Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity.
2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame.
3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of "sectioning" the material has been followed. It is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until compiete.
4. For iilustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department.
5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed.

University

Microfilms International
300 N. Zeeb Road Ann Arbor, MI 48106
Chawla, Harpreet Singh
AN INDUSTRIAL ETHANOL AZEOTROPIC DISTILLATION PROCESS:MODELING, ANALYSIS, AND SIMULATION1985
University Microfilms International 300 N. Zeeb Road, Ann Arbor, M1 48106

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark \qquad \checkmark.

1. Glossy photographs or pages \qquad
2. Colored illustrations, paper or print \qquad
3. Photographs with dark background \qquad
4. Illustrations are poor copy \qquad
5. Pages with black marks, not original copy \qquad
6. Print shows through as there is text on both sides of page \qquad
7. Indistinct, broken or small print on several pages \qquad
8. Print exceeds margin requirements \qquad
9. Tightly bound copy with print lost in spine \qquad
10. Computer printout pages with indistinct print \qquad
11. Page (s) \qquad lacking when material received, and not available from school or author.
12. Page (s) \qquad seem to be missing in numbering only as text follows.
13. Two pages numbered \qquad . Text follows.
14. Curling and wrinkled pages \qquad
15. Dissertation contains pages with print at a slant, filmed as received \qquad L
16. Other \qquad
\qquad
\qquad

University
 Microfilms International

AN INDUSTRIAL ETHANOL AZEOTROPIC DISTILLATION PROCESS: MODELING, ANALYSIS, AND SIMULATION

by

Harpreet Singh Chawla

Dissertation submitted to the Faculty of the Graduate School of the New Jersey Institute of Technology in partial fulfillment of the requirements for the degree of

Doctor of Engineering Science
1985

APPROVAL SHEET

Title of Dissertation: An Industriai Ethanol Azeotropic Distillation Process: Modeling, Analysis, and Simulation
Name of Candidate:
Harpreet Singh Chawla Doctor of Engineering Science, 1985

Dissertation and Abstract Approved:

Edward C. Roche, Jr.
Date
Professor
Department of Chemical
Engineering \& Chemistry

Dennis L. Blackmore
date

Date

Dana E. Knox

Charles M. Tsai
Date

Name: Harpreet Singh Chawla

```
Degree and date to be conferred: D. Eng. Sc., Oct. 1985
```

Secondary Education: Holy Cross Higher Secondary School, 1974
Collegiate Institutions Dates Degree Date of

Attended
Govt. College of Eng. \& 7/74-6/79 B.E.ChE June 79 Technology

Indian Institute of 8/79-6/81 M.Tech June 81 Technology

New Jersey Institute of Technology Degree ChE

9/81-7/85 D.Eng.Sc. Oct. 85

Dates
Degree Date of Chemical Engineering

Publications: Chawla, H.S. and Hussain, S.Z., "Kinetics of Esterification of Maleic Anhydride with Ethanol Catalized by Sulfuric Acidn, Indian J. of Tech.r vol. 20, Jan 1982, pp. 22-28.

Chawla, H.S.r "Studies in Esterification of Maleic Anhydride with Ethanol", M.Tech. Thesis, Indian Institute of Technology, Bombay, 1981.

Positions Held:
1981-1985 Graduate/Teaching Assistant Department of Chemical Engineering and Chemistry
New Jersey Institute of Technology Newark NJ 07102

Abstract

\title{ of Dissertation: An Industrial Ethanol Azeotropic Distillation Process: Modeling, Analysis, and Simulation }

Harpreet Singh Chawla, Doctor of Engineering Science, 1985

Dissertation directed by: Edward C. Roche, Jr., Professor of Chemical Engineering

A steady state process simulator with extensive capabilities was developed for the simulation of process plants involving non-ideal multicomponent systems. A comprehensive stand alone program was developed to represent process systems el.countering three phases. A computer program was also developed to handle simultaneous regression of vapor-liquid and liquid-liquid equilibria data to estimate the liquid phase activity coefficients via a global set of parameters for the ethanol azeotropic distillation process, using benzene as the entrainer.

An industrial ethanol azeotropic distillation process has been simulated using the developed process simulator (PROSIM). A study of the azeotropic column's aqueous ethanol feed composition reveals 82.9 mole of (ethanol) as the optimum concentration. The complete process plant as well as the individual process units were found to operate under a very narrow range of operating conditions. A sensitivity study on the process plant was conducted with respect to the ethanol product specifications and enzene stripping column

pressure.
In an extensive study on the azeotropic column, the optimum entrainer to binary feed ratio and the dry ethanol product rate have been established for aqueous ethanol feed concentration ranging from 70 to 89.4 mole $\%$ (ethanol). A multiple solution phenomena was investigated for the azeotropic column, and it was found to require a very stiff material balance to obtain the desired product split.

A global set of modified UNIQUAC interaction parameters has been determined using the regression program. This single set of parameters, obtained by simultaneous regression of binary isobaric vapor-liquid equilibria data and a single liquid-liquid tie line, has been established on the basis of its performance in the key units of the ethanol azeotropic distillation process.

Finally, twelve potential entrainers have been evaluated for the ethanol dehydration process using the UNIFAC activity coefficient equation. A set of suitable entrainers has also been prepared, based on extensive analysis using the model of the azeotropic distillation column to demonstrate production of marketable ethanol.

DEDICATION

Dedicated to my late grand parents, Mrs. and Mr. Karam Singh Chawla.

The author wishes to acknowledge with deep gratitute and extend his profound sense of respect to his faculty advisor, Prof. Edward C. Roche, Jr. for his precise guidance and cooperation. The author is grateful to Dr. Dana Knox of Chemical Engineering Department for his critical suggestions and providing micro computer facility for text processing.

The author wishes to express his sincere thanks to the authorities of the New Jersey Institute of Technology for the computing facility and the financial support, which enabled him to participate in this doctoral dissertation. The author is very much indebted to his family for their cooperation and encouragement throughout the course ofthis work.

TABLE OF CONTENTS

Chapter Page
DEDICATION ii
ACKNOWLEDGMENTS iii
LIST OF TABLES viii
LIST OF FIGURES xi
LIST OF COMPUTER PROGRAMS xiii
1 INTRODUCTION 1
2 PROCESS SIMULATION PROGRAM AND SUPPORTING MODELS 4
2.1 Enhancement in Thermodynamic Library (THERMO1) 5
2.1.1 Modified UNIQUAC for Activity Coefficient 6
2.1.2 Modified UNIQUAC for Heats of Mixing 7
2.1.3 UNIFAC for Activity Coefficient 7
2.2 General Purpose Flash Program (FLASH2) 9
2.3 General Purpose Absorption/Distillation Column Model (ABDIS) 14
2.3.1 Equations Associated to the Column 15
2.3.2 Solution Algorithm 18
2.4 Process Simulator (PROSIM) 19
3 STUDY OF VARIOUS ENTRAINERS FOR AZEOTROPIC DISTILLATION PROCESS 27
3.1 Selection of Potential Entrainers 27
3.2 Why UNIFAC was used for Activity Coefficients 28
3.3 Performance of Entrainers in the Azeotropic Column 30
3.4 Assessment of Entrainers using UNIFAC 38
4 GLOBAL THERMODYNAMIC INTERACTION PARAMETERS ESTIMATION 41
4.1 Research Problem Definition 42
4.2 Non-Linear Regression Program and its Limitations 44
4.2.1 Salient Features of The Enhanced Program 45
4.3 Objective Functions 46
4.3.1 Vapor-Liquid Equilibria Objective Functions 47
4.3.2 Liquid-liquid Equilibria Weighted Objective Functions 47
4.4 Binary Vapor-Liquid and Liquid-Liquid Equilibrium Data Regression 53
4.4.1 Selection of the Objective Functions 55
4.4.2 Regression Results, Including Discussion of Proper Root Selection 61
4.5 Multicomponent VLE and LLE Data Regression Results 66
4.6 Global Thermodynamic Parameters Estimation 71
4.6.1 Results of Simultaneous VLE and LLE Data Regression 71
4.7 Conclusions Based on Separation Performance in the Key Process Operations 77
5 STUDY OF PROCESS VARIABLES IN AZEOTROPIC distillation column 87
5.1 Effect of Distillate Rate and Multiplicity of Solutions 88
5.2 Effect of Entrainer Rate on the Azeotropic Column 89
5.3 Effect of Feed Composition on the Azeotorpic Column 96
5.4 Conclusions 99
6 STEADY STATE SIMULATION OF INTEGRATED ETHANOL DEHYDRATION PROCESS PLANT 102
6.1 Analysis of Major Segments of the Flowscheme 107
6.1.1 Gross Water Removal 110
6.1.2 Azeotropic Column and Two Liquid Phase Decanter 110
6.1.3 Benzene Recovery System and Make-up Benzene 113
6.2 Sensitivity of Water Recovery with Respect to the Azeotropic Column Binary Feed Concentration 114
6.3 Sensitivity of the Dry Ethanol Product Specification on Benzene Stripping Column 123
6.4 Discussion on the Development of the Flowscheme and Block Diagram 124
6.5 Simulation of Industrial Ethanol Azeotropic Distillation Process using PROSIM (PROcess SIMulator) 137
6.5.1 Simulated Process without Ethanol Concentrator (Case A) 137
6.5.2 Simulated Process Including Ethanol Concentrator (Case B) 138
6.6 Conclusions 147
7 OVERALL CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 151
7.1 Overall Conclusions 151
7.2 Recommendations for Future Research 153
APPENDIX A THERMODYNAMICS: LIQUID PHASE MODELS FOR NON-IDEAL SYSTEMS 157
APPENDIX B DISTILLATION ALGORITHM AND SIMULATOR -- PROCESS EQUIPMENT PARAMETER DATA SPECIFICATION 170
APPENDIX C ENTRAINER STUDY: SAMPLE INPUT AND RESULTS 183
APPENDIX D OBJECTIVE FUNCTIONS AND SAMPLE INPUT FOR THE PARAMETER ESTIMATION PROGRAM 214
APPENDIX E MODIFIED UNIQUAC INTERACTION PARAMETER ESTIMATION RESULTS 226
APPENDIX F ETHANOL-WATER-BENZENE PROCESS PLANT SIMULATION: SAMPLE INPUT AND RESULTS 274
APPENDIX G COMPU'IER PROGRAMS 300

LIST OF TABLES

Table Page
3.1 List of Potential Entrainers 29
3.2 Binary VLE NRTL Interaction Parameters from Ternary VLE Data 32
3.3 Binary VLE NRTL Interaction Parameters from Binary VLE Data 33
3.4 Binary LLE NRTL Interaction Parameters from Binary lle Data 34
3.5 Comparison of the Effect of Column Stages on Separation Using NRTL and UNIFAC Models 37
3.6 Comparison of Performance of Various Entrainers in the Azeotropic Distillation Column 39
4.1 Selected Objective Functions for VLE Data Regression 48
4.2 Selected Objective Functions for LLE Data Regression 51
4.3 Equilibrium Datasets for the Regression Analysis 54
4.4 Evaluation of VLE Objective Function from Regression Results of Isobaric Ethanol-Water (VLE) System 56
4.5 Evaluation of VLE Objective Function from Regression Results of Isobaric Ethanol-Benzene (VLE) System 57
4.6 Evaluation of VLE Objective Function from Regression Results of Isothermal Ethanol-Water (VLE) System 59
4.7 Evaluation of VLE Objective Function from Regression Results of Isothermal Ethanol- Benzene (VLE) System 60
4.8 Evaluation of LLE Objective Function from Regression Results of Benzene-Water (LLE) System at $25^{\circ} \mathrm{C}$ 62
4.9 Multiple Roots Illustration with Isobaric Ethanol-Water (VLE) System 64
4.10 Multiple Roots Illustration with Benzene-Water (LLE) System at $25^{\circ} \mathrm{C}$ 65
4.11 Regression Results of Ethanol-Water-Benzene (VLE) System 67
4.12 Regression Results of Combinations of Isobaric Binary and Ternary VLE Systems 69
4.13 Regression Results of Ethanol-Fater-Benzene (LIE) System 70
4.14 Simultaneous VLE and LLE Data Regression Cases and Variables 72
4.15 Performance of the Azeotropic Column with Various Sets of Modified UNIQUAC Parameters 78
4.16 Performance of Two Liquid Phase Decanter at $35^{\circ} \mathrm{C}$ with Various Sets of Modified UNIQUAC Parameters - I 80
4.17 Performance of Two Liquid Phase Decanter with Various Sets of Modified UNIQUAC Parameters -- II 82
4.18 List of Acceptable Parameters for Azeotropic Distillation Column and Decanter 85
5.1 Effect of Vafor Distillate Rate on Azeotropic Distillation Column 91
5.2 Effect of Entrainey/Feed Rate Ratio on Azeotropic Column -- I 93
5.3 Effect of Entrainer/Feed Rate Ratio on Azeotropic Column -- II 94
5.4 Effect of Entrainer/Feed kate Ratio on Azeotropic Column -- III 95
5.5 Effect of Feed Concentration on Azeotropic Column 100
6.1 Effect of Azeotropic Column Feed Concentration (70 mole \% ethanol) and Operating Pressure on the Eenzene Stripping Column 116
6.2 Effect of Azeotropic Column Feed Concentration (78 mole \% ethanol) and operating Pressure on the Benzene Stripping Column 117
6.3 Effect of Azeotropic Column Feed Concentration (82.5 mole \% ethanol) and Operating Pressure on the Benzene Stripping Column 118
6.4 Effect of Azeotropic Column Feed Concentration (83.0 mole $\%$ ethanol) and Operating Pressure on the Benzene Stripping Column 119
6.5 Effect of Azeotropic Column Feed Concentration (83.5 mole \% ethanol) and Operating Pressure on the Benzene Stripping Column 120
6.6 Effect of Azeotropic Column Feed Concentration (82.82 mole $\%$ ethanol) and Operating Pressure on the Benzene Stripping Column 121
6.7 Effect of Azeotropic Column Feed Concentration (82.89 mole $\%$ ethanol) and Operating Pressure on the Benzene Stripping Column 122
6.8 Benzene Stripping Section Results with Ethanol product specifications of $99.75+$ mole $\%$ and Azeotropic Column Feed Concentration of 82.5 mole \% Ethanol 125
6.9 Benzene Stripping Section Results with Ethanol Product Specifications of $99.75+$ mole $\%$ and Azeotropic Column Feed Concentration of 82.75 mole \% Ethanol 126
6.10 Benzene Stripping section Results with Ethanol Product Specifications of $99.75+$ mole $\%$ and Azeotropic Column Feed Concentration of 82.82 mole $\%$ Ethanol 127
6.11 Benzene Stripping Section Result with Ethanol product specifications of $99.75+$ mole $\%$ and Azeotropic Column Feed Concentration of 83.0 mole $\%$ Ethanol 128
6.12 Benzene Stripping section Fesults with Ethanol product specifications of $99.75+$ mole $\%$ and Azeotropic Column Feed Concentration of 82.82 mole \% Ethanol 129

LIST OF FIGURES

Figure Page
2.1 Stage Configuration 16
5.1 Multiple Solutions in the Azeotropic Column 90
5.2 Entrainer/Feed Rate Ratio Vs stOH in the Feed to the Azeotropic Column 97
5.3 Ethanol Product (Bottoms) Rate Vs EtOH in the Feed to the Azeotropic Column 98
6.1 Ethanol Azeotropic Distillation Process Flowscheme - I 104
6.2 Ethanol Azeotropic Distillation Process Flowscheme - II 105
6.3 Ethanol Azeotropic Distillation Process Flowscheme - III 106
6.4 Ethanol Azeotropic Distillation Process Flowscheme - IV 108
6.5 Ethanol Azeotropic Distillation Process Flowscheme - V 109
6.6 Proposed Ethanol Azeotropic Distillation Frocess Flowscheme 111
6.7 Representation of Output Streans from the Azeotropic Column and the Two Liquid Phase Decanter 112
6.8 Effect of Azeotropic Column Feed Concentration (70 mole $\%$ ethanol) on the Benzene Stripping Section (using Block SBOX) 116
6.9 Effect of Azeotropic Column Feed Concentration (78 mole $\%$ ethanol) on the Eenzene Stripping Section (using Block SBOX) 117
6.10 Effect of Azeotropic Column Feed Concentration (82.5 mole othanol) on the Eenzene Stripping Section (using Block SBOX) 118
6.11 Effect of Azeotropic Column Feed Concentration (83.0 mole of ethanol) on the Benzene Stripping Section (using Block SBOX) 119
6.12 Effect of Azeotropic Column Feed Concentration (83.5 mole $\%$ ethanol) on the Benzene Stripping Section (using Block SBOX) 120
6.13 Effect of Azeotropic Column Feed Concentration (82.82 mole $\%$ ethanol) on the Benzene Stripping Section (using Block SBOX) 121
6.14 Effect of Azeotropic Column Feed Concentration $(82.89 \mathrm{~mole}$ \% ethanol) on the Benzene Stripping Column (Using Block SBOX) 122
6.15 Benzene Stripping Section (Using Block SBOX) Results with Ethanol Product Specifications of $99.75+$ mole of and Azeotropic Column Feed Concentration of 82.5 mole $\%$ Ethanol 125
6.16 Benzene Stripping Section (Using Block SBOX) Results with Ethanol Product Specifications of $99.75+$ mole of and Azeotropic Column Feed Concentration of 82.75 mole \% Ethanol 126
6.17 Benzene Stripping section (Using Block SBOX) Results with Ethanol Product Specifications of $99.75+$ mole of and Azeotropic Column Feed Concentration of 82.82 mole $\%$ Ethanol 127
6.18 Benzene Stripping Section (Using Block SBOX) Results with Ethanol Product Specifications of $99.75+$ mole $\%$ and Azeotropic Column Feed Concentration of 83.0 mole $\%$ Ethanol 128
6.19 Benzene Stripping Section (Using Block SBOX) Results with Ethanol Product Specifications of $99.25+$ mole $\%$ and Azeotropic Column Feed Concentration of 82.82 mole $\%$ Ethanol 129
6.20 Block Diagram (Type A Scheme) for Industrial Ethanol Azeotropic Distillation Process 130
6.21 Block Diagram (Type E Scheme) for Industrial Ethanol Azeotropic Distillation Process 131
6.22 Simulated Industrial Ethanol Azeotropic Distillation Process without Ethanol Concentrator (Case A) 139
6.23 Simulated Industrial Ethanol Azeotropic Distillation Process (Case B) 143
6.24 Simulated Industrial Ethanol Azeotropic Distillation Process Flowscheme (Case B) 149

LIST OF COMPOTER PROGRAMS

Program PROSTM 304
Subroutine ACTL 305
Subroutine ADBF 310
Subroutine BCTL 313
Subroutine BZTL 316
Subroutine CNTL 321
Subroutine DCTL 323
Subroutine DSPT 326
Subroutine ECTL 328
Subroutine RCTL 332
Subroutine SBOX 334
Subroutine SMIX 338
Program FLASH2 342
Subroutine TWOLIQ 354
Subroutine FLSHI 360
Subroutine FLSH2 363
Subroutine AFI.SH2. 369
subroutine RCALC2 371
Subroutine PRINT2 372
Subroutine FOFX 374
Subroutine PRINT3 385
Subroutine TALLYI 393
Subroutine FXVIE 394
Subroutine FX2LIQ 398
Subroutine INFY 403
Subroutine START 408
Subroutine CDATA 411
Subroutine RUNFAC 421
Subroutine SWITCH 425
Subroutine VIRFGl 425
Subroutine ZVIR1 427
Subroutine BCALC 428
Subroutine SVIR 429
Subroutine UNQAC2 431
Subroutine XHUNQ2 432
Subroutine UNIFAC 433

CHAPTER 1

INTRODUCTION

This dissertation embodied the process modeling, detailed process analysis, and the steady state simulation of the industrial ethanol azeotropic distillation process. A new process simulator (PROSIM) has been developed based on the executive of the CHESS program. This simulation program was used to perform the simulation and optimization studies associated with the extensive analysis of the ethanol recovery process.

The improved Chemical Engineering Simulation System (Andreyuk, 1983) was not capable of completely simulating the alcohol dehydration process. The new process simulator is equipped with the new and advanced control blocks, the rigorous distillation/ absorption model reported by Tsai (1982), and an enhanced three phase flash model based on methods by Roche (1977).

A detailed analysis of the major segments of ethanol dehydration process plant and the development of the flowscheme is also presented. The impact of various aqueous ethanol feed compositions to the azeotropic column, the ethanol product specifications, and the benzene stripping column pressure on the integrated process has been evaluated.

The estimation of a global set of thermodynamic interaction parameters (activity equation) has been incorporated in this dissertation. The modified UNIQUAC (Anderson, 1980)
equation was chosen for global thermodynamic representation of ethanol-water-benzene process plant involving non-ideal vapor-liquid and liquid-liquid operations. A Marquardt non linear regression program was extensively enhanced for the simultaneous regression of both multicomponent vapor-liquid and liquid-liquid data. An in depth evaluation of potential entrainers for ethanol dehydration azeotropic column was also included in this work.

The analysis of twelve potential entrainers in the ethanol azeotropic column using the UNIFAC (Fredenslund, 1975) group contribution model for the prediction of acti \because : $t y$ coefficients was studied. A few of the entrainers (benzene, n-pentane, and dieth'l ether) have been previously evaluated by Black (1980).

The concept of representing ternary liquid-liquid equilibria using parameters obtained from simultaneous regression of binary vapor-liquid and ternary liquid-liquid data was introduced by Prausnitz (1980). A rigorous approach to estimate a global set of parameters for the complete process representation has been demonstrated, and presented. This analysis is supported by screening and selection of various vapor-liquid and liquid-liquid equilibria minimization objective functions, proper root selection criteria, and assessment of the estimated set of parameters.

This dissertation incorporates a detailed study of the optimum entrainer to feed rate ratio, dry ethanol product rate, and multiplicity of solutions for a wide range of ethanol-water feed compositions to the azeotropic column. A
graphical relationship between the above stated process variables is also included in this chapter.

Finally, the overall conclusions of this research and the recommendations for further studies are presented.

CHAPTER 2

PROCESS SIMULATION PROGRAM AND SUPPORTING MODELS

The research work incorporated in this dissertation can be broadly classified into the following major areas:
A. Steady state simulation of the integrated alcohol-water-entrainer (for example ethanol-water-benzene) process plant.
B. Detailed analysis of each of the process units in the ethanol process plant and optimization of various process variables.
C. Search of a single set of thermodynamic interaction parameters, for the modified UNIQUAC equation, which can be used to represent VLE and LLE for the same system.
D. Evaluation of the azeotropic distillation column performance with various potential entrainers. An Entrainer is defined as a foreign component used to break the alcohol-water azeotrope and make the dry alcohol production process feasible.

Each of the areas stated above demands computer programs with advanced and rigorous computational methods. Global thermodynamic parameter search (to obtain activity coefficient equation parameters) requires regression software which can analyse simultaneously various combinations of experimental vapor-liquid and liquid-liquid equilibrium data. The details of the expanded program are presented in

Chapter 4. A general purpose stand alone flash algorithm, discussed in section 2.2, can be used for any of the thirteen available options. In addition to simple dew point and bubble point calculations, it can also simulate isothermal and adiabatic flash operation for three phase systems (two liquid and a vapor phase).

A rigorous algorithm to simulate absorption and distillation columns for highly non-ideal systems in included in Section 2.3. Section 2.4 discusses a process simulation program developed as part of this research work, which has all of the available features incorporated in the flash and distillation programs. The process simulator uses the CHESS (Chemical Engineering Simulation System) executive, and has various new control blocks and advanced modules. The simulator can simulate the much difficult and non-ideal processes like production of dry alcohol via azeotropic distillation.

Above all, a common thermodynamic library has been enhanced by incorporating models for liquid phase activity coefficients, heats of mixing, and vapor phase fugacity coefficient estimation.

2.1 Enhancement_in Thermodynamics_Library (THERMO1)

Thermodynamic modules are the building blocks of process simulation program. For non-electrolytic non-ideal systems, a two equation approach was adopted in the research work. Therefore additional modules have been incorporated for
A. the estimation of component activity coefficients and heats of mixing,
B. the prediction of component activity coefficients in a multicomponent mixture, and
C. the estimation of second Virial coefficients for a mixture of components in the vapor phase proposed by Hayden et al.(1975).

The subsequent sections include UNIQUAC and UNIFAC equations corresponding to the liquid phase non-ideal computations. The detailed version of the modified UNIQUAC, NRTL, and, UNIFAC equations are covered in Appendix A. A complete set of available UNIFAC group interaction parameters along with constants r and q are compiled in the form of a database. Gmehling et al. (1982) have published the revised group interaction parameters including the new ones which make altogether 41 primary and 77 secondary groups.

2.1.1 Modified UNIQUAC for Activity Coefficient

UNIQUAC (UNIversal QUAsi Chemical) equation was first published by Abrams et al. (1975). A modified version was later proposed by Anderson et al. (1978). Anderson introduced an additional area parameter, q^{\prime}, for the pure components. Except for water and a few alcohols, there is no difference between q and q^{\prime}. The activity coefficient for a component in a multicomponent mixture is given by

$$
\begin{align*}
& \ln \gamma_{i}=\ln \frac{\emptyset_{i}}{x_{i}}+\left(\frac{Z}{2}\right) q \ln \frac{\Theta^{\frac{i}{\prime}}}{\varnothing_{i}}+1_{i}-\frac{\emptyset_{i}}{x_{i}} \sum_{j} x_{j} l_{j}-q_{i}^{\prime} \ln \left(\sum_{j} \theta_{j}^{\prime} \tau_{j i}\right)+ \\
& q_{i}^{\prime}-q_{i}^{\prime} \sum_{j} \sum_{k}^{-\frac{\theta_{j}^{\prime}}{j}{ }^{\tau}{ }^{\tau}{ }^{\tau}{ }_{k j}} \tag{2.1}
\end{align*}
$$

Where

$$
\begin{equation*}
\tau_{j i}=\exp \left(-\frac{a_{i \underline{i}}+b_{\underline{j}} / T}{T}\right) \tag{2,1A}
\end{equation*}
$$

Definition of variables, constants, and parameters is provided in Appendix A.1.2.

2.1.2 Modified UNIQUAC for Heats of Mixing

The general relationship between excess heats of mixing and activity coefficient of component i in the mixture is given by

$$
\begin{equation*}
h^{E}=-R T^{2} \sum x_{i}\left(-\frac{\partial \ln \gamma_{i}}{\partial \bar{T}^{-}}\right)_{P, x} \tag{2.2}
\end{equation*}
$$

The implementation of activity coefficient equation in Eq. 2.3 yields the following equation

$$
\begin{equation*}
\left.h^{E}=R \sum_{i}^{[} \sum_{j}^{-\frac{q}{\theta_{j}^{\prime} x_{i}} \underline{i}_{j i}^{\tau}} \sum_{j} \theta_{j}^{\prime} \tau_{j i}\left(a_{j i}+2 b_{j i} / T\right)\right] \tag{2.3}
\end{equation*}
$$

Where

$$
\begin{equation*}
\tau_{j i}=\exp \left(-\frac{a_{j} \underline{i}_{-}+b_{j} \underline{i}_{-} / T}{T}\right. \tag{2.1A}
\end{equation*}
$$

2.1.3 UNIFAC_for_Activity Coefficient

UNIFAC (UNIquac Functional Group Activity Coefficients) was first proposed by Fredenslund et al. (1975). This model
is based on functional groups rather than molecules but is essentially based on the UNIQUAC equation. The activity coefficient of a component in a mixture can be predicted by the following equations
$\ln \gamma_{i}=\ln \gamma_{i}^{C}+\ln \gamma_{i}^{R}$
where the superscripts C and R refer to the combinatorial and residual parts of the activity coefficient respectively. The combinatorial part of the activity coefficient is represented by
$\ln \gamma_{i}^{C}=\ln \frac{\emptyset_{i}}{x_{i}}+\left(\frac{Z}{2}\right) q \ln \frac{\theta_{i}}{\emptyset_{i}}+1_{i}-\frac{\emptyset_{\dot{i}}}{x_{i}} \sum_{j} x_{j}{ }_{j}$
The residual part of the activity coefficient is computed as follows
$\ln \gamma_{i}^{R}=\sum_{k} v_{k i}\left(\ln \Gamma_{k}-\ln \Gamma_{k, i}\right)$
The activity coefficient Γ_{k} is computed as follows

The activity coefficient $\ln \Gamma_{k, i}$ is computed as follows

Details of each of the terms is summarized in Appendix A.1.3

2.2 General Purpose Flash_Program (FLASH2)

A generalized flash algorithm consisting of multiple computation features has been developed based on models suggested by Leach (1977), Roche (1977), and Prausnitzet al. (1980). This stand alone software, fLASH2, has the following capabilities:
A. Thirteen computational options are:
a. Dew point temperature
b. Bubble point temperature (1 or 2 liquid phases)
c. All vapor enthalpy with prior dew point
d. All liquid enthalpy with prior bubble point (1 or 2 liquid phases)
e. All vapor enthalpy
f. All liquid enthalpy (1 or 2 liquid phases)
g. Isothermal flash (1 or 2 liquid)
h. Isothermal flash ... no dew/bubble point (1 or 2 liquid phases)
i. Adiabatic flash (1 or 2 liquid phases)
j. Adiabatic flash ... no dew/bubble point (1 or 2 liquid phases)
k. Dew point pressure

1. Bubble point pressure (1 or 2 liquid phases)
m. Liquid-liquid separation below bubble point
B. In case of three phase equilibria calculations,
ability to switch thermodynamic interaction parameters for the same or different activity coefficient equations is available to represent vaporliquid and liquid-liquid equilibria
C. Self initialization technique to characterize two liquid phases for liquid-liquid equilibria has also been incorporated.
D. Program can handle supercritical, condensable, normal, and nonvolatile non-electrolytic components using the two equation approach to represent vapor and liquid phase properies separately.
E. The software is completely compatible with thermodynamics library (THERMO1), regression supporting program (FOFX2) covered in section Section 4.2, and the steady state chemical engineering process simulation program (PROSIM) discussed in Section 2.4.
F. In liquid-liquid equilibria calculations, four different objective functions are included for convergence criteria. These functions are based on component activities, component mole fractions in both the liquid phases, and combination of components activities and mole fractions.

Basic equations for the major modules are given below.

Dew point temperature is established using the following relationship:

$$
\begin{equation*}
F=\sum_{i}\left(y_{i} / K_{i}\right)-1.0=0.0 \tag{2.9}
\end{equation*}
$$

The secant method is used to solve the Equation 2.9 and Wegstein's algorithm is used for better estimates of liquid phase compositions.

Bubble_point Temperature (Two Liguid_Phase)

Two design equations given by Equations 2.10 and 2.11 are solved simultaneously using the Newton-Raphson method to compute bubble point temperature.

Where $\mathrm{R}=\mathrm{L}_{1} /\left(\mathrm{L}_{1}+\mathrm{L}_{2}\right)$, liquid phase distribution factor, whose value range between 0 and 1.0 . The extreme values of R, 0 or 1.0 , lead to single liquid phase system with the existence of 'liquid 2' or 'liquid 1', respectively. The better estimates of x 's are obtained using wegstein's algorithm.

Liguid_Liquid_Eguilibria_Below Bubble point

The two liquid phase algorithm is based on the computation of phase compositions of two phases and liquid phase distribution factor at isothermal conditions. In the decoupling solution method the inner loop solves for R,
defined earlier, using Equation 2.10 and the outer loop must satisfy one of the convergence criterions stated below.
A. $\left|\left(x_{1, i} \gamma_{1, i}-x_{2, i} \gamma_{2, i}\right)\right| /\left(x_{2, i} \gamma_{2, i}\right)\langle=1.0 E-5$
B. $\left|\left(x_{j, i}^{(k)}-x_{j, i}^{(k-1)}\right)\right| / x_{j, i}^{(k)}<=1.0 E-5$
C. $\sum\left|\left(x_{1, i} \gamma_{1, i}-x_{2, i} \gamma_{2, i}\right)\right|<=1.0 \mathrm{E}-3$
D. Both Eqs. 2.12 and 2.13

Where i denotes component, j denotes phase, and k denotes the iteration counter.

Isothermal_Three_Rhase_Elash

In three phase calculations (consisting of two liquid and a vapor phase) all three phases are in thermodynamic equilibrium with one another. Thus, the equations resulting from mass balance and equilibrium relationships are mentioned below:

$$
\begin{align*}
& F_{1}=\sum\left(x_{1, i}-y_{i}\right)=\sum^{z_{i}\left(1-K_{1}, \underline{i}\right)} W_{i}=0 \tag{2.15}\\
& F_{2}=\sum\left(x_{1, i}-x_{2, i}\right)=\sum \frac{z_{i}\left(1-\left(K_{1}, \underline{i} / K_{2}, \underline{i}\right)\right.}{W_{i}}=0 \tag{2.16}
\end{align*}
$$

Where $\quad W_{i}=R(1-U)+\left(1-R j(1-U)\left(K_{1, i} / K_{2, i}\right)+U K_{1, i}\right.$

$$
\begin{align*}
& x_{1, i}=z_{i} / W_{i} \tag{2.18}\\
& x_{2, i}=\left(z_{i} / W_{i}\right)\left(K_{1, i} / K_{2, i}\right) \tag{2.19}\\
& y_{i}=\left(z_{i} / W_{i}\right)\left(K_{1, i}\right)
\end{align*}
$$

$$
\begin{equation*}
\mathrm{U}=\mathrm{V} / \mathrm{F} \tag{2.21}
\end{equation*}
$$

V, F, and z_{i} are defined as moles of vapor, moles of feed, and mole fraction of component i in the feed respectively. Other variables have the same definition as described before. The system can be in one, two, or three phase region depending upon the values of both U and R. When U is oor 1.0, the system consists of only liquid phase(s) or only vapor phase respectively. The extreme value of R, of 0 or 1.0, simulates the single liquid phase system. The algorithm also uses Wegstein's method for convergence acceleration of phase compositions.

Adiabatic Threse Phase Flash

Adiabatic flash operation is simulated using decoupling technique to solve a set of equations assuming initially a three phase system. This method involves repetitive isothermal flash calculations at estimated temperature using Secant method based on discrepancy in calculated and specified enthalpy of the system. The equations associated with adiabatic flash calculations, in addition to Eqns. 2.15 and 2.16, are given below:

$$
\begin{equation*}
H_{F}=U H_{V}+(1-U) R H_{L 1}+(1-U) H_{L 2} \tag{2.22}
\end{equation*}
$$

where $H_{V}=\sum h_{V, i} Y_{i}+h_{d}$
$H_{L 1}=\sum h_{L, i} x_{1, i}+h_{1}^{\text {mix }}$

$$
\begin{equation*}
H_{L 2}=\sum h_{L, i} x_{2, i}+h_{2}^{m i x} \tag{2.25}
\end{equation*}
$$

where $h_{V, i}=$ ideal gas enthalpy per mole of component i

$$
\begin{aligned}
& h_{L, i}=\text { enthalpy per mole of pure liquid } i \\
& h_{d}=\text { enthalpy departure from ideal vapor enthalpy } \\
& h^{\text {mix }}=\text { heat of mixing }
\end{aligned}
$$

Equations 2.22 to 2.25 are based on one mole of feed.

2.3 General_purpose_Absorption/Distillation_Column Model (ABDIS)

The general purpose vapor-liquid equilibrium stage unit operations model is designed to demonstrate the following capabilities:
A. Modes of column operation
a) Absorber (end feed column)
b) Stripper (end feed column)
c) Distillation column (reflux ratio specified)
d) Distillation column (boilup ratio specified)
e) Reboiled Absorber (boilup ratio specified)
f) Refluxed Stripper (reflux ratio specified)
B. Multiple feeds (up to a maximum of 10)
C. Vapor and Liquid Sidestreams (up to a maximum of 10)
D. Multicomponent highly non-ideal system (up to a maximum of 10 components)
E. Multiple stages (up to a maximum of 100 stages)
F. Multiple stage heat exchangers (up to a maximum of 10)
G. Incorporation of Murphree efficiencies
H. Vapor, subcooled liquid, or vapor/liquid distillate product

2.3.1 Equations Associated to the column

The solution strategy is based on the algorithm developed by Naphthali-Sandholm (1971) which can accommodate the non-ideal systems chosen for this research. This model is supported by thermodynamic library discussed earlier in Section 2.1 and the detailed phase equilibria calculations method is reported elsewhere (Tsai, 1982). Figure 2.1 shows the n th stage configuration and nomenclature. For a N stage column, reboiler as stage one, the generalized discrepancy functions associated with stage n are given below:

Component_Material_Balance
$F_{1(n, i)}=\left(1+\frac{S_{n}^{L}}{I_{n}^{L}}\right) l_{n, i}+\left(1+\frac{S_{n}^{V}}{V_{n}^{N}}\right) v_{n, i}+V_{n-1, i} l_{n+1, i} f_{n, i}=0$

Eguilibrium_Relationship coupled with the Murphree stage efficiency, η_{n}
$F_{2(n, i)}=\eta_{n} \frac{K_{n, i} V_{n}}{L_{n}} I_{n, i}-V_{n, i}+\left(1-\eta_{n}\right) \frac{V_{n}}{V_{n}-1}=0$
Where the Murphree stage efficiency is defined by

$$
\begin{equation*}
\eta_{n}=-\frac{y_{n, i}-\underline{y}_{n-1}, \underline{i}}{K_{n, i} \underline{x}_{n-1, i}} \underline{Y}_{n-1, i} \tag{2.28}
\end{equation*}
$$

$$
\begin{aligned}
& \text { Subscript } n=\text { stage, } n=1,2, \ldots N \\
& i=\text { component, } i=1,2, \ldots c \\
& H=\text { vapor phase enthalpy } \\
& h=\text { liquid phase enthalpy } \\
& H_{\mathrm{f}}=\text { feed enthalpy } \\
& \mathrm{V}=\text { total vapor flow } \\
& \mathrm{V}=\text { component vapor flow } \\
& \mathrm{L}=\text { total liquid flow } \\
& \mathrm{l}=\text { component liquid flow } \\
& \mathrm{F}=\text { total feed } \\
& \mathrm{f}=\text { component feed } \\
& \mathrm{S}^{\mathrm{L}}=\text { liquid sidestream } \\
& \mathrm{S}^{\mathrm{V}}=\text { vapor sidestream } \\
& \mathrm{Q}_{\mathrm{n}}=\text { external heat exchanger }
\end{aligned}
$$

Figure 2.1 Stage Configuration
and the equilibrium constant is defined by

$$
\begin{equation*}
K_{n, i}=\left(\frac{y_{x}}{\underline{i}}\right)_{n}=\left(-\frac{\gamma_{i}}{\dot{\phi}_{i}} \dot{\underline{i}}^{\underline{i}}\right)_{n} \tag{2.29}
\end{equation*}
$$

Energy Balance

$$
\begin{align*}
F_{3(n)}= & \left(1+-\frac{S_{n}^{L}}{L_{n}}\right) h_{n}+\left(1+-\frac{S_{n}^{V}}{V_{n}}\right) H_{n}-H_{n-1}-h_{n+1}- \\
& h_{n}^{F}-Q_{n}+h_{n+1}^{\operatorname{mix}}=0 \tag{2.30}
\end{align*}
$$

The enthalpy calculations associated with Eq. 2.30 are calculated as follows:

Liguid_Enthalpy

$$
\begin{equation*}
h_{n}=I_{i} \int_{T r e f}^{T} C_{P L}(T) d T+h_{n}^{m i x} \tag{2.31}
\end{equation*}
$$

where,

$$
\begin{aligned}
\mathrm{C}_{\mathrm{PL}}(\mathrm{~T})= & \text { the component specific heat capacity } \\
& \text { which is a polynomial function of } \\
& \text { temperature } \\
\mathrm{T}_{\mathrm{ref}}= & \text { the reference temperature, normal boiling } \\
& \text { point } \\
\mathrm{h}_{\mathrm{n}}^{\mathrm{mix}}= & \text { the heat of mixing }
\end{aligned}
$$

Vapor Enthalpy

$$
\begin{equation*}
H_{v}=v_{i}\left\{\lambda_{i}+\int_{T r e f}^{T} C_{P v}(T) d T+\Delta H\right\} \tag{2.32}
\end{equation*}
$$

where,

$$
\begin{aligned}
\mathrm{C}_{\mathrm{PV}}(\mathrm{~T})= & \text { the component specific heat capacity } \\
& \text { which is a polynomial function of } \\
& \text { temperature } \\
\lambda_{\text {ref }}= & \text { the component heat of vaporization }
\end{aligned}
$$ pressure

2.3.2 Solution Algorithm

The componential vapor flow ($\mathrm{K}_{\mathrm{i}} \mathrm{i}$), componential liquid flow $\left(I_{n, i}\right)$, and temperature $\left(T_{n}\right)$ on each stage are treated as independent variables to represent the column conditions. Whereas the discrepancy functions, \bar{F}_{n} are the quantitative measure of the failure of the independent variables. The subscripts n and i denote the stage and system component respectively. The Naphthali-sandholm method proposed grouping of equations and variables according to stage, in which matrix of partial derivatives, needed in the NewtonRaphson algorithm, form a tridiagnonal sparse matrix. The functions and variables in the form of vector are given below:

$$
\bar{F}(\bar{x})=\left|\begin{array}{l}
\bar{F}_{1} \\
\bar{F}_{2} \\
\bar{F}_{3}
\end{array}\right|=0 \quad \bar{x}=\left|\begin{array}{c}
\bar{l} \\
\bar{v} \\
\bar{T}
\end{array}\right|
$$

where the vector \bar{l}, \bar{v}, and \bar{T} contains all the elements $l_{n, i}$, $v_{n, i}$ and T_{i} respectively. Simultaneous solution of all the variables involve Newton-Raphson iterative procedure to estimate the new set of independent variables, \bar{x}^{m+1}.

$$
\begin{equation*}
\overline{\Delta x} m+1=-\left(\frac{\overline{\overline{d F}}}{\bar{d} \bar{x}}\right)^{-1} \bar{F}_{m} \quad \text { and } \quad \bar{x}^{m+1}=\bar{x}^{m}+\overline{\Delta x}^{m+1} \tag{2.35}
\end{equation*}
$$

A flowchart describing the overall executive program and the
affiliated major subprograms is given in the Appendix B.

2.4 Process Simulator (PROSIM)

PROSIM has been developed as part of the research work. It is driven by an executive program from Chemical Engineering Simulation System (CHESS). CHESS is based on the sequential modular approach to solve for one process unit after another in a predefined sequence of blocks/nodes. This method requires known input streams and process conditions in order to establish unknown conditions in the output streams. PROSIM includes new and improved modules, new control blocks, and an enhanced thermodynamics package which altogether increases the capabilities to simulate highly non-ideal and complex processes like azeotropic distillation process. The system description of each of the new and improved blocks is discussed ahead.

ADBF - General_Purpose_Three_Phase_Flash_Rackage

The ADBF package is supported by routines which can simulate isothermal and adiabatic two and three phase flash, liquid-liquid separation, bubble and dew point temperature and pressure. Following routines are part of ADBF: ANYONE, DEWT, BUBT, BUBT2, DEWP, BUBP, FLSH2, FLSH1, AFLSH2, TWOLIQ, INTLIZ, KCALC2, and the thermodynamic subprogram library.

The package provides 13 different modes as options, which are summarized in the Equipment parameters List (Appendix B.2). The basic design equations are described
in section 2.2. The algorithm is capable of handling supercritical, condensable, normal, and nonvolatile components. All the computational modes are self initializing. Choice of four objective functions for liquid-liquid equilibria calculations provide flexibility to the user. These objective functions are based on phase compositions, activity coefficients and componential activities. Additional features discussed in section 2.3 have also been incorporated in ADBF.

ACTL- Azeotropic Column_Control_Block__Variable_Distillate Rate

The ACTL block is designed to control the performance of ternary azeotropic distillation column. The column, up to a maximum of four feed streams and no side stream may be operated by varying the split to achieve the desired bottoms product specification. In the research problem, of ethanol-water-benzene system the bottoms specifications of $99+$ mole \% ethanol, 1.E-4 mole \% water, and less than 1 mole \% benzene may be set as the desired goal. The computational algorithm estimates new values of the distillate rate and distillation calculations via DIST are performed in order to meet the objective.

The new estimate of the distillate rate is made after the analysis of bottoms product composition. Two unsatisfactory but computationally feasible solutions may arise and therefore the following steps are taken:
A. If alcohol is below specification and water is above specification the Secant method is used for obtaining a new estimate of distillate rate with calculated water composition in bottoms less specification as the objective function.
B. If alcohol is below specification and benzene is above specification then a step change in the predetermined direction is made in the distillate rate.

BCIL - Benzene Stripping_Column_Control_Block._Variable Distillate Rate - I

BCTL is a control block which may be used to update the distillate rate of a predefined distillation column. Information on distillate type, component code, and reference stream numbers is required to determine the bottoms rate based on component balance. The distillate rate is thereafter computed for the conventional column, assuming no side streams. The information componential flow rate is retrieved from the stream matrix (SEXTSV) corresponding to i th component and j th process stream. Retrieval of data is limited to a maximum of four components and four streams.

BZTL - Benzene_Stripping_Column__Control_Block,_Yariable Distillate_Rate - II

The function of $B C T L$ block is to control the performance of the benzene stripping column or a similar distillation column. It is supported by the rigorous distillation block DIST and data retrieval technique discussed in systems description of BCTL. The data retrieval method is used for the initial estimate of the split. The desired bottoms
component rate and component code are read through DATA statements because of the limitation of 25 Equipment Parameters for a block.

A new estimate of the distillate rate is made by using the secant method, with flowrate of first component as the objective function. Maximum number of data retrieval streams is three.

CNTL - Stream_Rate_Control Block - I

The function of CNTL block is to update the flow of the specified component in a stream. It may be used to update the make-up process stream during the iterative process of the flowsheet calculations. First input stream to the block is used for information retrieval where as the second input stream is used for updating the values.

The updating methods available are:
A. Manipulation of the componential flow based on the ${ }^{\text {afference }}$ in the flow rates of the two input streams, and
B. Manipulation of the componential flow based on the flow ratio of the first input stream over the second input stream.

Minimum and maximum permissible ratios and maximum permissible flow rate of the target stream may be provided through the equipment parameter list. The product stream is established via an isothermal flash.

DCTL - Control_Block, Feed-Forward Control of the Split = I
The DCTL block dynamically simulates the feed-forward control of the split in a distillation column based on the composite feed composition and rate and assumed distillate and bottoms product compositions.

DIST - Rigorous Distillation Package

DIST is a rigorous distillation package which is supported by DIST1, DIST2, MATRIX, CORECT, TESTCL, routines and the thermodynamic subprogram library. The following distillation options are available in the package:
A. Distillation column with reflux ratio specified
B. Distillation column with boilup ratio specified
C. Self refluxing distillation column
D. Self reboiling distillation column

The computational algorithm is based on Naphthali and sandholm (1971) method.

In brief, the solution methodology incorporates stagewise grouping of linearized set of mass balance, heat balance, and equilibrium equations. The block-tridiagonal matrix structure is solved by Thomas algorithm, whereas overall computational strategy is based on Newton-Raphson method. Distribution coefficient is treated as the function of temperature, liquid and vapor phase compositions. The algorithm also takes into account the Murphree plate efficiencies in a rigorous manner.

DSPT - Control_Block_ Feed-Forward Control_of the_Split - II
The function of DSPT block is similar to that of DCTL block, but the methods for the calculation of conventional column split are different. The DSPT block allows to read the feed multipliers, whose values range from 0 to 1 , pertaining to each of the components up to a maximum of ten. The multipliers for for each of the components and the composite feed entering the distillation column compute the the gross distillate and bottoms stream rates. A unique DSPT block can control distillate rate of a prespecified distillation block.

ECTL - Azeotropic_Column_Control_Block_ Variable_Entrainer Rate

The in depth analysis of the azeotropic column requires the estimation of optimum entrainer rate for a given process. Therefore, the FCTL block was designed to estimate the suitable entrainer flow rate (first feed) without changing its composition, which in effect can generate a bottoms product of given specification. This Block is modeled to study the effect of entrainer to second feed rate ratio on the azeotropic column's operation. Multiplicity of column solutions, discussed in Chapter 5, demand a sophisticated computational control of the column and stability in the sequence modular flowsheet calculations.

The new estimate of entrainer rate is made after the analysis of the bottoms product composition. Two unsatisfactory, but computationally feasible, solutions may arise
and thus the following steps are taken:
A. If alcohol is too wet then the secant method is used to estimate the new entrainer rate with calculated water composition in bottoms less specification as the objective function.
B. If alcohol is below specification and entrainer is above specification then a step change in the predetermined direction is made in the entrainer rate.

RCTL - Stream_Rate_Control_Block - II
RCTL block's function is to update a stream's componential rate. The stream used for the manipulation of rate is an input stream to the block. A maximum of four components may be selected for rate adjustment based on mass balance established by data retrieved from up to four different process streams. A typical example of such a block is to material balance a process by incorporating a make-up stream.

SBOX - Dummy Separation_Block
This block can replace a conventional distillation column and can be incorporated for preliminary flowsheet simulation purposes. The present version takes into account an overhead vapor product and a bottoms product as the output streams, with one feed to the column, which are established by dew and bubble point calculations respectively. Distillate and bottoms conditions are passed through equipment parameter matrix, summarized in Appendix
B.4. Data retrieval technique is similar to that described in system description of RCTL block, which in effect is used for computing bottoms rate and distillate rate. SBOX may be most useful for the columns whose separation is constrained. For example, ternary azeotrope formation in the overhead product of benzene stripping column in the ethanol-waterbenzene azeotropic distillation process.

SMIX - Special_Mixer-Splitter_Block

SMIX is a special mixer-splitter block. If one or more input streams after mixing form two liquid phases at the output stream conditions, then this block may be used. Two output streams are in equilibrium with each other and leave at the same temperature and pressure. This block can replace, for example, a mixer, condenser, and decanter in case two liquid phases are formed after mixing and cooling of one or more streams. Heat added or removed is stored in one of the EQPAR matrix locations, which can be fetched if required. Process equipment parameters specification are summarized in Appendix B.2.

The source code may be modified in future for three output streams leaving separately in equilibrium.

CHAPTER 3
 STUDY OF VARIOUS ENTRAINERS FOR THE AZEOTROPIC DISTILLATION PROCESS

Ethanol and water form an azeotrope which requires techniques like azeotropic distillation for the recovery of water free alcohol. Introduction of an entrainer into the system materially increases the relative volatility of water and thus permits the recovery of the ethanol as an effective high boiler. The detriment is that the entrainer must be recovered to produce an economic process.

3.1 Selection of Potential_Entrainers

Holland (1981) proposed a selection criteria based upon the polarity of the entrainer with respect to the polarity of alcohol and water. Berg (1969) has reported more exhaustive criteria based upon systems forming hydrogen bonds and systems not forming hydrogen bonds. The most important single cause for the formation of the alcoholwater azeotrope is hydrogen bonds. Berg includes the following methods for entrainer selection to separate a minimum azeotrope:
A. The entrainer forms a minimum binary azeotrope w° th one component, which is sufficiently lower in boiling point than the original azeotrope.
B. The entrainer forms a ternary minimum boiling azeotrope which is sufficiently lower than any binary azeotrope,
and in which the ratio of the original components is different from their ratio in the binary azeotrope. The criteria (suggested by Berg) for solubility of one component into another is internal pressure and hydrogen bonding dependent phenomena, and has little relation to polarity of compounds. To ascertain the alcohol dehydration and process flexibility the following criteria was adopted in the investigation of potential entrainers:
A. Entrainer with boiling point about or below that of alcohol to be separated.
B. Relatively non-polar component in nature, for example benzene and cyclohexane.
C. Form a large positive deviation from Raoult's Law to give a minimum azeotrope with alcohol or water in the mixture.
D. Be soluble in the alcohol-water mixture at the azeotropic distillation temperature range.
E. Be easily separated from water and alcohol.
F. Be stable at the azeotropic distillation temperature.
G. Be nonreactive with the components and the column materials.

Some of the entrainers mentioned Table 3.1 have been reported by Black (1980). The set of entrainers selected based upon above stated criteria are listed in Table 3.1.

3.2 Why UNIEAC_was used_for Activity Coefficient Data
 The representation of ternary vapor-liquid equilibria

Table 3.1

List of_Potential_Entrainers

Serial No.	Entrainer
1	Benzene
2	Cyclohexane
3	N-pentane
4	Cyclopentane
5	Methyl Cyclopentane
6	Isopentane
7	2-Mexane
8	1-Hexene
10	Diethyl Ether
11	$2,2-D i m e t h y l ~ P e n t a n e ~$
12	$2,2,3-T r i m e t h y l$

(VLE) data in the azeotropic distillation column requires very accurate prediction of activity coefficients. The NRTL (Renon, 1969) and modified UNIQUAC (Anderson, 1978) activity coefficient models can be used for the ethanol-waterentrainer systems provided the interaction parameters or experimental data is available at or near the operating conditions. Experimental ternary VLE data is available only for the ethanol-water-benzene and ethanol-water-di ethyl ether systems. The prediction of ternary VLE with parameters obtained from binary data is recommended only if all the binary pairs are miscible.

All the ternary systems considered in Table 3.1 have one immiscible pair, that is water and the entrainer. since the ternary VLE experimental data is unavailable for most of the systems to be studied and considering the other facts stated above, the UNIFAC (Fredenslund, 1977) group contribution model was selected for the prediction of activity coefficients. The data bank consisting of group area and volume constants for 77 secondary groups and VLE interaction parameters for 41 primary groups is shown in Appendix (A.3).

Thus, this research work includes the qualitative analysis of the azeotropic distillation column using various entrainers as represented by UNIFAC activity coefficient model to evaluate their relative performance.

3.3 Rerformance_of Entrainers in the_Azeotropic_Column

 Benzene, cyclohexane, n-pentane and diethyl ether havebeen reported as potential entrainers by Black (1980), Keister (1982), Prokopakis (1980), Tsai (1982), Venkatesh (1983) ard. The capability of UNIFAC was established for the systems whose binary or ternary data were available. The ternary data is preferred over the binary data because of the presence of one immiscible pair per ethanol-waterentrainer system. The published (Gmehling, 1977) NRTL VLE parameters for ethanol-water-benzene and ethanol-waterdiethyl ether obtained from ternary data are reported in Table 3.2. Also the NRTL VLE and LLE parameters for certain alcohol-entrainer and water-entrainer pairs are summarized in Tables 3.3 anc 3.4.

Direct comparison of ethanoi-water-benzene and ethanol-water-diethyl ether systems is made using the NRTL and the UNIFAC equations. The azeotropic distillation column temperature (T) and liquid phase composition (x) profiles for these systems are reported in Appendices C.1.3 and C.10.3 respectively. In the case of benzene in the azeotropic column, unIFAC predicts column profiles similar to that of NRTL, except for five stages near the reboiler. UNIFAC thus simulates the production of dry ethanol with approximately 8.3 mole \% benzene. when diethyl ether is used, the T and x profiles from UNIFAC match those from NRTL, but only qualitatively. Contrary to comments made by Black (1980), the performance of diethyl ether was poor. Black has not reported the results of ethanol-water-diethyl ether system using UNIFAC equation for the prediction of activity coefficients.

Table 3.2

Binary VLE_NRTL_Interaction parameters

from_Ternary_VLE_Data

```
System: (1) Ethanol - (2) Water - (3) Entrainer
Reference: Gmehling (1977)
```

(3)	$\stackrel{\mathrm{P}}{\mathrm{~mm}}{ }_{\mathrm{Hg}}$		Interaction	Parameters in cal	/g mole
Benzene	760	A_{12}	$=-86.763$	$\mathrm{A}_{21}=1289.908$	$\mathrm{c}_{12}=0.270$
		A_{13}	$=282.332$	$A_{31}=1096.899$	$\mathrm{a}_{13}=0.295$
		A_{23}	$=3820.954$	$A_{32}=2213.355$	$\alpha_{23}=0.267$
Diethyl -Ether	3862.9	${ }^{A_{12}}$	$=175.652$	$\mathrm{A}_{21}=1932.235$	$\mathrm{a}_{12}=0.295$
		${ }^{A_{13}}$	$=633.869$	$A_{31}=-18.524$	$a_{13}=0.275$
		A_{23}	$=2022.547$	$A_{32}=390.447$	$\alpha_{23}=0.283$

Table 3.3

Binary VLE_NBTL_Interaction parameters

from_Binary_VLE_Data

Reference: Gmehling (1977)						
(3)	$\begin{gathered} \mathrm{T} \\ \mathrm{deg} \end{gathered}$	$\stackrel{\mathrm{P}}{\mathrm{~mm}}{ }_{\mathrm{Hg}}$	Intera A_{13}	$\begin{gathered} \text { tion Parame } \\ \text { al } / \mathrm{g} \text { mole } \\ \mathrm{A}_{31} \end{gathered}$	ters ${ }_{1}^{\alpha_{13}}$	Data Ref.
Cyclohexane		760	761.7739	1393.7993	0.4376	$\begin{aligned} & \text { Yuan } \\ & (1963) \end{aligned}$
n-Pentane	20		412.7546	1183.3812	0.2886	$\begin{aligned} & \text { Ishii } \\ & (1935) \end{aligned}$
Methyl Cyclopentane		760	644.0719	1564.8490	0.4320	$\begin{gathered} \text { Sinor } \\ (1960) \end{gathered}$
n -Hexane		760	603.0883	1179.2617	0.2887	Rudray- a.vtseva (1963)

Table 3.4
 Binary LLE NRTL Interaction parameters

from_Binary LLE Data

```
System: (1) Ethanol - (2) Water - (3) Entrainer
Reference: Sorensen (1979)
```

(3)	$\begin{array}{r} \mathbf{T} \\ \operatorname{deg} \end{array}$	Interaction Parameters cal/g mole		
		A_{13}	A_{31}	α_{13}
Cyclohexane	25	5644.6696	3589.5155	0.200
n -Pentane	25	5759.1208	3766.5572	0.200
Methyl Cyclopentane	25	5798.8608	4345.4580	0.200
n -Hexane	40	6769.9077	3302.3940	0.200

The pressure (high pressure for some of the systems) and hydrogen bonding between water and ethanol causes the nonideality in the vapor phase. Therefore, the calculation of equilibrium coefficient incorporates the vapor phase fugacities. The vapor phase fugacity was estimated using the Virial equation of state, with the second virial coefficient B for the mixture evaluated using the Fayden and O'Connell (Hayden et al., 1975) method.

The system behavior with cyclohexane as the entrainer is presented in Appendix C.2.3. The liquid phase compositions, for the ethanol-water-cyclohexane, predicted by UNIFAC and NRTL match to a great degree but the temperature profile is not comparable. It should be noted that the NRTL parameters for the ethanol-water-cyclohexane system were obtained using binary data. The results for n-pentane, methyl cyclopentane and n-hexane with NRTL were found to be in the nonconvergence region. This may be attributed to the fact that:
A. The binary data for ethanol-n-pentane, water-npentane, water-methyl cyclopentane and water-nhexane were not in the domain of process conditions of the column, or
B. The prediction of ternary VLE with only binary data may be inappropriate for the systems under consideration, or
C. The process conditions, for example ethanol to entrainer ratio chosen were inadequate for the production of dry ethanol as the bottoms product.

The effect of number of stages in the column on the
bottoms product composition for system with benzene is shown in the Table 3.5. Both NRTL and UNIFAC predict the buildup of the water concentration in the bottoms product as the number of stages is reduced in the column. Depletion of water, at the ppm (parts per million) level, in ethyl alcohol product demand a significant number of stages in the stripping section. It should be noted that increase in the number of stages from 20 to 40 (for example), in Table 3.5, improves only the water level but does not affect the benzene concentration. To obtain the computational stability the boilup ratio and pressure level in the column had to be adjusted. The comparison of performance of various entrainers is reported in the table 3.6, which also shows different column pressure and boilup ratio for the different systems. The cases with cyclopentane, isopentane and 2,2-di methyl pentane did not converge.

The effect of process variables, like pressure and boilup ratio, on the column separation is investigated and reported in Tables C.1.2 to C.12.2 for all the entrainers listed in Table 3.1. It is observed that the effect of column pressure and boilup ratio on the bottoms composition was significant in the systems with benzene, cyclohexane, methyl cyclopentane, 1 -hexene and $2,2,3$-trimethyl butane. The solution with n-pentane and diethyl ether cases, shown in Appendices C. 3 and C.10, was in the unacceptable region, that is in the stripping section only depletion of entrainer was predicted, instead of depletion of both water and

Table 3.5

Comparison of the Effect of column Stages_on

Separation Using_NRTL_and_UNIFAC Models

System: Ethanol - Water - Benzene

Models: UNIFAC, NRTL for liquid phase and ideal vapor

Note : * means the Base case
entrainer, which is not in agreement with the study done by Black (1980). All the systems studied had regions of computational instability. Appendix C consists of column results and input to the $A B D I S$ program for all the entrainers considered for study.

3.4 Assessment of UNIFAC_and_Potential_Entrainers

The comparison of performance of twelve entrainers is summarized in the Table 3.6. Based on the VLE prediction by UNIFAC, a qualitative analysis is made for the selection of the entrainer for the ethanol-water azeotropic distillation process. Three cases (4D, 4 F , and 4 K), shown in the Table 3.6 corresponding to cyclopentane, isopentane, and 2,2dimethyl cyclopentane as entrainers, failed to converge for a very wide range of pressures and boilup ratios. The entrainers under consideration exert a wide range of vapor pressures therfore the system pressures are different for the different systems. Thus a constant set of operating conditions like entrainer rate and composition, and distillate or bottoms rate may not be suitable for all the systems. This part of the research was conducted at the earlier stages and optimum conditions were unavailable for each of the systems under consideration.

UNIFAC as the tool for predicting VLE of the highly nonideal systems involving water and entrainer concentrations at the ppm (parts per million) or ppb (parts per billion) levels in the stripping section of the column is suitable for the following studied systems:

Table 3.6
Comparison of Performance of Various Entrainersin

The_Azeotropic_Distillation Column

Case No.	Entrainer	Top stage Pressure (psia)	Eojlup Ratio	Bottoms Ethanol	Product Composition	
					Water	Eritrajner
4 A13	Benzene	12.0	5.113	99.4347	$3.6523 \mathrm{E}-9$	0.5653
4B14	Cyclo-c6	12.0	7.100	99.0900	$1.0111 \mathrm{E}-9$	0.9100
4 C 23	N -Pentane	30.0	6.015	67.8646	32.1354	4.38E-14
4D*	Cyclo-Cs			-	-	-
4E10	$\begin{aligned} & \text { Methyl } \\ & \text { Cyclo-c5 } \end{aligned}$	36.0	6.750	99.4025	$6.9560 \mathrm{E}-11$	0.5975
4F*	Isopentane			-	-	-
4G11	N -Hexane	50.0	9.624	99.5394	$9.7283 \mathrm{E}-9$	0.4606
4H25	2-Methyl Pentane	124.0	5.714	99.7446	$7.7106 \mathrm{E}-10$	0.2554
4111	1-Hexene	71.0	6.015	99.3832	3.9961E-11	0.6168
4J1	Diethyl Ether	135.0	6.015	68.7874	31.2126	5.16E-18
4K*	$\begin{aligned} & 2,2-\mathrm{Di}- \\ & \text { methyl-C5 } \end{aligned}$			-	-	-
4L19	2,2,3-Tri-methyl-c4	10.0	9.150	99.0554	1.600E-12	0.9446

Note : All the compositions are in mole \% .

* means the unconverged cases

A. Ethanol-water-benzene

B. Ethanol-water-cyclohexane
C. Ethanol-water-methyl cyclopentane
D. Ethanol-water-n-hexane
E. Ethanol-water-2-methyl pentane
F. Ethanol-water-1-hexene
G. Ethanol-water-2,2,3-trimethyl butane

CHAPTER 4

GLOBAL THERMODYNAMIC INTERACTION PARAMETERS ESTIMATION

The concept of representing vapor-liquid (VLE) and liquid-liquid equilibria (LLE) for a system using one set of parameters was introduced by Prausnitz (1980). An in depth analysis of this subject was conducted, as applicable to an ethanol-water-benzene system. A single set of parameters may be defined as global when they can represent simultaneous both the binary/ternary VLE and the ternary LLE in the temperature and pressure range of interest. The assessment of estimated parameters is done on the basis of its performance in the process environment, the expanded definition is presented in the Section 4.1. A two equation approach to represent vapor and liquid phase non-ideality demands a suitable equation, like UNIQUAC, NRTL or LEMF (Marina and Tassios, 1973), to predict liquid phase activity coefficients. NRTL is three parameter equation and LEMF is essentially a two parameter NRTL equation with a equals to a constant, -1. The modified UNIQUAC equation

$$
\begin{align*}
\ln \gamma_{i}= & \ln \frac{\emptyset_{i}}{x_{i}}+\left(\frac{Z}{2}\right) q \ln \frac{\theta_{i}}{\emptyset_{i}^{i}}+1_{i}-\frac{\emptyset_{i}}{x_{i}} \sum_{j} x_{j} 1_{j}-q_{i}^{\prime} \ln \left(\sum_{j}^{\prime} \theta_{j i}\right)+ \\
& q_{i}^{\prime}-q_{i}^{\prime} \sum_{j} \sum_{k} \theta_{k}^{\prime} \bar{\theta}_{k}^{\prime}-\frac{\tau}{\tau}{ }_{k j} \tag{2.1}
\end{align*}
$$

where
was selected for the study because of the fact that it has two temperature independent parameters per binary embedded in the variable τ and its reported performance is as good as or better than that of the NRTL for both, VLE and LLE. The research objective was to estimate temperature independent parameters $\left(a_{j i}\right)$ in Equation 2.2 stated above with the temperature parameter ($b_{j i}$) equal to 0. The Ethanol-waterbenzene system was undertaken for the study because of three reasons:
A. This system involves the existence of VLE and LLE in the alcohol drying process plant.
B. The system experimental data (VLE and LLE) is available for the temperature and pressure range of interest.
C. This system is also chosen for an in depth analysis of the process variables presented in Chapters 5 and 6.

A global set of temperature independent parameters was obtained based on the strategy discussed in the following Section and is reported in the Section 4.7.

4.1 Research_Problem_Definition

The global thermodynamic interaction parameters for the modified UNIQUAC model is defined as a set of parameters which can predict isobaric binary and ternary VLE, and isothermal ternary LLE. This global representation is to be used in the distillation columns and the two liquid phase decanter of the ethanol-water-benzene azeotropic separation
process plant as shown in the Fig. 6.6. The major advantages of obtaining such a set are:
A. Investigation of the capability of a global set of parameters to simulate vapor-liquid-liquid equilibrium operations in processes like three phase distillation.
B. Assessment of the UNIQUAC model with respect to the level of its sophistication and flexibility.

Prausnitzet al. (1980) has presented results of a few systems demonstrating the performance of a set of parameters estimated from simultaneous regression of binary VLE data and one or more LLE tie lines. For the ethanol-water-benzene process a set of parameters may be called global if it can simulate the column profiles of the key process units like, alcohol concentrator, azeotropic distillation tower, and benzene recovery column(s) at low pressures, and the two liquid phase compositions in the decanter.

The nonlinear regression analysis requires a comprehensive program which should be capable of handling isothermal multicomponent VLE data, isobaric multicomponent VLE data, and isothermal multicomponent LLE data, either independently or in combination. The following subsections discuss:

- The selection of the main algorithm and the salient features of the developed software.
- Various objective functions for the regression of
the VLE, LLE and VLE+LLE data.
0 VLE and LLE data regression results and the associated objective functions

A simple technique for the selection of a unique set of roots has also been suggested. In addition, an approach to the global parameter set has been discussed along with its performance in the key process steps.

4.2 Nonlinear Regression Program and its Limitations

The nonlinear regression program consists of two major sections. The first section of the code was the leastsquares minimization algorithm proposed by Marquardt (1964). The algorithm is essentially a maximum neighborhood method which, in effect, performs an optimum interpolation between the Taylor series method and the gradient method. The function to be minimized

$$
\begin{equation*}
\varnothing=\sum_{j=1}^{m}\left[Y_{j}-z_{j}\right]^{2} \tag{4.1}
\end{equation*}
$$

is used to compute the parameters, where Z is the predicted value and Y is the experimental or the target value of the dependent variable at the j-th data point. The use of either total pressure, temperature, vapor phase composition, activity coefficient or activity coefficient of a component at infinite dilution as a dependent variable for the regression of isothermal or isobaric multicomponent VLE data have been reported in the literature. In this research work the various VLE objective functions used to compute Z_{j} are

discussed in Section 4.3.

The limitation of a single dependent variable in Eq. 4.1 becomes more severe in the case of multicomponent LLE data regression, where the function could be based upon multiple estimated variables. Various LLE objective functions are discussed in Section 4.3.

The second section of the program deals with the user subroutine FOFX. The original capability of the program was limited to the regression of isothermal multicomponent VLE data. As part of this research work the second section was extended to serve the purpose of global parameters estimation.

4.2.1 Salient Features of the Enhanced Program

The revised version of the program includes the following diversified capabilities:
A. Multicomponent data regression of
a. Isothermal VLE data
b. Isobaric VLE data
c. Isothermal LLE data of the systems in which only one of the pairs is partially miscible (Type I system)
d. Isothermal VLE data and LLE data
e. Isobaric VLE data and LLE data together
B. Self initialization of the two liquid phase calculations, including the selection of dominating components in both the phases.
C. In Equation $2.2, a_{j i}$ and $b_{j i}$ are temperature
independent and temperature dependent parameters respectively. The option exists for the evaluation of $a_{j i}\left(b_{j i}=0\right)$, or $a_{j i}$ and $b_{j i}$.
D. Various objective functions to compute Z_{j} in the Equation 4.1 for the VLE data regression are incorporated. A selected list of such functions is presented in Table 4.1, with an exhaustive list given in Appendix D.2.
E. Objective functions to estimate Z_{j} in the Eq. 4.1 for the LLE data regression. A selected list of functions is presented in Table 4.2, with a complete list given in Appendix D.3. The weights (weight variables) associated with the tie lines are dynamically computed based on the relative error in the compositions.
F. Compatibility with the general purpose flash program (FLASH2), absorption/distillation program (ABDIS) (Tsai, 1982), and the improved process simulator (PROSIM) based upon CHESS (Motard et al., 1972).

4.3 Objectiye_Functions

The development of an objective function for the minimization of errors is of utmost importance. The structure of such a function is based on one dependent variable (Z_{j}) in the overall minimization function, represented by the Equation 4.1. The following subsections discuss separately the VLE and LLE objective functions.

4.3.1 Vapor-Liquid Equilibria_Objective_Functions

The area of VLE data regression has been extensively covered in the literature references. Isothermal data regression incorporates computation of bubble point pressure (P) and corresponding vapor phase component mole fractions (y_{i}). Isobaric data involves the calculation of bubble point temperature (T) and $y_{i}^{\prime} S$. In a study by Silverman and Tassios (1984), objective functions based on the total system pressure (P), and a combination of y_{i}^{\prime} s and P's have been found to perform better than those based upon activity coefficients, activity coefficients at infinite dilution, Gibbs free energy, or just y_{1}^{\prime} s. The VLE objective functions selected for the study are listed in Table 4.1. A complete list of functions is presented in Appendix D.2.

It should be noted that most of the objective functions take into account the absolute or relative difference of experimental and estimated dependent variable values. Therefore the target is to make the computed dependent variable in the minimization equation as close to zero as possible. The value $1.0 \mathrm{E}-4$ is used, instead of 0.0 , so as to avoid overflow problems in the calculation process.

Abstract

4.3.2 Liquid-Liquid Equilibria_Weighted_objective_Eunctions

Sorensen et al. (1979) have investigated functions in terms of activities and in terms of mole fractions. In addition, LLE objective functions can also be structured based on distribution coefficients, and on a suitable combinaticn of component activities, mole fractions, and

Table 4.1

Selected_Objectiye Functions for VLE_Data_Regression

$$
\begin{aligned}
& \text { VLE Fund } \\
& \text { (VLEFN) } \\
& \text { \# } \\
& 7 \quad z_{j}=\frac{1}{n} \sum_{i=1}^{n}\left|y_{e i}-y_{c i}\right| \\
& \left.8 \quad z_{j}=\frac{1}{n} \sum_{i=1}^{n} \frac{y_{e i}-y_{c i} \mid}{y_{e i}} \right\rvert\, \\
& 9 \quad Z_{j}=\frac{1}{n} \sum_{i=1}^{n}\left|\operatorname{Ln} y_{e i}-\operatorname{Ln} y_{c i}\right| \\
& 10 \quad z_{j}=\frac{1}{n} \sum_{i=1}^{n}\left|y_{e i}-y_{c i}\right|+\frac{\left|p_{e}-P_{c}\right|}{F_{e}^{-}}
\end{aligned}
$$

$$
\begin{aligned}
& 12 \quad z_{j}=\frac{1}{n} \sum_{i=1}^{n} \ln y_{e i}-\operatorname{Ln} y_{c i}\left|+\operatorname{In} P_{e}-\operatorname{Ln} P_{c}\right| \\
& 13 \quad Z_{j}=\left|P_{e}-P_{c}\right| \\
& 15 \quad Z_{j}=\frac{\left|P_{e}^{-}-P_{C}\right|}{{\underset{P}{e}}_{-}^{C}} \\
& 17 \quad Z_{j}=\left|T_{e}-T_{C}\right| \\
& 19 \quad Z_{j}=\frac{\left|T_{e}-T_{G}\right|}{T_{e}} \\
& 20 \\
& Z_{j}=\left|\operatorname{Ln}\left(T_{c} / T_{e}\right)\right|
\end{aligned}
$$

Table 4.1 (Contd.)

Selected Objective Functions for VLE Data_Regression

VLE Func
VLE Objective Functions (VLEFN)
\#

21

$$
\begin{aligned}
& z_{j}=\left|T_{e}-T_{c}\right|+\frac{1}{n} \sum_{i=1}^{p}\left|y_{e i}-y_{c i}\right| \\
& z_{j}=\frac{\left|T_{e}-T_{c}\right|}{T_{e}}+\frac{1}{n} \sum_{i=1}^{p}\left|y_{e i}-y_{c i}\right|
\end{aligned}
$$

Note: The objective functions for the regression of vaporliquid equilibria are computed for the j th data point and n number of components. Z_{j}, e, and c are defined as estimated dependent variable in the minimization Equation 4.1, experimental, and calculated values respectively. T and y_{i} are bubble point temperature and vapor phase component mole fraction respectively.
distribution coefficients. The functions based upon isoactivity criterion have a severe drawback in that its minimization does not guarantee the minimization of errors in the experimental and calculated mole fractions. In this research work, investigation was done with functions based on component mole fractions and on the distribution coefficient of the solute. In a ternary system, for example, solute is a distributed component in both the liquid phases. The distribution coefficient is the ratio of activity coefficient of a component in the heavy phase and that in the light phase. The selected LLE objective functions are reported in Table 4.2, with a complete list in Appendix D.2. For the ethanol-water-benzene LLE system, ethanol and benzene are defined as solute and solvent respectively. Benzene rich and water rich phases are defined as extract and raffinate phases respectively.

Care was taken to set value of $Y_{j}=1.0 \mathrm{E}-8$ in Equation 4.1, as mentioned earlier to avoid computational difficulties. In the weighted objective functions the variable w_{i}, in expressions listed in Appendix D.3, is defined as weight or (weight variable). The dynamic computation of weights, as suggested by Sorensen, on the basis of the error in the experimental and calculated mole fractions has been incorporated. Therefore manipulation of weights is done by reading a constant ' W ' : For example, $W=100$ would magnify the Z_{j}, calculated dependent variable for the Eq. 4.1, values by hundred times for LLE data points. This feature introduces great flexibility in parameter estimation from

Table 4.2

Selected objective Functionsfor LLE Data Regression

$\underset{\#}{\text { LLEFN LLE Objective Functions }}$
$5 \quad z_{j}=\frac{1}{2} n \sum_{i=1}^{n} w_{i}^{I}\left|x_{e i}^{I}-x_{c i}^{I}\right|+w_{i}^{I I}\left|x_{e i}^{I I}-x_{c i}^{I I}\right|$
$\left.6 \quad z_{j}=\frac{1}{2} n \sum_{i=1}^{n} w_{i}^{I} \operatorname{Ln} x_{e i}^{I}-\operatorname{Ln} x_{c i}^{I}\left|+w_{i}^{I I}\right| \operatorname{Ln} x_{e i}^{I I}-\operatorname{Ln} x_{c i}^{I I} \right\rvert\,$

$$
\sum_{\substack{i=1 \\ i \neq I e, I r}}^{n} \beta_{\mathrm{ei}}-\beta_{\mathrm{ei}} \mid
$$

$10 \quad z_{j}=\frac{1}{2} n \sum_{i=1}^{n} w_{i}^{I}\left|\operatorname{Ln} x_{e i}^{I}-\operatorname{Ln} x_{c i}^{I}\right|+w_{i}^{I I}\left|\operatorname{Ln} x_{e i}^{I I}-\operatorname{Ln} x_{c i}^{I I}\right|+$ $\overline{2}\left(\frac{1}{n}-\frac{1}{2}\right) \sum_{\substack{i=1 \\ i \neq I e, I r}}^{n}\left|\operatorname{Ln} \beta_{e i}-\operatorname{Ln} \beta_{c i}\right|$

Table 4.2 (Contd.)

Selected_Objective Functions for LLE_Data_Regression

LLEFN
\#

LLE Objective Functions

$11 z_{j}=\frac{1}{2} n_{n} \sum_{i=1}^{n} w_{i}^{I} \frac{\left|x_{e i}^{I}-x_{c i}^{I}\right|}{\frac{-\frac{1}{I}}{x_{e i}}+x_{c i}^{I}}+w_{i}^{I I} \frac{\left|x_{e i}^{I I}-x_{c i}^{I I}\right|}{x_{e i}^{I I}+x_{c i}^{I I}}+$

For all of the objective functions (w_{i}) weights are computed using W as a constant in the following equations

$$
w_{i}^{I}=\left|1.0+w \frac{\left|x_{e \underline{i}}^{I}-x_{c i}^{I}\right|}{x_{e i}^{I}}\right| \text { and }
$$

$$
w_{i}^{I I}=11.0+w \frac{\left|x_{e i}^{I I}-x_{c i}^{I I}\right|}{x_{e i}^{I I}}
$$

Note: The objective functions for the regression of liquidliquid equilibria are computed for the j th data point and n number of components. Subscripts e and c are defined for experimental and calculated values respectively. β_{i} and x_{i} are defined as the distribution factor (activity coefficients ratio) and liquid phase mole fraction respectively.
the simultaneous regression of VLE and LLE data.

4.4 Binary Vapor-Liquid and_Liguid-Liquid Equilibrium Data Regression

In order to meet the research objective of global parameter estimation for the ethanol-water-benzene azeotropic process analysis of the systems listed in the Table 4.3 were studied, where n denotes the number of data points. The major experimental data source was Gmehling et al. (1977) and Sorensen et al. (1979) of the DECHEMA series. In systems 6, 7 and 8 a single data point was chosen by averaging the constant temperature points reported by various contributors. This strategy would average out the errors encountered in recording the experimental data.

Ethanol and water are highly polar in nature, possess a high degree of association, and form hydrogen bonds. Therefore Virial equation of state was used to represent the vapor phase non-ideality. The second virial coefficients for the mixture were estimated using the Hayden and o'Connell method (1975). This method incorporates critical temperature, critical pressure, dipole moment, mean radius of gyration, and the association parameter to account for weak physical forces and chemical forces.

The modified UNIQUAC (Anderson, 1978) equation (Eq. 2.1) was used to estimate the liquid phase activity coefficients. The model consists of two temperature independent parameters per binary and is discussed at length in Appendix A.

Table 4.3

Equilibrium_Datasets for Regression_Analysis

\# Binary Systems	Type	Condition	n	Reference	Case Series	
1. Ethanol-Water	VLE	760 mm Hg	34	Reider (1949)	04	
2. Ethanol-Water	VLE	40	${ }^{0} \mathrm{C}$	13	Mertl (1949)	08
3. Ethanol-Benzene VLE	750 mm Hg	9	Tyrer (1949)	06		
4. Ethanol-Benzene VLE	40	${ }^{0} \mathrm{C}$	11	Udovenko (1962)	09	
5. Water-Benzene	LLE	25	${ }^{0} \mathrm{C}$	1	Polak (1962)	22
6. Water-Benzene	LLE	25	${ }^{0} \mathrm{C}$	1	Sorensen (1979)	23
7. Water-Benzene	LLE	35	${ }^{0} \mathrm{C}$	1	Sorensen (1979)	24
8. Water-Benzene	LLE	70	${ }^{0} \mathrm{C}$	1	Sorensen (1979)	25

4.4.1 Selection of the Objective Functions

The purpose of this part of research was to evaluate different functions for the minimization of the errors between experimental and calculated values of the dependent variables for isothermal and isobaric systems. Preliminary screening was done to isolate the selection of suitable VLE objective function(s) for further regression analysis. A list of objective functions, included for this study, are summarized in the Table 4.1. An acronym, VLEFN, would be used later for vapor-liquid equilibria objective functions.

Vapor-Liquid_Systems

Seven different functions were investigated for the isobaric VLE systems and it was observed that functions based upon T's (VLEFN \# 17.19, and 20) predict better T and Y_{i} values as compared to those based upon only $y_{i}^{\prime} s$ (VLEFN \# 7, 8, and 9). For the ethanol-water system at 760 mm Hg , VLEFN \# 21 (Case 04G in Table 4.i) predicts mean deviation in T and y_{i} of the order of $0.13{ }^{\circ} \mathrm{C}$ and 0.88 mole $\%$ respectively. Mean deviations in T and Y_{i} are $0.1{ }^{\circ} C$ and 0.58 mole $\%$, respectively, for the ethanol-benzene system at 760 mm Hg using VLEFN \# 21 (Case 06G in Table 4.5).

Cases 04 G and 06 G , in Tables 4.4 and 4.5 respectively, show that function involving both T's and Y_{i}^{\prime} (VLEFN \# 21) predict somewhat better results as compared to those predicted using other objective functions. A complete set of estimated parameter and corresponding predicted results for isobaric ethanol-water and ethanol-benzene systems are reported in Appendices E.1.1 and E.1.3. Thus, further

Table 4.4
Evaluation of VLE Objective_Function_from_Regression Results
of Isobaric_Ethanol-Water (VLE) System

System: (1) Ethanol - (2) Water Condition: $P=760 \mathrm{~mm} \mathrm{Hg}$ Gamma Model: Modified UNIQUAC Phi Model: Virial EOS Reference: Reider, R.M..et al. No. of data points = 34 (1949)

Case VLEFN	$\mathrm{T}_{\exp } \mathrm{T}_{\mathrm{cal}}$	$\mathrm{Y}_{1} \exp ^{-Y_{1 c a l}}$	Inf. Dilution	
No.	$\#$	in deg C	in mole \%	Activity Coeff

04 A	7	0.38	0.93	0.534	2.726	5.128	2.329
04 B	8	0.25	0.81	0.623	2.630	5.169	2.405
04 C	9	0.22	0.77	0.655	2.591	5.188	2.422
04 D	17	0.15	0.45	0.897	2.509	5.436	2.465
04 E	19	0.15	0.43	0.902	2.547	5.454	2.462
04 F	20	0.15	0.43	0.903	2.545	5.453	2.462
04 G	21	0.13	0.56	0.883	2.362	5.299	2.508

Table 4.5

Evaluation of VLE_Objective Function from Begression Results of Isobaric Ethanol-Benzene (VLE) System

System: (1) Ethanol - (2) Benzene Condition: P $=750 \mathrm{~mm} \mathrm{Hg}$ Gamma Model: Modified UNIQUAC Phi Model: Virial EOS Data reference: Tyrer D., (1912) No. of data points $=9$

06 A	7	0.33	0.68	0.624	1.869	9.198	4.562
06B	8	0.44	0.75	0.749	1.490	9.061	4.562
06 C	9	0.46	0.76	0.769	1.438	9.049	4.581
06 D	17	0.11	0.26	0.668	2.491	8.143	4.235
06 E	19	0.12	0.26	0.685	2.458	8.048	4.249
06 F	20	0.12	0.26	0.685	2.457	8.050	4.249
06 G	21	0.10	0.36	0.579	2.672	8.809	4.159

research on isobaric VLE systems was performed using function \# 21 shown in Table 4.1.

A similar analysis was made for the isothermal ethanolwater and ethanol-benzene systems. In addition to functions based on only y_{i} 's (VLEFN \#7, 8, and 9), functions based on P and $Y_{i}{ }^{\prime} s(V L E F N \# 10,11$, and 12) and functions based on only p's (VLEFN \# 13, 15 , and 16) were incorporated for the evaluation, and are therefore included in the Table 4.2. The evaluation of the above nine different VLE objective functions for the ethanol-water and the ethanol-benzene systems at $40{ }^{\circ} \mathrm{C}$ was done on the basis of predicted pressure and component vapor mole fractions, and infinite dilution activity coefficients. The selected results are summarized in Tables 4.6 and 4.7, and show that all the chosen functions predict good P, Y_{i}, and $\gamma_{i}{ }^{\infty}$ values for all the components, but the objective function(s) (VLEFN \# 9, and 10) having combination of $P^{\prime} s$ and Y_{i} 's yield better fits in terms of both pressure and vapor phase compositions.

