=+4278 +TT+TT/PP+ SQRT(TT) WRITE (6,102) TT 596 C 597 C 102 FORMAT ('OFTN # 102",5%,620.5) BASEA(1) = SQRT(TT) 598 599 C WRITE (6,103) BASEA(I) 500 C 103 FORMAT ("OFTN # 103",5X,620.5) WRITE (6,104) 501 C 602 C 104 FORMAT (////) 503 10 CONTINUE IF(EXFLAG) WRITE (6,NSCOMP) 604 505 RETURN 606 END

م ر

 $( \cap$ 

0

(\*\*

C

 $\mathcal{C}$ 

Ć

С.

C

C

C

: C

Ċ

Ċ.

C

C

÷С

## BIBLIOGRAPHY

- Andreyuk, R., 'An Improvement in the Chemical Engineering Simulation System', Master's Thesis, N.J.I.T, 1983.
- Chao, K. C., and J. D. Seader, 'A General Correlation of Vapour- Liquid Equilibria in Hydrocarbon Mixtures', <u>A.I.C.H.E Journal</u>, <u>7</u>: 598, 1961.
- Conrad, P. G., and J. F. Gravier, 'Peng- Robinson Equation Checks Validity of PVT Experiments', <u>Oil and Gas</u> Journal, April 21, 1980.
- Coward, I., and D. R. Webb, 'Computational Difficulties With the Chao and Seader Correlation', <u>Computers and</u> <u>Chemical Engineering</u>, <u>2</u>: 177-187, 1978.
- Edmister, Wayne C., '<u>Applied Hydrocarbon Thermodynamics</u>', Volumes 1 and 2, Gulf Publishing Company.
- Evans, L.B., et al., 'ASPEN : An Advanced System for Process Engineering', <u>Computers and Chemical</u> <u>Engineering</u>, <u>3</u> : 319-327, 1979.
- Ferrel, J., et al., 'Use of Soave Modification of the Redlich- Kwong Equation of State for Phase Equilibrium Calculations. Systems Containing Methanol', <u>Industrial</u> <u>and Engineering Chemistry Process Design and Develop-</u> ment, <u>22</u>, : 462- 468, 1983.
- Henley, E. J. and Seader, J. D., '<u>Equilibrium Stage</u> <u>Seperation Operations in Chemical Engineering</u>', Published in 1981.
- Holland, Charles D., '<u>Fundamentals of Multicomponent</u> <u>Distillation</u>', McGraw- Hill Inc., **1981.**
- Klotz, Copeman et al., 'What's the Impact of Bad Data on NRU Design', <u>Hydrocarbon Processing</u>, April, 1983.
- Motard, R. L., and H. M. Lee, '<u>CHESS User's Guide</u>', University of Houston, 1971.
- Motard, R. L., et al., 'Steady State Chemical Process Simulation' <u>A.I.Ch.E Journal</u>, <u>21</u>(3), May, **1975**.
- Motard, R. L., and Tsubaki, M., 'Data Based Process Simulation', <u>Computers and Chemical Engineering</u>, 3, : 421-454, 1979.

## BIBLIOGRAPHY

- Peng, Ding Y., and Donald B. Robinson, 'A New Two-Constant Equation of State', <u>Industrial and Engineer-</u> ing Chemistry Fundamentals, <u>15</u>(1), 1976.
- Peng, D. Y., Robinson, D. B. and Ng, H. J., 'Capabilities of the Peng- Robinson Programs', Parts 1 β 2. <u>Hydrocarbon Processing</u>, April, 1978 and Sept, 1979.
- Perkins, J. D., 'Efficient Solution of Design Problems Using a Sequential- Modular Flowsheeting Programme' <u>Computers and Chemical Engineering</u>, <u>3</u>, :375-381, 1979.
- Peters, H. F., 'Partial Enthalpies of Light Hydrocarbons', <u>Petroleum Refiner</u>, <u>28</u>,(5), 1949.
- Prausnitz, J. M., Anderson, T., et al., '<u>Computer Calc-</u> <u>ulations for Multicomponent Vapour-Liquid and Liquid-</u> <u>Liquid Equilibrium</u>, Prentice- Hall Inc., 1980.
- Redlich, Otto, 'On the Three Parameter Representation of the Equation of State', <u>Industrial and Engineering</u> <u>Chemistry Fundamentals</u>, <u>14</u>,(3), 1975.
- Reid, R. C., J. M. Prausnitz and T. K. Sherwood, '<u>Properties of Gases and Liquids</u>', Third Edition, McGraw Hill Publication, 1977.
- Reklaitis, G., and S. Clark, 'Investigating of Strategies for Sequential Modular Simulators', <u>Computers and</u> <u>Chemical Engineering</u>, <u>8</u>, : 314, 1984.

Roche, Edward C., Unpublished work.

- Smith, B. D., '<u>Design of Equilibrium Stage Processes</u>', McGraw Hill Publication, 1963.
- Smith, J. M., and H. C. Van Ness, 'Introduction to Chemical Engineering Thermodynamics', McGraw Hill Inc., 1975.
- Soave, G., 'Equilibrium Constants from a modified Redlich-Kwong Equation of State', <u>Chemical Engineering Science</u> <u>27</u>,(6), 1972.
- Soave, G., 'Application of the Redlich- Kwong- Soave equation of State to Solid- Liquid Equilibrium Calculations', <u>Chemical Engineering Science</u>, <u>34</u>, 1979.

## BIBLIOGRAPHY

- Spencer, C. F., and R. P. Danner, 'Improved Equation for Prediction of Saturated Liquid Density', <u>Journal of</u> <u>Chemical Engineering Data</u>, <u>17</u>,(2), 1972.
- Tamplin, W. S., and D. A. Zuzic, 'Specific Heats of Organic Hydrocarbons', <u>Hydrocarbon Processing</u>, <u>46</u>,(8), 1967.
- Tassios, Dimitrios, Unpublished Lecture Notes on Thermodynamics.
- Thompson, D. W., 'CHEMOS- a PL / 1 Based List Organized Process Modelling Program for Interactive Student Use', <u>Computers and Chemical Engineering</u>, <u>16</u>,(1), 1982.
- Timer, L., et al., 'Useful Combination of the Sequential and Simultaneous Modular Strategy in a Flowseeting Programme', <u>Computers and Chemical Engineering</u>, <u>8</u>,(3/4), 1984.
- Yaws, Carl L., '<u>Physical Properties</u>', a McGraw Hill -Chemical Engineering Publication, 1977.