Liguid-Liquid_Eguilibria_Systems

Seven different objective functions (LLEFN \# 5, 6, 8, 10, and 11) were considered for LLE data analysis. The chosen functions consist of the x_{i} 's of phases I and II, and the combination of x_{i} 's and distribution coefficient of solute(s). The work reported by Soares (1983) suggests an improvement in predictions near the plait point for functions using phase compositions combined with distribution coefficient(s). The criteria for evaluation was based

Table 4.6
Evaluation_of VLE Objective_Function_from_Regression Results_of Isothermal Ethanol_Water_(VLE)_System

System: (1) Ethanol - (2) Water Condition: $T=40 \mathrm{C}$ Gamma Model: Modified UNIQUAC Phi Model: Virial EOS Data reference: Mertl, I., et al. No. of data points = 13 (1972)

Case No.	VLEFN	$\mathrm{F}_{\exp ^{-P}} \mathrm{P}_{\mathrm{cal}}$		$\begin{gathered} Y_{1 \exp ^{-}} Y_{1 \mathrm{Ca}} \\ \text { in mole } \end{gathered}$		Inf. Dilution Activity Coeff	
		Fean	Max	Mean	Max	(1)	(2)
08A*	7	1.89	8.60	0.529	1.331	5.276	2.520
08B*	8	1.67	8.69	0.561	1.244	5.239	2.613
08C	9	1.66	8.72	0.564	1.239	5.243	2.615
088*	10	1.85	7.93	0.577	1.561	5.004	2.726
08E	11	1.74	8.35	0.541	1.289	5.140	2.644
08F*	12	1.72	8.32	0.560	1.433	5.108	2.695
08G*	13	1.74	8.24	0.559	1.412	5.092	2.688
08H*	15	2.09	7.25	0.673	1.805	4.833	2.783

Note: '*' means unconverged cases, values shown were obtained after 99 iterations

Table 4.7
Evaluation_of_VLE_Objective_Function from_Regression Results_of Isothermal_Ethanol=Benzene_(VLE).System
System: (1) Ethanol - (2) Benzene Condition: $T=40 \mathrm{C}$ Gamma Model: Modifieã UNIQUAC Phi Model: Virial EOS Reference: Udovenko, V.V.,et al. No. of data points = 11 (1952)

Case	VLEFN	Fexp $^{-P_{c a l}}$	Y $_{1} \exp ^{-Y_{1 c a l}}$	Inf. Dilution
No.	$\#$	in mm Hg	in mole $\%$	Activity Coeff

09A	7	1.55	3.25	0.358	0.819	15.371	4.973
09B	8	2.34	4.70	0.394	1.065	15.218	5.115
09C	9	2.46	4.90	0.406	1.128	15.194	5.136
09 D	10	0.88	2.02	0.404	2.020	14.817	4.863
09E*	11	1.28	2.94	0.371	0.854	15.031	4.948
09 F	12	1.37	3.15	0.376	0.825	15.002	4.969
09G	13	0.84	1.88	0.436	1.066	15.092	4.798
09H	15	0.83	1.89	0.442	1.075	15.028	4.792
09 I	16	0.83	1.89	0.441	1.073	15.020	4.793

Note: '*' shows unconverged case after 99 iterations
on the mean percentage relative difference of experimental and calculated component mole fractions in each of the two liquid phases. Results with the benzene-water system at $25^{\circ} \mathrm{C}$ are summarized in the Table 4.8. However the results of estimated and assessed parameters for benzene-water LLE system at 25,35 , and $75^{\circ} \mathrm{C}$ are reported in Appendix E.2.

The Series 22 cases shown in the Table 4.8, for the water-benzene system, show that function consisting of the difference in mole fractions (LLEFN \# 5) correlates poorly. LLEFN \# 8 from the group of functions based on only $x_{i}{ }^{\prime}$ s (LLEFN \# 6, 7, and 8) was observed to yield superior results. From the group of functions (LLEFN \# 9, 10, and 11) based on x_{i} 's and the distribution coefficients, function 11 predicted better results. Therefore, two of the objective functions, LLEFN \# 8 and 11 , were selected for the further study. Function \# 11 was expected to be more suitable for the multicomponent system, in which the distribution coefficient of only the solute (ethanol) was considered along with the x_{i} 's. The region of ternary liquid-liquid phase separation in the decanter, Fig. 6.6, exists near to the plait point.

4.4.2 Regression Results. Including Discussion of Proper Root Selection

Marquardt's algorithm has the tendency to yield a local minima instead of a global minima. Therefore, the final estimated parameters are extremly sensitive to the initial estimate of the parameter values. This was clearly

Table4.8

Evaluation_of LuE_Objective Function_from_Regression

Results of Benzene-Water (LLE) System at 25 C

System: (1) Benzene - (2) Water Condition: T = 25 C Gamma Model: Modified UNIQUAC

Data reference: Polak, J. (1973) No. of data points = 1

Case No.	$\begin{gathered} \text { LLEFN } \\ \# \end{gathered}$	Phase Rich in (1) Nean \% Rel. X Diff.*		Phase Rich in (2) Mean \% Rel. X Diff.*	
		(1)	(2)	(1)	(2)
22V	5	$0.1890 \mathrm{E}^{-1}$	$8.3530 \mathrm{E}+0$	$2.7090 \mathrm{E}+0$	$0.1120 \mathrm{E}-2$
22BB	6	0.2390E-3	$0.1053 \mathrm{E}+0$	$0.1422 \mathrm{E}+0$	$0.5960 \mathrm{E}-4$
22 CC	7	$0.0000 \mathrm{E}+0$	$0.1750 \mathrm{E}-3$	$0.4472 \mathrm{E}+0$	$0.1850 \mathrm{E}-3$
$22 Y$	8	$0.1255 \mathrm{E}-3$	0.5621E-1	$0.1337 \mathrm{E}+0$	$0.5963 \mathrm{E}-4$
22M	,	$4.9980 \mathrm{E}+1$	$0.2207 \mathrm{E}+5$	$1.0000 \mathrm{E}+2$	$1.0000 \mathrm{E}+2$
22 T	10	$0.1595 \mathrm{E}-2$	$0.7025 \mathrm{E}+0$	$0.7315 \mathrm{E}+0$	$0.3000 \mathrm{E}-3$
227	11	0.3920E-2	$1.7350 \mathrm{E}+0$	$1.1290 \mathrm{E}+0$	0.4711E-3

* $\left(X_{i \exp }-X_{i c a l}\right) / X_{i \exp }{ }^{100}$
demonstrated by starting the regressions with initial parameter values ranging from -3000 to $3000{ }^{\circ} \mathrm{K}$ in the normal $x-y$ plane of reference. The parameter values ranging of 3000 to 3000 are the extreme possible values for a wide variety of systems. Evaluation of estimated parameters was done on the basis of their capability to correlate the experimental VLE/LLE data.

Selected results compiled in the Tables 4.9 and 4.10 for the ethanol-water (VLE) and the benzene-water (LLE) systems show different final values for the binary interaction parameters. A wide range of final parameter values may also be observed in all of the binary data regression cases reported in Tables E.1.1 to E.2.4. One way to eliminate the erroneous roots is to compare the estimated VLE or LLE results with that of the experimental data. In ail of the binary systems (ethanol-water, ethanol-benzene and benzene-water) studied, the initial parameter values near unity have been found as the most reliable place to initiate the Marquarतt non-linear regression algorithm.

The binary VLE results shown in the Tables 4.9-4.10 and in Appendices E. 1 thru E. 2 were evaluated using pressure or temperature, vapor phase compositions and infinite dilution activity coefficients. The LLE results were evaluated using component values in both the liquid phases. Eence, the parameter values can be safely located in the global minima region based on its capability to produce the targeted profile(s).

Table 4.9

Multiple Roots Illustration with Isobaric
 Ethanol=Water (VLE)_System

| G4G | 21 | 1 | 1 | -50.48 | 342.07 | 0.13 | 0.883 | 5.299 | 2.508 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 04 H | 21 | 500 | 500 | -54.12 | 347.85 | 0.13 | 0.879 | 6.580 | 2.490 |
| 04 I | 21 | -500 | 500 | -55.88 | 349.86 | 0.13 | 0.865 | 5.319 | 2.490 |
| 04 J | 21 | 500 | -500 | -55.43 | 349.03 | 0.13 | 0.864 | 5.315 | 2.491 |
| 04 K | 21 | -500 | -500 | -50.82 | 342.21 | 0.13 | 0.877 | 5.295 | 2.506 |
| 04 L | 21 | 3000 | 3000 | -361.09 | 9963.07 | 3.00 | 6.987 | - | 1.515 |
| 04 M | 21 | -3000 | 3000 | -361.09 | 9100.83 | 3.00 | 6.987 | - | 1.515 |
| 04 N | 21 | 3000 | -3000 | 8070.10 | -206.88 | 1.48 | 3.648 | 3.625 | - |
| 040 | 21 | -3000 | -3000 | -57.02 | 351.70 | 0.14 | 0.864 | 5.326 | 2.487 |

Note: '-' shows very high calculated values

Table 4.10

Multiple Roots_Illustration_with Benzene-Water

(LLE)_System_at $25^{\circ} \mathrm{C}$
System: (1) Benzene - (2) Water Condition: $T=25 \mathrm{C}$

Gamma Model: Modified UNIQUAC

Data reference: Sorensen, et al. (1979)

LLEFN \# 8

NO. of data points $=1$

| Case Interaction Parameter, ${ }^{\circ} \mathrm{K}$ | Phase Rich in $1 \quad$ Phase Rich in 2 | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| No. Initial | Final | Mean \% X Diff.* Mean \% X Diff.* |

| 23 A | 1 | 1 | 392.17 | 424.59 | $6.27 \mathrm{E}+0$ | $2.08 \mathrm{E}+3$ | $1.27 \mathrm{E}+0$ | $0.51 \mathrm{E}-3$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 23 B | 100 | 100 | 1332.69 | 354.44 | $0.42 \mathrm{E}-2$ | $1.40 \mathrm{E}+0$ | $1.48 \mathrm{E}+0$ | $0.60 \mathrm{E}-3$ |
| 23 C | 200 | 200 | 1335.51 | 354.21 | $0.69 \mathrm{E}-2$ | $2.30 \mathrm{E}+0$ | $1.65 \mathrm{E}+0$ | $0.66 \mathrm{E}-3$ |
| 23 D | 200 | -200 | 1216.70 | 5192.00 | $0.41 \mathrm{~F}-2$ | $1.35 \mathrm{E}+0$ | $1.00 \mathrm{E}+2$ | $0.40 \mathrm{E}-1$ |
| 23 E | -200 | -200 | -145.93 | -286.40 | $4.93 \mathrm{E}+1$ | $0.16 \mathrm{E}+5$ | $0.12 \mathrm{E}+6$ | $4.92 \mathrm{E}+1$ |
| 23 F | 300 | 300 | 1325.14 | 355.17 | $0.31 \mathrm{E}-2$ | $1.04 \mathrm{E}+0$ | $0.95 \mathrm{E}+0$ | $0.38 \mathrm{E}-3$ |
| 23 G | 500 | 500 | 221.37 | 482.87 | $1.10 \mathrm{E}+1$ | $3.64 \mathrm{E}+3$ | $0.39 \mathrm{E}-2$ | $0.00 \mathrm{E}+0$ |
| 23 H | -500 | 500 | -287.84 | 1150.50 | $5.00 \mathrm{E}+1$ | $0.12 \mathrm{E}+5$ | $1.34 \mathrm{E}+0$ | $0.54 \mathrm{E}-3$ |
| 23 I | 500 | 200 | 1327.85 | 356.37 | $0.78 \mathrm{E}-4$ | $0.25 \mathrm{E}-4$ | $0.55 \mathrm{E}-1$ | $0.29 \mathrm{E}-4$ |
| 23 J | 1000 | 1000 | 1326.61 | 356.80 | $0.10 \mathrm{E}-2$ | $0.34 \mathrm{E}+0$ | $0.40 \mathrm{E}+0$ | $0.16 \mathrm{E}-3$ |
| 23 K | 1000 | 200 | 1326.94 | 356.69 | $0.72 \mathrm{E}-3$ | $0.24 \mathrm{E}+0$ | $0.31 \mathrm{E}+0$ | $0.13 \mathrm{E}-3$ |

$$
\left(x_{i \exp }-x_{i c a l}\right) / x_{i \exp }{ }^{ 100}
$$

4.5 Multicomponent VLE_and_LLE_data_Regression Results
 Regression analysis of multicomponent experimental data was grouped into three categories:

A. Ternary ethanol-water-benzene VLE system (Case Series 03)
B. Combination of ethanol-water and ethanol-benzene binaries with ternary VLE data (Case Series 70-74)
C. Ethanol-water-benzene LLE system (Case Series 21). Results from each of these Case Series are tabulated in the Tables 4.11-4.13.

Category A
Each of the three VLE cases, $03 \mathrm{~A}, 03 \mathrm{~B}$, and 03 C , were initiated with parameter values obtained from the regression of the respective binaries that are reported in the Table 4.11. It should be noted that benzene-water binary is a partially miscible system. Case 03C (Table 4.11) produced the best results in terms of vapor phase compositions, mean deviations of 0.33 C in $\mathrm{T}, 1.2$ mole $\%$ in Y_{1} (ethanol), and 2.6 mole $\%$ in y_{2} (water) were recorded.

The regression of ternary VLE data starting with the results obtained from the respective binary regression would be the safest and the best move to avoid local minimas. The prediction of ternary VLE at 760 mm Hg using with parameters (Case 03X) obtained from only binaries was poor in terms of both T and $y_{i}^{\prime} s$.

Category B

Significant improvement was recorded in the cases with

Table 4.11

Regression_Besults_of_Ethanol-Water-Benzene_(VLE) System
System: (1) EtoH - (2) Water (3) Bz Condition: $P=760 \mathrm{mmHg}$
Gamma Model: Modified UNIQUAC \quad Phi Model: Virial EOS
Data Reference: Hands, C.H.G., et al. (1945)
Data set: Ethanol-Water-Benzene (VLE, 760 mmHg)

03 A*	0.28	2.101	3.324
	(0.91)	(7.140)	(6.054)

03 BH	0.29	1.953	3.296
	(0.83)	(6.790)	(6.001)

$03 \mathrm{C}+$	0.33	1.242	2.597
	(0.83)	(3.601)	(5.234)

03 X	4.65 (11.58)	7.007	5.370
	(14.127)	(5.234)	

Initial Binary Interaction Parameters in deg K

$*$	1.0	1.0	1.0	1.0	1.0	1.0
\#	-57.02	351.70	-151.47	961.51	1.0	1.0
+	-57.02	351.70	-151.47	961.51	375.24	892.72
** dev in $T=\left(T_{\left.\exp -T_{c a l}\right)}\right)$ and dev in $Y_{i}=\left(Y_{i \exp ^{-}}-Y_{i c a l}\right) * 100$						

combined regression of binary and ternary data and the results are presented in Table 4.12. The best results were obtained when complete datasets of two miscible binaries (ethanol-water, ethanol-benzene) and a partial set of ternary dataset were regressed together. Case 74A shown in Table 4.12 has no more than $0.14^{\circ} \mathrm{C}$ mean deviation in temperature and 0.87 mole mean deviation in vapor phase mole fraction for binary as well as ternary VLE system. It was observed in section 4.4 that the UNIQUAC activity coefficient model is more sensitive to initial initialization in LLE data regression than in VLE data regression. The strategy, of initiating the computation from the parameter values obtained from respective binaries, discussed earlier was found to be unsatisfactory in the ternary liquid-liquid data regression.

Category C
Cases falling in the category of LLE experimental data regression are reported in Table 4.13. Case 21A, with starting values of unity, did not converge and case 21C with starting values from respective binaries lead to a poor correlation. Out of three correlation cases, Case 21 B yielded the best results with overall mean difference in experiment and calculated composition of 0.6638 mole $\%$ and with mean difference of solute distribution ratio of 0.0502 . The detailed results corresponding to multicomponent regression analysis are reported in Appendix E. 3 and E.4.

Table 4.12

Regression Results_of Combinations_of Isobaric

Binary and Ternary_VLE_System

System: (1) EtOH - (2) Water - (3) Bz Conaition: $\mathrm{F}=760 \mathrm{~mm} \mathrm{Hg}$ Gamma Model: Modified UNIQUAC Phi Model: Virial EOS Data Sets anc Feferences:
(a) EtOH-Water, Reider, R.M., et al. (1949)
(b) EtOH-Bz, Tyrer, D., (1912)
(c) EtOH-Wtr-Bz, Hands, C.H.G., et al. (1945)

Note: '-' means system not included in the regression

Table 4.13
Regression_Results_of_Ethanol-Water-Benzene (LLE)_System

Gamma Model: Modified UNIQUAC				
Data set: Ethanol-Water-Benzene (LLE, 35 C)				
Data Reference: Noracheskii, A.G., et. al. (1958)				
Case Diff.t of compositions in mole \%, Mean Mean				
Fhase Rich in (3) Phase Rich in (2) over- d. ratio (1) (2) (3) (1) (2) (3)				

$21 B$	0.693	0.634	0.519	0.707	0.983	0.449	0.664	0.050

$21 C$	1.755	3.605	4.718	1.047	2.295	1.248	2.445	0.090

Case Initial Binary Interaction Parameters in deg K

	A_{12}	A_{21}	A_{13}	A_{31}	A_{23}	A_{32}
21A*	1.0	1.0	1.0	1.0	1.0	1.0
21B	1.0	1.0	1.0	1.0	375.24	892.72
21C	-19.16	272.65	-121.87	1017.74	375.24	892.72

* unconverged case
+ Difference $=\left(X_{\text {iexp }}-X_{\text {ical }}\right) / X_{\text {iexp }} * 100$

4.6 Global_Thermodynamic_Parameters_Estimation

With the VLE and LLE data regression procedure established, simultaneous regression of VLE and LLE data was initiated. Various cases and variables are explained in Table 4.14. Each of the series has one or more cases, depending on the value of weight constant 'W'. Each of the cases listed in Table 4.14 has preselected VLE and LLE objective functions, two or more different data sets, and inclusion on either only one tie line or all the tielines in the ternary ethanol-water-benzene liquid-liquid equilibria experimental datasets. In the 'one-tie-line' cases, the thirdtie line from the plait point in the data reported by Morachevskii (1958) was included in the regression. This was decided based on the approximately known operating region of the decanter shown in Fig. 6.6.

4.6.1 Results of_Simultaneous VLE_and_LLE_data_Regression

Fifty one different cases have been extensively investigated and reported in Appendix E.5. For each of the cases estimated parameters have been evaluated based on its prediction of binary VLE, ternary VLE, and ternary LLE. The results can broadly divided into four Groups as shown in the Table 4.14.

Group I
Results of Group I, obtained from isobaric binary VLE and ternary LLE data, are summarized in Tables E.5.1A to E.5.1C (Appendix E.5). In 'one-tie-line' cases, 40A and 40B, increase in weight constant (W) improves the ternary VLE

Table 4.14

Simultaneous_VLE_and_LLE_Data_Regression Cases_and_Variables

| Case \# of | Data sets used \# of tie VLEFN LLEFN Varia- |
| :---: | :---: | :---: | :---: | :---: |
| series cases for regression lines | ble |

Group I

40	2	$a+b+g$	1	21	8	W
41	5	$a+b+g$	All	21	8	W
42	3	$a+b+g$	1	21	11	W
43	5	$a+b+g$	All	21	11	W
Group II						

46	4	$c+d+g$	1	9	8	W
47	4	$c+d+g$	All	9	8	W
48	4	$c+d+g$	1	9	11	W
49	4	$c+d+g$	All	9	11	W

Group III

50	3	$c+d+g$	1	10	8	W
51	3	$c+d+g$	All	10	8	W
52	4	$c+a+g$	1	10	11	W
53	4	$c+d+g$	All	10	11	W

Table 4.14 (Contd)
Simultaneous_VLE and_LLE_Data_Regression_Cases and_Variables

| Case of | | | |
| :---: | :---: | :---: | :---: | :---: |
| series cases fata sets used \# of tie | fogression | lines | blefn Varia- |

Group IV

60	3	$a+b+f+g$	All	21	11
61	1	$e+f$	All	21	11
63	1	$a+b+e+f$	All	21	11
66	1	$f+g$	All	21	11
6	W				

Total 51 cases

Where
a. ethanol-water, VLE, $P=760 \mathrm{~mm}$ Hg Fef.: Feider
(1949)
b. ethanol-bz,

VLE, $P=760 \mathrm{~mm}$ Hg Ref.: Tyrer
(1912)
C. ethanol-water, VLE, $\mathrm{T}=40 \mathrm{C}$ Ref.: Mert].
(1972)
d. ethanol-bz, VLE, $T=40 \mathrm{C}$ Ref.: Udovenko (1952)
e. water-benzene, LLE, $T=35 \mathrm{C}$ Ref.: Sorensen (1979)
f. etoh-wtr-bz, VLE, $P=760 \mathrm{~mm}$ Hg Ref.: Hands
(1945)
g. etoh-wtr-bz, LLE, T=35 C Ref.: Morachevskii(1958)
prediction but increases deviations in the liquid phase compositions in the ternary LLE prediction. In the other 'one-tie-line' cases, 42A, 42B, and 42C, (with LLEFN \# 11) the increase in weight constant (W) from 0 to 100 improves VLE and LLE fits. Increase in weight constant above that is not desirable. Regression of all the tie lines instead of one improves the LLE predictions, but introduce large errors in VLE, specially for ternary systems. Cases 41D and 41E show significant improvement in the overall mean difference in experimental and calculated compositions and solute distribution ratic. Cases 43 C and 43 F show that a weight value (W) of the order of $80-100$ yield better results.

Group II

In Group II isobaric binary VLE at 760 mm Hg is replaced with isothermal binary VLE data at 40 C , which in fact introduced large errors in prediction of isobaric ternary VLE in 'one tie line' cases 46A to 46D. Temperature extrapolation has much greater impact on the prediction of liquid-liquid equilibria as compared to that on the prediction of vapor-liquid equilibria. Based on the temperature in the distillate drum (Fig. 6.1) of $35{ }^{\circ} \mathrm{C}$, recommended by Tsai (1982), the isothermal VLE data available around this temperature was taken into account.

Increase in the weight constant in these cases improves the LLE fit in the region away from plait point. Changing in the LLEFN \# 8 to \# 11, case series 48, does not improve VLE and LLE fits. Regression of all the tie lines, significantly
improves the LLE prediction. Cases 47D and 49B show overall mean deviation of about 1 mole $\%$ in $x^{\prime} s$ and mean deviation of 0.05 in solute distribution coefficient. Increase in weight from 0 to 45 significantly improves LLE fit for cases (47 series) with LLEFN \# 8. The estimated parameters, mean and maximum deviations in P^{\prime} s and y 's for VLE systems, and mean and max deviations in x 's and distribution ratio of solute (ethanol) for the cases 46 to 49 are reported in Table E.5.3.

Group III
The cases (46-49) in Group II, possess large deviations in binary as well as ternary VLE predictions, hence VLEFN \# 9 was replaced with VLEFN \# 10 in the Group III category. Group III category incorporates cases 51 thru 53, which are reported with complete details in Appendix E.5. An improvement in binary VLE fit is observed in the Group III cases as compared to the Group II cases but ternary VLE prediction is similar in both the Groups II and III. Inclusion of 'all-the-tie-lines' in the regression analysis introduce large errors in the VLE fit. Cases 51 C and 53 D show very good LLE results but poor VLE prediction.

The results with isobaric VLE data regression is better than that of isothermal VLE data, in simultaneous VLE and LLE data regression. The developed regression software, discussed in section 4.2, is not capable of simultaneous regression of isothermal and isobaric VLE data.

Group IV
Further study, falling in Group IV category, was
continued with combination of different data sets consisting of isobaric binary and ternary VLE as well as isothermal binary and ternary LLE experimental data. The resulting Cases 60 thru 66 are reported in Table E.4. Inclusion of isothermal ternary VLE with isothermal binary VLE and ternary LLE improve the parameters significantly for binary and ternary VLE prediction, but at the cost of LLE correlation.

Cases 60A to 60D also show that increase in weight constant (W) improves LLE fit at the cost of VLE fit. Regression of only ternary VLE data with binary LLE data (Case 61A) or ternary LLE (Case 66A) data yield absolutely unacceptable LLE results though ternary VLE fit was very good. On the other hand binary and ternary VLE data with binary LLE data (Case 63A), give mean temperature deviation of $0.52{ }^{\circ} \mathrm{C}$ for ternary VLE and deviation in $y_{i}^{\prime} s$ of the order of 1 mole $\%$, while overall mean deviation in LLE x_{i} s was 5.25 mole \%. This shows that different combinations of binary and ternary, VLE and LLE, data (Group IV) could produce the parameters which are unsatisfactory for ternary LLE predictions. The best case in this Group IV is Case 63A.

The evaluation of the parameters was being made on the basis of comparison with experimental data reported in the literature, shown in Table 4.3. The final set of parameters may be global only if that set can represent temperature and composition profiles in the azeotropic tower, and the phase compositions in the distillate drum. This is important be-
cause the available complete set of ternary VLE data covers a wider range of temperature and liquid phase compositions than that existing in the real operating column. Thus the following section presents the performance of parameters in the real process environment and concluding remarks on the thermodynamic analysis of VLE and LLE data for the specific system of ethanol-water-benzene.

4.7 Conclusions_Based_on Separation_Performance in the_Key Process operations

The testing of parameters in the two key process units, the azeotropic distillation column and the two liquid phase decanter, would qualify the set(s) to be used in the complete process plant. The parameters obtained only from ternary VLe data regression (Case series 03) fail in the distillation column. This may be attributed to the fact that column operating range is part of the experimental data published by Hands et al. (1945). The estimated distillate rate, overhead vapor, and bottoms composition in the azeotropic tower for the converged cases are reported the Table 4.15 .

The estimated liquid phase split and two liquid phase compositions in the liquid-liquid phase decanter for all the converged cases, are summarized in the Table 4.16. Table 4.17 is part of Table 4.16 in which the overall mean difference in phase compositions and the phase distribution factor are listed. It should be noted that the results of this section were obtained only after establishing the process equipment operating conditions discussed extensively

Table 4.15
Performance_of Azeotropic Column with Various

Sets of Modified UNIQUAC_Parameters

Major fixed conditions

Table 4.15 (Contd)

Performance of Azeotropic_Column with Various

Sets of Modified UNIQUAC parameters

Major fixed conditions

Stream	Rate lbmole/hr		Ethanol	Water

| 43 C | 310.15 | 0.19 | 29.066 | 16.989 | 53.945 | 99.068 | $0.17 \mathrm{E}-11$ | 0.932 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 43 D | 301.80 | 2.88 | 26.891 | 17.452 | 55.658 | 99.946 | $0.94 \mathrm{E}-08$ | 0.054 |
| 43 E | 310.46 | 0.09 | 29.130 | 16.972 | 53.898 | 99.090 | $0.40 \mathrm{E}-14$ | 0.911 |
| 43 E | 307.15 | 1.16 | 28.393 | 17.155 | 54.452 | 99.030 | $0.27 \mathrm{E}-12$ | 0.970 |
| 47 A | 310.46 | 0.09 | 29.139 | 16.972 | 53.889 | 99.058 | $0.31 \mathrm{E}-13$ | 0.942 |
| 49 A | 306.18 | 1.47 | 28.169 | 17.210 | 54.621 | 99.026 | $0.15 \mathrm{E}-10$ | 0.974 |
| 50 C | 311.55 | 0.26 | 29.379 | 16.913 | 53.707 | 99.071 | $0.30 \mathrm{E}-12$ | 0.929 |

Note: * is the absolute difference of distillate rates as compared to that predicted by the NRTL equation.

Table 4.16

Performance_of Two Liguid Phase_Decanter_at $35^{\circ} \mathrm{C}$ with

Various Sets of Modified UNIQUAC parameters-I

Major fixed conditions

Feed Composition in mole \% Temperature

Ethanol Water Benzene deg C
$29.00 \quad 17.00 \quad 34.00$

Case \#	$\begin{gathered} \text { Fracl oniff } \\ \text { in } \end{gathered}$		Benzene Phase			Water Phase		
	(λ)	$\lambda *$	EtOH	Wtr	Bz	EtOH	Wtr	Bz

| NRTL | 0.8811 | 0.0 | 28.104 | 11.771 | 60.125 | 35.785 | 55.626 | 8.589 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 03X | 0.8396 | 4.71 | 28.666 | 7.330 | 64.004 | 30.749 | 67.617 | 1.635 |
| 21C | 0.8456 | 4.03 | 28.451 | 8.031 | 63.519 | 32.017 | 66.114 | 1.870 |
| 21X | 0.7519 | 14.66 | 24.076 | 5.494 | 70.430 | 43.907 | 51.858 | 4.235 |
| 40 A | 0.8252 | 6.34 | 27.904 | 7.366 | 64.731 | 34.195 | 62.432 | 3.373 |
| 40 B | 0.8155 | 7.44 | 27.346 | 7.422 | 65.232 | 36.313 | 59.356 | 4.333 |
| 41 A | 0.8124 | 7.80 | 27.634 | 6.633 | 65.733 | 34.897 | 61.888 | 3.215 |

Table 4.16 (Contd)

Performance_of_Two Ifiguid_Phase_Decanter_at $35^{\circ}{ }^{\circ} \mathrm{C}$ with Yarious Sets of Modified UNIQUAC_Parameters -I
 Major fixed conditions

Feed Composition in mole \% Temperature

Ethanol Water Benzene deg C
29.00
17.00
54.00
35

Case \#	Fracl ${ }^{\text {s }}$	Diff	Benzene Phase			Water Phase		
		in						
	(λ)	$\lambda *$	EtOH	Wtr	Bz	EtOH	Wtr	Bz
43 E	0.8147	7.54	27.912	6.424	65.664	33.790	63.492	2.718
43 F	0.8166	7.32	27.806	6.726	65.469	34.330	62.796	2.875
47A	0.8050	8.64	27.297	6.686	66.018	36.041	59.591	4.368
49A	0.8200	6.93	27.600	7.205	65.195	35.401	61.567	3.032
50 C	0.8126	7.77	27.175	7.023	65.802	36.910	60.232	2.858
53 A	0.8244	6.44	27.989	6.944	65.068	33.751	64.198	2.051
53 B	0.8175	7.26	28.094	6.334	65.572	33.047	64.626	2.327

Note: * is the absolute difference of the distillate rates as compared to that predicted by the NRTL equation.

Table 4.17
 Performance of Two_Liguid_Decanter with Various

Sets of Modified UNIQUAC_Parameters -II
NRTL parameters (Sorensen, 1979) as the basis of comparison

Farameters from case \#	Absolute difference in λ	```Overall mean diff. in phase comp. in mole %```
63 X	0.0415	5.4772
21 C	0.0354	4.7427
21 X	0.1292	6.1423
40 A	0.0559	3.8038
40B	0.0665	3.1213
41A	0.0687	3.9567
41 D	0.3287	20.6315
42 A	0.0505	3.4835
42 D	0.0554	3.6117
43 B	0.0692	4.3940
43 C	0.0863	3.9458
43 D	0.0401	4.7218
43 E	0.0664	4.4683
43 F	0.0644	4.1710
47 A	0.0761	3.3712

Table 4.17 (Conta)
Performance of Two Iiquid Decanter_with_Various

Sets of Modified UNIQUAC_parameters -TH

NRIL parameters (Sorensen, 1979) as the basis of comparison $\begin{array}{ccc}\text { Farameters } & \text { Absolute } & \text { Overall mean diff. } \\ \text { from case } & \text { difference } & \text { in phase comp. } \\ \text { in } 2 & \text { in mole \% }\end{array}$

Where $\lambda=$ moles of light phase/total moles in both phases
in Chapters 5 and 6.
The Cases 03 X and 21X show that parameters obtained from only binary data predict good column composition profiles. The column profiles of each of the case are compared with that estimated by NRTL parameters obtained from ternary VLE data reported by Gmehling et al. (1977). The two basic requirements of column profile are, existence of overhead vapor composition, after condensation to $35^{\circ} \mathrm{C}$, in the two liquid phase region, and at the same time high purity alcohol (ethanol) with parts per million of water and small amount of benzene as the bottoms product. The Cases 03 X and 21X give large error in the prediction of tie line compositions.

The performance of some of the parameters obtained from the simultaneous regression of binary VLE data and ternary LLE data show acceptable results in both process operations. Table 4.18 shows all the successful cases in the azeotropic column, and the two liquid phase decanter. The cut-off overall mean difference in phase compositions in the two liquid phase decanter was considered to be 4.0 mole \%. The best results are observed in Case $40 B$, which has overaj. mean difference in composition of 3.12 mole $\%$ as compared to that with NRTL parameters. This may be attributed to the fact that only one tie line near to the drum operating conditions was regressed. The best case (40B) in both the process units, showed improvement by 43.01 (case 03x), 34.19% (case 21C), and 49.18% (case 21X) in terms of

Table 4.18

List of_Acceptable_parameters_for_Azeotropic

Distillation_Column and_Decanter

Case Series \#	Acceptable Cases for		
	Column	Decanter	ColumnkDecanter
03	63X	-	-
21	21C.21X	-	-
40	40A, 40 B	40A,40B	40A, 40 B
41	41A.41D	41A	41 A
42	42A,42D	42A, 42 D	42A,42D
43	43B,43C,43D	43 C	43C
	43E,43F		
46	-	-	-
47	47A	47A	47 A
48	-	-	-
49	49A	49A	49A
50	50C	50 C	50 C
51	-	-	-
52	-	-	-
53	53A,53B	-	-

overall mean difference in composition. Hence the global set of modified UNIQUAC parameters (deg K) for (1) ethanol - (2) water - (3) benzene azeotropic distillation process is the following:
$A_{12}=-46.98 \quad A_{21}=336.04$
$A_{13}=-133.65$
$A_{31}=890.55$
$A_{23}=187.00 \quad A_{32}=1249.35$

STUDY OF PROCESS VARIABLES IN AZEOTROPIC DISTILLATION COLUMN

The ethanol-water-benzene azeotropic distillation column operates under very restricted conditions. The desirable bottoms product is very high purity alcohol with no more than a few parts per million (ppm) of water and minimal amount of entrainer. Benzene was selected as a potential entrainer for the detailed study of each of the process units as well as for process plant simulation because of availability of ternary VLE and LLE experimental data. A detailed research study of ethanol dehydration with various entrainers was presented in Chapter 2.

The overhead vapor product has two major constraints: firstly, the ternary azeotropic composition, and secondly the overhead vapor after condensation (at 95° F) must form two liquid phases. The phase separation phenomena in the decanter drives water out of the system and makes the azeotropic distillation process eligible for water removal from alcohol feeds that have been concentrated. This raw alcohol-water feed from biomass processes contains about 3.2 mole \% (7.79 wt. \%) alcohol, and is concentrated near the azeotropic composition.

The major process variables which have an impact on the azeotropic column are:
a. Ethanol-water feed concentration
b. Entrainer composition
C. Entrainer to feed rate ratio
d. Entrainer entry location
e. Feed entry location
f. Vapor distillate or bottoms product rate
g. Column pressure

Tsai (1982) has reported N (top stage) and $N-3$ as the suitable entrainer and feed entry locations for an N stage column. In the subsequent subsections the effect of ethanolwater feed concentration, entrainer rate, and vapor distillate rate have been studied in detail. The investigation was carried out in an atmospheric column. The effect of operating pressure was not incorporated in this research work.

5.1 Effect of Distillate_Rates_and_Multiplicity of Solutions
 Since there are no side streams in the azeotropic

 column, an increase in the distillate rate results in a corresponding decrease the bottoms product rate. System description of the ACTL block, introduced in PROSIM, has been previously discussed (Chapter 2.4). PROSIM (PROcess SIMulator) is an improved version of Chemical Engineering Simulation system (CHESS). The necessity of such a control block arose from the fact of multiplicity of solutions. Distillation calculations are repeated by the ACTL block until the column profile is in the desired region and the bottoms product specifications are met.The solutions fall in the region A, B or C as shown in the Fig. 5.1. The profile A leads to the correct solution
consisting of traces of water and small amount of entrainer in the ethanol product. The profile B dumps lots of water in the product, and profile C shows large quantity of entrainer in the dry alcohol. The computational procedure, discussed in the system description of ACTL, forces the distillation column into the desired operational region.

The results presented in Table 5.1 are for an 85 mole \% ethanol feed, and entrainer to feed ratio of 6.6098. On one hand, high distillate rate (distillate to total feed ratio of 0.9336) predicts too wet an ethanol product as bottoms, and places the overhead vapor composition outside of the two liquid phase envelope. On the other hand, low distillate rate produces alcohol product with large amounts of entrainer as an impurity. It is evident from the investigation that only a small range of distillate or bottoms rates are permitted for the column operation in the proper region.

5.2 Effect_of Entrainer Rate_on the_Azeotropic_Column

The entrainer feed stream enters at the top stage of the main column. The entrainer feed rate and composition has significant impact on the column performance. A study of the effect of entrainer rate on the column temperature and concentration profiles was conducted. The entrainer rate was changed in each run by maintaining constant ethanol-water feed conditions and bottoms rate. A new block, ECTL, introduced in the simulator treats the entrainer rate as an

Curve A: Dry and pure ethanol as bottoms (correct solution) Curve B: Wet ethanol as bottoms (incorrect solution) Curve C: Dry ethanol with excess benzene (incorrect solution) Curves $A, B \& C$ are liquid phase composition profiles of the azeotropic distillation column.

Fig. 5.1 Multiple Solutions in the Azeotropic column

Table 5.1

Effect of Yapor Distillate_Rate on Azeotropiccolumn

Major fixed conditions

Stream		Rate lbmole/hr		Composition in mole \% nol Water				Benzene
Ent	rainer (E)	E) 698.	9380	28.1	104	11.77		60.125
Feed	(F)	115.	1506	85.0		15.0		0.0
Entrainer/Feed Rate Ratio $=698.938 / 115.1506=6.0698$								
Cas \#	Dist Rate	$\frac{D}{E+F}$ Ratio	Distillate Comp.			Bottoms Composition		
			EtOH	Wtr	Bz	EtOH	Wtr	Bz
2 C 1	760.00	0.9336	35.196	13.494	51.309	66.178	33.822	0.0
2 C 2	684.00	0.8402	28.230	17.668	54.102	84.710	$0.259 \mathrm{E}-5$	15.290
2 C 3	694.3 0	0.8528	28.504	17.407	54.089	87.958	$0.167 \mathrm{E}-5$	5 12.042
2 C 4	704.7 0	0.8656	28.786	17.150	54.064	91.799	$0.114 \mathrm{E}-5$	58.201
2 C 5	708.2 0	0.8699	28.873	17.065	54.063	93.315	$0.104 \mathrm{E}-5$	5.685
2 C 6	711.70	0.8743	28.958	16.980	54.062	94.949	$0.976 \mathrm{E}-6$	65.051
2 C 7	715.30	0.8786	29.038	16.895	54.067	96.748	$0.978 \mathrm{E}-6$	63.252
2 C 8	718.90	0.8830	29.125	16.811	54.064	98.635	$0.113 \mathrm{E}-5$	51.365

Note: All the rates and compositions are in lbmoles/hr and mole $\%$ respectively.

D is the column vapor product rate
independent manipulative variable. The system description of the ECTL block is presented in the Section 2.4. Results compiled in Table 5.2 show that low bot toms rates as well as high entrainer rates are favorable for the production of dry ethanol within specifications, but overhead vapor composition tend to go towards the phase boundary. High bottoms rates and low entrainer rates tend to predict distillate compositions within the two liquid phase envelope, but at the cost of bottoms specifications. Excess entrainer (benzene) in the alcohol product requires a unidirectional decrease in the entrainer feed rate until the bottoms specifications are met.

Hence, the entrainer to feed rate ratio of approximately 2.8 and an associated bottoms rate of 79.0 lbmoles/hr make the column operate in the proper region for the 80 mole $\%$ ethanol feed and constant entrainer composition. Case 3C2, in Table 5.2 using a 60 stage column, demonstrates the requirement of additional theoretical stages for the production of drier alcohol in the case of binary feed compositions nearer to the azeotrope. Tables 5.3 and 5.4 summarize the overhead vapor and bottoms composition for 83 and 85 mole \% ethanol feeds respectively. These results also illustrate the requirement of additional separation stages discussed earlier. Further investigation was conducted with a tall column with 80 stages because it can handie large range of aqueous alcohol feed compositions. The study shows that the sensitivity of the entrainer requirement is more in the case of fresh feed with higher ethanol concentration.

Table 5.2
Effect of Entrainer/Feed Bate Ratio
on Azeotropic column-I

Major fixed conditions

Note: All the rates and compositions are in lbmoles/hr and mole \% respectively.
\# means the Case number
No. of stages $=60$ in case \# 3C2
No. of stages $=40$ in all other cases

Table 5.3

Effect_of Entrainer/Feed_Rate_Ratio

on Azeotropic Column-II

Note: All the rates and compositions are in lbmoles/hr and mole \% respectively.
\# means the Case number
No. of stages $=80$ in case \# 6C1
No. of stages $=90$ in all other cases

Table 5.4 Effect of Entrainer/Feed_Rate_Ratio on Azeotropic Column - III

Note: All the rates and compositions are in lbmoles/hr and mole \% respectively.
\# means the Case number
No. of stages $=70$

Since the process plant is very sensitive with respect to the two liquid phase composition and amount of the streams leaving the distillate drum, the lower ethanol feed concentration value should provide better control.

5.3 Effect of Feed_Concentration_on_the_Azeotropic_column

Alcohol-water feed to the azeotropic column is essentially the overhead product of the ethanol concentrator. The upper limit of ethanol concentration in the gross feed to the recovery plant is the azeotropic composition. At 760 mm Hg pressure ethanol-water azeotrope is formed at 89.43 mole \% or 95.2 wt. \% (Weast, 1975) ethanol. The azeotropic composition can be attained using the batch distillation process, whereas the continuous distillation require a large number of stages. Therefore study of an azeotropic column was conducted with the feed concentrations ranging from 70 to 89.4 mole 8 alcohol.

Calculations were performed by fixing the bottoms rate and specifications, as well as the feed rate and entrainer stream composition. It was observed that higher feed concentrations require lesser amounts of entrainer to perform the operation, the entrainer to feed ratio decreases with an increase in alcohol content in the feed. Also, the overhead and bottoms product specifications can be met by setting a suitable entrainer to feed rate ratio and a distillate or bottoms rate. The relationship between entrainer to aqueous feed rate ratio versus mole of of

Fig. 5.2 Entrainer/Feed Rate Ratio Vs EtOH in the Feed to the Azeotropic Column

Fig. 5.3 Ethanol product (Bottoms) Rate Vs EtoH in the Feed to the Azeotropic column

ethanol in the feed is shown in Fig. 5.2. Fig 5.3 presents the relationship between ethanol product (bottoms) rate versus ethanol concentration in the azeotropic column binary feed.

Figure 5.3 illustrates an approximately linear relationship between bottoms rate versus ethanol concentration up to 82.5 mole \%. Above that concentration the curve flattens out showing limitation on the production rate of dry alcohol. This analysis would directly provide the best initial values for the simulation of individual process unit as well as the complete process plant. A very similar behavior, but in the opposite direction, is observed with entrainer to feed rate ratio (Fig. 5.2). Also, the ratio becomes approximately constant above feed concentration of 82.5 mole \%.

The overhead vapor, from the azeotropic column, composition corresponding to the cases with alcohol concentration in the feed below 82.5 \% is approximately 29 (ethanol) - 17 (water) - 54 (benzene) mole \%. If the feed concentration is very near to the azeotrope then the overhead vapor composition falls nearer to the two liquid phase boundary. In addition, azeotropic alcohol-water feed composition leads distillate composition in the single liquid phase region and predicts too wet bottoms product. For a constant feed composition, bottoms product rates other than shown in Table 5.5 do not converge.

5.4 Conclusions

The azeotropic distillation column can be operated in

Table 5.5

Effect of Feed Concentration_on_Azeotropic Column

Major fixed conditions

Stream		Rate Ibmole/hr		Composition in mole \% Ethanol Water Be				
Entrainer(E)				28	104	11.7		60.125
Feed(F)		115.1506						0.0
	Etoh	Btms	E	Distillate Comp.			Bottoms Comp.	
\#	$\begin{aligned} & \text { comp } \\ & \text { in } F \end{aligned}$	Rate	Ratio	EtOH	Wtr	Bz	EtOH	Wtr
5C1	70.00	60.0	4.1286	29.084	17.084	53.858	99.846	$0.034 \mathrm{E}-9$
5 C 2	75.00	69.0	3.5000	29.171	16.971	53.859	99.421	$0.167 \mathrm{E}-8$
5 C 3	77.50	74,0	3.1387	29.138	17.004	53.858	99.343	$0.375 \mathrm{E}-7$
5 C 4	80.00	79.0	2.8000	29.135	17.007	53.858	99.070	$0.130 \mathrm{E}-5$
5 C 5	82.50	84.1	2.4316	29.070	17.073	53.857	99.037	$0.781 \mathrm{E}-5$
5 C 6	82.75	84.0	2.4413	29.183	16.958	53.859	99.002	$0.338 \mathrm{E}-5$
5 C 7	82.82	84.0	2.4280	29.184	16.957	53.859	99.116	$0.516 \mathrm{E}-5$
5 C 8	83.00	84.0	2.4359	29.265	16.876	53.859	99.049	$0.304 \mathrm{E}-6$
5C9	83.50	84.9	2.3750	29.288	16.853	53.859	99.023	$0.551 \mathrm{E}-4$
5CA	85.00	84.8	2.3700	29.831	16.290	53.879	99.162	$0.595 \mathrm{E}-5$
5CB	89.40	99.0	1.4963	31.137	14.911	53.952	93.626	4.4330

Note: All the rates and compositions are in lbmoles/hr and mole \% respectively. \# means the Case number
the desired region by manipulating the column material balance. The column's working region is very narrow and sensitive to minor variations in the process variables like, bottoms product rate, entrainer to aqueous alcohol feed rate ratio, and the amount of alcohol in the alcohol-water feed. The operating flexibility of the entrainer and the distillate rates decrease with an increase in percentage of alcohol in the feed.

The entrainer to feed rate ratio increases from 2.37 to 4.13 if the ethanol concentration in the feed is lowered from 85 mole \% to 70 mole \%. Very high alcohol concentrations near to the azeotrope makes the continuous ethanol concentrator uneconomical, but makes azeotropic column rather economical in operation from entrainer load point of view. On the other hand alcohol concentration as low as 70 mole $\%$ has an opposite affect. Sensitivity of feed concentration on the complete process plant, shown in Fig. 6.6, is discussed in detail in the subsequent chapter.

The relationship between entrainer to feed rate ratio and bottoms rate versus mole \% ethanol in the feed provides useful control setting information for the design and simulation. The drastic change in the slope of the curves, shown in Figs. 5.2 and 5.3, has an impact on the process configuration and is discussed further in the next chapter.

CHAPTER 6

STEADY STATE SIMULATION OF INTBGRATED ETHANOL DEHYDRATION PROCESS PLANTT

Azeotropic distillation is a proven process for the production of industrial and fuel grade ethanol. The modeling and simulation of this process requires a process simulator of extensive capabilities. The process simulator (PROSIM) developed as part of this research is discussed in Chapter 2.4. PROSIM incorporates rigorous computational techniques, advanced models and parameters to represent process units, and special control blocks to achieve viable solutions from the flowscheme. This research problem requires an ethanol concentrator, azeotropic distillation column, two liquid phase decanter, and an entrainer and alcohol recovery section which introduces one or two additional columns in the process.

After concentrating the ethanol feed to a composition near the binary ethanol-water azeotrope, an additional column (azeotropic column) is required for the production of water free alcohol. The azeotropic tower consists of two feeds, an alcohol-water feed and an entrainer rich feed. Various entrainers and their predicted performances have been investigated and reported in Chapter 3. The overhead vapor product from the azeotropic column forms two liquid phases, after condensation, the light phase is organic rich and the heavy phase is aqueous rich. This phenomena of liquid-liquid separation introduces the following two facts:
A. The decanter forces water out of the system and enhances bulk recovery of the entrainer, which is recycled.
B. The liquid-liquid separation process requires an appropriate equation and its parameters for phase equilibria representation.

The light (entrainer rich) phase is recycled to the top of the azeotropic column. Recovery of the balance of the entrainer and the ethanol from the aqueous phase leaving the distillate drum gives rise to an additional recovery and recycle scheme.

Various flow schemes with two, three, or four distillation columns are reported in the literature. The schemes differ mainly in the recovery and recycle of the entrainer and the ethanol.

- A flowscheme, reported by Venkatesh (1982) is shown in Fig. 6.1, recycles the heavy aqueous phase from the decanter to the ethanol concentrator.
- Keister (1980) and Prokopakis (1983) have simulated the ethanol-water-benzene process scheme as shown in Fig. 6.2. The process consists of a stripping column with the liquid distillate directed to the decanter, and the bottoms mixed with the fresh feed to the ethanol concentrator. Keister simulated this process using ASPEN PLUS (Aspen Tech, 1982)

0 The process scheme shown in Fig. 6.3 withdraws water as the bottons product from the stripper following decanter drum. This scheme has been reported by

Fig. 6.1 Alcohol Azeotropic Distillation Process Flowscheme - I (Venkatesh, 1982)

Black (1980) for the ethanol-water-pentane system and by Prokopakis (1983) for the ethanol-waterbenzene system. Black simulated the flow configuration with PROCESS (Simulation Sciences, Inc.).

- A three column configuration presented by Venkatesh (1982) for an optimization study is shown in Fig. 6.4. This scheme differs from the one presented by Black and Prokopakis (Fig. 6.3) in two ways. First the overhead vapor from the azeotropic tower is condensed in two heat exchangers, and the partially condensed stream is mixed with light organic phase from the two liquid phase decanter. Secondly, the liquid distillate from the entrainer stripping column is added to the light phase from decanter. Fig 6.5 presents the four column arrangement suggested by Tsai (1982). In this scheme, make-up benzene is added to the vapor overhead from the benzene stripper and then is added to the light organic phase as the upper feed (reflux) to the azeotropic tower. An additional column purges the water from the system. The final column's liquid distillate (with negligible benzene) is mixed with the feed to the azeotropic column. Ethanol in the aqueous phase from the two liquid phase decanter is thus completely recovered via two columns.

6.1 Analysis_of_Major_Segments_in the_Elowscheme
 Modeling of individual process units:

Fig. 6.4 Alcohol Azeotropic Distillation Process Flowscheme - IV

1) Ethanol concentrator,
2) Azeotropic distillation tower,
3) Two liquid phase decanter, and
4) Downstream stripping/recovery column(s),
is the building block of the complete process. An in depth analysis has been performed for the ethanol-water-benzene system. The developed flowscheme, which is similar to Fig. 6.2, is presented in Fig. 6.6.

6.1.1 Gross Water Removal

If the ethanol concentrator is incorporated in the flowscheme then the bulk quantity of water is removed as the bottoms. In the process of concentrating a very dilute aqueous ethanol (approximately 3.2 mole \% or 7.79 wt. \%) the result is a concentrated ethanol solution (approximately 82.8 mole \%) near the ethanol-water azeotrope. The two feed binary column is a straight forward design as compared to the other columns in the process.

6.1.2 Azeotropic_Column and Two_Liguid_Phase Decanter

The operation of the azeotropic column is very restricted, in the sense that for certain ethanol-water feed rate and concentration, the entrainer stream and bottoms rate are constrained so that one achieves the desired dry ethanol product as bottoms and the column overhead composition lies in the two liquid phase envelope. Two points B and D in Fig. 6.7 represent bottoms and distillate compositions. A detailed study of this tower has been presented in Chapter 5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Water
Benzene
D - Vapor Distillate
E - Light Phase from the Decanter
B - Bottoms Product
R - Heavy Phase from the Decanter

Fig. 6.7 Representation of output Streams from the Azeotropic column and the Two Liquid Phase Decanter

Feed to the two liquid phase decanter is dominated by the rate and composition. Therefore point D has to be in two liquid phase region. Points E and R in Fig. 6.7 correspond to phase compositions of extract (light phase) and raffinate (heavy phase) phases. The tie line computed with NRTL and modified UNIQUAC (discussed in Section 2.1) parameters is reported in Fig. 4.6. Phase compositions and slope of the tie line estimated by NRTL are in better agreement with the experimental LLE data (Morachevskii, 1958) at $35^{\circ} \mathrm{C}$. Tables 4.16 and 4.17 show the comparison of results of tie line predicted by various sets of UNIQUAC parameters with that of NRTL. Hence in the further research work, the tie line data was estimated using the NRTL equation and LLE parameters reported by Sorensen (1979).

The light phase from the decanter is dominant in benzene and correspond to 0.88 mole fraction of the total incoming liquid. This benzene rich phase (28.1 mole \% ethanol, 11.8 mole \% water, and 60.1 mole $\%$ benzene) is returned back to the azeotropic column. Thus points B, D, E, and R of Fig. 6.7 are practically fixed and therefore they provide excellent stream values to initialize the process simulation.

6.1.3 Benzene_Recovery System and_Make_up_Benzene

The aqueous phase from the two liquid decanter (composition, 35.78 mole \% ethanol: 55.63 mole \% water, and 8.59 mole \% benzene) is fed to a recovery section. This
stream composition and the associated rate are fixed because of inflexibility in point D on $F i g$. 6.7. The rate of this aqueous stream is dependent upon the ethanol-water feed composition to the azeotropic tower. It can be observed in Tables 5.2-5.4 and Fig 5.2 that the entrainer rate and bottoms rate of the azeotropic column are tied together to maintain column product within specifications.

There are two functions of the stripping column: first, to recover the benzene completely and second, to purge water and balance the plant's ethanol as its bottoms product. Behavior of the stripping column with various ethanol-water feed compositions is discussed in the subsequent section. It is observed that the vapor distillate composition is bounded by the predicted vapor phase ethanol-water-benzene azeotrope at that column pressure. The published ternary azeotropic composition (Weast, 1975) at atmospheric pressure is 22.80 mole $\%$ ethanol, 23.30 mole \% water, and 53.90 mole \% benzene, and the corresponding temperature is $64.86{ }^{\circ} \mathrm{C}$. This restricts the amount of benzene that can be stripped at atmospheric pressure. Therefore at atmospheric pressure the dual objective just stated is not achieved, but the reduction of operating pressure to approximately 4.8 psia results in benzene stripping and the producing the required material balance on ethanol and water as bottoms product.

6.2 Sensitivity of Water Recovery_with_Respect to the Azeotropic Column Binary Feed_Concentration

In order to study the benzene stripping column results
with varying azeotropic column feed concentration, a dummy distillation block (SBOX) was incorporated in PROSIM. The system description of SBOX block is described in section 2.4. The feed to this column or block is the heavy (aqueous) phase from the decanter. SBOX was used to attain the desired split which would lead to convergence in the simulation calculations. For a given feed condition, the bottoms rate of benzene stripping column is the summation of excess ethanol, and water which is fed with the ethanol feed to the azeotropic column.

This study was introduced because the actual stripping column (DIST block) lead to no solution and was oscillating for most of the azeotropic column feed concentrations. In other words, the distillation column fails to perform the desired separation as obtained by SBOX. It depicts that for the process configuration shown in Fig. 6.6, there has to be a range, probably small, of azeotropic column feed concentrations which can make the process work. Figs. 6.8 to 6.14 show the results obtained using SBOX, this being an azeotropic column feed concentrations from 70:30 to 83.5:16.5 mole \% alcohol-water mixture. In addition, results of actual distillation column simulation are reported in Tables 6.1 - 6.7 with the same range of azeotropic column feed concentration, and column pressure as the manipulative variable. For all these cases the dry ethanol product specification was fixed as $99+$ mole \% ethanol, less than 10 ppm (mole) water, and a small amount of benzene (entrainer).

As discussed in section 6.1.3, ternary azeotrope

Fig. 6.8: Effect of Azeotropic Column Feed Concentration (70 mole $\%$ ethanol) on the Benzene Stripping Section (using Block SBOX)

The following results are obtained using PROSIM, with ethanol-water feed composition of 70.0 mole $\%$ alcohol to the azeotropic column. Dry ethanol specifications: 99% + (E).

Table 6.1: Effect of Azeotropic Column Feed Concentration (70 mole \% ethanol) and Operating Pressure on the Benzene Stripping Column

Distillation column performance with ABDIS

Ser.\#	$\stackrel{P}{(\mathrm{psia})}$	Vapor Distillate			Bottoms		
		EtOH	Wtr	Bz	EtOH	Wtr	Bz
1	14.696	22.928	21.027	56.045	37.683	60.958	1.358
2	6.0	21.980	18.441	59.579	37.827	61.348	0.825
3	1.0	22.720	15.955	61.325	37.715	61.724	0.562
4	0.5	24.039	15.984	59.977	37.516	61.719	0.765
5	0.25	25.780	16.426	57.793	37.253	61.652	1.095

Note: All the compositions are in mole \%

Fig. 6.9: Effect of Azeotropic Column Feed Concentration (78 mole \% ethanol) on the Benzene Stripping Section (using block SBOX)

The following results are obtained using PROSIM, with ethanol-water feed composition of 78.0 mole $\%$ alcohol to the azeotropic column. Dry ethanol specifications: $99 \%+(E)$.

Table 6.2: Effect of Azeotropic Column Feed Concentration (78 mole \% ethanol) and Operating Pressure on the Benzene Stripping Column

Distillation column performance with ABDIS

Ser. \#	$\begin{gathered} P \\ \text { (psia) } \end{gathered}$	Vapor Distillate			Bottoms		
		EtOH	Wtr	Bz	EtOH	Wtr	Bz
1	14.696	22.934	21.023	56.025	37.837	61.358	0.751
2	6.0	22.019	18.449	59.532	37.985	61.778	0.178
3	1.0	23.250	16.192	60.555	37.787	62.148	0.010
4	0.5	24.062	15.997	59.938	37.664	62.197	0.110
5	0.3	25.266	16.267	58.463	37.466	62.148	3.529
6	0.1	28.336	17.366	54.295	36.948	61.975	1.037
7	0.05	33.240	17.034	47.011	36.158	61.580	2.230

Note: All the compositions are in mole \%

Fig. 6.10:Effect of Azeotropic Column Feed Concentration (82.5 mole $\%$ ethanol) on the Benzene Stripping Section (using block SBOX)

The following results are obtained using PROSIM, with ethanol-water feed, composition of 82.5 mole $\%$ alcohol, to the azeotropic column. Dry ethanol specifications: $99 \%+$ (E).

Table 6.3: Effect of Azeotropic Column Feed Concentration (82.5 mole $\%$ ethanol) and Operating Pressure on the Benzene Stripping Column

Distillation column performance with ABDIS

Ser. \#	$\begin{gathered} \text { P } \\ \text { (psia) } \end{gathered}$	Vapor Distillate			Bottoms		
		EtOH	Wtr	Bz	EtOH	Wtr	Bz
1	14.696	22.936	21.025	56.034	37.797	61.261	0.942
2	6.0	22.000	18.445	59.565	37.953	61.666	0.380
3	1.0	22.761	15.976	61.261	37.828	62.040	0.108
4	0.5	24.029	15.979	59.994	37.610	62.040	0.311
5	0.35	24.887	16.165	58.941	37.486	62.008	0.477
6	0.25	25.765	16.165	58.941	37.486	62.008	0.477

Note: All the compositions are in mole \%

Fig. 6.11: Effect of Azeotropic Column Feed Concentration (83.0 mole $\%$ ethanol) on the Benzene Stripping Section (using block SBOX)

The following results are obtained using PROSIM, with ethanol-water feed composition of 83.0 mole $\%$ alcohol to the azeotropic column. Dry ethanol specifications: $99 \%+(E)$.

Table 6.4: Effect of Azeotropic Column Feed Concentration (83.0 mole \% ethanol) and Operating Pressure on the Benzene Stripping Column

Distillation column performance with ABDIS

Ser. \#	$\underset{(\mathrm{psia})}{\mathrm{P}}$	Vapor Distillate			Bottoms		
		EtOH	Wtr	Bz	EtOH	Wtr	Bz
1	14.696	22.930	21.033	56.040	37.957	61.700	0.342
2	6.0	23.186	18.808	58.028	37.926	62.078	0.000

Note: All the compositions are in mole \%

Fig. 6.12: Effect of Azeotropic Column Feed Concentration (83.5 mole $\%$ ethanol) on the Benzene Stripping Section (using block SBOX)

The following results are obtained using PROSIM, with ethanol-water feed composition of 83.5 mole $\%$ alcohol to the azeotropic column. Dry ethanol specifications: 99% (E).

Table 6.5: Effect of Azeotropic Column Feed Concentration (83.5 mole \% ethanol) and Operating Pressure on the Benzene Stripping Column

Distillation column performance with ABDIS

Note: All the compositions are in mole \%

Fig. 6.13: Effect of Azeotropic Column Feed Concentration (82.82 mole $\%$ ethanol) on the Benzene Stripping Section (using block SBOX)

The following results are obtained using PROSIM, with ethanol-water feed composition of 82.82 mole $\%$ alcohol to the azeotropic column. Dry ethanol specifications: $99 \%+$ (E).

Table 6.6: Effect of Azeotropic Column Feed Concentration (82.82 mole $\%$ ethanol) and Operating Pressure on the Benzene Stripping Column

Distillation column performance with ABDIS

$\underset{\#}{\text { Ser }}$	$\underset{(\text { psia })}{\stackrel{P}{2}}$	Vapor Distillate			Bottoms		
		EtOH	Wtr	Bz	EtOH	Wtr	Bz
1	14.696	22.930	21.021	56.050	37.959	61.668	0.373
2	6.0	23.040	18.744	58.216	37.928	62.046	0.000
3	1.0	24.858	16.931	58.216	37.612	62.361	0.000

Note: All the compositions are in mole \%

Fig. 6.14: Effect of Azeotropic Column Feed Concentration (82.89 mole $\%$ ethanol) on the Benzene Stripping Section (using block SBOX)

The following results are obtained using PROSIM, with ethanol-water feed composition of 82.89 mole \% alcohol to the azeotropic column. Dry ethanol specifications: $99 \%+$ (E).

Table 6.7: Effect of Azeotropic Column Feed Concentration (82.89 mole \% ethanol) and Operating Pressure on the Benzene Stripping Column

Distillation column performance with ABDIS

Ser. \#	$\underset{(\mathrm{psia})}{\mathrm{P}}$	Vapor Distillate			Bottoms		
		EtOH	Wtr	Bz	EtOH	Wtr	Bz
1	14.696	22.931	21.019	56.050	37.947	61.667	0.386
2	5.0	23.262	18.444	58.293	37.915	62.109	0.000
3	4.8	23.320	18.387	58.293	37.883	62.117	0.000
4	4.0	23.556	18.145	58.293	37.852	62.172	0.000

Note: All the compositions are in mole \%
formation locks the stripper overhead vapor composition. For example, in the Fig. 6.8 and Table 6.1, at atmospheric pressure, the column predicts much different overhead and bottoms compositions for the same material balance. The change in pressure from 14.7 psia to 1 psia causes the benzene concentration in the overhead vapor to increase from 56 mole \% to 61.3 mole $\%$, which shows that vacuum column operation is nearer to the desired solution than that of the profile generated by atmospheric column. A continual search in the increasing direction of the azeotropic column feed concentration lead to a possible solution with 82.82 mole \% (ethanol) feed with a column pressure of 1 psia, which is shown in Fig. 6.13 and Table 6.6.

After the addition of ethanol concentrator in the flowscheme, Fig. 6.6, the use of SBOX block in place of benzene stripper leads to solution shown in Fig. 6.14. In this case the benzene stripping column represents the desired separation at approximately 4.8 psia column pressure, reported in Table 6.7. The optimum azeotropic column aqueous ethanol feed concentration has been established to be about 82.89 mole \% ethanol and 17.11 mole $\%$ water.

6.3 Sensitivity_of_Dry Ethanol_Product_Specification_on the_Benzene_stripping_Column

Simulation of process plant is feasible around 82.9 mole \% ethanol feed to the azeotropic column, as discussed in section 6.2. Thus, the feed concentration range for further study has been established to be between 82.5 to 83.0 mole $\%$
ethanol. The benzene stripping column results, with ethanol specification of $99.75+$ mole \%, and azeotropic column feed concentration between 82.5 to 83.0 mole $\%$ are summarized in Figs. 6.15 to 6.19 , and Tables 6.8 to 6.12.

Alcohol and water contents in the azeotropic column overhead stream change drastically, with constant feed concentration, as alcohol product purity is increased. Moreover benzene concentration in the overhead vapor, approximately 65 mole \%, is far from the ternary azeotropic composition predicted by stripper. This shows that the complete process operates under very narrow operating conditions. A small perturbation in the azeotropic column aqueous alcohol feed may lead to an unsteady and oscillating process, which would demand a stiff process control scheme.

For the constant feed concentration of 82.82 mole $\%$, increase in ethanol specifications from $99+$ to $99.75+$ mole $\%$ shifts the overhead vapor composition from 24.80 (E) - 16.98 (W) - 58.22 (B) to 14.72 (E) - 20.81 (W) - 65.08 (B) mole \%, which in effect is driven away from the azeotropic composition at atmospheric pressure. The results of the effect of ethanol product specification on the benzene stripper product streams are presented in Figs. 6.13, 6.17 and 6.19, and in Tables 6.6, 6.10 and 6.12.

6.4 Discussion on the Development of the Flowscheme and_Block_Diagram

The flowscheme configurations obtained from the published 1 iterature is covered in the beginning of this

Fig. 6.15: Benzene Stripping Section (using block sBOX) Results with Ethanol Product Specifications of 99.75 + mole \% and Azeotropic Column Feed Concentration of 82.5 mole \% Ethanol

The following results are obtained using PROSIM.

Table 6.8: Benzene Stripping Column Results with Ethanol Product Specifications of $99.75+$ mole $\%$ and Azeotropic Column Feed Concentration of 82.5 mole \% Ethanol

Distillation column performance with ABDIS

$\underset{\#}{\text { Ser. }}$	$\begin{gathered} \mathrm{p} \\ (\mathrm{psia}) \end{gathered}$	Vapor Distillate			Bottoms		
		EtOH	Wtr	Bz	EtOH	Wtr	Bz
1	14.696	22.918	21.025	56.053	37.705	60.985	1.309
2	1.0	22.714	15.951	61.345	37.736	61.759	0.505
3	0.5	24.037	15.977	60.002	37.551	61.759	0.702
4	0.25	25.767	16.419	57.824	37.272	61.697	1.041
5	0.1	28.352	17.382	54.262	36.870	61.542	i. 581

Note: All the compositions are in mole \%

Fig. 6.16: Benzene Stripping Section (using block SBOX) Results with Ethanol product Specifications of 99.75 + mole \% and Azeotropic Column Feed Concentration of 82.75 mole \% Ethanol

The following results are obtained using PROSIM.

Table 6.9: Benzene Stripping Column Results with Ethanol product Specifications of $99.75+$ mole $\%$ and Azeotropic Column Feed Concentration of $\mathbf{8 2 . 7 5}$ mole $\%$ Ethanol

Distillation column performance with ABDIS

Ser.\#	$\stackrel{P}{(p s i a)}$	Vapor Distillate			Bottoms		
		EtOH	Wtr	Bz	EtOH	Wtr	Bz
1	14.696	22.925	21.026	56.049	37.700	61.023	1.277
2	10.0	22.420	19.851	57.726	37.792	61.177	1.019
3	8.0	22.218	19.247	58.534	37.823	61.270	0.896
4	6.0	21.975	18.439	59.584	37.854	61.393	0.736
5	1.0	22.723	15.952	61.341	37.731	61.794	0.469

Note: All the compositions are in mole \%

Fig. 6.17: Benzene Stripping Section (using block SBOX) Results with Ethanol Product Specifications of $99.75+$ mole $\%$ and Azeotropic Column Feed Concentration of $\mathbf{8 2 . 8 2}$ mole $\%$ Ethanol

The following results are obtained using PROSIM.

Table 6.10: Benzene Stripping Column Results with Ethanol Product Specifications of 99.75 + mole $\%$ and Azeotropic Column Feed Concentration of $\mathbf{8 2 . 8 2}$ mole \% Ethanol

Distillation column performance with ABDIS

$\underset{\#}{\text { Ser }} \underset{(\text { psia })}{\text { P }}$		Vapor Distillate			Bottoms		
		EtOH	Wtr	Bz	EtOH	Wtr	Bz
1	14.696	22.935	21.034	56.051	37.680	60.958	1.364
2	6.0	21.975	18.440	59.587	37.833	61.359	0.830
3	1.0	22.711	15.955	61.325	37.709	61.729	0.567

Note: All the compositions are in mole \%

Fig. 6.18: Benzene Stripping Section (using block sBOX) Results with Ethanol Product Specifications of 99.75 + mole \% and Azeotropic Column Feed Concentration of 83.0 mole \% Ethanol

The following results are obtained using PROSIM.

Table 6.11: Benzene Stripping Column Results with Ethanol product Specification of $99.75+$ mole $\%$ and Azeotropic Column Feed Concentration of 83.0 mole \% Ethanol

Distillation column performance with ABDIS

Ser.\#	$\stackrel{P}{(p s i a)}$	Vapor Distillate			Bottoms		
		EtOH	Wtr	Bz	EtOH	Wtr	Bz
1	14.696	22.919	21.023	56.054	37.700	60.970	1.329
2	0.5	24.041	15.982	59.989	37.515	61.743	0.732

Note: All the compositions are in mole \%

Fig. 6.19: Benzene Stripping Section (using block SBOX) Results with Ethanol Product Specifications of 99.25 + mole \% and Azeotropic Column Feed Concentration of 82.82 mole \% Ethanol

The following results are obtained using PROSIM.

Table 6.12: Benzene Stripping Section Results with Ethanol Product Specifications of 99.75 + mole \% and Azeotropic Column Feed Concentration of $\mathbf{8 2 . 8 2}$ mole \% Ethanol

Distillation column performance with ABDIS

Str.\#	$\underset{(p s i a)}{P}$	Vapor Distillate			Bottoms		
		EtOH	Wtr	Bz	EtOH	Wtr	Bz
1	14.696	22.925	21.026	56.049	37.718	61.052	1.230
2	6.0	21.976	18.440	59.584	37.864	61.449	0.687
3	1.0	22.713	15.952	61.335	37.751	61.832	0.418

Note: All the compositions are in mole \%

Fig. 6.20 $\frac{\text { Block Diagram (Type A Scheme) for Industrial }}{\text { Ethanol Azeotropic Distillation Process }}$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fig 6.21 $\frac{\text { Block Diagram (Type B Scheme) for Industrial Ethanol }}{\text { Azeotropic Distillation Process }}$

Chapter (Fig. 6.1-6.5). The research was focused on the two primary configurations (Type A and B) given in the form of block diagrams in Figs. 6.20 and 6.21. The Type A flowscheme is a subset of Type B flowscheme, but from a process analysis standpoint they are considered as different configurations. The type A flowscheme includes only two distillation columns, the azeotropic column and the benzene stripping column. The Type B scheme includes three columns, an additional one is the ethanol concentrator.

- Scheme A (Fig. 6.20) assumes the main process feed is concentrated ethanol (approximately 82.8 mole \%). The primary dry ethanol product stream (36) is withdrawn as the bottoms from the azeotropic column (Block 6) and the other output stream (31) contains significant amount of ethanol.
- The objective of Scheme B (Fig. 6.21) is to process a very dilute alcohol feed stream (37) with ethanol concentration of approximately 3.2 mole $\$ 7.79$ wt. \%) and simultaneously recover ethanol from Stream 31.

Based on the analysis of the major segments of the flowscheme and the sensitivity studies reported in Sections 6.1-6.3, new blocks were introduced in PROSIM. The system description of these blocks is covered in Section 2.4.1. Since Scheme A is a subset of Scheme B, the discussion would be based on Scheme B as represented by the block diagram in Fig. 6.21. The simulation results are reported in the
following Section 6.5. The stream numbers in Figs. 6.20 and 6.21 are consistent.

Azeotropic Distillation Block

The overhead vapor composition in the single phase region and the production of wet alcohol are the main problems encountered during the recycle calculations. The use of either block BCTL, DCTL, or DSPT (Section 2.4.2), for controlling the distillation rate, in conjunction with the distillation block has been found to yield instability in the flowsheet calculations. Because of this fact blocks ACTL and ECTL (discussed in Section 2.4.1) were introduced.

The ACTL block has been designed to manipulate the azeotropic column overhead vapor rate. The bottoms product specification of $99+$ mole \% ethanol, less than 10 ppm (mole) water, and less than 1 mole $\%$ benzene is built into this block. ACTL provides computational stability from the stand point of overhead and bottoms compositions. It was experienced that the use of the distillation (DIST) block, for the azeotropic tower, introduces problems after the first or second trial of the process plant recycle calculations. The computational instability in using DIST may be due to the fact that the distillate rate requires a dynamic change because of the change in the recycle (entrainer) rate in the iterative calculation procedure.

Two-Liguid_Phase_Decanter_Block

Introduction of SMIX block in the place of condenser
and a two-liquid phase separator reduces the number of blocks in the flow scheme and therefore reduces the affiliated computational efforts. Moreover the old version of CHESS (Chemical Engineering Simulation System) was not equipped with any module to represent two liquid phase processes. It should be noted that the two liquid streams leaving this SMIX block are always in equilibrium with each other at a constant temperature.

It was experienced that the use of inappropriate parameters, in either NRTL or UNIQUAC equations, introduced severe errors in the composition and rate of each of the streams (Streams 15 and 30 in Fig 6.21) leaving the block SMIX. Since these two streams are in equilibrium, a simultaneous incorrect prediction of both the streams makes the recycle calculations diverge. On the other hand, error in the prediction of (Streams 15 and 30) compositions may generate another set of incorrect simulation results. Selection of Streams 15 and 30 as tear streams for the recycle calculations provides a better control because its initial estimate is made based on the composition of the overhead vapor stream from the azeotropic column.

Benzene_Stripping_Section_Configuration

The behavior of the benzene stripper was observed to be very stiff. This may be attributed to the following facts:
A. Inflexibility in the composition of the feed (Stream 30) to the stripper, as discussed in the section 6.1.3.
B. Predicted overhead composition as the ethanol-waterbenzene azeotrope at the column pressure.
C. Simultaneous operation of recovering benzene as distillate, and material balancing ethanol and water as the bottoms.

Because of azeotrope formation, the overhead composition in the stripping is constrained and this in effect sets the bottoms (Stream 31) composition. Because of above stated constraints the use of DIST block as a stripper at the atmospheric pressure leads to divergence in the flowsheet calculations. A detailed investigation of the effect of ethanol-water feed (to the azeotropic column) composition on the benzene stripper is reported in Section 6.3. To obtain the preliminary solution and suitable stripping operating conditions a dummy column block (SBOX) was introduced in the flowscheme, Fig. 6.21. The system description of SBOX is covered in the Section 2.4. The use of SBOX establishes the material balance constraints for the real benzene stripping column.

Benzene_Stripper overhead_Vapor_Stream_Recycle_Location
The Stream 22 leaving the stripper has a composition of approximately 23.5 mole $\%$ ethanol, 18.4 mole \%, and $\mathbf{5 8 . 3}$ mole $\%$ benzene, which will form two liquid phases after condensation to $35{ }^{\circ} \mathrm{C}$ temperature. Therefore the best process choice would be to direct Stream 22 towards the SMIX block, by forcing Stream 16 from the DVDR (Block 7) to be a null stream. Since the rate ratio of stream 18 over Stream

23 is approximately 57 (for 82.9 mole \% ethanol feed to the azeotropic column), the rate of Stream 22 does not adversely affect the rate and composition of Streams 15 and 30 (Fig. 6.21) significantly.

Make-up Benzene_Location

In the flowscheme calculations the make-up benzene was introduced in the two liquid phase decanter, by mixing it with the vapor distillate from the benzene stripper (Block 12). Since the rate of make-up benzene stream is not significant, its location is chosen to minimize a process upset. The addition of make-up stream as shown in Fig. 6.21 would cooperate in the liquid-liquid separation phenomena, which is a very desirable feature in this process plant. A special block CNTL, Fig. 6.21, estimates the amount of the make-up benzene on the basis of benzene losses in the dry ethanol product (Strearn 19). The system description of the CNTL block is covered in Section 2.4.1.

Ethanol Concentrator and_Ethanol_Beccovery

Ethanol leaving in Stream 31 (Fig. 6.21) is about 37 mole \%, therefore its recovery is economically important. This objective is achieved by introducing an ethanol concentrator into the Type B process flowscheme. Thus Stream 31 is recycled to the process via an ethanol-water column (Block 1). Introduction of a two feed binary distillation column serves two purposes:
a) It concentrates the primary aqueous alcohol feed (approximately $\mathbf{3 . 2 5}$ mole \% or 7.79 wt. \%) to the
desired concentration near the azeotrope.
b) It recovers the ethanol from the recycle Stream 31.

In such a developed flowscheme (Type B) high purity dry ethanol (99+ mole \%) is produced as the bottoms from the azeotropic column and gross water is purged from the ethanol concentration column as the bottoms product. The simulation results of two cases are presented in the following section.

6.5 Simulation_of_Industrial Ethanol_Azeotropic Distillation_Process_using_PROSIM (RROcess SIMulator)

The simulation studies were conducted foran industrial ethanol azeotropic distillation process using PROSIM as a tool, developed as part of the research. The simulation results are classified as shown below:

Without Ethanol Concentrator
(Case A)

With Ethanol Concentrator
(Case B)

The Cases A and B correspond to Type A and Type B flowschemes respectively as discussed in Section 6.4.
6.5.1 Simulated_Process_without_Ethanol_Concentrator_(Case_A)

PROSIM is based on sequential modular calculation approach. The final results obtained after iterative recycle
calculations using Type A block diagram shown in Fig. 6.22 and Table 6.13. The final stream conditions of the simulated process plant are reported in Table 6.13. Appendix F consists of a complete set of process and design variables as input, and the final results obtained for Case A.

Streams 15 and 30 were selected as the tear streams. The calculations demand very good initialization values, which are also given in Appendix F. A concentrated ethanol-water (82.8 mole $\%$ ethanol) feed is introduced into the process via azeotropic tower and dry ethanol (99 mole \%) is withdrawn as the main product. The azeotropic column (Block 6) operates at the atmospheric pressure whereas the benzene stripper (Block 12) operates at 1 psia in the Type A scheme. It is observed that overhead vapor Streams 18 and 22 (from distillation column blocks 6 and 12 respectively) are azeotropic mixtures as estimated by VLE NRTL parameters (Gmehling et al., 1977). This fact provides stability in the two liquid phase decanter (Block SMIX), where liquid-liquid equilibria calculations are done using LLE NRTL parameters (Sorensen et al., 1979) at $35^{\circ} \mathrm{C}$.

6.5.2 Simulated_Process_Including_Ethanol_Concentrator_(Case_B)
 Simulation of Type B scheme introduces more complexities as compared to that of the Type A scheme discussed in the Section 6.5.1. The final results are shown in the Fig. 6.23 and Table 6.14. A complete computer simulation, including process conditions, initial values, and final computed

Note: All the compositions are in mole of E - Ethanol, W - Water, B - Benzene

Fig 6.22 Simulated Industrial Ethanol Azeotropic Distillation Process without Ethanol Concentrator (Case A)

Table 6.13
 Simulation_Results: Industrial_Ethanol_Azeotropic Distillation_Erocess

*** CHEMICAL ENGINEERING PROCESS FLOWSHEET SIMULATION
PROSIM VERSION ONE
MARCH 1985

CASE A : INDUSTRIAL ETHANOL AZEOTROPIC DISTILLATION PROCESS SYSTEM: ETHANOL-WATER-BENZENE

VLE AND LLE EQUATIONS: NRTL** AND IDEAL GAS

STREAM NUMBER	14	15	16	17		
EQUIP CONXION	0	TO	6	10 TO	4	7 TO
		4	15 TO	6		
VAPOR FRACTION	0.0000	0.0000	0.9098	0.0000		
TEMPERATURE, F	95.0000	95.0000	45.7580	95.0000		
PRESSURE, PSIA	14.6960	14.6960	1.0000	14.6960		
ENTHALPY, K-BTU	-238.6199	-669.5720	0.0000	-668.7388		
L/H LIQUID FRAC	1.0000	1.0000	1.0000	1.0000		

COMPONENTIAL FLOWRATES, LB-MOLES/UNIT TIME

ETOH	95.36771	78.76645	0.00000	78.57763
WATER	19.78290	33.08500	0.00000	32.94643
BENZ ENE	0.00000	168.15891	0.00000	168.11349
TOTAL	115.15060	280.01035	0.00000	279.63757
STREAM NUMBER	18	19	22	23
EQUIP CONXION	6 TO 10	6 TO 17	12 TO 16	7 TO 10
VAPOR FRACTION	1.0000	0.0000	1.0000	0.9098
TEMPERATURE, F	149.1139	171.6422	52.4409	45.7580
PRESSURE, PSIA	14.6960	14.6960	1.0000	1.0000
ENTHALPY, K-BTU	4497.7769	-1.5666	69.4771	67.3723
L/H LIQUID FRAC	1.0000	1.0000	1.0000	1.0000

COMPONENTIAL FLOWRATES, LB-MOLES/UNIT TIME

ETOH		90.60188	83.34265	1.35585	1.35585
WATER		52.72929	0.00000	0.93700	0.93700
BENZENE		167.30380	0.80902	3.18826	3.99728
	TOTAL	310.63498	84.15167	5.48111	6.29012

STREAM NUMBER	30	31	32	33
EQUIP CONXION	10 TO 11	12 TO 0	4 TO 15	17 TO 16
VAPOR FRACTION	0.0000	0.0000	0.0000	0.0000
TEMPERATURE, F	95.0000	75.8444	94.9984	95.0000
PRESSURE, PSIA	14.6960	1.0000	14.6960	14.6960
ENTHALPY, K-BTU	-78.7528	-79.4617	-668.7445	-2.1034
L/H LIQUID FRAC	1.0000	1.0000	1.0000	1.0000

ETOH		13.19192	11.97723	78.57763	0.00000
WATER		20.58685	19.83069	32.94643	0.00000
BENZENE		3.13598	0.00002	168.11349	0.80902
	TOTAL	36.91476	31.80794	279.63757	0.80902

STREAM NUMBER	34	35	36	
EQUIP CONXION	16 TO	7	0 TO 17	17 TO
		0.9098	0.0000	0.0000
VAPOR FRACTION	45.7580	95.0000	171.6422	
TEMPERATURE, F	1.0000	14.6960	14.6960	
PRESSURE, PSIA	67.3723	-2.1034	-1.5666	
ENTHALPY, K-BTU	1.0000	1.0000	1.0000	

COMPONENTIAL FLOWRATES, LB-MOLES/UNIT TIME

ETOH
WATER
BENZENE
TOTAL

1. 35585
0.00000
$0.93700 \quad 0.00000$
3.99728
6.29012
0.80902
83.34265
0.00000
0.80902
84.15167

Note: ** - VLE and LLE NRTL parameters were used in the VLE and LLE systems respectively.
stream variables, is presented in Appendix F.
The aqueous alcohol feed to the process consists of approximately 3.2 mole \% (7.79 wt. \%) ethanol, with concentration to 82.8 \% ethanol being accomplished in an ethanol concentration column. In addition to Streams 15 and 30, Stream 14 was also used as the tear stream. A good estimate of the tear stream values were established by preliminary flowsheet calculations using sBOX instead of DIST as Block 12 . The rate of stream 11 was maintained at a constant value bypassing DCTL (Block 18) calculations which provided flexibility to the compositions of Stream 14.

It should be noted that the feed (Stream 14) to the azeotropic column in Fig. 6.23 attains an ethanol concentration of 82.9 mole $\%$ as compared to 82.8 mole \% in Fig. 6.21. Based on the componential rates of streams 14 and 19 (Fig. 6.23), the ethanol concentration in Stream 31 increases from 37.7 to 37.9 mole $\%$. At the same time a comparison between Fig. 6.22 and 6.23 show an increase in ethanol concentration from 35.7 to 35.8 mole $\%$ takes place in stream 30 . The above changes have a relatively significant effect on the composition of the overhead vapor (Stream 22) from the stripping column (Block 12). It has been stated earlier in Section 6.4 that composition of stream 22 is constrained by the ternary azeotrope formation at the column pressure conditions. Therefore to satisfy the component material balance of the benzene stripping column (Block 12), it was requirea to maintain the column pressure at 4.8 psia.

The design pressure of 1 atmosphere in the benzene

Table 6.14
 Simulation Results: Industrial_Ethanol_Azeotropic Listillation Process (Case B)

*** CHEMICAL ENGINEERING PROCESS FLOWSHEET SIMULATION
PROSIM VERSION ONE
MARCH 1985
CASE B: INDUSTRIAL ETHANOL AZEOTROPIC DISTILLATION PROCESS
SYSTEM: ETHANOL-WATER-BENZENE
VLE AND LLE EQUATIONS: NRTL** AND IDEAL VAPOR

STREAM NUMBER	10	11	12	14
EQUIP CONXION	0 TO 1	1 TO 3	1 TO 0	3 TO 6
VAPOR FRACTION	0.0000	0.0000	0.0000	0.0000
TEMPERATURE, F	184.0000	153.8289	211.9922	95.0000
PRESSURE, PSIA	14.6960	14.6960	14.6960	14.6960
ENTHALPY, K-BTU	-1250.2102	-67.7280	-3.6281	-238.5979
L/H LIQUID FRAC	1.0000	1.0000	1.0000	1.0000

COMPONENTIAL FLOWRATES, MOLES/UNIT TIME

ETOH		83.43170	95.45193	0.00037	95.45193
WATER		2528.23047	19.69789	2528.23340	19.69789
BENZENE	0.00000	0.00008	0.00000	0.00008	
	TOTAL	2611.66187	115.14990	2528.23364	115.14990

STREAM NUMBER	15	16	17	18
EQUIP CONXION	10 TO 4	7 TO	15 TO 6	6 TO 10
VAPOR FRACTION	0.0000	0.8775	0.0000	1.0000
TEMPERATURE, F	95.0000	99.6651	95.0000	149.1172
PRESSURE, PSIA	14.6960	4.8000	14.6960	14.6960
ENTHALPY, K-BTU	-668.9789	0.0000	-669.0304	4498.3696
L/H LIQUID FRAC	1.0000	1.0000	1.0000	1.0000

COMPONENTIAL FLOWRATES, MOLES/UNIT TIME

ETOH		78.62567	0.00000	78.63961	90.65314
WATER		32.98320	0.00000	32.99416	52.69683
BENZENE		168.12511	0.00000	168.12692	167.32634
	TOTAL	279.73398	0.00000	279.76068	310.67633

STREAM NUMBER	19	21	22	23	
EQUIP CONXION	6 TO 17	11 TO 12	12 TO 16	7 TO 10	
VAPOR FRACTION	0.0000	0.0000	1.0000	0.8775	
TEMPERATURE, F	171.6569	95.0000	101.9489	99.6651	
PRESSURE, PSIA	14.6960	14.6960	4.8000	4.8000	
ENTHALPY, K-BTU	-1.5339	-79.2645	73.4274	71.3476	
L/H LIQUID FRAC	1.0000	1.0000	1.0000	1.0000	

COMPONENTIAL FLOWRATES, MOLES/UNIT TIME

ETOH		83.43219	13.28153	1.26078	1.26078
WATER		0.00000	20.70020	0.99885	0.99885
BENZENE		0.79995	3.16979	3.16971	3.96967
	TOTAL	84.23215	37.15152	5.42935	6.22930

STREAM NUMBER	30	31	32	33
EQUIP CONXION	10 TO 11	12 TO 1	4 TO 15	17 TO 16
VAPOR FRACTION	0.0000	0.0000	0.0000	0.0000
TEMPERATURE, F	95.0000	129.9099	94.9976	95.0000
PRESSURE, PSIA	14.6960	4.8000	14.6960	14.6960
ENTHALPY, K-BTU	-79.3082	-42.7308	-669.0167	-2.0798
L/H LIQUID FRAC	1.0000	1.0000	1.0000	1.0000

COMPONENTIAL FLOWRATES, MOLES/UNIT TIME

ETOH		13.28933	12.02075	78.63961	0.00000
WATER		20.70906	19.70135	32.99416	0.00000
BENZENE		3.17323	0.00008	168.12692	0.79995
	TOTAL	37.17162	31.72217	279.76068	0.79995

Note: ** - The VLE and LLE parameters were used to represent vapor-liquid and liquid-liquid equilibria respectively.
stripping column causes divergence in the sequential modular recycle calculations. Hence the analysis of the two flowschemes (Type A and B) demonstrates the sensitivity of the process conditions. The comments made by Keister (1982) and Black (1980) about the stripping column design flexibility are contrary to the results obtained in this research study. The flexibility in the stripping column may exist if the composition of Stream 30 is erroneous.

An incorrect prediction of the composition (Stream 30) is possible if either an incorrect set of parameters or an inferior equation is used for ternary liquid-liquid equilibria calculations in the decanter (Block 10). A comparison of ties line calculated (Table 4.17) by NRTL and UNIQUAC equations demonstrate the superiority of the NRTL over UNIQUAC for this system. Because of this fact the NRTL equation was used for the two liquid phase calculations (Block 10). This is very evident from the investigation that the complete process operates under very narrow operating conditions.

6.6 Conclusions

A detailed analysis and simulation of an industrial ethanol azeotropic distillation process using benzene as an entrainer reveals that the individual units as well as the complete process plant operate within very a narrow range of operating conditions. The process simulator (PROSIM) developed as part of the research work was used to attain
the viable simulation results. PROSIM includes elegant process modules to simulate highly non-ideal distillation, liquid-liquid systems, and various control blocks to aid in obtaining the solution in the desired operating region.

The research concludes that a scheme (Type B) involving three distillation columns (ethanol concentrator, azeotropic column, and benzene stripping) and a two-liquid phase decanter, shown in Fig. 6.24, is the most suitable configuration for producing dry ethanol. The ethanol-water feed to the azeotropic column is a key process variable and a detailed study in Chapters 5 and 6 show that a very small window (82.8-82.9 mole \% ethanol) of feed composition to the azeotropic column can make the process simulation feasible. The ethanol concentration in the binary (ethanol-water) azeotrope at 1 atmosphere is 89.43 mole \% (Weast, 1975). The effect of this binary feed composition on the azeotropic column is covered in Chapter 5. The investigation of binary feed composition on the benzene stripping column is discussed in the section 6.2.

A similarity has been observed in the azeotropic tower and the benzene stripper in terms of their overhead vapor compositions being ternary (ethanol-water-benzene) azeotropic mixtures. This phenomena invites the strategy of combining these two streams and then condensing to form two liquid phases in the decanter. Representation of vaporliquid and liquid-liquid equilibria using different sets of parameters, in the NRTL equation, obtained from the respective ternary experimental data is of utmost importance.
Make up
Benzene

Recycle
Note: E - Ethanol; W - Water; B - Benzene; All the compositions are in mole of
Fig. 6.24 Simulated Industrial Ethanol Azeotropic Distillation Process Flowscheme (Case B)

The presence of 8.5 mole $\%$ benzene in the water phase from the two liquid phase decanter restricts the operatibility of the benzene stripping process. Therefore a design pressure of 4.8 psia (Fig. 6.23) is required to achieve the required material balance in the benzene stripper. The dry alcohol product specification of $99+$ mole $\%$, less than 10 ppm (mole) water, and less than 1 mole $\%$ is also an important variable. The effect of product specification on the benzene stripping column is discussed in the section 6.3. The product specification of $99.75+$ mole $\%$ ethanol, increases the benzene concentration in the overhead vapor from the benzene stripper. This phenomena places the benzene stripper in an infeasible operating region if benzene has to be completely recovered in that column. Simulation results of two process configurations (A and B) are reported and discussed in the Section 6.5.

OVERALI CONCLUSIONS AND RECOMMENDATIONS FOR FUTORE RESEARCH

7.1 Overall conclusions

A process simulator (PROSIM) of extensive process capabilities was developed based on the executive of CHESS program. Major features of PROSIM includes:
o Arigorous multi-stage distillation/absorption model based on Naphthali-Sandholm (1972) method.
o A capability of simulating three phase (vapor-liquid-liquid) processes.
o New and advanced control blocks for a wide range of process applications.

A comprehensive analysis and simulation, using PROSIM, of the inđustrial ethanol azeotropic distillation process using benzene as the entrainer reveals that the individual process units as well as the complete process plant operate over very limited range of operating conditions. A suitable flowscheme has been developed incorporating an ethanol concentrator, an azeotropic tower, a two liquid phase decanter, and a benzene stripper as the key process units. An optimum azeotropic column aqueous feed concentration of 82.9 mole $\%$ ethanol and 17.1 mole \% water has been established for the simulated process plant.

The composition of the overhead vapor from azeotropic and benzene stripping columns falls in the two liquid phase region, after condensation to $35^{\circ} \mathrm{C}$. The dry ethanol product
specification of $99+$ mole \% requires the benzene stripping column pressure to be at 4.8 psia . The increase in product specification value from 99+ mole \% to $99.75+$ mole \% (ethanol), for a constant aqueous ethanol feed composition to the azeotropic column, increases the benzene to ethanol ratio, in the stripper overhead vapor, from 2.4 to 4.4. This fact, determined by using the dummy separation module, introduces difficulty in the simulation calculations because in the actual benzene stripper the overhead composition is restricted by the ethanol-water-benzene azeotrope formation. An extensive study of azeotropic column shows the existence of multiple solutions. The desired solution can be achieved by manipulating the column material balance. Relationships between entrainer to feed rate ratio and bottoms rate versus ethanol concentration in the aqueous alcohol feed to the azeotropic tower have been established. It is concluded that for a constant ethanol-water feed to the azeotropic column, a very narrow range of entrainer and distillate rates can make the azeotropic column operational in the desired region with the overhead vapor in the required two liquid phase envelope and dry high purity ethanol as bottoms.

In another part of the research, a global set of modified UNIQUAC interaction parameters have been estimated, after the rigorous thermodynamic analysis of the ethanol-water-benzene system. The simultaneous regression of two isobaric binary vapor-1iquid systems (ethanol-water and ethanol-benzene) and a single tie line (ethanol-water-
benzene liquid-liquid system) yielded a set of parameters which can simulate the azeotropic column and the two liquid phase decanter in the process. The analysis was conducted using a regression package developed as part of this research work. Various minimization objective functions, including new ones, for vapor-liquid and liquid-liquid equilibria were evaluated in the selection process.

Finally, the performance of twelve potential entrainers was evaluated using the UNIFAC group contribution activity coefficient equation. The study shows that the following entrainers can be used in the ethanol dehydration process: benzene, cyclohexane, methyl cyclopentane, n-hexane, 2methyl pentane, 1 -hexene, and $2,2,3-t r i m e t h y l$ butane. In a study performed by Black (1980), n-pentane and diethyl ether can be used as the potential entrainers but unfortunately neither the thermodynamic parameters nor the experimental VLE data reported in the public literature.

7.2 Recommendations_for_Future_Research

The future research can be conducted in the various areas related to the alcohol dehydration processes. Recommendations can be broadly classified into six areas:
o Process simulator -- expansion of the present version of PROSIM

- Steady state simulation of alternate alcohol dehydration processes, for example ethanol drying via liquid-liquid extraction process

0

0

0

0

Simulation methods and computational algorithms Non-linear regression analysis of VLE and LLE data Phase equilibria calculation techniques Dynamic simulation of the process plant

7.2.1 Processs_Simulator

The following recommendations are made as enhancements to the process simulator (PROSIM):

1. The introauction of analytical, numerical, or direct search optimization techniques to study process optimization with respect to various variables.
2. Expansion of the rigorous computational algorithm to incorporate occurrence of chemical reaction in the distillation column as discussed by Murthy (1984).
3. Extension of distillation model to simulation three phase systems.
4. Incorporation of an liquid-liquid extraction algorithm proposed by Roche (1984).
5. Incorporation of the batch distillation model proposed by Clarke (1985) and Springer (1985).
6. Expansion of process modeling approach, using equation of state, reported by Banerjee (1985).
7. Inclusion of a broad component property database.

7.2.2 Steady State_Simulation_of_Alcohol_Dehydration Processes

Simulation of the alternate industrial alcohol dehydration processes using sophisticated techniques like
liquid-liquid extraction and supercritical extraction can be considered as the potential future research work.

7.2.3 Simulation_Methods_and_computational_Algorithms

Alternate process simulation approaches like

- Random sequential modular approach, and
- Simultaneous solution of equations approach should be considered for the future work.

The multicomponent absorption/distillation program (ABDIS) should be investigated in the following areas:

1. Study of the sensitivity on the separation in the azeotropic distillation column with respect to numerical and analytical solution of partial derivatives.
2. New and efficient techniques to solve sparse matrices described by Holland (1981).

7.2.4 Non-linear_Regression_Analysis_VLE_and_LLE_data

The research work should be continued on the subject discussed in Chapter 3 of this dissertation. It is recommended to investigate the following areas for the estimation of interaction parameters.

1. Investigation of Murthy's non-linear regression algorithm (Roth, 1985) and maximum likelihood method (Anderson et al., 1978).
2. Improvement of Marquardt's regression package, with respect to the driver program and affiliated
subroutines.
3. Estimation of temperature dependent parameters for various activity coefficient model.
4. Global thermodynamic parameters estimation and their evaluation in the alcohol dehydration processes using entrainers other than benzene.

7.2.5 Rhase_Equilibria_calculation Techniques

The future studies should also concentrate on the following topics:

1. Investigation of the Knox (1984) activity coefficient model in the vapor-liquid and liquidliquid process.
2. Entrainer study using a new group contribution model proposed by knox (1982) for the prediction of liquid phase activity coefficients.
3. Incorporation of the equations of state proposed by Peng and Robinson (1976), Soave (1971), and Chao and Seader (1961) for the computation of vapor and liquid phase via single equation calculation approach as reported by Banerjee (1985).

7.2.6 Dynamic_Simulation_of the_Alcohol_Dehydration processes

Dynamic simulation of the integrated process plant to incorporate the startup, shutdown and process variable change effects.
APPENDIX A
THRRMODYNAMICS: LIQUID PHASE MODELS POR NON-IDEAL SYSTEMS
A. 1 Liquid_Phase_Activity Coefficient Models
A.1.1 NRTL Equation
A.1.2 Modified UNIQUAC Equation
A.1.3 UNIFAC Equation
A. 2 Modified_UNIQUAC Model_for_Heats of Mixing
A. 3 UNIFAC VLE Interaction Parameters Databank

A. 1 Liguid Phase_Activity Coefficient Equations

The NRTL (Non Random Two Liquid) equation developed by Renon (1968) and the modified UNIQUAC (UNIversal QUAsi Chemical) equation proposed by Anderson (1978) are used for the estimation of liquid phase activity coefficients in vapor-liquid and liquid-liquid systems. Whereas the UNIFAC (UNIQUAC Functional-group Activity Coefficients) group contribution method is used for the prediction of activity coefficients. NRTL and UNIQUAC equations consists of three and two temperature independent adjustable parameters. respectively for each pair of components.

A.1.1 NRIL Equation

For a multicomponent mixture activity coefficient of component i is represented by

$$
\begin{align*}
& \ln \gamma_{i}=\frac{\sum_{i} \tau_{j i}{ }^{G_{j i}{ }^{x}{ }_{j}}}{\sum_{k} G_{k i} x_{k}}+\sum_{j} \sum_{k}^{x_{j} G_{i j}} G_{k j}{ }^{x_{k}} \quad\left(\tau_{i j}-\frac{\sum_{k}{ }^{\tau}{ }_{k j} G_{k j}{ }^{x_{k}}}{\sum_{k} G_{k j}{ }^{x_{k}}}\right. \tag{A.1}\\
& \text { where } \tau_{j i}=\left(\lambda_{j i}-\lambda_{i j}\right) / R T \quad G_{j i}=\exp \left(-\alpha_{j i} \tau_{j i}\right)(A .2, A .3) \\
& { }^{\tau_{i j}}=\left(\lambda_{i j}-\lambda_{j j}\right) / R T \quad G_{i j}=\exp \left(-\alpha_{i j}{ }^{\tau}{ }_{i j}\right)(A .4, A .5) \\
& \alpha_{i j}=\alpha_{j i} \tag{A.6}
\end{align*}
$$

A.1.2 Modified UNIQUAC Eguation

For any component i, the activity coefficient is given by
$\ln \gamma_{i}=\ln \frac{\emptyset_{\underline{i}}}{x_{i}}+\left(\frac{\eta}{2}\right) q \ln \frac{\theta_{\dot{i}}}{\varnothing_{i}^{\prime}}+I_{i}-\frac{\emptyset_{i}}{x_{i}} \sum_{j} x_{j} l_{j}-q_{i}^{\prime} \ln \left(\sum_{j} \theta_{j}^{\prime \tau}{ }_{j i}\right)+$

$$
\begin{equation*}
q_{i}^{\prime}-q_{i}^{\prime} \sum_{j} \sum_{k}^{\theta_{k}^{\prime}}{ }_{-}^{\theta_{k}^{\prime}}{ }^{\tau}-\frac{i j}{\tau} \tag{2.1}
\end{equation*}
$$

where segment fraction \varnothing and area fractions θ and θ^{\prime} are given by
$\emptyset_{i}=r_{i} x_{i} /\left(\sum_{j} r_{j} x_{j}\right)$
$\theta_{i}=q_{i} x_{i} /\left(\sum_{j} q_{j} x_{j}\right)$
(A.7,A.8)
$\theta_{i}^{\prime}=q_{i}^{\prime} x_{i} /\left(\sum_{j} q_{j}^{\prime} x_{j}\right)$
$r_{j}=\frac{Z}{2}\left(r_{j}-q_{j}\right)-\left(r_{j}-1\right)$
(A.9,A.10)

A.1.3 UNIEAC Eguation

The UNIFAC method, developed by Fredenslund et al. (1975), is based on the UNIQUAC equation
$\ln \gamma_{i}=\ln \gamma_{i}^{C}+\ln \gamma_{i}^{R}$
where the superscripts C and R refer to the combinatorial and residual parts of the activity coefficient respectively. The combinatorial part of the activity coefficient is represented by
$\ln \gamma_{i}^{C}=\ln \frac{\emptyset_{\underline{i}}}{x_{i}}+\left(\frac{Z}{2}\right) q \ln \frac{\Theta_{i}}{\emptyset_{i}}+l_{i}-\frac{\varnothing_{i}}{\bar{x}_{i}} \sum_{j} x_{j}{ }_{j}$
where $l_{i}=\frac{Z}{2}\left(r_{i}-q_{i}\right)-\left(r_{i}-1\right)$
$\begin{array}{ll}r_{i}=\sum v_{k i} R_{k} & q_{i}=\sum v_{k i} Q_{k} \\ \Phi_{i}=r_{i} x_{i} /\left(\sum_{j} r_{j} x_{j}\right) & \theta_{i}=q_{i} x_{i} /\left(\sum_{j} q_{j} x_{j}\right)\end{array}$
$x_{i}=$ mole fraction of component i in the mixture
$v_{k i}=$ count of k th group in component i
$R_{k}=$ a measure of van der Waals volume ratio for group k
$Q_{k}=a$ measure of Van der Waals area ratio for group k The residual part of the activity coefficient is computed as follows
$\ln \gamma_{i}^{R}=\sum_{k} v_{k i}\left(\ln \Gamma_{k}-\ln \Gamma_{k, i}\right)$
where the summation are over all groups, and

$$
\Gamma_{k}=\text { activity coefficient for group } k \text { in the mixture }
$$

$\Gamma_{k, i}=$ activity coefficient for group k in pure component i
The activity coefficient Γ_{k} is computed as follows

where the summations are over all groups, and

$$
\begin{align*}
\beta_{m} & =x_{m} Q_{m} / \sum_{n} x_{n} Q_{n}, \text { area fraction of group } m \tag{A.16}\\
x_{m} & =\sum_{j} x_{j} v_{m j} / \sum_{n} \sum_{j} x_{j} v_{n j}, \text { mole fraction of group } m \tag{A.17}\\
\xi_{m n} & =\exp \left(-a_{m n} / \mathbb{T}\right) \tag{A.18}\\
\left\{a_{m n}\right\} & =\text { set of group interaction parameters, } a_{m n} \neq a_{m n}
\end{align*}
$$

The activity coefficient $\ln \Gamma_{k i}$ is computed as follows

where the summations are over all groups in component i, and

$$
\begin{align*}
& \beta_{m i}=x_{m i} Q_{m} / \sum_{n} x_{n i} Q_{n}, \text { area fraction of group } m \text { in } i \tag{A.19}\\
& x_{m i}=v_{m i} / \sum_{n} v_{n i}, \text { mole fraction of group } m \text { in } i \tag{A.20}
\end{align*}
$$

Values of R_{k}, Q_{k}, and $a_{m n}$ are given in Appendix (A.3)

A. 2 Modified_UNIQUAC_Eguation for Heats_of Mixing

The relationship between excess heats of mixing and activity coefficient of component i in the mixture is given by

$$
\begin{align*}
h^{E} & =-R^{2} \sum x_{i}\left(-\frac{\partial \ln \gamma_{i}^{i}}{T}\right)_{P, x} \tag{2.2}\\
\text { If } \quad \tau_{j i} & =\exp \left(-a_{j \underline{i}}+b_{j \underline{i}} / T\right. \tag{2.1A}
\end{align*}
$$

then

$$
\begin{equation*}
h^{E}=R \sum_{i}\left[\sum_{j} q^{\theta_{j}^{\prime} x_{j}^{\prime}}{ }_{j}^{\underline{i}} \sum_{j i} \theta_{j}^{\prime} \tau_{j i}\left(a_{j i}+2 b_{j i} / T\right)\right] \tag{2.3}
\end{equation*}
$$

The following databank consists of constants, R_{k} and Q_{k}, for 77 secondary
groups, and interaction parameters ann for 41 primary groups reported by
Ghemling et al. (1982).

Abstract

DISTILLATION ALGORITHY AND SIMULATOR -- PROCESS EQUIPMENT
 PARAMETER DATA SPECIFICATION

B. 1 Generalized_Absorption/Distillation_Algorithm (ABDIS)
 B.1.1 Linearized Discrepancy Function
 B.1.2 Solution Algorithm

B. 2 Process Simulator (PROSIM) =_Rrocess_Eguipment

 Parameters SpecificationB.2.1 ADBF - General Purpose Three Phase Flash package
B.2.2 ACTL - Azeotropic Column Control Block, Variable Distillate Rate
B.2.3 BCTL - Benzene Stripping Column Control Block, Variable Distillate Rate - I
B.2.4 BZTL - Benzene Stripping Column Control Block, Variable Distillate Rate - II
B.2.5 CNTL - Stream Rate Control Block - I
B.2.6 DCTL - Control Block, Feed-Forward Control of the Split - I
B.2.7 DIST - Rigorous Absorption/Distillation Package
B.2.8 DSPT - Control Block, Feed-Forward Control of the Split - II
B.2.9 ECTL - Azeotropic Column Control Block, Variable Entrainer Rate
B.2.10 RCTL - Stream Rate Control Block - II
B.2.11 SBOX - Dummy Separation Block
B.2.12 SMIX - Special Mixer-Splitter Block

B. 1 Generalized_Absorption/Distillation_Algorithm (ABDIS)

B.1.1 Linearized_Discrepancy Eunction

The discrepancy function (Eq. 2.26 through 2.30) can be linearized using Taylor's series expansion, neglecting the quadratic terms, about a known set of variables. The linearization process generates a new set of independent variables, namely $l_{n, i}, v_{n, i}$, and T_{n}. For each of the discrepancy functions, the resulting equations in the restructured mode will have the following form according to Roche (1978) and Tsai (1982):

Main equation -
$F\left(x_{1}, x_{2}, x_{3}\right)=0$
Linearized equation in the restructured mode
$\frac{\partial F}{\partial \mathrm{x}_{1}} \Delta \mathrm{x}_{1}+\frac{\partial \mathrm{F}}{\partial \mathrm{x}_{2}} \Delta \mathrm{x}_{2}+\frac{\partial \mathrm{F}}{\partial \mathrm{x}_{3}} \Delta \mathrm{x}_{3}+\ldots \ldots=-\mathrm{F}$
The linearization of each of the discrepancy functions is given below:

Component Material Balance

$F_{1(n, i)}=\left(1+\frac{S_{n}^{L}}{\frac{L_{n}}{-}}\right) l_{n, i}+\left(1+\frac{S_{n}^{V}}{V_{n}^{(}}\right) v_{n, i}+V_{n-1, i} I_{n+1, i}-f_{n, i}=0$
Linearization of Equation 2.26 leads to

$$
\begin{align*}
& -\Delta v_{n-1, i}+\left(1+\frac{S_{n}^{L}}{L_{n}}\right) \Delta l_{n, i}-\frac{S_{n}^{V}}{v_{n}^{2}} l_{n, i} \sum_{k} \Delta l_{n, k}+\left(1+\frac{S_{n}^{V}}{V_{n}^{-}}\right) \Delta v_{n, i} \\
& -\frac{S_{n}^{V}}{V} l_{n}^{2} l_{n, i} \sum_{k} \Delta v_{n, k}-\Delta l_{n+1, i}=-F_{1(n, i)} \tag{B.3}
\end{align*}
$$

Eguilibrium_Relationship coupled with the Murphree stage efficiency, η

$$
\begin{equation*}
F_{2(n, i)}=\eta_{n} \frac{K_{n, i} V_{n}}{L_{n}} l_{n, i}-Y_{n, i}+\left(1-\eta_{n}\right) \frac{V_{n}}{V_{n}} \frac{\underline{n}}{-1}=0 \tag{2.27}
\end{equation*}
$$

The above equation can be linearized as follows:

$$
\begin{aligned}
& (1-\eta) \frac{V_{n}}{\bar{v}_{n-1}} \Delta v_{n-1, i}-(1-\eta) \frac{v_{n}}{v_{n-1}^{2}} v_{n-1}, i \sum_{k} \Delta v_{n-1, k} \\
& +\eta_{n} K_{n, i} \frac{V_{n}}{L_{n}} \Delta 1_{n, i}-\eta_{n} K_{n, i} \underset{L_{n-1}^{2}}{-\frac{V_{n}}{2}} 1_{n, i} \sum_{k} 1_{n, k}
\end{aligned}
$$

$$
\begin{align*}
& +\eta_{n} \frac{V_{n}}{\bar{L}_{n}} I_{n, i} \sum_{k} \frac{\partial K_{n, i}}{\partial \bar{I}_{n, k}} \Delta I_{n, k}+\eta_{n} \frac{V_{n}}{\bar{L}_{n}} I_{n, i} \sum_{k} \frac{\partial K_{n, i}}{\partial \bar{v}_{n, k}} v_{n, k} \\
& +\eta_{n} \frac{V_{n}}{\bar{L}_{n}} l_{n, i}-\frac{\partial K_{n}}{\partial \bar{T}_{n}} \underline{i} \underline{i}_{n} \Delta T_{n}-\Delta v_{n, i}=-F_{2(n, i)} \tag{B.4}
\end{align*}
$$

Energy_Balance

$$
\begin{align*}
F_{3(n)}= & \left(1+\frac{S_{n}^{L}}{L_{n}}\right) h_{n}+\left(1+\frac{S_{n}^{V}}{V_{n}}\right) H_{n}-H_{n-1}-h_{n+1}-h_{n}^{F}-Q_{n}+ \\
& h_{n}^{m i x}-h_{n+1}^{m i x}=0 \tag{2.30}
\end{align*}
$$

Linearized Eq. 2.30 is given below:
 $+\left(1+\frac{S_{n}^{L}}{\bar{L}_{n}}\right) \frac{\partial h_{n}}{\partial \bar{T}_{n}^{n}} \Delta l_{n}+\left(1+\frac{S_{n}^{V}}{\bar{v}_{n}}\right) \sum_{k} \frac{\partial H_{n}}{\partial \bar{v}_{n, k}^{-}} \Delta v_{n, k}-\frac{S_{n}^{V}}{V_{n}^{2}} H_{n} \sum_{k} \Delta v_{n, k}$
$+\left(1+\frac{S_{n}^{V}}{\bar{V}_{n}}\right) \frac{\partial H_{n}}{\partial T_{n}} \Delta T_{n}-\sum_{k} \frac{\partial h_{n+1}}{\partial \bar{I}_{n+1, k}^{-}} \Delta I_{n+1, k}+\frac{\partial h_{n+1}}{\partial T_{n+1}}-\Delta T_{n+1}+$

B.1.2 Solution_Algorithm

Stagewise arrangement of linearized discrepancy functions result in the formation of tridiagonal matrix (NXN) as shown in Fig. B.1. Each of the submatrices, within the big matrix, is of $2 \mathrm{c}+1 \mathrm{x} 2 \mathrm{c}+1$ dimension, where c is defined as the number of components. Thomas algorithm is employed to attain the solution. The computation procedure is as follows:

1) Initialization of B-matrix and D-matrix for the N stage column.
2) Inversion procedure to eliminate A-matrix and Cmatrix, starting with stage 2 :

- Perform Gaussian elimination on

$$
\begin{equation*}
B_{m-1}^{T} * S^{T}=A_{m}^{T} \tag{B,6}
\end{equation*}
$$

Figure B. 1 Schematic Representation of the Column's Linearized Discrepancy Functions
and retain the results in S after transposing.

- Eliminate A_{m} (by induction) by modifying B_{m} and D_{m} (subtraction of product of S. $_{m-1}$ from B_{m} and product of $S . D_{m-1}$ from p_{n}.
- The back substitution is initiated with $m=N$, by performing Gaussian elimination on:

$$
B_{N} * S=D_{N}
$$

The result of this operation is the set of flow and temperature corrections for the stage N.
o Cm is eliminated in the process of back substitution for $\mathrm{m}=\mathrm{N}-1, \mathrm{~N}-2$, etc. The process is thus:
a) Eliminate C by subtracting from D the product of $C_{m} * D_{m+1}$
b) Perform Gaussian elimination on $\mathrm{m}^{B} \quad * \quad \mathrm{~S}=\mathrm{D}_{\mathrm{m}}$ to obtain the set of corrections associated with stage m.

The matrix C is not defined explicitly and the unique structure is exploited to minimize the iterative computational effort.

B. 2 Process_Simulator (PRQSIM) =_Equipment_Parameters Specification

Every process block/node in the system must have its operational parameters defined through the use of the equipment parameter (EQPAR) vector. EQPAR vectors for the new or improved blocks are given below, whereas the detailed definitions are covered elsewhere (Andreyuk, 1983).

```
B.2.1 ACTL___Azeotropic_Column_control_Block__Variable
                        Distillate_Rate
\(\operatorname{EQPAR}(J, N E)=N E, N_{s}, N_{R}\), Ncase, \(E_{S}, E_{R}, T_{t}, T_{b}, P_{t}, P_{b}, \Delta T\),
        \(\Delta \mathrm{F}, \mathrm{F}, \mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}, \mathrm{~N}_{4}, \mathrm{D}_{\mathrm{V}}, \mathrm{D}_{1}, \mathrm{R}, \mathrm{D}_{\mathrm{C}}, \mathrm{I}_{\mathrm{M}}, \mathrm{V}_{\mathrm{F}}\),
        \(I_{M A}, 0.0\).
\(I_{\text {MA }}=\) Maximum value of iterations within ACTL block
Refer to definition of other variables in EQPAR description
of DIST block.
```

```
B.2.2 ADBE___General_Pumpose 3_Phase_Flash_Package
EQPAR(J,NE) = NE, Mode, 23*0.0,
NE = Equipment block/node number
Mode = Type of calculations
```

1 Dew point temperature
2* Bubble point temperature
3 All vapor enthalpy with prior dew point
4* All liquid enthalpy with prior bubble point
5 All vapor enthalpy
6* All liquid enthalpy
7* Isothermal flash
8* Isothermal flash ... no dew/bubble point

9* Adiabatic flash
10* Adiabatic flash ... no dew/bubble point
11 Dew point pressure
12* Bubble point pressure
13* Liq - liq seperation below bubble point

* Types applicable for either one or two liquid phases

```
B.2.3 BCTL___Benzene_Stripping_Column_Control_Block,
    Variable_Distillate_Rate___I
```



```
    C
NE = Equipment block/node number
NE}\mp@subsup{D}{D}{ = Distillation column block/node number
Dc = Distillate code
    -1 subcooled liquid
        0 vapor/liquid distillate
    +1 liquid at bubble point
V
S
C
B.2.4 BZTL_=_Benzene_Stripping_Column_Control_Block_
    Variable_Distillate_Rate___II
EQPAR(J,NE) = NE, N
    |F,F, N
    VF, 2*0.0,
S
```

```
S
S
Refer to definition of other variables in EQPAR description
of DIST block.
```


B. 2.6 RCTL_ $=\frac{\text { Control }}{\text { Split }}$ Block, Feed-Forward Control of the
$\operatorname{EQPAR}(J, N E)=N E, N E_{D}, D_{C}, V_{F}, x_{d 1}, x_{d 2}, x_{d 3}, x_{d 4}, x_{b 1}, x_{b 2}$,
$\mathrm{x}_{\mathrm{b} 3}, \mathrm{x}_{\mathrm{b} 4}, 13 * 0.0$,
NE = Equipment block/node number
$N E_{D}=$ Distillation column block/node number
$D_{C} \quad=$ Distillate code
-1 subcooled liquid
0 vapor/liquid distillate
+1 liquid at bubble point

$D_{v} \quad=$	Vapor distillate rate
$D_{1} \quad=$	Liquid distillate rate
$R \quad=$	Reflux ratio or boilup ratio
$D_{C} \quad=$	Distillate code
	$-\mathbf{1} \quad$ subcooled liquid
	$0 \quad$ vapor/liquid distillate
	$+1 \quad$ liquid at bubble point

```
B.2.8 DSPT_=_Control_Block_ Feed=Forward_Control_of_the
    Split - II
```



```
NE = Equipment block/node number
NE
D
        -1 subcooled liquid
        0 vapor/liquid distillate
            +1 liquid at bubble point
V F = Vapor fraction in distillate
M}\mp@subsup{M}{i}{}=\mp@code{Feed multiplier of the ith component, 0< M ( < < 
```

B.2.9 ECTL_=_Azeotropic_Column_control_Blocke_Variable
Entrainer Bates
$\operatorname{EQPAR}(J, N E)=N E, N_{s}, N_{R}$, Ncase, $E_{s}, E_{R}, T_{t}, T_{b}, P_{t}, P_{b}, \Delta T$,
$\Delta \mathrm{F}, \mathrm{F}, \mathrm{N}_{1}, \mathrm{~N}_{2}, \mathrm{~N}_{3}, \mathrm{~N}_{4}, \mathrm{D}_{\mathrm{V}}, \mathrm{D}_{\mathrm{I}}, \mathrm{R}, \mathrm{D}_{\mathrm{C}}, \mathrm{I}_{\mathrm{M}}, \mathrm{V}_{\mathrm{F}}$,
B, 0.0,
B $=$ Bottoms rate, lbmoles/hr

Refer to definition of other variables in EQPAR description of DIST block.

B.2.12 SMIX_-_Special_Mixer=Splitter_Bleck
$\operatorname{EQPAR}(J, N E)=N E, T, P, H, M o d e, 20 * 0.0$,
NE = Equipment block/node number
$T \quad=$ Output streams temperature, ${ }^{\circ} \mathrm{F}$

P = Output streams pressure, psia
$\mathrm{H}=$ Heat (out-in) stored
Mode $=$ Type of flash calculations
The 'Mode' option codes are described in Appendix B.2.2

ENTRAINER STUDY: SAMPLE INPUT AND RESULTS

C. 1	Sample Input and Azeotropic Column Results for Ethanol-Water-Benzene System
C. 2	Sample Input and Azeotropic Column Results for
	Ethanol-Water-Cyclohexane System
C. 3	Sample Input and Azeotropic Column Results for
	Ethanol-Water-Pentane System
C. 4	Sample Input and Azeotropic Column Results for
	Ethanol-Water-Cyclopentane System
C. 5	Sample Input and Azeotropic Column Results for
	Ethanol-Water-Methyl Cyclopentane System
C. 6	Sample Input and Azeotropic Column Results for
	Ethanol-Water-Isopentane System
C. 7	Sample Input and Azeotropic Column Results for
	Ethanol-Water-n-Hexane System
C. 8	Sample Input and Azeotropic Column Results for
	Ethanol-Water-2-Methyl Pentane System
C. 9	Sample Input and Azeotropic Column Results for
	Ethanol-Water-l Hexene System
C. 10	Sample Input and Azeotropic Column Results for
	Ethanol-Water-Diethyl Ether System
C. 11	Sample Input and Azeotropic Column Results for
	Ethanol-Water-2,2-Dimethyl Pentane System
C. 12	Sample Input and Azeotropic Column Results for
	Ethanol-Water-2,2,3-Trimethyl Butane System

C. 1 Sample Input and Azeotropic Column Results for Ethanol-Water-Benzene System

Table C.l.l Input for Ethanol-Water-Benzene System

ETOH-WTR-BENZ DEHYD ... NCASE=5: UNIFAC \& VIRIAL (EX \#4A)
$3,7,1,2,0,0,0,1,0,0,0$,
ЕТОН
0, 46.1, 351.1, 516.2, 63.0, 167.0, 0.248, 58.39, 0.635, $0.0,0.0,2.1055,1.9720,0.92,0.0,0.0,0.252$,
2.25, 1.70, 1.40,
202.1, 351.1,
$-0.8469,0.1152 \mathrm{E}-01,-0.3535 \mathrm{E}-04,0.4462 \mathrm{E}-07$,
$2.153,5.113 \mathrm{E}-02,-2.004 \mathrm{E}-05,0.328 \mathrm{E}-09$,
12.0457, $-3667.705,-46.976,3 * 0.0$,

WATER
$0,18.0,373.2,647.6,217.3,56.0,0.348,18.05,0.344$,
$0.0,0.0,0.92,1.40,1.00,0.0,0.0,0.238$,
$0.615,1.84,1.70$,
538.7, 373.2,
-2.7133, 0.27235E-01, -0.7271E-04, 0.7007E-07,
7.701, 4.595E-04, 2.521E-06, -0.859E-09,
11.9516, -3984.923, -39.734, 3*0.0,

BENZENE
$0,78.1,353.3,562.1,48.3,259.0,0.210,88.26,0.212$,
$0.0,0.0,3.1878,2.4,0.0,0.0,0.0,0.2696$,
3.004, 0.00, 0.00,
94.1, 353.3,
$0.3049,-0.6510 \mathrm{E}-04,0.5858 \mathrm{E}-06,0.1717 \mathrm{E}-08$,
-8.101, 1.133E-1, $-7.206 \mathrm{E}-05,1.703 \mathrm{E}-08$,
9.2082, $-2755.644,-53.999,3 * 0.0$,
$1.40,1.55,0.0$,
$1.55,1.70,0.0$,
3*0.0,
3 ETHANOL
1 WATER
1 BENZENE
$1,1,1,2,1,15$,
1, 17,
6, 10,
SIMULATION OF ETOH-ETR-BZ AZEO COLUMN: UNIFAC MODEL
$5,0,40,2,0,0,40,1,0$,
$1.0,0.0,0.0$,
726.9, 0.0, 6.015, 150.0, 175.0, 14.696, 0.0,
$40,0,98,0,169.2,22.65,400.0$,
37, 0, 96, 0, 191.9, 66.6, 0.0,

Table C.l.3: Comparison of T and X Profiles in the Azeotropic Column Using NRTL and UNIFAC Models

Models: UNIFAC, NRTL for liquid phase and ideal vapor System: (1) Ethanol - (2) Water - (3) Benzene

		NRTL			UNIFAC			
stg \#	T(F)	(1)	(2)	(3)	T(F)	(1)	(2)	(3)
40	150.66	29.15	4.43	66.42	149.36	30.22	2.55	67.23
39	150.69	29.37	4.41	66.23	149.92	30.69	2.20	67.11
38	150.68	30.94	4.75	64.31	150.00	32.30	2.32	65.38
37	150.69	45.05	8.86	46.09	150.00	48.14	5.27	46.59
36	151.32	46.97	6.91	46.11	151.69	50.49	2.68	46.83
35	151.96	48.68	5.13	46.18	152.76	51.74	1.26	47.00
34	152.54	50.08	3.65	46.28	153.33	52.33	0.57	47.09
33	153.02	51.14	2.50	46.36	153.61	52.61	0.25	47.14
32	153.38	51.89	1.67	46.43	153.74	52.73	0.11	47.16
31	153.65	52.42	1.10	46.49	153.79	52.78	$0.49 \mathrm{E}-1$	47.17
30	153.83	52.77	0.71	46.53	153.82	52.81	0.22E-1	47.17
29	153.95	52.99	0.46	46.55	153.83	52.82	0.95E-2	47.17
28	154.03	53.14	0.29	46.57	153.84	52.82	0.42E-2	47.17
27	154.09	53.24	0.19	46.58	153.84	52.82	0.18E-2	47.17
26	154.12	53.30	0.12	46.59	153.84	52.83	0.80E-3	47.17
25	154.14	53.34	$0.75 \mathrm{E}-1$	46.59	153.84	52.83	$0.36 \mathrm{E}-3$	47.17
24	154.15	53.36	$0.47 \mathrm{E}-1$	46.59	153.84	52.83	$0.15 \mathrm{E}-3$	47.18
23	154.16	53.38	$0.30 \mathrm{E}-1$	46.59	153.84	52.83	$0.67 \mathrm{E}-4$	47.18
22	154.17	53.39	$0.19 \mathrm{E}-1$	46.60	153.84	52.83	0.29E-4	47.18
20	154.17	53.40	0.76E-2	46.60	153.84	52.83	0.56E-5	47.18
19	154.18	53.40	$0.48 \mathrm{E}-2$	46.60	153.84	52.83	0.25E-5	47.18
18	154.18	53.40	$0.30 \mathrm{E}-2$	46.60	153.84	52.83	0.11E-5	47.18
16	154.18	53.40	$0.12 \mathrm{E}-2$	46.60	153.84	52.83	0.21E-6	47.18
13	154.18	53.40	0.31E-3	46.60	153.84	52.83	$0.16 \mathrm{E}-7$	47.18
12	154.18	53.40	$0.20 \mathrm{E}-3$	46.60	153.84	52.83	0.63E-8	47.18
11	154.18	53.40	$0.12 \mathrm{E}-3$	46.60	153.84	52.83	0.20E-8	47.18
10	154.18	53.40	$0.78 \mathrm{E}-4$	46.60	153.84	52.83	0.17E-9	47.18
9	154.18	53.41	0.49E-4	46.60	153.84	52.83	$0.39 \mathrm{E}-8$	47.17
8	154.18	53.42	$0.31 \mathrm{E}-4$	46.58	153.84	52.83	$0.39 \mathrm{E}-8$	47.17
7	154.18	53.48	0.19E-4	46.52	153.84	52.83	$0.39 \mathrm{E}-8$	47.17
6	154.19	53.74	$0.12 \mathrm{E}-4$	46.26	153.84	52.85	$0.39 \mathrm{E}-8$	47.15
5	154.23	54.89	$0.76 \mathrm{E}-5$	45.11	153.84	52.95	$0.39 \mathrm{E}-8$	47.06
4	154.47	59.28	$0.52 \mathrm{E}-5$	40.74	153.86	53.39	0.39E-8	46.61
3	155.83	70.59	0.43E-5	29.42	153.93	55.38	0.42E-8	44.62
2	160.57	85.21	$0.40 \mathrm{E}-5$	14.80	154.38	62.72	$0.55 \mathrm{E}-8$	37.29
1	166.96	94.49	$0.37 \mathrm{E}-5$	5.509	157.11	78.03	0.89E-8	21.97
R	170.82	98.27	0.32E-5	1.731	164.03	91.66	$0.13 \mathrm{E}-7$	8.337

Note: All the compositions are in mole $\%$

C. 2 Sample Input and Azeotropic Column Results for Ethanol-Water-Cyclohexane System

Table C.2.1 Input Data for Ethanol-Water-Cyclohexane System

```
ETOH-WTR-CYHEXAN DEHYD: NCASE=5, UNIFAC & VIRIAL VAPOR(EX #4B)
3, 7, 1, 2, 0, 0, 0, 1, 0, 0, 0,
ETOH
0,46.1, 315.10, 516.2, 63.0, 167.0, 0.248, 58.39, 0.635,
0.0, 0.0, 2.1055, 1.9720, 0.92, 0.0, 0.0,0.252,
2.25, 1.70, 1.40,
202.1, 351.1.
-0.3499, 9.559E-03, -37.86E-06, 54.59E-09,
2.153, 5.113E-02, -2.004E-05, 0.328E-09,
12.0457, -3667.705, -46.976, 3*0.0,
WATER
0, 18.0, 373.2, 647.6, 217.3, 56.0, 0.348, 18.05, 0.344,
0.0,0.0, 0.92, 1.40, 1.00, 0.0, 0.0, 0.238,
0.615, 1.84, 1.70,
538.7, 373.2,
0.6741, 2.825E-03, -8.371E-06, 8.601E-09,
7.701, 4.595E-04, 2.521E-06, -0.859E-09,
11.9516, -3984.923, -39.734, 3*0.0,
CYHEXANE
0, 84.162, 353.9, 553.4, 40.2, 308.0, 0.273, 108.04, 0.213,
0.0, 0.0, 3.97, 3.01, 3.01, 0.0, 0.0, 0.2729,
3.261, 0.0, 0.0,
85.07, 353.9,
-1.284, 13.39E-03, -35.10E-06, 32.27E-09,
-13.027, 1.460E-01, -6.027E-05, 3.156E-09,
9.1194, -2766.63, -50.50, 3*0.0,
1.40, 1.55, 0.0,
1.55, 1.70, 0.0,
3*0.0,
    3 ETHANOL
    1 WATER
    1 CYCLOHEXANE
1, 1, 1, 2, 1, 15,
1, 17,
6, 2,
ETOH-WTR-CYCLOHEXANE AZEO DIST COLUMN SIMULATION: UNIFAC
5, 0, 40, 2, 0, 0, 60, 1, 0,
1.0, 0.0, 0.0,
726.9, 0.0, 6.015, 130.0, 170.0, 14.7, 0.10,
40, 0, 98, 0, 169.2, 22.65, 400.0,
37, 0, 96, 0, 191.9, 66.6, 0.0,
```

System: Ethanol - Water - Cyclohexane					
Models : UNIFAC and Virial (Hayden \& O'Connell)					
Variable process Parameters : Pressure and Boilup ratio					
Case Top Stage Boilup No. Pressure Ratio (psia)			Bottoms Product Composition(mole\%)		
			Ethanol	Water	Cyclohexane
4 BlO	12.0	6.015	97.6896	6.1519E-12	2.3104
4B2 *	14.7	6.015	89.6853	3.6724E-09	10.3147
4B3	30.0	6.015	63.2043	2.5085E-11	36.7957
4B14	12.0	7.100	99.0900	1.0111E-09	0.9100
4B5	14.7	6.917	91.0483	2.4229E-09	8.9517
4B6	14.7	7.218	91.4067	4.5065E-10	8.5933
4B7	14.7	7.820	92.0196	2.8018E-06	7.9804
4B8	14.7	15.038	95.0216	9.9259E-12	4.9784
4B9	14.7	27.068	96.1805	$1.6044 \mathrm{E}-09$	3.8195

Table C.l.3: Comparison of T and x Profiles in the Azeotropic Column Using NRTL and UNIFAC Models

Models: UNIFAC, NRTL for liquid phase and ideal vapor System: (1) Ethanol - (2) Water - (3) Cyclohexane

Note: All the compositions are in mole \%
NRTL parameters are shown in Table 3.2

C. 3 Sample Input and Azeotropic Column Results for Ethanol-Water-Pentane System

Table C.3.1 Input for Ethanol-Water-Pentane System

```
ETOH-WTR-PENTANE DEHYD. NCASE=5: UNIFAC & VIRIAL (EX#AC)
3, 7, 1, 2, 0, 0, 0, 1, 0, 0, 0,
ETOH
0, 46.1, 351.10, 516.2, 63.0, 167.0, 0.248, 58.39, 0.635,
0.0, 0.0, 2.1055, 1.9720, 0.92, 0.0, 0.0,0.252,
2.25, 1.70. 1.40,
202.1, 351.1,
-0.3499, 9.559E-03, -37.86E-06, 54.59E-09,
2.153, 5.113E-2, -2.004E-5, 0.328E-9,
12.0457, -3667.705, -46.976, 3*0.0,
WATER
0, 18.0, 373.2, 647.6, 217.3, 56.0, 0.348, 18.05, 0.344,
0.0, 0.0, 0.92, 1.40, 1.00, 0.0, 0.0, 0.238,
0.615, 1.84, 1.70,
538.7, 373.2,
0.6741, 2.825E-03, -8.371E-06, 8.601E-09,
7.701, 4.595E-4, 2.521E-6, -0.859E-9,
11.9516, -3984.923, -39.734, 3*0.0,
PENTANE
0, 72.151, 309.2, 469.6, 33.3, 304.0, 0.262, 115.257, 0.251,
0.0, 0.0, 3.82, 3.31, 3.31, 0.0, 0.0, 0.2685,
3.385, 0.0, 0.0,
85.38, 309.2,
0.2904, 1.7109E-03, -6.2396E-06, 11.5436E-09,
-0.866, 1.164E-1, -6.163E-5, 1.267E-8,
9.20, -2477.07, -39.94, 3*0.0,
1.40, 1.55, 0.0,
1.55, 1.70, 0.0,
3*0.0,
    3 ETHANOL
    l WATER
    2 PENTANE
```

1, 1, 1, 2, 1, 15,
1, 17,
2, 1, 3, 2,
ETOH-WTR-PENTANE AZEO DIST COLUMN SIMULATION: USING UNIFAC
5, 1, 40, 2, 0, 0, 50, 1, 0,
$1.0,0.0,0.0$,
726.9, 0.0, 6.015, 175.0, 220.0, 30.0, 0.10,
40, 0, 98, 0, 169.2, 22.65, 400.0,
37, 0, 96, 0, 191.9, 66.6, 0.0,
239.91, 87.24, 399.85,
83.0, 20.0, 20.0,

Table C.3.2 Azeotropic Distillation Column Bottoms Results

Models : UNIFAC and Virial (Hayden \& O'Connell) vapor Variable Process Parameters : Pressure and Boilup ratio					
Case	Top Stage	Boilup	Bottoms	duct Comp	tion (mole\%)
	Pressure (psia)	Ratio	Ethanol	Water	Pentane
4C23	30.0	6.015	67.8646	32.1354	4.3795E-14
4C38	35.0	6.015	68.4082	31.5218	$1.3476 \mathrm{E}-20$
4C7	125.0	6.015	72.6582	27.3418	$6.4379 \mathrm{E}-20$
4 Cl 4	125.0	4.812	71.8436	28.1564	$7.5500 \mathrm{E}-12$

Note : All the compositions are in mole of .

Table C.3.3: T and x Profiles in the Azeotropic column Using UNIFAC Models

Models: UNIFAC for liquid phase and Virial for vapor Phase System: (1) Ethanol - (2) Water - (3) n-Pentane Case \#: 4C23

Stage \#	T(F)	Liquid (1)	Composi (2)	$\text { in Mcle } 8$
40	170.61	80.722	13.285	5.9935
39	204.67	83.723	15.987	0.28941
38	207.25	81.921	18.066	$0.13045 \mathrm{E}-01$
37	207.65	79.629	20.371	$0.55674 \mathrm{E}-03$
36	207.82	79.627	20.373	$0.34465 \mathrm{E}-04$
35	207.99	79.624	20.376	$0.21366 \mathrm{E}-05$
34	208.16	79.622	20.378	$0.13265 \mathrm{E}-06$
33	208.33	79.619	20.381	$0.82464 \mathrm{E}-08$
32	208.49	79.617	20.383	$0.51338 \mathrm{E}-09$
31	208.66	79.615	20.385	$0.32005 \mathrm{E}-10$
30	208.83	79.612	20.388	$0.19969 \mathrm{E}-11$
29	208.99	79.610	20.390	$0.12365 \mathrm{E}-12$
28	209.16	79.608	20.392	$0.65592 \mathrm{E}-14$
27	209.32	79.605	20.395	$0.20865 \mathrm{E}-11$
25	209.65	79.601	20.399	$0.15960 \mathrm{E}-11$
24	209.81	79.598	20.402	$0.70992 \mathrm{E}-13$
23	209.97	79.596	20.404	$0.55418 \mathrm{E}-14$
22	210.14	79.594	20.406	$0.13601 \mathrm{E}-14$
21	210.30	79.591	20.409	$0.12039 \mathrm{E}-14$
19	210.62	79.587	20.413	$0.40193 \mathrm{E}-12$
18	210.78	79.584	20.416	$0.30380 \mathrm{E}-13$
17	210.94	79.581	20.419	0.29601E-14
16	211.10	79.578	20.422	$0.15653 \mathrm{E}-14$
15	211.26	79.573	20.427	$0.44268 \mathrm{E}-09$
14	211.42	79.568	20.432	$0.31300 \mathrm{E}-10$
12	211.74	79.549	20.451	$0.44278 \mathrm{E}-13$
11	211.90	79.531	20.469	$0.22460 \mathrm{E}-07$
10	212.05	79.503	20.497	$0.38527 \mathrm{E}-11$
9	212.21	79.458	20.542	$0.39235 \mathrm{E}-07$
8	212.37	79.384	20.616	$0.38409 \mathrm{E}-07$
7	212.54	79.261	20.739	$0.37505 \mathrm{E}-10$
6	212.70	79.057	20.943	$0.13965 \mathrm{E}-11$
5	212.88	78.714	21.286	$0.19807 \mathrm{E}-16$
4	213.07	78.133	21.867	$0.33631 \mathrm{E}-16$
3	213.29	77.136	22.864	$0.33740 \mathrm{E}-16$
2	213.57	75.383	24.616	$0.32328 \mathrm{E}-16$
1	213.99	72.187	27.813	$0.11114 \mathrm{E}-13$
R	214.77	65.956	34.044	$0.48220 \mathrm{E}-15$

Note: Profiles computed on Vax 11/780 without floating point extender and in single precision mode.

C. 4 Sample Input and Azeotropic Column Results_for Ethanol-Water-Cyclopentane.System

Table C.4.1 Input for Ethanol-Water-Cyclopentane System

```
ETOH-WTR-CYCLO-C5 DEHYD. NCASE=5: UNIFAC & VIRIAL (EX #4D)
3, 7, 1, 2, 0, 0, 0, 1, 0, 0, 0,
ETOH
0, 46.1, 351.1, 516.2, 63.0, 167.0, 0.248, 58.39, 0.635,
0.0, 0.0, 2.1055, 1.9720, 0.92, 0.0, 0.0,0.252,
2.25, 1.70, 1.40,
202.1, 351.1,
-0.3499, 9.559E-03, -37.86E-06, 54.59E-09,
2.153, 5.113E-02, -2.004E-05, 0.328E-09,
12.0457, -3667.705, -46.976, 3*0.0,
WATER
0, 18.0, 373.2, 647.6, 217.3, 56.0, 0.348, 18.05, 0.344,
0.0, 0.0, 0.92, 1.40, 1.00, 0.0, 0.0, 0.238,
0.615, 1.84, l.70,
538.7, 373.2,
0.6741, 2.825E-03, -8.371E-06, 8.601E-09,
7.701, 4.595E-04, 2.521E-06, -0.859E-09,
11.9516, -3984.923, -39.734, 3*0.0,
CYCLO-C5
0, 70.135, 322.4, 511.60, 44.50, 260.0, 0.276, 94.14, 0.192,
0.0, 0.0, 3.30, 2.47, 2.47, 0.0, 0.0, 0.2687,
3.12, 0.0, 0.0,
93.02, 322.4,
-0.08117, 4.146E-03, -13.16E-06, 15.95E-09,
-12.808, 1.296E-01, -7.239E-05, 1.549E-08,
9.2241, -2588.48, -41.79, 3*0.0,
1.40, 1.55, 0.0,
1.55, 1.70, 0.0,
3*0.0,
    3 ETHANOL
    1 WATER
    l CYCLOPENTANE
1, 1, l, 2, 1, 15,
1, 17,
5, 2,
ETOH-WTR-CYCLOPENTANE AZEO DIST COLUMN SIMULATION: UNIFAC
5, 0, 40, 2, 0, 0, 0, 1, 0,
1.0, 0.0, 0.0,
726.9, 0.0, 6.015, 150.0, 175.0, 30.0, 0.10,
40, 0, 98, 0, 169.2, 22.65, 400.0,
37, 0, 96, 0, 191.9, 66.6, 0.0,
```


C. 4 Sample Input and Azeotropic Column Results for Ethanol-Water-Methyl Cyclopentane-System

Table C.5.1 Input for Ethanol-Water-Methyl Cyclopentane System

```
ETOH-WTR-MTCYCLOC5 DEHYD. NCASE=5: UNIFAC \& VIRIAL (EX\#4E5)
3, 7,\(1 ; 2 ; 0,0,0,1,0,0,0\),
ETOH
\(0,46.1,351.1,516.2,63.0,167.0,0.248,58.39,0.635\),
\(0.0,0.0,2.1055,1.9720,0.92,0.0,0.0,0.252\),
2.25, 1.70, 1.40,
202.1, 351.1,
\(-0.3499,9.559 \mathrm{E}-03,-37.86 \mathrm{E}-06,54.59 \mathrm{E}-09\),
\(2.153,5.113 \mathrm{E}-2,-2.004 \mathrm{E}-5,0.328 \mathrm{E}-9\),
12.0457, \(-3667.705,-46.976,3 * 0.0\),
WATER
\(0,18.0,373.2,647.6,217.3,56.0,0.348,18.05,0.344\),
\(0.0,0.0,0.92,1.40,1.00,0.0,0.0,0.238\),
0.615, 1.84, 1.70,
538.7, 373.2,
\(0.6741,2.825 \mathrm{E}-03,-8.371 \mathrm{E}-06\), 8.601E-09,
\(7.701,4.595 \mathrm{E}-4,2.521 \mathrm{E}-6,-0.859 \mathrm{E}-9\),
11.9516, \(-3984.923,-39.734,3 * 0.0\),
MTCYCLC5
\(0,84.162,345.0,532.7,37.4,319.0,0.273,111.62,0.239\),
\(0.0,0.0,3.97,3.01,3.01,0.0,0.0,0.2700\),
3.167, 0.0, 0.0,
82.58, 345.0,
-0.4414, 6.33489E-03, -16.5454E-06, 17.4712E-09,
-11.968, 1.524E-01, -8.699E-05, 1.914E-08,
9.1690, \(-2731.00,-47.11,3 * 0.0\),
\(1.40,1.55,0.0\),
1.55, 0.0, 0.0,
3*0.0,
    3 ETHANOL
    1 WATER
    3 METHYL CYCLOPENTANE
1, 1, 1, 2, 1, 15,
1, 17,
1, 1, 4, 2, 1, 3,
ETOH-WTR-METHYL CYCLOPENTANE AZEO COLUMN SIMULATION: UNIFAC
\(5,0,40,2,0,0,50,1,0\),
\(1.0,0.0,0.0\),
\(726.9,0.0,6.015,180.0,215.0,38.0,0.10\),
40, 0, 98, 0, 169.2, 22.65, 400.0,
37, 0, 96, 0, 191.9, 66.6, 0.0,
```

Table C.5.2 Azeotropic Distillation Column Bottoms Results

CaseNo.	Top Stage Pressure (psia)	Boilup Ratio	Bottoms Product Composition (moleq)		
			Ethanol	Water	CH3-Cyclo-C5
4E6	36.0	6.015	98.6898	1.1820E-08	1.3102
4E5	38.0	6.015	96.4856	5.2196E-13	3.5144
4E4	40.0	6.015	94.3885	$1.9715 \mathrm{E}-06$	5.6115
4E2	45.0	6.015	89.4979	$1.2175 \mathrm{E}-10$	10.5021
4E8	36.0	6.316	99.0059	$2.9557 \mathrm{E}-11$	0.9941
4E9	36.0	6.617	99.2887	$5.4148 \mathrm{E}-12$	0.7113
4E10	36.0	6.750	99.4025	$6.9560 \mathrm{E}-11$	0.5975
4 Ell	40.0	7.218	95.5285	$1.7023 \mathrm{E}-10$	4.4715

Table C.5.3: T and X Profile in the Azeotropic Column Using UNIFAC Model

Models: UNIFAC for liquid phase and Virial for vapor Phase System: (1) Ethanol - (2) Water - (3) Methyl Cyclopentane Case \#: 4E5

Stage \#	T (F)	Liquid (1)	Compositions (2)	Mole : (3)
40	184.24	30.001	3.1356	66.863
39	184.88	30.429	2.7952	66.775
38	185.13	29.166	2.4808	68.353
37	185.38	44.966	5.8002	49.234
36	187.30	47.298	3.2781	49.424
35	188.73	48.706	1.7110	49.583
34	189.67	49.472	0.85120	49.677
33	190.24	49.868	0.41267	49.720
32	190.60	50.069	0.19749	49.733
31	190.86	50.175	$0.93924 \mathrm{E}-01$	49.731
30	191.05	50.235	0.44537E-01	49.720
29	191.23	50.272	$0.21090 \mathrm{E}-01$	49.706
28	191.38	50.299	$0.99812 \mathrm{E}-02$	49.691
27	191.53	50.321	$0.47227 \mathrm{E}-02$	49.674
25	191.83	50.358	$0.10573 \mathrm{E}-02$	49.641
24	191.98	50.376	$0.50030 \mathrm{E}-03$	49.624
23	192.12	50.393	$0.23676 \mathrm{E}-03$	49.607
22	192.26	50.410	$0.11206 \mathrm{E}-03$	49.590
21	192.41	50.427	$0.53041 \mathrm{E}-04$	49.573
20	192.55	50.444	0.25109E-04	49.556
18	192.84	50.478	$0.56288 \mathrm{E}-05$	49.522
17	192.98	50.495	$0.26655 \mathrm{E}-05$	49.505
16	193.13	50.511	$0.12624 \mathrm{E}-05$	49.489
15	193.27	50.528	0.59792E-06	49.472
14	193.41	50.545	$0.28323 \mathrm{E}-06$	49.455
12	193.69	50.578	$0.63571 \mathrm{E}-07$	49.422
11	193.83	50.595	$0.30120 \mathrm{E}-07$	49.405
10	193.97	50.611	$0.14270 \mathrm{E}-07$	49.389
9	194.12	50.628	$0.67599 \mathrm{E}-08$	49.372
8	194.26	50.644	$0.32005 \mathrm{E}-08$	49.356
7	194.40	50.661	0.15135E-08	49.339
6	194.54	50.681	$0.71382 \mathrm{E}-09$	49.319
5	194.68	50.747	$0.33530 \mathrm{E}-09$	49.253
4	194.82	51.364	$0.15876 \mathrm{E}-09$	48.636
3	195.12	56.930	$0.87656 \mathrm{E}-10$	43.070
2	198.15	75.914	$0.74557 \mathrm{E}-10$	24.086
1	210.70	92.643	$0.71802 \mathrm{E}-10$	7.3574
R	221.09	98.345	$0.62770 \mathrm{E}-10$	1.6546

Note: Profiles computed on Vax $11 / 780$ without floating point extender and in single precision mode.

C. 6 Sample Input and Azeotropic Column Results for Ethanol-Water-Isopentane System

Table C.6.1 Input for Ethanol-Water-Isopentane System

```
ETOH-WTR-IPENTANE DEHYD. NCASE=5: UNIFAC & VIRIAL (EX #4F)
3, 7, 1, 2, 0, 0, 0, 1, 0, 0, 0,
ETOH
0,46.1, 351.1, 516.2, 63.0, 167.0, 0.248, 58.39, 0.635,
0.0, 0.0, 2.1055, 1.9720, 0.92, 0.0, 0.0,0.252,
2.25, 1.70, 1.40,
202.1, 351.1,
-0.3499, 9.559E-03, -37.86E-06, 54.59E-09,
2.153, 5.113E-02, -2.004E-05, 0.328E-09,
12.0457, -3667.705, -46.976, 3*0.0,
WATER
0, 18.0, 373.2, 647.6, 217.3, 56.0, 0.348, 18.05, 0.344,
0.0, 0.0, 0.92, 1.40, 1.00, 0.0, 0.0, 0.238,
0.615, 1.84, 1.70,
538.7, 373.2,
0.6741, 2.825E-03, -8.371E-06, 8.601E-09,
7.701, 4.595E-04, 2.521E-06, -0.859E-09,
11.9516, -3984.923, -39.734, 3*0.0,
IPENTANE
0, 72.151, 301.0, 460.4, 33.4, 306.0, 0.271, 116.37, 0.227,
0.0, 0.0, 3.82, 3.31, 3.31, 0.0, 0.0, 0.2716,
3.313, 0.13, 0.0,
81.77, 301.0,
-0.5019, 10.1929E-03, -36.5065E-06, 46.8004E-09,
-2.275, 1.210E-01, -6.519E-05, 1.367E-08,
9.0005, -2348.67, -40.05, 3*0.0,
1.40, 1.55, 0.0,
1.55, 0.0, 0.0,
3*0.0,
    3 ETHANOL
    1 WATER
    3 ISOPENTANE
1, 1, 1, 2, 1, 15,
1, 17,
3, 1, 1, 2, 1, 3,
ETOH-WTR-ISOPENTANE AZEO DIST COLUMN SIMULATION: USING UNIFAC
5, 0, 40, 2, 0, 0, 30, 1, 0,
1.0, 0.0, 0.0,
726.9, 0.0, 6.015, 200.0, 230.0, 85.0, 0.10,
40, 0, 98, 0, 169.2, 22.65, 400.0,
37, 0, 96, 0, 191.9, 66.6, 0.0,
```


C. 7 Sample Input and Azeotropic Column Results for Ethanol-Water-n Hexanesystem

Table C.7.1 Input for Ethanol-Water-Hexane System

```
ETOH-WTR-HEXANE DEHYD: NCASE=5, UNIFAC \& VIRIAL VAPCR(EX \#4G)
3, 7, 1, 2, 0, 0, 0, 1, 0, 0, 0,
ETOH
\(0,46.1,351.1,516.2,63.0,167.0,0.248,58.39,0.635\),
\(0.0,0.0,2.1055,1.9720,0.92,0.0,0.0,0.252\),
2.25, 1.70, 1.40,
202.1, 351.1,
-0.3499, 9.559E-03, -37.86E-06, 54.59E-09,
\(2.153,5.113 \mathrm{E}-02,-2.004 \mathrm{E}-05,0.328 \mathrm{E}-09\),
12.0457, \(-3667.705,-46.976,3 * 0.0\),
WATER
\(0,18.0,373.2,647.6,217.3,56.0,0.348,18.05,0.344\),
\(0.0,0.0,0.92,1.40,1.00,0.0,0.0,0.238\),
0.615, 1.84, 1.70,
538.7, 373.2,
0.6741, 2.825E-03, -8.371E-06, 8.601E-09,
7.701, 4.595E-04, 2.521E-06, \(-0.859 \mathrm{E}-09\),
11.9516, \(-3984.923,-39.734,3 * 0.0\),
N-HEXANE
\(0,86.178,341.9,507.4,29.3,370.0\), \(0.260,130.77,0.296\),
\(0.0,0.0,4.50,3.86,3.86,0.0,0.0,0.2635\),
3.812, 0.0, 0.0,
80.02, 341.9,
\(0.5357,-10.0356 \mathrm{E}-03,3.6767 \mathrm{E}-06,-0.8608 \mathrm{E}-09\),
-1.054, 1.390E-01, -7.449E-05, 1.551E-08,
9.2033, \(-2697.55,-48.78,3 * 0.0\),
1.40, 1.55, 0.0,
1.55, 1.70, 0.0,
3*0.0,
    3 ETHANOL
    1 WATER
    2 N-HEXANE
1, 1, 1, 2, 1, 15,
1, 17,
2, 1, 4, 2,
ETOH-WTR-N HEXANE AZEO DIST COLUMN SIMULATION: USING UNIFAC
5, 1, \(40,2,0,0,150,1,0\),
\(1.0,0.0,0.0\),
726.9, 0.0, 6.015, 190.0, 230.0, 50.0, 0.10,
\(40,0,98,0,169.2,22.65,400.0\),
37, 0, 96, 0, 191.9, 66.6, 0.0,
239.0, 80.0, 400.0,
```

System: Ethanol - Water - n-Hexane					
Models : UNIFAC and Virial (Hayden \& O'Connell) Vapor					
Variable Process Parameters : Pressure and Boilup ratio					
	Top Stage Pressure (psia)	$\begin{aligned} & \text { Boilup } \\ & \text { Ratic } \end{aligned}$	Bottoms Product Composition (mole\%)		
			Ethanol	Water	Hexane
4G6	49.0	6.015	99.0563	$1.3620 \mathrm{E}-08$	0.9437
4G2	50.0	6.015	98.3822	$1.3613 \mathrm{E}-08$	1.6178
4G7	50.0	6.316	98.4755	$1.7753 \mathrm{E}-09$	1.5245
4G8	50.0	9.023	99.3803	$3.8490 \mathrm{E}-10$	0.6197
4G11	50.0	9.624	99.5394	$9.7283 \mathrm{E}-09$	0.4606

Table C.7.3: Comparison of T and x Profiles in the Azeotropic Column Using NRTL and UNIFAC Models

Models: UNIFAC for liquid and Virial for vapor phase System: (1) Ethanol - (2) Water (3) n-Hexane Case \#: 4G6

Stage \#	T(F)	Liquid (1)	Phase Comp. (2)	$\begin{aligned} & \text { Mole } \\ & (3) \end{aligned}$
40	195.71	26.162	2.468	71.371
38	195.30	23.793	2.421	73.785
36	197.05	47.027	6.158	46.814
34	200.02	50.661	2.423	46.867
32	201.05	52.260	0.814	46.926
30	202.55	52.825	0.247	46.927
28	202.97	53.026	$0.733 \mathrm{E}-1$	46.901
26	203.26	53.113	$0.216 \mathrm{E}-1$	46.864
24	203.51	53.167	$0.635 \mathrm{E}-2$	46.827
22	203.75	53.210	$0.187 \mathrm{E}-2$	46.788
20	203.99	53.250	$0.552 \mathrm{E}-3$	46.749
18	204.22	53.289	$0.163 \mathrm{E}-3$	46.710
16	204.46	53.328	$0.483 \mathrm{E}-4$	46.672
14	204.69	53.366	$0.143 \mathrm{E}-4$	46.633
12	204.92	53.404	$0.424 \mathrm{E}-5$	46.595
10	205.15	53.443	$0.126 \mathrm{E}-5$	46.557
8	205.38	53.481	$0.372 \mathrm{E}-6$	46.519
6	205.61	53.532	$0.109 \mathrm{E}-6$	46.468
4	205.88	54.905	$0.307 \mathrm{E}-7$	45.095
2	212.60	83.031	$0.185 \mathrm{E}-7$	16.969
R	235.45	99.056	$0.136 \mathrm{E}-7$	0.944

C. 8 Sample Input and Azeotropic Column Results for Ethanol-Water-2 Methyl Pentane System

Table C.8.1 Input for Ethanol-Water-2 Methyl Pentane System

```
ETOH-WTR-2 METHYL C5 DYHYD:NCASE=5, UNIFAC & VIRIAL VAPOR(EX#4H)
3, 7, 1, 2, 0, 0, 0, 1, 0, 0, 0,
ETOH
0, 46.1, 351.l, 516.2, 63.0, 167.0, 0.248, 58.39, 0.635,
0.0, 0.0, 2.1055, 1.9720, 0.92, 0.0, 0.0,0.252,
2.25, 1.70, 1.40,
202.1, 351.1.
-0.3499, 9.559E-03, -37.86E-06, 54.59E-09,
2.153, 5.113E-02, -2.004E-05, 0.328E-09,
12.0457, -3667.705, -46.976, 3*0.0,
WATER
0, 18.0, 373.2, 647.6, 217.3, 56.0, 0.348, 18.05, 0.344,
0.0, 0.0, 0.92, 1.40, 1.00, 0.0, 0.0, 0.238,
0.615, 1.84, 1.70,
538.7, 373.2,
0.6741, 2.825E-03, -8.371E-06, 8.601E-09,
7.701, 4.595E-04, 2.521E-06, -0.859E-09,
11.9516, -3984.923, -39.734, 3*0.0,
2-MET-C5
0, 86.178, 333.4, 497.5, 29.7, 367.0, 0.267, 131.97, 0.279,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2660,
3.809, 0.0, 0.0,
77.05, 333.4,
-0.3394, 8.3267E-03, -28.6794E-06, 35.3614E-09,
-2.524, 1.477E-01., -8.533E-05, 1.931E-08,
9.1143, -2614.38, -46.58, 3*0.0,
1.40, 1.55, 0.0,
1.55, 1.70, 0.0,
3*0.0,
    3 ETHANOL
    l WATER
    3 2-METHYL PENTANE
1, 1, 1, 2, 1, 15,
1,17,
3, 1, 2, 2, 1, 3,
ETOH-WTR-2 METHYL PENTANE AZEO DIST COLUMN SIMULATION: UNIFAC
5, 1, 40, 2, 0, 0, 200, 1, 0,
1.0,0.0, 0.0,
726.9,0.0, 6.015, 245.0, 290.0, 135.0, 0.10,
40, 0, 98, 0, 169.2, 22.65, 400.0,
37, 0, 96, 0, 191.9, 66.6, 0.0,
239.91, 85.24, 390.85,
93.0, 15.0, 15.0,
```


Table C.8.2 Azeotropic Distillation Column Bottoms Results

System: Ethanol - Water - 2-Methyl Pentane
Models : UNIFAC and Virial (Hayden \& O'Connell) Vapor Variable Process Parameters : Pressure and Boilup ratio

$\begin{aligned} & \text { Case } \\ & \text { No. } \end{aligned}$	Top Stage Pressure (psia)	Boilup Ratic	Eottoms Product Composition (mole\%)		
			Ethanol	Water	2-Methyl-C5
4H22	128.0	6.015	98.6416	$3.7503 \mathrm{E}-11$	1.3584
4HIO	130.0	6.015	98.1550	1.0109E-06	1.8449
4H8	135.0	6.015	96.9976	7.2197E-11	3.0024
4H1l	130.0	6.617	98.0819	2.9652E-11	1.9181
4H12	130.0	5.414	98.3805	7.4507E-10	1.6195
4H24	126.0	5.714	99.2261	$3.0897 \mathrm{E}-10$	0.7739
4H25	124.0	5.714	99.7446	$7.7106 \mathrm{E}-10$	0.2554
4H13	125.0	5.414	98.3900	1.8674E-09	1.6100

Table C.8.3: T and x Profiles in the Azeotropic Column Using UNIFAC Model

Models: UNIFAC for liquid and Virial for vapor phase System: (1) Ethanol - (2) Water (3) 2-Methyl Pentane Case \#: 4H25

Stage \#	T (F)	Liquid (I)	Phase Comp. (2)	n Mole : (3)
40	245.43	28.267	2.914	68.820
38	245.61	27.764	2.789	69.447
36	248.06	47.593	4.458	47.494
34	251.52	50.317	1.341	48.342
32	252.92	51.156	0.346	48.498
30	253.38	51.380	$0.851 \mathrm{E}-1$	48.535
28	253.59	51.420	$0.420 \mathrm{E}-1$	48.537
26	253.72	51.464	$0.503 \mathrm{E}-2$	48.531
24	253.83	51.477	$0.122 \mathrm{E}-2$	48.522
22	253.94	51.487	$0.296 \mathrm{E}-3$	48.512
20	254.05	51.496	$0.719 \mathrm{E}-4$	48.503
18	254.16	51.506	$0.175 \mathrm{E}-4$	48.494
16	254.27	51.515	$0.424 \mathrm{E}-5$	48.485
14	254.38	51.524	$0.103 \mathrm{E}-5$	48.476
12	254.49	51.534	$0.248 \mathrm{E}-6$	48.466
10	254.59	51.543	$0.606 \mathrm{E}-7$	48.457
8	254.70	51.559	$0.154 \mathrm{E}-7$	48.441
6	254.82	51.934	$0.398 \mathrm{E}-8$	48.066
4	256.18	65.618	$0.145 \mathrm{E}-8$	34.382
2	280.58	95.558	$0.120 \mathrm{E}-8$	4.442
R	291.52	99.745	$0.771 \mathrm{E}-9$	0.255

C. 9 Sample Input and Azeotropic Column Results for
 Ethanol-Water-l Hexene System

Table C.9.1 Input for Ethanol-Water-1 Hexene System

```
ETOH-WTR-HEXENE DYHYD: NCASE=5, UNIFAC \& VIRIAL VAPOR(EX \#4I)
\(3,7,1,2,0,0,0,1,0,0,0\),
ETOH
\(0,46.1,351.1,516.2,63.0,167.0,0.248,58.39,0.635\),
\(0.0,0.0,2.1055,1.9720,0.92,0.0,0.0,0.252\),
2.25, 1.70, 1.40,
202.1, 351.1,
\(-0.3499,9.559 \mathrm{E}-03,-37.86 \mathrm{E}-06,54.59 \mathrm{E}-09\),
\(2.153,5.113 \mathrm{E}-02\), \(-2.004 \mathrm{E}-05,0.328 \mathrm{E}-09\),
12.0457, -3667.705, -46.976, 3*0.0,
WATER
\(0,18.0,373.2,647.6,217.3,56.0,0.348,18.05,0.344\),
\(0.0,0.0,0.92,1.40,1.00,0.0,0.0,0.238\),
\(0.615,1.84,1.70\),
538.7, 373.2,
0.6741, 2.825E-03, -8.371E-06, 8.601E-09,
7.701, 4.595E-04, 2.521E-06, -0.859E-09,
11.9516, \(-3984.923,-39.734,3 * 0.0\),
1-HEXENE
\(0,84.162,336.6,504.0,31.3,350.0,0.26,125.05,0.285\),
\(0.0,0.0,4.27,3.54,3.64,0.0,0.0,0.2660\),
3.647, 0.50, 0.0,
80.32, 336.6,
\(0.2194,1.6855 \mathrm{E}-03,-4.4269 \mathrm{E}-06,7.0268 \mathrm{E}-09\),
\(-0.417,1.268 \mathrm{~F}-01,-6.933 \mathrm{E}-5,1.446 \mathrm{E}-08\),
9.1756, \(-2654.81,-47.30,3 * 0.0\),
1.40, 1.55, 0.0,
\(1.55,0.0\), 0.0 ,
3*0.0,
    3 ETHANOL
    1 WATER
    3 1-HEXENE
1, 1, 1, 2, 1, 15,
1, 17,
3, 1, 2, 2, 2, 3,
ETOH-WTR-1 HEXENE AZEO DIST COLUMN SIMULATION: UNIFAC
\(5,0,40,2,0,0,70,1,0\),
\(1,0,0.0,0.0\),
726.9, 0.0, 6.015, 210.0, 255.0, 75.0, 0.10,
\(40,0,98,0,169.2,22.65,400.0\),
37, 0, 96, 0, 191.9, 66.6, 0.0,
```

System: Ethanol - Water - 1-Hexene					
Models : UNIFAC and Virial (Hayden \& O'Connell) Vapor Variable Process Parameters : Pressure and Boilup ratio					
	Top Stage Pressure (psia)	Boilup Ratic	Bottoms Product Composition (molez)		
			Ethanol	Water	1-Hexene
4 III	71.0	6.015	99.3832	$3.9961 \mathrm{E}-11$	0.6168
4 II 0	72.5	6.015	98.6153	$1.1819 \mathrm{E}-10$	1.3847
4 I 3	75.0	6.015	97.3042	$1.5065 \mathrm{E}-11$	2.6958
411	80.0	6.015	94.7741	1.3435E-12	5.2259
416	75.0	5.414	96.8929	$1.1565 \mathrm{E}-10$	3.1071
414	75.0	6.316	97.5044	$6.2285 \mathrm{E}-11$	2.4956
415	75.0	9.023	98.8578	$1.4811 \mathrm{E}-10$	1.1422
419	75.0	9.924	99.1511	$3.7516 \mathrm{E}-11$	0.8489
4117	75.0	10.226	99.2404	$2.1483 \mathrm{E}-11$	0.7596
4116	74.0	9.924	99.6431	$8.2467 \mathrm{E}-12$	0.3569

Table C.9.3: T and x profiles in the Azeotropic_Column Using UNIFAC Model

Models: UNIFAC for liquid phase and Virial for vapor Phase System: (1) Ethanol - (2) Water - (3) 1-Hexene Case \#: 4I3

Stage \#	T (F)	Liquia (1)	Phase Compositions (2)	$\text { in Mcle } \underset{(3)}{8}$
40	214.68	29.632	3.0201	67.348
39	215.25	29.931	2.7427	67.327
38	215.45	28.566	2.4438	68.990
37	215.57	44.830	5.8608	49.309
36	217.89	47.212	3.2677	49.520
35	219.56	48.623	1.6834	49.694
34	220.59	49.374	0.82778	49.798
33	221.19	49.753	0.39719	49.850
32	221.53	49.940	0.18828	49.871
31	221.74	50.034	$0.88734 \mathrm{E}-01$	49.877
30	221.88	50.083	$0.41706 \mathrm{E}-01$	49.876
29	221.99	50.110	$0.19578 \mathrm{E}-01$	49.870
28	222.09	50.128	$0.91855 \mathrm{E}-02$	49.863
26	222.26	50.151	$0.20211 \mathrm{E}-02$	49.847
25	222.35	50.160	$0.94806 \mathrm{E}-03$	49.839
24	222.43	50.169	$0.44474 \mathrm{E}-03$	49.830
23	222.52	50.178	$0.20865 \mathrm{E}-03$	49.822
22	222.60	50.186	$0.97894 \mathrm{E}-04$	49.814
21	222.68	50.195	$0.45934 \mathrm{E}-04$	49.805
20	222.76	50.203	$0.21555 \mathrm{E}-04$	49.797
19	222.85	50.212	$0.10116 \mathrm{E}-04$	49.788
18	222.93	50.220	$0.47481 \mathrm{E}-05$	49.780
17	223.01	50.229	$0.22287 \mathrm{E}-05$	49.771
15	223.18	50.245	$0.49118 \mathrm{E}-06$	49.755
14	223.26	50.254	$0.23061 \mathrm{E}-06$	49.746
13	223.34	50.262	$0.10828 \mathrm{E}-06$	49.738
12	223.42	50.270	$0.50840 \mathrm{E}-07$	49.730
10	223.59	50.287	$0.11202 \mathrm{E}-07$	49.713
9	223.67	50.296	$0.52532 \mathrm{E}-08$	49.704
8	223.75	50.304	0.24589E-08	49.696
7	223.83	50.313	$0.11464 \mathrm{E}-08$	49.687
6	223.92	50.340	$0.53014 \mathrm{E}-09$	49.660
5	224.00	50.728	$0.24367 \mathrm{E}-09$	49.272
4	224.20	56.623	$0.13063 \mathrm{E}-09$	43.377
3	228.28	79.292	$0.94371 \mathrm{E}-10$	20.708
2	246.49	95.051	$0.94406 \mathrm{E}-10$	4.9494
1	258.09	99.078	$0.17450 \mathrm{E}-09$	0.92180
R	260.95	99.840	$0.14769 \mathrm{E}-09$	0.15957

Note: Profiles computed on Vax $11 / 780$ without floating point extender and in single precision mode.

C. 10 Sample Input and Azeotropic Column Results for Ethanol-Water-Diethyl Ether System

Table C.l0.1 Input for Ethanol-Water-Diethyl Ether System

```
ETOH-WTR-DE-ETHER DEHYD. NCASE=5 WITH UNIFAC & VIRIAL (EX #4J)
3, 7, 1, 2, 0, 0, 0, 1, 0, 0, 0,
ETOH
0,46.1, 351.1, 516.2, 63.0, 167.0, 0.248, 58.39, 0.635,
0.0, 0.0, 2.1055, 1.9720, 0.92, 0.0, 0.0,0.252,
2.25, 1.70, 1.40,
202.1, 351.1,
-0.8469, 0.1152E-01, -0.3535E-04, 0.4462E-07,
2.153, 5.113E-02, -2.004E-05, 0.328E-09,
12.0457, -3667.705, -46.976, 3*0.0,
WATER
0, 18.0, 373.2, 647.6, 217.3, 56.0,0.348, 18.05, 0.344,
0.0, 0.0, 0.92, 1.40, 1.00, 0.0, 0.0, 0.238,
0.615, 1.84, 1.70,
538.7, 373.2,
-2.7133,0.27235E-01, -0.7271E-04, 0.7007E-07,
7.701, 4.595E-04, 2.521E-06, -0.859E-09,
11.9516, -3984.923, -39.734, 3*0.0,
DE-ETHER
0, 74.123, 307.7, 466.7, 35.9, 280.0, 0.262, 103.96, 0.281,
0.0, 0.0, 3.39, 3.02, 3.02, 0.0, 0.0, 0.2650,
3.140, 1.17, 0.0,
86.07, 307.7,
0.46055, -0.2098E-03, 0.29717E-06, .68367E-09,
5.117, 8.022E-02, -2.473E-05, -2.235E-09,
9.4495, -2511.29, -41.95, 3*0.0;
1.40, 1.55, 0.50,
1.55,1.70, 0.50,
0.50,0.50, 0.00,
    3 ETHANOL
    1 WATER
    3 DIETHYL ETHER
1, 1, 1, 2, 1, 15;
1, 17,
2, 1, 1, 2, 1, 26,
ETOH-WTR-DIETHYL ETHER AZEO DIST COLUMN SIMULATION: USING UNIFAC
5, 0,40, 2, 0, 0, 30, 1, 0,
1.0, 0.0, 0.0,
726.9, 0.0, 6.015, 285.0, 245.0, 135.0, 0.10,
40, 0, 98, 0, 169.2, 22.65, 400.0,
37, 0, 96, 0, 191.9, 66.6, 0.0,
```

System: Ethanol - Water - Diethyl Ether					
Models : UNIFAC and Virial (Hayden \& O'Connell) vapor					
Variable Process Parameters : Pressure and Boilup ratio					
Case	Top Stage	Boilup	Bottoms	Froduct Co	ition (mole\%)
No.	Pressure (psia)	Ratio	Ethanol	Water	Diethyl ether
4J3 *	14.7	6.015	62.9888	37.0112	$1.2689 \mathrm{E}-14$
4J2	40.0	6.015	65.8450	34.1548	9.5114E-13
4 J 7	85.0	6.015	67.8711	32.1289	5.7101E-18
4 J 8	110.0	6.015	68.4367	31.5633	$2.9766 \mathrm{E}-14$
4 JI	135.0	6.015	68.7874	31.2126	5.1550E-18
4J5	250.0	6.015	68.6299	31.3701	3.3514E-15
4J6	135.0	3.080	69.5763	30.4237	$2.6247 \mathrm{E}-13$

[^0]Table C.10.3: Comparison of T and x Profiles in the Azeotropic Column Using NRTL and UNLFAC Models

Models: UNIFAC, NRTL for liquid phase and Virial for vapor Phase System: (1) Ethanol - (2) Water - (3) Diethyl Ether
Case : 4JI

	NRTL			UNIFAC				
$\underset{\#}{\text { Stg }}$	T (F)	(1)	(2)	(3)	T (F)	(1)	(2)	(3)
40	260.15	51.21	12.01	36.79	262.25	58.65	11.61	29.75
39	274.40	68.04	18.59	13.37	282.74	73.98	16.65	9.37
38	284.15	74.03	22.08	3.89	291.59	77.95	19.39	2.66
37	287.86	74.79	24.16	1.05	294.43	77.84	21.42	0.73
36	288.81	75.27	24.31	0.42	295.10	78.20	21.50	0.30
35	289.23	75.46	24.38	0.17	295.40	78.35	21.53	0.12
34	289.42	75.53	24.40	$0.67 \mathrm{E}-01$	295.56	78.41	21.54	0.48E-01
33	289.53	75.56	24.41	$0.26 \mathrm{E}-01$	295.65	78.43	21.55	0.20E-01
32	289.60	75.58	24.41	$0.10 \mathrm{E}-01$	295.71	78.44	21.55	$0.79 \mathrm{E}-02$
31	289.66	75.58	24.41	$0.42 \mathrm{E}-02$	295.77	78.45	21.55	$0.32 \mathrm{E}-02$
30	289.72	75.59	24.41	0.17E-02	295.82	78.45	21.55	$0.13 \mathrm{E}-02$
29	289.77	75.59	24.41	$0.66 \mathrm{E}-03$	295.87	78.45	21.55	0.52E-03
28	289.82	75.59	24.41	$0.26 \mathrm{E}-03$	295.92	78.45	21.55	0.21E-03
27	289.86	75.59	24.41	$0.10 \mathrm{E}-03$	295.97	78.45	21.55	0.85E-04
25	289.96	75.59	24.41	0.16E-04	296.07	78.45	21.55	0.14E-04
23	290.06	75.59	2.4 .41	$0.26 \mathrm{E}-05$	296.17	78.45	21.55	0.23E-05
22	290.11	75.59	24.41	$0.10 \mathrm{E}-05$	296.22	78.45	21.55	0.92E-06
20	290.21	75.59	24.41	$0.16 \mathrm{E}-06$	296.32	78.45	21.55	0.15E-06
19	290.26	75.59	24.41	0.65E-07	296.36	78.45	21.55	0.61E-07
18	290.30	75.59	24.41	0.26E-07	296.41	78.45	21.55	0.25E-07
17	290.35	75.60	24.40	0.10E-07	296.46	78.45	21.55	0.10E-07
15	290.45	75.61	24.39	$0.13 \mathrm{E}-08$	296.56	78.45	21.55	$0.17 \mathrm{E}-08$
14	290.50	75.62	24.38	0.36E-09	296.61	78.45	21.55	0.67E-09
13	290.55	75.63	24.37	$0.69 \mathrm{E}-10$	296.66	78.44	21.56	0.27E-09
12	290.60	75.66	24.34	$0.27 \mathrm{E}-10$	296.71	78.43	21.57	0.11E-09
10	290.71	75.80	24.20	$0.50 \mathrm{E}-11$	296.81	78.38	21.62	$0.17 \mathrm{E}-10$
9	290.76	75.94	24.06	0.26E-11	296.86	78.34	21.67	$0.73 \mathrm{E}-11$
8	290.83	76.19	23.82	$0.10 \mathrm{E}-11$	296.92	78.26	21.74	0.29E-11
7	290.91	76.59	23.41	$0.45 \mathrm{E}-12$	296.97	78.13	21.87	$0.76 \mathrm{E}-12$
6	291.01	77.26	22.74	$0.19 \mathrm{E}-12$	297.04	77.92	22.08	0.56E-07
5	291.16	78.33	21.68	$0.78 \mathrm{E}-13$	297.11	77.58	2.2 .42	$0.56 \mathrm{E}-11$
4	291.39	79.93	20.07	$0.32 \mathrm{E}-13$	297.21	77.00	23.00	$0.26 \mathrm{E}-10$
	291.75	82.18	17.82	$0.14 \mathrm{E}-13$	297.33	76.03	23.97	$0.11 \mathrm{E}-10$
2	292.31	85.04	14.96	$0.57 \mathrm{E}-14$	297.53	74.37	25.63	$0.42 \mathrm{E}-11$
1	293.11	88.30	11.70	$0.23 \mathrm{E}-14$	297.88	71.40	28.60	$0.16 \mathrm{E}-11$
R	294.13	91.57	8.430	$0.89 \mathrm{E}-15$	298.62	65.79	34.21	$0.55 \mathrm{E}-12$

Note: All the compositions are in mole $\%$

C.ll Sample Input and Azeotropic Column Results for Ethanol-Water-2,2-Dimethyl Pentane System

Table C.11.1 Input for Ethanol-Water-2.2-Dimethyl Pentane System

```
ETOH-WTR-DICH3C5 DEHYD. NCASE=5: UNIFAC \& VIRIAL (EX \#4K)
3, 7, \(1,2,0,0,0,1,0,0,0\),
ETOH
\(0,46.1,351.1,516.2,63.0,167.0,0.248,58.39,0.635\),
\(0.0,0.0,2.1055,1.9720,0.92,0.0,0.0,0.252\),
2.25, 1.70, 1.40,
202.1, 351.1,
\(-0.3499,9.559 \mathrm{E}-03,-37.86 \mathrm{E}-06\), \(54.59 \mathrm{E}-09\),
\(2.153,5.113 \mathrm{E}-2,-2.004 \mathrm{E}-5,0.328 \mathrm{E}-9\),
12.0457, -3667.705 , \(-46.976,3 * 0.0\),
WATER
\(0,18.0,373.2,647.6,217.3,56.0,0.348,18.05,0.344\),
\(0.0,0.0,0.92,1.40,1.00,0.0,0.0,0.238\),
0.615, 1.84, 1.70,
538.7, 373.2,
\(0.6741,2.825 \mathrm{E}-03,-8.371 \mathrm{E}-06,8.601 \mathrm{E}-09\),
\(7.701,4.595 \mathrm{E}-4,2.521 \mathrm{E}-6,-0.859 \mathrm{E}-9\),
11.9516, \(-3984.923,-39.734,3 * 0.0\),
DICH3C5
0, 100.205, 352.4, 520.4, 27.4, 416.0, 0.267, 148.672, 0.289,
\(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.2652\),
4.0001, 0.0, 0.0,
69.5574, 352.4,
\(0.3075,0.35047 \mathrm{E}-03,0.77247 \mathrm{E}-06,1.0954 \mathrm{E}-09\),
-11.966, 2.139E-01, -1.519E-04, 4.146E-08,
9.0584, \(-2740.15,49.85,3 * 0.0\),
\(1.40,1.55,0.0\),
\(1.55,0.0,0.0\),
3*0.0,
    3 ETHANOL
    1 WATER
    3 2.2-DIMETHYL PENTANE
\(1,1,1,2,1,15\),
1. 17 ,
4, 1, 2, 2, 1, 4,
ETOH-WTR-2,2 DIMETHYL PENTANE AZEO COLUMN SIMULATION: UNIFAC
\(5,0,40,2,0,0,0,1,0\),
\(1.0,0.0,0.0\),
726.9, 0.0, 6.015, 150.0, 175.0, 22.0, 0.10,
\(40,0,98,0,169.2,22.65,400.0\),
37, 0, 96, 0, 191.9, 66.6, 0.0,
```


C. 12 Sample Input and Azeotropic Column Results for Ethanol-Water=2,2,3-Trimethyl Butane System

Table C.12.1 Input for Ethanol-Water-2.2.3-Trimethyl Butane System

```
ETOH-WTR-TRICH3C4 DEHYD. NCASE=5: UNIFAC & VIRIAL (EX #4L)
3, 7, 1, 2, 0, 0, 0, 1, 0, 0, 0,
ETOH
0,46.1, 351.1, 516.2, 63.0, 167.0, 0.248, 58.39, 0.635,
0.0, 0.0, 2.1055, 1.9720, 0.92, 0.0, 0.0, 0.252,
2.25, 1.70, 1.40,
202.1, 351.1,
-0.3499, 9.559E-03, -37.86E-06, 54.59E-09,
2.153,5.113E-2, -2.004E-5, 0.328E-9,
12.0457, -3667.705, -46.976, 3*0.0,
WATER
0, 18.0, 373.2, 647.6, 217.3, 56.0, 0.348, 18.05, 0.344,
0.0, 0.0, 0.92, 1.40, 1.00, 0.0, 0.0, 0.238,
0.615,1.84, 1.70,
538.7, 373.2,
0.6741, 2.825E-03, -8.371E-06, 8.601E-09,
7.701, 4.595E-4, 2.521E-6, -0.859E-9,
11.9516, -3984.923, -39.734, 3*0.0,
TRICH3C4
0, 100.205, 354.0, 531.1, 29.2, 398.0, 0.267, 145.225, 0.251,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2685,
3.6960, 0.0, 0.0,
69.048, 354.0,
0.36906, -0.0353E-03, 1.4521E-06, 0.51867E-09,
-5.480, 1.796E-01, -1.056E-04, 2.40E-08,
9.0065, -2764.40, -47.10, 3*0.0,
1.40, 1.55, 0.0,
1.55, 0.0, 0.0,
3*0.0,
    3 ETHANOL
    I WATER
    3 2,2,3-TRIMETHYI, BUTANE
1, 1, 1, 2r 1, 15,
1, 17,
5, 1, 1, 3, 1, 4,
ETOH-WTR-2,2,3 TRIMETHYL BUTANE AZEO DIST COLUMN SIMULAATION: USING UNJI
5, 0, 40, 2, 0, 0, 0,1, 0,
1.0, 0.0, 0.0,
726.9, 0.0, 6.617, 120.0, 165.0, 10.0, 0.10,
40, 0, 98, 0, 169.2, 22.65, 400.0,
37, 0, 96, 0, 191.9, 66.6, 0.0,
```

Table C.12.2 Azeotropic Distillation Column Bottoms Results

System: Ethanol - Water - 2,2,3-Trimethyl Butane
Models : UNIFAC and Virial (Hayden \& 0^{\prime} Connell) Vapor
Variable Process Parameters : Pressure and Boilup ratio

Case No.	Topstage Pressure (psia)	Boilup Ratic	Bottoms Product Composition (moleq)		
			Ethanol	Water	Trimethyl C4
4L3	10.0	6.015	95.8756	3.1308E-09	4.1244
4Ll *	14.7	6.015	79.6356	$2.7729 \mathrm{E}-12$	20.3644
4L2	30.0	6.015	52.5954	$7.5185 \mathrm{E}-11$	47.4046
4L7	14.7	6.617	80.5392	$3.6756 \mathrm{E}-12$	19.4608
4L8	14.7	12.030	84.6264	$9.3453 \mathrm{E}-11$	15.3736
4Ll0	10.0	6.617	96.7827	3.1929E-10	3.2173
4L11	10.0	6.917	97.1660	$1.8149 \mathrm{E}-11$	2.8338
4L12	10.0	7.519	97.8175	3.6692E-10	2.1825
4L13	10.0	8.120	98.3465	4.5123E-11	1.6535
4L14	10.0	9.022	98.9765	4.6568E-10	1.0235
4L19	10.0	9.150	99.0554	1.6000E-12	0.9446

[^1]Table C.l2.3: T and x profiles in the Azeotropic column Using UNIFAC Model

Models: UNIFAC for liquid phase and Virial for vapor phase System: (1) Ethanol - (2) Water - (3) 2,2,3-Trimethyl Butane Case \#: 4L10

Stage \#	T(F)	Liquid (1)	Phase Compositions (2)	$\begin{gathered} \text { in Mole } \\ (3) \end{gathered}$
40	125.03	31. 289	3.5335	65.178
39	126.07	32.097	2.9276	64.975
38	126.66	30.531	2.4581	67.011
37	127.21	44.733	5.1204	50.146
36	128.93	46.894	2.8066	50.299
35	130.25	48.170	1.4274	50.403
34	131.21	48.866	0.69481	50.439
33	131.92	49.240	0.33058	50.430
32	132.48	49.450	0.15553	50.395
31	132.98	49.580	$0.72795 \mathrm{E}-01$	50.347
30	133.43	49.673	$0.33990 \mathrm{E}-01$	50.293
29	133.86	49.747	$0.15855 \mathrm{E}-01$	50.237
28	134.29	49.812	$0.73930 \mathrm{E}-02$	50.180
26	135.12	49.932	$0.16073 \mathrm{E}-02$	50.066
25	135.52	49.990	$0.74960 \mathrm{E}-03$	50.009
24	135.93	50.046	$0.34964 \mathrm{E}-03$	49.953
23	136.33	50.103	$0.16312 \mathrm{E}-03$	49.897
22	136.73	50.158	$0.76114 \mathrm{E}-04$	49.842
21	137.12	50.213	$0.35524 \mathrm{E}-04$	49.787
20	137.52	50.268	$0.16583 \mathrm{E}-04$	49.732
18	138.30	50.376	$0.36157 \mathrm{E}-05$	49.62 .4
17	138.68	50.429	$0.16888 \mathrm{E}-05$	49.571
16	139.06	50.482	$0.78900 \mathrm{E}-06$	49.518
15	139.44	50.535	$0.36868 \mathrm{E}-06$	49.465
14	139.82	50.587	$0.17231 \mathrm{E}-06$	49.413
13	140.19	50.638	$0.80549 \mathrm{E}-07$	49.362
11	140.94	50.741	0.17611E-07	49.259
10	141.30	50.792	$0.82366 \mathrm{E}-08$	49.208
9	141.67	50.842	$0.38522 \mathrm{E}-08$	49.158
8	142.03	50.892	$0.18013 \mathrm{E}-08$	49.108
7	142.39	50.941	$0.84178 \mathrm{E}-09$	49.059
6	142.75	50.991	$0.39275 \mathrm{E}-09$	49.009
5	143.10	51.040	$0.18257 \mathrm{E}-09$	48.960
4	143.46	51.104	$0.84226 \mathrm{E}-10$	48.896
3	143.81	51.863	$0.39137 \mathrm{E}-10$	48.137
2	144.36	63.372	$0.25377 \mathrm{E}-10$	36.628
1	151.05	87.914	$0.25953 \mathrm{E}-10$	12.086
R	164.97	97.834	$0.24119 \mathrm{E}-10$	2.1663

Note: Profiles computed on Vax $11 / 780$ without floating point extender and in single precision mode

APPENDIX D

OBJECTIVE FUNCTIONS AND SAMPLE INPUT FOR THE PARAMETER ESTIMATION PROGRAM

D. 1 Sample Input for the Parameter Estimation_program (MARQDT)

D. 2 Obiective Functions: Vapor-Liquid_Eguilibrium_Data Regression
D. 3 Qbjective_Functions:_Liguid=Liquid_Equilibrium_Data Regression

D. 1 Samples Input for the Parameter Estimation Program (MARQDT)

ESTIMATION OF MODIFIED UNIQUAC PARAMETERS USING MARQUARDT'S
NON-LINEAR REGRESSION METHOD. PARAMETERS FOR 2-3 PAIR ARE LOCKED. VAPOR PHASE : VIRIAL EOS (B BY HAYDEN $\beta 0^{\prime}$ CONNELL)
SYSTEM: 1.(1)ETHANOL-(2)WATER (P=760 MMHG) μ 2.(1)ETHANOL- (3)BENZENE:
($\mathrm{P}=750$ MMHG) μ 3.(1)ETHANOL- (2)WATER-(3)BENZENE $\mu \mathrm{LLE} \mu \mathrm{T}=35 \mathrm{C}$.
DATA REF.: 1. REIDER R.M., THOMPSON A.R.,IND.ENG.CHEM.41,2905(1949)
2. TYRER D., J. CHEM. SOC. (LONDCN) 101, 1104 (1912).
3. MORACHEVSKII,AG, ET AL, VESTN LENINGR UNIV KHIM 13,4(1958)117

INITIAL PARAMETERS: RESULTING PARA FROM CASE\#41A
ALL THE 6 PARAMETERS FLOATING. ALL TIE LINES ARE USED. (LLEFN=11)


```
\(0.7350,0.2650,1 . \mathrm{E}-4\),
0.8040 , 0.1960 , 1.E-4,
0.9170 , \(0.0830,1 . \mathrm{E}-4\),
0.1585 , 0.0, 1.0E-4,
0.2977 , \(0.0,1.0 \mathrm{E}-4\),
\(0.4208, \quad 0.0,1.0 \mathrm{E}-4\),
\(0.5367, \quad 0.0,1.0 \mathrm{E}-4\),
0.6290 , 0.0, 1.0E-4,
0.7178 , 0.0, 1.0E-4,
\(0.7982,0.0,1.0 \mathrm{E}-4\),
0.8715 , 0.0, 1.0E-4,
\(0.9385, \quad 0.0,1.0 \mathrm{E}-4\),
\(0.0140,0.0040,1.0 \mathrm{E}-4\),
0.0800 , \(0.0210,1.0 \mathrm{E}-4\),
0.1450 , \(0.0390,1.0 \mathrm{E}-4\),
0.1450 , 0.0390 , 1.0E-4,
0.1970 , 0.0570 , \(1.0 \mathrm{E}-4\),
0.2550 , \(0.0960,1.0 \mathrm{E}-4\),
0.3200 , \(0.1720,1.0 \mathrm{E}-4\),
9999.0, 0.0, 0.0,
    3, 6, 1, 2, 0, 4*0,
\(11,4,0,3,0,10,21,11,0,3,2,0.0,0.0\),
    1, 1, 2, 3, 34, 1, 2, 0,
    2, 1, 2, 3, 9, 1, 0, 3,
    \(3,2,1,3,7,1,2,3\),
ETOH
0, 46.1, \(351.4,516.2,63.0\), 167.0, 0.248, 58.39, 0.635,
\(0.0,0.0,2.1055,1.9720,0.92,0.0878,0.0572,0.252\),
2.25, 1.69. 1.40,
202.1, 351.1 ,
\(0.58,3\) * 0.0 ,
17.52, \(3 * 0.0\),
12.0466, \(-3667.705,-46.976,3 * 0.0\),
WATER
\(0,18.0,373.1,647.6,217.3,56.0,0.232,18.05,0.344\),
\(0.0,0.0,0.92,1.40,1.00,0.0279,0.0229,0.238\),
\(0.615,1.83,1.70\),
\(538.7,373.2\),
\(1.0,3 * 0.0\),
8.17, 3*0.0,
\(11.9516,-3984.923,-39.734,3 * 0.0\),
BENZENE
\(0,78.1,353.1,562.1,48.3,259.0,0.269,88.26,0.212\),
\(0.0,0.0,3.1878,2.40,0.0,0.0,0.0,0.2696\),
\(3.004,0.0,0.0\),
94.1, 353.3,
0.41, 3*0.0,
19.447, 3*0.0.
9.2082, -2755.644, -53.999, 3*0.0,
\(1.40,1.55,0.0\),
\(1.55,1.70,0.0\),
\(0.0,0.0,0.0\),
\(10.0,0.0,10.0,0.0,10.0,0.0,10.0,0.0\),
\(10.0,0.0,10.0,0.0\)
REG OF 6 PARAMETERS FOR THE PREDICTION OF VLE \(\beta\) LLE AT 35 C
```

```
760.0, 35.0, 65.0, 0.0,
99.30, 96.90, 96.00, 96.00, 95.60, 94.80, 93.80, 93.50, 92.90,
90.50, 90.50, 89.40, 88.40, 88.60, 87.20, 85.40, 84.50, 84.00,
83.40, 83.00, 82.30, 82.00, 81.40, 81.50, 81.20, 80.90, 80.50,
80.20, 80.00, 79.50, 78.80, 78.50, 78.40, 78.30,
69.54, 68.20,67.76, 67.97, 68.41, 69.00, 70.26, 71.86, 74.40,
0.0320,0.9680, 0.1130,0.8870, 0.1570, 0.8430,0.1350, 0.8650,
0.1560, 0.8440, 0.1860,0.8140, 0.2120, 0.7880, 0.2310, 0.7690,
0.2480, 0.7520, 0.3180, 0.6820, 0.3140, 0.6860, 0.3390, 0.6610,
0.3700, 0.6300, 0.3620, 0.6380, 0.4060, 0.5940, 0.4680, 0.5320,
0.4870, 0.5130, 0.5050, 0.4950, 0.5300, 0.4700, 0.5270, 0.4730,
0.5520, 0.4480, 0.5670,0.4330, 0.5860, 0.4140, 0.5860,0.4140,
0.5910, 0.4090,
0.6140,0.3860, 0.6260,0.3740, 0.6330, 0.3670, 0.6610, 0.3390,
0.6730, 0.3270,
0.7330, 0.2670, 0.7760, 0.2240, 0.8150, 0.1850, 0.9060, 0.0940,
0.3531, 0.0, 0.4045, 0.0, 0.4358, 0.0, 0.4662, 0.0, 0.5053, 0.0,
0.5491, 0.0, 0.6063, 0.0, 0.6833, 0.0, 0.7874, 0.0,
0.0560,0.9430,0.1540,0.8430, 0.2410, 0.7440, 0.2410, 0.7440,
0.2980,0.6690,0.3480,0.5880, 0.3860,0.4900
```


D. 2 Objective_Eunctions for Vapor-Liguid_Equilibrium_Data Regression

The objective functions for the regression of vaporliquid equilibria are computed for the j th data point and n number of components. The subscript e and c in the following equations denote the experimental and calculated data, and the subscript i represents the component.

Function \# 1: The difference of the infinite dilution activity coefficients,

$$
\begin{equation*}
z_{j}=\frac{1}{n} \sum_{i=1}^{p}\left|\gamma_{e i}^{\infty}-\gamma_{c i}^{\infty}\right| \tag{D2.1}
\end{equation*}
$$

Function \# 2: The relative difference of the infinite dilution activity coefficients,

$$
\begin{equation*}
z_{j}=\frac{1}{n} \sum_{i=1}^{p} \frac{\left|\gamma_{\mathrm{e} i}^{\infty}-\gamma_{\underline{c i}}^{\infty}\right|}{\gamma_{\mathrm{ei}}^{\infty}} \tag{D2.2}
\end{equation*}
$$

Function \# 3: The relative difference of the logrithm of infinite dilution activity coefficients,

$$
\begin{equation*}
z_{j}=\frac{1}{n} \sum_{i=1}^{n}\left|\operatorname{Ln} \gamma_{e i}^{\infty}-\operatorname{Ln} \gamma_{c i}^{\infty}\right| \tag{D2.3}
\end{equation*}
$$

Function\#4: The difference of activity coefficients,

$$
\begin{equation*}
z_{j}=\frac{1}{n} \sum_{i=1}^{p}\left|\gamma_{e i}-\gamma_{c i}\right| \tag{D2.4}
\end{equation*}
$$

Function \# 5: The relative difference of activity coefficients,

$$
\begin{equation*}
\left.z_{j}=\frac{1}{n} \sum_{i=1}^{p} \underline{\gamma}_{\underline{e} \underline{i}}^{\gamma_{\mathrm{e} i}}-\gamma_{\mathrm{Ci}} \right\rvert\, \tag{D2.5}
\end{equation*}
$$

Function \# 6: The difference of the logrithm of activity coefficients,

$$
z_{j}=\frac{1}{n} \sum_{i=1}^{p}\left|\operatorname{Ln} \gamma_{e i}-\operatorname{Ln} \gamma_{c i}\right|
$$

(D2.6)

Function \# 7: The difference of y 's,

$$
\begin{equation*}
z_{j}=\frac{1}{n} \sum_{i=1}^{p}\left|y_{e i}-y_{c i}\right| \tag{D2.7}
\end{equation*}
$$

Function \# 8: The relative difference of $y^{\prime} s$,

$$
\begin{equation*}
z_{j}=\frac{1}{n} \int_{i=1}^{p} \frac{\underline{y}_{e i}-y_{y} \mid}{y_{e i}} \tag{D2.8}
\end{equation*}
$$

Function \# 9: The difference of the logrithm of $y^{\prime} s$,

$$
\begin{equation*}
\left.z_{j}=\frac{1}{n} \sum_{i=1}^{p} \ln y_{e i}-\operatorname{Ln} y_{c i} \right\rvert\, \tag{D2.9}
\end{equation*}
$$

Function \# 10: The difference of y^{\prime} s and the relative difference of total P's,

$$
\begin{equation*}
z_{j}=\frac{1}{n} \sum_{i=1}^{n}\left|y_{e i}-y_{c i}\right|+\frac{\left|p_{e^{-}}-p_{c}\right|}{P_{e}} \tag{D2.10}
\end{equation*}
$$

Function \# 11: The relative difference of $y^{\prime} s$ and the relative difference of total P^{\prime} s,

$$
\begin{equation*}
z_{j}=\frac{1}{n} \sum_{i=1}^{n} \frac{\underline{y}_{e i}-y_{C i} \mid}{y_{e i}}+\frac{\left|P_{e}-P_{C}\right|}{\bar{p}_{e}} \tag{D2.11}
\end{equation*}
$$

Function \# 12: The difference of the logrithm of y 's and the difference of logrithm of total p's,

$$
z_{j}=\frac{1}{n} \sum_{i=1}^{p} \operatorname{lLn} y_{e i}-\operatorname{Ln} y_{c i}\left|+\operatorname{lLn} P_{e}-\operatorname{Ln} P_{c}\right|(D 2.12)
$$

Function \# 13: The difference of total P's,

$$
\begin{equation*}
z_{j}=\left|P_{e}-p\right| \tag{D2.13}
\end{equation*}
$$

Function\#14: The ratio of total P's,

$$
\begin{equation*}
z_{j}=\left|P_{e}\right| P_{c} \mid \tag{D2.14}
\end{equation*}
$$

Function \# 15: The relative difference of total P's,

$$
\begin{equation*}
z_{j}=\frac{\mid p_{e_{e}}^{-p_{c} \mid}}{\bar{P}_{e}^{-}} \tag{D2.15}
\end{equation*}
$$

Function \# 16: The difference of the logrithm of total P's,

$$
\begin{equation*}
z_{j}=\left|\operatorname{Ln}\left(P_{e} / P_{c}\right)\right| \tag{D2.16}
\end{equation*}
$$

Function \# 17: The difference of T's,

$$
\begin{equation*}
z_{j}=\left|T_{e}-T_{c}\right| \tag{D2.17}
\end{equation*}
$$

Function \#18: The ratio of T's,

$$
\begin{equation*}
Z_{j}=\left|T_{e} / T_{c}\right| \tag{D2.18}
\end{equation*}
$$

Function \# 19: The relative difference of T^{\prime},

$$
\begin{equation*}
z_{j}=\frac{\left|T_{e_{-}}-T_{c_{-}}\right|}{T_{e}} \tag{D2.19}
\end{equation*}
$$

Function \# 20: The difference of the logrithm of T's,

$$
\begin{equation*}
z_{j}=\left|\operatorname{Ln}\left(T_{c} / T_{e}\right)\right| \tag{D2.20}
\end{equation*}
$$

Function \# 21: The difference of $\mathrm{T}^{\prime} \mathrm{s}$ and the difference of $y^{\prime} s$,

$$
\begin{equation*}
z_{j}=\left|T_{e}-T_{c}\right|+\frac{1}{n} \sum_{i=1}^{p}\left|y_{e i}-y_{c i}\right| \tag{D2.21}
\end{equation*}
$$

Function \# 22: The relative difference of T 's and the difference of $Y^{\prime} s$,

$$
z_{j}=\frac{\left|T_{e}-T_{c}\right|}{T_{e}}+\frac{1}{n} \sum_{i=1}^{p}\left|y_{e i}-y_{c i}\right| \quad \text { (D2.22) }
$$

D. 3 Qbjective_Functions: Liquid-Liquid_Eguilibria Data Regression

The objective functions for liquid-liquid equilibria data regression are computed for the j th data point, n number of components, and two phases denoted by supercript I and II. The subscripts e and c denote the experimental and calculated values, and i denotes the component.

Function \# 1: The difference in activities,

$$
\begin{equation*}
z_{j}=\frac{1}{2} n \sum_{i=1}^{D}\left|a_{c i}^{I}-a_{c i}^{I I}\right| \tag{D3.1}
\end{equation*}
$$

Function \# 2: The difference in the logrithm of activities,

$$
\begin{equation*}
z_{j}=\frac{1}{2} n \sum_{i=1}^{n}\left|\operatorname{Ln} a_{c i}^{I}-\operatorname{Ln} a_{c i}^{I I}\right| \tag{D3.2}
\end{equation*}
$$

Function \# 3: The relative difference in activities,

$$
\begin{equation*}
z_{j}=\frac{1}{2} n \sum_{i=1}^{p} \frac{\left|a_{c i}^{I}-a_{c i}^{I I}\right|}{a_{c i}^{I}+a_{c i}^{I}} \tag{D3.3}
\end{equation*}
$$

Function \# 4: The difference in the logrithm of activities, with emphasis on solutes present in the system

$$
\begin{align*}
z_{j}= & \left.\frac{1}{2} n \sum_{i=1}^{n} \ln a_{c i}^{I}-\operatorname{Ln} a_{c i}^{I I} \right\rvert\,+ \\
& \overline{2}\left(\bar{n}-\frac{1}{2}\right) \sum_{i=1}^{p}\left|\ln a_{c i}^{I}-\operatorname{Ln} a_{c i}^{I I}\right| x_{c i}^{I} x_{c i}^{I I} \tag{D3.4}
\end{align*}
$$

where Ie and Ir denotes the rich component in extract and raffinate phases.

Function \# 5: The weighted difference in compositions,

$$
\begin{equation*}
z_{j}=\frac{1}{2} n \sum_{i=1}^{p} w_{i}^{I}\left|x_{e i}^{I}-x_{c i}^{I}\right|+w_{i}^{I I}\left|x_{e i}^{I I}-x_{c i}^{I I}\right| \tag{D3.5}
\end{equation*}
$$

where the associated weights are computed using W as a constant in the following equations

$$
w_{i}^{I}=\left|1.0+w \frac{\left|x_{\mathrm{e} i}^{I}-x_{\mathrm{C} \dot{i}}^{I}\right|}{x_{\mathrm{ei}}^{I}}\right| \text { and } w_{i}^{I I}=\left\lvert\, 1.0+w \frac{\left|x_{\mathrm{ei}}^{I I}-x_{\mathrm{C} i}^{I I}\right|}{x_{\mathrm{e} i}^{I \bar{I}}-1}\right.
$$

Function \# 6: The weighted difference in the logarithm of compositions.

$$
z_{j}=\frac{1}{2} n \sum_{i=1}^{p} w_{i}^{I}\left|\operatorname{Ln} x_{e i}^{I}-\operatorname{Ln} x_{c i}^{I}\right|+w_{i}^{I I}\left|\operatorname{Ln} x_{e i}^{I I}-\operatorname{Ln} x_{c i}^{I I}\right|
$$

Function \# 7: The weighted relative difference in compositions,

Function \# 8: The weighted relative difference in compositions,

Function \# 9: The relative difference in compositions and in the distribution ratios of the solutes,

Function \# 10: The weighted difference inthe logrithm of compositions and in the logrithm of distribution ratios of solutes,
$\left.z_{j}=\frac{1}{2} n \sum_{i=1}^{p} w_{i}^{I} \ln x_{e i}^{I}-\operatorname{Ln} x_{c i}^{I} I+w_{i}^{I I} \ln x_{e i}^{I I}-\operatorname{Ln} x_{c i}^{I I} \right\rvert\,+$

$$
\begin{equation*}
\overline{2}\left(\left.\frac{1}{n-\frac{1}{2}} \overline{)} \sum_{i \equiv 1}^{p} \operatorname{lLn} K_{e i}-\operatorname{Ln} K_{c i} \right\rvert\,\right. \tag{D3.12}
\end{equation*}
$$

Function \# 11: The weighted relative difference in the compositions and the relative difference in the distribution ratios of solutes,

Function \# 12: The weighted relative difference in the compositions, the relative difference in the distribution ratios of solutes at the infinite dilution, and the interaction parameters,

$$
\begin{align*}
& \left.\overline{2}\left(\bar{n}-\frac{1}{-2}\right) \sum_{i \frac{1}{\overline{\neq}} \mathrm{I} e, I r}^{p} \operatorname{ILn} K_{e i}^{\infty}-\operatorname{Ln} K_{c i}^{\infty} \right\rvert\,+W_{1} \sum_{j=1}^{p} C_{j} \tag{D3.14}
\end{align*}
$$

where W_{1} is the another constant weight with p number of interaction parameters.

APPENDIX E

MODIFIED UNIQUAC INTERACTION PARAMETER ESTIMATION RESJLTS

	E.1.1	Regression Results of Isobaric Ethanol-Water (VLE) System
	E. 1.2	Regression Results of Isothermal Ethanol-Water (VLE) System
	E. 1.3	Regression Results of Isobaric Ethanol-Benzene (VLE) System
	E. 1.4	Regression Results of Isothermal Ethanol-Benzene (VLE) System
E. 2	Resul	S_of_Binary LLE_Data_Regression
	E.2.1	Regression Results of Benzene-Water (LLE) System at 25 C
	E.2.2	Regression Results of Benzene-Water (LLE) System at 25 C
	E. 2.3	```Regression Results of Benzene-Water (LLE) System at 35 C```
	E. 2.4	```Regression Results of Benzene-Water (LLE) System at 70 C```

E. 3 Results of VLE_Data_Regression
E.3.1 Regression Results of Isobaric Ethanol-WaterBenzene (VLE) System
E.3.2 Regression Results of Combinations of Isobaric Binary and Ternary VLE Systems

E. 4 Regressio Results of Ethanol-Water=Benzene_(LLE) System

E. 5 Results of_Simultaneous_VLE and_LLE_Data_Regression
E.5.1 Regression Results of Isobaric Binary VLE and Isothermal Ternary LLE Systems
E.5.2 Regression Results of Isothermal Binary VLE and Isothermal Ternary LLE Systems
E.5.3 Regression Results of Isothermal Binary VLE and Isothermal Ternary LLE Systems
E.5.4 Regression Results of Isobaric VLE and LLE, Binary and Ternary Systems
E. 1 Results of Binary VLE Data Regression

	Table E.l.l: Regression Results of Isobaric Ethanol-Water (VLE) System
System: (1) Ethanol- (2) Water	Condition: Isobaric, $P=760 \mathrm{~mm}$ Hg
Gamma Model: Modified UNIQUAC	Data reference: Reider, R.M., et.al (1949)
Phi Model: Virial EOS	No. of data points $=34$

Case NO.	VLEFN \#	Binary Interaction Parameters, ${ }^{\circ} \mathrm{K}$ Intial Final				$\begin{aligned} & \text { Texp }{ }^{-T} c a l \\ & \text { in }{ }^{-T} \end{aligned}$		$\begin{gathered} Y \\ \text { in mole } \\ \exp _{8}^{-Y} \end{gathered}$		Inf. Dilution Activity Coeff	
		A_{12}	A_{21}	A_{12}	A_{21}	Mean	Max	Mean	Max	(1)	(2)
04A	7	1	1	-89.02	376.71	0.38	0.93	0.534	2.726	5.128	2.329
04B	8	1	1	-70.63	356.65	0.25	0.81	0.623	2.630	5.169	2.405
04 C	9	1	1	-67.06	353.68	0.22	0.77	0.655	2.591	5.188	2.422
04 D	17	1	1	-67.41	371.92	0.15	0.45	0.897	2.509	5.436	2.465
04E	19	1	1	-68.98	375.07	0.15	0.43	0.902	2.547	5.454	2.462
04F	20	1	1	-68.88	374.90	0.15	0.43	0.903	2.545	5.453	2.462
04G	21	1	1	-50.48	342.07	0.13	0.56	0.883	2.362	5.299	2.508
04H	21	500	500	-54.12	347.85	0.13	0.55	0.879	2.323	6.580	2.490
041	21	-500	500	-55.88	349.86	0.13	0.55	0.865	2.326	5.319	2.490
04 J	21	500	-500	-55.43	349.03	0.13	0.56	0.864	2.334	5.315	2.491

(Cont'd.) Table E.l.l: Regression Results of Isobaric Ethanol-Water (VLE) System

$\begin{array}{r} \text { Case } \\ \text { No. } \end{array}$	VLEFN \#	Binary Interaction Parameters, ${ }^{\circ} \mathrm{K}$ Intial Final				$\begin{aligned} & \mathrm{T} \exp ^{-\mathrm{T}_{\mathrm{cal}}} \\ & \text { in } \end{aligned}$		$Y_{\text {in }} \operatorname{expl}^{-Y}{ }^{-Y} c_{\text {eal }}$		Inf. Dilution Activity Coeff	
		${ }^{\mathrm{A}} 12$	A_{21}	${ }^{\text {A }} 12$	A_{21}	Mean	Max	Mean	Max	(1)	(2)
04K	21	-500	-500	-50.82	342.21	0.13	0.57	0.877	2.369	5.295	2.506
04L	21	3000	3000	-361.09	9963.07	3.00	7.10	6.987	21.919	-	1.515
04M	21	-3000	3000	-361.09	9100.83	3.00	7.10	6.987	21.919	-	1.515
04 N	21	3000	-3000	8070.10	-206.88	1.48	2.89	3.648	7.192	3.625	-
040	21	-3000	-3000	-57.02	351.70	0.14	0.55	0.864	2.314	5.326	2.487

Table E.I.2: Regression Results of Isothermal Ethanol-Water (VLE) System

Case No.	VLEFN \#	Binary Interaction Parameters, ${ }^{\circ} \mathrm{K}$ Intial Final				$\begin{aligned} & \mathrm{P}_{\mathrm{exp}}{ }^{-\mathrm{P}} \mathrm{cal} \\ & \text { in } \mathrm{Hg} \end{aligned}$				Inf. Dilution Activity Coeff	
		${ }^{\text {A }} 12$	A_{21}	A_{12}	A_{21}	Mean	Max	Mean	Max	(1)	(2)
08A*	7	1	1	-41.48	299.42	1.89	8.60	0.529	1.331	5.276	2.520
08B*	8	1	1	-19.36	272.65	1.67	8.69	0.561	1.244	5.239	2.613
08C	9	1	1	-19.16	272.71	1.66	8.72	0.564	1.239	5.243	2.615
08D*	10	1	1	-18.16	219.39	1.85	7.93	0.577	1.561	5.004	2.726
08E	11	1	1	-7.53	253.78	1.74	8.35	0.541	1.289	5.140	2.644
08F*	12	1	1	5.31	238.81	1.72	8.32	0.560	1.433	5.108	2.695
08G*	13	1	1	4.66	238.40	1.74	8.24	0.559	1.412	5.092	2.688
08H*	15	1	1	42.47	185.52	2.09	7.25	0.673	1.805	4.833	2.783
081	11	1000	1000	8088.41	-237.12	9.32	14.88	5.109	8.243	3.118	-
08J*	10	100	100	12.85	227.37	1.79	8.09	0.570	1.511	5.047	2.713

(Cont'd.) Table E.l.2: Regression Results of Isothermal Ethanol-Water (VLE). System

Note: '-' shows very high calculated values
'*' unconverged cases, values shown were obtained after 99 iterations System: (1) Ethanol - (2) Water
Gamma Model: Modified UNIQUAC
Phi Model: Virial EOS
Condition: Isothermal, $T=40 \mathrm{C}$. (1972) Data reference: Mertl, No. of data points
Table E.l.3: Regression Results of Isobaric Ethanol-Benzene (VLE) System

Case No.	VLEFN \#	Binary Interaction Parameters, ${ }^{\circ} \mathrm{K}$ Intial Final				$\begin{aligned} & \mathrm{T} \exp ^{-\mathrm{T}} \mathrm{Cal} \\ & \text { in }{ }^{2}{ }^{2} \end{aligned}$				Inf. Dilution Activity Coeff	
		A_{12}	A_{21}	${ }^{\text {A }} 12$	A_{21}	Mean	Max	Mean	Max	(1)	(2)
06A	7	1	1	-140.09	955.92	0.33	0.68	0.624	1.869	9.198	4.562
06 B	8	1	1	-134.80	942.14	0.44	0.75	0.749	1.490	9.061	4.562
06C	9	1	1	-134.09	940.57	0.46	0.76	0.769	1.438	9.049	4.581
06D	17	1	1	-143.83	915.94	0.11	0.26	0.668	2.491	8.143	4.235
06E	19	1	1	-142.95	910.15	0.12	0.26	0.685	2.458	8.048	4.249
06F	20	1	1	-142.95	910.27	0.12	0.26	0.685	2.457	8.050	4.249
06G	21	1	1	-149.02	953.70	0.10	0.36	0.579	2.672	8.809	4.159
06H	19	3000	3000	-142.93	910.25	0.12	0.26	0.685	2.456	8.050	4.249
061	19	-3000	3000	-197.77	6917.27	0.48	1.41	2.723	4.487	-	3.474
06J	19	3000	-3000	7791.73	-134.82	2.88	6.33	11.622	17.826	2.014	-

(Cont'd.) Table E.l.3: Regression Results of Isobaric Ethanol-Benzene (VLE) System

Case No.	$\begin{gathered} \text { VLEFN } \\ \# \end{gathered}$	Binary Interaction Parameters, ${ }^{\circ} \mathrm{K}$ Intial Final				$\begin{aligned} & \mathrm{T} \exp ^{-\mathrm{T}_{\mathrm{cal}}} \\ & \text { in } \end{aligned}$		$\begin{aligned} & Y_{l} \operatorname{expm}^{-Y_{1}} \text { incal } \end{aligned}$		Inf. Dilution Activity Coeff	
		A_{12}	A_{21}	A_{12}	A_{21}	Mean	Max	Mean	Max	(1)	(2)
06K	21	500	500	-146.15	931.48	0.11	0.28	0.621	2.578	8.405	4.199
06L	21	500	-500	-151.24	967.80	0.11	0.39	0.563	2.771	9.060	4.121
06M	21	-500	-500	-147.79	943.97	0.10	0.32	0.597	2.632	8.629	4.176
06N	21	1000	1000	-151.47	961.51	0.11	0.39	0.507	2.594	8.636	4.132
060	21	-1000	1000	-197.31	7151.03	0.48	1.43	2.708	4.450	-	3.478
$06 P$	21	1000	-1000	8027.14	-133.09	2.87	6.42	11.634	17.795	2.026	-
06 Q	21	-1000	-1000	-148.36	947.94	0.10	0.34	0.591	2.654	8.700	4.168

Note: '-' shows very high calculated values
Table E.1.4: Regression Results of Isothermal Ethanol-Benzene (VLE) System

Note: '*' shows unconverged case after 99 iterations
E. 2 Results of Binary LLE Data Regression

Case No.	$\underset{\#}{\text { LLEFN }}$	Binary Interaction Parameters, ${ }^{\circ} \mathrm{K}$ Intial Final.				Phase Rich in (1) Mean \% Rel. x Diff.		Phase Rich in (2) Mean of Rel. x Diff.*	
		A_{12}	${ }^{\text {A }} 21$	${ }^{\text {A }} 12$	A_{21}	(1)	(2)	(1)	(2)
22A	5	1	1	1.00	1.00	$3.4890 \mathrm{E}+1$	$0.1500 \mathrm{E}+5$	$0.6800 \mathrm{E}+5$	$0.2833 \mathrm{E}+2$
22B	6	1	1	1412.98	352.59	$0.4780 \mathrm{E}-3$	$0.2098 \mathrm{E}+0$	$0.2448 \mathrm{E}+0$	$0.1010 \mathrm{E}-3$
22C	8	1	1	400.43	420.88	$6.1820 \mathrm{E}+0$	$0.2729 \mathrm{E}+4$	$0.1880 \mathrm{E}-1$	0.5960E-5
22D	10	1	1	1417.58	350.84	$0.2500 \mathrm{E}-2$	$1.1060 \mathrm{E}+0$	$1.1610 \mathrm{E}+0$	$0.4830 \mathrm{E}-3$
22E	11	1	1	1407.65	354.46	$0.4030 \mathrm{E}-2$	$1.7800 \mathrm{E}+0$	$1.7200 \mathrm{E}+0$	$0.7160 \mathrm{E}-3$
22F	5	500	500	1301.05	6917.60	$0.3112 \mathrm{E}-2$	$1.3740 \mathrm{E}+0$	$1.0000 \mathrm{E}+2$	$0.4160 \mathrm{E}-1$
22G	6	500	500	1410.01	353.60	$0.2372 \mathrm{E}-2$	$1.0470 \mathrm{E}+0$	$1.0490 \mathrm{E}+0$	$0.4353 \mathrm{E}-3$
22H	7	500	500	1302.20	7755.97	$0.2230 \mathrm{E}-2$	$0.9839 \mathrm{E}+0$	$1.0000 \mathrm{E}+2$	$0.4160 \mathrm{E}-1$
22I	8	500	500	1407.05	353.87	$0.4670 \mathrm{E}-2$	$2.0620 \mathrm{E}+0$	$1.2460 \mathrm{E}+0$	$0.5190 \mathrm{E}-3$
22J	10	500	500	1417.69	350.77	$0.2560 \mathrm{E}-2$	$1.1310 \mathrm{E}+0$	$1.2170 \mathrm{E}+0$	$0.5070 \mathrm{E}-3$
22K	11	500	500	306.67	457.69	$8.3200 \mathrm{E}+0$	$3.6740 \mathrm{E}+3$	$8.1210 \mathrm{E}+0$	$0.3381 \mathrm{E}-2$

(Cont'd.) Table E.2.1: Regression Results of Benzene-Water (LLE) System at 25 C

Case No.	$\begin{gathered} \text { LLEFN } \\ \# \end{gathered}$	Binary Interaction Parameters, ${ }^{\circ}{ }_{K}$ Intial Final				Phase Rich in (1) Mean \% Rel. x Diff.		Phase Rich in (2) Mean of Rel. x Diff.*	
		${ }^{\text {A }} 12$	${ }_{-1}$	${ }^{\text {A }} 12$	${ }^{\text {A }} 21$	(1)	(2)	(1)	(2)
22L	6	-500	-500	5951.19	-175.90	$4.0810 \mathrm{E}+0$	$1.8020 \mathrm{E}+3$	$0.1632 \mathrm{E}+5$	$6.7870 \mathrm{E}+0$
22M	9	-500	-500	4503.43	-446.75	$4.9980 \mathrm{E}+1$	$0.2207 \mathrm{E}+5$	$1.0000 \mathrm{E}+2$	$1.0000 \mathrm{E}+2$
22N	10	-500	-500	5775.94	-295.68	$4.9980 \mathrm{E}+1$	$0.2207 \mathrm{E}+5$	$1.0000 \mathrm{E}+2$	$1.0000 \mathrm{E}+2$
220	11	-500	-500	6130.14	-522.00	$4.4630 \mathrm{E}+1$	$0.1970 \mathrm{E}+5$	$0.9210 \mathrm{E}+5$	$3.8310 \mathrm{E}+1$
22P	5	1000	1000	1300.62	8164.75	$0.3400 \mathrm{E}-2$	$1.5210 \mathrm{E}+0$	$1.0000 \mathrm{E}+2$	$0.4160 \mathrm{E}-1$
22Q	6	1000	1000	1416.14	351.35	$0.1560 \mathrm{E}-2$	$0.6920 \mathrm{E}+0$	$0.7474 \mathrm{E}+0$	$0.3100 \mathrm{E}-3$
22R	7	1000	1000	1305.08	5182.22	$0.2400 \mathrm{E}-4$	$0.1020 \mathrm{E}-1$	$1.0000 \mathrm{E}+2$	$0.4160 \mathrm{E}-1$
225	8	1000	1000	1416.87	350.41	$0.1800 \mathrm{E}-2$	$0.8170 \mathrm{E}+0$	$1.5190 \mathrm{E}+0$	$0.6320 \mathrm{E}-3$
22T	10	1000	1000	1416.17	351.37	$0.1595 \mathrm{E}-2$	$0.7025 \mathrm{E}+0$	$0.7315 \mathrm{E}+0$	$0.3000 \mathrm{E}-3$
22U	11	1000	1000	1414.66	347.81	$0.5735 \mathrm{E}-3$	$0.2543 \mathrm{E}+0$	$3.7090 \mathrm{E}+0$	$0.1544 \mathrm{E}-2$
22 V	5	2000	2000	1441.03	348.80	$0.1890 \mathrm{E}-1$	$8.3530 \mathrm{E}+0$	$2.7090 \mathrm{E}+0$	$0.1120 \mathrm{E}-2$

(Cont'd.) Table E.2.l: Regression Results of Benzene-Water (LLE) System at 25 C

$\begin{array}{r} \text { Case } \\ \text { No. } \end{array}$	LLEFN \#	Binary Interaction Parameters, ${ }^{\circ} \mathrm{K}$ Intial Final				Phase Rich in (l) Mean of Rel. x Diff.		Phase Ri Mean \% Re	in (2) x Diff.*
		A_{12}	A_{21}	A_{12}	A_{21}	(1)	(2)	(1)	(2)
22W	6	2000	2000	-284.78	1275.24	4.8310E+1	$0.2133 \mathrm{E}+5$	$2.7200 \mathrm{E}+0$	$0.1133 \mathrm{E}-2$
22X	7	2000	2000	1424.75	351.14	$0.7916 \mathrm{E}-2$	$3.4940 \mathrm{E}+0$	$0.8636 \mathrm{E}+0$	$0.3578 \mathrm{E}-3$
$22 Y$	8	2000	2000	1413.50	352.45	$0.1255 \mathrm{E}-3$	$0.5621 \mathrm{E}-1$	$0.1337 \mathrm{E}+0$	$0.5963 E-4$
227	11	2000	2000	1408.06	353.72	$0.3920 E-2$	1.7350E+0	1.1290E+0	$0.4711 \mathrm{E}-3$
22AA	5	3000	3000	1436.31	358.12	$0.1806 \mathrm{E}-1$	7.9710E+0	$4.7780 \mathrm{E}+0$	$0.1990 \mathrm{E}-2$
22 BB	6	3000	3000	1413.35	352.46	$0.2390 \mathrm{E}-3$	$0.1053 \mathrm{E}+0$	$0.1422 \mathrm{E}+0$	$0.5960 \mathrm{E}-4$
22CC	7	3000	3000	1413.93	351.73	$0.0000 \mathrm{E}+0$	$0.1750 \mathrm{E}-3$	$0.4472 \mathrm{E}+0$	$0.1850 \mathrm{E}-3$
22DD	6	1500	500	1415.42	351.61	$0.1093 \mathrm{E}-2$	$0.4829 \mathrm{E}+0$	$0.5397 \mathrm{E}+0$	$0.2266 E-3$
22 EE	8	1500	500	1409.36	353.95	O. $2856 \mathrm{E}-2$	1.2620E+0	1.3230E+0	$0.5546 \mathrm{E}-3$

[^2]Table E.2.2: Regression Results of Benzene-Water (LLE) System at 25 C

Case No.	$\underset{\#}{\text { LLEFN }}$	Binary Interaction Parameters, ${ }^{\circ} \mathrm{K}$ Intial Final				Phase Rich in (1) Mean o Rel. x Diff.		Phase Rich in (2) Mean \% Rel. x Diff.*	
		A_{12}	${ }^{\text {A }} 21$	${ }^{\text {A }} 12$	${ }^{\text {A }} 21$	(1)	(2)	(1)	(2)
23A	8	1	1	392.17	424.59	$6.2720 \mathrm{E}+0$	$2.0840 \mathrm{E}+3$	$1.2680 \mathrm{E}+0$	$0.5130 \mathrm{E}-3$
23B	8	100	100	1332.69	354.44	$0.4215 \mathrm{E}-2$	1.4000E+0	$1.4830 \mathrm{E}+0$	$0.6023 \mathrm{E}-3$
23C	8	200	200	1335.51	354.21	$0.6920 \mathrm{E}-2$	$2.3000 \mathrm{E}+0$	$1.6500 \mathrm{E}+0$	$0.6620 \mathrm{e}-3$
23D	8	200	-200	1216.70	5192.00	$0.4053 \mathrm{e}-2$	1.3470E+0	$1.0000 \mathrm{E}+2$	$0.4052 \mathrm{E}-1$
23E	8	-200	-200	-145.93	-286.40	$4.9330 \mathrm{E}+1$	$0.1640 \mathrm{E}+5$	$0.1215 \mathrm{E}+6$	$4.9220 \mathrm{E}+1$
23F	8	300	300	1325.14	355.17	$0.3120 \mathrm{E}-2$	$1.0380 \mathrm{E}+0$	$0.9519 \mathrm{E}+0$	$0.3816 \mathrm{E}-3$
23G	8	500	500	221.37	482.87	$1.0960 \mathrm{E}+1$	$3.6420 \mathrm{E}+3$	$0.3900 \mathrm{E}-2$	$0.0000 \mathrm{E}+0$
23H	8	-500	500	-287.84	1150.50	$4.9980 \mathrm{E}+1$	$0.1160 \mathrm{E}+5$	1.3400E+0	$0.5420 \mathrm{E}-3$
231	8	500	200	1327.85	356.37	$0.7770 \mathrm{E}-4$	$0.2530 \mathrm{E}-4$	$0.5461 \mathrm{E}-1$	$0.2385 \mathrm{E}-4$
23 J	8	1000	1000	1326.61	356.80	$0.1022 \mathrm{E}-2$	$0.3393 \mathrm{E}+0$	$0.4006 \mathrm{E}+0$	$0.1610 \mathrm{E}-3$
23K	8	1000	200	1326.94	356.69	$0.7234 \mathrm{E}-3$	$0.2398 \mathrm{E}+0$	$0.3124 \mathrm{E}+0$	$0.1312 \mathrm{E}-3$
23L	8	3000	3000	1217.13	9032.94	$0.3610 \mathrm{E}-2$	$1.1980 \mathrm{E}+0$	$1.0000 \mathrm{E}+2$	$0.4050 \mathrm{E}-1$

[^3]Table E.2.3: Regression Results of Benzene-Water (LIE) System at 35 C

Case No.	LLEFN \#	Binary Interaction Parameters, ${ }^{\circ} \mathrm{K}$ Intial Final				Phase Rich in (1) Mean of Rel. x Diff.		Phase Rich in (2) Mean o Rel. x Diff.*	
		A_{12}	A_{21}	A_{12}	A_{21}	(1)	(2)	(1)	(2)
25A	8	1	1	0.99	0.99	$1.6840 \mathrm{E}+1$	1.1172E+3	1.1670E+5	4.9280E+1
25B	8	100	100	904.77	373.41	$0.5348 \mathrm{E}-1$	$3.7210 \mathrm{E}+0$	$0.9800 \mathrm{E}+0$	$0.4114 \mathrm{E}-3$
25C	8	200	200	897.73	373.18	$0.2097 \mathrm{E}-1$	1.4590E+0	1. $4340 \mathrm{E}+0$	$0.6023 E-3$
25D	8	300	300	892.72	375.24	$0.1112 \mathrm{E}-2$	$0.7727 \mathrm{E}-1$	$0.1579 \mathrm{E}-2$	$0.0000 \mathrm{E}+0$
25 E	8	400	400	892.57	374.99	$0.6046 \mathrm{E}-5$	$0.6572 \mathrm{E}-5$	$0.2021 E+0$	$0.8348 E-4$
25 F	8	500	500	1165.01	365.16	$0.8382 \mathrm{E}+0$	$5.8320 E+1$	$0.7952 \mathrm{E}+0$	$0.3339 \mathrm{E}-3$
25G	8	1000	1000	890.94	374.51	$0.8501 \mathrm{E}-2$	$0.5916 \mathrm{E}+0$	$0.6518 E+0$	$0.2743 \mathrm{E}-3$
25 H	8	2000	2000	894.29	374.53	$0.7249 \mathrm{E}-2$	$0.5044 E+0$	$0.5023 \mathrm{E}+0$	$0.2087 \mathrm{E}-3$

[^4]Table E.2.4: Regression Results of Benzene-Water (LLE) System at 70 C

Case NO.	$\begin{gathered} \text { LLEFN } \\ \# \end{gathered}$	Binary Interaction Parameters, ${ }^{\circ} \mathrm{K}$ Intial Final				Phase Rich in (I) Mean of Rel. x Diff.		Phase Rich in (2) Mean $\%$ Rel. x Diff.*	
		A_{12}	A_{21}	A_{12}	A_{21}	(1)	(2)	(1)	(2)
24A	8	1	1	1072.25	359.35	$0.1566 \mathrm{E}-1$	1.3000E+0	1.3650E+0	$0.8410 \mathrm{E}-3$
24B	8	100	100	1074.55	360.63	$0.5550 \mathrm{E}-2$	$0.4607 \mathrm{E}+0$	$0.3802 \mathrm{E}+0$	$0.2326 \mathrm{E}-3$
24C	8	200	200	1076.58	360.33	$0.1140 \mathrm{E}-2$	$0.9480 \mathrm{E}-1$	$0.5373 \mathrm{E}+0$	$0.3280 \mathrm{E}-3$
24D	8	300	300	1072.31	362.37	$0.1084 \mathrm{E}-1$	$0.9001 \mathrm{E}+0$	$0.7914 \mathrm{E}+0$	$0.4891 \mathrm{E}-3$
24E	8	400	400	1073.22	362.25	$0.7806 \mathrm{E}-2$	$0.6484 \mathrm{E}+0$	$0.7283 \mathrm{E}+0$	$0.4533 \mathrm{E}-3$
24F	8	500	500	1078.14	360.12	$0.6316 \mathrm{E}-2$	$0.5242 \mathrm{E}+0$	$0.6443 \mathrm{E}+0$	$0.3936 \mathrm{E}-3$
24G	8	1000	1000	1073.41	362.17	$0.7239 \mathrm{E}-2$	$0.6011 \mathrm{E}+0$	$0.6796 \mathrm{E}+0$	$0.4175 \mathrm{E}-3$
24H	8	2000	2000	1868.37	-162.42	$0.1780 \mathrm{E}-1$	1.4780E+0	$5.9800 \mathrm{E}+3$	$3.6800 \mathrm{E}+0$

[^5]Table E.3.1: Regression Results of Ethanol-Water-Benzene (VLE) System

[^6]Table E.3.2A: Regression Results of Combinations of Isobaric Binary and

$\begin{gathered} \text { Case } \\ \# \end{gathered}$	$\begin{gathered} \text { VLEFN } \\ \# \end{gathered}$	Final Binary Interaction Parameters in deg K						Data Sets used in the Regression
		A_{12}	A_{21}	A_{13}	A_{31}	A_{23}	A_{32}	
70A	21	-42.16	330.98	-160.45	1219.45	481.52	153.10	$a+b+c$
71 A	21	-123.81	1132.14	-189.03	7798.44	283.95	264.94	$b+c$
72A	21	-127.85	969.31	-147.10	1010.11	380.62	159.99	$b(x 4)+c$
73A	21	-48.89	342.70	-147.13	1008.58	464.06	156.05	$a+b(x 4)+$
74A	21	-56.14	350.85	-146.65	982.05	243.88	745.91	$\begin{aligned} & a+b+ \\ & c \quad(\text { partial }) \end{aligned}$

Table E.3.2R: Regression Results of Combinations of Isobaric Binary and

System: (1) Etoh - (2) Gamma Model: Modifie Phi Model: Virial EO			Water	- (3) B	Condition: Isobaric, $P=760 \mathrm{~mm} \mathrm{Hg}$				
			UNIQUA		Data Sets and Re (a) Etoh-Water, (b) Etoh-Bz, (c) Etoh-Wtr-Bz,		rences:		
							Reider, R.M., et. al. (1949) Tyrer, D., (1912) Hands, C.H.G., et. al. (1945)		
Case \#	$\underset{\#}{\text { VLEFN }}$	Mean \& (Max) Abs (Te-TC) deg C			Mean \& (Max) Absolute diff in mole \% -_---_- $Y_{1}$$\qquad$$\qquad$				Data Sets used in the Regression
		(a)	System (b)	(c)	(a)	System (b)	(c)	System (c)	
70A	21	$\begin{gathered} 0.14 \\ (0.56) \end{gathered}$	$\begin{gathered} 0.45 \\ (1.45) \end{gathered}$	$\begin{gathered} 0.55 \\ (1.51) \end{gathered}$	$\begin{gathered} 0.920 \\ (2.398) \end{gathered}$	$\begin{gathered} 1.391 \\ (2.067) \end{gathered}$	$\begin{gathered} 1.620 \\ (5.150) \end{gathered}$	$\begin{gathered} 1.881 \\ (4.854) \end{gathered}$	$a+b+c$
71A	21	-	$\begin{gathered} 0.48 \\ (1.47) \end{gathered}$	$\begin{gathered} 0.33 \\ (0.83) \end{gathered}$	-	$\begin{gathered} 2.316 \\ (3.679) \end{gathered}$	$\begin{gathered} 1.218 \\ (3.944) \end{gathered}$	$\begin{gathered} 2.596 \\ (5.307) \end{gathered}$	$b+c$
72A	21	-	$\begin{gathered} 0.12 \\ (0.59) \end{gathered}$	$\begin{gathered} 0.49 \\ (1.16) \end{gathered}$	-	$\begin{gathered} 0.594 \\ (1.812) \end{gathered}$	$\begin{gathered} 1.818 \\ (4.464) \end{gathered}$	$\begin{gathered} 2.300 \\ (4.880) \end{gathered}$	$b(x 4)+c$
73A	21	$\begin{gathered} 0.14 \\ (0.51) \end{gathered}$	$\begin{gathered} 0.12 \\ (0.58) \end{gathered}$	$\begin{gathered} 0.62 \\ (1.53) \end{gathered}$	$\begin{gathered} 0.931 \\ (2.362) \end{gathered}$	$\begin{gathered} 0.586 \\ (1.823) \end{gathered}$	$\begin{gathered} 1.819 \\ (5.163) \end{gathered}$	$\begin{gathered} 1.820 \\ (4.490) \end{gathered}$	$\begin{aligned} a & +b(x 4) \\ & +c \end{aligned}$
74A	21	$\begin{gathered} 0.14 \\ (0.54) \end{gathered}$	$\begin{gathered} 0.12 \\ (0.41) \end{gathered}$	$\begin{gathered} 0.14 \\ (0.38) \end{gathered}$	$\begin{gathered} 0.874 \\ (2.308) \end{gathered}$	$\begin{gathered} 0.572 \\ (1.945) \end{gathered}$	$\begin{gathered} 0.274 \\ (0.524) \end{gathered}$	$\begin{gathered} 0.610 \\ (1.160) \end{gathered}$	$\begin{aligned} & a+b+ \\ & c(\text { partial }) \end{aligned}$

$0^{\circ} \mathrm{L} \quad 0^{\circ} \mathrm{L}$

$$
\begin{array}{lll}
21 A * & A 11 & 11 \\
21 B & \text { A11 } & 11 \\
21 C & \text { Al1 } & 11
\end{array}
$$

$$
\begin{gathered}
1.0 \\
1.0 \\
-19.16
\end{gathered}
$$

Initial Binary Interaction Parameters in deg K

$$
\begin{array}{r}
1.0 \\
1.0 \\
-121.87
\end{array}
$$

$$
\begin{array}{r}
1.0 \\
1.0 \\
1017.74
\end{array}
$$

$$
\begin{gathered}
1.0 \\
375.24 \\
375.24
\end{gathered}
$$

$$
000
$$

* unconverged case

$$
\begin{gathered}
1.0 \\
1.0 \\
272.65
\end{gathered}
$$

(Cont'd.) Table E.4: Regression Results of Ethanol-Water-Benzene (LLE) System

$\$$ Difference $=\left(x_{\text {iexp }}{ }^{-x_{i c a l}}\right) / x_{i e x p}^{* 100}$
Table E.5.1A: Regression Results of Isobaric Binary VLE and Isothermal Ternary LLE System
(c) Etoh-Wtr-Bz, Morachevskii, A.G., et.al.(1958)

Case \#	$\begin{gathered} \text { No. } \\ \text { of } \\ \text { Tie } \\ \text { Lines } \end{gathered}$	$\underset{\#}{\text { LLEFN }}$	W	Final Binary Interaction Parameters in deg K					
				A_{12}	A_{21}	${ }^{\text {A }} 13$	${ }^{\text {A }} 31$	${ }^{\text {A }} 23$	${ }^{\text {A }} 32$
40A	1	8	10	-50.30	341.47	-143.79	962.94	219.52	1248.05
40B	1	8	50	-46.98	336.04	-133.65	890.55	187.00	1249.35
41A	All	8	0	-51.19	342.81	-141.95	948.38	238.32	1458.36
41B	All	8	150	-159.10	501.06	-179.65	1204.55	279.61	1934.31
41C	All	8	200	-164.77	502.68	-146.15	947.65	282.79	1722.61
41D	All	8	250	-212.13	616.88	-184.15	1147.76	355.88	2225.09
41E	All	8	300	-259.37	704.22	-202.77	1240.01	367.14	1657.59
42A	1	11	0	-50.95	342.11	-143.50	961.14	192.06	1256.00
42C	1	11	100	-45.57	334.04	-134.87	899.00	174.23	1678.78

(Cont'd.) Table E.5.1A: Regression Results of Isobaric Binary VLE and Isothermal

(Cont'd.) Table E.5.1B: Regression Results of Isobaric Binary VIE and Isothermal

Case \#		$\underset{\#}{\text { VLEFN }}$	$\underset{\#}{\text { LLEFN }}$	W	Mean \& (Max) Abs (Te-Tc) deg C			Mean \& (Max) Absolute diff in mole \%			
						System (b)	(c)	(a)	System (b)	(c)	System (c)
41E	All	21	8	300	$\begin{gathered} 1.39 \\ (2.58) \end{gathered}$	$\begin{gathered} 1.18 \\ (1.59) \end{gathered}$	$\begin{gathered} 3.19 \\ (10.31) \end{gathered}$	$\begin{gathered} 2.126 \\ (4.803) \end{gathered}$	$\begin{gathered} 2.485 \\ (11.302) \end{gathered}$	$\begin{gathered} 9.194 \\ (17.209) \end{gathered}$	$\begin{gathered} 3.942 \\ (7.825) \end{gathered}$
42A	1	21	11	0	$\begin{gathered} 0.13 \\ (0.57) \end{gathered}$	$\begin{gathered} 0.11 \\ (0.36) \end{gathered}$	$\begin{gathered} 1.91 \\ (5.61) \end{gathered}$	$\begin{gathered} 0.873 \\ (2.376) \end{gathered}$	$\begin{gathered} 0.602 \\ (1.804) \end{gathered}$	$\begin{gathered} 3.428 \\ (7.535) \end{gathered}$	$\begin{array}{r} 2.700 \\ (5.280) \end{array}$
42C	1	21	11	100	$\begin{gathered} 0.14 \\ (0.59) \end{gathered}$	$\begin{gathered} 0.12 \\ (0.30) \end{gathered}$	$\begin{gathered} 1.86 \\ (5.42) \end{gathered}$	$\begin{gathered} 0.884 \\ (2.423) \end{gathered}$	$\begin{gathered} 0.695 \\ (1.499) \end{gathered}$	$\begin{gathered} 3.288 \\ (7.242) \end{gathered}$	$\begin{gathered} 2.710 \\ (5.380) \end{gathered}$
42D	1	21	11	150	$\begin{gathered} 0.14 \\ (0.58) \end{gathered}$	$\begin{gathered} 0.10 \\ (0.39) \end{gathered}$	$\begin{gathered} 2.08 \\ (5.97) \end{gathered}$	$\begin{gathered} 0.879 \\ (2.399) \end{gathered}$	$\begin{gathered} 0.607 \\ (1.758) \end{gathered}$	$\begin{gathered} 3.666 \\ (7.866) \end{gathered}$	$\begin{gathered} 2.904 \\ (5.565) \end{gathered}$
43B	All	21	11	50	$\begin{gathered} 0.15 \\ (0.64) \end{gathered}$	$\begin{gathered} 0.33 \\ (1.01) \end{gathered}$	$\begin{gathered} 3.84 \\ (9.52) \end{gathered}$	$\begin{gathered} 0.857 \\ (2.505) \end{gathered}$	$\begin{gathered} 0.902 \\ (1.486) \end{gathered}$	$\begin{gathered} 6.029 \\ (11.665) \end{gathered}$	$\begin{gathered} 4.601 \\ (8.551) \end{gathered}$
43C	All	21	11	100	$\begin{gathered} 0.18 \\ (0.69) \end{gathered}$	$\begin{gathered} 0.44 \\ (1.13) \end{gathered}$	$\begin{gathered} 3.87 \\ (9.66) \end{gathered}$	$\begin{gathered} 0.716 \\ (2.492) \end{gathered}$	$\begin{gathered} 0.997 \\ (1.569) \end{gathered}$	$\begin{gathered} 6.285 \\ (12.150) \end{gathered}$	$\begin{gathered} 4.597 \\ (8.616) \end{gathered}$

(Cont'd.) Table E.5.1B: Regression Results of Isobaric Binary VLE and Isothermal

Case \#	No. of Tie Lines	$\underset{\#}{\text { VLEFN }}$	LLEFN \#	W	Mean \& (Max) Abs (Te-Tc) deg C			Mean \& (Max) Absolute diff in mole $\%$ $Y_{1} \quad Y_{2}$			
					(a)	System (b)	(c)	(a)	system (b)	(c)	System (C)
43D	All	21	11	150	$\begin{gathered} 0.94 \\ (1.63) \end{gathered}$	$\begin{gathered} 0.50 \\ (0.77) \end{gathered}$	$\begin{gathered} 3.41 \\ (9.54) \end{gathered}$	$\begin{gathered} 1.134 \\ (3.480) \end{gathered}$	$\begin{gathered} 1.094 \\ (3.675) \end{gathered}$	$\begin{gathered} 7.528 \\ (14.018) \end{gathered}$	$\begin{gathered} 4.451 \\ (8.514) \end{gathered}$
43E	All	21	11	65	$\begin{gathered} 0.20 \\ (0.77) \end{gathered}$	$\begin{gathered} 0.19 \\ (0.82) \end{gathered}$	$\begin{gathered} 3.75 \\ (9.48) \end{gathered}$	$\begin{gathered} 0.724 \\ (2.670) \end{gathered}$	$\begin{gathered} 0.754 \\ (1.809) \end{gathered}$	$\begin{gathered} 6.076 \\ (11.868) \end{gathered}$	$\begin{gathered} 4.590 \\ (8.520) \end{gathered}$
43F	All	21	11	80	$\begin{gathered} 0.18 \\ (0.40) \end{gathered}$	$\begin{gathered} 0.30 \\ (1.10) \end{gathered}$	$\begin{gathered} 3.84 \\ (9.71) \end{gathered}$	$\begin{gathered} 0.842 \\ (2.600) \end{gathered}$	$\begin{gathered} 1.036 \\ (1.860) \end{gathered}$	$\begin{gathered} 6.466 \\ (12.466) \end{gathered}$	$\begin{gathered} 4.510 \\ (8.510) \end{gathered}$

Table E.5.lC: Regression Results of Isobaric Binary VLE and Isothermal Ternary LLE System

Case \#	NO. of Tie Lines	$\begin{aligned} & \text { VLE } \\ & \text { FN } \\ & \# \end{aligned}$	$\begin{aligned} & \text { LLE } \\ & \text { FN } \\ & \text { \# } \end{aligned}$	W	Diff. of compositions in mole \%, Mean \& (Max)							Mean diff of d. ratio (1)
					Phase (1)	$\begin{gathered} \text { Rich in } \\ \text { (2) } \end{gathered}$	(3) (3)	Phase (1)	$\begin{aligned} & \text { Rich in } \\ & \text { (2) } \end{aligned}$	(2) (3)	overall	
40A	1	21	8	10	$\begin{array}{r} 0.2415 \\ (2.171) \end{array}$	$\begin{array}{r} 0.2717 \\ (8.027) \end{array}$	$\begin{array}{r} 0.4078 \\ (7.619) \end{array}$	$\begin{array}{r} 1.4760 \\ (1.922) \end{array}$	$\begin{array}{r} 3.2310 \\ (8.147) \end{array}$	$\begin{array}{r} 1.8790 \\ (7.753) \end{array}$	$\begin{array}{r} 1.2512 \\ (8.147) \end{array}$	$\begin{array}{r} 0.1495 \\ (0.355) \end{array}$
40B	1	21	8	50	$\begin{array}{r} 1.4650 \\ (1.997) \end{array}$	$\begin{array}{r} 2.1620 \\ (8.626) \end{array}$	$\begin{array}{r} 3.4370 \\ (10.310) \end{array}$	$\begin{array}{r} 1.2820 \\ (1.836) \end{array}$	$\begin{array}{r} 2.5410 \\ (5.654) \end{array}$	$\begin{array}{r} 1.8130 \\ (6.739) \end{array}$	$\begin{array}{r} 2.1167 \\ (10.310) \end{array}$	$\begin{gathered} 0.1584 \\ (0.442) \end{gathered}$
41A	All	21	8	0	$\begin{array}{r} 0.2086 \\ (1.884) \end{array}$	$\begin{array}{r} 0.3266 \\ (9.108) \end{array}$	$\begin{gathered} 0.4013 \\ (9.512) \end{gathered}$	$\begin{aligned} & 1.2860 \\ & (1.752) \end{aligned}$	$\begin{array}{r} 3.1150 \\ (7.782) \end{array}$	$\begin{array}{r} 1.9820 \\ (7.989) \end{array}$	$\begin{aligned} & 1.2199 \\ & (9.512) \end{aligned}$	$\begin{array}{r} 0.1389 \\ (0.366) \end{array}$
41 B	All	21	8	150	$\begin{array}{r} 1.1742 \\ (3.121) \end{array}$	$\begin{aligned} & 1.2435 \\ & (5.656) \end{aligned}$	$\begin{aligned} & 2.4315 \\ & (7.857) \end{aligned}$	$\begin{aligned} & 1.4211 \\ & (2.813) \end{aligned}$	$\begin{aligned} & 2.6621 \\ & (6.474) \end{aligned}$	$\begin{aligned} & 1.3456 \\ & (3.662) \end{aligned}$	$\begin{aligned} & 1.7130 \\ & (7.857) \end{aligned}$	$\begin{array}{r} 0.1122 \\ (0.162) \end{array}$
41C*	All	21	8	200	$\begin{array}{r} 2.5800 \\ (4.173) \end{array}$	$\begin{array}{r} 1.5247 \\ (4.459) \end{array}$	$\begin{array}{r} 3.3365 \\ (8.632) \end{array}$	$\begin{array}{r} 1.4605 \\ (2.801) \end{array}$	$\begin{array}{r} 0.6075 \\ (1.165) \end{array}$	$\begin{array}{r} 0.8530 \\ (2.739) \end{array}$	$\begin{array}{r} 1.7270 \\ (8.632) \end{array}$	$\begin{array}{r} 0.2813 \\ (0.350) \end{array}$
41D*	All	21	8	250	$\begin{array}{r} 0.4840 \\ (0.843) \end{array}$	$\begin{array}{r} 0.8089 \\ (2.376) \end{array}$	$\begin{array}{r} 0.7910 \\ (1.534) \end{array}$	$\begin{gathered} 0.3764 \\ (0.789) \end{gathered}$	$\begin{array}{r} 1.4632 \\ (4.203) \end{array}$	$\begin{array}{r} 1.1347 \\ (3.618) \end{array}$	$\begin{array}{r} 0.8430 \\ (4.203) \end{array}$	$\begin{array}{r} 0.0587 \\ (0.210) \end{array}$

* One tie line eliminated for the mean computation
(Cont'd.) Table E.5.lC: Regression Results of Isobaric Binary VLE and Isothermal
Hg
(c) Etoh-Wtr-Bz, Morachevskii, A.G., et.al.(1958)

41 E	All	21	8	300	$\begin{array}{r} 0.8880 \\ (1.726) \end{array}$	$\begin{array}{r} 1.2520 \\ (5.686) \end{array}$	$\begin{array}{r} 1.5226 \\ (4.877) \end{array}$	$\begin{array}{r} 0.6886 \\ (1.299) \end{array}$	$\begin{array}{r} 2.7195 \\ (7.997) \end{array}$	$\begin{array}{r} 2.1365 \\ (7.454) \end{array}$	$\begin{array}{r} 1.5345 \\ (7.997) \end{array}$	$\begin{array}{r} 0.0649 \\ (0.115) \end{array}$
42A	1	21	11	0	$\begin{array}{r} 1.5344 \\ (2.171) \end{array}$	$\begin{array}{r} 1.9456 \\ (8.027) \end{array}$	$\begin{array}{r} 2.6689 \\ (7.619) \end{array}$	$\begin{array}{r} 1.4021 \\ (1.922) \end{array}$	$\begin{array}{r} 3.4120 \\ (8.147) \end{array}$	$\begin{gathered} 2.1551 \\ (7.753) \end{gathered}$	$\begin{array}{r} 2.1864 \\ (8.147) \end{array}$	$\begin{array}{r} 0.1495 \\ (0.355) \end{array}$
42C	1	21	11	100	$\begin{aligned} & 1.4190 \\ & (1.910) \end{aligned}$	$\begin{array}{r} 2.2070 \\ (8.905) \end{array}$	$\begin{array}{r} 3.1960 \\ 10.580) \end{array}$	$\begin{aligned} & 1.2550 \\ & (1.788) \end{aligned}$	$\begin{array}{r} 2.4510 \\ (5.559) \end{array}$	$\begin{aligned} & 1.7550 \\ & (6.561) \end{aligned}$	$\begin{array}{r} 2.0470 \\ (10.580) \end{array}$	$\begin{array}{r} 0.1527 \\ (0.425) \end{array}$
42D	1	21	11	150	$\begin{array}{r} 1.5235 \\ (2.053) \end{array}$	$\begin{array}{r} 1.8627 \\ (7.879) \end{array}$	$\begin{array}{r} 2.6105 \\ (7.664) \end{array}$	$\begin{array}{r} 1.3295 \\ (1.873) \end{array}$	$\begin{array}{r} 3.1228 \\ (7.540) \end{array}$	$\begin{array}{r} 1.9799 \\ (7.281) \end{array}$	$\begin{array}{r} 2.0715 \\ (7.879) \end{array}$	$\begin{array}{r} 0.1439 \\ (0.392) \end{array}$
43B	All	21	11	50	$\begin{array}{r} 1.1840 \\ (2.499) \end{array}$	$\begin{array}{r} 2.4745 \\ (8.218) \end{array}$	$\begin{array}{r} 2.3690 \\ 10.720) \end{array}$	$\begin{array}{r} 0.9198 \\ (1.245) \end{array}$	$\begin{array}{r} 2.0993 \\ (4.957) \end{array}$	$\begin{array}{r} 1.6927 \\ (4.246) \end{array}$	$\begin{array}{r} 1.7893 \\ (10.720) \end{array}$	$\begin{array}{r} 0.0839 \\ (0.184) \end{array}$
43C	All	21	11	100	$\begin{array}{r} 0.8251 \\ (2.474) \end{array}$	$\begin{array}{r} 1.9099 \\ (4.106) \end{array}$	$\begin{array}{r} 2.7350 \\ (6.282) \end{array}$	$\begin{gathered} 0.6472 \\ (2.048) \end{gathered}$	$\begin{gathered} 1.1864 \\ (2.734) \end{gathered}$	$\begin{array}{r} 0.9337 \\ (3.330) \end{array}$	$\begin{array}{r} 1.3729 \\ (6.282) \end{array}$	$\begin{gathered} 0.0432 \\ (0.170) \end{gathered}$

(Cont'd.) Table E.5.lC: Regression Results of Isobaric Binary VLE and Isothermal

Case \#	No. of Tie Lines	$\begin{gathered} \text { VLE } \\ \text { FN } \\ \# \end{gathered}$	$\begin{aligned} & \text { LLE } \\ & \text { FN } \\ & \# \end{aligned}$	W	Diff. of compositions in mole \%\% Mean \& (Max)							Mean diff of d. ratio (1)
					Phase (1)	Rich in (2)	(3) (3)	Phase (1)	$\underset{(2)}{\text { Rich }^{\text {in }}}$	(2)	overall	
43D	All	21	11	150	$\begin{array}{r} 1.7606 \\ (3.328) \end{array}$	$\begin{gathered} 1.8361 \\ (8.167) \end{gathered}$	$\begin{array}{r} 2.8257 \\ (11.500) \end{array}$	$\begin{array}{r} 1.6272 \\ (3.339) \end{array}$	$\begin{array}{r} 2.9347 \\ (6.869) \end{array}$	$\begin{array}{r} 2.4314 \\ (8.258) \end{array}$	$\begin{array}{r} 2.2359 \\ (11.500) \end{array}$	$\begin{array}{r} 0.1074 \\ (0.173) \end{array}$
43E	Al1	21	11	65	$\begin{array}{r} 1.4500 \\ (3.452) \end{array}$	$\begin{array}{r} 2.7380 \\ (12.020) \end{array}$	$\begin{array}{r} 2.6860 \\ (15.470) \end{array}$	$\begin{array}{r} 1.4780 \\ (4.134) \end{array}$	$\begin{array}{r} 2.4940 \\ (5.361) \end{array}$	$\begin{array}{r} 1.0930 \\ (3.787) \end{array}$	$\begin{array}{r} 1.9890 \\ (15.470) \end{array}$	$\begin{gathered} 0.1102 \\ (0.204) \end{gathered}$
43F	All	21	11	80	$\begin{array}{r} 0.9884 \\ (2.795) \end{array}$	$\begin{array}{r} 1.6800 \\ (4.853) \end{array}$	$\begin{array}{r} 1.6590 \\ (7.648) \end{array}$	$\begin{array}{r} 0.8907 \\ (2.403) \end{array}$	$\begin{array}{r} 1.9010 \\ (4.592) \end{array}$	$\begin{array}{r} 1.0650 \\ (3.635) \end{array}$	$\begin{array}{r} 1.3640 \\ (7.648) \end{array}$	$\begin{aligned} & 0.1102 \\ & (0.204) \end{aligned}$

Table E.5.2A: Regression Results of Isothermal Binary VLE and Isothermal

(Cont'd.) Table E.5.2A: Regression Results of Isothermal Binary VLE and Isothermal

Case \#		$\begin{gathered} \text { VLEFN } \\ \# \end{gathered}$	$\begin{gathered} \text { LLEFN } \\ \# \end{gathered}$	W	Final Binary Interactive Parameters in deg K					
					A_{12}	A_{21}	${ }^{\text {A }} 13$	A_{31}	A_{23}	A_{32}
48A	1	9	11	0	-12.50	265.18	-121.02	1018.14	245.56	901.67
48B	1	9	11	20	-8.79	269.86	-123.73	1002.89	230.06	949.93
48C	1	9	11	40	-5.64	269.61	-122.71	993.79	227.13	955.77
48D	1	9	11	60	-3.68	265.30	-123.14	995.53	227.51	938.56
49A	All	9	11	0	1.05	199.09	-154.76	1239.53	305.94	1045.77
49B	All	9	11	15	-253.48	256.63	-218.88	902.48	363.12	1679.80
49C	All	9	11	30	-368.27	350.72	-226.16	772.02	393.94	9796.87
49D	All	9	11	45	-421.05	321.88	-231.69	696.84	424.62	2170.84

Table E.5.2B: Regression Results of Isothermal Binary VLE and Isothermal
Ternary LLE System

[^7](Cont'd.) Table E.5.2B: Regression Results of Isothermal Binary VLE and Isothermal Ternary LLE System
$$
=40 \mathrm{C}
$$

47A	All	9	8	0	$\begin{gathered} 26.12 \\ (30.10) \end{gathered}$	$\begin{gathered} 48.48 \\ (55.25) \end{gathered}$	$\begin{gathered} 2.29 \\ (6.09) \end{gathered}$	$\begin{gathered} 0.823 \\ (1.801) \end{gathered}$	$\begin{gathered} 1.386 \\ (2.941) \end{gathered}$	$\begin{gathered} 3.760 \\ (7.692) \end{gathered}$	$\begin{gathered} 3.178 \\ (6.208) \end{gathered}$
47B	All	9	8	15	$\begin{gathered} 35.99 \\ (41.36) \end{gathered}$	$\begin{gathered} 60.68 \\ (72.51) \end{gathered}$	$\begin{gathered} 2.94 \\ (8.64) \end{gathered}$	$\begin{gathered} 5.328 \\ (9.447) \end{gathered}$	$\begin{gathered} 4.635 \\ (7.193) \end{gathered}$	$\begin{gathered} 8.867 \\ (17.228) \end{gathered}$	$\begin{gathered} 4.338 \\ (8.254) \end{gathered}$
47C	All	9	8	30	$\begin{gathered} 37.88 \\ (45.29) \end{gathered}$	$\begin{gathered} 64.05 \\ (79.71) \end{gathered}$	$\begin{gathered} 3.63 \\ (9.69) \end{gathered}$	$\begin{gathered} 6.893 \\ (12.577) \end{gathered}$	$\begin{gathered} 5.971 \\ (10.085) \end{gathered}$	$\begin{gathered} 9.238 \\ (16.666) \end{gathered}$	$\begin{gathered} 3.885 \\ (7.646) \end{gathered}$
47D	All	9	8	45	$\begin{gathered} 44.29 \\ (54.10) \end{gathered}$	$\begin{gathered} 71.90 \\ (87.05) \end{gathered}$	$\begin{gathered} 3.33 \\ (6.23) \end{gathered}$	$\begin{gathered} 11.421 \\ (22.022) \end{gathered}$	$\begin{gathered} 7.389 \\ (11.913) \end{gathered}$	$\begin{gathered} 10.480 \\ (21.815) \end{gathered}$	$\begin{gathered} 4.266 \\ (7.268) \end{gathered}$
48A	1	9	11	0	$\begin{gathered} 26.43 \\ (30.26) \end{gathered}$	$\begin{gathered} 44.97 \\ (51.93) \end{gathered}$	$\begin{gathered} 3.28 \\ (8.18) \end{gathered}$	$\begin{gathered} 0.758 \\ (1.419) \end{gathered}$	$\begin{gathered} 1.016 \\ (1.602) \end{gathered}$	$\begin{gathered} 5.089 \\ (10.226) \end{gathered}$	$\begin{gathered} 3.896 \\ (7.667) \end{gathered}$

[^8](Cont'd.) Table E.5.2B: Regression Results of Isothermal Binary VLE and Isothermal
System: (1) Etoh - (2) Water-(3) Bz Condition: Isothermal for VLE, $T=40 \mathrm{C}$
Gamma Model: Modified UNIQUAC
Phi Model: Virial EOS

Case \#	NO. of Tie Lines	$\begin{gathered} \text { VLEFN } \\ \# \end{gathered}$	LLEFN\#	W	Mean \& (Max) Abs ($\mathrm{Pe}-\mathrm{Pc}$) in mmHg			Mean \& (Max) Absolute diff yl			$\begin{gathered} \text { in mole } \\ y^{2} \end{gathered}$
					(a)	system (b)	$(c)^{*}$	(a)	System (b)	$(\mathrm{c})^{*}$	System (c) *
48B	1	9	11	20	$\begin{gathered} 25.99 \\ (30.18) \end{gathered}$	$\begin{gathered} 46.04 \\ (53.06) \end{gathered}$	$\begin{gathered} 3.01 \\ (7.58) \end{gathered}$	$\begin{gathered} 0.891 \\ (1.676) \end{gathered}$	$\begin{gathered} 1.002 \\ (1.816) \end{gathered}$	$\begin{gathered} 4.554 \\ (9.358) \end{gathered}$	$\begin{gathered} 3.641 \\ (7.143) \end{gathered}$
48C	1	9	11	40	$\begin{gathered} 25.78 \\ (30.14) \end{gathered}$	$\begin{gathered} 46.05 \\ (53.12) \end{gathered}$	$\begin{gathered} 3.00 \\ (7.52) \end{gathered}$	$\begin{gathered} 0.950 \\ (1.863) \end{gathered}$	$\begin{gathered} 1.006 \\ (1.762) \end{gathered}$	$\begin{gathered} 4.474 \\ (9.180) \end{gathered}$	$\begin{gathered} 3.620 \\ (7.091) \end{gathered}$
48D	1	9	11	60	$\begin{gathered} 25.84 \\ (30.14) \end{gathered}$	$\begin{gathered} 46.11 \\ (53.16) \end{gathered}$	$\begin{gathered} 2.95 \\ (7.43) \end{gathered}$	$\begin{gathered} 0.929 \\ (1.767) \end{gathered}$	$\begin{gathered} 1.004 \\ (1.788) \end{gathered}$	$\begin{gathered} 4.432 \\ (9.110) \end{gathered}$	$\begin{gathered} 3.577 \\ (7.032) \end{gathered}$
49A	All	9	11	0	$\begin{gathered} 28.43 \\ (31.29) \end{gathered}$	$\begin{gathered} 48.43 \\ (56.39) \end{gathered}$	$\begin{gathered} 3.79 \\ (9.83) \end{gathered}$	$\begin{gathered} 1.265 \\ (2.086) \end{gathered}$	$\begin{gathered} 2.110 \\ (3.950) \end{gathered}$	$\begin{gathered} 6.503 \\ (12.997) \end{gathered}$	$\begin{gathered} 4.783 \\ (9.154) \end{gathered}$
49B	All	9	11	15	$\begin{gathered} 41.88 \\ (50.40) \end{gathered}$	$\begin{gathered} 68.59 \\ (84.29) \end{gathered}$	$\begin{gathered} 3.04 \\ (6.36) \end{gathered}$	$\begin{gathered} 9.556 \\ (18.222) \end{gathered}$	$\begin{gathered} 6.852 \\ (11.096) \end{gathered}$	$\begin{gathered} 9.862 \\ (20.107) \end{gathered}$	$\begin{gathered} 3.961 \\ (7.074) \end{gathered}$

[^9](Cont'd.) Table E.5.2B: Regression Results of Isothermal Binary VLE and Isothermal

[^10]Table E.5.2C: Regression Results of Isothermal Binary VLE and Isothermal

Syst Gamma Phi		$\begin{aligned} & \text { Etol } \\ & \text { l: Mod } \\ & \text { Viric } \end{aligned}$		Water UNIQUAC	(3) BZ	Conditi Data Se (a) Eto (b) Eto (c) Eto	: Isoth Isoth and Re Water, - Bz , Witr-Bz,	rmal for rmal for ferences Mertl, Udovenk Morach		$\begin{aligned} & =40 \mathrm{C} \\ & =35 \mathrm{C} \\ & \text { al. (1972 } \\ & \text { et. al. } \\ & \text { A.G., et.a } \end{aligned}$	$\begin{aligned} & (1952) \\ & 1 .(1958) \end{aligned}$
Case \#	No. of Tie Lines	$\begin{aligned} & \text { LLEFN } \\ & \text { \# } \end{aligned}$	W	$\begin{aligned} & \quad \text { Di } \\ & \hdashline \text { Phase } \\ & (1) \end{aligned}$	ff. of Rich i (2)	mpositi (3) (3)	in mo Phase (1)	e \%, Mea Rich in (2)	an \& (Ma) (2) (3)	(Overall	Mean diff. of d. ratio (1)
46A	1	8	0	$\begin{gathered} 4.068 \\ (9.541) \end{gathered}$	$\begin{array}{r} 3.150 \\ (10.950 \end{array}$	$\begin{gathered} 6.902 \\ (20.490) \end{gathered}$	$\begin{gathered} 2.664 \\ (5.014) \end{gathered}$	$\begin{gathered} 1.600 \\ (2.470) \end{gathered}$	$\begin{gathered} 1.674 \\ (6.499) \end{gathered}$	$\begin{gathered} 3.243 \\ (20.490) \end{gathered}$	$\begin{gathered} 0.1897 \\ (0.3141) \end{gathered}$
46B	1	8	20	$\begin{gathered} 3.037 \\ (7.697) \end{gathered}$	$\begin{gathered} 2.973 \\ (10.610) \end{gathered}$	$\begin{gathered} 5.880 \\ (18.310) \end{gathered}$	$\begin{gathered} 2.040 \\ (4.242) \end{gathered}$	$\begin{gathered} 1.226 \\ (2.280) \end{gathered}$	$\begin{gathered} 1.698 \\ (6.522) \end{gathered}$	$\begin{gathered} 2.809 \\ (18.310) \end{gathered}$	$\begin{gathered} 0.1524 \\ (0.2617) \end{gathered}$
46C	1	8	40	$\begin{gathered} 0.709 \\ (2.441) \end{gathered}$	$\begin{gathered} 5.194 \\ (15.760) \end{gathered}$	$\begin{gathered} 0.121 \\ (0.493) \end{gathered}$	$\begin{gathered} 0.060 \\ (0.097) \end{gathered}$	$\begin{gathered} 0.051 \\ (0.237) \end{gathered}$	$\begin{gathered} 7.898 \\ (16.560) \end{gathered}$	$\begin{gathered} 2.339 \\ (16.560) \end{gathered}$	$\begin{gathered} 0.1432 \\ (0.2424) \end{gathered}$
46D	1	8	60	$\begin{gathered} 2.720 \\ (6.790) \end{gathered}$	$\begin{gathered} 2.897 \\ (10.270) \end{gathered}$	$\begin{gathered} 5.495 \\ (17.060) \end{gathered}$	$\begin{gathered} 1.873 \\ (3.888) \end{gathered}$	$\begin{gathered} 1.187 \\ (2.740) \end{gathered}$	$\begin{gathered} 1.721 \\ (6.627) \end{gathered}$	$\begin{gathered} 2.649 \\ (17.060) \end{gathered}$	$\begin{gathered} 0.1413 \\ (0.2357) \end{gathered}$
47A	All	8	0	$\begin{gathered} 0.290 \\ (0.573) \end{gathered}$	$\begin{gathered} 2.602 \\ (8.818) \end{gathered}$	$\begin{gathered} 2.892 \\ (9.303) \end{gathered}$	$\begin{gathered} 0.206 \\ (0.562) \end{gathered}$	$\begin{gathered} 1.924 \\ (6.820) \end{gathered}$	$\begin{gathered} 1.848 \\ (6.999) \end{gathered}$	$\begin{gathered} 1.627 \\ (9.303) \end{gathered}$	$\begin{gathered} 0.0338 \\ (0.1416) \end{gathered}$
47B	A11	8	15	$\begin{gathered} 0.997 \\ (2.649) \end{gathered}$	$\begin{gathered} 2.055 \\ (8.750) \end{gathered}$	$\begin{gathered} 2.842 \\ (11.400) \end{gathered}$	$\begin{gathered} 0.847 \\ (2.306) \end{gathered}$	$\begin{gathered} 1.962 \\ (4.982) \end{gathered}$	$\begin{gathered} 2.049 \\ (7.288) \end{gathered}$	$\begin{gathered} 1.792 \\ (11.400) \end{gathered}$	$\begin{gathered} 0.0684 \\ (0.1257) \end{gathered}$

(Cont'd.) Table E.5.2C: Regression Results of Isothermal Binary VLE and Isothermal Ternary LLE System

47C	Al1	8	30	$\begin{gathered} 1.378 \\ (2.295) \end{gathered}$	$\begin{gathered} 0.917 \\ (3.815) \end{gathered}$	$\begin{gathered} 1.572 \\ (2.675) \end{gathered}$	$\begin{gathered} 1.087 \\ (1.933) \end{gathered}$	$\begin{gathered} 3.209 \\ (9.666) \end{gathered}$	$\begin{gathered} 2.209 \\ (8.037) \end{gathered}$	$\begin{gathered} 1.729 \\ (9.666) \end{gathered}$	$\begin{gathered} 0.0819 \\ (0.1903) \end{gathered}$
47D	All	8	45	$\begin{gathered} 0.540 \\ (1.139) \end{gathered}$	$\begin{gathered} 1.007 \\ (4.528) \end{gathered}$	$\begin{gathered} 1.216 \\ (4.478) \end{gathered}$	$\begin{gathered} 0.534 \\ (0.997) \end{gathered}$	$\begin{gathered} 1.963 \\ (6.456) \end{gathered}$	$\begin{gathered} 1.787 \\ (6.712) \end{gathered}$	$\begin{gathered} 1.175 \\ (6.712) \end{gathered}$	$\begin{gathered} 0.0470 \\ (0.1010) \end{gathered}$
48A	1	11	0	$\begin{gathered} 3.424 \\ (8.301) \end{gathered}$	$\begin{gathered} 3.038 \\ (10.730) \end{gathered}$	$\begin{gathered} 6.257 \\ (19.030) \end{gathered}$	$\begin{gathered} 2.287 \\ (4.517) \end{gathered}$	$\begin{gathered} 1.383 \\ (2.041) \end{gathered}$	$\begin{gathered} 1.701 \\ (6.557) \end{gathered}$	$\begin{gathered} 3.015 \\ (19.030) \end{gathered}$	$\begin{gathered} 0.1668 \\ (0.2794) \end{gathered}$
48B	1	11	20	$\begin{gathered} 2.459 \\ (6.476) \end{gathered}$	$\begin{gathered} 2.851 \\ (10.290) \end{gathered}$	$\begin{gathered} 5.259 \\ (16.770) \end{gathered}$	$\begin{gathered} 1.687 \\ (3.712) \end{gathered}$	$\begin{gathered} 1.051 \\ (2.884) \end{gathered}$	$\begin{gathered} 1.723 \\ (6.596) \end{gathered}$	$\begin{gathered} 2.505 \\ (16.770) \end{gathered}$	$\begin{gathered} 0.1307 \\ (0.2258) \end{gathered}$
48 C	1	11	40	$\begin{gathered} 2.356 \\ (6.393) \end{gathered}$	$\begin{gathered} 2.853 \\ (10.310) \end{gathered}$	$\begin{gathered} 5.198 \\ (16.710) \end{gathered}$	$\begin{gathered} 1.611 \\ (3.669) \end{gathered}$	$\begin{gathered} 0.987 \\ (2.943) \end{gathered}$	$\begin{gathered} 1.730 \\ (6.612) \end{gathered}$	$\begin{gathered} 2.456 \\ (16.700) \end{gathered}$	$\begin{gathered} 0.1268 \\ (0.2232) \end{gathered}$
48D	1	11	60	$\begin{gathered} 2.274 \\ (6.180) \end{gathered}$	$\begin{gathered} 2.828 \\ (10.140) \end{gathered}$	$\begin{gathered} 5.054 \\ (16.320) \end{gathered}$	$\begin{gathered} 1.575 \\ (3.587) \end{gathered}$	$\begin{gathered} 0.979 \\ (3.020) \end{gathered}$	$\begin{gathered} 1.730 \\ (6.607) \end{gathered}$	$\begin{gathered} 2.407 \\ (16.320) \end{gathered}$	$\begin{gathered} 0.1237 \\ (0.2178) \end{gathered}$

(Cont'd.) Table E.5.2C: Regression Results of Isothermal Binary Vme and Isothermal

Table E.5.3A: Regression Results of Isothermal Binary VLE and Isothermal
System: (1) Etoh - (2) Water- (3) Bz Condition: Isothermal for VLE, $T=40 \mathrm{C}$
Gamma Model: Modified UNIQUAC
Phi Model: Virial EOS

(Cont'd.) Table E.5.3A: Regression Results of Isothermal Binary VLE and Isothermal

Table E.5.3B: Regression Results of Isothermal Binary Vhe and Isothermal

(Cont'd.) Table E.5.3B: Regression Results of Isothermal Binary VLE and Isothermal

[^11](Cont'd.) Table E.5.3B: Regression Results of Isothermal Binary VLE and Isothermal Ternary LLE System

53B	All	10	11	4	$\begin{gathered} 25.30 \\ (30.03) \end{gathered}$	$\begin{gathered} 46.64 \\ (53.75) \end{gathered}$	$\begin{gathered} 4.65 \\ (10.86) \end{gathered}$	$\begin{gathered} 1.113 \\ (2.281) \end{gathered}$	$\begin{gathered} 1.732 \\ (3.353) \end{gathered}$	$\begin{gathered} 6.629 \\ (12.536) \end{gathered}$	$\begin{gathered} 5.204 \\ (9.747) \end{gathered}$
53C	All	10	11	6	$\begin{gathered} 26.72 \\ (30.10) \end{gathered}$	$\begin{gathered} 46.78 \\ (54.41) \end{gathered}$	$\begin{gathered} 4.85 \\ (11.48) \end{gathered}$	$\begin{gathered} 0.707 \\ (1.901) \end{gathered}$	$\begin{gathered} 1.993 \\ (3.677) \end{gathered}$	$\begin{gathered} 7.197 \\ (13.698) \end{gathered}$	$\begin{gathered} 5.591 \\ (10.399) \end{gathered}$
53D	Al1	10	11	8	$\begin{gathered} 32.15 \\ (36.40) \end{gathered}$	$\begin{gathered} 55.71 \\ (65.72) \end{gathered}$	$\begin{gathered} 2.87 \\ (8.75) \end{gathered}$	$\begin{gathered} 2.873 \\ (4.680) \end{gathered}$	$\begin{gathered} 3.404 \\ (5.490) \end{gathered}$	$\begin{gathered} 7.539 \\ (14.449) \end{gathered}$	$\begin{gathered} 4.261 \\ (8.109) \end{gathered}$

@ Fredicted ternary VLE results, diff. in T's (deg C) and VLEFN \# 21
Table E.5.3C: Regression Results of Isothermal Binary VHE and Isothermal

(Cont'd.) Table E.5.3C: Regression Results of Isothermal Binary VLE and Isothermal

Syst Gamma Phi			moh rial	$\begin{aligned} & \text { (2) } \\ & \text { ied } \\ & \text { EOS } \end{aligned}$	Water UNIQUAC	(3) Bz Conditio Data Set (a) Etoh (b) Etool (c) Etoh	n: Isobar Isothe s and kef -Water, -Bz, Wtr-Bz,	ic for ermal for ferences: Reider, Tyrer, Morache	$\begin{aligned} & \text { VLE, P }= \\ & \text { Y LLE, } \\ & \text { ' R.M. } \\ & \text { D. } \\ & \text { evskí } \end{aligned}$	$\begin{aligned} & 760 \mathrm{~mm} \mathrm{Hg} \\ & =35 \mathrm{C} \\ & \mathrm{t} . \text { al. (19 } \\ & \text { 2) } \end{aligned}$	49) .(1958)
Case \#	No. of Tie Lines	$\begin{gathered} \text { VLE } \\ \text { FN } \\ \text { \# } \end{gathered}$	$\begin{gathered} \text { LLE } \\ \text { FN } \\ \ddagger \end{gathered}$	W	\qquad	iff. of composi Rich in (3) (2) (3)	 Phase (1)	ole \%, M Rich in (2)	 (2) (3)	$a x)$ overall	Mean diff of d. ratio (1)
52A	1	21	11	0	$\begin{gathered} 5.5020 \\ (18.050)(1 \end{gathered}$	$\begin{array}{r} 3.7960 \\ (12.820)(30.6500 \\ \hline \end{array}$	$\begin{array}{r} 2.9460 \\ (7.627) \end{array}$	$\begin{array}{r} 1.5000 \\ (3.694) \end{array}$	$\begin{aligned} & 1.7240 \\ & (6.423) \end{aligned}$	$\begin{array}{r} 4.0197 \\ (30.870) \end{array}$	$\begin{array}{r} 0.2016 \\ (0.527) \end{array}$
52B	1	21	11	10	$\begin{gathered} 4.9890 \\ (16.460)(1 \end{gathered}$	$\begin{array}{rr} 3.7400 \\ (12.890)(29.0440 \\ \hline \end{array}$	$\begin{array}{r} 2.9680 \\ (7.691) \end{array}$	$\begin{gathered} 0.8454 \\ (1.887) \end{gathered}$	$\begin{array}{r} 2.2990 \\ (7.805) \end{array}$	$\begin{array}{r} 3.8142 \\ (29.350) \end{array}$	$\begin{array}{r} 0.2067 \\ (0.493) \end{array}$
52C	1	21	11	20	$\begin{aligned} & 2.0980 \\ & (7.157)(1 \end{aligned}$	$\begin{array}{r} 3.0660\left(\begin{array}{r} 4.5570 \\ 11.240)(18.400) \end{array}\right. \end{array}$	$\begin{aligned} & 1.5880 \\ & (4.319) \end{aligned}$	$\begin{array}{r} 2.0470 \\ (3.876) \end{array}$	$\begin{gathered} 2.4740 \\ (8.194) \end{gathered}$	$\begin{array}{r} 2.6383 \\ (18.400) \end{array}$	$\begin{array}{r} 0.1235 \\ (0.250) \end{array}$
52D	1	21	11	30	$\begin{gathered} 5.5600 \\ (18.490)(1 \end{gathered}$	$\begin{array}{r} 3.8610 \\ (13.860)(32.0160 \\ \hline \end{array}$	$\begin{array}{r} 2.7040 \\ (7.218) \end{array}$	$\begin{aligned} & 1.4600 \\ & (4.175) \end{aligned}$	$\begin{array}{r} 1.5050 \\ (5.683) \end{array}$	$\begin{array}{r} 4.0177 \\ (32.350) \end{array}$	$\begin{array}{r} 0.2105 \\ (0.534) \end{array}$
53A	All	21	11	0	$\begin{array}{r} 1.1740 \\ (2.678) \end{array}$	$\begin{array}{r} 2.2090 \\ (7.835)(10.3990 \end{array}$	$\begin{array}{r} 0.9214 \\ (1.862) \end{array}$	$\begin{array}{r} 2.1370 \\ (5.912) \end{array}$	$\begin{aligned} & 1.3280 \\ & (4.424) \end{aligned}$	$\begin{array}{r} 1.6947 \\ (10.510) \end{array}$	$\begin{array}{r} 0.0659 \\ (0.115) \end{array}$
53B	All	21	11	4	$\begin{array}{r} 1.3400 \\ (2.949) \end{array}$	$\begin{array}{rr} 2.3560 & 1.4270 \\ (7.792) & (4.843) \end{array}$	$\begin{gathered} 1.2340 \\ (2.887) \end{gathered}$	$\begin{array}{r} 3.8270 \\ (12.000) \end{array}$	$\begin{array}{r} 2.6100 \\ (9.110) \end{array}$	$\begin{array}{r} 2.1323 \\ (12.000) \end{array}$	$\begin{array}{r} 0.0808 \\ (0.150) \end{array}$

(Cont'd.) Table E.5.3C: Regression Results of Isothermal Binary VLE and Isothermal

System: (1) Etoh - (2) Water - (3) Bz Condition: Isobaric for VLE, $P=760 \mathrm{~mm} \mathrm{Hg}$ Gamma Model: Modified UNIQUAC Phi Model: Virial EOS Isothermal for LLE, $T=35 \mathrm{C}$ Data Sets and References: (a) Etoh-Water, Reider, R.M., et. al. (1949) (b) Etoh-Bz, Tyrer, D., (1912) (c) Etoh-Wtr-Bz, Morachevskii, A.G.s et.al.(195													
	No. VLE LLE of FN FN Tie $\#$ $\#$ Lines			W	Diff. of compositions in mole \%, Mean \& (Max)							Mean diff of d. ratio (1)	
				Phase Rich in (3) (I) (2) (3)	Phase Rich in (2) (1) (2) (3)			overall d. ratio (1)					
53C	All	21	11		6	$\begin{gathered} 1.4240 \\ (3.424) \end{gathered}$	$\begin{gathered} 3.7910 \\ (15.380)(\end{gathered}$	$\begin{array}{r} 4.5180 \\ (18.810) \end{array}$	$\begin{gathered} 2.6300 \\ (11.520)(\end{gathered}$	$\begin{array}{r} 4.7280 \\ (18.500) \end{array}$	$\begin{array}{r} 2.2320 \\ (6.988) \end{array}$	$\begin{array}{r} 3.2205 \\ (18.810) \end{array}$	$\begin{gathered} 0.0423 \\ (0.132) \end{gathered}$
53D	All	21	11	8	$\begin{array}{r} 0.7330 \\ (1.529) \end{array}$	$\begin{aligned} & 1.6100 \\ & (5.017) \end{aligned}$	$\begin{array}{r} 2.0500 \\ (6.546) \end{array}$	$\begin{array}{r} 0.4157 \\ (0.7756 \end{array}$	$\begin{aligned} & 1.6220 \\ & (3.905) \end{aligned}$	$\begin{array}{r} 1.2990 \\ (3.357) \end{array}$	$\begin{array}{r} 1.2883 \\ (6.546) \end{array}$	$\begin{array}{r} 0.0495 \\ (0.090) \end{array}$	

Table E.5.4A: Regression Results of Isobaric Binary VLE and LLE.

Case \#	NO. of Tie Lines	$\begin{gathered} \text { VLEF } \\ \# \end{gathered}$	LLEE 非	W	Fina A_{12}	Binary A_{21}	Interac A_{13}	Param A_{31}	rs in A_{23}	g K A_{32}	Data Sets used in the Regression
Init	ial s	t of	para	ters	-57.02	351.00	-151.47	961.51	375.24	892.72	
60A	All	21	11	0	-58.67	359.24	-157.21	1067.48	111.17	1068.43	$a+b+c+e$
60 C	All	21	11	50	-125.84	405.90	-189.76	1128.92	211.00	1826.72	$a+b+c+e$
60D	All	21	11	100	-144.86	396.09	-192.86	1128.22	251. 49	2211. 54	$a+b+c+e$
61A	All	21	11	0	-106.69	997.55	-223. 20	9215.29	100.21	1058.46	$c+d$
63A	Al1	21	11	0	-50.30	344.71	-172.04	1223.01	119.96	1038.39	$a+b+c+d$
66A	All	21	11	0	-164.16	7816.18	-186.60	2414.43	198.90	418.09	$c+e$

Table E.5.4B: Regression Results of Isobaric Binary VLE and LLE Binary and Ternary System

System: (1) Etoh - (2) Wtr - (3) Bz Condition: Isobaric for VLE, $P=760 \mathrm{~mm} \mathrm{Hg}$ Model: Modified UNIQUAC Phi Model: Virial ECS Isothermal for LLE, $T=35 \mathrm{C}$ Data Sets and References: (a) Etoh-Water, Reider, R.M., et. al. (1949) (b) Etoh-Bz, Tyrer, D., (1912) (c) Etoh-Wtr-Bz, Hands, C.H.G., et. al. (1945) (d) Water-Benzene Sorensen, et. al. (1979) (e) Etoh-Wtr-Bz, Morachevskii, A.G., et.al. (19											
Case \#	No. of Tie Lines	$\underset{\#}{\text { VLEFN }}$	$\underset{\#}{\text { LLEFN }}$		$\begin{gathered} \text { Mean \& (Max) Abs } \\ \left(\mathrm{T}_{\text {exp }}-\mathrm{T}_{\mathrm{cal}}\right) \mathrm{C} \end{gathered}$			Mean \& (Max) Absolute diff in mcle : $Y_{1} \quad Y_{2}$			
					(a)	System (b)	(c)	(a)	System (b)	(c)	System (c)
60A	All	21	11	0	$\begin{gathered} 0.15 \\ (0.45) \end{gathered}$	$\begin{gathered} 0.20 \\ (0.61) \end{gathered}$	$\begin{gathered} 0.54 \\ (2.05) \end{gathered}$	$\begin{gathered} 0.933 \\ (2.497) \end{gathered}$	$\begin{gathered} 0.759 \\ (2.394) \end{gathered}$	$\begin{gathered} 0.939 \\ (4.133) \end{gathered}$	$\begin{gathered} 0.973 \\ (3.895) \end{gathered}$
60C	All	21	11	50	$\begin{gathered} 0.81 \\ (1.44) \end{gathered}$	$\begin{gathered} 1.00 \\ (1.30) \end{gathered}$	$\begin{gathered} 1.31 \\ (4.58) \end{gathered}$	$\begin{gathered} 0.908 \\ (3.291) \end{gathered}$	$\begin{gathered} 1.911 \\ (4.843) \end{gathered}$	$\begin{gathered} 4.654 \\ (9.360) \end{gathered}$	$\begin{gathered} 2.123 \\ (4.331) \end{gathered}$
60D	All	21	11	100	$\begin{gathered} 1.31 \\ (2.17) \end{gathered}$	$\begin{gathered} 1.11 \\ (1.42) \end{gathered}$	$\begin{gathered} 1.80 \\ (5.92) \end{gathered}$	$\begin{gathered} 1.820 \\ (4.220) \end{gathered}$	$\begin{gathered} 2.057 \\ (5.089) \end{gathered}$	$\begin{gathered} 6.010 \\ (11.610) \end{gathered}$	$\begin{gathered} 2.851 \\ (5.536) \end{gathered}$
61A	All	21	11	0	-	-	$\begin{gathered} 0.29 \\ (0.82) \end{gathered}$	-	-	$\begin{gathered} 2.288 \\ (4.899) \end{gathered}$	$\begin{gathered} 2.404 \\ (5.314) \end{gathered}$
63A	All	21	11	0	$\begin{gathered} 0.14 \\ (0.51) \end{gathered}$	$\begin{gathered} 0.33 \\ (0.82) \end{gathered}$	$\begin{gathered} 0.52 \\ (2.00) \end{gathered}$	$\begin{gathered} 0.927 \\ (2.367) \end{gathered}$	$\begin{gathered} 1.224 \\ (3.064) \end{gathered}$	$\begin{gathered} 1.120 \\ (4.117) \end{gathered}$	$\begin{gathered} 0.948 \\ (3.835) \end{gathered}$
66A	All	21	11	0	-	-	$\begin{gathered} 0.35 \\ (0.91) \end{gathered}$	-	-	$\begin{gathered} 1.348 \\ (5.045) \end{gathered}$	$\begin{gathered} 2.764 \\ (5.947) \end{gathered}$

Note: '-' mean not applicable
Table E.5.4B: Regression Results of Isobaric Binary VLE and LIEm

APPENDIX F

ETHANOL-WATER-BENZENE PROCESS PLANT SIMULATION RESULTS

F.l Simulated Process Without Ethanol Concentrator (Case A)

F. 2 Simulated Process Including Ethanol Concentrator (Case B)

```
### #### PROSIM FLOW SHEET SIMULATION ### ###
    VERSICN ONE
    MARCH 1985
CASE * A: SIMULATION OF AZEO DIST PROCESS PLANT; VLE NRTL & LLE NRTL & IDEAL
NUMBER OF COMPONENTS = 3
VAPOR-LICUID EQUILIBRIUM CATA CODES:
    LIQUID = 4
    VAPDR = 0
    ENTHALPY = 2
```

defined code values:
PRINT/DEBUG $=0$
VLE DATA $=0$
NCIM $\quad=\quad 0$
FEEG VAPORIZATION = 0
* OF PRDCESS ALTERNATES = 0
defined codes and values:
NC. DF LIG PHASES $=1$
* PARAMETER SETS = 2
ncte: all flems are per unit time, anc energy
valuej are in units cf k-btu per unit time.

4.0000	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	0.00000E +00	$0.00000 \mathrm{E}+0 \mathrm{C}$
$0.00000 E+00$	$0.00000 E+00$	$0.00000 \mathrm{E}+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 \mathrm{E}+00$
$0.00000 E+00$	$0.00000 \mathrm{E}+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 \mathrm{E}+00$	$0.00000 E+0 C$
$0.00000 \mathrm{E}+00$	C. $00000 \mathrm{E}+00$	$0.00000 E+00$	$0.00000 E+00$	0.00000E+00	$0.00000 \mathrm{E}+0 \mathrm{C}$
$0.00000 E+00$					
6.0000	80.000	$0.00000 \mathrm{E}+00$	3.0000	1.0000	1.0000
150.00	175.00	14.696	14.696	$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$
2.0000	80.000	77.000	0.00000E+00	$0.00000 E+00$	310.54
$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	0.10000E-02	$0.00000 E+00$	75.000	1.0000	10.000
7.0000	$0.00000 E+00$	1.0000	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+0 C$
$0.000005+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$
$0.000005+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 \mathrm{E}+0 \mathrm{C}$
$0.00000 \mathrm{E}+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 \mathrm{E}+0 \mathrm{C}$
$0.000005+00$					
10.000	95.000	14.696	$0.00000 \mathrm{E}+00$	13.000	$0.00000 \mathrm{E}+00$
$0.000005+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	0.00000E+00	$0.00000 \mathrm{E}+00$
$0.00000 \mathrm{E}+00$	$0.00000 E+00$	C. $00000 \mathrm{E}+00$	$0.00000 E+00$	$0.00000 \mathrm{E}+00$	$0.00000 E+00$
$0.00000 \mathrm{E}+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 \mathrm{E}+00$	$0.00000 E+00$
0.00000E+00					
11.000	12.000	$0.00000 E+00$	1.0000	14.000	-19.000
$0.000005+00$	$0.00000 \mathrm{E}+00$	1.0000	2.0000	0.0000CE+00	$0.00000 \mathrm{E}+00$
$0.00000 \mathrm{E}+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 \mathrm{E}+00$
0.00000E+00	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 \mathrm{E}+00$
0.00000E+00					
12.000	9.0000	0.00000E+00	3.0000	1.0000	1.0000
150.00	175.00	1.0000	1.0000	$0.00000 E+00$	$0.00000 E+00$
1.0000	9.0000	$0.00000 E+00$	0.00000E+00	0.0000CE+00	5.4470
0.00000E +00	$0.10000 \mathrm{E}-02$.	$0.00000 E+00$	75.000	1.0000	10.000
0.00000E+00					
15.000	$0.00000 \mathrm{E}+00$	95.000	$0.00000 \mathrm{E}+00$	$0.00000 E+00$	
$0.00000 E+00$	$0.00000 \mathrm{E}+00$	$0.00000 E+00$	$0.00000 \mathrm{E}+00$	0.00000E+00	$0.00000 \mathrm{E}+00$
$0.00000 E+00$	$0.00000 \mathrm{E}+00$	$0.00000 E+00$	0.00000E+00	$0.00000 E+00$	$0.00000 \mathrm{E}+00$
$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.0000 C E+00$	$0.00000 \mathrm{E}+00$
$0.00000 \mathrm{E}+00$					
1t.000	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 \mathrm{E}+00$
$0.00000 E+00$	$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+00$	0.00000E +00	$0.00000 E+00$	$0.00000 \mathrm{E}+00$
$0.00000 E+00$	$0.00000 \leq \$ 00$	$0.00000 E+00$	0.00000E+00	$0.00000 E+00$	$0.00000 E+00$
$0.00000 \mathrm{E}+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 \mathrm{E}+00$	$0.00000 E+00$	$0.00000 \mathrm{E}+0 \mathrm{C}$
$0.00000 E+00$					
17.000	1.0000	3.0000	0.00000E +00	0.00000E +00	2.0000
0.00000E+00	$0.00000 \mathrm{E}+00$	$0.00000 E+00$	$0.00000 E+00$	0.00000E+00	$\begin{aligned} & 0.00000 \mathrm{E}+0 \mathrm{C} \\ & 0.00000 \mathrm{E}+C \mathrm{C} \end{aligned}$
$0.00000 \mathrm{E}+00$	C.00000E+00	$0.00000 \mathrm{E}+00$	$0.00000 E+00$	0.00000E+00	
$0.00000 \mathrm{E}+00$	$0.00000 \mathrm{E}+000.00000 \mathrm{E}+00$	$0.00000 E+00$	$0.00000 E+00$	$0.0000 C E+00$	$\begin{aligned} & 0.00000 \mathrm{E}+0 \mathrm{C} \\ & 0.00000 \mathrm{E}+0 \mathrm{C} \end{aligned}$
$0.00000 \mathrm{E}+00$					
EQUIPMENT DATA corplete					
bigin stream extensive list read					
16	17 19	819	22	23	31 32
33	34 36	$\epsilon \quad 0$			0 32
0	00	$0 \quad 0$	0	0	0 c
0	0	0	0	0	0

0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

0	0	00
0	0	0 c
0	0	0 C
0	0	0 C
0	0	00
0	0	0 0
0	0	0 C
0	0	00
$\begin{gathered} 95.368 \\ 0.00000 E+00 \end{gathered}$	$\begin{gathered} 19.783 \\ 0.0000 C E+00 \end{gathered}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$
$\begin{gathered} 78.647 \\ 0.00000 E+00 \end{gathered}$	$\begin{aligned} & 33.000 \\ & 0.00000 E+00 \end{aligned}$	$\begin{gathered} 168.13 \\ 0.00000 E+00 \end{gathered}$
$\begin{gathered} 13.282 \\ 0.00000 E+00 \end{gathered}$	$\begin{aligned} & 20.702 \\ & 0.00000 F+00 \end{aligned}$	$\begin{aligned} & 3.1694 \\ & 0-00000 F+00 \end{aligned}$
$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0 . C O O O C E+00 \end{aligned}$	$\begin{aligned} & 0.81058 \\ & 0.00000 E+0 C \end{aligned}$

14.000
$0.00000 E+00$
$0.00000 E+00$

$0.00000 E+00$	115.15
$0.00000 E+00$	$0.00000 E+00$

$0.00000 E+00$
$0.00000 E+00$
15.000
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+00$
279.77
$0.00000 E+00$
78.647
$0.00000 E+00$
23.000
$0.00000 E+00$

STREAM EXTENSIVE LIST COMPLETE

| $3 E G I N$ | | | |
| :---: | :---: | :---: | :---: | :---: |
| $S T R E A M$ | INTENSIVE LIST READ | | |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 |

14.000	1.0000	$0.00000 E+00$	95.000	14.696	$0.00000 E+0 C$
$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$1.000 C$	
15.000	$0.00000 E+00$	$0.00000 E+00$	95.000	14.696	$0.00000 E+0 C$
$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	1.0000	
16.000	$0.00000 E+00$	1.0000	175.00	14.696	$0.00000 E+0 C$
$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	1.0000	
17.000	$0.00000 E+00$	$0.00000 E+00$	100.00	14.696	$0.00000 E+00$
$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	1.0000	
18.000	$0.00000 E+00$	1.0000	150.00	$14.69 E$	$0.00000 E+0 C$
$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	1.0000	
15.000	$0.00000 E+C O$	$0.00000 E+00$	175.00	14.696	$0.00000 E+C C$
$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	$0.00000 E+00$	1.0000	

$\begin{aligned} & 21.000 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 95.000 \\ & 0.00000 E \div 00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+00$
$\begin{aligned} & 22.000 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 150.00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+00$
$\begin{aligned} & 23.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 150.00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+00$
$\begin{aligned} & 30.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & C .00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 95.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+00$
$\begin{aligned} & 31.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 2.0000 \\ & 0.000005+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 160.00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.895 \\ & 1.0000 \end{aligned}$	$0.00000 E \div 00$
$\begin{aligned} & 32.000 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+C O \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 120.00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.69 \epsilon \\ & 1.0000 \end{aligned}$	$0.00000 E+C C$
$\begin{aligned} & 33.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 95.000 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+0 C$
$\begin{aligned} & 34.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 125.00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+0 C$
$\begin{aligned} & 35.000 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 95.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+0 C$
$\begin{aligned} & 36.000 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 2.0000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 175.00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+0 C$
Strean intensiv	E LIST CEMPL				
$\begin{aligned} & \text { BEGIN CALCULATION DATA READ } \\ & 20 \\ & 0.20000 \mathrm{E}-01 \end{aligned}$					
4	15	611	12	17	167
10	0	00	0	0	$0 \quad 0$
0	0	00	0	0	$0 \quad 0$
0	0	0	0	0	0 -
0	0	00	0	0	0 -
0	0	00	0	0	$0 \quad 0$
0	0				
$\begin{array}{r} 15 \\ 0 \end{array}$	$\begin{array}{r} 30 \\ 0 \end{array}$	00	0	0	$0 \quad 0$
$\begin{array}{r} 15 \\ 0 \end{array}$	$\begin{aligned} & 30 \\ & 0 \\ & \text { A COMPLETE } \end{aligned}$	00	0	0	$0 \quad 0$

CASE A: SIMULATION OF AZEO OIST PROCESS PLANT; VLE NRTL \& LLE NRTL \& IDEAL

-PROCESS VECTORS'

NUMBER SUUPMENT

4	$M I X R$	$M-2$	15	16	-32	C
6	ACTL	$C T-1$	17	14	-18	-19
7	OVCR	$D V-1$	34	-16	-23	0
10	$S M I X$	$M-3$	18	23	-15	-30
11	BCTL	$D S-3$	30	-21	0	0
12	OIST	$0-3$	21	-22	-31	0
15	$H T C L$	$H-3$	32	-17	0	0
16	$M I X R$	$M-4$	33	22	-34	0
17	$C N T L$	$C T-2$	19	35	-36	-33

ASE * A: SIMULATICN OF AZED DIST PROCESS PLANT; VLE NRTL \& LLE NRTL ε IDEAL -StREAM CDNNECTIDNS"

StREAM EQUIPMENT
FROM TO

14	0	6
15	10	4
16	7	4
17	15	6
18	6	10
19	6	17
21	11	12
22	12	16
23	7	10
30	10	11
31	12	0
32	4	15
33	17	16
34	16	7
35	0	17
36	17	0

```
CASE * A: SIMULATION OF AZEO DIST PROCESS PLANT; VLE NRTL & lLE NRTL & IDEAL
    -0ther system variables'
NUMBER OF COMPONENTS
    3
COMPONENT NUMBERS USED
RECYCLE EQUIPMENT LIST
streams used in cenvergence routine
PREFERRED CUT STREAM LIST
tGlERANCE, 'DERRCR"
0.0200
MAX. LODPS IN RECYCLE CALC. }2
```

-INPUT DATA.

CASE * A: SIMULATION OF AZEO OIST PROCESS PLANT; VLE NRTL \& LLE NRTL \& IDEAL

STREAM NUMBER
EQUIP CONXION
VAPOR FRACTION
TEMPERATURE, F
PRESSURE, PSIA
ENTHALPY, K-BTU
L/H LIQUID FRAC

```
ETOH
WATER
bENZENE
```

total

14
FR 0 TC 6 0.0000
95.0000
14.6960
-238.6199
1.0000

15
FR 10 TO 4 FR 7 TO 4 0.0000 95.0000
14.6960
-669.0634
1.0000

FR
1.0000
75.0000
14.6960
0.0000
1.0000

17
FR 15 TO 6
0.0000
100.0000
14.6960
0.0000
1.0000

CUMPOSITION, LB-MCLES/UNIT TIME

> 55.36771
> 19.78290
> 0.00000
115.15060
78.64739
32.99990
168.12753
279.77484

0.00000	0.00000
0.00000	0.00000
0.00000	0.00000
0.00000	0.00000

22

23

FR 6 TO 17 0.0000
175.0000
14.6960 0.0000 1.0000

FR 12 TC 16
1.0000 150.0000

FR 7 TO 10
1.0000 150.0000 14.6960 14.6960 0.0000 0.0000 1.0000
0.00000
0.00000
0.00000
0.00000

WATER
benzene
TOTAL
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000
0.00000

COMPOSITION, LB-MOLES/UNIT TIME
0.000000 .00000


```
#####EEGIN TRIAL AND ERROR RECYCLE CALCULATIONS WITH EQUIFMENT LIST..
    4, 15, 6, 11, 12, 17, 16, 7, 10,
    ### SUSSET LOCP CONPLETE ###
```

final results

| CASE A: SIMULATION OF AZEO DIST PROCESS PLANT: VLE NRTL E LLE NRTL E IDEAL | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| STREAM NUMBER | 14 | 15 | 16 | 17 |

EQUIP CONXION	FR
VAPOR FRACTION	0.0
TEMPERATURE, F	0.0000
PRESSURE, PSIA	95.0000
ENTHALPY, KKETU	14.6960
L/H LIQUIC FRAC	

FR 10 TO 4	FR	7 TO 4	FR 15 T0 6
0.0000		0.9098	0.0000
95.0000		45.7580	95.0000
14.6560		1.0000	14.6960
-669.5720		0.0000	-668.7388
1.0000		1.0000	1.0000

ETOH
WATER
BENZEN
95.36771
19.78290
0.00000

TOTAL
115.15060
78.76645
33.08500
168.15891
280.01035
0.00000
78.57763
32.94643
168.11349
280.01035
0.00000
279.63757

Strear number	18	19	22		23
EqUIP CONXION	FR 6 TC 10	FR 6 T0 17	FR 12 TO 16	FR	71010
VAPOR FRACTION	1.0000	0.0000	1.0000		0.9058
temperature, f	149.1139	171.6422	52.4409		45.7580
PRESSURE, PSIA	14.6960	14.6960	1.0000		1.0000
ENTHALPY, K-STU	4497.7769	-1.5666	69.4771		67.3723
L/H LIQUID FRAC	1.0000	1.0000	1.0000		1.0000
	COMPOSITIJN, LB-MCLES/UAIT TIME				
ETOH	90.50188	83.34265	1.35585		1.35585
WATER	52.72929	0.00000	0.93700		0.93700
benzene	167.30380	0.90902	3.18826		3.99728
tctal	320.63498	84.15167	5.49111		6.29012

STREAM NUMBER	30	31	32	33
EQUIP CONXION	FR 10 TO 11	FR 12 TO 0	FR 4 TC 15	FR 17 T0 16
VAPOR FRACTION	0.0000	0.0000	0.0000	0.0000
TEMPERATURE, F	95.0000	75.8444	94.9984	95.0000
PRESSURE, PSIA	14.6960	1.0000	14.6960	14.6960
ENTHALPY, K-BTU	-78.7528	-79.4617	-668.7445	-2.1034
L/H LIQUID FRAC	1.0000	1.0000	1.0000	1.0000
	COMPDSITIUN, LB-MOLES/UNIT TIME			
ETOH	13.19192	11.97723	78.57763	0.00000
WATER	20.58685	19.83069	32.94643	0.00000
BENZENE	3.13598	0.00002	168.11349	0.80902
TCTAL	36.91476	31.80794	279.63757	0.80902

Strear number		34		35		36	
EQUIP CONXION	FR	16 TC 7	FR	0 TO 17	FR	17 T0 0	FR
VAPOR FRACTION		0.9098		0.0000		0.0000	
TEMPERATURE, F		45.7580		95.0000		171.6422	
PRESSURE, PSIA		1.0000		14.6960		14.6960	
ENTHALPY, K-BTU		67.1573		-2.1034		-1.5666	
L/H LIQUID FRAC		1.0000		1.0000		1.0000	
			CCMPOSITION, LB-MOLES/UNIT TIME				
ETJH HATER BENZENE		1.35585		0.00000	$\begin{array}{r} 83.34265 \\ 0.00000 \\ 0.80902 \end{array}$		
		0.93700		0.00000			
		3.95728		0.80902			
TOTAL		6.29012		0.80902		84.15167	

CASE A: SIMULATION OF AZEO DIST PROCESS PLANT; VLE NRTL \& LLE NRTL \& IDEAL SUMMARY OF ENERGY REQUIREMENTS:

UNIT NUMBER $=15$
HEAT AND COUL
HEAT TRANSFERED IN M-ETU = 0.006


```
                                    VERSION ONE
                                    MARCH 1985
CASE B: SIMULATION CF AZEO DIST PROCESS PLANT; VLE NRTL & LLE NRTL & IDEAL
NUMBER OF COMPONENTS = 3
VAPOR-LIGUID EQUILIBRIUM CATA CODES:
    LIQUID = 4
    VAPOR = 0
    ENTHALPY = 2
DEFINED CDDE VALUES:
    PRINT/DEEUG = O
    VLEDATA = 0
    NCIM = 0
    FEEC VAPORIZATION = O
    * DF PROCESS ALTERNATES = 0
defined codes anc values:
    NO. CF LIE PHASES = 1
    * PARAMETER SETS = 2
```

NOTE: ALL FLOWS AFE PER UNIT TIME, ANC ENERGY values are in units of k-ETU per unit time.

```
NOTE: THE EQUATIONS FQR ENTHALPY AND VAPCR PRESSURE ARE:
    (1) ENTHALPY OATA
        HEAT OF VAPORIZATION ... CAL DER gm
        REFERENCE TEMDERATURE ... Deg K
    (2) SPECIFIC HEAT CONSTANTS
                                    LIGUID
            C1=a, CZ=b, ....., CL=d
                cal per gram vs DegK
                CP =a+bT + cT^2 + dT^3
(3) SPECIFIC HEAT CONSTANTS
VAPOR
\(C 2=a, C 2=b, \ldots, C 4=d\) cal per g-mole vs Deg K \(C_{p}=a+b T+C T^{\wedge} 2+d T \wedge 3\)
(4) VAPOR PRESSURE CONSTANTS
C1, C2, .... C6 \(C 1=3, C 2=b, \ldots . . C 6=4\) Atm versus Deg K \(\ln (P)=a+b /(c+T)+d \neq \ln (T)+e \neq T+f \neq T^{\wedge} 2\)
\(\begin{array}{lllll}11 & 11 & 5 & 19 & 1\end{array}\)
```

BEGIN	NETWORK READ								
1	DIST	D-1	10	31	-11	-12	0	0	0
3	HTCL	H-1	11	-14	0	0	0	0	0
4	MIXR	$\mathrm{M}-2$	15	16	-32	0	0	0	0
6	ACTL	CT-1	17	14	-18	-19	0	0	0
7	DVER	CV-1	34	-16	-23	0	0	0	0
10	SMIX	M-3	18	23	-15	-30	0	0	0
11	DCTL	CS-3	30	-21	0	0	0	0	0
12	OIST	D-3	21	-22	-31	0	0	0	0
15	HTCL	$\mathrm{H}-3$	32	-17	0	0	0	0	0
16	MIXR	M-4	33	22	-34	0	0	0	0
17	CNTL	CT-2	19	35	- \mathbf{E}^{6}	-33	0	0	0

NETWORK CUMPLETE

1	17
3	2
4	11
6	3
7	24
10	1
11	26
12	23
15	2
16	11
17	3

BEGIN EQUIPMENT CATA REAC

0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

1.0000
150.00
2.0000
115.15
$0.00000 E+00$

26.000	12.000
211.00	14.696
13.000	26.000
3.0000	-1.0000

$0.00000 E+00$
$0.00000 E+00$
$0.0000 O E+00$
$C .000 O O E+00$

$$
\begin{array}{ll}
95.000 & 0.00000 E+00 \\
0.00000 E+00 & 0.00000 E+00 \\
0.00000 E+00 & 0.00000 E+00 \\
0.00000 E+00 & 0.00000 E+00
\end{array}
$$

$0.00000 E+00$
$0.0000 O E+00$
$0.0000 E E+00$
$0.00000 E+00$
6.0000
150.00
2.0000
$0.00000 E+00$
$0.00000 E+00$
7.0000
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+00$

$0.000005+00$
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+00$
11.000
0.58290
$0.000 C O E+0 C$
$0.00000 E+00$
$0.00000 E+00$
12.000
140.00
1.0000
$0.00000 E+00$
$0.00000 E+00$

15.000	$0.00000 E+C D$
$0.00000 E+00$	$0.00000 E+O 0$
$0.00000 E+00$	$0.00000 E+00$
$0.00000 E+00$	$0.00000 E+00$

9.0000
165.00
9.0000
0.10000E-02
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+0 C$
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+00$
$0.0000 C E+00$
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+00$ $0.00000 E+0 C$
3.0000
14.696
$0.00000 E+00$
75.000
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+00$
1.0000
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+00$
1.0000
$0.00000 \mathrm{E}+00$
$0.00000 E+00$
$0.00000 E+00$
1.0000
$0.00000 E+00$
1.0000
$0.00000 E+00$
310.70
15.000
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+00$
$0.0000 C E+O O$
$0.00000 E+O C$
$0.00000 E+O C$
$0.00000 E+O C$
$0.00000 E+O C$
$0.00000 E+00$
$0.00000 E+O 0$
$0.0000 O E+O O$
$0.00000 E+O O$

> 13.000
> $0.00000 E+00$
> $0.00000 E+00$
> $0.00000 E+00$
$0.00000 E+00$
$0.00000 E+00$ $0.00000 E+00$ $0.00000 E+00$
$0.00000 E+00$
1.0000 $0.00000 E+00$ $0.00000 E+00$
$0.00000 E+00$
0.23320
$0.00000 E+00$
$0.00000 E+00$
$0.0000 C E+00$
0.18390
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+00$
0.18390
$0000 E+00$
$0.00000 E+00$
1.0000
$0.00000 E+00$
5.4380
$0.00000 E+00$
$0.00000 E+0 C$
$0.00000 E+00$
$0.00000 E+00$ $0.00000 E+00$
16.000
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+C C$
$\begin{array}{ll}0.00000 E+00 & 3.0000 \\ 4.8000 & 4.8000\end{array}$
$0.00000 E+00$
$0.00000 E+00$
95.000
$0.00000 E+00$
$0.0000 O E+00$
$0.00000 E+00$
$0.0000 C E+00$
$0.00000 E+00$
$0.00000 E+00$
$0.00000 E+0 C$
$0.00000 E+0 C$

$$
0.00000 E+00
$$

17.000	1.0000
$0.00000 E+00$	$0.00000 E+00$
$0.00000 E+00$	$0.00000 E+00$
$0.00000 E+00$	$0.00000 E+00$
$0.00000 E+00$	

3.0000
$0.00000 E+00$
$0.00000 E+00$
$0.0000 C E+00$

$$
\begin{array}{ll}
0.00000 \mathrm{E}+00 & 0.00000 \mathrm{E}+00 \\
0.00000 \mathrm{E}+00 & 0.00000 \mathrm{E}+00 \\
0.00000 \mathrm{E}+00 & 0.00000 \mathrm{E}+00 \\
0.00000 \mathrm{E}+00 & 0.00000 \mathrm{E}+00
\end{array}
$$

$0.00000 E+00$	2.0000
$0.00000 E+00$	$0.00000 E+0 C$
$0.00000 E+00$	$0.00000 E+0 C$
$0.00000 E+00$	$0.00000 E+0 C$

begin stream intensive list read

0	0	0	0	0	0	0	
0	0	0	0	0	0	0	c
0	0	0	0	0	0	0	c
0	0	0	0	0	0	0	c
0	0	0	0	0	0	0	c
0	0	0	0	0	0	0	c
0	0	0	0	0	0	0	c
0	0	0	0	0	0	0	c
0	0	0	0	0	0	0	c
0	0	0	0	0	0	0	c
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	c
0	0	0	0			0	C

				290	
$\begin{aligned} & 10.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 184.00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+0 C$
$\begin{aligned} & 11.000 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & C .00000 E+00 \\ & C .00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 150.00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+00$
$\begin{aligned} & 12.000 \\ & 0.00000 \equiv+00 \end{aligned}$	$\begin{aligned} & 2.0000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & C .00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 210.00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	0.00000E+00
$\begin{aligned} & 14.000 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 \mathrm{E}+00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 95.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.896 \\ & 1.0000 \end{aligned}$	$0.00000 E+00$
$\begin{aligned} & 15.000 \\ & 0.00000 \equiv+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 95.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.096 \\ & 1.0000 \end{aligned}$	$0.00000 E+00$
$\begin{aligned} & 16.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 175.00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+00$
$\begin{aligned} & 17.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & C .00000 E+00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 100.00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+00$
$\begin{aligned} & 18.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & C .00000 E+00 \\ & C .00000 E+00 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 150.00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.676 \\ & 1.0000 \end{aligned}$	0.00000E+OC
$\begin{aligned} & 15.000 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+C 0 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 175.00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.69 \epsilon \\ & 1.0000 \end{aligned}$	$0.00000 E+00$
$\begin{aligned} & 21.000 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 \mathrm{E}+00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 95.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+0 C$
$\begin{aligned} & 22.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 0.00000 \mathrm{E}+00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 150.00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+O C$
$\begin{aligned} & 23.000 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 150.00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.69 \epsilon \\ & 1.0000 \end{aligned}$	0.00000E+OC
$\begin{aligned} & 30.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 0.00000 \mathrm{E}+00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 95.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+0 C$
$\begin{aligned} & 31.000 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 \mathrm{E}+00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 160.00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.695 \\ & 1.000 \mathrm{C} \end{aligned}$	$0.00000 E+O C$
$\begin{aligned} & 32.000 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.000 C O E+00 \end{aligned}$	$\begin{aligned} & 0.00000 \mathrm{E}+00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 120.00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+0 C$
$\begin{aligned} & 33.000 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+C O \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 95.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+0 C$
$\begin{aligned} & 34.000 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$0.00000 E+00$ $0.00000+00$	125.00 $0.00000 E+00$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+00$
$\begin{aligned} & 35.000 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 1.0000 \\ & 0.00000 \bar{E}+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 95.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+C C$
$\begin{aligned} & 26.000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 2.0000 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 0.00000 E+00 \\ & 0.00000 E+00 \end{aligned}$	$\begin{aligned} & 175.00 \\ & 0.00000 \mathrm{E}+00 \end{aligned}$	$\begin{aligned} & 14.696 \\ & 1.0000 \end{aligned}$	$0.00000 E+00$

begin calculation data read
0.10000 E-01

4	15	6	11	12	1	3	17
16	7	10	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0
0	0	0	0	0	0		0
0	0				0	0	C
14	15	30		0	0	0	0

CASE \# B: SIMULATION OF AZEO OIST PROCESS PLANT; VLE NRTL \& LLE NRTL \& ICEAL
-PROCESS VECTCRS'

	EGUIFMENT subroutine name		Stream		numbers			
NUMEER								
1	DIST	D-1			10	31	-11	-12
3	HTCL	$\mathrm{H}-1$	11	-14	0	0		
4	MIXR	$\mathrm{M}-2$	15	16	-32	0		
6	ACTL	CT-1	17	14	-18	-19		
7	OVDR	DV-1	34	-16	-23	0		
10	SMIX	M-3	18	23	-15	-30		
11	DCTL	DS-3	30	-21	0	0		
12	DIST	D-3	21	-22	-31	0		
15	HTCL	H-3	32	-17	0	0		
16	MIXR	M-4	33	22	-34	0		
17	CNTL	CT-2	19	35	-36	-33		

CASE * E: SImulatidn of azeg oist process plant; vle nrtl \& lle nrtl e ideal - stream connections.
STREAM EQUIPMENT

10	0	1
11	1	3
12	1	0
14	3	6
15	10	4
16	7	4
17	15	6
18	6	10
19	6	17
21	11	12
22	12	16
23	7	10
30	10	11
31	12	1
32	4	15
33	17	16
34	16	7
35	0	17
36	17	0

```
CASE % B: SIMULATION CF AZEO DIST PROCESS PLANT; VLE NRTL & LLE NRTL & IDEAL
    -0ther system variables'
NUMBER DF COMPONENTS 3
component numbers used
RECYCLE EQUIPMENT LIST
StreanS USED IN CCNVERGENCE ROUTINE 14,15,30,
PrEfERRED CUT Stream LIST
TCLERANCE, 'DERROR`
0 . 0 1 0 0
MAX. LDDPS IN RECYCLE CALC. }2
```

- input data"

CASE \# B: SImulation of azeo dist process plant; vle nrtl e lle nrtl e ideal
STREAM NUMBER
EQUIP CONXION
VAPOR FRACTION
TEMPERATURE, F
PRESSURE, PSIA
ENTHALPY, K-BTU
L/H LIQUID FRAC

10		11		12		14
FR O TG 1	FR	1 TG 3	FR	1 TO 0	FR	3706
0.0000		0.0000		0.0000		0.0000
184.0000		160.0000		210.0000		95.0000
14.6960		14.6960		14.6960		14.6960
-1250.2102		0.0000		0.0000		-238.5939
1.0000		1.0000		1.0000		1.0000
COMPOSITION, Le-molesiunit time						
83.43170		0.00000		0.00000		95.45022
2528.23047		0.00000		0.00000		19.70037
0.00000		0.00000		0.00000		0.00000
2511.56187		0.00000		0.00000		115.15060

strear number	15	16	17		18
Equip conxion	FR 10 TC 4	FR 7 TJ	FR 15 TO 6	FR	6 T0 10
VAPOR FRACTION	0.0000	1.0000	0.0000		1.0000
temperature, f	95.0000	175.0000	100.0000		150.0000
PRESSURE, PSIA	14.6960	14.6960	14.6960		14.6960
ENTHALPY, K-Btu	-665.0345	0.0000	0.0000		0.0000
L/H LIQUIE FRAC	1.0000	1.0000	1.0000		1.0000
	COMPOSITION, LB-MOLES/UNIT TIME				
ETOH	78.64269	0.00000	0.00000		0.00000
WATER	32.99490	0.00000	0.00000		0.00000
benzene	168.12608	0.00000	0.00000		0.00000
total	279.76370	0.00000	0.00000		0.00000

ㅎㅎㅎ SUESET LOCP COMPLETE \#\#

FINAL RESULTS

CASE B: SIMULATION OF AZED OIST PRDCESS PLANT: VLE NRTL \& LLE NRTL \& IDEAL
STREAM NUMBER
EGUIP CONXION
VAPOR FRACTION
TEMPERATURE, F
PRESSURE, PSIA
ENTHALPY, K-BTU
L/H LIQUIO FRAC
10
FR 0 TO 1
0.0000
184.0000
14.6960
-1250.2102
1.0000

FR 1 TO 3
0.0000 153.8289 14.6960 -67.7280 1.0000

FR 1 TO 0 0.0000 211.9922 14.6560

14

> FR TO 0.0000 184.0000 14.6960 -1250.2102 1.0000

ETOH WATER benzene

TOTAL
83.43170
2528.23047
0.00000
2611.66187
95.45193
19.69789 0.00008
95.45193
2528.23340
$0.00000 \quad 0.00008$
115.14990
2528.23364
115.14990
STREAM NUMBER

15
FR 10 TC 4

$$
0.0000
$$

95.0000
14.6960 -668.9789 1.0000

16
17
18
EQUIP CONXION
TEMPERATURE, F PRESSURE, PSIA ENTHALPY, K-BTU L/H LIQUID FRAC

```
ETJH
WATER
BENZENE
```

 78.62567
 32.98320
 168.12511
 279.73398
 TOTAL
 TOTAL

Strean number	19	21	22		23	
Eguip conxion	FR 61017	FR 11 TO 12	FR 12 T0 16	FR	71010	FR
VAPOR FRACTION	0.0000	0.0000	1.0000		0.8775	
temperature, f	171.6569	05.0000	101.9489		99.6651	
PRESSURE, PSIA	14.6960	14.6960	4.8000		4.8000	
ENTHALPY, K-BTU	-1.5339	-79.2645	73.4274		71.3476	
L/H LIQUID FRAC	1.0000	1.0000	1.0000		1.0000	
	COMPDSITION, LB-MOLES/UNIT TIME					
ETOH WATER benzene	83.43219	13.28153	1.26078		1.26078	
	0.00000	20.70020	0.95885		0.99885	
	0.79995	3.16979	3.16971		3.96967	
toral	84.23215	37.15152	5.42935		6.22930	
stream number	30	31	32		33	
EGUIP CONXION	FR 10 TC 11	FR 12 TO 1	FR 4 TO 15	FR	17 T0 16	FR
VAPDR FRACTION	0.0000	0.0000	0.0000		0.0000	
temperature, f	95.0000	129.9099	94.9976		95.0000	
PRESSURE, PSIA	14.6960	4.8000	14.6960		14.6960	
ENTHALPY, K-BTU	-79.3082	-42.7308	-669.0167		-2.0798	
L/H LIQUID FRAC	1.0000	1.0000	1.0000		1.0000	
	COMPDSITION, LE-MOLES/UNIT TIME					
ETOH	13.28933	12.02075	78.63961		0.00000	
WATER	20.70906	19.70135	32.95416		0.00000	
benzene	3.17323	0.00008	168.12692		0.79995	
total	37.17162	31.72217	279.76068		0.79995	

APPENDIX G

COMPUTER PROGRAMS

G. 1 Process Simulation Program and Affiliated Subprograms
 G. 2 Absorption/Distillation Program and Affiliated Subprograms
 G. 3 Three Phase Flash Program and Affiliated Subprograms
 G. 4 Non-linear Regression Program and Affiliated Subprograms

The computer listing of the selected subprograms, flaged by '*', is included in this Appendix because of the voluminous code. The listing of program(s) will be furnished upon request to the interested individual or company.

ABSR	ACTL*	ABSR1
ADBF**	BCTL*	ABSR2
BZTL**	CLEAN	DIST1
CNTL*	COMP	DIST2
CTRL	DCHECK	MATRIX
DCTL*	DENETS	CORECT
DIST	DPRINT	GAUSL
DREAD	DSPT*	KCOLMN
DVDR	ECTL*	KFAC
EPRINT	EQCALL	TESTCL
EQUIP	GSXP	SUMUP
HTCL	HXER	
HYTR	INIT	
MIXR	OVHD	
PUMP	RCTL*	
RCYCLE	REAC	
RESULT	SBOX*	
SCAN	SMIX*	
SPLT	SUBSET	
TEST	TRANSF	
TRANSX	TPRINT	
VALV	ZERO	
ZEROX	ADDI	

ANYONE	START*
INTLIZ	CDATA*
DEWT1	RUNFAC*
DEWP	SWITCH*
BUBT1	WEG
BUBT2	LIQH
BUBP	VAPH
TWOLIQ*	FUGCY
FLSH1*	XSHVAP
FLSH2*	ACTVY
AFLSH2*	XSHLQ
KCALC2*	VIRFG1*
PRINT2*	ZVIRI*
PRCHK	BCALC*
	SVIR*
	VIRFG2

ZVIR2
RKFUG
ZRK zCUBIC SRKFUG ZSRK ONEDIM VLAAR XHVLR MARGL XHMARG WILSN XHWIL RENON XHREN UNQACI XHUNQ1 UNQAC2* XHUNQ2* UNIFAC*

G. 2 Absorption/Distillation Program and Affiliated

 Subprograms

G. 3 Three Phase Flash Program and Affiliated Subprograms

G. 4 Non-linear Regression Program and Affiliated Subprograms

FOFX*
INTLIZ*
BUBP
BUBPTI
TWOLIQ*
FXVLE*
FX2LIQ*
INFY*
KCALC2*
PRINT2*
PRINT3*
TALLYI*

PROGRAM PROSIM

```
VERSION* .... MARCH 1985
    THE FOLLOWING ARE THE MAIN PROGRAM fILE AND OTHER SUPPLEMENTARY
    FILES:
    (A) PROSIMI.FOR
    (B) PROSIM2.FOR
    (C) PROSIM3.FOR
    (D) THERMDI.FOR
    (E) THERMO2.FOR
    (F) THERMO3.FDR
    (G) DATABANK.UNI (ONLY WITH UNIFAC ACTIVITY COEFFICIENT MODEL)
    MODULES DELCP, GSXP AND COMP USE ONLY R-K EOS.
    COMMON /CCNTL/ NIN,NOUT,NOCOMP,NE,NEN,KUNITS
    COMMON /EGPA/ B(1252)
    COMMON /EGPB/ CF(150)
    COMMON /MTST/ H(300)
    COMMON /STMA/ J(2403)
    COMMON /STRMIN/ K(128)
    COMMON /STMOUT/ LL(128)
    COMMON /SYSAA/ M(70)
    COMMON /SYSA/ N(801)
    COMMON /SYS8/ IIO(127)
    COMMON /SYSC/ PP(5)
    COMMON /SYSD/ QF(154)
    COMMCN /BLANK/ NCR, NPRT, KEEPIT(22)
    COMMON /CMPRO/ NK, NCM1, NCP1, IDLL, IDLV, IOH, LDEUG, ISW,
* NCIM, ZNAME(2,10), L(10), ATCOMP(IO), HLIO, IPSET
    COMMON /CLMN/ TIGER(22)
    COMMON /LOATA/ CAT(1107)
    COMMON /STRM/ DCG(82)
    COMMON /TWOLQ/ DUMBI(71)
    COMMON /ZFEEOZ/ AAAA(15)
    WRITE (6,9999)
C SYSTEM LIMITS
        10 COMPONENTS
        50 STREAMS
        100 NODES(PIECES CF EGUIPMENT)
```

C
D
9999
C
$N C R=5$
NPRT=6
KODE = O REQUIRES AN INITIALIZATION OF ALL VARIABLES
KODE $=-1$ IMPLIES A VARIATION OF THE PREVIOLS CASE
KODE $=1$ PROBLEM DATA HAS ERROR - TERMINATE PRCGRAM
DEC Error-Set Routines Activitated
Errset 72 = Floating Point Overflow
Errset 73 = Divide Check
Errset 74 = Floating Point Underflow
Errset $77=$ Subscript Out of Range
CALL ERKSET (72,.TRUE., -TRUE., .FALSE., .FALSE., 999)
CALL ERRSET (73,.TRUE., .TRUE., .FALSE., .FALSE., 999)

PLEASE NOTE:

This page not included with original material. Filmed as received.

University Microfilms International

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

THIS BLGCK (ACTL) SIMULATES THE DISTILLATE RATE OF AN AZEOTROPIC OISTILLATION CGLUMN BASED ON THE COMPUTED BOTTOMS PRODUCT COMPOSITICN

* NEW ESTIMATE OF THE DISTILLATE RATE USING SECANT METHCD (IN CASE OF WET ALCOHOL PRODUCT)
* NEW ESTIMATE DF THE DISTILLATE RATE BY HEURISTIC METHOD (IN CASE DF DRY ANC IMPURE ALCOHOL)

COMMON CCMMON	/BLANK/ /CMPRO/	NCR, NPRT, KEEPIT(22) NK, NCMI, NCPI, IDLL, IDLV, IDH, LDSUG, ISW,
\$		NEIM, ZNAME(2,10), L(10), NTCOMP(10), NLIO, IPSET
COMMON	/CONTL/	NIN,NUUT, NOCOMP, NE, NEN, KUNITS
COMMON	/SYSC/	LA,LB,LC,LOOP,LOOPS
COMMON	/SYSD/	KEFLAG(50), KSFLAG(100), KTRACE, DERRCR,NPFREQ,
*		IPUNCH
COMMON	/EGPA/	EGPAR 25,50$)$, NEMAX,MAXEQP
COMMON	/STRMIN/	SINUM(4), SIFLAG(4),SIVPFR(4), SITEMP(4),SIPRES(4),
\#		SIENTH(4), SIVISC(4), SITHK(4), SIZ (4), SIS(4),
\#		SIFRAL (4), SIMOLE (4),SICOMF (10,4),SIKV(10,4)
COMMON	/STMOUT/	SUNUM(4), SUFLAG(4), SOVPFR(4), SUTEMP(4), SOPRES (4),
\$		SEENTH(4), SOVISC(4), SOTHK (4), SCZ (4), SOS(4),
*		SOFRAL (4), SOMOLE (4), SOCOMP (10,4), SOKV (10,4)
REAL		$\operatorname{SIJUM}(4,12), \operatorname{SODUM}(4,12), \operatorname{COMIN}(10), 2 \mathrm{~F}(10), X \mathrm{C}(10)$
REAL		X日T(3), X8TSV(3)
INTEGER		ISAVE(10)
EQUIVAL	NCE	(SIDUM(1,1), SINUM(1)), (SODUM $(1,1), \operatorname{SONUM}(1))$
REAL		XBSET (3)/0.99, 5.0E-3, 0.01/
REAL		$\times \mathrm{E}(3) / 0.99,1 . E-4,0.01 /$
REAL		XC(3)/0.28, 0.18, 0.54/

EQPAR(I,NE) = EGUIPMENT NUMBER
EJPAR (2,NE) = NUMBER OF STAGES IN STRIPPING SECTION
EGPAR (3,NE) $=$ NUMBER OF STAGES IN RECTIFYING SECTION
EGPAR(4,NE) $=$ TYPE OF UNIT
EQPAR (5,NE) $=$ STAGE EFFICIENCY STRIPPING SECTION ... FRACTICN EQPAR (E,NE) = STAGE EFFICIENCY RECTIFYING SECTION... FRACTION EGPAR (T,NE) = TCP STAGE TEMPERATURE (DEG K)
$\operatorname{EQPAR}(8, N E)=$ BCTTCM STAGE TEMPERATURE (DEGK)
EGPAR (9, NE) $=$ TOP STAGE PRESSURE (ATM)
EQPAR(10,NE) $=$ BOTTCM STAGE FRESSURE (ATM)
EQPAR (11,NE) = TEMPERATURE TOLLERANCE (EEFAULT = 0.01)
EQPAR(12,NE) = FLOW TGLLERANCE (DEFAULT = 0.0005)
EQPAR (13,NE) = NUMBER OF FEEDS
EQPAR (14,NE) = STAGE NUMBER FOR THE IST FEED
EQPAR(15,NE) = STAGE NUMRER FOR THE 2ND FEEC
EQPAR (16,NE) $=$ STAGE NUMBER FQR THE 3RD FEEC
EGPAR (17,NE) = STAGE NUMBER FUR THE 4TH FEEC
E®PAF(18,NE) = SPECIFIED DISTILLATE VAPCR RATE, DESTV
EQPAR(IS,NE) $=$ SPECIFIEC DISTILLATE LIQUID RATE, DESTL
EGPAR(2O,NE) $=$ KEFLUX RATIO CR BOILUP RATIO
EGPAP(21, NE) = CISTILLATE CEDE (IDCODE)
-1: SUBCOCLED LIQUID
0 : VADOR/LIQUID DISTILLATE
+1 : LIQUID AT BUBBLE POINT
EGPAR(22,NE) = ITRMAX (HAXIMUM VALUE FOR ITERATIONS)
EGPAP(23,NE) $=$ CISTILLATE VAPOR/(V+L) FRACTION
EQPAR(24,NE) $=$ MAX ITERATION FOR ACTL BLOCK

```
C
C INPUT VALUES
                    NCASE
    DISTILLATION COLUMN (RR SPECIFIED)
    DISTILLATION COLUMN (BOILUP SPECIFIED)
    SELF REFLUXING CDLUMN (BOILUP SPECIFIED)
    SELF REBOILING COLUMN (RR SPECIFIED)
    IOK=0 SUCCESSFUL CALCULATIONS
    IOK=1 EXCESS BENZENE IN THE BTMS (ACTION INC DIST RATE)
    IOK=1 EXCESS HATER IN THE BTMS (ACTION DEC EIST RATE)
    DO LOOP ON SJOUM=SICUM
    IF (LDBUG -GE. 1) HRITE (6,9999)
    9999 FORMAT(* *,30X,*SUBROUTINE ACTL*)
    IF (LDBUG -GE. 1) THEN
        WRITE (NPRT,4)
        4 FORMAT (/" PARAMETERS IN SUB. ACTL ARE:*/)
        WRITE (NPRT,#) (C(J),J=1,12)
        HRITE (NPRT;*) (ALPHA(J),J=1,6)
        END IF
        IOK=0
        KNT=0
        ORATE=0
        ISH=0
        SUM1=0.0
        SUM2=0.0
C
            DO 30 I=1,NCCOMP
            XF(I)=0.0
            ZF(I)=0.0
        30 COMIN(I)=0.0
            DE 50 I=1,NCCDMP
            DO }50\textrm{J}=1,NI
            COMIN(I)=COMIN(I)+SICOMP(I,J)
            50 SOCOMP(I,J)=SICCMP(I,J)
            DO 60 J=3,12
            DO }60\textrm{I}=1,NI
            60 SOCUM(I,J)=SIOUM(I,J)
            DRATE=0.0
            FRATE=0.0
            DO }100\textrm{J}=1,NI
                            SOMOLE(J)=SIMOLE(J)
100 FRATE=FRATE+SIMCLE(J)
            DC 150 I=1,NOCOMP
150 XF(I)=COMIN(I)/FRATE
    LOOP FOR NEW ESTIMATION OF DISTILLATE RATE GY CHANGING
    XD(2) BECAUSE XE(2)=0.0, GTHERWISE SET NEW VALUES OF
    DTHER XB'S AND XO'S
    EQPAR(18,NE)/EQPAR(19,NE) INTITIALLY CARRIES FIRST GUESS
    KUNITS=EQPAR(25,NE)+0.1
    IF (KUNITS .EG. O) THEN
        DRATE=EQFAR(IB,NE)+EGPAR(19,NE)
    ELSE
```

DRATE $=(E \operatorname{CQAR}(18, N E)+E Q P A R(19, N E)) \neq 453.59$
ENO IF
KMAX=EQPAR(24,NE)+0.1
DRSV $=0.55$ \#DRATE
FXNSV=0.95\$XB(2)-XBSET(2)
155 CONTINUE
SUM $1=0.0$
SUM $2=0.0$
SUM $3=0.0$
DO $160 \mathrm{I}=1$, NDCOMP
$\operatorname{SUM} 1=\operatorname{SUM} 1+X F(I)$
$\operatorname{SUM} 2=\operatorname{SUM} 2+X D(I)$
SUM $3=$ SUM $3+X B(I)$
160 CONTINUE
DO $170 \quad I=1$, NOCOMP
$X F(I)=X F(I) / S U M 1$
$X D(I)=X D(I) / S \cup M 2$
$X B(I)=X B(I) / S U M 3$
170 CONTINUE
C
IF (LDBUG -GE. 1) THEN WRITE (NPRT,240)
240 FORMAT (* SUB ACTL:FEED, OIST AND ETMS COMPOSITIONS *) WRITE (NPRT,*) (XF(J), J=1,NOCOMP), (XD(J), J=1, NOCCMP),

* (XB(J),J=1,NOCOMF)

WRITE (NPRT; \#)
WRITE (NPRT, 250) DRATE, FRATE
FJRMAT (* CHECK IN ACTL: ORATE E FRATE *,2E20.8)
END IF
C
290 IF (FRATE-DRATE) $300,300,350$
300 DRATE=0.9まFRATE
GO TO 290
C WRITE (NPRT,310)
C 310 FGRMAT (OPPROGRAM STOPPED ... DISTILLATE RATE TCO HIGH. READ
C \quad PRRDER VALUES OF XD $\& X B$ ARRAYS IN DCTL BLCCK ${ }^{\prime}$)
C CALLEXIT
C RETURN
C
350 IF (EGPAR(21,NE)) $400,420,400$
400 EGPAR(18,NE) $=0.0$
EQPAR(19,NE)=DRATE
GO TO 500
420 EQPAR (18, NE) =DRATE\#EQPAR(23,NE)
$\operatorname{EQPAR}(19, N E)=\operatorname{RATE}(1.0-E Q P A R(23, N E))$
500 IF (LDBUG -GE. 1) THEN
WRITE (NPRT,550) EQPAR(18,NE), EGPAR(19,NE)
WRITE (NPRT, \#)
ENC IF

C
KUNITS =EQPAR (25,NE) +0.1
IF (KUNITS .EQ. O) GO TE 555
EQPAR (18,NE)=EGPAR(18,NE)/453.59
EQPAR (19,NE) =ECPAR(19,NE)/453.59
555 CONTINUE
C
C IF (KNT.GT. O) CALL LOIST
WRITE (NPRT,578)

```
    578 FORMAT (* SUB ACTL STMT:578: RETURNED FROM OIST`)
    C
    C CHECK WHETHER THE BTMS COMPOSITION IS CORRECT
        SOCOMP(I,2)
        DC 600 I=1,NOCOMP
    600 XBT(I)=SOCOMP(I,2)/SOMOLE(2)
        DESIRED CONOITIONS
        IF (XBT(1) .GE. XBSET(1) .AND.
        * XBT(2) -LE. XBSET(2) .AND.
        F XBT(3).LE. XBSET(3).AND.
        * XET(2).LE. XBT(3)) GO TO 700
C
C LESS ETSH & MORE BZ IN BTMS
        IF (XBT(1) .LT. XBSET(1)) THEN
        IF (XET(3) -GT. XBSET(3)) IOK=1
        IF (XBT(3).GT.0.02) IOK=10
        IF (XBT(3) -GT. 0.04) IOK=11
        IF (XBT(3).GT.0.10) IOK=12
        END IF
        IF (IOK .NE. O) GO TO 605
C LESS ETCH & MORE WATER IN BTMS
        IF (XBT(1) .LT. XESET(1).AND.
        # XET(2).GT. XSSET(2)) ICK=2
    C
    C LESS ETCH, MORE HATER & MORE BZ IN ETMS
        IF (ICK.NE. O) GO TO 605
        IF (XBT(1) .LT. XBSET(1) .AND.
        * XBT(2).GT. XBSET(2).AND.
        E XBT(3) •LT. XBSET(3)) IOK=3
            IF (IOK .EG. O) GO TO 700
C
    605 CONTINUE
        SUMA=0.0
        DO 610 I=1,NOCOMP
    610 SUMA = SUMA +XBT(I)
    00612 I=1,NOCOMP
    612 XET(I)=XBT(I)/SUMA
        FXN=XBT(2)-XBSET(2)
        IF (IJK .EG. 2 .OR. IOK -EQ. 3) THEN
        DELTA=-FXN*(DRATE-DRSV)/(FXN-FXNSV)
        END IF
        IF (ICK .EG. 1) DELTA=0.0005%DRATE
        IF (IOK .EG. 10) DELTA=0.01FDRATE
        IF (IOK .EG. 11) DELTA=0.025#DRATE
        IF (ICK.EG. 12) DELTA=0.05%DRATE
C
    FXNSV=FXN
    DRSV=ORATE
    DRATE=ORATE+DELTA
    KNT=KNT+1
    HRITE (NPRT,625) LOOP, KNT, IOK
    625 FORMAT (* IN ACTL: LOOP =',I3,* KNT =*,I3,* ICK=*,I3)
        IF (KNT -LE. KMAX) GO TC 155
        WRITE (NPRT,690)
    690 FORMAT &* ACTL CALCULATIONS INCOMPLETE/UNSATISFACTORY*)
        CALL EXIT
C
    700 WRITE (NPRT,710)
    710 FORMAT (* ACTL SUCCESSFULLY COMPLETEO*)
```

```
        RETURN
        END
        SURROUTINE ADBF
C
\begin{tabular}{|c|c|c|}
\hline COMMON & ／BLANK／ & NCR，NPRT，KEEPIT（22） \\
\hline COMMON & ／CONTL／ & NIN，NQUT，NOCOMP，NE，NEN，KUNITS \\
\hline COMMON & ／CMPRO／ & NK，NCMI，NCPI，IDLL，IOLV，IDH，LDBUG，ISW， \\
\hline ＊ & & NOIM，ZNAME 2,10\(), L(10), N T C O M P(10), ~ N L I Q, ~ I P S E T ~\) \\
\hline COMMON & ／SYSB／ & KRET（66），KCNT，KDUM（4），IRUMAN（56） \\
\hline COMMON & ／SYSE／ & KEFLAG（50），KSFLAG（100），KTRACE，DERROR，NPFREG， \\
\hline \＃ & & IPLNCH \\
\hline COMMON & ／EGPA／ & EQPAR（25，50），NEMAX，MAXEQP \\
\hline COMMON & ／STRMIN／ & SINUM（4），SIFLAG（4），SIVPFR（4），SITEMP（4），SIPRES（4）， \\
\hline \＃ & & SIENTH（4），SIVISC（4），SITHK（4），SI2（4），SIS（4）， \\
\hline \＃ & & SIFRAL（4），SIMOLE（4），SICOMP（10，4），SIXV（10，4） \\
\hline COMMON & ／STMOUT／ & SONUM（4），SOFLAG（4），SOVPFR（4），SOTEMP（4），SOPRES（4）， \\
\hline ＊ & & SOENTH（4），SOVISC（4），SOTHK（4），SOZ（4），SOS（4）， \\
\hline \＃ & & SOFRAL（4），SOMOLE（4），SOCOMP（10，4），SOKV（10，4） \\
\hline COMMON & ／STRM／ & T，P，Z（10），Y（10），X 100 ，FRACV，ZVAP， \\
\hline \＃ & & EK（10），VP（10），FUG（10），EAM（10），SVAP， \\
\hline ＊ & & HOFZ，HVAP，HLIQ，DHV，XSH，NOZU8，NDDEW \\
\hline COMMDN & ／TWCLQ／ & X1（10），X2（10），DUMB1（40），DHL（2），HIDLL（2）， \\
\hline ＋ & & HREALL（2），FRACL，SUMS2（4） \\
\hline COMMON & ／ZFEECZ／ & PF，TF，FEED（10），AAAA（3） \\
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \operatorname{EQPAR}(1, N E)=\text { EQUIPMENT NUMEER } \\
& E Q P A R(2, N E)=M J O E \text { OF FLASH CALCULATION }
\end{aligned}
\]}} \\
\hline & & \\
\hline
\end{tabular}
                EQPAR(1,NE) = EQUIPMENT NUMGER
                EQPAR(2,NE) = MJOE OF FLASH CALCULATION
    WRITE (6,9999)
        THIS MODULE HAS BEEN EXPANDED TO TAKE CARE CF 13
        DIFFERENT CASES BY CALLING SUBPRCGRAM ANYONE, A GENERALIZED
        FLASH ALGORITHM
```

```
    IF (EGPAR(2,NE).LE.O.0 .OR. EQPAR(2,NE).GT.13.0) EGPAR(2,NE)=8.0
    MOCE=EQPAR(2,NE)+0.1
    NOUT=1 FOR MODE * AND PRESET IN THE CALLING PROGRAM
    NOUT=2 FOR MJDE % 1, 3, 6, 11, 13
    NOUT=3 FOR MODE % 2, 4, 7, 8, 9, 10, 12
    OPTIONS AVAILABLE FQR TCTAL # OF OUTPUT STREAMS FROM THE
    EQUIPMENT MODULE MACBFN ARE: 1, 2 OR 3.
    MOCE=NTYPE
        NTYPE CESCRIPTIDN
    CEW POINT TEMPERATURE
        BUBGLE PEINT TEMPERATURE (1/2 LIG)
        ALL VAPCR ENTHALPY WITH PRIOR OEW POINT
        ALL LIQUIO ENTHALPY WITH PRIDR BLBBLE POINT (1/2 LIQ)
        ALL VAPOR ENTHALPY
        ALL LIQUID ENTHALDY (1/2 LIQ)
        ISOTHERMAL FLASH (1/2 LIG)
        ISOTHERMAL FLASH ... NO DEW/BUBBLE PGINT (1/2 LIG)
        ADIABATIC FLASH (1/2 LIC)
        ADIAGATIC FLASH... NO DEW/BUEBLE POINT (1/2 LIO)
        DEW POINT PRESSURE
```

 T=SITEMP(1)
 DO 5 I=1, NCUT
 SIPRES(I)=P
 SOFRES(I) = P
 SITEMP(I) \(=\) T
 \(5 \operatorname{SOTEMP}(I)=T\)
 HOFZ=SIENTH(1)/SIMCLE(1)
 FRACV = SIVPFR(1)
 FRACL \(=\) SIFRAL (1)
 DC \(10 \mathrm{I}=1\),NCCOMP
 \(10 \operatorname{FEEC}(I)=\operatorname{SICCMP}(I, 1)\)
 c
IF (LDBUG .GE. 1) THEN
WRITE (NPRT,12)
WRITE (NFRT,*) FRACV,FRACL,T,P,HDFZ,(FEED(J),J=1,NOCOMP)
12 FORMAT (/' SUS ADBF AT FTN:12: FRACV/ FRACL / T / P /
* HOFZ / FEEC / 1)
ENO IF
c
CALL ANYONE (MODE)
$\operatorname{SIVPFR}(1)=F R A C V$
SIFRAL(1)=FRACL
$\operatorname{SIENTH}(1)=(H V A P \neq F R A C V+H R E A L L(1) \neq(1.0-F R A C V) \neq F R A C L+$
\#
HREALL(2)*(1.0-FRACV)*(1.0-FRACL)) \#SIMCLE(1)
c
If (LEblG .GE. 1) then
WRITE (NPRT,15)
WRITE (NPRT,F) FRACV,FRACL,T,P,HDFZ,(FEED(J),J=1,NOCOMP)
15 FORMAT (/O SUB ADBF AT FTN*15: FRACV/ FRACL / T / P/
\# HOFZ / FEEO / $1 /$)
ENE IF
C
c
NOUT=1: OUTPUT STREAM COULO BE VAPOR+LIGUID+LIQUID
If (NOUT .EG. 1) then
$\operatorname{SOTEMP}(1)=T$
SOPRES(1) $=P$
SOVPFR(1)=FRACV
SOFRAL(1)=FRACL
SOMOLE(1)=SIMCLE(1)
SOENTH(1) =SIENTH(1)
DO $20 \quad i=1$, NECOMF
$20 \operatorname{SOCONP}(I, 1)=\operatorname{SICCMP}(I, 1)$

GO 10200
END IF
NOUT $=2$ \& MCCE<>13: CUTPUT STREAM (1) VAPOR \& (2) $1 / 2$ LIQUIC
NOUT=2 \& MODE=13 : OUTPUT STREAMS ARE ONLY LIQUID
(1) LIGHT PHASE
(2) HEAVY PHASE
If (NOUT .EG. 2) THEN
GO TE $(33,33,36,36,33,33,36,36,33,33,34,34,36), \operatorname{MODE}$
$\operatorname{SITEMP}(1)=T$
SITEMP(2)=T
$\operatorname{SOTEMP}(1)=T$
$\operatorname{SDTEMP}(2)=T$
GO TO 36
SOPRES(1) $=P$
SOFRES(2) $=P$
continue
IF (MCDE -EQ. 13) THEN
$\operatorname{SCVPFR}(1)=0.0$
$\operatorname{SOVPFR}(2)=0.0$
$\operatorname{SOFRAL}(1)=1.0$
$\operatorname{SOFRAL}(2)=1.0$
SOMOLE(1)=SIMOLE (1) *FRACL
SOMOLE(2)=SIMOLE(1)*(1.0-FRACL)
SOENTH(1)=HREALL(1)\#SOMCLE(1)
SCENTH(2)=HREALLC(2) \#SOMCLE(2)
$0038 \mathrm{I}=1$, NOCOMP
$\operatorname{SOCOMP}(I, 1)=X 1(I) \neq \operatorname{SOMOLE}(1)$
$\operatorname{SCCOMP}(I, 2)=X 2(I) \neq \operatorname{SOMCLE}(2)$
GO TO 200
ELSE
$\operatorname{SCVPFR}(1)=1.0$
$\operatorname{SOVPFR}(2)=0.0$
$\operatorname{SOFRAL}(1)=0.0$
SCFRAL(2)=FRACL
SOMOLE(1)=SIMOLE(1)*FRACV
SCMOLE(2) $=$ SIMOLE (1) $\#(1.0-F R A C V)$
SOEATH(1) = HVAP\#SOMOLE(1)
SOENTH(2)=(HREALL(1)\#FRACL+HREALL(2)\#(1.0-FRACL))\#SOMOLE(2)
$\operatorname{SOZ}(1)=2 \mathrm{VAP}$
DC $40 \quad \mathrm{I}=1$, NOCCMP
$\operatorname{SOCOMP}(I, 1)=Y(I) * S O M O L E(1)$
$\operatorname{SCCOMP}(I, 2)=(X 1(I) \neq F R A C L+X 2(I) *(1.0-F R A C L)) * S C M C L E(2)$
GC TC 200
END IF
ENC IF
NDUT=3: 3 OUTPUT STREAM FRDM THE EQUIPMENT
STRM\#1 .. VAPOR / V
STRM*2 .. LIGHT LIQLID / EXTRACT / LI
Strmaz .. heavy Liguio / raffinate / l2
If (NOUT .EG. 3) THEN
DO $5 \in I=1$, NOUT
GD TC ($53,53,56,56,53,53,56,56,53,53,54,54,56)$, MODE
$\operatorname{SOTEMP}(I)=T$
GO TO 56
$\operatorname{SDPRES}(I)=P$

```
    56 CONTINUE
            SOVPFR(1)=1.0
            SOFRAL(1)=0.0
            DO 60 I=2,3
            SOFRAL(I)=1.0
            SOVPFR(I)=0.0
            SOMOLE(1)=SIMOLE(1)#FRACV
            SOMOLE(2)=SIMOLE(1)*(1.0-FRACV)*FRACL
            SOMOLE(3)=SIMJLE(1)#(1.0-FRACV)#(1.0-FRACL)
            SOENTH(1)=HVAP#SCMOLE(1)
            SOENTH(2)=HREALL(1)*SOMCLE(2)
            SOENTH(3)=HREALL(2)*SOMOLE(3)
            SOZ(1)=ZVAP
            DO 70 I=1,NCCOMP
            SOCOMP(I,1)=Y(I)#SOMDLE(1)
            SOCOMP(I,2)=X1(I)*SOMOLE(2)
            SOCOMP(I,3)=X2(I)\starSOMOLE(3)
            GO TU 200
        END IF
C
    200 CONTINUE
        NOUT = SVNQUT
        IF (KTRACE .LT. 2) GO TO 250
        HRITE (NPRT,210)
    210 FORMAT ('O SUB ADBF AT STM*210 : NTYPE / NOUT / FRACV / FRACL /*)
        WRITE (NPRT,\ddagger) MODE, NOUT, FRACV, FRACL
C
    250 RETURN
        END
    SUBRDUTINE ECTL
C
C
C
C
C
    COMMDN /BLANK/ NCR, NPRT, KEEPIT(22)
    COMMON /CMPRO/ NK, NCMI, NCPI, IOLL, IOLV, IDH, LJBUG, ISW,
#
    COMMON /CCNTL/
    COMMON /SYSC/
    COMMON /SYSD/ KEFLAG(SO),KSFLAG(100),KTRACE,DERROR,NPFREG,
*
    COMMON /EQPA/ EQPAR(25,50),NEMAX,MAXEQP
    COMMON /STMA/ SEXTSV(13,100), SINTSV(11,100),NSMAX,MAXSEX,MAXSIN
    CCMMON /STRMIN/ SINUM(4),SIFLAG(4),SIVPFR(4),SITEMP(4),SIPRES(4),
*
# SIFRAL(4),SIMOLE(4),SICOMP(10,4),SIKY(10,4)
    COMMON /STMOUT/ SONUM(4),SOFLAG(4),SOVPFR(4),SOTEMP(4),SOPRES(4),
*
#
    REAL
    INTEGER
    EgUIVALENCE
    DATA
    REAL
    REAL
```

```
C EGPAR(I,NE) = BLOCK/NODE 
C EQPAR(2,NE) = DISTILLATION COLUMN BLOCK/NODE %
C EJPAR(3,NE) = CODE FOR OIST STREAM TYPE
    (-1:SUBCODLED LIGUID, O:VAPOR/LIQUID, +I:LIG AT EUB T)
    EQPAR(4,NE) = CISTILLATE VAPDR/(V+L) FRACTICN
    EQPAR(5,NE) = REFERENCE STREAM # 1
    EQPAR(E,NE) = REFERENCE STREAM # 2
    EQPAR(7,NE) = REFERENCE STREAM 3
    EGPAR(8,NE) = REFERENCE STREAM 4
    EQPAR(9,NE) = REFERENCE COMPONENT * 1
    EGPAR(1O,NE) = REFERENCE COMPONENT * 2
    EQPAR(11,NE) = REFERENCE COMPONENT * 
    EQPAR(12,NE) = REFERENCE COMPONENT * 4
    EQPAR(13,NE) TO EQPAR(25,NE)=0.0
    LDAD THE OUTPUT STREAM WITH THE INPUT STREAM
    DO LODP ON SODUM=SIDUM
    DO 30 I=1,NOCOMP
    XF(I)=0.0
    DR(I)=0.0
30 COMIN(I)=0.0
    ITAGI=0
    IF (EGPAR(9,NE) -LT. 0.C) ITAGI=1
    DO 50 I=1,NCCOMF
    DO 50 J=1,NIN
    COMIN(I)=CCMIN(I)+SICOMP(I,J)
50 SOCOMP(I,J)=SICCMP(I,J)
    00 60 J=3,12
    0060I=1,NIN
60 SOCUM(I,J)=SIDUM(I,J)
    OO 70 I=1,4
    IF (EGPAR(I+4,NE) .NE. O.O) THEN
        ISTRM(I)=SIGN(AES(EJPAR(I+4,NE))+0.1,EQPAR(I+4,NS))
        END IF
70 CONTINUE
    DC 80 I=1,3
80 ICOMP(I)=EGPAR(I+8,NE)+0.1
    COMPUTE BTMS RATE OF 1 AND 2 BY ESTABLISHING MASS
    BALANCE BASED UFON THE fEFERENCE STREAMS
    B1=0
    82=0
    DC &5 I=1,4
    J1=ICONP(1)
    J2=ICOMP(2)
    IF (ISTRM(I) .GT. O) THEN
        IF (SEXTSV(J1+3,ISTRM(I)) .GT. 0.0.AND.
*
                    (SEXTSV(J2+3,ISTRM(I)) .GT. 0.0) ) THEN
        B1=31+SEXTSV(J1+3,ISTRM(I))
            B2=B2+SEXTSV(J2+3,ISTRM(I))
        ENC IF
    ELSE IF (ISTRM(I) -LT. 0) THEN
        ITEMP=IASS(ISTRM(I))
```

\%
IF (SEXTSV(JI+3.ITEMP) .GT. 0.0.AND. (SEXTSV(J2+3,ITEMP) -GT. 0.0)) THEN B1 $\times B 1-S E X T S V(J 1+3$, ITEMP) B2=B2-SEXTSV(J2+3,ITEMP)
END IF
END IF
C
c
COMPUTATION OF COMPCNENTIAL DISTILLATE RATE
IF (B1 .LT. 0.0) $\mathrm{B} 1=0.0$
IF ($82 . L T .0 .0$) $B 2=0.0$
D1=COMIN(1)-B1
D2=COMIN(2)-82
D3=COMIN(3)
DRATE=D1+D2+D3
WRITE (NPRT,90) 81, 82
90 FORMAT C° SUB BCTL: ESTIMATED BI AND BZ FOR BZ
\% STRIPPING COLUMN ARE * $2 E 25.8$)
THIS IS FOR THE 1 ST ENTRY IN BCTL BECAUSE SEXTSV ARRAY IS CLEAN IF THE REFERENCE STREAMS ARE NCT YET PRUCESSED FOR A SINGLE TIME.

IF (DRATE EQ. O.0) DRATE=2\#COMIN(3)
IF (ITAG1.EQ. 1) GCTO 350
FRATE $=0.0$
DO $100 \mathrm{~J}=1, \mathrm{NIN}$
SUMOLE(J) =SIMCLE(J)
100 FRATE=FRATE +SIMCLE(J)
C
C
IF (LDBLG -GE. 1) THEN
WRITE (NPRT,240)
240 FORMAT (${ }^{\circ}$ SUE BCTL:FEED, DIST AND BTMS CCMPOSITIONS * /)
WRITE (NPRT, \ddagger) (XF(J), $J=1$, NOCOMP), $(X F(J), J=1, N O C O M P)$,
$\neq \quad(X F(J), J=1, N O C O M P)$
WRITE (NFRT,\#)
WRITE (NPRT,250) DRATE, FRATE, B1, B2
FORMAT (* CHECK IN RCTL: DRATE/FRATE/B1/B2*/4E16.5) END IF
C
IF (FRATE-CRATE) $300,300,350$
300 WRITE (NPRT,310)
310 FORMAT ('OPROGRAM STDPFED... OISTILLATE RATE TCD HIGH. READ * PROPER VALUES OF X[E XB ARRAYS IN DCTL BLCCK*)

CALL EXIT
RETURN
DIST RATE ASSIGNEO TO EQPAR OF THE PROPER DISTILLATION BLOCK UNITS OF EQPAR AND ORATE ARE DIFFERENT

ISAVE ARRAY STORES THE OIST CCLUMN BLOCK WHICH HAS bEEN PROCESSEC ONCE. SECCND TIME, FOR THE SAME ELDCK *, UNITS OF EQPAR(18,NE) \& EGPAR(1G,NE) REMAIN UNCHANGED.

350 II=EQPAR(2,NE)+0.1
IF (ITAG1.EQ. 1) GO TC 500

IF (EQPAR(3,NE)) $400,420,400$
$400 \operatorname{EQPAR}(18, I I)=0.0$
EQPAR (19,II) $=$ ORATE
GO TO 500
420 EGPAR (18,II) $=\operatorname{DRATE}$ \& EQPAR(4;NE)
$\operatorname{EQPAR}(19, I I)=D R A T E \neq(1.0-E Q P A R(4, N E))$
500 IF (LDBLG -GE. 1) THEN WRITE (NPRT,550) EQPAR(18,II), EQPAR(19,II) WRITE (NPRT, \ddagger)
END IF

C
$560 K=K+1$
IF (K .GE. MAXDSP) GO TC 700
DO $570 I=K, \operatorname{MAXDSP}$
570 ISAVE(I)=0
ITAG=0
C
DSPMAX IS THE MAX OF DSPT MODULES IN A FLOWSCHEmE

580 IF (II EQ. ISAVE(I)) ITAG=1
IF (ITAG -EQ. 1) GO TO 700
ISAVE(K)=II
IF (ITAGI EEQ. 1) GC TO 700
$\operatorname{EQPAR}(18, I I)=E G P A R(18, I I) / 453.59$
EGPAR (19,Ij)=EEPAR(19,II)/453.59
c
700 RETURN
END
SUBROUTINE BZTL
BZTL BLOCK TAPS THE VALUES FROM THE REFERENCE STREAMS
[+ VEFOR INCOMING \& - VE FOR OUTGOING STREAMSI AND
MAKE INITIAL ESTIMATE OF THE OISTILLATE RATE OF ThE
SPECIFIED CISTILLATION BLDCK. FURTHER ESTIMATES OF
THE DISTILLATE RATE ARE BASED ON THE REQUIRED MATERIAL BALANCE. AT PRESENT THIS BLOCK IS DESIGNED FOR THE BENZENE STRIPPING CCLUMA AND CAN BE EASILY EXTENDED TC ANY TYPE OF DISTILLATICN COLUMN.

COMMON CCMMON	/BLANK/ /CMPRO/	NCR, NPRT, KEEPIT(22) NK, NCM1, NCP1, IOLL, IOLV, IDH, LIBUG, ISW,
\$		NCIM, ZNAME 2,10$)$, L(10), NTCOMP(10), NLIC, IPSET
COMMDN	/CONTL/	NIN, NOUT, NOCDMP, NE,NEN,KUNITS
CGMMON	/SYSC/	LA,LB,LC,LODP,LOOPS
COMMON	/SYSD/	KEFLAG(50), KSFLAG(100), KTRACE, CERROR, NPFREC,
¢		IPLNCH
CCMMON	/EGPA/	EQPAR (25,50$)$, NEMAX, MAXEQP
COMMON	/STMA/	SEXTSV(13,100), SINTSV(11,1C0), NSMAX, MAXSEX,MAXSIN
CCMMON	/STRMIN/	SINUM(4), SIFLAG(4), SIVPFK(4), SITEMP(4),SIPRES(4),
\#		SIENTH(4),SIVISC(4),SITHK(4),SIZ(4), SIS (4),
*		SIFRAL (4),SIMOLE (4),SICOMP (10,4), SIKV(10,4)
COMMON	/STMOUT/	SONUM(4), SOFLAG(4), SOVPFR(4), SOTEMP(4), SJPRES(4),
\#		SCENTH(4),SOVISC(4), SOTHK(4),SOZ(4), SOS(4),
\#		SGFRAL (4),SOMOLE(4),SOCDMP(10,4),SOKV(10,4)
REAL		$\operatorname{SIDUM}(4,12), \operatorname{SOJUM}(4,12), \operatorname{COMIN}(10), \operatorname{DR}(10), \mathrm{XF}(10)$
INTEGER		ISAVE(10), ISTRM(4)
EQUIVALE	NCE	(SIDUM(1,1),SINUM(1)), (SOOUM (1,1), SONUN(1))
DATA		K, ISV, ERROR / 0, 0, 0.01/

C

DO $70 \mathrm{I}=1,3$
IF (EGPAR(I+14,NE) .NE. 0.0) THEN ISTRM(I) $=S I G N(A B S(E Q P A R(I+14, N E))+0.1, E Q P A R(I+14, N E))$ END IF
TO CONTINUE

IN CASE THE BLOCK IS USED STAND ALONE KOUNT=0
DO 75 I=1,3
75 IF (ISTRM(I) -EQ. O) KOLNT=KDUNT+1
ALL STREAM NUMBERS ARE O
IF (KOUNT .EQ. 3) THEN
$81=$ BTM1*453.59
B2=BTM2*453.59
GOTO 85
END IF
DO $80 \quad I=1,3$
$80 \operatorname{ICOMP}(I)=E G P A R(I+8, N E)+0.1$
COMPUTE BTMS RATE DF 1 AND 2 8Y ESTABLISHING MASS
BALANCE BASED UPON THE REFERENCE STREAMS
$B 1=0$
82=0
DC $85 \quad I=1,4$
$J 1=I \operatorname{COMP}(1)$
$\mathrm{J} 2=I \operatorname{COMP}(2)$
IF (ISTRM(I) •GT. 0) TMEN
IF (SEXTSV(J1+3,ISTRM(I)) .GT. 0.0.AND.

* (SEXTSV(J2+3,ISTRM(I)) ©GT. C.0)) THEN
$B 1=E 1+S E X T S V(J 1+3$, ISTRM(I))
$B 2=B 2+S E X T S V(J 2+3, I S T R M(I))$
END IF
ELSE IF (ISTRM(I) •LT•O) THEN ITEMP=IABS(ISTRM(I)) IF (SEXTSV(JI+3,ITEMP) .GT. O.O .AND.
\% (SEXTSV(J2+3,ITEMP) .GT. 0.0)) THEN B1 = 81-SEXTSY(J1+3,ITEMP) $B 2=B 2-S E X T S Y(J 2+3$, ITEMP $)$
END IF
ENC IF
C

C
C
C
85 CONTINUE

COMPUTATION OF COMPGNENTIAL DISTILLATE RATE
IF (B1 LT. 0.0) E1=0.0
IF ($82 . L T .0 .0) ~ B 2=0.0$

D1 = COMIN(1)-31
D2=COMIN(2)-52
DE=COMIN(3)
DRATE=D1 $+02+03$
DRMIN=COMIN(3)
WRITE (NPRT,90) B1, B2
90 FDRMAT (* SUB BZTL: ESTIMATED BI ANC BZ FOR BZ

* STRIPPING CCLUMN ARE $/ 2 E 25.8$)
C THIS IS FOR THE 1 ST ENTRY IN BCTL BECAUSE
C Sextsv array is clean if the reference streams are
C NOT YET PROCESSED FJR A SINGLE TIME.
C
C SOMCLE(J)=SIMOLE(J)
100 FRATE=FRATE+SIMOLE(J)
c
c
C
240 FORMAT (• SUB BZTL:FEED, DIST AND BTMS CCMPOSITIONS *")
c
250 FORMAT (* CHECK IN BZTL: DRATE / FRATE/B1/B2/CCMIN*/
IF (LDBUG .GE. 1) THEN
WRITE (NPRT,240)
WRITE (NPRT,\#) (XF(J),J=1,NDCOMP), (XD(J),J=1,NOCOMP),
($X B(J), J=1, N O C O M P$)
WRITE (NPRT,*)
WRITE (NPRT,250) DRATE, FRATE, B1, 82, (COMIN(I),I=1,NDCOMP)
* 4E16.5/5E16.5)
END IF
Setting max and min oist rates wor.t. benzene specs in the
DISTILLATE/BDTTCMS
MAX RATE: 0.98\#FRATE (ARBITRARY) OR COMPUTE BASED UPON
BZ SPECS
MIN RATE: DIST RATE (HITH BL IN DIST $=0.995$ T0 0.997
OF ENTERING 8Z)
If min rate does nct satisfy the ethanol specs in gottoms,
SEARCH FOR DIST RATE BETHEEN MIN AND MAX RATES FIXED.
if etoh specs are not met, select min dist rate for
SEPERATION.
LOOP Starts here
KNT $=0$
DRSV=0.9*DRATE
275 IF (FRATE-DRATE) $300,300,350$
300 DRATE=0.9\#FRATE
GO TO 275
HRITE (NPRT,310)
310 format ('OPROGRAM STOPPED ... DISTILLATE RATE TOD HIGH. READ
* PRCPER VALUES DF XE ε XB ARRAYS IN DCTL BLCCK ${ }^{\text {() }}$
CALL EXIT
RETURN
350 IF (EGPAR(21,NE)) $400,420,400$
$400 \operatorname{EGPAR}(18, N E)=0.0$
$\operatorname{EQFAR}(19, N E)=D R A T E$
GO TO 500
420 EQPAR (1a,NE)=DRATE\#EQPAR(23,NE)
EQPAR(1G,NE)=DRATE\#(1.0-EGPAR(23,NE))
500 IF (LDBLG .GE. 1) THEN
WRITE (NPRT,550) EQPAR(18,NE),EGPAR(19,NE)
WRITE (NPRT,*)
END IF
c
KUNITS=EQPAR(25,NE)+0.1
IF (KUNITS .EW. O) GO TO 575

```
        EQPAR (18,NE)=EQPAR(18,NE)/453.59
        EQPAR (19,NE)=EGPAR(19,NE)/453.59
    575 CDNTINUE
C
C IF (KNT .GT. O) CALL ZOIST
    HRITE (NPRT,578)
    578 FORMAT (* SUB BZTL STMT*578: RETURNED FROM CIST*)
C CHECK HHETHER THE ETMS COMPOSITION IS CORRECT
    SOCOMP(I,2)
    IF (LDBUG -GE. 1) THEN
        WRITE (NPRT,550) EQPAR(18,N5), EQPAR(19,NE)
        WRITE (NPRT,*)
    ENC IF
    550 FORMAT (/* SUB DSPT: DESTV = *,E13.5,* & DESTL = *,E13.5)
    IOK=0
    XO3=ABS(COMIN(3)-SOCOMP(3,1))/CCMIN(3)
C
C
C
C
C
C
C
C
C
C
C
C
    IF (XD3.GE. 0.995 .AND. XD3 .LE. 0.997) DRMIN=LRATE
    IF (SOCGMP(3,2) .GT. ERKOR) IOK=3
    IF (ICK.NE. O) GD TO 600
    IF (KNT .LE. 10) THEN
        FX=SCCOMP(1,2)-E1
    ELSE
        FX=SOCOMP(3,2)
    END IF
    FX=SOCOMP(1,2)-B1
    IF (FX-ERRCR) 580,600,595
    580 ICK=2
    GO TO 600
    535 ICK=1
C
    600 IF (ICK .EG. O) GO TO 700
    IF (KNT .GT. 1O .AND. (IOK.EQ. 2 .AND. ISV.EQ. 3)) GO TO 7OO
    ISV=IOK
    SECANT METHED FCR NEW GUESS OF CRATE
    OBJ FUNC IS CHANGEC AFTER KNT>10
    IF (ICK .EG. 1 .OR. IGK .EQ. 2) THEN
        DELTA=-(DRATE-DRSV)#FX/(FX-FXSV)
    END IF
    IF (ICK •EG. 3) DELTA=0.08%DRATE
    FXSV=FX
    DRSV=ORATE
    DRATE=DRATE+DELTA
    IF (DRATE -LT. DRMIN) DRATE=DRMIN
    KNT=KNT+1
    HRITE (NPRT,625) LDSP, KNT, IDK, LRMIN, DRSV, DRATE, DMULT
    625 FORMAT (' IA BZTL: LDOF =',I3,* KNT =`,I3,* ICK=*,I3/
        *'DRMIN = *,G10.5,2X,* DRSV = ',G10.5,2X,
        ** DRATE = ',G10.5,2X,* DMULT = *,G10.5)
            IF (ABS(CDRSV-DRATE)/ERSV).LT. 1.OE-4) GU TO 700
            IF (KNT -LE. 20) GC TO 275
            WRITE (NPRT,690)
    690 FGRMAT (* BZTL STOPPED: ITERATION LIMIT EXCEEDEO*)
    CALL EXIT
C
700 WRITE (NPRT,710)
```

710 FORMAT (* BZTL SUCCESSFULLY COMPLETED*)

C

```
        COMMON /BLANK/ NCR,NPRT, KEEPIT(22)
        COMMON /BLANK/ NCR,NPRT, KEEPIT(22)
```

 \(\operatorname{EQPAR}(1, N E)=B L O C K / N Q D E *\)
 EQPAR (2,NE) \(=\) OPTION:
 EQPAR(3,NE) \(=\operatorname{COMPONENT}\) *TO BE CONTROLLED
 EQPAR \((4, N E)=\) MIN RATIC FOR OPTION 2
 EQPAR \(5, N E)=\) MAX RATIC FCR OPTION 2
 EQPAR (6, NE) = MAX FLOW QF COMPONENT \#N EQPAR(3,NE)
 EGPAR(7,NE) THRU EQPAR(25,NE) \(=0.0\)
 LOAD THE OUTPUT STREAM WITH THE INPUT STREAM
 DO LOOP ON SODUM \(=\) SICUM
 \(K \cup N I T S=E Q P A R(25, N E)+0.1\)
 IF (KUNITS .EG. O) GO TO 10
 EQPAR (\(\epsilon, N E)=E Q P A R(\epsilon, N E) \neq 453.59\)
 E(FFAR (25,NE) \(=0.0\)
 10 CONTINUE
 C
RETURN
END
SUBRDUTINE CNTL
OPTIONS IN CNTL
1. MANIPULATION OF THE COMPONENTIAL FLOW OF THE TARGET STREAM
BASEC UPON DIFFERENCE IN TWO RATES
2. MANIPULATION OF THE COMPONENTIAL FLOW OF THE TARGET STREAM
BASED UPON RATICS OF TWO STREAM RATES
THIS bloCk uSES SECCND Stream as the target streamg the
COMP FLOW IS CHANGEC WITH REFERENCE TO THE FIRST INCOMING
STREAM.
IF (EGPAR(2,NE) EEG. 2.0) GO TD 250
QPTIDN 1
$\operatorname{ICOMP}=E G P A R(3, N E)+0.1$
IF (SICCMP(ICOMP,1) .EG. O.0) GC TC 350
DIFF=SICCMF(ICOMP,1)-SICOMP(ICCMP,2)

```
        SOCOMP(ICOMP,2)=SICOMP(ICOMP,2)+DIFF
        IF (SCCOMP(ICOMP,2) .GT. EQPAR(6,NE)) SOCOMP(ICOMP,2)=EGPAR(G,NE)
        SUM=0.0
        DO 150 J=1,NOCOMP
        SICOMP(J,2)=SOCOMP(J,2)
    150 SUM=SUM+SGCOMP(J,2)
        SOMOLE(2)=SUM
        SIMOLE(2)=SUM
        GO TO 350
C
C OPTIDN 2
C
    250 IF (EGPAR(4,NE) .NE. 0.0) RMIN=EQPAR(4,NE)
    IF (EQPAR(5,NE) .NE. 0.0) PMAX=EQPAR(5,NE)
    275 RATIO=SCMCLE(1)/SOMOLE(2)
        IF (RATIO .LT. RMIN) THEN
            SUM=0.0
            DO 280 I=1,NOCOMP
            SOCOMP(I,2)=0.99#SOCCMP(I,2)
            SUM=SUM+SOCOMP(I,2)
            SOMOLE(2)=SUM
            GO TO 275
        ELSE
            IF (RATIC .GE. RMAX) THEN
                SUM=0.0
                DC 300 I=1,NCCOMP
                SCCOMP(I,2)=1.01*SOCOMP(I,2)
                SUM=SUM+SCCOMP(I,Z)
                SCMCLE(2)=SUM
                GO TC 275
            END IF
        ENC IF
c
    350 continue
    establishing stream # 2 via ISOThErmal flash
c
    ESAVE=EQPAR(2,NE)
    NSAVE=NOUT
    DC 360 I=3,12
    SID(I)=SIOUM(1,I)
    360 SICUM(1,I)=SIDUM(2,I)
        DO 370 I=1,NOCOMP
        SIC(I)=SICOMP(I,1)
    370 SICDMP(I,1)=SICCMP(I,2)
c
C restore the stream variables
    EGPAR(2,NE)=ESAVE
    NOUT=NSAVE
    DS 372 I=3,12
    SIDUM(2,I)=SODUM(1,I)
    372\operatorname{SICUM(1,I)=SID(I)}
        DO 374 I=1,NOCOMP
        SICOMP(1,2)=SOCOMP(I,1)
    374 SICEMP(I,1)=SIC(I)
C
    DO 380 J=3,12
    DC 380 I=1,NIN
```

```
380 SOCUM(I,J)=SIDUM(I,J)
    DO 390 I=1,NIN
    DO 390 J=1,NOCOMP
390 SOCOMP(J,I)=SICCMP(J,I)
    IF (LOBUG .GE. 1) WRITE (6,400) :COMP, SICOMP(ICOMP,2),
    * SCCOMP(ICOMP,2)
400 FORMAT (/' IN SUB CNTL: ICOMP, SICOMP E SOCOMP OF (ICOMP,2)
    # ARE %/I5,2E15.5)
900 RETURN
    ENC
    subroutine dctl
        DCTL DYNAMICALLY SIMULATES THE FEEE-PORNARC CONTRCL
        dF THE SPLIT IN aN AZEOTROPIC OISTILLATION COLUNN
        BASED UPON THE COMPCSITE FEED COMPOSITION ANO RATE
        ane the ASSLMED DISTILLATE AND gOTTCMS COMPCSITION.
        THIS BLOCK CAN be EASILY EXTENDED TC ANY DISTILLATICN
        COLUMN.
```

 CCMMON /BLANK/ NCR, NPRT, KEEPIT(22)
 COMMON /CMPRO/ NK, NCN1, NCPI, IOLL, IDLV, IDH, LDBUG, ISW,
 *
 COMMON /CONTL NIN,NOUT,NOCOMP,NE,NEN,KUNITS
 COMMON /SYSC/ LA,LB,LC,LOOP,LOOPS
 COMMON /SYSD/ KEFLAG(50),KSFLAG(100),KTRACE,OERROR,NPFREG,
 \#
 IFUNCH
 COMMDN /EGPA/ EGPAR(25,50),NEMAX,MAXEDP
 COMMON /STRMIN/ SINUM(4),SIFLAS(4),SIVPFR(4),SITEMP(4),SIPRES(4),
 SIENTH(4),SIVISC(4),SITHK(4),SIZ(4),SIS(4),
 \# SIFRAL(4),SIMOLE(4),SICOMP(1C,4),SIKVC10,4)
 COMMDN /STMOUT/ SONUM(4),SOFLAG(4),SOVPFR(4),SCTEMP(4),SOPRES(4),
 \#
 \(\ddagger\)
 REAL
 SCFRAL(4),SOMCLE(4),SOCOMP(10,4),SCKV(10,4)
 \(\operatorname{SIDUM}(4,12), \operatorname{SOCUM}(4,12), \operatorname{COMIN}(10), \operatorname{DR}(10), \operatorname{XF}(10)\)
 XD(3), X5(3)
 REAL
 ISAVE(10)
 integer
 eguivalence
 (SIDUM(1,1),SINUM(1)),(SODUM(1,1),SONUM(1))
 DATA
 REAL
 K, MAXLSP 10,101
 XE(3)/0.995, 1.E-5, 0.005/
 REAL \(\quad X D(3) / C .31042,0.14041,0.54317 /\)
 \(\operatorname{EQPAR}(1, N E)=B L O C K / N O D E *\)
 EQPAR(2,NE) = OISTILLATION COLUMN BLOCK/NODE *
 EGPAR(3,NE) = COCE FOR CIST STREAM TYPE
 (-1:SUBCOCLEC LIGUID, O:VAPOR/LIQUID, +1:LIG AT BUB T)
 \(\operatorname{EQFAR}(4, N E)=\) DISTILLATE VAPOR/(V+L) FRACTION
 EQPAR(5,NE) THRU EGPAR(NOCDMP+4,NE) = XD (I), I=I,NOCOMP
 EQPAR (NCCOMP + 5,NE) THRU EQPAR(2\#NOCOMP+4,NE) = XB (I), I=1,NDCENP
 XD AND XB ARE GUESSED VALUES dF DiStillate
 AND BOTTOMS COMPONENT MOLE FRACTIONS
 If EQPAR(5,NE) \(>=2.0\) THEN DEFAULT VALUES ARE USED
 If EGPAR(5,NE) < O NO CHANGE IS MADE IN OIST RATE,
 ITAGI IS USED WITH REFERENCE TO IT.
 load the oltput stream hith the input stpeam
 DC LOOP ON SDDUN=SICUM
 IF (EQFAR(5,NE) .GE. 2.0) GO 1020
    ```
    DO 20 I=1,NCCDMP
    XD(I)=EQPAR(I+4,NE)
    I J=NOCOMP+4+I
    XB(I)=EQPAR(IJ,NE)
    20 CONTINUE
c
C
        30 CDMIN(I)=0.0
        ITAGI=0
    IF (EGPAR(5,NE) .LT. 0.0) ITAGI=1
    DO 50 I=1,NOCOMP
    OO 50 J=1,NIN
    COMIN(I)=CCMIN(I)+SICOMP(I,J)
        50 SOCOMP(I,J)=SICCMP(I,J)
    DO 60 J=3,12
    DO 60 I=1,NIN
        60 SODUM(I,J)=SIDUM(I,J)
C
    IF (ITAG1 .EQ. 1) GO TO 350
    DRATE=0.0
    FRATE=0.0
    DO 100 J=1,NIN
    SOMCLE(J)=SIMOLE(J)
    100 FRATE=FRATE+SIMOLE(J)
C
c
    DO 150 I=1,NOCOMP
    150 XF(I)=COMIN(I)/FRATE
    SUMI=0.0
    SUM2=0.0
    SUM3=0.0
    OO 160 I=1,NOCOMP
    SUMI=SUM1+XF(I)
    SUM2=SUM2+XE(I)
    SUM3=SUM3+XE(I)
    160 CONTINUE
        DO 170 I=1,NOCOMP
        XF(I)=XF(I)/SUNI
        XD(I)=XD(I)/SUM2
        XB(I)=XE(I)/SUM3
    170 CONTINUE
C
C DO 180 I=1,NOCOMP
C 180 DR(I)=(XF(I)-XB(I))/(XD(I)-XB(I))&CCMIN(I)
    DU 190 I=1, AOCOMP
    190 DRATE=DRATE+DR(I)
    DO 18G I=1,NOCOMD
180 DR(I)=(XF(I)-XB(I))/(XC(I)-XB(I)) कFRATE
    OC 190 I=1,NOCGMP
190 DRATE=DRATE+DR(I)
    DRATE=DRATE/NOCOMP
    CALCULATION OF ERATE USING ASSUMED VALUES OF OIST AND BTMS
    COMPOSITIONS THRU EGPAR MATRIX
```

```
            ORATE=(XB(2) कCQMIN(1)-XE(1) ヶCOMIN(2))/
            7 (XB(2)*XD(1)-XB(1)\not=XD(2))
C
            IF (LOBUG -GE. 1) THEN
                WRITE (NPRT,240)
    240 FORMAT (* SUB DCTL:FEED, DIST ANC BTMS CCMPOSITIONS */)
        WRITE (NPRT,申) (XF(J),J=1,NOCOMP),(XD(J),J=1,NOCOMP),
        * (XB(J),J=1,NOCOMP)
            WRITE (NPRT,#)
        WRITE (NPRT,245)
    245 FORMAT (/* SICOMP 1&2, SIMOLE, COMIN`)
        WRITE (NPRT,#) ((SICGMP(I,J),I=1,NOCOMP),J=1,NIN),
        # (SIMCLE (I),I=1,NIN), (COMIN(I),I=I,NOCOMP)
        WRITE (NPRT,250) DRATE, FRATE
    250 FORMAT (* CHECK IN DCTL: DRATE & FRATE *,2E20.8)
        END IF
C
    IF (FRATE-DRATE) 300,300,350
    300 WRITE (NPRT,310)
    310 FORMAT ('OPROGRAM STOPPED ... DISTILLATE RATE TOO HIGH. READ
        # PROPER VALUES OF XC E XB ARRAYS IN OCTL BLCCK *)
        CALL EXIT
        RETURN
C
C OIST RATE ASSIGNED TO EGPAR OF THE PROPER OISTILLATION BLOCK
C UNITS OF EQPAR AND ORATE ARE DIFFERENT
C
C
C
C
    350 II=EQPAR(2,NE)+0.1
        IF (ITAG1.EQ. 1) GC TO 500
        IF (EGPAR(3,NE)) 4CC,420,400
        400 EQPAR(1%,II)=0.C
        EQPAR(19,II)=ORATE
        GOTO 500
        420 EQPAR(18,II)=DRATE#EQPAR(4,NE)
        EQFAR(15,II)=DRATE#(1,0-EQPAR(4,NE))
        500 IF (LDSUG -GE. 1) THEN
            WRITE (NPRT,550) EQPAR(18,II),EGPAR(19,II)
            WRITE (NPRT,#)
        END IF
    550 FORMAT (/' SUE OSPT: DESTV = ',E13.5.'& OESTL= = E13.5)
C
C DSFMAX IS THE MAX OF DSPT MODULES IN A FLEWSCHEME
C
    560 K=K+1
        IF (K.GE. MAXOSD) GO TO 700
        DU S70 I=K,MAXDSP
    570 ISAVE(I)=0
        ITAG=0
C
    ISAVE ARRAY STORES THE DIST COLUMN BLOCK * WHICH HAS BEEN
    PROCESSED ONCE. SECOND TIME, FOR THE SAME BLOCK #, UNITS
    OF EGPAR(I8,NE) & EGPAR(19,NE) REMAIN UNCHANGED.
C
    OO 580 I=1,K
    580 IF (II .EQ. ISAVE(I)) ITAG=1
    IF (ITAG .EQ. 1) GC TC }70
    ISAVE(K)=II
    IF (ITAGI EQ. 1) GE TO 700
    EQPAR (18,II)=EGPAR(18,II)/453.59
    EGPAR (19,II)=EGPAR(19,II)/453.59
```

C

700 RETURN

END
SUBROUTINE DSPT
c

```
50 SOCOMP(I,J)=SICCMP(I,J)
```

 DO \(60 \mathrm{~J}=3,12\)
 DC \(60 \mathrm{I}=1, \mathrm{NIN}\)
 $60 \operatorname{Sucum}(I, J)=\operatorname{SIDUM}(I, J)$

C

```
        IF (ITAG1 .EQ. 1) GO TO 175
        ORATE=0.0
        FRATE=0.0
        DO 100 J=1,NIN
        SOMOLE(J)=SIMOLE(J)
        FRATE=FRATE+SIMOLE(J)
        DO 10C I=1,NOCOMP
        DRATE=DRATE+EQPAR(I+4,NE)*SICOMP(I,J)
    IGO CONTINUE
```

c
\# E18.8\% TOTAL CF SIMOLE $=:$, E18.8ر
$\# \quad \because \quad$ DRATE $=\because, E 18.8 /$
END IF
C
IF (FRATE-DRATE) $150,150,175$
150 WRITE (NPKT,160)
160 FORMAT (OPPROGRAM STOPPED... OISTILLATE RATE TCO HIGH. READ
* PROPER VALUES GF MULTIPLIERS FUR OSPT PROCESS*)
CALL EXIT
RETURN
C
c
c
c
C
c
c
c
$175 \operatorname{II}=\operatorname{EGPAR}(2, N E)+0.1$
IF (ITAG1 .EQ. 1) GC TO 500
IF (EQPAR(3,NE)) $200,220,200$
$200 \operatorname{EQPAR}(18, I I)=0.0$
$\operatorname{EQPAR}(19, I I)=D R A T E$
GO TO 500
$220 \operatorname{EQPAR}(18, I I)=\operatorname{DRATE\# EQPAR}(4, N E)$
$\operatorname{EQPAR}(19, I I)=O R A T E *(1.0-E Q P A R(4, N E))$
500 If (LDBUG .GE. 1) THEN
WRITE (NPRT,550) EQPAR(18,II),EQPAR(19,II)
WRITE (NPRT,\#)
END IF
550 FORMAT ($/$ SUB CSPT: DESTV $=$ •,E13.5." \& DESTL $=*$ E13.5)
c
C ospmax is the max * of espt modules in a flowscheme
C
$560 \mathrm{~K}=\mathrm{K}+1$
IF (K .GE. MAXDSP) GO 70700
DO 570 I KK,MAXDSP
570 ISAVE(I) $=0$
ITAG $=0$
c


```
        IF (ITAG1 .EQ. 1) GC TO 700
        EQPAR (18,II)xEGPAR(18,II)/453.59
        EQPAR (19,II)=EGPAR(19,II)/453.59
C
    700 RETURN
        END
    SUCDOUTINE ECTL
C

700 RETURN
END
SUEROUTINE ECTL
THIS BLOCK IS DEDICATEC (AT PRESENT) fOR AZEOTRCPIC DiStillaticn column (etch-inater-bénzene).
ectl oynamically simulates the feec-forward centrel
OF THE SPLIT IN A AZEDTROPIC DISTILLATION CCLUMN BASED UPON THE CDMPOSITE FEED CCMPOSITION AND RATE and the asslmed entrainer rate.
1. determination of entrainer rate ctop feec, with fixeo COMPCSITION) WITh FIXED, ETHANCL+WATER FEED COMPOSITION, BOTTOMS SPECS AND THEIR RATES.
2. IF SATISFACTORY SOLUTION IS NOT OBTAINED FROM OIST, oist calculations are repeated with new estimate of the Entrainer rate.
3. CALL EXIT IF CONVERGENCE IS IN UNSATISFACTORY.

COMMON /BLANK/ NCR, NPRT, KEEPIT(22)
COMMON /CMPRD/ NK, NCMI, NCPI, IDLL, IOLV, IDH, LDBUG, ISW,
\#
COMMON /CONTL/ NIN,NCUT, NOCOMP,NE,NEN,KUNITS
COMMON /SYSC/ LA,LB,LC,LOOP,LDCPS
COMMON /SYSD/ KEFLAG(SO),KSFLAG(100),KTRACE,CERROR,NPFREG,
\#
COMMON /EQPA/ EQPAR(25,50),NEMAX,MAXEQP
COMMON /STRMIN/ SINUM(4),SIFLAG(4),SIVPFR(4),SITEMP(4),SIPRES(4),
*
+
SIFRAL(4),SIMOLE(4),SICOMP(10,4),SIKV(10,4)
*
*
REAL \(\operatorname{SIUUM}(4,12), \operatorname{SOCUM}(4,12), \operatorname{CONIN}(10), Z F(10), X F(10)\)
REAL SCC(12), SOC(12)
REAL XBT(3), XE(3), XBTSV(3)
INTEGER ISAVE(10)
EQUIVALENCE (SIDUM(1,1),SINUM(1)),(SODUM(1,1),SONUN(1))
REAL XESET(3)/0.99, 1.0E-4, 0.01/
REAL XE(3)/0.99, 1.E-4, 0.011
REAL \(\quad X D(3) / 0.29,0.18,0.54 /\)
INTEGER

KMAX / 10 ,
```

EGPAR(1,NE) = EGUIPMENT NUMBFR

```
EGPAR(1,NE) = EGUIPMENT NUMBFR
EGPAR(2,NE) = NUMOER OF STAGES IN STRIPPING SECTION
EGPAR(2,NE) = NUMOER OF STAGES IN STRIPPING SECTION
EGPAR(3,NE) = NUMBER OF STAGES IN RECTIFYING SECTIOA
EGPAR(3,NE) = NUMBER OF STAGES IN RECTIFYING SECTIOA
EQPAR(4,NE) = TYPE OF UNIT
EQPAR(4,NE) = TYPE OF UNIT
EGPAR(S,NE) = STAGE EFFICIENCY STRIPPING SECTION ... FRACTICN
EGPAR(S,NE) = STAGE EFFICIENCY STRIPPING SECTION ... FRACTICN
EGPAR(G,NE) = STAGE EFFICIENCY RECTIFYING SECTION .... FRACTION
EGPAR(G,NE) = STAGE EFFICIENCY RECTIFYING SECTION .... FRACTION
EGPAR(7,NE) = TOP STAGE TEMPERATURE (DEG K)
EGPAR(7,NE) = TOP STAGE TEMPERATURE (DEG K)
EQPAR(8,NE) = BCTTCM STAGE TEMPERATURE (DEG K)
EQPAR(8,NE) = BCTTCM STAGE TEMPERATURE (DEG K)
EGPAR(G,NE) = TIP STAGE PRESSLIRE (ATM)
EGPAR(G,NE) = TIP STAGE PRESSLIRE (ATM)
EGPAR(1O,NE) = BOTTCM STAGE PRESSURE (ATM)
EGPAR(1O,NE) = BOTTCM STAGE PRESSURE (ATM)
EGPAR(11,NE) = TEMPERATURE TOLLERANCE (DEFALLT = 0.01)
EGPAR(11,NE) = TEMPERATURE TOLLERANCE (DEFALLT = 0.01)
EjPar(12,NE) = FLCiN TCLLERANCE (DEFAULT = 0.0005)
```

EjPar(12,NE) = FLCiN TCLLERANCE (DEFAULT = 0.0005)

```
```

C
IF (LDBUG GE. 1) WRITE (6,9999)
9999 FURMAT(**,30X,*SUBROUTINE ECTL*)
IF (LDBUG -GE. 1) THEN
WRITE (NPRT,4)
FORMAT (/' PARAMETERS IN SUB. ECTL ARE:*/)
WRITE (NPRT,\#) (C(J),J=1,12)
WRITE (NPRT,\#) (ALPHA(J),J=1,6)
END IF
ICK=0
KNT=0
ERATE=0
BRATE=0
ISW=0
SUM1 =0.0
SUM2=0.0
ERATE=SIMDLE(1)
IF (EQPAR(24,NE) .EE. 0.0) THEN
DO 15 I=2,NIN
BRATE=BRATE+SIMCLE(I)
ELSE
KUNITS=EGPAR(25,NE)+0.1
IF (KUNITS.EQ. O) GO TO 17
EQPAF(24,NE)=EQPAR(24,NE)\#453.59
BRATE=EGPAR(24,NE)
END IF
DJ 20 I=1,NCCOMP
20 XE(I)=0.0
DO 23I=1,NCCOMF

```
```

 23 XE(I)=SICOMP(I,1)/ERATE
 ERSV=G.9#ERATE
 FXNSV=X8(2)
 c
c loop starts here
C
25 SIMOLE(1)=ERATE
DO 30 I=1,NDCOMP
XF(I)=0.0
30 COMIN(I)=0.0
DC 50 I=1,NCCOMP
SICGMP(I,1)=XE(I)%SIMCLE(1)
DC 50 J=1,NIN
50 COMIN(I)=CCMIN(I)+SICOMP(I,J)
UPDATING ENTHALfY CF INCOMING ENTRAINER STREAM VIA ADBF
NSAVE=NGUT
ESAVE=EQPAR(2,NE)
NOUT=1
Save dutput stream * 1
DO 100 I=3,12
100 SOC(I)=SODUM(1,I)
DO 110 I=1,NOCOMP
110 SEC(I)=SOCCMP(I,1)
ENTHALPY CALCULATION VIA ISOTHERMAL FLASH
EQPAR(2,NE)=8.0
CALL ADBF
RESTORING VALUES
NOUT=NSAVE
EQPAR(2,NE)=ESAVE
DC 120 I=3,12
SICum(1,I)=S\operatorname{SOUM}(1,I)
120 SUCuM(1,I)=SOJ(I)
DC 130 I=1,NOCCMP
130\operatorname{SUCOMP}(I,1)=SOC(I)
F员ATE=0.0
DO 140 J=1,NIN
140 FEATE=FRATE+SIMOLE(J)
C
DC 150 I=1,NOCCMP
150 XF(I)=CCMIN(I)/FRATE
dRATE=F\tilde{FATE-BRATE}
C
155 CONTINUE
SUM1=0.0
SUN2=0.0
Sum 3=0.0
DO 160 I=1,NOCCMP
SUM1=SUN1 1+XF(I)
SUMZ=SUM2+XD(I)
SUM3=SUN3+XB(I)
160 CONTINUE
DC 170 I=1,NOCDMP
XF(I)=XF(I)/SUN1
XD(I) =XD(I)/SUM2
XE(I)=XE(I)/SUM3
170 continue
C
IF (LDEUG -GEP 1) THEN

```
```

 WRITE (NFRT,##) (XF(J),J=1,NDCOMP),(XD(J),J=1,NOCOMP),
 (XB(J),J=1,NOCOMP)
 WRITE (NPRT,*)
 WRITE (NPRT,250) FRATE, ERATE, DRATE, BRATE
 250 FORMAT (* CHECK IN ECTL: FRATE/ ERATE/ DRATE/ BARTE */
 # 4E16.5)
 END IF
 C
250 IF (FRATE-DRATE) 300,300,350
300 WRITE (NPRT,310)
310 FORMAT ('OPROGRAM STOPPEO IN ECTL: OISTILLATE RATE TOU HIGH. *)
CALL EXIT
RETURN
C
350 IF (EGPAR(21,NE)) 400,420,400
400 EGPAR(18,NE)=0.0
EQPAR(19,NE)=DRATE
GO TO 500
420 EQPAF(18,NE)=DRATE\#EQPAR(23,NE)
EQPAR(19,NE)=DRATE%(1.0-EQPAR(23,NE))
500 IF (LDBUG -GE. 1) THEN
WRITE (NPRT,550) EQPAR(18,NE),EQPAR(19,NE)
WRITE (NPRT;\#)
END IF
550 FORMAT (/^ SUB DSPT: DESTV = *,E13.5,* \& DESTL = *,E13.5)
C
KLNITS=EQPAR(25,NE)+0.1
IF (KUNITS .EE. O) GO TC 575
EGPAR (18,NE)=EQPAR(18,NE)/453.59
EQPAR (19,NE)=EGPAR(19,NE)/453.59
575 CONTINUE
C
C IF (KNT -GT. O) CALL ZCIST
WRITE (NDRT,578)
578 FORMAT (* SUB ECTL STMT*578: RETURNED FROM OIST*)
C
C
C SCCOMP(I,2)
SCOMP(I,2)
600 XBT(I)=SOCCMP(I,2)/SOMDLE(2)
IF (XBT(1) .GE. XESET(1) .AND.
* XBT(2).LE. XBSET(2).AND.
* XBT(3) .LE. XGSET(3)) GOTD 700
IF (XBT(1) \<: XBSET(1)) THEN
IF (XET(3) -GT. XBSET(3)) ICK=1
IF (X8T(3) -GT.C.O2) ICK=10
IF (XBT(3) .GT. 0.04) IOK=11
IF (XBT(3) .GT. 0.10) ICK=12
ENC IF
C
IF (IEK .NE. O) GO TO 605
IF (XET(1) •LT. XBSET(1) .AND.
* XBT(2) -GT. XBSET(2)) IOK=2
IF (IGK .NE. O) GO TO 605
IF (XBT(1) .LT. XBSET(1) .AND.
* XST(2) -GT. XBSET(2) .AND.
* XET(3) .LT. XASET(3)) ICK=3

```

    \(\operatorname{EQPAR}(1, N E)=B L O C K / N O D E *\)
    EQPAR \((2, N E)=3\)
    \(\operatorname{EQPAR}(3, N E)=3 \operatorname{EMPTY}\)
    \(\operatorname{EQPAR}(4, N E)=3\)
    \(\operatorname{EQPAR}(5, N E)=R E F E R E N C E\) STREAM 1
    EQPAR (6,NE) = REFERENCE STREAM 2
    EQPAR (T,NE) = REFERENCE STREAM 3
    EQPAR (8,NE) = REFERENCE STREAM \# 4
    EQPAR(9,NE) = REFERENCE COMPONENT \# 1
    EQPAR (10,NE) = REFERENCE CDMPONENT 2
    EQPAR (11:NE) = REFERENCE CCMPINENT * 3
    EQPAR (12,NE) = REFERENCE CQMPINENT \# 4
    \(E Q P A R(13, N E) T O E Q P A R(25, N E)=0.0\)
    LOAD THE DUTPUT STREAM WITH THE INPUT STREAM
    DO LOCP ON SODUM=SIEUM
    OO \(30 \mathrm{I}=1\), NCCOMP
    \(X F(I)=0.0\)
    \(D R(I)=0.0\)
    \(30 \operatorname{COMIN}(I)=0.0\)
        ITAGI=0
    IF (EQPAR (9,NE) .LT. 0.0) ITAGI=1
    DO 50 I \(x 1\),NOCOMP
    \(0050 \mathrm{~J}=1, \mathrm{NIN}\)
    COMIN(I) =COMIN(I)+SICOMP(I,J)
\(50 \operatorname{SOCOMP}(I, J)=\operatorname{SICOMP}(I, J)\)
    DO \(60 \mathrm{~J}=3,12\)
    DU \(60 \quad I=1, N I N\)
\(60 \operatorname{SCCUM}(I, J)=\operatorname{SIDUM}(I, J)\)
    DO \(70 \mathrm{I}=1,4\)
    IF (EQPAR(I+4,NE) -NE. O.O) THEN
        \(\operatorname{ISTRM}(i)=S I G N(A B S(E Q P A R(I+4, N E))+0.1, E Q P G R(I+4, N E))\)
        END IF
70 CONTINUE
    DO \(80 \quad I=1,4\)
\(80 \operatorname{ICOMP}(I)=E G P A R(I+8, N E)+0.1\)
    COMPUTE BTMS RATE OF 1 AND 2 BY ESTABLISHING MASS
    BALANCE BASED UFON THE REFERENCE STREAMS
    BI=SUM OF INPUT STREAM RATES
    B2=SUM CF GUTPUT STREAM RATES
    B1 \(=0\)
    \(B 2=0\)
    DO \(85 \quad I=1,4\)
    \(J 1=I \operatorname{COMP}(1)\)
    \(\mathrm{J} 2=I C O M P(2)\)
    IF (ISTRM(I) -GT. O) THEN
        IF (SEXTSV(Ji+3,ISTRM(I)) .GT. 0.0 .AND.
    \% (SEXTSV(J2+3,ISTRM(I)) .GT. 0.0)) THEN
            BI=61+SEXTSV(J1+3,ISTRM(I))
            \(B 2=82+S E X T S V(J 2+3, I S T R M(I))\)
        END IF
    ELSE IF (ISTRM(I) •LT. O) THEN
\(\operatorname{ITEMP}=\operatorname{IABS}(I S T R M(I))\)
IF (SEXTSV(J1+3,ITEMP) -GT. 0.0.AND.
(SEXTSV(J2+3,ITEMP) -GT. 0.0) ) THEN B1=81-SEXTSV(J1+3,ITEMP)
B2=B2-SEXTSV(J2+3,ITEMP)
END IF
END IF
        WRITE (NPRT,90) B1, B2
        90 FORMAT (" SUB RCTL: B1 AND B2 \(=\) - \(2 E 20.8\) )
        ADD1=61
    \(A 002=82\)
C IF (BI .LE. 0.0 ) \(A D C 1=0.0\)
\(C\) IF ( \(B 2\) LLE 0.0 ) \(A D D 2=0.0\)
    \(\operatorname{ITAR}=E \in \operatorname{PAR}(2, N E)+0.1\)
    IF (J1 . NE. 0) SOCCMP(J1,1)=ADD1+COMIN(1)
    IF (J2 . NE. 0) SOCOMP(J2,1)=ADO2+COMIN(2)
    IF \((\operatorname{SOCCMP}(1,1) \quad . L T .0 .0) \operatorname{SOCOMP}(1,1)=0.0\)
    \(\operatorname{IF} \operatorname{CSCCMP}(2,1) \quad . L T, 0.0) \operatorname{SOCOMP}(2,1)=0.0\)
    THIS IS for the 1 St entry in rctl because
    SEXTSV array is CLEAN If the reference streams are
    not yet processed for a single time.
    IF (ITAG1.EQ. 1) GO TO 200
    \(S U M=0.0\)
    DO \(100 \mathrm{I}=1\), NOCOMP
    SUM \(=\operatorname{SUM}+\operatorname{SOCCMP}(I, 1)\)
    \(100 \operatorname{SICOMP}(1,1)=\operatorname{SOCOMP}(1,1)\)
    SCMOLE (1) = SUM
    120 SIMCLE(1)=SOMOLE(1)
c
    200 IF (LOBUG .GE. 1) THEN
        WRITE (NPRT,*)
        WRITE (NPRT,250) 81, B2
        250 FORMAT ( \({ }^{(C S U B}\) RCTL STMT*250: B1 AND B2 \(=\cdot, 2 E 16.5\) )
        END IF
c
700 RETURN
        ENC
    subrolitine sbox
    SBEX BLECK CAN BE USED AS A DUMMY OISTILLATION COLUMN.
    THE SPLIT IS COMPUTED AND THE STREAM CONDITIONS ARE
    ESTABLIJHED VIA ADEF BLOCK. SBOX bLOCK TAPS THE VALUES
    from the reference streams [ + ve for incoming e - ve
    FOR DUTGOING STREAMSJ AND MAKE NEW ESTIMATE OF COMPONENTIAL
    rate of the output stream. target stream is read thru egpar
    VECTOK.
    NIN (INPUT) ane nout (CUTPUT) Streams allowed
    COMMON /BLANK/ NCR, NPRT, KEEPIT(22)
    COMMON /EMPRO/ NK, NCMI, NCPI, IDLL, IDLV, IDH, LOBUG, ISW,
        \#
    COMMON /CONTL/ NIN,NCUT,NOCOMP,NE,NEN,KUNITS
    COMMON /SYSC/ LA,LB,LC,LCOP,LOOPS
    COMMON /SYSD/ KEFLAG(50),KSFLAG(100),KTRACE,DERROR,NFFREG,
\begin{tabular}{|c|c|c|}
\hline * & & IPUNCH \\
\hline COMMON & /EQPA/ & EQPAR 25,50\()\), NEMAX, MAXEOP \\
\hline COMMEN & /STMA/ & SEXTSV(13,100), SINTSV(11,100), NSMAX, MAXSEX,MAXSIN \\
\hline COMMDN & /STRMIN/ & SINUM(4),SIFLAG(4),SIVPFR(4),SITEMP(4), SIPRES(4), \\
\hline \# & & SIENTH(4), SIVISC(4), SITHK(4),SIZ(4),SIS(4), \\
\hline * & & SIFRAL (4), SIMOLE (4),SICOMP (10,4), SIKV(10,4) \\
\hline COMMDN & /STMOUT/ & SONUM(4), SOFLAG(4), SOVPFR(4), SETEMP(4), SOPRES(4), \\
\hline \# & & SOENTH(4), SOVISC(4), SOTHK(4), SCZ (4), SOS(4), \\
\hline * & & SOFRAL (4), SOMOLE (4),SOCOMP (10,4), SORV(10,4) \\
\hline REAL & & \(\operatorname{SIUUM}(4,12), \operatorname{SOJUM}(4,12), \operatorname{CCMIN}(10), \mathrm{DR}(10), X F(10)\) \\
\hline REAL & & SIC(12), SID(12), SODI(12), SOC1(12) \\
\hline INTEGER & & ISAVE(10), ISTRM(4), ICOMP (4) \\
\hline EQUIVALEN & NCE & (SIDUM(1,1),SINUM(1)), (SDOLM \((1,1), \operatorname{SDNUM}(1))\) \\
\hline
\end{tabular}
\(\operatorname{EQPAR}(1, N E)=B L O C K / N O D E *\)
\(\operatorname{EQPAR}(2, N E)=3\)
\(\operatorname{EGPAR}(3, N E)=\operatorname{HEAT}\) (OUT-IN) STORED
EQPAR(4,NE) \(=\) * WHICH GOES IN SUMCLE(\%)
(DEFAULT TARGET STREAM SOCOMD(I,2))
\(\operatorname{EQPAR}(5, N E)=\operatorname{REFERENCE} \operatorname{STREAM}: 1\)
\(\operatorname{EQPAR}(6, N E)=\operatorname{REFERENCE}\) STREAM \# 2
EQPAR (7,NE) = REFERENCE STREAM 3
EQPAR \(8, \mathrm{NE})=\) REFERENCE STREAM \# 4
EQPAR (9,NE) = REFERENCE COMPONENT * 1
\(\operatorname{EQFAR}(10, N E)=\) REFERENCE COMPONENT * 2
EQPAR(11,NE) = REFERENCE CCMPONENT 3
\(\operatorname{EQPAR}(12, N E)=\) REFERENCE COMPDNENT * 4
\(\operatorname{EQPAR}(13, N E)=\) OISTILLATE TEMPERATURE
EGFAR(14,NE) = CISTILLATE PRESSLRE
EQPAR (15, NE) \(=\) CISTILLATE VAPOR FRACTION
EQFAR (16,NE) \(=\) EOTTCMS TEMPERATURE
EQPAR(17,NE) = BOTTCMS PRESSURE
\(E Q P A R(18, N E) T O E Q P A R(25, N E)=0.0\)
LCAD THE QUTPUT STREAM WITH THE INPUT STREAM
DO LOOP ON SCDUM=SIUUM

KUNITS=EQPAR \((25, N E)+0.1\)
IF (KUNITS .EG. 0) GO TC 10
\(\operatorname{EQPAR}(13, N E)=(E Q P A R(13, N E)-32.0) / 1.8+273.16\)
\(\operatorname{EQPAR}(14, N E)=E Q P A R(14, N E) / 14.696\)
\(\operatorname{EQFAR}(16, N E)=(E \operatorname{APAR}(16, N E)-32.0) / 1.8+273.16\)
\(\operatorname{EQPAR}(17, N E)=E \operatorname{APAR}(17, N E) / 14.696\)
EAFAR (25,NE)=0.0
10 CONTINUE
DO \(30 I=1\),NCCOMP
30 COMIN(I) \(=0.0\)
ITAGI=0
IF (EGPAR(9,NE) .LT. O.O) ITAGI=1
OO \(50 I=1\), NCCOMF
DO \(50 \mathrm{~J}=1, \mathrm{NIN}\)
\(50 \operatorname{COMIN}(I)=\operatorname{CCMIN}(I)+S I C O M P(I, J)\)
DO \(70 \mathrm{I}=1,4\)
IF (EGPAR(I + 4, NE) .NE. 0.0) THEN
ISTRM(I) \(=\operatorname{SIGN}(\operatorname{ABS}(E G P A R(I+4, N E))+0.1, E Q P A R(I+4, N E))\)

\section*{END IF}

70 CONTINUE
DO 80 I=1,4
\(80 \operatorname{ICOMP}(I)=E G P A R(I+8, N E)+0.1\)
COMPUTE BTMS RATE OF 1 AND 2 BY ESTABLISHING MASS
BALANCE BASED UPON THE REFERENCE STREAMS
BI=SUM GF INPUT STREAM RATES
B2=SUM UF OUTPUT STREAM RATES
\(B 1=0\)
B2 \(=0\)
DC \(85 \mathrm{I}=1,4\)
\(J 1=I C O M P(1)\)
J2=ICCMP(2)
IF (ISTRM(I) -GT. 0) THEN
IF (SEXTSV(J1+3,ISTRM(I)) .GT. 0.0 .AND.
\(\%\) (SEXTSV(J2+3,ISTRM(I)) .GT. 0.0) ) THEN B1=51+SEXTSV(J1+3,ISTRM(I)) \(82=32+S E X T S V(J 2+3, I S T K M(I))\)
END IF
ELSE IF (ISTRM(I) •LT. O) THEN ITEMP=IABS(ISTRM(I)) IF (SEXTSV(JI+3,ITEMP) .GT. 0.0.AND. (SEXTSY(J2+3,ITEMP) •GT. 0.0) ) THEN B1=B1-SEXTSV(J1+3,ITEMP) B2=32-SEXTSV(J2+3,ITEMP) END IF
END IF
85 CONTINUE
WRITE (NPRT,90) B1, B2
90 FORMAT (* SUB SBOX: B1 AND B2 = \({ }^{\circ} 2 E 20.8\) )
ADO1=B1
\(A D O 2=82\)
IF (B1 .LE. 0.0 ) ADD1=0.0
IF (B2.LE. 0.0) ADC2=0.0
DEFAULT TARGET STREAM
IF (ITAG1 ©EQ. 1) GO TO 200
\(I T A R=E Q P A R(4, N E)+0.1\)
IF (ITAK EEG. O) ITAR=2
DO \(95 \mathrm{~J}=1, \mathrm{NIN}\)
SOMRLE (J) \(=0.0\)
DO \(95 I=1\), NCCOMP
\(95 \operatorname{SOCOMP}(I, J)=0.0\)
IF (JI .NE. 0) SOCOMP(JI,ITAR)=ADD1
IF (J2.NE. O) SDCOMP(J2,ITAR) =ADO2
DO \(98 \mathrm{I}=1\), NOCOMP
IF (I .EQ. JI .OR. I •EG. J2) GO TO 9R
\(\operatorname{SOCCMP}(I, I)=\operatorname{COMIN}(I)\)
98 CONTINUE
\(C\)
SUM \(=0.0\)
\(\operatorname{SUM} 1=0.0\)
DO \(100 \mathrm{I}=1\), NOCOMP
SUM \(1=\) SUM \(1+\) SOCDMP (I,ITAR)
\(\operatorname{SOCOMP}(I, 1)=\operatorname{COMIN}(I)-S O C O M P(I, I T A R)\)
IF (SDCOMP(I,1).LT. 0.0)SOCOMP(I,1)=0.0
\(100 \operatorname{SUM}=\operatorname{SUM}+\operatorname{SOCOMP}(I, 1)\)
SOMCLE(ITAR) =SUN1
            SOMOLE(1) 5 SUM
    C IF (LDBUG -GE. O) THEN
        WRITE (NPRT, 105 ) (SOMOLE (J), (SOCOMP(I,J), I=1, NOCCMP),
            * J=1,NIN)
    105 FORMAT ( \({ }^{\circ}\) SUB SBOX STMT: 105: SOMOLE/ SOCOMP ARE \(/\)
        * \(10((4 G 18.5) 1))\)
\(C\)
    END IF
    DO \(130 \quad \mathrm{I}=1\), NIN
    IF (SOMCLE (I) -LT. 0.0) THEN
        WRITE (NPRT,110) I, SCMOLE(I)
    110 FORMAT ( SUE S8CX: NEGATIVE FLOWS, I/ SOMOLEARE ,
        * I3,2X,G13.5)
        CALL EXIT
    END IF
    130 CONTINUE
C
C THE OUT GOING STREAMS ARE ESTABLISHED BY
C COMPUTING BUBBLE/DEW POINT TEMPERATURE
C ENTHALPIES
C 1-DISTILLATE (VAPCR)
C 2 - BOTTOMS
C
    NSAVE=NOUT
    NSAVEI=NIN
    ESAVE=EQPAR (2,NE)
    NIN=1
    NOUT \(=1\)
C SAVE INPUT STREAM: 1 and mDVE cutput stream 1
C INTO INPUT STREAM \(\% 1\)
    DC \(150 \quad I=3,12\)
    SIC(I) = SIDUM(1,I)
    \(150 \operatorname{SIDUM}(1, I)=\operatorname{SODUM}(1, I)\)
    DU \(155 \mathrm{I}=1\), NOCOMP
    \(\operatorname{SIC}(I)=S I C C M P(I, 1)\)
    \(155 \operatorname{SICOMP}(I, 1)=\operatorname{SOCOMP}(I, 1)\)
        \(\operatorname{SITEMP}(1)=E G P A R(13, N E)\)
        SIPRES(1)=EGPAR(14,NE)
        \(\operatorname{SIVPFR}(1)=E G P A R(15, N E)\)
C DEW POINT AND ENTHALPY CALCULATION
        \(\operatorname{EQPAR}(2, N 5)=1.0\)
        CALL ADEF
C
C SAVE QUTPUT STREAM 1 AND MOVE OUTPUT STREAM 2
C INTO INPUT STREAM \# 1
    DO \(260 \quad I=3,12\)
    \(160 \operatorname{SCD} 1(I)=\operatorname{SODUM}(1, I)\)
        DO \(165 I=1\), NOCCMP
    \(165 \operatorname{SCCI}(I)=\operatorname{SOCGMP}(I, I)\)
        SECOND STREAM
        DO \(170 \mathrm{I}=3,12\)
    \(170 \operatorname{SIDUM}(1, I)=\operatorname{SODUM}(2, I)\)
        DO \(175 \mathrm{I}=1\), NOCOMP
    \(175 \operatorname{SICCMP}(I, 1)=\operatorname{SOCCMP}(I, 2)\)
        \(\operatorname{SITEMP}(1)=E \in P A R(16, N E)\)
        SIPRES(1) =EQPAR(17,NE)
        \(\operatorname{SIVPFR}(1)=0.0\)
C BUBBLE POINT ANC ENTHALPY
    \(\operatorname{EQPAR}(2, N E)=2.0\)
    CALL ACEF
    restcre the saved values
```

 EQPAR(2,NE)=ESAVE
 NOUT=NSAVE
 NIN=NSAVEI
 C RESTORE INPUT STREAM * 1
DO 180 I=3,12
180 SIDUM(1,I)=SID(I)
DO 185 I=1,NOCOMP
185 SICCMP(I,1)=SIC(I)
C
DO 190 I= 3,12
SOCUM(2,I)=SDOUM(1,I)
190 SOCUM(1,I)=SOD1(I)
SUM=0.0
DO 195 I=1,NOCOMP
SOCOMP(I,亡)=SOCOMP(I,I)
SUM=SUM+SECCMP(I,2)
195 SOCOMP(I,1)=SOC1(I)
SCMOLE(Z)=SUM
SUM=0.0
OD 197 I=1,NIN
197 SUM=SUM+SOENTH(I)+SIENTH(I)
STORING HEAT EALANCE
EQPAR(3,NE)=SUM
THIS IS FOR THE 1 ST ENTRY IN SBOX BECAUSE
SEXTSV ARRAY IS CLEAN IF THE REFERENCE STREAMS ARE
NOT YET PRCCESSED FUR A SINGLE TIME.
200 CONTINUE
IF (LDBUG .GE. O) THEN
OO 230 I=1,NIN
WRITE (NPRT,240) I, SOMCLE(I)
FORMAT (* SUZ SECX STMT*240: SOMCLE(*,I2,*) =',G15.5)
WRITE (NPRT,\#)
WRITE (NFRT,245) EQPAR(3,NE)\#3.96887E-6, SUM
245 FORMAT (* HEAT EALANCE IN (K \&TU) =*,G15.5/
* * HEAT BALANCE IN (CAL) =`,G15.5)
WRITE (NPRT,250) 51, E2
250 FORMAT (* SUZ SEEX STMT*250: E1 AND 82=*,2E16.5)
END IF
C
700 RETURN
END
SUBROUTINE SMIX
SPECIAL MIXER: THIS BLOCK MIXES INPUT STREANS AND
PERFDRM TWC LIGUIO FHASE CALCULATIONS TO ESTABLISH
TWC OUTPUT STREAMS WHICH ARE IN EQUILIBRIUM. THE
HEAT AOCED/REMOVED IS SAVED IN EQPAR(4,NE).
COMMDN /BLANK/ NCR, NPRT, KEEPIT(22)
COMMON /CONTL/ NIN,NOUT,NOCOMP,NE,NEN,KUNITS
COMMON /CMPRO/ NK, NCM1, NCP1, IDLL, IDLV, IDH, LDBUG, ISW
\&
COMMON
/SYSB/ KRET(66),KCNT,KDUM(4),IRCMAN(56)
COMMON /SYSC/ LA,LB,LC,LOOP,LOCPS
COMMON /SYSD/ KEFLAG(50),KSFLAG(100),KTRACE,EERROR,NPFREG,
\#
COMMON
COMMON/STKMIN/ SINUM(4),SIFLAG(4),SIVPFR(4),SITEMP(4),SIPRES(4),
\&
IPUNCH
ECPAR(25,50),NEMAX,MAXEQP
SIENTH(4),SIVISC(4),SITHK(4),SIZ(4),SIS(4),

```


2 SMALL=SIPRES(I)
\(J=I+1\)
IF (J.GT.NIN) GO TO 4
DO 3 I=J,NIN
IF (SIPRES(I).LT.SMALL.AND.SIMOLE(I).GT.O.) SMALL=SIPRES(I)
SOPRES(1)=SMALL
\(\operatorname{SOENTH}(1)=0\).
SOMOLE(1)=0.
DO 5 J=1,NOCOMP
\(\operatorname{SOCOMP}(J, 1)=0\).
DO \(6 I=1, N I N\)
SOENTH(1)=SCENTH(1)+SIENTH(I)
SOMOLE(1)=SCMOLE(1)+SIMCLE(I)
DO \(6 \mathrm{~J}=1\), NCCOMP
\(\operatorname{SCCCMP}(J, 1)=\operatorname{SOCOMP}(J, 1)+\operatorname{SiCOMP}(J, I)\)
IF (SOTEMP(1).EG.O.) SOTEMP(1)=273.16
DO \(12 \mathrm{I}=3,12\)
\(\operatorname{SID}(I)=S I D U M(1, I)\)
\(12 \operatorname{SICUM}(1, I)=\operatorname{SODUM}(1, I)\)
DO \(13 \mathrm{I}=1\),NCCOMP
\(\operatorname{SIC}(I)=\operatorname{SICOMP}(I, 1)\)
\(13 \operatorname{SICOMP}(1,1)=\operatorname{SOCOMP}(I, 1)\)
\(c\)
SVNOUT=NOUT
DO 17 I=1,NCUT
SOPRES(I)=P
\(17 \operatorname{SOTEMP}(I)=T\)
c
HOFZ=SIENTH(1)/SIMCLE(1)
FRACV =SIVPFR(1)
FRACL=SIFRAL(1)
DO \(19 \mathrm{I}=1\), NCCOMP
\(19 \operatorname{FEED}(\mathrm{I})=\operatorname{SICCMP}(\mathrm{I}, 1)\)
C
IF (LOBUG -GE. O) THEN
WRITE (NPRT,21) WRITE (NPRT,*) FRACV,FRACL,T,P,HOFZ,(FEED(J),J=1,NOCOMD)
21 FORMAT (/' SUB SMIX AT FTN:21: FRACV/ FRACL / T/P / * HOFZ / FEED / / )

END IF
c
Call anyone (mode)
c
IF (LDBLG -GE. 0) THEN WRITE (NPRT,25) WRITE (NPRT,*) FRACV,FRACL,T,P,HOFZ,(FEED(J),J=1,NOCOMP) 25 FORMAT C/O SUE SMIXAT FTNA25: FRACV/FRACL/T/P \(/\) * HOFZ/FEED/ノ/) ENC IF

NOUT \(=2\) \& MOCES>13: OUTPUT STREAM (1) VAPOR \& (2) \(1 / 2\) LIGUID NOUT=2 \& MOEE=13 : CUTPLT STREAMS ARE DNLY LIGUID (1) LIGHT PHASE (2) heavy phase

If (NOUT .EG. 2) THEN
IF (MDDE .EG. 13) THEN \(\operatorname{SOVPFR}(1)=0.0\)
```

 SOVPFR(2)=0.0
 SGFRAL(1)=1.0
 SOFRAL(2)=1.0
 SOMCLE(1)=SIMCLE(1)*FRACL
 SOMOLE(2)=SIMCLE(1)*(1.0-FRACL)
 SCENTH(1)=HREALL(1)#SOMOLE(1)
 SOENTH(2)=HREALL(2)#SOMOLE(2)
 DO 38 I=1,NOCEMP
 SOCOMP(I,1)=X1(I)#SOMOLE(1)
 SOCOMP(I,2)=X2(I)#SCMELE(2)
 GO TO 200
 ELSE
 SCVPFR(1)=1.0
 SOVPFR(2)=0.0
 SCFRAL(1) =0.0
 SOFRAL(2)=FRACL
 SCMCLE(1)=SIMCLEE(1)*FRACV
 SCMELE(2)=SIMCLE(1)#(1.0-FRACV)
 SCENTH(1)=HVAP*SCMOLE(1)
 SCENTH(2)=(HREALL(1)*FRACL+HREALL(2)*(1.0-FRACL))*SOMCLE(2)
 SCZ(1)=ZVAP
 DO 40 I=1,NOCCMP
 SOCOMP(I,1)=Y(I)#SOMCLE(1)
 SCCOMP(I,2)=(X1(I)*FRACL+X2(I)#(1.0-FRACL))*SOMOLE(2)
 GC TG 200
 END IF
 END IF
 C
 200 CONTINUE
 00 202 I=3,12
 202 SIDUM(1,I)=SID(I)
 CO 203 I=1,NOCOMP
 203 SICOMP(I,1)=SIC(I)
 C
 SuM1=0.0
 SUM2=0.0
 00 207 I=1,NIN
 207 SLM1=SUM1+SIENTH(I)
 DO 208 I=1,NDUT
 20S SUM2=SUM2+SCENTM(I)
 EQPAR(4,NE)=SUM1-SUM2
 C
 NOUT=SVNOUT
 IF (LDBUG -GE. O) ThEN
 WRITE (NPRT,209)
 WRITE (NPRT,*) (SOMCLE(I),(SOCOMP(J,I),J=1,NCCOMP),I=1,NOUT)
 209 FORMAT (/` SUB SMIX AT FTN*209: SOMOLE/ SOCCMP /;,
 * 4E15.5/4E15.5)
 END IF
 IF (KTRACE..LT. 2) GO TO 250
 HRITE (NPRT,210)
 210 FORMAT (-O SUB SMIX AT STM&210 : NTYPE/ NOLT / FRACV / FRACL/O)
 WRITE (NPRT,*) MODE, NOUT, FRACV, FRACL
 C
250 RETURN
ENC

```
\begin{tabular}{|c|c|}
\hline COMMON CEMMON & \begin{tabular}{l}
/3LANK/ \\
/CMPRJ/
\end{tabular} \\
\hline \multicolumn{2}{|l|}{*} \\
\hline COMMON & /EDATA/ \\
\hline \multicolumn{2}{|l|}{\#} \\
\hline \multicolumn{2}{|l|}{*} \\
\hline \multicolumn{2}{|l|}{\#} \\
\hline \multicolumn{2}{|l|}{*} \\
\hline \multicolumn{2}{|l|}{\#} \\
\hline \multicolumn{2}{|l|}{ㅎ} \\
\hline COMMON & /STRM/ \\
\hline \multicolumn{2}{|l|}{*} \\
\hline \multicolumn{2}{|l|}{*} \\
\hline COMMON COMMON & \[
\begin{aligned}
& \text { /CONTRL/ } \\
& \text { /TWOLQ/ }
\end{aligned}
\] \\
\hline \multicolumn{2}{|l|}{+} \\
\hline \multicolumn{2}{|l|}{+} \\
\hline COMMON & /ZFEEOZ/ \\
\hline COMMON & /DUMMY/ \\
\hline \(+\) & \\
\hline
\end{tabular}

OIMENSICN
REAL
EquIVALENCE

DATA
DATA

NCR, NPRT, NSTART, KUNITS, TITLE(20)
NC, NCM1, NCP1, ICLL, IDLV, IDH, LDSUG, ISW, NDIM, ZNAME(2,10), L(10), NTCOMP(IO), NLIQ, IPSET CPL(10,4), CPV(10,4), ENP(10,10), ANT(ć,10), W(10), AX, BX, OMEGA(10), AYAL(10), BVAL(10), \(\operatorname{AK}(10,10)=R(10), \theta(10), Q P(10), X L(10)\), VOL(10), C(180), ALDHA(45), VC(10), TC(10), \(P C(10), Z C(10), T N B P(10), C A(1 C), ~ Q R(10)\), \(A(10,10), G(10,10), 2 R A(10), \operatorname{RE}(10), ~ D M U(10)\). ETA(10)
T, P, Z(10), Y(10), X(10), FRACV, ZVAP, EK(10), VP(10), FUG(10), GAM(10), SVAP, HOFZ, HVAP, HLIQ, DHV, XSH, NOEUE, NODEW ITF, IPF, N, NTYPE, JCDDE X1(10), X2(10), GAM1(10), GAM2(10), EK1(10), EK2(10), DHL(2), HIDLL(2), HREALL(2), FRACL, IE, IR, XMAX, XMIN
PF, TF, FEED(10), FMCL, TREF, HI \(X X(10,2), S X(10,2), X C(10,2), Y Y(10), S Y(10)\), YC(10), RMAX, RMIN DEwC(10), BUBC(10), IJK(7), HLICD(2) FD(11), BUBVAP(10), EEWLIQ(10) (FEED(1),FD(1))

DOLLAR / \({ }^{\circ} \$ \$^{\circ} /\)

CALL ERRSET (73.,TRUE.,.TRUE.,.FALSE.,.FALSE.,999)
CALL ERKSET (74,.TRUE.,.TRUE.,.FALSE...FALSE.,999)
10 DO 5 II=1,10
\(Y(I I)=0.0\)
\(Y Y(I I)=0.0\)
\(X I(I I)=0.0\)
\(X 2(I I)=0.0\)
\(X X(I I, I)=0.0\)
\(X X(I I, 2)=0.0\)
EKI(II) \(=1.0\)
\(E K 2(I I)=1.0\)
\(F \cup G(I I)=1.0\)
GAMI (II) \(=1.0\)
GAM2(II) \(=1.0\)
5 CONTINUE
KUNITS=1
\(N C R=5\)
NPRT=6
reac in the main title
READ (NCR,1Ó,END=15CO,ERR=7) TITLE
WRITE (NPRT,17) TITLE
```

C
7 CALL START (IDATA,MFEEDS,MCASES,\&1500)
C
C
C
C
C
C
C
C
C
C
C
C
C
C
JCODE CASE CALCULATION COOE
O USE THE USER INTERACTIVE MCDE
1 SYPASS THE USER INTERACTIVE MDDE
IE COMPONENT : E-PHASE RICH IN THAT COMPONENT
IR COMPONENT : R-PHASE RICH IN THAT COMPONENT
XMAX X TO INITIALIZEXE(IE) \& XR(IR) IN INTLIZ
XMIN X TO INITIALIZEXE(IR) \& XR(IE) IN INTLIZ
READ (NCR,\#) JCJDE, IE, IR, XMAX, XMIN
WRITE (NPRT,8) JCODE, IE, IR, XMAX, XMIN
8 FIRMAT ('ODEFINED CODES AND VALUES:*//
\# 5X, 'JCODE =`, 123// # 5X, 'E-PHASE RICH IN =``, II3// * 5X, 'R-PHASE RICH IN =`, 113//
\# 5X, 'E-PHASE: MAIN COMP X =`` F6.3//
* 5X, "R-PHASE: MAIN COMP X =`, FG.3//)
C
IF (NLIQ -EG. O) NLIQ=1
NLIOSV=NLIO
IF (IDATA.NE.O) GO TO 11
CALL CDATA
WRITE (NPKT, 9)
9 FORMAT ('OGENERALIZED NONIDEAL FLASH (I/2 LIQ) PROGRAM*)
GD TD 665
ACCESS DATA RETREVIAL PRJGRAMS
11 WRITE (NPRT,8)
CALL ZPVT
CALL ZNRTL
WRITE (NPRT,13)
13 FORMAT (*OCEMPONENTS USED ARE:*/

```

```

 WRITE (NPRT,14) (J,(ZNAME(K,J),K=1,2),NTCOMP(J),J=1,NC)
 14 FCRMAT (I3,2X,2A4,4X,I3)
    ```

```

 15 READ (NCR,16,END=1500,ERR=7) TITLE
 16 FORMAT (2OA4)
 IF (TITLE(1) EEG. DOLLAR) GO TO 10
 WRITE (NPRT,17) TITLE
 17 FORMAT (*1*,20A4)
READ (NCR,%, END=1500,ERR=1500) PF,TF,FRACV,HRUN,NTYPE
PRES=PF
C
HVAP=0.0

```
```

 HLIQ=0.0
 DHV=0.0
 XSH=0.0
 C
20 FORMAT (*U PARAMETERS FOR EEUILIBRIUM CALCULATIGN:*/
\# 5X, 'P, PSIA =', F14.3/
\# 5X, 'T, DEGF=*,F13.2/
\# 5X, 'FRACV = ', F16.5/
\# 5X, 'H, K-BTU ='0, 1PE13.5/
\# 5X, 'NTYPE=`, I16) C C CONVERT PSIA, F, BTU TO ATM, K, CAL (INTERNAL UNITS) PF=FF/14.696 P=PF TF=(TF-32.0)/1.8+273.16 TSAVE=TF HRUN=HRUN*252.16*1.0E3 HOFZ=HRUN INITIAL SETTING OF GAMMA, FUGACITY AND OISTRIEUTION CCEFF. EASEC UPON THE TYPE OF COMPONENT DO 30 I=1,NC GAM1(I)=1.0 GAM2(I)=1.0 VP(I)=0.0 EKI(I) = 0.0 EK2(I) = 0.0 FUG(I)=0.0 IF (L(I).GT. 0) FUG(I)=1.0 . 30 CONTINUE READ IN LS-MOLES OF COMPONENT FLOWRATES IN THE FEEC READ (NCR,#) (FD(J),J=1,NC) FMOL=0.0 DO 35 J=1,NC 35 FMCL=FMOL+FO(J) DO 40 I=1,NC 40 L(I)=FD(I)/FMCL WRITE (NPRT,80) 80 FORMAT ('OFEED SUMMARY:"/ # * * NAMË`,15X, *MCLS*,9X, 'MOL FRAC")
DO 90 J=1,NC
90 WRITE (NPRT,100) J,(ZNAME(K,J),K=1,2),FD(J),I(J)
100 FORMAT (I3,2X,2A4,F17.4,F15.6)
WRITE (NPRT,110) FMEL
110 FURMAT (* TCTAL*,F24.4)
i
C
CONVERT MCLAR UNITS FROM LB-MOLE TO GM-MOLE
FMCL=FMCL\#453.59
FD(NC+1)=FMCL
HRUN=HRUN/FMOL
TERM=FMCL/252.16/1.OE3
C
C FRACV USED AS SWITCH

```
－1 SUBCOCLED LIQUID
```

 IF (NTYPE.GT.O) GO TO 115
 IF (FRACV .EQ. 2.0) GO TO 1000
 IF (FRACV EQ. -1.0) GO TG 1000
 IF (ABS(FRACV-0.5) .LT. D.001) GOTO 500
 GO TO 500
    ```
    NTYPE CESCRIPTION
            1 DEW POINT TEMPERATURE
            2 BUBBLE POINT TEMPERATURE (1/2 LIG)
                3 ALL VAPCR ENTHALPY WITH PRIOR DEW POINT
                4 ALL LIQUIO ENTHALPY WITH PRIOR BUBBLE PCINT (1/2LIQ)
                5 ALL VAPOR ENTHALPY
                6 ALL LIQUID ENTHALPY ( \(1 / 2\) LIQ)
                7 ISOTHERMAL FLASH (1/2 LIQ)
                    B ISOTHERMAL FLASH ... NO DEW/BUBELE PCINT (1/2 LIE)
                    9 ADIABATIC FLASH (I/2 LIQ)
                10 ADIABATIC FLASH ... NO DEW/BUBBLE POINT (1/2LIE)
                11 DEW POINT PRESSURE
                12 BUBBLE POINT PRESSURE (1/2 LIQUIC)
                13 LIQ - LIQ SEPERATION BELOW BUBGLE POINT (Z LIQ)
    115 IF (NTYPE.GT. 13) GOTO 1000
                            SETTING MIN E MAX VAPOR FRACTION
    RMIN \(=0.0\)
    RMAX \(=1.0\)
    DO119I=1,NC
    IF (L(I)) 116,117,118
    116 RMAX \(=\) RMAX-Z(I)
    GO TO 118
    117 RMIN=RMIN+Z(I)
    118 CONTINUE
\(C\)
\(C\)
\(C\)
\(C\)
    119 IF (L(I)) \(120,130,140\)
    120 NODEW=1
    GOTO 140
    130 NQBUB=1
    140 CONTINUE
    INTIALIZATIUN OF THE RESDECTIVE COMPOSITICNS EF TNC LIEUID PHASES
    IF (NTYPE•EQ. 13) NLIQ=2
    IF (NLIG•NE. 2) GC TO 146
    \(T=T F\)
    CALL INTLIZ
\(c\)
C WRITE (NPRT,145) T, TF, TSAVE
145 FORMAT (• T, TF E TSAVE IN FLASH2 ARE •,3F12.4)
```

C


```
c
c
```



```
    150 WRITE (NPRT,151)
    151 FDRMAT ('1RESULTS OF OEW POINT CALCULATION*)
    IF (NODEW.EG.O) GO TO 170
    WRITE (NPRT,160)
    160 FORMAT ('ONO DEW POINT SINCE NONVOLATILE COMPONENTS ARE PRESENT')
        TDEW=1.0E6
        DO 165 I=1,NC
    165 DEWC(I)=0.0
        IF (NTYPE.EG.3) GO TO 350
        IF (NTYPE.EQ.7) GO TO 220
        IF (NTYPE.EG.9) GO TO 220
        GE TO 665
C
    170 00 180 I=1,NC
    180 Y(I)=Z(I)
        T=TF
C
C 185 FORMAT (' T , TF & TSAVE IN FLASH2 AT STM# 185 ARE 0,3F12.4)
    NHOLD=NLIQ
    NLIQ=1
    CALL DEWTI
    TOEH=T
    TDEG=(TOEW-273.16)*1.8+32.0
    DO 190 I=1,NC
    190 DEWC(I)=x1(I)
    WRITE (NPRT,200) PRES, TDEG
    200 FJRMAT ('ODEW PGINT OF FEED AT',F7.2,* PSIA IS',F7.2,* LEG F')
    WRITE (NPRT,205) ((2NAME(J,I),J=1,2),I=1,NC)
    205 FORMAT (25X,10(2A4,2X))
        WRITE (NPRT,210) (DEWC(I),I=1,NC)
    210 FORMAT (* DEW PT LIE MCLE FRAC*, 2X, 10F10.5)
        CALL PRINT2
        NLIQ=NHCLD
        IF (NTYPE.EG.3) GO TO 320
        IF (NTYPE.EN.7) GO TO 220
        IF (NTYPE.EN.9) GO TO 220
        GE TO 6ES
C
C ### BUBBLE POINT TEMPERATURE DETERMINATION ###
        NTYPE=2, 4, 6, 7 & 9
    220 WRITE (NPRT,221)
    221 FORMAT (////OORESULTS OF BUBSLE POINT (ALCULATION*)
        IF (NOQUB.EG.O) GO TO 240
        WRITE (NPRT,230)
    230 FORMATC'ONC BUSSLE POINT SINCE NONCONDENSIBLE COMPONENTS APE PRESE
        #NT ')
    231TBUB=-459.0
    DO 235 I=1,NC
    235 BUBC(I)=0.0
        IF (NTYPE.EE.4) GO TO 410
        IF (NTYPE.EG.7) GO TO 440
```

```
            IF (NTYPE.EQ.9) GJ TO 440
            GE TO 665
c
    240 IF (NLIG.EQ.2) GO TC 280
    DO <41 I=1,NC
    241 X1(I)=2(I)
        T=TF
        FRACL=1.0
        CALL BUBT1
C
    245 IF (NOBUB.EQ.0) GD TO 255
    WRITE (NPRT,250)
    250 FORMATC'OFEED REPRESENTS A HYPOTHETICAL LIQUID OR IS IN THE RETROG
        +RADE REGION. BUBBLE POINT CALCULATIONS TERMINATED.")
            GO TO 231
C
    255 TBUB=T
    TDEG=(TBUB-273.16)*1.8*32.0
    WRITE (NPRT,260) PRES, TJEG
    260 FORMAT (`OBUZALE PEINT OF FEED AT`,F7.2,' PSIA IS*,F7.2,0 DEG E')
    OU 265 I=1,NC
    265 BuaC(I)=Y(I)
    WRITE (NPRT,205) ((2NAME(J,I),J=1,2),I=1,NC)
    WRITE (NPRT,270) (SUBC(I),I=1,NC)
    270 FDRMAT (* BUS PT VAP MCLE FRAC*, 2X, 10F10.5)
    CALL PRINT2
    IF (NTYPE.EG.4) GO TC 380
    IF (NTYPE.EQ.7) GJ TO 440
    IF (NTYPE.EG.9) GO TC 440
    GO TO 665
    280 CONTINUE
    T=TF
C
C
    iso flash temp tf may not be suitable as intial guess for gletz
    IF (NTYPE .EQ. 7) T=0.98*TF
    FRACL=0.50
    CALL INTLIZ
    CALL BUBT2
    IF (NLIQ.EG.1) GO TO 245
    WRITE (NPRT,285) FRACL
    285 FORMAT ('OTWO LIQ PHASE REGION, LIQUID PHASE MOLE RATIE', FI2.6)
    GC TO 245
C
C
C
    ### ALL VAPJR ENTHALPY WITH PRIOQ DEW POINT ###
        NTYPE=3 & 5
    320 IF (TF .LT. TDEW) GO TO 665
    330 WRITE (NPRT,340)
    340 FORMAT ('OFEED AT CR AGOVE DEW PGINT')
    350 T=TF
    DO 360 I=1,NC
    360 Y(I)=2(I)
    TOEG=(T-273.16)*1.8+22.0
    H = HVAP*TERM
    DHV=DHV#TERM
    HIOLV=H-DHV
    WRITE (NPRT,370) PRES,TDEG,H,HIELV,OHV
370 FCRMAT ('OVADER PHASE ENTHALDY SUMMARY:",
```

```
            5X,'P, PSIA =',F21.31
            5X,'T, DEGF=`,F20.2/
            5X, 'HVAP (REAL), K-BTU =',F13.5/
            5x,"HVAP (IDEAL),K-BTU =*.F13.5/
            5X,`DELTA HVAP, K-डTU =`,F13.5)
            GJ T0 605
    380 IF (TF .GT. TBUE) GO TO 665
    390 WRITE (NPRT,400)
    4OO FORMAT ('OFEED AT CR BELCW BUBBLE POINT')
    410 T=TF
                            NLIQ=NLIQSV
                            GO TO (415,420), NLIO
C
    415 DO 416 I=1,NC
    416 X1(I)=2(I)
        OO 418 I=1,NC
    418 X(I)=X1(I)
        CALL LIGH
        HREALL(1)=HLIQ
        H=HREALL(1)
        HIDLL(1)=HLIQ-XSH
        DHL(1)=XSH
        GO TO 429
    C
    420 CONTINUE
        CALL INTLIZ
        CALL TWOLIO
        WRITE (NPRT,285) FPACL
    421 00 423%=1,NC
    423 X(I)=X1(I)
        CALL LIGH
        HREALL(1)=HLIG
        HIOLL(1)= HLIQ-XSH
        OHL(1) = XSH
        DO 424 I=1,NC
    424 X(I)=X2(I)
        CALL LIGH
        HREALL(2)=HLIQ
        HIDLL(2)= HLIQ-XSH
        OHL(2) = XSH
        H=HREALL(1)\not=FRACL+HREALL(2)*(1.0-FRACL)
C
C UNITS CONVERSION FRGM CAL/G-MOLE TO TOTAL K-BTU
    429 TOEG=(T-273.16)*1.8+22.0
        H=HまTERM
        OD 430 N =1,NLIO
        HREALL(N)=HREALL(N)#TERM
        HIDLL(N)=HIDLL(N)\not=TERM
        OHL(N)=OHL(N)*TERM
    430 CONTINUE
C
    CALL PRINT2
        WRITE (NPRT,435) PRES,TCEG,H
    435
    FORMAT (*OLJQU:C PHASE ENTHALPY SUMMARY:*/
```

$\Rightarrow \quad 5 X,{ }^{\circ} \mathrm{P}, \mathrm{PSIA}={ }^{\circ}, F 21.3 /$
\# $5 x,{ }^{\circ} \mathrm{T}, \mathrm{JEG} F={ }^{\circ}, 520.21$
\# 5 X, "HLIG (REAL), $K-E T U={ }^{\circ}, F 13.5$)
DC $439 \mathrm{~N}=1, \mathrm{NLIQ}$
HRITE (NPRT,437) N
437 FORMAT ($O E N T H A L P Y$ SUMMARY OF LIQUID PHASE * \because II)
WRITE (NPRT,438) HREALL(N),HIDLL(N), DHL(N)
438 EORMAT (* HLIQ (REAL), K-BTU $={ }^{\circ}$, F13.5/

* $5 \times,{ }^{\circ} \mathrm{HLIQ}(I D E A L), K-B T U={ }^{\circ}$, F13.5/
* $5 \mathrm{X},{ }^{\circ}$ CELTA HLIO, $K-B T U={ }^{\circ}, F 13.5$)

439 CONTINUE
GOTO 665
C

440 CONTINUE
IF (NOBUB.EQ.O) GOTO 480
IF (NODEW.EG.O) GOTO 550
C
$46000470 I=1, N C$
470 Y(I) $=8 \mathrm{UBC}(I)$
GOTO 570
C
480 NLIQ=NLIOSV
GO TO (490.520). NLIQ
490 DJ $500 \quad I=1, N C$
IF (L(I)) 492,494,496
$492 Y(I)=0.0$
$X 1(I)=2(I)$
GOTO 500
$494 \quad Y(I)=2(I)$
$X 1(I)=0.0$
GO TO 500
$496 Y(I)=Z(I) \neq 0.5$
$X 1(I)=Y(I)$
500 CONTINUE
$U Y=0.0$
$U X=0.0$
$D C 505 I=1, N C$
$U Y=U Y+Y(I)$
$505 \cup X=U X+X I(I)$
DC $510 \mathrm{I}=1$;NC
$Y(I)=Y(I) / U Y$
$510 \times 1(I)=X 1(I) / U X$
GOTO 570
c
520 DO $540 \mathrm{I}=1$, NC
IF (L(I)) $522,528,530$
$522 Y(I)=0.0$
IF (I .EQ. IE) GO TO 524
IF (I .EQ. IR) GO TO 520
$X 1(I)=Z(I) \neq 0.5$
$X 2(I)=X 1(I)$
GL 50540
$524 \times 1(I)=I(I)$
$X 2(I)=0.02$
GUTO 540
$526 \times 1(I)=0.02$
$X 2(I)=2(I)$

```
    GU TO 540
    528 Y(I)=2(I)
        XI(I)=0.0
        X2(I)=0.0
    GO TO 540
    530 Y(I)=2(C)*0.5
    IF (I .EG. IE) GO TO 532
    IF (I -EQ. IR) GO TO 534
    XI(I)=2(I)*0.25
    X2(I)=X1(I)
    GO TO 540
    532\times1(I)=Z(I)*0.5
    X2(I)=0.02
    GOTO 540
    534 XI(I)=0.02
    XZ(I)= Z(I)\not=0.5
    540 CONTINUE
    SUM=0.0
    UY=0.0
    UX=0.0
    DG 542 I=1,NC
    SUM=SUM+Y(I)
    UY=UY+XI(I)
    542UX=UX+X2(I)
    00544 I=1,NC
    Y(I)=Y(I)/SUM
    XI(I)=XI(I)/UY
    544 X2(I)=X2(I)/UX
    GOTO 570
C
    550 DO 552 I=1,NC
    552Y(I)=2(I)
    GOTO (554,558), NLIO
    554 DO 556 I=1,NC
    555 XI(I)=DEWC(I)
    GG TO 570
    558 X1(IE)=DEWC(IE)
    X2(IE)=0.02
    XI(IR)=0.02
    X2(IR)= DEWC(IR)
    DO 560 I=1,NC
    IF (I.EQ.IE) GO TO 560
    IF (I .EQ. IR) GD TD 560
    XI(I)=CEWC(I)*0.5
    X2(I)=X1(I)
    560 CONTINUE
        SUM1=0.0
        SUM2=0.0
        OO 562 I=1,NC
        SUMI=SUMI +XI(I)
        SUM2=SUM2+X2(I)
    562 CUNTINUE
        OO 564 I =1,NC
        X1(I)=X1(I)/SUM1
        X2(I)=X2(I)/SUM2
    564 CONTINUE
    570 CONTINUE
        IF (NTYPE •EQ.7) GO TO 5S5
        IF (NTYPE.EQ. O) GO TO 590
C
```

```
C ### ADIABATIC FLASH ###
        IF (HRUN EQ. O.O) GO TO 1000
        WRITE (NPRT,581)
    581 FORMAT ('IRESULTS OF ADIABATIC FLASH CALCULATION')
        T=TF
        HI=HRUN
        CALL AFLSH2
        GO TD 600
C
C
C
C
C
    585 CONTINUE
        IF (TF .GT. TDEW) GO TO 330
        IF (TF .LT. TBUB) GO TO 390
    590 T=TF
        HRITE (NPRT,591)
    591 FORMAT ('IRESULTS CF ISOTHERMAL FLASH CALCULATICN')
    IF (LDSUG -GE. 2) WRITE (NPRT,534) (X1(I),I=1,NC),(X2(I),I=1,NC)
    594 FORMAT ('OIN FLASH2 AT STMTK594 X1 & X2 ARE = /10(F7.5,2X)/
        #10(F7.5,2x))
            NLIQ=NLIQSV
            GO TO (592,593), NLIQ
    592 CALL FLSHI
            GO TD 600
    593 CALL FLSH2
C
    S00 TDEG=(T-273.16)#1.8+32.0
    WRITE (NPRT,610) TDEG,PREJ,FRACV
    G10 FuRMATC`OSYSTEM IS IN THE V/L PHASE REGION AT',F7.2," DEG F ANE',
        * F7.2," PSIAO/% VAPOR/FEED MLLE RATIÜ,2X,F9.6)
            IF (NLIQ.EG.2) WRITE(NPKT,235) FRACL
C
            CALL PRINT2
            GO TO 620
C
c
c
C
    612 T=TF
        FRACL=0.5
        CALL TWCLIQ
        WRITE (NPRT,614)
    6I4 FORMAT (*OLIQUID - LIQUID SEPERATION BELOW BUBGLE PEINT')
            TEEG=(T-272.16)*1.8+32.0
            WRITE (NPRT,616) NLIO,TDEG
    616 FJRMAT ('OSYSTEM IS IN THE ',II," LIQUID PHASE REGION AT',
        # FT.2,' DEG F')
            IF (NLIG.EQ.2) WRITE(NPRT,235) FRACL
            GD TD 421
c
    CALCULATION OF VAP/LIE ENTHALPIES AFTER ISO/ADIAB FLASH
620 DJ 622 I=1,NC
622 X(I)=x1(I)
```

```
    CALL LIGH
    HREALL(1)=HLIO
    HICLL(1)= HLIQ-XSH
    DHL(1) = XSH
    IF (NLIQ .NE. 2)GJ TO 625
    DC 624 I=1,NC
    624 X(I)=X2(I)
    CALL LIGH
    HREALL(2)=HLIG
    HIDLL(2)= HLIO-XSH
    OHL(2) = XSH
625 CALL VAPH
C
C
    633 DO 635 N=1,NLIO
    HIDLL(N)=HIOLL(N)*TERM
    HLIGO(N)=HLIQD(N)*TERM
    OHL(N)=(HLIED(N)-HIOLL(N))
    WRITE (NPRT,437) N
    WRITE (NPRT,438)HLIGO(N),HIDLL(N),OHL(N)
    635 CONTINUE
    H=HVAPOR#FRACV+HLIOO(1)*(1.O-FRACV)#FRACL
    IF (NLIE.EG. 2) H=H+HLIQO(2)#(1.0-FRACV) ((1.0-FRACL)
C
    640.FORMAT (*OTETAL ENTHALPY SUMMARY:'/
    # 5X,'P, PSIA =`,F21.3/
    * 5X,*T, OEGF=*,F20.21
    # 5x, "H (REAL), K-8TU = ',Fi3.5)
HI IS THE ENTHALPY ASSOCIATED WITH THE AOTABATIC
    FLASH FEED STREAM.
    ISOTHERMAL FLASH CAN BE PERFORMED BEFORE THE ADIABATIC
    FLASH TO ESTABLISH FEEO, IN THE MULTIPLE CASE PROBLEM.
        IF (NTYPE .EQ. 7 -OR. NTYPE -EQ. 8) THEN
        HI=HVAP#FRACV+HREALL(1)*(1.0-FRACV)*FRACL+
        % HREALL(2)#(1.0-FRACV)#(1.0-FRACL)
        END IF
    665 IF (JCDOE.NE.O) GO TO 15
    COOE FOR INTERACTIVE MUDE HAS TG BE MODIFIEC.
    INOX=3
    670 WRITE (6.0́80)
    680 FURMAT (* ENTER CHANGES*/**)
    WRITE (6.690)
    690 FORMAT (/////)
```

```
    700 READ (5,710) L,S
        3 5 3
    710 FORMAT (A1,F10.9)
        DC 720 J=1,7
        IF (I-IJK(J)) 720,740,720
    720 CONTINUE
        WRITE (6,730)
    730 FORMAT (* INVALID DATA*/' *)
        GO TO 700
    740 GC TO (760,750,770,840,850,10,830), J
    750 IF (INDX .GT. 2) INOX=2
        P=S
C CALL MIgP (IPF,P)
        GE TO 700
    760 IF (INDX .GT. 3) INDX=3
        TF=S
C CALL M19T (ITF,TF)
        GO TO 700
    770 IF (INOX .GT. 1) INOX=1
        write (6,780)
    780 FCRMAT (* ENTER FEED COMPOSITION (8F10.0)*/* *)
        read (5,7\exists0) (FD(I),I=1,NC)
    790 FORMAT (10F10.5)
        S=0.0
        OD 800 I=1,NC
    900 S=S+FJ(I)
        IF (S.NE.O.O) GO TO 700
        read (5,790,ENO=810) (FL(I),I=1,NC)
        GO T0 700
    810 write (6,820)
    820 FORMATC' ERRDR: NO FEED COMPOSITION THRU EITHER KEY ECARD OR INPU
        #T DATA (ARDS*)
c
    330 GO TO (25,150,320), INDX
C
    940 NTYPE=1
        HI=HI+S
        urite (6,850) S
    350 FORMATC'ONONISOTHERMAL MODE ENTERER. Q =`,FIO.2," BTU/LBMOL"/
        # - ')
            GO TO 700
    360 NTYPE=5
    GO TO 700
C
    1000 WRITE (NPRT,1100)
    1100 FORMAT(* EXITING FLASH2 WITH INCOMFLETE CALCULATIONS*)
    1500 CALL EXIT
    STOP
    ENC
```

suerdutine twolio

```
    TWO PHASE MATERIAL BALANCE USED FOR
        * BUBBLE PCINT
        # SUBCCOLED LIGUID
        OPTION of DIFfERENT PARAMETER SETS FOR VLE AND llE INClLDED
        THROUGH IPSET.
```

 COMMON /BLANK/ NCR, NPRT, NSTART, KUNITS, TITLE(2O)
 CCMMON /CMPRO/ NC, NCM1, NCPI, IDLL, IDLV, IOH, LDEUG, ISW,
 * NDIM, ZNAME(2,10), L(10), NTCOMP(10), NLIO, IPSET
COMMON /ICATA/ CPL(10,4), CPV(10,4), ENP(10,10), ANT(5,10),
*

\# \quad AK (10,10), R(10), Q(10), QF(10), XL(10),

* VOL(10), C(180), ALPYA(45), VC(10), TC(10),
$\pm \quad P C(10), Z C(10), \operatorname{TNBP}(10), O A(10), O B(10)$,
\# $\quad A(10,10), G(10,10), 2 R A(10), \operatorname{RD}(10), \operatorname{DMU}(10)$,
* COMMON /STRM/ T, P, Z(10), Y(10), X(10), FRACV, ZVAP,
*

\#
COMMON /CONTRL/
COMMON /TMOLQ/
$+$
$+$
COMMON /ZFEEDZ/ PF, TF, FEED, FMOL, TREF, HI
CDMMON /DUMMY/ XX(10,2),SX(10,2),XC(10,2),YY(10),SY(10),YC(10),
$+$
OIMENSION
RMAX, RMIN
$\operatorname{RG}(10), \operatorname{XTEMP}(10,2)$
C
DATA CONV/1.0E-5/, CONV1/1.E-5/, CONV2/1.E-3/,
\neq
NOBJ /3/, GUESS / $0.50 /$, KMAX/100/
entry to subroutine switch is made to load lle parameters if
SEPERATE SETS OF PaRAMETERS ARE USED
IF (IPSET.EQ. O) GO TO 3
IPSET=2
CALL SWITCH
3 INDEX=0
$K N T=0$
IDX=1
ISAVE=ISW
ISW=0
DO $5 I=1, N C$
$G A M 1(I)=1.0$
$\operatorname{GAM2}(I)=1.0$
CONTINUE
FRACL $=0.5$
IF (LDBLG -GT. 2) THEN
HRITE (NPRT,6)
6 FORMAT (/ CHECK ON PARAMETER VALUES IN TWOLIS SMT * $6^{\circ} /$)
CALL PRCHK
END IF
If (XI(IE).LE.1.E-12 .DR. X2(IR).LE.1.E-12) CALL INTLIZ
IF (LDEUG sGE. 2) HRITE (NPRT,T) IOLL
7 formatce icll at the begining of twolia is e, I4)
CALL ACTVY(T,P,X1,GAM1)

IZERDS $=0$

DO $8 \quad I=1, N C$
IF（X2（I）－GT． 0.0 ）GO TE 3
KNTX $=$ KNTX＋1
8

9
CONTINUE
IF（KNTX－GE．NC）THEN DO $9 I=1, N C$
GAMZ $2(I)=1.0$
IZEROS＝1
GOTO 11
ELSE
CALL ACTVY（T，P，X2，GAMZ）
END IF
c
11 ISW＝1
IF（LDBUG．GE．2）WRITE（NPRT，15）（GAMI（I），I＝1，NC），（EAM2（I），I＝1，NC）
15 FORMATC＊GAMI E GAM2 EOR ALL CCMPONENTS ARE, $16 F 12.4)$
GOTO 30
C
20 CALL ACTVY（T，P，X1，GAM1）
IF（IZEROS EEG．O）CALL ACTVY（T，P，X2，GAM2）
30 こ0 $40 \mathrm{I}=1$ ，NC
$40 \mathrm{RG}(I)=G A M 1(I) / G A M 2(I)$
$K=0$
C

10E13．5）
FORMAT（ 0×2－ASS •10E13．5）
FORMAT（OGGAM $\because 10 E 13.5)$
FORMAT（＇OGAM2 •，10E13．5）
END IF
INNER LOOP：SOLVING FQR FRACL FOR A SET OF COMPOSITIONS

FRACL＝GUESS
50 F2 $=0.0$
$D F 2=0.0$
DDF $2=0.0$
DO $60 \quad I=1, N C$
IF（L（I）．EQ．O ．OR．Z（I）．LT．I．OE－12）GO TO 60
$S=2(I) *(1.0-2 G(I))$
$W W=F R A C L+(1.0-F R A C L) \neq \bar{K} G(I)$
$D W W=1.0-R G(I)$
$F 2=F 2+B / W W$
DF2 $=0$ F $2-3 / W W \neq 2 \div D W W$

60 CUNTINUE
$C C=F 2$ \％DF 2
FF＝DF2丸丸2－F2＊D9F2
DEL $=-C C / F F$
DEL＝- F2／OF 2
$K=K+1$
IF（LOBUG．GE．1）WRITE（NPRT，62）KNT，T，F2，FRACL，DEL
62 FURMAT（＇KNT－T－F2－FRACL－DEL＊，I3，F12．4，3E14．5）
c

```
            IF (K.LT. 20) GOTO 70
        6 3 \text { WRITE(NPRT,64)}
        64 FCRMAT (*OTMOLIE LALCULATION TERMINATED*/
            * " CALCULATIJN CENTINUING* /)
            DU 66 I=1,NC
            WW=FRACL+(1.0-FRACL)*RG(I)
            XI(I)=Z(I)/WW
        66 <2(I) = XI(I)*RG(I)
        SUM1=0.0
        SUM2=0.0
        CC 67 I =1,NC
        SUMI=SUMI +XI(I)
        SUM2=SUM2+X2(I)
    67 CONTINUE
        OD 68 I =1,NC
        X1(I)=XI(I)/SUM1
        X2(I)=X2(I)/SUM2
    6S CONTINUE
        ISW=ISAVE
    ENTRY TO SUBROUTINE SWITCH IS MADE TO LOAD BACK VLE PARAMETERS
    IF SEPERATE SETS OF PARAMETERS ARE USED
        IF (IPSET .EQ. O) GOTOEQ
        IPSET=1
        CALL SWITCH
        69 RETURN
C
    70 NCVRG=0
    75 IF (FRACL+DEL.LT.1.O .AND. FRACL+DEL.GT.O.O) GO TJ 80
        NCVRG=1
        DEL=DEL#0.5
        GO TO 75
    C
    C 80 IF (FRACL.LT.0.99999) GO TO }8
    80 IF (FRACL.GT. 1.OE-5) GO TJ 85
        FRACL=1.O-FRACL
        OO 81 I=1,NC
        HCLD=XI(I)
        XI(I) = X2(I)
        X2(I)=HCLO
        HOLD=XX(I,1)
        XX(I,I) =XX(I,2)
        XX(I,2)=HOLD
        HELD=SX(I,1)
        SX(I,1)=SX(I,2)
        SX(I,2)=HCLD
        HCLD=XC(I,1)
        XC(I,I)=XC(I,Z)
        XC(I,2)=HCLD
        HULD=GAMI(I)
        GAM1(I)=GAM2(I)
        ò I GAM2(I)=HCLC
C
    a5 IF (ERACL.LT.1.OE-5) GO TO 166
    85 IF (FRACL.GT. 0.99599) GO TO 166
C
    90 IF (ABS(FZ).LT.CNNV •ANC. ABS(OEL).LT.CONV.ANC. NCVRG.EQ.O)
        + GJTO 35
        FRACL=FRACL+DEL
```

GGTO 50
C
95 DU $100 \mathrm{I}=1$, NC
$W W=F R A C L+(1.0-F R A C L)+R G(I)$
$X X(I, I)=Z(I) / W W$
$100 \times X(I, 2)=X X(I, 1) \neq R G(I)$
C
IF (LDBUG.GE.1) THEN
WRITE(NPRT,102) (XX(I,1),I=1,NC)
WRITE(NPK̃T,103) (XX(I,2),I=1,NC)
102 FORMAT (OX1-CALC , 10E13.5)
103 FORMAT (${ }^{\circ}$ OX2-CALC , 10E13.5)
END IF
C
INNER LDOP: SOLVING FOR FRACL FQR A SET OF COMPESITIONS
$K N T=K N T+1$
IF (KNT EG. KMAX) GO TO 63
GOTC (110,150), IDX
C
C the value of $k n t=1$
110 IDX=2
DO $115 \mathrm{~N}=1,2$
$00115 I=1, N C$
$115 \times C(I, N)=X X(I, N)$
SUM $1=0.0$
SUM $2=0.0$
DO $120 I=1, N C$
$S X(I, 1)=X 1(I)$
$S \times(I, 2)=X 2(I)$
$X 1(I)=(X I(I)+X X(I, I)) / 2.0$
$X 2(I)=(X 2(I)+X X(I, 2)) / 2.0$
$\operatorname{SUM} 1=\operatorname{SUM} 1+X 1(I)$
120 SUM $2=\operatorname{SUM} 2+X 3(I)$
DU $130 \quad I=1, N C$
$X 1(I)=x 1(I) / S U M 1$
$130 \times 2(I)=\times 2(I) /$ SUM 2
GOTO 20
C
150 CONTINUE
C PERFORM TEST FOR CONVERGENCE INIY ON PESULTS OF
C NEN-ACCELERATED DATA USEO FOR GAMMA
C KAC=O CHECK X VALUES.. IF NOT CONV. GO TO WEG
C KAC>O DO NOT CHECK X VALUES, USE DIRECT SUBSTITUTION
to get next values of Xes
$K A C=0$
IF (MOD (KNT,2) •EQ. O) KAC=2
IF (KAC -NE. O) GO TO 240
dNE DF THE THREE DBJECTIVE FUNCTIONS CAN BE CHOSEN TO
SATISFY THE LIQ-LIQ EQUILIBRIUM CRITERIA.
NOBJ=1: TEST ON ACTIVITIES
NOBJ=2: TEST ON COMPOSITIONS
NOBJ=3: TEST ON SUMMATION OE AGTIVITIES
NコBJ=4: TEST ON ACTIVITIES ANO COMPOSITIONS
SUM $=0.0$
DO $164 \quad I=1, N C$
IF (L(I).EG.O.OR. L(I).LT.1.DE-12) GU TO 1E4

```
    GOTO (155,157,159,161), NOBJ
C NOBJ=1: TEST ON ACTIVITIES
    155 IF (ASS(X1(I)#GAM1(I)-X2(I)#GAM2(I))/(X2(I)#GAM2(I)) .GT.
                CONV1) GO TO 190
            GO TC 1S4
C NOSJ=2: TEST ON COMPOSITIONS
C
    157 IF (&BS((XI(I)-XX(I,I))/XI(I)) .GT. CONVI .CR.
        #AgS(CX2(I)-XX(I,2))/X2(I)).GT. CONVI)GOTO 1gO
            GO TO 164
C
C NOBJ=3: TEST ON SUMMATION OF ACTIVITIES
    159 SUM=SUM+ABS(XI(I)#GAMI(I)-XZ(I)\not=GAM2(I))
        GOTO 164
C
C NOBJ=4: TEST ON ACTIVITIES AND COMPOSITIONS
    161 IF (ABS(X1(I)%GAM1(I)-X2(I)*GAM2(I))/(X2(I)*GAM2(I)) .GT.
        + CONV1) GOTO 190
            IF(ABS(CXI(I)-XX(I,I))/XI(I)) .GT. CONVI .OR.
        #ABS((X2(I)-XX(I,Z))/XZ(I)) .GT. CONVI)GO T0 190
    104 CONTINUE
C
        IF (NOBJ.EG. 3.AND. SUM .GT. CONV2)GOTO 190
        INOEX=1
        GO TO 170
C
    166 OQ 167 I=1,NC
        XI(I)=2(I)
    167 \times2(I) =0.0
        NLIQ=1
        WRITE(NPRT,168)
    168 FORMAT (// 5X, GIQUIO HAS GONE TO A ONE PHASE SYSTEM* //)
C
C ENTRY TO SUBROUTINE SWITCH IS MADE TO LOAD EACK VLE PARAMETERS
C IF SEPERATE SETS OF PARAMETERS ARE USED
C
    IF (IPSET .EQ. O) GCTD 169
    IPSET=1
    CALL SWITCH
    169 RETURN
C
    170 SUMI=0.0
    SUM2 = 0.0
    DO 172 I=1,NC
    SUMI=SUMI+XI(I)
    SUM2=SUM2+X2(I)
    172 CUNTINUẼ
    OO 174 I =1,NC
    XI(I)=XI(I)/SUMI
    X2(I)=X2(I)/SUM2
    174 CONTINUE
        ISW=ISAVE
        IF (INDEX -EQ. 1) WRITE(NPRT,180)
    180 FGRMAT('OTWJ LIGUID CALGULATIENS SUCCESSFULLY CCMPLETED*)
    ENTRY TO SUBRCUTINE SWITCI IS MADE TO LOAO BACK VLE PARANETERS
    IF SEPERATE SETS OF PARAMETERS ARE USED
    IF(IPSET - E2. C) GO TO 135
    IPSET=1
```

CALL SWITCH
185 RETURN
c
190 CONTINUE
c WEG BYPASSED
C IF (KNT .GE. O) GO TO 240
IF (LOBUG .GE. 1) WRITE (NPRT,192)KNT
192 FORMAT(IX,I4,4X, BEFORE CALL WEG IN TWOLIQ:')
DO $220 \mathrm{~N}=1,2$
$\operatorname{SUM} 1=0.0$
SUM $2=0.0$
DO $200 \quad I=1, N C$
IF (L(I).EQ.O .OR. Z(I).LT.1.OE-12) GO TO 200
IF (N .EQ.1) $\operatorname{XTEMP}(I, N)=X I(I)$
IF (N .EQ. 2) $\operatorname{XTEMP(I,N)=X2(I)}$
c
IF (LDQUG .GE. 1) WRITE (NPRT,19E)XTEMP(I,N),XX(I,N),SX(I,N), * $\mathrm{XC}(\mathrm{I}, \mathrm{N})$

c
XXSAYE $=X \operatorname{TEMP}(I, N)$
CALL WEG (XTEMP(I,N),XX(I,N),SX(I,N),XC(I,N))
IF (XTEMP(I,N) -LT. O.O) XTEMP(I,N)=XXSAVE
IF (XTEMP(I,N) -GT. 1.0) XTEMP(I,N)=XXSAVE
C; XDIFF=ABS(XTEMP(I,N)-XXSAVE)
C* IF (XDIFF.GT. O.25\#XXSAVE) XTEMP(I,N)=XXSAVE+XOIFF
IF (LDEUG .GE. 1) WRITE (NPRT,1尹5)XTEMP(I,N),XX(I,N),SX(I,N),
\# XC(I,N)
IF (N.EQ. 1) SUM1 $=5$ UM1 $+X \operatorname{TEMP}(I, N)$
IF (N .EQ. 2) SUM2=SUM2+XTEMP(I,N)
200 CENTINUE
DO $210 \quad I=1, N C$
IF (N.EQ.1) XI(I)=XTEMP(I,N)/SUM1
210 IF (N.EG.2) X2(I)=XTEMP(I,N)/SUM2
2こO CONTINUE
IF (LDBUG.GE.1) THEN WRITE(NPRT,225) (X1(I),I=1,NC) WRITE(NPRT,227) (X2(I),I=1,NC)

225
227
FORMAT ('OX1-WEG ©,10E13.5) FORMAT ('OX2-WEG •,10E13.5)
END IF
c

240 CONTINUE
$\operatorname{SUM} 1=0.0$
Sum2 $=0.0$
DO $270 \mathrm{I}=1, \mathrm{NC}$
c $\quad X 1(I)=X x(I, 1)$
c
$X 1(I)=(X X(I, 1)+X 1(I)) / 2.0$
$X 2(I)=(X X(I, 2)+X 2(I)) / 2.0$
$\operatorname{SUM} 1=\operatorname{SUN} 1+\mathrm{XI}(I)$
SUM $2=\operatorname{SUM} 2+\times 2(I)$
270 CUNTINUE
DC $290 \mathrm{I}=1$,NC
$X 1(I)=X I(I) /$ SUMI
$X 2(I)=X 2(I) / S U M 2$

20 CALL KCALC2
C
21 IF (LDBUG.GE.1) WRITE(NPRT,25) KNT,T,RVF
25 FORMAT (${ }^{\circ}$ OKNT = ", I3, FLSH*1 TEFVF*, E12.4,E14.5)
IF (LOBUG.GÉ.2) WRITE (NFRT,26) (Y(I), $I=1, N C),(X I(I), I=1, N C)$
26 FORMAT (${ }^{\circ}$ OY-ASS $\quad, 3 E 13.5 /^{\circ} X-A S S$, 3E13.5)
C
$29 K=0$
30 AMAX=RMAX
$A M I N=R M I N$
$F=0.0$
$D F=0.0$

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

```
        OD 80 I=1,NC
        IF (L(I)) 40,50,60
        40 S=1.0/(1.0-RVF)
        GJ TO 70
    50 S=-1.0/RVF
        GO T0 70
    60 S=(1.0-EKI(I ))/(1.0+RVF#(EXI(I )-1.0))
    70 F=F+Z(I)%S
    80 OF=DF+Z(I)*S*S
        K=K+1
C
C
    IF (K.LT.20) GC TO 99
        91 WRITE (NPRT,92)
        92 FORMAT (*OFLASH*I CALCULATION TERMINATED*/
        + -CALCULATION CONTINUING* /)
        GJ TO 320
C
        99 IF (ABS(F) .LT. CONV1) GO TO 190
        99 IF (F) 100,190,110
    100 AMIN=RVF
    GO TO 120
    110 AMAX=RVF
    120 IF ((AMAX-AMIN).LT.CONVI)GO TO 170
    OF=-F/DF
130 F=RVF+DF
    IF (F-AMIN)140,150,150
    140 DF=DF%.50
    GO TO 130
    150 IF (F-AMAX)160,160,140
    160 RVF=F
        IF (ABS(RVF-AMIN).LT.CONVI -OR.ABS(RVF-AMAX).LT.CONVI) GOTO 1SO
        DR=-F/OF
    130 RNEXT=RVF+DR
    IF (RNEXT GE. AMIN) GO TO 150
    140 DK=DR*0.5
    GO TO 130
    150 IF (RNEXT .GT. AMAX) GDTD 140
    RVF=RNEXT
C
C IF (ABS(DF)-CONVI)190,30,30
    IF (ABS(DR) .GT. CONVI) GO TO 30
C
170 CONTINUE
    SUM=0.0
    OO 180 I=1,NC
    X1(I)=(X1(I)+SX(I))/2.0
180 SUM=SUM+X1(I)
    OD 185 I=1,NC
1%5 X1(I)=X1(I)/SUM
    GO TO 20
190 IF (LOBUG .GE. 2) WRITE (NPRT,200) RVF
200 FJRMAT (SX, 'RVF`, E14.5)
        DS 240 I=1,NC
        IF (L(I)) 210,220,230
210 XX(I )=Z(I)/(1.0-fVF)
```

```
        YY(I) =0.0
        GOTO 240
        220 XX(I) )=0.0
        YY(I)=Z(I)/RVF
        GO TO 240
        230 XX(I)=Z(I)/(1.0+RVF%(EKI(I)-1.0))
        YY(I)=EXI(I)#XX(I)
    240 CONTINUE
    IF (IOLL+IOLV.EQ.O) GO TO 320
C
    250 KNT=KNT+1
        IF (KNT.EQ.50) GO TO 91
        GU TO (340,260), IDX
C
    260 IF (IDLL.EQ.O) GO TO 290
            DO 280 I=1,NC
            IF (CL(I).EQ.O).OR.(Z(I) .LT. 1.OE-12)) GET0 280
            IF (AES(XI(I)-XX(I))/XI(I).GT. CONV) GO T0 410
    280 CONTINUE
C
    290 IF (IDLV .EG. O) GO TD 320
            DO 310 I=1,NC
            IF (CL(I) &T.O).OR.(Z(I).LT. 1.0E-12)) GO TO 310
            IF (ABS(Y(I)-YY(I))/Y(I)-CONV) 310,410,410
    310 CONTINUE
C
    320 UX=0.0
        UY=0.0
        DO 330 I=1,NC
        XI(I)=XX(I)
        Y(I)=YY(I)
        UX=UX+XI(I)
    330 UY=UY+Y(I)
        OD 335 I=1,NC
        X1(I)=XI(I)/UX
    335 Y(I)=Y(I)/UY
        ISW=0
        RETURN
C
    340 IF (IDLL.EG.O) GD TC 370
    DO 360 I=1,NC
        SX(I)=XI(I)
        XC(I)=XX(I)
    360 XI(I)=(XX(I)+XI(I))/2.0
    370 IF (IDLV.EQ.O) GO TO 400
            DO 390 I=1,NC
            SY(I)=Y(I)
            YC(I)=YY(I)
    390 Y(I)=(YY(I)+Y(I))/2.0
    400 IDX=2
        FRACV=0.5%(RMAX+RMIN)
        GO TO 20
C
    410 IF (IDLL.EG.O) GOTO 450
            SUM=0.0
            DO 430 I=1,NC
            IF ((L(I) EG. O).OR. (Z(I) .LT. 1.0E-12)) GO TO 430
            CALL WEG (XI(I),XX(I),SX(I),XC(I))
            SUM=SUM+XI(I)
    430 CENTINUE
```

```
        DO440 I=1,NC
    440 X1(I)=X1(I)/SUM
C
    450 IF (IOLV.EQ.O) GOTO 500
        SUM=0.0
        DO470 I=1,NC
        IF ((L(I) .LT.O).CR.(Z(I) -LT. 1.OE-12)) GET0470
        CALL WEG(Y(I),YY(I),SY(I),YC(I))
        SUM=SUM+Y(I)
    470 CONTINUE
        DO480I=1,NC
    480 Y(I)=Y(I)/SUM
    500 FRACV = (RMAX+RMIN) #0.5
        GD TO 20
C
```

c
c
c
c
c
c
c
C
KNT $=0$
I $E X=1$
$I S W=0$
FRACV $=0.5$
FRACL $=0.5$
IF' (LUGUG -GE. 2) WRITE (NPRT,5) (I(I),I=1,NC)
5 EJRMAT (©OIN FLSH2 Z(I) ARE $=$ •, 10(F7.5,2X))
CALL KCALCZ
$I S W=1$
IF (NC .GT. 2) GO TO 26
call twilig

```
        IF (LDBUG.GT. 2) THEN
        WRITE (NPRT,7)
    7 FORMAT (/'* CHECK ON PARAMETER VALUES IN ELSH2 SMT: 7*/)
        CALL PRCHK
        END IF
        CALL RCALC2
        DO 11 I=1,NC
    11 Y(I)=EKI(I)*XI(I)
        IF (IOLV .EQ. O) GC TO 240
        GOTO 13
    12 CALL KCALC2
    13 CALL TWCLIO
    GO TO (14,17), IDX
    14 SUM=0.0
    DO 15 I=1,NC
    YY(I)=EK1(I)&XI(I)
    SY(I)=Y(I)
    YC(I)=YY(I)
    Y(I)=(Y(I)+YY(I))/2.0
    15 SUM=SUM+Y(I)
    OO 15 I=1,NC
    16 Y(I)=Y(I)/SUM
    ICX=2
    GO TO 12
    17 DO 18 I=1,NC
    IF (L(I).LT.O.OR. Z(I).LT.1.OE-12) GO TO 1B
    IF (AGS(Y(I)-YY(I)),Y(I).GT.CONV) GC TO 19
    18 CONTINUE
    GO TO 240
    19 SUM=0.0
    DO 21 I=1,NC
    IF (L(I).LT.O.OR.Z(I).LT.1.OE-12) GOTO 21
    CALL WEG (Y(I),YY(I),SY(I),YC(I))
    SUM=SUM+Y(I)
    21 CONTINUE
    OO 22 I=1,NC
    22Y(I)=Y(I)/SUM
    GOTO 12
C
    25 CALL KCALC2
    26 00 27 I=1,NC
    27 RKS(I)=EKI(I)/EK2(I)
    K=0
C
    IF (LDBUG.GE.1) WRITE(NPRT,29) T,U,V
    28 FORMAT (*OFLASH*2 T-U-V*,F12.4,2E14.5)
        IF (LDSUG.GE.2) WRITE(NPRT,29) (Y(I),I=1,NC),(XI(I),I=1,NC),
                                    (X2(I),I=1,NC)
    29 FORMAT (*OY-ASS *,3E13.5/^X1-ASS !,3E13.5/^X2-ASS*,3ミ13.5)
C
    30 F1=0.0
    F2=0.0
    DF1U=0.0
    DF2U=0.0
    OF1V=0.0
    CF2V=0.0
    OOFIUU=0.0
    OOFIVV=0.0
    DUFIUV=0.0
    DUFZUU=0.0
```

C DDF $2 V V=0.0$
C DJF $2 U V=0.0$
DO $50 \mathrm{I}=1, \mathrm{NC}$
C
c
c

```
AA=2(I)*(1.O-EKI(I))
```

$B E=2(I) \neq(1.0-R K S(I))$
$W W=V \neq(1.0-U)+(1.0-V) *(1.0-U) \neq R K S(I)+U \# E K 1(I)$
$F 1=F 1+A A / W W$
$F \mathcal{F}=F 2+B B / W W$
$D W U=V \neq(R K S(I)-1.0)-R K S(I)+E K I(I)$
DWV $=(1.0-U) \neq(1.0-R K S(I))$
DOWUV=RKS(I)-1.0
DFIU= DFIU-AA/WH\#\#2\#DWU
DF2U=DF2U-8B/WW\#*2*DWU
$D F 1 V=D F 1 V-A A / W W \# \# 2 \# D W V$

DDFIUU=DDFIUU +2.0 \#AA/WW** $3 * D W U \# \# 2$

DDFIUV $=D D F 1 U V+2.0 * A A / W W \$ * 3 * D W U \# D W V-A A / W W * 2 * D O W U V$
DUF2UV=DDF $2 U V+2.0 \neq 83 / W W * * 3 * D W U * D W V-38 / W W * \$ 2 * D O W U V$
50 CONTINUE
$\operatorname{RHS}(1)=-F 1$
$\operatorname{RHS}(2)=-F 2$
$2 \mathcal{L}(1,1)=D F 1 U$
$2 J(1,2)=D F 1 V$
$2 J(2,1)=D F 2 U$
$2 J(2,2)=0 F 2 V$
$\operatorname{RHS}(1)=2 \cdot 0 \approx(F 1 * D F 1 U+F 2 \neq D F 2 U)$
$\operatorname{RHS}(2)=2.0 \neq(F 1 * D F 1 V+F 2 * D F 2 V)$
$Z J(1,1)=2.0 *(D F 1 U * * 2+F 1 \neq D D F 1 U L+D F 2 U * \# 2+F 2 * D O F 2 U U)$
$2 J(2, z)=2.0 \div(D F 1 V \# \# 2+F 1 \# D D F 1 V V+D F 2 V \# \# 2+F 2 \# D O F 2 V V)$
$Z J(1,2)=2.0 *(D F I U \neq C F I V+F 1 \neq D D F 1 U V+D F 2 U \neq D F 2 V+F 2 \neq D E F 2 U V)$
$Z J(2,1)=Z J(1,2)$
DETRM $=2 J(1,1) \neq 2 J(2,2)-2 J(1,2) \neq 2 J(2,1)$
$D U=(R H S(1) \neq 2 J(2,2)-R H S(2) \neq 2 J(1 ; 2)) / D E T R M$
$D V=(2 J(1,1) \notin R H S(2)-2 J(2,1) \notin R H S(1)) / C E T R M$
$K=K+1$
C
IF (LDZUG.GE.2) WRITE(NPRT,55) F1,F2,U,DU,V,DV
55 FORMAT (5X,'IN FLSH2 AT STMT:55 F1-F2-U-OU-V-DV"/ 6E14.5)
IF (K.LT.20) GO TO 59
57 WRITE(NPRT,59)
58 FORMAT ('OFLASH2 CALCULATIEN TERMINATEO' /
+ - Calculaticn continuing -)
IF (KNT .EQ. O .ANL. U -LE. 1.OE-10) THEN
CALL THELIQ
GO TO 275
END IF
GO TO 240

```
c
C compute new values of l e v
C
    59 NCVRG=0
        GO TO (60,70), ID
    6O SDU=DU
    SOV=OV
    IO=2
    GO TO }8
    70 continue
    SSOU=SOU
    SSOV=SDV
    SOU=DU
    SOV =DV
    TOP=SSDU#5SOV+SOU#SDV
    8TM=(SSDU###2+SSOV##2)#(SOU##2+SCV##2)
    COSANG=TOP/SORT(STM)
    B\inTA=1.0+CESANG
    BETA=1.0
    DU=BETA*DU
    DV=BETA*DV
    CHECK TO INSURE THAT U & V ARE .lT. 1.0 AND .GT. 0.0
    80 IF (CU+DU.LT.1.O .AND. U+DU.ET.O.0) .AND.
    + (V+DV.LE.1.0 .AND. V+DV.GE.O.O)) GOTO 90
        NCVRG=1
    DU=DU*0.5
    DV=DV*0.5
    GO TO 80
    90 IF (V .LT.0.9999) G0 TO 94
    90 IF (V.GT. 1.OE-3) GO TO 94
        V=1.0-v
        OO 91 I=1,NC
    HOLD=X1(I)
    XI(I)=xZ(I)
    X2(I)=HCLD
    HCLD=XX(I,1)
    xx(I,1)=xx(1,2)
    XX(I,2)=HCLD
    HCLD=SX(I,1)
    SX(I,1)=SX(I,2)
    SX(I,2)=HCLD
    HOLD=XC(I,1)
    XC(I,1)=XC(I,2)
    XC(I,2)=HCLD
    HCLD=EKI(I)
    EK1(I)=EK2(I)
    EK2(I)=HOLD
    RKS(I)=EKI(I)/EK2(I)
    HELD=GAM1(I)
    GAM1(I)=GAM2(I)
    \exists1 G2M2(I)=HCLO
c
94 IF (V.GT. 0.99g9g) GO TO 231
        IF (ABS(DU).LT.CONVI .AND. ABS(CV).LT.CONV1 .ANC. NCVRG.E2.O)
        + 50 T0 110
c
```

```
        95U=U+DU
        v=v+DV
        GO TO 30
c
    110 IF (ABS(F1).LT.CONV2.AND.ABS(F2).LT.CONV2) GO TO 120
        GJ TO 95
C
c
120 00 180 I=1,NC
        IF (Z(I).LT.1.0-12) GO TO 170
        IF (L(I)) 130,140,150
    NONVOLATILE
    130WW=V+(1.0-V)*RKS(I)
        YY(I)=0.0
        XX(I,1)=Z(I)/WW
        XX(I,2)=xX(I,1)#RKS(I)
        GO TO 180
C NONCONDENSIblE
    140 YY(I)=Z(I)/U
        XX(I,1)=0.0
        xx(I, 2)=0.0
        GO TO 180
c NGRMAL AND SUPERCRITCAL
    150WW=V#(1.0-U)+(1.0-V)#(1.0-U)#RKS(I)+U#EK1(I)
        xx(I,1)=Z(I)/NW
        Xx(I,2)=xI(I)*RKS(I)
        YY(I)=EX1(I)*XX(I,1)
        GO TO 180
    170 Yr(I)=0.0
        XX(I,1)=0.0
        x ( (I,2) =0.0
    180 CONTINUE
C
    KNT=KNT+1
    IF (KNT.E2.50) GO TO 57
    GO TO (280,190), IO^
c
    190 IF (IDLL.EQ.0)GO TO 220
        DO 210 I=1,NC
        IF (L(I).EQ.0 =OR. Z(I).LT.1.OE-12) GO TO 210
        IF (ABS(X1(I)\not=GAM1(I)-X2(I)#GAM2(I))/(X2(I)#GAM2(I)) .GT.
    + (ONV) GC TO 360
        IF (ASS(CXI(I)-XX(I,I))/XI(I)) .GT. CONV .OR.
        #ABS((X2(I)-XX(I,2))/X2(I)).GT. CONV)GO TO 350
    210 CONTINUE
    220 IF (IDLV.EG.O) GO TO 240
        CD 230 I=1,NC
        IF (L(I).LT.O .OR. Z(I).LT.1.OE-12) GO TD 230
        IF (AES(Y(I)-YY(I))/Y(I).GT.CONV) GO TO 360
    230 CONTINUE
        GO TO 240
C
    231 DO 232 I=1,NE
        HCLD=X1(I)
        X1(I)=X2(I)
    232 X2(I)=HELO
        WRITE(NPRT,238)
    238 FORMAT (// 5X, 'LIQUID HAS GINE TO A ONE PHASE SYSTEM" //)
        NLIE=1
```

```
            FRACV=0.5
            CALL FLSHI
C
    240 SLM=0.0
            SUM1=0.0
            SUM2=0.0
            DO260I=1,NC
            Y(i)=YY(I)
            SUM=SUM+Y(I)
            XI(I) =XX(I,I)
            X2(I)=XX(I,2)
            SUMI=SUMI+XI(I)
            SUM2=SUM2+X2(I)
            260 CONTINUE
            OU270I=1,NC
            Y(I)=Y(I)/SUM
            X1(I)=X1(I)/SUM1
    270\times2(I)=\times2(I)/SUM2
    275 ISW=0
            RETURN
C
    280 IF (IDLL.EQ.O) GOTE 320
            DO 290 N = 1,2
            DO 290 I =1,NC
    290 XC(I,N)=XX(I,N)
            SUM1=0.0
            SUM2=0.0
            DO 300I =1,NC
            SX (I,1)=X1(I)
            SX(I, 2)=X2(I)
            XI(I)=(XI(I)+XX(I,I))/2.0
            X2(I)=(X2(I)+XX(I, 2))/2.0
            SUM1=SUM1+X1(I)
    300 SUM2=SUM2+X2(I)
            DO 310 I=1,NC
            XI(I)=XI(I)/SUMI
    310 X2(I)=X2(I)/SUM2
    320 IF (IDLV.EQ.O) GO TO 350
    SUM=0.0
    OO 330 I=1,NC
    SY(I)=Y(I)
            YC(I)=YY(I)
            Y(I)=(Y(I)+YY(I))/2.0
            SUM=SUM+Y(I)
    330 CONTINUE
            DO 340 I=1,NC
            Y(I)=Y(I)/SUM
    340 CONTINUE
    350 IDX=2
            GO TO 25
C
    360 IF (IDLL.EQ.O) GO TO 400
    DD 390 N=1,2
    SUM1=0.0
    SUM2=0.0
    DO 370 I=1,NE
    IF (L(I).EQ.O .OR. Z(I).LT.1.OE-12) GO T0 370
    IF (N -EQ.1) XTEMP(I,N)=XI(I)
    IF (N .EQ. 2) XTEMD(I,N)=X2(I)
    CALL WEG (XTEMD(I,N),XX(I,N),SX(I,N),XC(I,N))
```

```
            IF (N EEQ. 1)SUMI=SUMI +XTEMP(I,N)
            IF (N .EQ. 2)SUM2=SUM2+XTEMP(I,N)
        370 CONTINUE
            DO 380 I=1,NC
            IF (N EEQ. 1)XI(I)=XTEMP(I,N)/SUM1
            IF (N .EQ. 2)X2(I)=XTEMP(I,N)/SUM2
        380 CONTINUE
        390 CONTINUE
        400 IF (IDLV.EQ.O) GO TO 420
            SUM=0.0
            OO 410 I=1,NC
            IF (L(I).LT.O .OR. Z(I).LT.1.OE-12) GO TO 410
            CALL WEG (Y(I),YY(I),SY(I),YC(I))
            SUM=SUM+Y(I)
        410 CONTINUE
            GO TO 440
        420 SUM=0.0
            OO430 I=1,NC
            Y(i)=YY(I)
            SUM=SUM+Y(I)
    430 CONTINUE
    440 DO 450 I=1,NC
            Y(I)=Y(I)/SUM
    450 CONTINUE
            GO TO 25
C
    ENO
    SUBROUTINE AFLSHZ
C
    COMMON /BLANK/ NCR, NPRT, NSTART, KUNITS, TITLE(2O)
    COMMON /CMPRO/
        #
    COMMON /ZDATA/
        *
        #
        # VOL(10), C(180), ALPHA(45), VC(10), TC(10),
        # PC(10), ZC(10), TNEP(10), OA(10), OR(10),
        # A(10,10), G(10,10), ZRA(10), RC(10), OMU(10),
        # ETA(10)
    COMMON /STRM/ T, P, Z(10), Y(10), X(10), FRACV, IVAP,
        EK(10), VP(10), FUG(10), GAM(10), SVAP,
        HQFZ, HVAP, HLIO, UHV, XSH, NOBUB, NODEW
    CCMMON /CONTRL/
        ITF, IPF, N, NTYPE, JCDDE
    COMMON /TWOLQ/ X1(10), X2(10), GAM1(10), GAM2(10), EK1(10),
        +
        +
    COMMDN /ZFEEDZ/ PF, TF, FEED(10), FMOL, TREF, HI
        IE, IR, XMAX, XMIN
    COMMON /OUMMY/
+
    DATA KMAX, STEP, TINC, CONV /300,20.0,10.0,1.5E-3/
    DATA STEPMX / 20.0/
C
    ID=1
    S=T
    KOUNT=0
    KTEN=1
```

```
        STEP=STEPMX
        TBUB=0.0
        TDEW=2000.0
        IF (NTYPE.EQ. 9) GG TO 10
        SUMI=0.0
        SUM2=0.0
        DO 2 I=1,NC
        XX(I,I)=X1(I)
        XX(I, 2)=X2(I)
        SUM1=SUM1+XX(I,1)
        2 SUM2=SUM2+XX(I,2)
        DU 5 I=1,NC
        XX(I,1)=XX(I,1)/SUM1
        5 XX(I,2)=XX(I,2)/SUM2
C
    10 GO TO (11,12), NLIO
    11 CONTINUE
    FRACV=0.5#(RMAX+RMIN)
    CALL FLSH1
    FRACL=1.0
    GOTO 15
12 CONTINUE
    FRACV=0.5#(RMAX+RMIN)
    CALL FLSH2
    15 DJ 14 I=1,NC
    14 X(I)=X1(I)
    CALL LIQH
    HREALL(I)=HLIQ
    HIOLL(1) =HLIQ-XSH
    IF (NLIQ.NE. 2) GO TO 18
    DO 16 I=1,NC
    16 X(I)=X2(I)
    CALL LIGH
    HREALL(2)=HLIQ
    HIOLL(2) =HLIO-XSH
    18 CALL VAPH
        HTOT=HVAP#FRACV +HREALL(1)\not=(1.0-FRACV)*FRACL+
    * HREALL(2)*(1.0-FRACV)#(1.0-FRACL)
        H=HTOT-HI
        IF (ABS(H/HI)-CONV) 70,20,20
    20 NLIQ=2
    GO TD (30,4C), ID
    30 T=S-SIGN(TINC,H)
    HO=H
    ID=2
    GOTO 63
    40 SLOPE=(HO-H)/(S-T)
    DT=-H/SLOPE
    S =T
    IF (ABS(DT)-STEP) 60,60,50
    50 DT=SIGN(STEP,OT)
    60T T T+CT
    HO=H
    63 T=AMIN1(T,TOEW-0.5)
    T=AMAX1(T,TGUB+0.5)
    IF (LDBUG -GE. 1) HRITE (NDRT,55) KGUNT,HTCT,HI,H
    65 FORMAT ('OIN AFLSH2: KO!JNT-HTOT-HI-OIFF e,I4,3(E12.5,2X))
    KOUNT = KOUNT +1
    IF (KOUNT .EQ. KTEN) THEN
        KTEN=KTEN+5
```

```
            STEP=0.935%STEP
            STEP=AMAXI(STEP,0.0005)
            END IF
        IF (KOUNT -GE. KMAX) THEN
                            WRITE (NPRT,68) KOUNT
    O8 FORMAT (/' PRJGRAM TERMINATEO IN AFLSH2 AFTER*,
    * I5,* TRIALS*/)
            CALL EXIT
        END IF
C
        GO TO 10
        70 WRITE (NORT,80)
        80 FORMAT ('OFELLDWING IS THE RESULT OF AN ADIABATIC FLASH.*)
        RETURN
C
        END
        SURROUTINE KCALCZ
C
        routine to ealculate k values
C
        COMMON /BLANK/ NCR, NPRT, NSTART, KUNITS, TITLE(2O)
        COMMON /CMPRO/ NC, NCMI, NCPI, IOLL, IOLV, IOH, LDSUG, ISW,
        # NDIM, ZNAME(2,10), L(10), NTCOMP(10), NLIQ, IPSET
        COMMON /2OATA/ CPL(10,4), CPV(10,4), ENP(10,10), ANT(E,10),
        W(10), AX, BX, OMEGA(10), AVAL(10), BVAL(10),
        AK(10,10), R(10), Q(10), QP(10), XL(10),
        VOL(10), C(180), ALPMA(45), VC(10), TC(10),
        PC(10), ZC(10), TNSP(10), CA(10), OE(10),
        A(10,10),G(10,10), 2RA(10), RC(10), DMU(10),
        ETA(10)
        COMMON /STRM/ T,P,Z(10), Y(10), X(10), FRACV, ZVAP,
        EK(10), VP(10), FUG(10), GAM(10), SVAP,
        HOFZ, HVAP, HLIQ, DHV, XSH, NOEUG, NODEW
        COMMON /CONTRL/ ITF, IPF, N, NTYPE, JCOOE
        COMMON /TWOLQ/ X1(10), X2(10), GAM1(10), GAM2(10), EKI(1C),
        +
        +
            COMMON /ZEEEOZ/ PF, TF, FEEO(10), FMCL, TREF, HI
        COMMON /OUMMY/ XX(10,2),SX(10,2),XC(10,2),YY(10),SY(10),YC(10),
        +
    IF (T .LE. O.O) T=273.16
    DHV=0.0
    IF (ISW.NE.O) GO TO 40
    IF (LDBUG.GE.2) THEN
                WRITE (NPRT,5) T, ISW, (L(I),I=1,NC)
        5 FORMAT (/O SUB KCALC2:T-ISW-L = 0,F7.2,5I5/)
            WRITE(NPRT,7) (ANT(1,I),ANT(2,I),ANT(3,I),I=1,NC)
            FORMAT(*OSUB KCALC2 ANTOINES :',10((3E12.5)/))
        END IF
C
        10 0030I=1,NC
        IF (L(I)) 30,30,20
    20VP(I)=EXP(ANT(I,I)+ANT(2,I)/(T+ANT(3,I))+&NT(4,I)*ALDG(T)+
        # ANT(5,I)#T+ANT(E,I)#T%T)
    30 CONTINUE
C
40 DO 60 I=1,NC
    IF (L(I))S0,50,50
```

```
        50 EK1(I)=VP(I)/P
        60 CONTINUE
C
    IF (IDLV.EQ.O) GO TO 100
    CALL FUGCY (T,P,Y,VP,FUG,DHV)
    OJ9OI=1,NC
    IF (L(I))90,90,80
    80 EKI(I)=EKI(I)/FUG(I)
    9O CONTINUE
C
100 IF (IOLL.EG.O) RETURN
    CALL ACTVY (T,P,XI,GAMI)
    IF (NLIE -EA. 2) THEN
        KNTX=0
        DO 110 I=1,NC
        IF (X2(I) .GT. 0.0) GO TU 110
        KNTX=KNTX+1
    110 CONTINUE
        IF (KNTX .GE.NC) THEN
            OO 115 I=1,NC
    1 1 5
                GAM2(I)=1.0
                GO TO 130
        ELSE
            CMLL ACTVY(T,P,X2,GAMZ)
        ENO IF
    END IF
C
    130 00150I=1,NC
        If (L(I))150,150,140
140 IF (NLIG.EG.2) EK2(I) = EKI(I)*GAM2(I)
    EKI(I)=EKI(I)#GAMI(I)
    150 CONTINUE
    RETURN
C
    END
    SUBROUTINE PRINT2
C
C
    COMMON /BLANK/ NCR, NPRT, NSTART, KUNITS, TITLE(2O)
```



```
C
    OIMENSICN ACT(1C),VPRES(10)
```

```
        IF (LOBUG .GE. 1)WRITE (NPRT,2)IOLV, IOLL
        2 FORMAT ( - IN PRINT2 : IDLV = ',I3,'& IDLL=`,I3)
        DO8O N=1,NLIQ
        WEITE(NPRT,5) N
    5 FORMAT (/'ONVLEN DATA FOR VAPOR AND LIQUID PHASE *', I3)
        WRITE(NPRT,1) ((ZNAME(J,I),J=1,2),I=1,NC)
    1 FORMAT (125X,9(2A4,2X))
        WRITE(NPRT,6) (Y(I),I=1,NC)
    6 FORMAT (" VAP MCLE FRAC*, 9X, 10F10.5)
        IF (N .EQ. 1) WRITE (NPRT,T) (XI(I),I=1,NC)
        IF (N .EQ. 2) WRITE (NPRT,7) (X2(I),I=1,NC)
    7 FCRMAT ('LIQ MOLE FRAC', 9X, 10F10.5)
        IF (N .EQ. 1) WRITE (NPRT,10) (EKI(I),I=1,NC)
        IF (N .EQ. 2) HRITE (NPRT,10) (EK2(I),I=1,NC)
        10 FORMAT(* VALUES OF K=Y/X*,7X,10F10.5)
        DO 15 I =1,NC
        VPRES(I)=VP(I)#760.0
    15 CONTINUE
        WRITE(NPRT,20)(VPRES(I),I=1,NC)
    20 FORMAT(* VAPOR PRESSURE (MM HG)',1X,10F10.3)
        IF (IDLV)30,50,30
    30 WRITE(NPRT,40)(FUG(I),I=1,NC)
    40 FORMATC* FUGACITY FACTORS',6X,10F10.5)
    50 IF (IDLL)OO,80,60
    60 IF (N .EQ. 1) WRITE (NPRT,TO) (GAMI(I),I=1,NC)
        IF (N .EQ. 2) WRITE (NPRT,T0) (GAM2(I),I=1,NC)
    70 FORMATC" ACTIVITY CJEFFICIENTS `,IOFIO.4)
    DO }71\mathrm{ I=1,NC
    IF (N .EQ. 1)ACT(I)=GAMI(I)*XI(I)
    IF (N .EQ. 2)ACT(I)=GAM2(I)*X2(I)
    71 CONTINUE
        HRITE(NPRT,72) (ACT(I),I=1,NC)
    72 FORMAT ('ACTIVITY (2 LIQ)*, SX, IOF10.4)
    80 CONTINUE
        RETURN

THIS SUBPRCGRAM IS USEC IN CONJLNCTION WITH NLFITS (MARQLAROT'S NON-LINEAR PEGRESSION) PROGRAM.
```

VERSION \# 2 ... MARCH 1984, PROGRAMMED BY HARPREET CHAWLA
VERSION * 3 ... AUGUST 1GB4, PRDGRAMMED BY HARFREET CHAWLA
THE ARGUMENTS IN THE CALL LIST ARE:
IOPT - INTEGER; THE DATA POINT NUMBER
XVAR - ARRAY: CONTAINS THE COMPOSITION VALUES
ADJUST - ARRAY: CONTAINS THE CURRENT VALLES DF TPE
ADJUSTABLE PARAMETERS
YYY - REAL: CONTAINS THE DESIRED RESULT
ZZZ - REAL; CONTAINS THE CALCULTED RESULT ON RETURN

```


    VCL(10), C(180), ALPHA(45), VC(10), TC(10),
    \(P C(10), Z C(10), T N B P(10), ~ E A(10), ~ O B(10)\),
    \(A(10,10), G(10,10), Z R A(10), \operatorname{RC}(10), \quad D M U(10)\),
    ETA(10)
    COMMDN /STRM/ T, P, Z(10), Y(10), X(10), FRACV, ZVAP,
    EK(10), VP(10), FUG(10), GAM(10), SVAP,
    HCFZ, HVAP, HLIQ, DHV, XSH, NOQUB, NODEW
    COMMON /CONTRL/ ITF, IPF, N, NTYPE, JCOQE, NLIQ
    COMMON /TWCLQ/ \(X 1(10), X 2(10), ~ G A M 1(10), ~ G A M 2(10), ~ E K 1(10)\),
        EK2(10), OHL(2), HIDLL(2), HREALL(2), FRACL,
        IE, IR, XMAX, XMIN
    COMMON /ZFEEDI/ PF, TF, FEED, FMCL, TREF, HI, NKI, NFEED
    COMMON /DUMMY/ \(X X(10,2), S X(10,2), X C(10,2), Y Y(10), S Y(10), Y C(10)\),
        RMAX, RMIN
    COMMON /FOX/ XIEXP(10), XZEXP(10), GAMIE(10), GAMZE(10),
\# GAMIIE(10), GAMZIE(10), GAMIIC(10), GAMIIC(10),
\# \(\quad\) ACTIC(10), ACT2C(10), ACTIE(10), ACTEE(10),
* \(K E(10), K C(10), K I E(10), K I C(10), W 1(1 C)\),
\# W2(10), YEXP(10), TEXP, PEXP, WT,WTI, VLEFN,
\# LLEFN, VLLFN, NVLPT, NLLPT, NCVLE, NCLLE,
    * NMOOEL, INX, RECODE, NDTALE(15,10), NDSET
    CCMMON /OUTPUT/ X1EO(10,200), X2EO(10,200), X1C(10,200),
    X20(10,200), G1EO(10,200), G2EJ(10,200),
    G10(10,200), G2C(10,200), GIIEC(10,5),
    G2IEO(10,5), G1ICO(10,5), G2ICO(10,5),
    \(K E C(10,200), K C O(10,200), K I E C(10,5)\),
    \(K I C O(10,5), Y E C(10,200), Y C O(10,200)\),
    TEC(200), PEC(200), TCO(200), PCO(200),
    ACT1ED(10,200), ACT2EC(10,200), ACT1CO(10,200),
    ACT2CC(10,200)
    OIMENSION
    \(D E W C(10), \quad B U B C(10), ~ I J K(7), ~ H L I D D(2)\)
DIMENSICN XVAR(3), ADJUST(20), ALPHAS(3), PICKUP(400)
C

```

INTEGER VLEEN, LLEFN, VLLFN, RECJCE, ISKIP(20)
C
C

DATA
$N C R=5$
NPRT=6
IF (ICALL EEQ. O) GC TO 50
CALL ERRSET (49,.TRUE.,.TRUE.,.FFALSE...FALSE.,999)
CALL ERRSET (30,.TRUE.,.TRUE.,.FALSE...FALSE.,999)
CALL ERRSET (60 ,.TRUE.,.TRUE.,.FALSE...FALSE., 999)
CALL ERRSET (63,.TRUE.,.TRUE.,.FALSE.,.FALSE.,999)
CALL ERRSET (68,.TRUE.,.TRUE.,.FALSE...FALSE., 999)
CALL ERRSET (72,.TRUE.,.TRUE...FALSE....FALSE.,999)
CALL ERRSET (73,.TRUE.,.TRUE.,.FALSE.,.FFALSE.,999)
CALL ERRSET (74,.TRUE.,.TKUE.,.FFALSE.,.FFALSE.9999)
CALL ERFSET (83.,TRUE.,.TRUE...FALSE...FFALSE.,999)
CALL ERRSET (88,.TRUE.,.TRUE.,.FALSE.,.FALSE.,999)
CALL ERRSET (39.,TRUE.,.TRUE.,.FALSE...FALSE.,999)
CALL ERFSET (93,.TRUE.,.TRUE...FALSE...FALSE.,9S9)
$10005 \mathrm{I}=1,10$
$Y(I)=0.0$
$Y Y(I)=0.0$
$X I(I)=0.0$
$\times 2(I)=0.0$
$X X(I, I)=0.0$
$X X(I, 2)=0.0$
$E K I(I)=0.0$
$E K 2(I)=0.0$
FUG (I) $=0.0$
GAMI (I) $=0.0$
GAMZ(I) $=0.0$
5 CONTINUE

7 CALL START (IDATAsMFEEDS,MCASES,E1500)
REMAINING CCNTRCL PARAMETERS
RECORD \# 1
NMDDEL MODEL WHOSE PARAMETERS ARE TO BE REGRESSEC
NTYPE TYPE GF REGRESSION TO SE PERFCRMEJ
ITDEP CODE FOR TEMPERATURE DEPENDENCE OF THE PARAMETERS
0 - ALL PARAMETERS T INDEPENDENT
1 - ONE PARAMETER T DEPENDENT
0 - TWO PARAMETERS T DEPENDENT
INTERNAL ITOEP COCES ARE, ITOEP+ITDEP+1
NOSET NO. OF EXPERIMENTAL OATA SETS (WITH N POTMTS) NSKIP ND. DF DATA POINTS TC BE SKIPPED FOR REGRESSION RECGDE CODE FUR READING IN EXPERIMENTAL CEPENDENT VARIABLE DATA
O ND EXPERIMENTAL OATA
1 TEXPOS 2 PEXPOS
3 YEXPOS $4 \quad X 2 E X P$-S
5 TEXP'S \& YEXP'S (1 ST REAC T•S)
6 PEXP'S \& YEXP'S (1 ST READ POS)
7 TEXPOS \& X2EXDOS (1 ST REAC T'S)
8 PEXPOS \& X2EXOOS (1 ST REAC POS)
9 YEXPOS \& XLEXPOS (1 ST READ Y'S)
10 TEXP'S \& YEXP'S i X2EXP'S (1 ST READ T'S,
2 ND READ Y'S)
11 PEXPOS \& YEXP'S \& XZEXPOS (I ST KEAD POS,

```
    READ (N(R,*) NMUOEL, NTYPE, ITDEP, NOSET, NSXIP, RECODE, VLEFN,
    * LLEFN, VLLFN, IS, IR, XMAX, XMIN
        IF (NSKIP -NE. O) READ (NCR,*) (ISKIP(I),I=I,NSKIP)
        DU 3 J=1,NCSET
    3 READ (NCR,%) (NDTALE(I,J),I=1,5+NC)
    VARIOUS SETTINGS ARE MACE
    NCVLE=NC
    NCLLE=NC
    NVLPT=0
    NLLPT=0
    OO 4 J=1,NCSET
    IF (NOTALE(2;J) -EG. 1) THEN
            NVLPT=NVLPT+NDTALE(5,J)
            NCVLE=NCTALE(4,J)
        ENC IF
        IF (NDTALE(2,J) -EQ. 2) THEN
            NLLPT=NLLPT+NDTALE(5,J)
            NCLLE=NCTALE(4,J)
        END IF
4 CONTINUE
C
    WRITE(NPRT, 子)NTYPE,NCVLE,VLEFN,IE,NDSET,NCLLE,LLEFN,IR,
    * NMEDEL,NVLPT,VLLFN,XMAX,ITJEP,NLLPT,RECJEE,
    #
                                XMIN
```



```
    #'IE =`,I2/* NCSET =`,IL,T13.'*NCLLE=*,I2,T30,*LLEFN=`,I2,T45,
    #'IR =`,I2/' NMCDEL=`,I2,T15,'NVLPT = ',I2,T30,'VLLFN=`,I2,T45,
```

```
    *"XMAX=`,F5.3/" ITJEP =',I2,T15,*NLLPT =',I2,T30.'RECODE=`,I2,T45,
    *"XMIN=`,F5.3/" NSKIP =',I3)
    IF (NSKIP .NE. 0)WRITE (NPRT,9) (ISKIP(I),I=I,NSKIP)
g FORMAT ('O",'tHE FOLLOWING DATA POINTS HAVE gEEN IGNOREg'/
#20I4)
```

```
ITCEP=ITDEP+1
```

ITCEP=ITDEP+1
IF (IOATA.NE.O) GO TO 11
IF (IOATA.NE.O) GO TO 11
CALL CDATA
CALL CDATA
GO TO 15

```
GO TO 15
```

c
C

NMODEL CODES FOR CCATA TO BE USED WITH FOFX, FOR REGRESSION.
1 - VAN LAAR EGUATION (2 PARAMETER)
2 - 3 SUFFIX MARGULES EQUATION (2 PARAMETER)
3 - 4 SUFFIX MARGULES EQUATION (3 PARAMETER)
4 - 5 SUFFIX MARGULES EQUATION (4 PARAMETER)
5 - MJCIFIED 5 SUFFIX MARGULES EQUATIUN (4 PARAMETER)
6 - MOLIFIED MARGULES EQUATION (4 PARAMETER)
7 - WILSON EQUATION
8 - NRTL EGUATICN
9 - NRTL EQUATIEN
10 - UNIEUAC EGUATION
(3 PARAMETER)
(2 PARAMETER)
11 - MOCIFIED UNIQUAC EQUATIUN (2 PARAMETER)
12 - UNIFAC EQUATION
13 - KNCX EQUATICN
14 - HENRY ${ }^{-1}$ E ELUATION (2 PARAMETER)
15 - ANTCINE EQUATION (E PARAMETER)
PRESENTLY PROGRAM TAKES CARE OF NMCDEL=7 TD 11 CNLY.
NDTALE(I,J) MATRIX CONSISTS OF CJDES E NUMEEOS FOR ALL CATA SETS
* CF COLUMNS (VECTORS) = OF DATA SETS READ IN
1 ST ROW: NC. OF DATASETS TO BE REGRESSED
$1,2,3,4, \ldots E T C$.
2 NE ROW: DATA TYPE, VLE/LLE/HE
1 = VLE, 2 =LLE, $3=H E$
3 RO RCW: CATA CONDITION, CONSTANT T/P
1 = CONSTANT TEMPERATURE DATA
2 = CONSTANT PRESSURE DATA
4 TH ROH: OF COMPONENTS IN THE OATASET
5 TH KOH: * OF PEINTS IN THE DATASET
6 TH ROW: IC OF FIRST COMPCNENT
7 TH ROW: IC OF SECONO COMPONENT
\& SO ON UPTO THE ID OF THE LAST COMPINENT
0 = AESENCE OF THE COMPONENT IN THE OATA SET
EXAMPLE: IN CASE OF REGRESSING BINARY E TERNARY DATASETS
8 (543) ROWS ARE TO BE FILLEC
रिESTRIGTIUNS: 1. ALL VLE GATASETS SHOULE APPEAR BEFCRE LLE
DATASETS.
2. CONSTANT T CONSTANT P VLE DATA NOT
ALLOWEJ TE BE REGRESSEC TOGETHER.
access oata retrevial programs

11 CONTINUE
CALL ZPVT
CALL ZNRTL
WRITE (NPRT,13)
13 FORMAT ('OCCMPGNENTS USED ARE: '/

```
        * 2X, ***, 2X,*NAME*,6X,*IJ**)
```

 WRITE (NPRT,14) (J, (ZNAME(K,J),K=1,2),NTCOMP(J),J=1,NC)
 14 FORMAT (I3,2X,2A4,4X,I3)
 \(C\)
 15 READ (NCR,16,ENC=1500,ERP=7) TITLE
 16 FURMAT (20A4)
 IF (TITLE(1) .EC. ©CLLAR) GOTO 7
 WRITE (NPRT,17) TITLE
 17 FORMAT (\({ }^{\circ} 1^{\prime \prime}, 2044\))
 READ (NCR,, ENO = 1500 , ERR=1500) PF, TF, WT, WT1
 C
 C
 \(C\)
 c
 C
 C
 C
 PRES = PF
 TF \(=\) SYSTEM TEMP OR INTIAL T DEG \(C\)
 PF \(=\) SYSTEM PRESSURE OR INTIAL P IN MM HG
 WT = WEIGHT USEC IN FXZLIQ SUSRQUTINE
 WTI = HEIGHT USED IN FXZLIQ SUBROUTINE
 WRITE (NPRT,19) PF,TF,NTYPE
 19 FORMAT i U U PARAMETERS FOR EQUILIBRIUM CALCULATIEN: *
 \# \(5 \mathrm{X}, \cdot \mathrm{P}, \mathrm{MMHG}={ }^{\circ}\), F14.3/
 \# \(5 \mathrm{X},{ }^{\prime} \mathrm{T}, \mathrm{DEG} \mathrm{C}={ }^{\circ}, F 13.21\)
 \# \(5 X\), \({ }^{\prime} N T Y P E={ }^{\circ}\), I1E)
 WRITE (NPRT,20) WT, WTI
 20 FGRMAT (0 WEIGHTS USED IN QBJECTIVE FUNCTICN: *
 * 5 X , "WEIGHT WITH TIE LINE, WT \(={ }^{\circ}\),FIO.21
 \# 5 X , WEIGHT WITM PARAMETERS, WTI = \({ }^{\circ}, F ; 0.2\))
 CONVERT MMHG, C, TC ATM, K, CAL
 \(P F=P F / 760.0\)
 \(P=P F\)
 \(T F=T F+273.16\)
 TSAVE=TF
 DO \(35 \quad I=1\),NC
 IF (L(I)-1) 21,23,25
 \(21 L(I)=1\)
 22 GAMI (I) \(=1.0\)
 GAM \(2(I)=1.0\)
 \(F \cup G(I)=1.0\)
 GO TO 29
 \(23 L(I)=2\)
 GOTO 22
 25 IF (L(I)-3) 24,26,21
 \(24 L(I)=0\)
 \(\operatorname{GAM} 1(I)=1.0\)
 GAM \(2(I)=1.0\)
 GOTO 27
 \(26 L(I)=-1\)
 GAMI(I) \(=1.0\)
 GAM \(2(I)=1.0\)
 27 FUG(I) \(=0.0\)
 \(29 \operatorname{VP}(I)=0.0\)
 \(E K I(I)=0.0\)
 \(E K 2(I)=0.0\)
 35 CONTINUE
 C
50 IF (NTYPE - GT. O) GCTE 55
GO TO 1000
$C(I I-2)=0.0$
$C(I I-1)=A D J U S T(I P+1)$
$C(I I)=0.0$
INX=IP
$I P=I P+2$
GOTO 75
$65 \mathrm{C}(I I-3)=A D J U S T(I P)$
$C(I I-2)=A D J U S T(I P+1)$
$C(I I-1)=A D J \cup S T(I P+2)$
$C(I I)=0.0$
INXI IP
$I P=I P+3$
GOTO 75
$70 \mathrm{C}(I I-3)=A D J \cup S T(I P)$
$C(I I-2)=A D J U S T(I P+2)$
$C(I I-1)=A D J \cup S T(I P+3)$
$C(I I)=A O J U S T(I P+3)$
INX=IP
$I P=I P+4$
75 continue
80 CONTINUE
NTYPE DESCRIPTICN

 \(\begin{array}{cc}\text { NTYPE DESCRIPTICN } \\ 1 & \text { CONSTANTT VLE }\end{array}\)
    ```
            OS 95 J =1,NGM1
            SUM=SUM+XVAR(J)
            95 CONTINUE
            XN=1.0-SUM
            DO 96 J = 1,NCN1
            Z(J)=XVAR(J)
            96 CONTINUE
            Z(NC)=XN
            DO 97 I = 1,NC
            97 X1EXP(I)=Z(I)
C
    100 IF (IDPT .GT. NVLPT) GO TO 101
                            NLIQ=1
            NCN=NCVLE
            NPT=NVLPT
            GOTO 102
    101 NLIG=2
                            NCN=NCLLE
                            NPT=NVLPT+NLLPT
C
C STORING ALL THE EXPERIMENTAL XI VALUES FOR PRINT DUT
C
    102 IF (ICALL.EQ. O) GOTO 104
    KNT=KOUNT
    104 IF (KNT .GT. NPT) GC TO 107
    DO 105 I=1,NCN
    X1EO(I,KNT)=X1EXP(I)
    10S CONTINUE
    KNT=KNT+1
    107 CONTINUE
C
    IF (ICALL ©EQ. O) GO TO 3300
C
C READING & STORING EXDERIMENTAL (T, P,Y, XZ) DATA
C ACCDROING TE THE VALUE 'RECODE*
C
    II=1
    IST=1
    IF (RECODE .LT. O) GO TO 3400
    GUTT (3000,3000,3050,3100,3000,3000,3000,3000,3050,
    * 3000,3000), RECODE
3000 REAC (NCR,#) (PICKLP(II),II=1,NVLPT)
    IF (RECUDE ©EQ. 2 .ER. RECJDE.EQ. 6) GO TE 3010
    IF (RECODE -EE. 8 .CR. RECDDE .EQ. 11) GO TC 30I0
    II=1
    DO 3005 J=1,NVLPT
    TEG(J)=PICKUP(II)
    II=II+I
3005 CONTINUE
    IF (RECCDE .EG. 5 .CR. RECDDE .EQ. 10) GO TO 3050
    IF (RECODE EEQ. 7) GD TO 3100
    GOTO 3300
3010 II=1
    DO 3015 J=1,NVLPT
    PEC(J)=PICKUP(II)
    II=II+I
3015 CONTINUE
    IF (RECLCE.E&. 6.ER. RECODE .EQ. 11) GO TC 3050
    IF (RECCDE.EG. &) GO TO 3100
```

```
        60 T0 3300
C
    3050 CONTINUE
        NTEMP=(NCVLE-1)#NVLPT
        READ (NCR,*) (PICKUP(II),II=1,NTEMD)
        IF (LOBUG .GE. 2) WRITE (NPRT,3055)(PICKUP(II),II=1,NTEMP)
    3055 FORMAT (* ', <2#NVLPT)(6F10.4/))
        II=1
        DO 3075 J=1,NVLPT
        SUM=0.0
        DD 3060 I=1,(NCVLE-1)
        SUM=SUM+PICKUP(II)
        YEO(I,J)=PICKUP(II)
        II=II+1
    3060 contINuE
        YEO(NCVLE,J)=1.0-SUM
        SUM=O.C
        DO 3065 I=1,NCVLE
    3065 SUM=SUM+YEO(I,J)
        CO 3070 I=1,NCVLE
    3070 YEC(I,J)=YEO(I,J)/SUM
    3075 CONTINUE
C WRITE (6,*) (J,(I,YEO(I,J),I=I,NCN),J=IST,NPT)
    IF (RECEOE .LT. 10) GO TO 3300
C
    3100 NTEMP=(NCLLE-1)#NLLPT
    READ (NCR,*) (PICKUP(II),II=1,NTEMP)
        II=1
    DO 3125 J=(NVLPT+1),(NVLPT+NLLPT)
    SUM=0.0
    DO 3110 I=1,(NCLLE-1)
    SUN=SUM+PICKUP(II)
    X2EG(I,J)=PICKUP(II)
    II=II+1
    3110 CONTINUE
        X2EC(NCLLE,J)=1.0-SUM
        SUM=0.0
        DO 3115 I=1,NCLLE
    3115 SUM=SUM+X2EO(I,J)
        OC 3120 I=1,NCLLE
    3120 X己EO(I,J)=X2EO(I,J)/SUM
    3125 CONTINUE
    3300 CONTINUE
C CALL PRINT3
C
c AlLOCATION OF EXPERIMENTAL VALUE OF DEPENDENT VARIABLE
    FOR DATA POINT 'IDPT'.
    IF (VLEFN .LE. O) GC TO 3380
    IF (VLEFN .LT. 17) GO TO 3320
    TEXP=TEC(ICPT)+273.15
    GO TO 3380
3320 IF (VLEFN .LT. 10) GO TO 3340
    PEXP=PEC(IDPT)/760.0
    IF (VLEFN .GT. 13) GD TC 3380
3340 OD 3350 I=1,NCVLE
        YEXP(I)=YEO(I,IJPT)
3350 CONTINUE
3380 IF (LLEFN .LE. O .OR. IDPT .LE. NVLPT) GO TC 3400
3355 DD 3360 i=1,NCLLE
```

```
        X2EXP(I)=X2EO(I,IDPT)
    3360 CONTINUE
    3400 CENTINUE
C
        IF (LDBUG .NE. 1 .CR. ICALL .EQ. O) GO TD 3600
        WRITE (NPRT, 3440)
        3440 FORMAT (/T2O,'EXPERIMENTAL Y VALUES IN MOLE **/)
            DO 3460 J=1,NVLPT
            WRITE (NPRT,3445) (YEO(I,J),I=1,NCVLE)
    3445 FDRMAT (* ',<NCVLE>(2PF12.4,3X))
    3400 CONTINUE
C
            WRITE (NPRT, 3480)
    3480 FORMAT (/T2O,'EXPERIMENTAL X2EXP VALUES IN MOLE %०/)
            DO 3500 J=(NVLPT+1),(NVLPT+NLLPT)
            WRITE (NPRT,34SO) (X2EO(I,J),I=1,NCLLE)
    3490 FORMAT (* ',<NCLLE>(2PF12.4,3X))
    3500 centinue
C
    3600 IF (LDEUG .LT. 2) GO TD 115
            NC4=NC#NCM1#2
            urite(nprt,108)(z(J),J=1,NC)
        1J8 FORMAT(`OZ(J) VALUES AT STM#10B IN FOFX ARE ', 2X,10(F7.5,2x))
            urite(nprt,11C)(C(J),J=1,NC4)
        110 FORMAT('OC(J) VALUES AT STM:110 IN FOFX ARE ',2X/6E13.S/5E13.5/
            #6E13.5/5E13.5)
            write(nert,112)(ALDHA(J),J=1,NC)
        112 FORMAT('OALPHA(J) VALUES AT STM$112 IN FOFX ARE ',2X,5E10.2/
        #5E10.2)
            HRITE (NPRT,103)
        103 FORMAT (/T10,`X1EXP (MCLE %)`,T35,`X2EXP (MCLE %)*/)
            WRITE (NPRT,106) (XIEXP(I),I=1,NCN), (X2EXP(I),I=1,NCN)
    106 FIRMAT ('0',<NCN>(2PF12.5),:,4X,<NCN\(2PF12.5))
    C
    115 RMIN=0.0
            RMAX=1.0
            OO 118 I=1,NC
            IF (L(I)) 116,117,1:8
    116 RMAX=RMAX-2(I)
            GO TO 118
    117 RMIN=RMIN+2(I)
    118 CONTINUE
C
    NCCEW=O
    NOBUB=0
    NOBUBP=0
C
    DD 140 I=1,NC
    IF (FD(I)) 140,140,119
    115 IF (L(I)) 120,130,140
    120 NODEW=1
        GO TO 140
    130 NOQUS=1
    NCBUBP=0
    140 CONTINUE
c
    ICALL=O
    GO TO (150,220,280,220,150), NTYPE
C
c
```

```
C
    150 if(ntype .eq. 5 .and. idpt .gt. nulpt)go to 280
        if (ldbug .ge. 2) write(nprt,155)
    155 format('Oresults of total prossure calculation*)
        if (nlia .ne. 1)go to 1000
        DO 160 I =1,NC
    160 X1(I)=Z(I)
        T=TF
        p=pf
        CALL BUBP
        if (nobubp .ne. 0)go to 200
        CALL FXVLE (ZZZ)
        PBUB=P
        if (labug .se. 1) write(nprt,170) 222
    170 format(0)22z or p in fofx is 0,f10.5)
        IF (NTYPE.EQ. 5)GO TO 220
        go to 2000
    200 if (ldbug.ge. 1)write (nprt,210)
    210 format ('0pressure could not be determined")
        GO TO 2000
C
C ### CONSTANT PRESSURE VLE CALCULATIONS ##*
c
    220 continue
        IF (NTYPE .EQ. 4 .AND. IDPT .GT. NVLPT) GO TO 280
        IF (NTYPE .EQ. 5 .AND. IDPT .GT. NVLPT) GO TO 280
        if (labug ego. 1)WRITE(NPRT,221)
    221 FORMAT (/OORESULTS OF BUBBLE POINT (ALCULATION*)
        IF (NOSUB.EG.O) GO TO 240
        if (ldbug.ge. 1)HRITE(NPRT,230)
    230 FORMATCOONO BUBGLE POINT SINCE NONCONDENSIBLE COMPONENTS ARE PRESE
        #NT')
    231 TAUB=-459.0
        OD 235 I=1,NC
    235 BUBC(I)=0.0
        GO TO 2000
C
    240 IF (NLIG.EG.2) GO TO 280
        DJ 241 I=1,NC
    241 X1(I)=2(I)
        T=TF
        FRACL=1.0
        CALL BUBPTI
C
    245 IF (NOBUB.EG.O) GO TO 255
        if (ldbug .ge. 1)#RITE(NPRT,250)
    250 FDRMATCOOFEED REPRESENTS A HYPOTHETICAL LIQUID CR IS IN THE RETRDG
        +RACE REGION. BUZZLE POINT CALCULATIONS TERMINATED.")
            GO TO 231
C
    255 TBUB=T
        CALL FXVLE (222)
        TDEG=TEUS-273.16
        if (labug ege. 1)WRITE(NPRT,2SO) PPES, TDEG
    260 FJRMAT(*OBUGBLE POINT CF FEED AT',F7.2," MMHG IS*.f7.2," DEG (*)
        DC 265 I=1,NC
    265 BUBC(I)=Y(I)
        IF (LOBUG .LT. 2) GO TO 272
        WRITE (NPRT,268) ((2NAME(J,I),J=1,2),I=1,NC)
    268 format (25x,10(2a4,2x))
```

```
    WRITE(NPRT,270) (3UBC(I),I=1,NC)
    270 FDRMAT (* BU8 PT VAF MCLEFRAC*, 2X, 10F10.5)
    CALL PRINT2
    272 GO TO 2000
C
C *** CONSTANT TEMPERATURE LLE CALCULATIONS ###
C
C
    280 CONTINUE
        T=TF
        CALL FXZLIG (ZZZ)
        GO TO 2000
C
    1000 if (Idbug - ge. 2)WRITE (NPRT,1100)
    1100 FORMAT(* EXITING FOFX WITH INCOMOLETE (ALCULATICNS*)
    1500 CALL EXIT
    2000 CONTINUE
C
C THE FQLLOWING STATEMENT IS ACTIVATEG IF THE CONTRIBUTION
    OF SOME DATA POINTS IN REGRESSION HAS TO BE ELIMINATED
    IF (NSKIP .EQ. O) GOTC 2001
    DO 2001 I=1,NSKIP
    IF (IOPT.EG. ISKIP(I)) ZZZ=0.0
2001 CONTINUE
    IF (LDRUG -GE. 1) WRITE (NPRT,1950) IOPT, 2Z2
    1950 FORMAT (* IN FOFX AT STMT#1950:**'IDPT=*,I3,* ZII=*,EI5.7)
C
C DOWNLOAOING INTO OUTPUT VARIABLES FOR FINAL PRINTCUT
C IF (LDQUG.EQ. O) GCTO 2004
    WRITE(NPRT, 2002)TEXP,T,PEXP,P,(X1EXP(I),I=1,NCN)
2002 FORMAT (/'AT 2002 IN FCFX TEXP//T/PEXP/P/ / XLEXP = %/
    #4F10.3,2X,\langleNCN>(F7.5,2X))
    WRITE (NPRT,2003)((ABS(ACT1C(I)-ACT2C(I))),I=1,NCN)
2003 FURMAT (/" ABS EIFF IN LLE CALC ACTIVITIES*, (NCN\EI2.4)
2004 IF (NTYPE.EQ. 3) GCTO 2010
    IF (NTYPE.GE. 4.AND.IDPT,GT. NVLPT) GOTO 2010
    IF (NTYPE.EQ. 1 .OR. NTYPE.EQ. 5)GOTO 2005
    TESV=TEC(IOPT)+273.16
    CALL LCTVY (TESV,P,XIEXP,GAM1E)
    TCO(ICPT)=TEUB-273.16
    GOTO 2010
    2005 PCO(IDPT) =PEUS }=760.
            PESV=PEU(ICPT)/760.0
            CALL ACTVY (T,PESV,XIEXP,GAM1E)
    201000 20<0 I=1,NCN
            X10(I,IDPT)=X1(I)
            GIEO(I,IDPT)=GAMIE(I)
            GIC(I,IOPT)=GAMI(I)
            ACTIEE(I,IDPT)=ACTIE(I)
            ACT{CO(I,IDFT)=ACTIC(I)
            IF (NTYPE.LT. 3) GC TO 2015
            IF (NTYPE.GE. 4 .AND. IOPT .LE.NVLPT) GO TO 2015
            X2O(I,IこPT)=X2(I)
            G2EJ(I,IDPT)=GAM2E(I)
            GZO(I,IOPT)=GAM2(I)
            ACT2EJ(I,IOPT)=ACT2E(I)
            ACT2CO(I,IDPT)=ACT2C(I)
            KEO(I,IEPT)=KE(I)
```



```
C E/C EXPERIMENTAL/CALCULATED VALUES
        NCN=NCVLE
        NPT =0
        IST=1
        NVLST=0
        NLLST}=
        OO 60 J=1,NCSET
        IF (NOTALE(2,J) .EG. 1) NVLST=NVLST+1
        IF (NDTALE(2,J) •EG. 2) NLLST=NLLST+1
    6O CGNTINUE
        IF (NTYPE.EQ. 3) GC TO 450
        DO 380 III=1,NVLST
        IST=NPT+1
        NPT=NPT+NDTALE(5,III)
        WRITE (NPRT,T0) III
        70 FDRMAT (*1*,<10$NCN>X, "### RESULTS GF SET * •,I1,* ###*)
        WRITE (NPRT,100)
    100 FGRMAT (/<8#NCN-5>X,'VLE EXPERIMENTAL DATA',<12#NCN-13>X,
        #'DIFFERENCES (EXP-CALC)')
        IF (NTYPE .EQ. 1 .OR. NTYPE .EQ. 5) GO TO 180
C
C WRITE (NPRT,115) (J,TCO(J),J=IST,NPT)
    115 FORMAT (*OCALCULATEE TEMDERATURES = '/<NPT/8+1>((5(I2,F7.2,1X))/))
        WRITE (NPRT,120)
    120 FORMAT (' T DEG C',<4#NCN-6>X, 'X IN MOLE **,<8#NCN=8>X,
        #'Y IN MCLE i',<4#NCN-2)X, 'T',\<4#NCN>X,'Y')
        WRITE (NPRT,130) (I,I=1,NCN),(I,I=1,NCN),(I,I=1,NCN-1)
    130 FORMAT (T12,<NCN>('-',I1,"-'5X),3X,<NCN>(*-',I1,'-',5X),8X,
        #<NCN>(*-',11,*-',5X)/)
C
    DO 134 J=1,NPT
    OD 134 I=1,NCN
134 HOLO(I,J)=0.0
        DO 160 J=IST,NPT
        HELD(1,J)=TEO(J)-TCE(J)
        OC 140 I=1,NCN-1
        HCLC(I+1,J)=YEC(I,J)-YCO(I,J)
    140 CONTINUE
        WRITE (NPRT,150) TEC(J),(X1EO(I,J),I=1,NCN),(YEO(I,J),I=1,NCN),
        #HCLD(1,J),(HCLD(I+1,J),I=1,NCN-1)
    150 FGRMAT (`,F7.2,<NCN>(2PF7.3,1X),3X, <NCN>(2PFT.3,1X),2X,
        #OPF6.2,\langleNCN>(20F7.3,1X))
    160 CONTINUE
C
    CALL TALLY1 (HCLD,SS,TOTAL,MEAN,SD,VMIN,VMAX,IST,NPT,NCA)
    WRITE (NPRT,177) (MEAN(I),I=I,NCN)
177 FERMAT (/<1S#NCN-G>X, "MEAN DEVIATION :',3X,F6.2,
    #<NCN-1>(2PF7.3,1X))
        WRITE (NPKT,17B) (VNAX(I),I=1,NCN)
178 FORMAT (/<1STNCN-G>X,"MAX. DEVIATICN :',3X,F6.2,
        #\langleNCN-1\rangle(2PF7.3,1X)/)
        WRITE (NFRT,179) (Sこ(I),I=1,NCN)
179 FJRMAT (/<16%NCN-6>X,'STD. DEVIATION :',3X,FG.2,
        #\langleNCN-1\rangle(2PF7.3,1X)/)
        GO TO 250
```

```
C
c ConStant temperature vle case
c
    180 WRITE (NPRT,200)
    200 FORMAT (* P MM HG*,3X,*X IN MOLE **,7X,
        #*Y IN MCLE %',9X,'P ',<<2#NCN>X,'Y'`)
        WRITE (NPRT,130) (I,I=1,NCN),(I,I=1,NCN),(I,I=1,NCN-1)
        DO 205 J=1,NPT
        DC 205 I =1,NCN
    205 HCLD(I,J)=0.0
        DO 240 J=IST,NPT
        HOLO(1,J)=PEO(J)-PCO(J)
        DC 210 I=1,NCN-1
        HOLO(I+1,J)=YEC(I,J)-YCO(I,J)
    210 CONTINUE
        WRITE (NPRT,150) PEC(J),(X1EO(I,J),I=1,NCN),(YEC(I,J),I=1,NCN),
        *HCLD(1,J),(HCLC(I+1,J),I=1,NCN-1)
    240 CCNTINUE
        CALL TALLYI (HOLO,SS,TCTAL,MEAN,SD,VMIN,VMAX,IST,NPT,NCN)
        WRITE (NPRT,177) (MEAN(I),I=1,NCN)
        WRITE (NPRT,178) (VMAX(I),I=1,NCN)
        WRITE (NFRT,179) (SD(I),I=1,NCN)
C
c gamma values fer constant t or p cases (vle)
C
    250 WRITE (NPRT,260)
    260 FORMAT(*1*,<8#NCN-12>X,*ACTIVITY COEFFICIENT VALUES',
        #<12#NCN-4>X,"% REL EIFF')
        WRITE (NPRT,280)
    280 FORMAT (* ",\langle4#NCN-6>X,'EXPERIMENTAL',<8#NCN-8>X, 'CALCULATEC')
        WRITE (NPRT,300) (I,I=1,NCN),(I,I=1,NCN),(I,I=1,NCN)
```



```
        #\langleNCN\rangle(*-',I1,*-',4X)/)
        DU }302\textrm{J}=1,NP
        DH 302 I=1,NCN
    302 HCLD(I,J)=0.0
        DJ 340 J=IST,NPT
        DO 305 I=1,NCN
        HCLD(I,J)=100.0%(G1ED(I,J)-G1C(I,J))/G1EO(I,J)
    305 CONTINUE
        WRITE (NPRT,320) (G1EO(I,J),I=1,NCN),(G1D(I,J),I=I,NCN),
        # (HCLD(I,J),I=1,NCN)
C 320 FORMAT (` ",\langleNCN\F5.3,3X.<NCN\F8.3,3X,\langleNCN\(2PG10.3))
    320 FORMAT (* ', <NCN\F8.3,3X,\langleNCN\F&.3,3X,<NCN\(G10.3))
    340 CDNTINUE
C
        CALL TALLY1 (HOLD,SS,TCTAL,MEAN,SD,VMIN,VMAX,IST,NPT,NCN)
        WRITE (NPRT,345) (MEAN(I),I=1,NCN)
    345 FORMAT (/<16#NCN-13>X,"MEAN DEVIATION :',5X,\langleNCN>
        #(2PG10.3,2X))
            HRITE (NPRT,347) (VMAX(I),I=1,NCN)
    347 FORMAT (/<1G%NCN-13>X,'MAX. DEVIATICN:',5X,\langleNCN>
        #(2PG10.3,2x)/)
            WRITE (NPRT,348) (SE(I),I=1,NCN)
    348 FGRMAT (/<16%NCN-13>X,'STD. DEVIATIUN:',5X,\langleNCN>
        #(2PG10.3,2X)/)
    INFINItE diluticn gamma values for constant t or p sinagy vLE
    IF (NCVLE .GT. 2) GO TO 380
```

```
        WRITE (NPRT,350)
    350 FERMATC*O*, 'INFINITE DIL. ACTIVITY COEFF.VALUES*,
        #T50,** REL DIFF')
        WRITE (NPRT,280)
        WRITE (NPRT,300) (I,I=1,NCN),(I,I=I,NCN),(I,I=I,NCN)
C
    JJ=NO. GF CIFFERENT DATA SETS READ IN
    DO 360 JJ=1,1
    DO 360 J=IST,NPT,(NPT-IST)
    DO 355 I=1,NCN
    X1EXP(I)=XIED(I,J)
    XI(I)=X1O(I,J)
    355 CONTINUE
        IF (NTYPE -EQ. 1 .OR. NTYPE .EQ. 5) PEXP=PED(J)/760.0
        IF (NTYPE •EQ. 2 .OR. NTYPE •EQ. 4) TEXP=TEC(J)+273.16
        CALL INFY (IMIN1,IMIN2)
        G1IEO(IMINI,JJ)=GAMIIE(IMIN1)
        GIICO(IMINI;JJ)=GAMIIC(IMIN1)
    360 CDNTINUE
    DO 365 JJ=1,1
    365 WRITE (NPRT,320) (G1IEO(I,JJ),I=1,NCN),(GIICO(I,JJ),I=1,NCN),
    * ((GIIEC(I,JJ)-GIICC(I,JJ)),I=1,NCN)
    380 CONTINUE
    IF (NTYPE -GE.4) GC TO 450
    GO TO 13OO
C
C
C
C
    450 NCN=NCLLE
    DO 1060 III=1,NLLST
    IST=NPT+1
    NPT=NPT+NDTALE(S,III+NVLST)
    WRITE (NPRT,70) III+NVLST
    WRITE (NPRT,500)
    500 FORMAT (/TIO, EXPERIMENTAL LIQUID PHASE CJMPOSITIONS IN
    #MCLE % % )
        WRITE (NPRT,53C) IE, IR
    530 FORMAT (* ',T1O, 'PHASE RICH IN `,II,T45,*PHASE RICH IN *II/)
    WRITE (NPRT,550) (I,I=1,NCN), (I,I=1,NCN)
    550 FORMAT(`*,5X,\langleNCN\rangle(*-*,II,*-*,7X),5X,\langleNCN\rangle(*-*,I1,*-*,7X))
        CC 630 J=IST,NPT
        WRITE (NPRT,GOO)(XIED(I,J),I=1,NCN),(X2EO(I,J),I=I,NCN)
    600 FORMAT (* ",\langleNCN\(2PF10.4),5X,\langleNCN\(2PF10.4))
    6 3 0 ~ C O N T I N U E ~
C
    WRITE (NPRT,650)
    650 FORMAT (*O*,T10, CALCULATED LIQUIO PHASE COMPOSITIONS IN MCLE %*/)
        WRITE (NPRT,530) IE, IR
        WRITE (NPRT,550) (I,I=1,NCN), (I,I=I,NCN)
        DO 720 J=IST,NPT
    720 WKITE (NPRT, 600)(X1C(I,J),I=1,NCN),(X2O(I,J),I=1,NCN)
    CALCULATION OF ABSCLUTE DIFFERENCE GF COMPOSITICNS (MELE %):
    (XEXP-XCALC)
    WRITE (NPRT,750)
750 FORMAT (*1*,T1O, ABSOLUTE EIFFERENCE OF CDMPOSITIENS IN MELE **/)
    WRITE (NPRT,530) IE, IR
    WRITE (NPRT,550) (I,I=1,NCN), (I,I=1,NCN)
    DO 760 J=I,NPT
```

DO $760 \mathrm{I}=1,2 \ddagger \mathrm{NCN}$
760 HCLO（i，J）$=0.0$
DE $840 \mathrm{~J}=\mathrm{IST}, \mathrm{NPT}$
DC $820 \quad I=1, N C N$
HCLD（I，J）$=100.0$＊（X1EO（I，J）－X1O（I，J））
HCLD（I＋NCN，$j)=100.0$ \＃（X2ED（I，J）－X2J（I，J））
820 CONTINUE
WRITE（NPRT，862）（HCLD（I，J），I＝1，2＊NCN）
840 CONTINUE

NNN＝2＊NCN
CALL TALLYI（HCLD，SS，TCTAL，MEAN，SD，VMIN，VMAX，IST，NPT，NNA） DO $858 \mathrm{j}=1$ ，NNN
358 SUM＝MEAN（I）
OVMEAN＝SUM／NNN
WRITE（NPRT，860）
960 FORMAT（ $/^{\circ}$ MEAN DEVIATION VALUES（EXPT－CALC）IN MOLE T^{*} ）
HRITE（NPRT，861）（MEAN（I），I＝1，NNN），CVMEAN
861 FORMAT（＂，〈NCN〉（G13．4），5X，〈NCN〉（G13．4）／
\＃CVERALL MEAN DEVIATION（EXPT－CALC）IN MOLE \％＝$\%$ ，G13．4）
C 862 FURMAT（ ${ }^{\circ}$ © $\left.\langle N C N\rangle(2 P F 13.4), 5 X,\langle N C N\rangle(2 P E 13.4)\right)$
862 FORMAT（＊$\left.{ }^{\circ},\langle N C N\rangle(G 13.4), 5 X,\langle N C N\rangle(G 13.4)\right)$
WRITE（NPRT，865）
865 FORMAT（／＊MAX．DEVIATION VALUES（EXPT－CALCJIN MCLE＊＊） WRITE（NPRT，862）（VMAX（I），I $=1, N N N)$
WRITE（NPRT，870）
370 FORMAT（ $/^{\circ}$ STD．DEVIATION VALUES（EXPT－CALC）IN MCLE $\xi^{\circ} /$ ） WRITE（NPRT，862）（SC（I），I＝I，NNN）
C
CALGULATIUN OF \％RELATIVE DIFFERENCE DF COMFOSITIONS：
WRITE（NPRT，872）
872 FORMAT（ ${ }^{\circ} 0^{\circ}$, T10，＂ 7 RELATIVE OIFFERENCE OF CEMPOSITIONS＊$)$ WRITE（NPRT，530）IE，IR
WRITE（NPRT，550）（I，I＝1，NCN），（I，I＝1，NCN）
DO $873 \mathrm{~J}=1$ ，NPT
DC $873 I=1,2$ 후N
373 HOLO（I，J）$=0.0$
CO $875 \mathrm{~J}=\mathrm{IST}, \mathrm{NPT}$
OC 374 I＝1，NCN
HCLU（I，J）$=100.0 \%(X 1 E J(I, J)-X 10(I, J)) / X 1 E O(I, J)$
HCLD（I＋NCN，J）$=100.0 \div(X 2 E O(I, J)-X 20(I, J)) / X 2 E O(I, J)$
874 CONTINUE
HRITE（NPRT，862）（HCLD（I，J），I＝I，2末NCN）
875 CONTINUE
C
NNN $=2$ \＃$N C N$
CALL TALLYI（HCLD，SS，TOTAL，MEAN，SD，VMIN，VMAX，IST，NFT，NNN） WKITE（NPRT，875）
876 FORMAT（／＂MEAN \％REL DEVIATION VALUES＊／）
WRITE（NPRT，862）（MEAN（I），I＝1，27NCN）
WRITE（NPRT，877）
877 GORMAT（／＊MAX．\％REL DEVIATION VALUES＊／）
WRITE（NPRT，362）（VMAX（I），I＝1，2\＃NCN）
WRITE（NPRT，878）
878 FORMAT（／$\%$ STD．DEVIATION VALUES＊／）
WRITE（NPRT，862）（SC（I），I＝1，2\＃NCN）
c
c
ACTIVITY COEFFICIENTS（LLE）

```
WRITE (NPRT,880)
    880 FORMAT (*'`TIO, ACTIVITY CSEFFICIENTS WITH EXPERIMENTAL X
        #VALUES*/)
        WRITE (NPRT,530) IE, IR
        WRITE (NPRT,550) (I,I=1,NCN), (I,I=I,NCN)
        OC 920 J=IST,NPT
        WRITE (NPRT,91O) (G1EO(I,J),I=1,NCN), (G2EO(I,J),I=I,NCN)
    910 FGRMAT (* *,\langleNCN\rangle(F10.4),5X,\langleNCN\rangle(F10.4))
    920 CONTINUE
C
    940 FORMAT ('0',T10, 'ACTIVITY COEFFICIENTS WITH CALCULATED X VRLUES*/)
    WRITE (NPRT,530) IE, IR
    WRITE (NPRT,550) (I,I=I,NCN), (I,I=1,NCN)
    0O 970 J=IST,NPT
    970 WRITE (NPRT,910) (GIO(I,J),I=1,NCN), (G2D(I,J),I=1,NCN)
C
C
C
    CALCULATION OF ABSCLUTE DIFFERENCE OF ACTIVITY COEFFICIENTS:
    HRITE (NPRT,975)
    975 FORMAT (`1`,T1O, *AESOLUTE OIFFERENCE OF ACTIVITY COEFFICIENTS*/)
    WRITE (NPRT,530) IE, IR
    WRITE (NPRT,550) (I,I=1,NCN), (I,I=1,NCN)
    OO 377 J=1,NPT
    OC 977 I=1,2후NCN
    G77 HELC(I,J)=0.0
    DO 985 J=IST,NPT
    OC 980 I=1,NCN
    HCLD(I,J)=G1EO(I,J)-GIO(I,J)
    HOLD(I+NCN,J)=G2ED(I,J)-G20(I,J)
    S8O CONTINUE
    WRITE (NPRT,862) (HCLD(I,J),I=1,2%NCN)
    983 FORMAT (* *,\langleNCN\F1O.3,5X,\langleNCN\F10.3)
    985 CONTINUE
C
    NNN=2*NCN
    CALL TALLYI (HCLD,SS,TCTAL,MEAN,SO,VMIN,VMAX,IST,NPT,NNN)
    H\hat{ITE (NPRT,993)}
    993 FORMAT (/' MEAN DEVIATIEN VALUES (EXPT-CALC)*/)
    WRITE (NPRT,362) (MEAN(I),I=1,2#NCN)
    WRITE (NPRT,995)
    995 FGRMAT (/' MAX. DEVIATICN VALUES (EXPT-CALC)*/)
    WRITE (NPRT,362) (VMAX(I),I=1,2#NLN)
    WRITE (NFRT,997)
    997 FORMAT (/' STD. DEVIATION VALUES (EXPT-CALC)*/)
    HRITE (NPRT,862) (SD(I),I=1,2&NCN)
C
C CALCULATION OF RELATIVE % OIFFERENCE OF ACTIVITY COEFFICIENTS:
    WRITE (NPRT,1000)
1000 FORMAT ('O`,T1O,'RELATIVE DIFFERENCE OF ACTIVITY COEFFICIENTS'/)
    WRITE (NPRT,53C) IE, IR
    WRITE (NFRT,550) (I,I=1,N(N), (I,I=1,NCN)
    DO 1001 J=1,NPT
    DU 1001 I=1,2#NCN
1001 HCLC(I,J)=0.0
    DG 1005 J=IST,NPT
    DO 1002 I=1,NCN
    HCLO(I,J)=100.0%(G1EO(I,J)-G1O(I,J))/G1EO(I,J)
    HCLO(I+NCN,J)=100.0#(G2EO(I,J)-G2O(I,J))/G2EO(I,J)
```

```
    1002 CONTINUE
            WRITE (NPRT,362) (HCLD(I,J),I=1,2%NCN)
    C1003 FORMAT (' ',<NCN\(2PF10.3),5X,<NCN>(2PF10.3))
    1005 CONTINUE
c
        NNN=2*NCN
                            CALL TALLY1 (HOLD,SS,TOTAL,MEAN,SD,VMIN,VMAX,IST,NPT,NNN)
C
    WRITE (NPRT,1011)
    1011 FORMAT (/' mEAN REL % DEVIATION VALUES*/)
    WRITE (NPRT,862) (MEAN(I),I=1,2#NCN)
    WRITE (NPRT,1013)
    1013 FORMAT (/' MAX. REL % DEVIATION VALUES*/)
        WKITE (NPRT,862) (VMAX(I),I=1,2#NCN)
        WRITE (NPRT,1014)
    1014 FORMAT (/` STD. DEVIATION VALUES */)
    WRITE (NPRT,962) (SC(I),I=1,2#NCN)
C
C CALCULATION OF OIFFERENCE IN ACTIVITIES: LLE SYSTEM
C WRITE (NPRT,1015)
C1015 FORMAT ('1*,T10,'OIFFERENCE IN ACTIVITIES (EXPT-CALC) ",)
C WRITE (NPRT,530) IE, IR
C WRITE (NPRT,550) (I,I=1,NCN), (I,I=1,NCN)
C DO 1017 J=IST,NPT
C1017 WRITE (NPRT,1018) ((ACTIEC(I,J)-ACTICO(I,J)),I=1,NCN),
C * ((ACT2EO(I,J)-ACT2CO(I,J)),I=1,NCN)
C1018 FORMAT (* ',<NCN\F10.6,5X,\langleNCiN>F10.6)
C
C ABSOLUTE EXPT & CALC ACTIVITY OIFFERENCES IN LLE SYSTEM
HRITE (NPRT,1020)
C1020 FDRMAT ('0',<5#NCN-9>X,*ABS DIFF IN EXPT ACT',<<10#NCN-11>X,
C *OAES DIFF IN CALC ACTO/)
C WKITE (NPRT,550) (I,I=1,NCN), (I,I=1,NCN)
C DO 1025 J=IST,NPT
(1025 WRITE (NPRT,1018) ((ABS(ACT1EO(I,J)-ACT2EO(I,J))),I=1,NCN),
C * ((ABS(ACTICO(I,J)-ACT2CO(I,J))),I=I,NCN)
C
C DISTRIblticn ceEfficIENTS IN LlE SYSTEM
C
        WRITE (NPRT,1030)
1030 FORMAT ('1',"EXPERIMENTAL OISTRIEUTION COEFF',7X, 'CALCULATEL
    #DISTRIBLTIDN COEFF'/)
        WRITE (NPRT,550) (I,I=1,NCN), (I,I=1,NCN)
        DO 1033 J=IST,NPT
        WRITE (NPRT,1032) (KEO(I,J),I=1,NCN), (KCO(I,J),I=1,NCN)
1032 FORMAT (' ",<NCN>(F10.4),5X,\langleNCN\(F10.4))
iOg3 CONTINUE
c
C ABSDLUTE & RELATIVE CIFF OF OISTRIBUTION COEFFICIENTS IN
    LLE SYSTEM.
HRITE (NPRT,1040)
1040 FORMAT ('0',\langle5#NCN-Э>X,'DIFF IN DIST COEFF',<10#NCN-15>X,
    *'REL * CIFF IN CIST CCEFF%/)
        WRITE (NPRT,550) (I,I=1,NCN), (I,I=1,NCN)
        OC 1043 J=1,NPT
        OC 1043 I=1,2#NCN
1043 HuLC(I,j)=0.0
```

```
            DO 1050 J=IST,NPT
            DG 1045 I=1,NCN
            HELD(I,J)=KED(I,J)-KCJ(I,J)
            HELD(I+NCN,J)=100.0%(KEO(I,J)-KCO(I,J))/KEO(I,J)
    1045 CONTINUE
                            WRITE (NPRT,1047) (HDLD(I,J),I=1,2#NCN)
    1047 FORMAT (* U,\langleNCN\rangleG13.4,5X,\langleNCN>(G13.4))
    10SO CONTINUE
C
            CALL TALLYI (HDLD,SS,TCTAL,MEAN,SD,VMIN,VMAX,IST,NPT,NNN)
            WRITE (NPRT,993)
            WRITE (NPRT,1047) (MEAN(I),I=1,2*NCN)
            WRITE (NPRT,995)
            WRITE (NPRT,1047) (VMAX(I),I=1,2#NCN)
            WRITE (NPRT,997)
            WRITE (NPRT,1047) (SD(I),I=1,2&NCN)
    1060 CONTINUE
C
C INFINITE OILUTION ACTIVITY COEFFICIENTS (LLE)
C TEMPORARY BYPASS ESTABLISHED BECAUSE INFY IS NOT READY FOR
C TWO LIQUIO PHASES INFINITE DILJTIJN GAMMA & OIST. COEFF.
C
    GO TO 1300
    999 IF (LLEFN .NE. 12) GOTE 1300
    WRITE (NPRT,1070)
    2070 FORMAT (*OINFINITE OILUTION ACTIVITY COEFFICIENTS WITH
    #EXPERIMENTAL X VALUES'/)
        WRITE (NPRT,530) IE, IR
        WRITE (NPRT,550) (I,I=1,NCN), (I,I=1,NCN)
        DO 1100 J=IST,NPT
    1100 WRITE (NPRT,910) (GIIEO(I,J),I=1,NCN), (GíIEO(I,J),I=1,NCN)
C
    WRITE (NPRT,1120)
    1120 FORMAT G'OINFINITE CILUTION ACTIVITY COEFFICIENTS WITH
        *CALCULATED X VALUES*/)
            WRITE (NPRT,530) IE, IR
            WRITE (NPRT,550) (I,I=1,NCN), (I,I=1,NCN)
            OO 1160 J=IST,NPT
    1160 WRITE (NPRT,910) (GIICO(I,J),I=I,NCN), (G2ICD(I,J),I=1,NCN)
C
C CALCULATION DF RELATIVE DIFFERENCE OF INFINITE IILUTION
C ACTIVITY COEFFICIENTS:
C
        HRITE (NPRT,1165)
    1165 FORMAT (*O*,T5,*% RELATIVE DIFFERENCE OF INFINITE OILUTION
        * ACTIVITY CCEFFICIENTS*/)
        WRITE (NPRT,530) IE, IR
        WRITE (NPRT,550) (I,I=1,NCN), (I,I=1,NCN)
        DO 1175 J=IST,NPT
        WRITE (NPRT,862) ((6GIIEO(I,J)-GIICE(I,J))/GIIEC(I,J)),I=1,NCN),
        #
                            (C(G2IEC(I,J)-G2ICO(I,J))/G2IEO(I,J)),I=I,NCN)
    1175 CONTINUE
C
C INFINITE DILUTION CISTRIQUTION COEFFICIENTS IN MULTICOMPINENT SYSTEM
C
        WRITE (NPRT,1190)
1180 FORMAT ('0',TI5, 'INFINITE DILUTION OISTRIBUTION COEFFICIENTS'/
    #T20,"EXFERIMENTAL",T45,*CALCULATED*/)
        WRITE (NPRT,530) IE, IR
        WRITE (NPRT,E5C) (I,I=1,NCN), (I,I=1,NCN)
```

```
            DO 1220 J=IST,NPT
    1220 WRITE (NPRT,910) (KIEO(I,J),I=1,NCN), (KICO(I,J),I=1,NCN)
        DELK=0.0
        DO 1250 I=1,NCN
        DG 1230 J=IST,NPT
    1230 DELK=DELK+ABS(KIEO(I,J)-KICO(I,J))/KIEO(I,J)
        DELK=DELK/NPT
        WRITE (NPRT,1240) I,100.0#DELK
    :240 FORMAT ('OAVE % REL DIFF IN OIST CCEFF (AT INFINITE DILLTIEN)
    #OF COMP ',I1,*=',G11.4)
    1250 CONTINUE
C
    1300 RETURN
```



```
            END
            SUBROUTINE TALLY1 (AA,SS,TCTAL,MEAN,SD,VMIN,YMAX,IST,NPT,NV)
C
        REAL#4 AA(20,200), SS(1), TOTAL(20), SO(20), MEAN(20),
        *
                                VMIN(20), VMAX(20), SCNT(20)
C
c
c
c
    OO 5 J=IST,NPT
5 WRITE (6,2) (AA(I,J),I=1,NTEMP)
C 2 FORMAT (/" AA VALUES IN TALLY1 ARE 0,<2#NV>EI2.4)
    OO 10 K=1,NV
    TCTAL(K)=0.0
    MEAN(K)=0.0
    SD(K)=0.0
    SCNT(K)=0.0
        VMIN(K)=1.0E35
        10 VMAX(K)=-1.0E35
c
c
    CALCULATE TCTAL, MINIMA, MAXIMA
    DO 70 I=1,NV
    DJ 60 J=IST,NPT
    IF (AA(I,J)) 25,60,25
25 SCNT(I)=SCNT(I)+1.0
    TOTAL(I)=TCTAL(I)+ARS(AA(I,J))
    IF (ABS(AA(I,J))-VMIN(I)) 30,40,40
30 VMIN(I)=ABS(AA(I,J))
40 IF (ABS(AA(I,J))-VMAX(I)) 60,60,50
50 VMAX(I)=ABS(AA(I,J))
    SC(I)=SD(I)+AA(I,J)#AA(I,J)
    GO CONTINUE
    70 CONTINUE
calculate means and standard deviations
DO \(80 \quad I=1, N V\)
IF (SCNT(I) .EG. O.O) GC TO 80
MEAN(I)=TCTAL(I)/SCNT(I)
SC(I) =SERT(ABS(CSD(I)-TCTAL(I)\#TCTAL(I)/SCNT(I))/
*
(SCNT(I)-1.0)))
80 CONTINUE
DO 90 I=I,NV
IF (VMIN(I) .EQ. 1.0E35) VMIN(I) \(=0.0\)
IF (VMAX(I).EG. -1.0E35) VMAX(I) \(=0.0\)
go continue
```

```
        RETURN
        ENC
        SUEROUTINE FXVLE (ZZZ)
    C
    PROGRAMMED BY H.S. CHAWLA .... OCT. 19R4.
    THIS SUBPROGRAM CALCULATES THE OSJECTIVE FUNCTION FOR
    VLE REGRESSION
        COMMON /BLANK/ NCR, NPRT, NSTART, KUNITS, TITLE(20)
        COMMON /CMPRO/ NC, NCMI, IDLL, IDLV, IDH, LDBUG, ISW, NOIM,
        #
    COMMON /STRM/ T,P, Z(10), Y(10), X(10), FRACV, ZVAP,
* EK(10), VP(10), FUG(1C), GAM(1C), SVAP,
# HOFZ, HVAP, HLIQ, CHV, XSH, NOEUB, NODEW
    COMMON /CONTRL/ ITF, IPF, N, NTYPE, JCODE, NLIQ
    COMMDN /TWCLQ/ XI(10), X2(10), GAMI(10), GAM2(10), EKI(10),
                                EK2(10), DHL(2), HIDLL(2), HREALL(z), FRACL,
                                IE, IR, XMAX, XMIN
    COMMON /ZFEEDZ/ PF, TF, FEED, FMCL, TREF, HI, NK2, VFEED
    CCMMON /FOX/ XIEXP(10), X2EXP(10), GAMIE(10), GAM2E(10),
        GAMIIE(10), GAM2IE(10),GAMIIC(10), GAM2IC(10),
        ACT1C(10), ACT2C(10), ACT1E(10), ACT2E(10),
        KE(10), KC(10), KIE(10), KIC(1C),W1(1C),
        WZ(10), YEXP(10), TEXP, PEXP, WT, WTI,.VLEFN,
        LLEFN, VLLFN, NVLPT, NLLPT, NCVLE, NCLLE,
        NMODEL, INX, RECODE, NDTALE(15,10), NDSET
        INTEGER vLEFN, LLEFN, vLLFN, RECODE
        INC=0
        SUM=0.0
        AAA=0.0
        BBB=0.0
        IF (VLEFN .LE. O .CR. VLEFN .GT. 21) CALL EXIT
        GO TO (500,550,600,650,700,750,800,850,900,550,1000,1050,
        # 1100,1150,1200,1250,1300,1350,1400,1450,1500,155C), VLEFN
            FUNCTION # 1: ABSCLUTE DIFFERENCE OF INFINITE CILUTION
                        ACTIVITY COEFFICIENTS
    TC BE FIXED
    500 CALL INFY (IMIN1,IMIN2)
        OC 510 I=1,NCVLE
        IF (XIEXP(I) .NE. O.O) GO TO 505
        INC=INC+1
        GO TO 510
    505 SUM=SUM+ABS(GAM1IE(I)-GAMIIC(I))
    510 CONTINUE
        ZZ=SUM/(NCVLE-INC)
        GO TO 2000
C
C
C
C
    FUNCTIDN # 2: RELATIVE OIFFERENCE OF INFINITE CILUTION
                                    ACTIVITY COEFFICIENTS
    TO BE FIXED
550 CALL INFY (IMIN1,IMIN2)
    DC 560 I=1,NCVLE
    IF (XIEXP(I) ©NE. O.0) GJ TO 555
    INC=INC+1
    GO TO 560
555 SUM=SUM+AES(GAN1IE(I)-GAMIIC(I))/GAMIIE(I)
560 CONTINUE
    ZZ=SUM/(NCVLE-INC)
```

 IF (XIEXP(I) ©NE. O.O) GO TO 655
 \(I N C=I N C+1\)
 GOTJ 660
 655 SUM = SUM + ABS(GAM1E(I)-GAM1 (I))
 660 CONTINUE
 \(Z Z=S U M /(N C V L E-I N C)\)
 GO TO 2000
 C
C
700 00 710 I=1,NCVLE
IF (XIEXD(I) -NE O.O) GOTO 705
$I N C=I N C+1$
GO TO 710
705 SUM = SUM+ABS(GAMIE(I)-GAMI(I))/GAM1E(I)
710 CONTINUE
$Z Z=S U M /(N C V L E-I N C)$
GOTO 2000
C
C FUNCTION \Rightarrow 6: RELATIVE OIFFERENCE OF LOGRITHM OF ACTIVITY
C
750 OO $760 \quad \mathrm{I}=1$, NCVLE
IF (XIEXP(I) ©NE. O.O) GQ TO 755
$I N C=I N C+1$
GOTO 760
755 SUM = SUM + ABS (ALOG(GAMI(I)/GAM1E(I)))
760 CONTINUE
$Z Z=S U M /(N C V L E-I N C)$
GO TO 2000
C
c
C
C
800 DE $810 \mathrm{I}=1$, NCVLE
IF (YEXP(I) -NE. O.O.CR. Y(I) .NE. O.O)GC TO 805
$I N C=I N C+1$
GO TO B10
805 SUM = SUM + AES (YEXP (I)-Y(I))
810 CONTINUE
$Z Z=S U M /(N C V L E-I N C)$
GO TO 2000
C

```
C FUNCTION # 3: RELATIVE DIFFERENCE OF Y'S
C
    950 DO 860 I=1,NCVLE
    IF (YEXP(I) .NE. O.O) GC TO }85
    INC=INC+1
    GO TO 8&O
    355 SUM=SUM+ABS(YEXP(I)-Y(I))/YEXP(I)
    860 CONTINUE
        ZZ=SUM/(NCVLE-INC)
            GO TO 2000
C
C
    900 DC 910 I=1,NCVLE
    IF (YEXP(I) .NE. O.O .OR. Y(I) .NE. O.O)GO TO 90S
    INC=INC+1
    GO TO 910
    905 SUM=SUM+ABS(ALOG(Y(I)/YEXP(I)))
    910 CONTINUE
        ZZ=SUM/(NCVLE-INC)
        GO TO 2000
C FUNCTION # 10: ABSCLUTE DIFFERENCE CF YOS AND RELATIVE
                                    DIFFERENCE OF TOTAL P'S
    950 DO 960 I=1,NCVLE
    IF (YEXP(I) .NE. O.O .OR. Y(I) .NE. O.O)GD TC 955
    INC=INC+1
    GO TO 960
    955 SUM=SUM+ASS(YEXP(I)-Y(I))
    960 CDNTINUE
    ZZ=SUM/(NCVLE-INC)+ABS(PEXP-P)/PEXP
    60 TO 2000
C
    1000 DO 1010 I=1,NCVLE
    IF (YEXP(I) .NE. O.O .OR. Y(I) .NE. O.O)GO TO 1005
    INC=INC+1
    GO TO 1010
1005 SUM=SUM+ABS(YEXP(I)-Y(I))/YEXP(I)
1010 CONTINUE
    ZZ=SUM/(NCVLE-INC)+ABS(PEXP-P)/PEXP
    GO TO 2000
c
1050 DC 1060 I=1,NCVLE
    IF (YEXP(I) .NE. 0.0 .OR. Y(I) .NE. O.0)GO T0 1055
    INC=INC+1
    GO TO 1050
    1055 SUM=SUM+AÓS(ALOG(Y(I)/YEXP(I)))
1060 CONTINUE
    ZZ=SUM/(NCVLE-INC)+ASS(ALOG(P/PEXP))
    G0 T0 2000
non
    FUNCTIDN # 11: RELATIVE DIFFERENCE CF YOS AND RELATIVE
                                    DIFFERENGE OF TOTAL P'S
    INC=INC+1
    FUNCTION * 12: CIFFERENCE CF LOGRITHM OF Y'S ANO
                                DIFFERENCE OF LOGRITHM OF TGTAL POS
```

```
00 ZZ=ABS(PEXP-P)
    GO TO 2000
    FUNCTION 14: RATIC OF Y'S
50 LZ=ABS(P/PEXP)
    G0 TO 2000
    FUNCTION # 15: RELATIVE DIFFERENCE OF TOTAL POS
00 Z2=ABS(PEXP-P)/PEXP
    GO TO 2000
    FUNCTIUNN 16: DIFFERENCE OF LOGRITHM TOTAL POS
50 LZ=ABS(ALOG(P/PEXP))
    GO TO 2000
    FUNCTION* 17: ABSCLUTE DIFFERENCE OF BUBGLE POINT T'S
OO ZZ=ABS(TEXP-T)
    GO TO 2000
    FUNCTION * 13: RATIC OF BUBBLE POINT T'S
50 L2=ABS(T/TEXP)
    GO TO 2000
    FUNCTION # 19: RELATIVE DIFFERENCE OF BUBBLE POINT T'S
00 ZZ=ABS(TEXP-T)/TEXP
    GO TO 2000
    FUNCTION # 20: CIFFERENCE OF LOGRITHM OF BUEBLE POINT T'S
50 22=ABS(ALOG(T/TEXP))
    GO TO 2000
    FUNCTION # 21: ABSCLUTE DIFFERENCE OF BUBALE POINT T'S &
                                    ABSClUTE DIFFERENCE CF Y'S
500 AAA=ABS(TEXP-T)
    DO 1510 I=1,NCVLE
    IF (YEXP(I).NE. O.O .OR. Y(I) .NE. O.O)GO TO 1505
    INC=INC+1
    GO TO 1510
505 SUM=SUM+ABS(YEXP(I)-Y(I))
SIO CONTINUE
    BBE=SUM/(NCVLE-INC)
    ZZ=AAA+2BB
    GO TO 2000
    FUNCTION # 22: RELATIVE OIFFERENCE OF BUBBLE POINT T'S &
                                ABSCLUTE DIFFERENCE CF Y'S
550 AAA=ABS(TEXP-T)/TEXP
    DO 1560 I=1,NCVLE
    IF (YEXP(I).NE. O.O .DR. Y(I) .NE. O.0)GO TO 1555
    INC=INC+1
    GC TJ 1j60
```

```
    1555 SUM=SUM+ABS(YEXP(I)-Y(I))
    1500 CONTINUE
        38B=SUM/(NCVLE-INC)
        ZZ=AAA+B8B
C
    2000 Z2Z=2Z
        RETURN
        ENO
        SUBROUTINE FX2LIQ (2Z2)
C
C PROGRAMMEO BY H.S. CHAWLA
    Calculates the cbjective function for the lle regressian.
    COMMON /BLANK/ NCR, NPRT, NSTART, KUNITS, TITLE(2O)
    COMMON /CMPRO/ NC, NCM1, IOLL, IOLV, IDH, LOBUG, ISW, NOIM,
    #
    COMMON /ZOATA/ CPL(10,4), CPV(10,4), ENP(10,10), ANT(E,10),
    #
        w(10), AX, EX, OMEGA(10), AVAL(10), SVAL(10),
        AK(10,10), R(10), G(10), QP(10), XL(10),
        VGL(10), C(180), ALPHA(45), VC(10), TC(10),
        PC(10), ZC(10), TNBP(10), CA(10), OB(10),
        A(10,10), G(10,10), LRA(10), RC(10), OMU(10),
        ETA(10)
        T, P, L(10), Y(10), X(10), FRACV, LVAP,
        EK(10), VP(10), FUG(10), GAM(10), SVAP,
        HCFZ, HVAP, HLIQ, EHV, XSH, NOBUB, NOCEW
        ITF, IPF, N, NTYPE, JCODE, NLIO
        X1(10), X2(10), GAM1(10), GAM2(10), EK1(10),
        EK2(10), OHL(2), HIOLL(2), HREALL(2), FRACL,
        IE, IR, XMAX, XMIN
        X1EXP(10), X2EXP(10), GAM1E(10), GAM2E(10),
        GAM1IE(10), GAM2IE(10),GAMIIC(10), GAM2IC(10),
        ACT1C(10), ACT2C(10), ACT1E(10), ACT2E(10),
        KE(10), KC(10), KIE(10), KIC(10), W1(10),
        W2(10), YEXP(10), TEXP, PEXP, WT, WT1, VLEFN,
        LLEFN, VLLFN, NVLPT, NLLPT, NCVLE, NCLLE,
        NMODEL, INX, RECOCE, NOTALE(15,10), NDSET
C
    REAL KE,KC,KIE, KIC
    INTEGER VLEFN, LLEFN, VLLFN, RECODE
    NLIQ=2
    FRACL=0.5
    SUM=0.0
    DO 10 I = 1,NCLLE
    Z(I)=X1EXP(I)\not=FRACL+X2EXP(I)#(1.0-FRACL)
    SUM=SUM+Z(I)
10 CONTINUE
    DC 20 I = 1,NCLLE
    Z(I)=Z(I)/SUM
    <O CGNTINUE
    CALL INTLIZ (ID)
    IF (LDBUG -GE. 2) WRITE(NPRT,30)(Z(I),I=1,NCLLE)
    30 FJRMAT (* IN FX2LIO: Z(I) = 0,10(E13.7,2X))
C
    IF (LDBUG .GE. 2) WRITE (NPRT,35)(X1(I),I=1,NCLLE)
    35 FORMAT (* X1(I) GUESSES = ',10(E13.5,2X))
    IF (LDQUG -GE. 2) WRITE (NPRT,38)(X2(I),I=1,NCLLE)
    33 FORMAT (* X2(I) GUESSES = ',10(E13.5,2X))
C
```

call twclig

```
        IF (NLIG.GT. 1)GOTO 39
        ZZ=10.0
        GO TO 1000
    C
C CALCULATION OF WEIGHTING FACTORS W1(I),WZ(I).
C W1(I)=W2(I)=1.0 IF WT=0.0
    39 OG 40 I=1,NCLLE
    IF (XIEXP(I) .EG. 0.0) GO TO 40
    WI(I)=ABS(1.0+WT*(ABS(XIEXP(I)-XI(I)))/XIEXF(I))
    IF (X2EXP(I) .EQ. O.0) GO TO 40
    W2(I)=ABS(I.0+WT*(ABS(X2EXP(I)-X2(I)))/X2EXP(I))
    4O CONTINUE
C
C
C
C
    CALCULATION OF EXPERIMENTAL AND CALCULATED ACTIVITIES
    IN BOTH THE LIQUIO PHASES.
    OO 50 I=1,NCLLE
    ACT1C(I)=GAM1(I)#X1(I)
    ACT2C(I)=GAM2(I)*X2(I)
    50 CONTINUE
    CALL ACTVY (T,P,X1EXP,GAM1E)
    CALL ACTVY (T,P,X2EXP,GAM2E)
    OO 60 I=1,NCLLE
    ACTIE(I)=GAMIE(I)*XIEXP(I)
    ACT2E(I)=GAM2E(I)*X2EXP(I)
60 CUNTINUE
    CALCULATION OF SOLUTE DISTPISUTION COEFFICIENTS
    KE(I) : EXPERIMENTAL ; KC(I) : CALCULATED
    DO }70\mathrm{ I=1,NCLLE
    KE(I)=GAM2E(I)/GAM1E(I)
    KC(I)=GAM2(I)/GAM1(I)
    KE(I)=1.0
    KC(I)=1.0
    IF (X2EXP(I) .EG. 0.0.OR. X2(I) .EG. O.O) GOTO 70
    KE(I)=X1EXP(I)/X2EXP(I)
    KC(I)=X1(I)/X2(I)
    70 CONTINUE
        INC=O
        SUM=0.0
        AAA=0.0
        BBE=0.0
        IF (LLEFN .LT. O .OR. LLEFN .GT. 13) CALL EXIT
        GO TO (100,150,200,250,300,350,400,450,500,600,650,700,
        #
                        750),LLEFN
    FUNCTION # 1 : ABSCLUTE ACTIVITISS
    100 DO 110 I=1,NCLLE
    IF (XIEXP(I) .NE. O.O.OR. X2EXP(I) .NE. O.0) GU TO 105
    INC=INC+1
    GO TO 110
    105 SUM=SUM+ABS(ACT1C(I)-ACT2C(I))
    110 CONTINUE
    ZZ=SUM/(NLIG*(NCLLE-INC))
    GO TO 1000
    FUNCTION * 2 : RELATIVE ACTIVITIES
```

```
C
    150 DC 160 I=1,NCLLE
        IF (XIEXP(I) .NE. O.O .OR. X2EXP(I) .NE. O.O) GC TC 155
        INC=INC+1
        GO TO 160
    155 SUM=SUM+ABS(ALOG(ACT1C(I))-ALOG(ACT2C(I)))
    160 CONTINUE
    ZZ=SUM/(NLIG#(NCLLE-INC))
    GO TO 1000
C
C FUNCTION # j : RELATIVE ACTIVITIES
200 DO 210 I=1,NCLLE
    IF (XIEXP(I) .NE. O.O .UR. X2EXP(I) .NE. O.0) GC TO 205
    INC=INC+1
    GO TO 210
    205 SUM=SUM+ABS(CACT1C(I)-ACT2C(I))/(ACT1C(I)+ACT2C(I)))
    210 CONTINUS
    ZZ=SUM/(NLIG*(NCLLE-INC))
    GO TO 1000
C
250 DO 260 I=1,NCLLE
    IF (XIEXP(I) .NE. O.O .CR. X2EXP(I) .NE. O.O) GE TO 255
    INC=INC+1
    IINC=INC
    GO TO 260
    255 IF (I .EQ. IE .OR. I .EQ. IR) GO TO 260
    AAA=AAA+ABS(ALCG(ACTIC(I))-ALOG(ACT2C(I)))
    260 CONTINUE
    DO 270 I=1,NCLLE
    IF (XIEXP(I) .NE. O.O .OR. X2EXP(I) .NE. O.0) GC TO 265
    INC = INC+1
    GO TO 270
    265 SUM=SUM+ABS((ALCG(ACTIC(I))-ALOG(ACT2C(I)))#x1(I)*x2(I))
    270 CONTINUE
    ZZ=SUM/(NLIG*(NCLLE-INC))+AAA/(NLIQ*(NCLLE-IINC-Z))
    GO TO 1000
    THE fOLLOWING OBJECTIVE FUNCTIONS ARE IN TERMS OF CCNC.:
    ABSOLUTE & RELATIVE
    FUNCTION * 5 : ABSOLUTE CONCENTRATIONS
    300 DO 310 I=1,NCLLE
    IF (XIEXP(I) .NE. O.0.ER. X2EXP(I) .NS. O.0) GC TO 305
    INC=INC+1
    GO TO 310
    305 TEMP1=W1(I)*ABS(X1EXP(I)-X1(I))
    TEMP2=W2(I)*ABS(X2EXP(I)-X2(I))
    SUM=SUM+TEMP1 +TEMP2
    310 CONTINUE
    ZZ=SUM/(NLIG*(NCLLE-INC))
    GO TO 1000
    FUNCTION # 6 : RELATIVE CONCENTRATIONS
```

```
    350 DO 360 I=1,NCLLE
    IF (XIEXP(I) .NE. O.O GOQ. X2EXP(I) .NE. O.O) GO TO }35
    INC=INC+1
    GO TO 360
    355 TEMP1=W1(I) #ABS(ALCG(XIEXP(I))-ALJG(XI(I)))
    TCMP2=WC(I)#ABS(ALDG(X2EXP(I))-ALOG(X2(I)))
    SUM=SUM+TEMP1 +TEMP2
    3ó0 CONTINUE
    ZZ=SUM/(NLIG#(NCLLE-INC))
    GOTO 1000
C
C FUNCTION % % RELATIVE CONCENTRATIONS
    400 DO 410 I=1,NCLLE
    IF (X1EXP(I) .NE. 0.0 .AND. X2EXP(I) .NE. O.D) GO T0 405
    INC=INC+1
    GO TO410
    405 TEMPI=W1(I)*ABS((XIEXP(I)-XI(I))/XIEXP(I))
    TEMP2=W2(I)*ASS((XEEXP(I)-X2(I))/X2EXP(I))
    SUM=SUM+TEMP1+TEMP2
    410 CONTINUE
    ZZ=SUM/(NLIG*(NCLLE-INC))
    GO TO 1000
C
C FUNCTIDN# %: RELATIVE CONCENTRATIONS
C
    450 OC 4S0 I=1,NCLLE
    IF (XIEXP(I) .NE. O.O .AND. X2EXP(I).NE. O.O) GD TO 455
    INC=INC+1
    GO TO 460
    455 TEMPI=W1(I) &ABS((XIEXP(I)-XI(I))/(XIEXP(I)+XI(I)))
    TEMP2=W2(I)#ABS((X2EXP(I)-X2(I))/(X2EXP(I)+X2(I)))
    SUM=SUM + TEMP1 + TEMP2
    460 CONTINUE
    ZZ=SUM/(NLIG%(NCLLE-INC))
    GE TO 1000
C
C FUNCTION * : RELATIVE CONC E OISTRIBUTION RATIDS
C GNLY FOR MULTICOMPONENT SYSTEM
C
    500 DO 510 I=1,NCLLE
    IF (X1EXP(I) .NE. O.O .OR. X2EXP(I) .NE. O.OS GC TU 505
    INC=INC+I
    IINC=INC
    GO TO 510
C 505 IF (I .EQ.IE.OR.I.EG.IR)GOTO 510
    505 AAA=AAA+ABS((KE(I)-KC(I))/KE(I))
    510 CONTINUE
        DO 520 I=1,NCLLE
        IF (XIEXP(I) .NE. O.O .OR. X2EXP(I) .NE. O.O) GC TC 515
        INC =INC+1
        GO TD 520
    515 TEMP1=W1(I) %ABS((XIEXP(I)-X1(I))/XXIEXP(I))
    TEMP2=W2(I)*ABS((X2EXP(I)-X2(I))/XIEXP(I))
    SUM=SUM+TENP1+TEMP?
    520 CONTINUE
C LL=SUM/(NLIG%(NCLLE-INC))+AAA/(NCLLE-IINC-2)
    ZZ=SUM/(NLIG*(NCLLE-INC))+AAA/(NCLLE-IINC)
    GO TO 1000
C
```

FUNCTION * 10 : RELATIVE CONC \& DISTRIBUTION RATIOS QNLY FER MULTICOMPONENT SYSTEM

605 AAA =AAA+ABS(ALCG(ABS(KE(I)/KC(I))))
510 CONTINUE
 $I N C=I N C+1$ GOTO 615
$615 \operatorname{TEMPI}=W 1(I) \neq A B S(A L C G(X I E X P(I))-A L O G(X I(I)))$
TEMPZ=W2(I) $A B S(A L G G(X 2 E X P(I))-A L O G(X 2(I)))$ SUM $=$ SUM + TEMPI $1+$ TEMP2
520 CONTINUE \quad ($2=$ SUM/(NLIG\# (NCLLE-INC)) +AAA/(NCLLE-INC-2) $2 i=S U M /(N L I Q \neq(N C L L E-I N C))+A A A /(N C L L E-I N C)$ GOTO 1000

650 DE 660 I=1,NCLLE 0.0 .OR. X2EXP(I) .NE. O.OS GO TS 655 $I N C=I N C+1$
IINC $=I N C$
GDTO $660 \quad$ TEMPI $=W 1(I) \neq A B S((X 1 E X P(I)-X I(I)) /(X I E X P(I)+X I(I)))$

SUM $=$ SUM + TEMP $1+$ TEMP 2
660 CONTINUE
DU $670 I=1, N C L L E$. 0.0 . CR. X2EXP(I) .NE. 0.0) GU TO 665
$I N C=I N C+1$
GO TO 670 GR.I EEG. IR)GOTO 670
C 665 IF (I - EQ. IE © CR• $-K C(I)) /(K E(I)+K C(I)))$
$665 A A A=A A A+A E S((K E(I)-K C(I)) /(K E(I)+K C(I))$
C $\quad \begin{aligned} & Z Z=S U M /(N L I G \#(N C L L E-I I N C))+A A A /(N C L L E-I N C-2) \\ & Z Z=S U M /(N L I E *(N C L L E-I I N C))+A A A /(N C L L E-I N C)\end{aligned}$ $Z i=S U M /(N L$
$G O T O 1000$
FUNCTION \# 12 : RELATIVE CDNC, PARAMETER VALUES \& EISTRIBUTION RATIO AT INFINITE CILUTION
ONLY FOR MULTICGMPGNENT SYSTEM THE EISTRIOUTION
THE FCLLOWING QBJ FUNCTION TAKES INTGE DILUTION COEFFICIENTS UF THE SCLUTE AT INEESSED INX = OF PARAMETERS BEING REGRESSED WTI $=W E I G H T$

```
C 705 IF (I .EQ. IE.OR. I .EE. IR)GE TO 710
    705 AAA=AAA+AES(ALDG(AES(KIE(I)/KIC(I))))
    710 CONTINUE
        DO 720 I=1,2#INX
        BBB=B亠B+ABS(C(I))
    72 CONTINUE
    B3B=WT1%858
    DO 730 I=1,NCLLE
    IF (X1EXP(I).NE. O.0.CR. X2EXP(I) .NE. O.0) GC TO 725
    INC=INC+1
    GO TO 730
    725 TEMP1=W1(I)*ABS((XIEXP(I)-X1(I))/(XXIEXP(I)+X1(I)))
    TEMP2=W2(I)#AGS((X2EXP(I)-X2(I))/(X2EXP(I)+X2(I)))
    SUM=SUM + TEMP1 +TEMP2
    730 COMTINUE
C 22=SUM/(NLIG#(NCLLE-INC))+E83+AAA/(NCLLE-IINC-2)
    2L=SUM/(NLIG*(NCLLE-INC))+EBB+AAA/(NCLLE-IINC)
C
c
C
    750 DO 760 I=1,NCLLE
    IF (XIEXP(I) .NE. O.O .OR. X2EXP(I) .NE. O.0) GC TO 755
    INC=INC+1
    IINC = INC
    GO TO 760
    755 TEMP1=WI(I)#ABS((X1EXP(I)-X1(I))/(X1EXP(I)+X1(I)))
    TEMP2=W2(I) #ABS((X2EXP(I)-X2(I))/(X2EXP(I)+X2(I)))
    SUM=SUM+TEMP1+TEMP2
    760 CONTINUE
    DO 770 I=1,NCLLE
    IF (X1EXP(I) .NE. O.O .OR. X2EXP(I) .NE. O.0) GS TC 765
    INC=INC+1
    GO TO 770
C 765 IF (I .EQ. IE .OR. I -EQ. IR)GO TD 770
    765 AAA=AAA+ABS(ACT1E(I)-ACT2E(I))
    770 CONTINUE
c 2Z=SUM/(NLIG*(NCLLE-IINC))+AAA/(NCLLE-INC-2)
    ZZ=SUM/(NLIA#(NCLLE-IINC))+AAA/(NCLLE-INC)
C
    1000 222=22
    NLIO=2
C
    IF (LDBUG .LT. 2) GC TO 1300
    WRITE (NPRT,1200)
    1200 FORMAT (*IN FX2LIG AT STMT # 1200:%/)
    WRITE (NPRT,122G)(XAEXP(I),I=1,NCLLE)
    1220 FGRMAT (* XIEXF(I) = ',10(E13.5,2X))
    WRITE (NPRT,1230)(X1(I),I=1,NCLIE)
    1230 FORMAT (' XI(I) = ',10(E13.5,2X))
    WRITE (NPRT,1240)(X2EXP(I),I=1,NCLLE)
    1240 FORMAT (* X2EXP(I) = ',10(E13.5,2X))
    WRITE (NPRT,125C)(X2(I),I=1,NCLLE)
    1250 FORMAT (" X2(I) = ',10(E13.5,2X))
    1300 CONTINUE
c
    RETURN
    END
```

 SUEROUTINE IVFY (IMIN1,IMIN2)

COMMON COMMON	/GLANK/ /CMPRO/	NCR, NPRT, NSTART, KUNITS, TITLE(20) NC, NCMI, IELL, ICLV, IDH, LUSUG, ISW, NDIM,
*		
COMMON	/20ATA/	CPL $(10,4), \operatorname{CPV}(10,4), \operatorname{ENP}(10,10), ~ A N T(E, 10)$,
함		$W(10), ~ A X, ~ B X, ~ O M E G A(10), ~ \triangle V A L(10), ~ B V A L(10), ~$
¢		
\#		VOL(10), C(180), ALPHA(45), VC(10), TC(10),
\#		$P C(10), ~ Z C(10), ~ T N S P(10), ~ C A(10), ~ C S(10), ~$
\#		A(10,10), G(10,10), ERA 10$), \mathrm{RE}(10), ~ D N U(10)$,
中		ETA(10)
COMMON	/STRM/	T, P, Z(10), Y(10), X 10) FRACV, ZVAP,
\#		EK(10), VP(10), FUG(10), GAM(10), SVAP,
\pm		HCFZ, HVAP, HLIQ, DHV, XSH, NOEUS, NOCEW
COMMON	/CONTRL/	ITF, IPE, N, NTYPE, JCODE, NLIQ
COMMON	/TWCLQ/	X1(10), $\mathrm{X} 2 \mathrm{(10)}, \mathrm{GAM1(10)}, \mathrm{GAM2(10)}, \mathrm{EK1(1C)}$,
+		EK2(10), OHL(2), HIDLL(2), HREALL(2), FRACL,
+		IE, IR, XMAX, XMIN
COMMON	/FOX/	X1EXP(10), X2EXP(10), GAM1E(10), GAM2E(10),
\$		GAMIIE(10), GAM2IE(10), GAMIIC(10), GAM2IC(10),
\#		ACTIC(10), ACT2C(10), ACTIE(10), ACTEE(10),
¢		KE(10), KC(10), KIE(10), KIC(10), W1(10),
\#		H2(10), YEXP(10), TEXP, FEXP, WT, WTi, VLEFN,
も		LLEFN, VLLFN, NVLPT, NLLPT, NCVLE, NCLLE,
$\stackrel{1}{7}$		NMCDEL, INX, RECSDE, NOTALE(15,10), NOSET
REAL		XSI(10), XS2(10), GITEMP(10), G2TEMD(IC),
*		ISAVE($\hat{\text {) , KE, KC, KIE, KIC }}$
INTEGER		VLEFN, LLEFN, VLLFN, RECOCE
LEGICAL		FLAG

 LEGICAL
 FLAG
NCN = NCVLE
DO $20 \mathrm{I}=1, \mathrm{NCN}$
GAM1IE (I) $=1.0$
GAM2IE(I)=1.0
GAMIIC(I) $=1.0$
GAM2IC(I) $=1.0$
G1TEMP(I) $=1.0$
G2TEMP(I) $=1.0$
$K I E(I)=1.0$
$K I C(I)=1.0$
20 CONTINUE
IF (NLIE.GE. 2)GC TC 300
IF (NCVLE GT. 2)GETE 1000
SINGLE LIEUID PHASE CASE (BINARY SYSTEM ONLY)
IMIN1=1
$X M I N=1.0$
SUM $1=0.0$
$\sin 2=0.0$
DO $70 I=1, N E N$

```
```

 70 XMIN=AMIN1(XIEXP(I),XMIN)
 DU 80 I=1,NCN
 80 IF (ABS(XMIN-XIEXP(I)).LE. 1.E-12)IMINI=I
 \C 90 I=1,NCN
 IF (I .EG. IMINI) GE TO OO
 XSI(I)=XIEXP(I)
 XS2(I)=XI(I)
 SUM1=SUM1+XSI(I)
 SUM2=SUM2+XS2(I)
 SO CONTINUE
 XS1(IMIN1)=0.0
 XS2(IMIN1)=0.0
 DO 100 I=1,NCN
 XS1(I)=XS1(I)/SUM1
 100 XS2(I)=XS2(I)/SUM2
 IF (NTYPE.EQ. 1 .DR. NTYPE.EQ. 5) GJ TO 110
 CALL ACTVY (TEXP,P,XSI,GITEMP)
 OU 105 K=1,NC
 IF (K .EQ. IMIN1) GO TO 105
 T=TNBP(K)
 105 CONTINUE
 GO TO 115
 110 CALL ACTVY (T,PEXP,XSI,G1TEMP)
 115 CALL ACTVY (T,P,XS2,G2TEMP)
 GAMIIE(IMIN1)=GITEMP(IMIN1)
 GAM1IC(IMIN1)=G2TENP(IMIN1)
 GO TO 1000
 C
C TWO LIGUID PHASES CALCULATION
C ONLY BINARY CASE IS WORKING
300 NCN=NCLLE
IF (NGLLE.GT. 2)GO TO 1000
BINARY SYSTEM
XS1(IE)=1.0
XS1(IR)=0.0
XS2(IR)=1.0
XS2(IE)=0.0
CALL ACTVY (T,P,XSI,GAMIIC)
CALL ACTVY (T,P,XS2,GAM2IC)
KIC(IE)=GAM2IC(IE)/GAM1IC(IE)
KIC(IR)=GAM2IC(IR)/GAMIIC(IR)
GC TO 1000
C
C TwC liquID fHASES CASE
C CALCULATIJNS WITH EXPERIMENTAL X VALUES
C
400 DO 420 J=1,NCLLE-2
4\angleO ISAVE(J)=0
OUTER LCOP FJR ALL THE COMPONENTS IN BOTH THE LIQ PHASES
K=0
KK=0
OO 540 JJ=1,NCLLE
FLAG=.FALSE.
SUNi=0.0
SUM2=0.0
C INNER LOOP FOR INFINITE VALUES CF I COMPONENT IN THE SYSTEM
C OF NCLLE CCMPONENTS
DC 500 I=1,NCLLE
IF (FLAG .EG. -TRUE.)GC TO470
IF(I.EE.IE.GF.I .EG.IR)GO TO 4TO

```
```

 IFLAG=0
 K=K+1
 DC 450 J=1,K
 IF (I .EQ. ISAVE(J))IFLAG=I
 460 CONTINUE
 IF (IFLAG -EQ. 1)GOTO 4TO
 XSI(I)=0.0
 XS2(I)=0.0
 FLAG=.TRUE.
 ISAVE(K)=I
 III=I
 GOTO480
 470 CONTINUE
 XSI(I) =XIEXP(I)
 XS2(I)=X2EXP(I)
 480 SUM1=SUM1+XS1(I)
 SUM2=SUM2+XS2(I)
 500 CONTINUE
 OC 520 I=1,NCLLE
 XSI(I)=XSI(I)/SUM1
 X52(I)=XS2(I)/SUM2
 520 CONTINUE
 CALL ACTVY (T,P,XS1,GITEMP)
 CALL ACTVY (T,P,XS2,G2TEMP)
 KK=KK+1
 GAMIIE(KK)=G1TEMP(III)
 GAM2IE(KK)=G2TEMP(III)
 KIE(KK)=GAM2IE(KK)/GAMIIE(KK)
 540 CONTINUE
 C
C
calculations with calculated x values
600 DO 620 J=1,NCLLE-2
620 ISAVE(J)=0
QUTER LCOP FOR ALL THE COMPONENTS IN BOTH THE LIO PHASES
K=0
KK=0
DO 740 JJ=1,NCLLE
FLAG=.FALSE.
SUMI =0.0
SUM2=0.0
INNER LCOP FOR INFINITE VALUES OF 1 COMPONENT IN THE SYSTEM
DF NCLLE COMPONENTS
DC 700 I=1,NCLLE
IF (FLAG.EG..TRUE.)GOTO 670
IF(I .EQ. IE .CR. I EEG. IR)GD TO 670
IFLAG=0
K=K+1
DO 660 J=1,K
IF (I -EQ. ISAVE(J))IFLAG=1
GOO CONTINUE
IF (IFLAG.EQ. 1)GO TO 670
XSI(I)=0.0
XS2(I)=0.0
FLAG=.TRUE.
ISAVE(K)=I
III=I
GO TO 630
S70 CONTINUE
XS1(I)=X1(I)

```
```

 xS2(I)=x2(I)
 680 SUM1=SUN1+XS1(I)
 SUM2=SUM2+XS2(I)
 700 CONTINUE
 DU 720 I=1,NCLLE
 XSI(I)=XSI(I)/SUM1
 XS2(I)=XS2(I)/SUM2
 720 CONTINUE
 CALL ACTVY (T,P,XS1,G1TEMP)
 CALL ACTVY (T,P,XS2,G2TEMP)
 KK=kK+1
 GAMIIC(KK)=G1TEMP(III)
 GAM2IC(KK)=G2TEMP(III)
 KIC(KK)=GAM2IC(KK)/GAM1IC(KK)
 740 CONTINUE
 1000 RETURN
END

```

SUBROUTINE START（IEATA，MFEED，MCASES，＊）
KEY INTEGER COOES ARE INITIALIZED．FGR VAPCR DHASE DIMERIZATIGN THE ASSDCIATED TEMPERATURE DEPENDENT CONSTANTS ARE DEFINED．

RETURN 1 USED FQR END OF FILE AND ERROR RETURN．
FESRUARY 1985 ．．．ADDITION OF OPTION FOR TWO SETS OF ACTIVITY COEFFICIENT PARAMETERS


C
\(\qquad\)
DEC Error－Set Routines Activitated Errset 72 ＝Floating Point Overtiow Errset 73 ＝Divide Check Errset 74 ＝Floating Point Underflow Errsot \(77=\) Subscriot Out Df Range

CALL ERKSET（72，－TRUE•，•TRUE．，•FALSE．，•FALSE．，999）
CALL ERRSET（73，－TRUE•，•TRUE．，•FALSE．，•FALSE．，999）
CALL ERRSET（74，TTRUE＊－TRUE．，－FALSE．，©FALSE．9 999）
CALL ERRSET（77，FALSE．，．TRUE．，•FALSE．，•FALSE．9 999）
\(N C R=5\)
NPRT \(=\dot{\circ}\)
C
\＃\＃BASIC CONTRCL PARAMETERS ．．．RECORD＊ 1 （11 ENTRIES）
NC NUMBER OF COMPONENTS（1 THPU 10）
IDLL LIQUIJ PHASE CLASSIFICATION CODE IDEAL VAN LAAR MARGULES HILSON NRTL UNIQUAC UNIZUAC ．．．MJOIFIED UNIFAC戠市辛あれ あぁれあれ
 RWR－E PENG－RIETNSON（PR）

IOLV VAPOR PHASE CLASSIFICATION CDEE
0 IDEAL
1 VIRIAL ．．．HAYDEN－O CONNELL CORRELATION VIQIAL．．．TSONOPJULOS＊COREELATIEN REOLICH－KWENG（RK） SQAVE－REDLJCH－KwDNG（SRX）

```

~
C

```

```

C \#\#\# BASIC PARAMETERS -- OIMERIIATION CONSTANTS ... RECQRJ % 2
C 立市音 Optional Record
C FOR "NDIMN NOT EQUAL TO ZERO REAO IN THE DIMERIEATIGN CGNSTANTS
IF (NDIM.NE.O) READ (NCR;F) AX,BX
C
C
IF (IOLL.LT.O .OR. IOLL.GT.8) IDLL=0
IF (ICLV.LT.0 -DR.IDLV.GT.5) IDLV=0
C
IF (IDATA.EQ.1) IOLL=4
IF (IDATA.EQ.1) IDLV=3
WRITE (NPRT,13) NC
13 FGRMAT ('ONUMBER OF COMPONENTS =', I3)
HRITE (NPRT,14) IDLL,IDLV,IDH
14 FORMAT ('OVAPOR-LIGUIO EQUILIBRIUM OATA CGDES:*//
* 5X, 'LIOUID =', I4 /
\# 5X, 'VAPOR =', I5/
* 5X, `ENTHALPY =`, I2//)
C
WRITE (NPRT,15) LOBUG,IDATA,NOIM,MFEED,MCOLS
15 FORMAT (*ODEFINED CODE VALUES:*//
* 5X, 'PRINT/DEBUG m`, I17/ * 5X, "VLE DATA =*, I17// # 5X, 'NDIM * =`, I17/1/
\# 5X, 'FEED VAPORIIATION =`, II1/ # 5X. * OF PROCESS ALTERNATES =`, I5//)
C
C
VAPDR PHASE DIMERIZATION CONSTANTS ARE DEFINED
IF (NDIM.NE.D) WRITE (NPRT,1T) AX,BX
17 FORMAT (`OVAPOR PHASE DIMERIZATION CONSTANTS:*//
\# 5X, 'A =',G20.5/
* 5X, 'B =*,620.5)
GO TO 50
C
30 WRITE (NPRT,35)

```

```

 GO TO 100
 C
\#ます
BASIC PARAMETERS -- CCMPQNENT IC NUMBERS ... RECERD * 3
Optional fecerd
CEMPJNENT IDENTIFICATION NUMSERS ARE DEFINEE FOR USE OY
THE DATA LIGRARY SUBPROGRAMS

```
```

 50 IF (IDATA.EQ.1) READ (NCR,*) (NTCOMP(I),I=1,NC)
    ```
    WRITE (NPRT,65) NLIE, IPSET
        65 FORMAT ('ODEFINED CDDES AND VALUES:"/I
            * 5x, "NO. OF LIC PHASES =", I9/
            * 5 X, •* PARAMETER SETS \(=\cdot{ }^{\circ}\) (110///)
        90 WRITE (NPRT,91)
        91 FORMAT (////'ONOTE: ALL FLOWS ARE PER UNIT TIME, AND ENERGY* /
            END
    SUBROUTINE CDATA
    ROUTINE DEFINES THE PHYSICAL ANO THERMDDYNAMIC DATA FOR UP
    TO A TEN (IU) COMPDNENT SYSTEM. INCLUDED ARE THE ACTIVITY
    CoEfficient model parameters, which are system depenjent.
    COMMON /BLANK/ NCR, NPRT, NSTART, KUNITS, TITLE(20)
    COMMDN /CMPRO/ NC, NCM1, NCPI, IOLL, IDLV, IDH, LDBUG, ISW,
    \#
    CHARACTER*4
    COMMON /ZDATA/
    *
    *
    \#
    \#
    *
    \(\neq\)
    CDMMON /SWITCH/ CSTORE(160,2), ASTORE(45,2), ISTORE(2)
    COMMON /CONTRL/ ITF, IPF, N, NTYPE, JCJDE
C
    INTEGER ID(10)
    real
    TREF(10), \(\operatorname{HVAP}(10), E K(10), \operatorname{ETM}(10,10)\)
    equivalence the solvation parameters (etm) of the virial
    EGUATION OF STATE ... HAYDEN-D'CONNELL VERSION WITH THE
    Characteristic binary constants (ak) df the virial equation
    OF STATE ... TSCNOPEULOS VERSION
    EQUIVALENCE (ETM(1,1),AK(1,1))
\(c\)
c
    DCUBLE PRECISION
    CHARACTER*8 EGNV, EQNM, EQNW, EQNR, EGNU, EGNUZ, EGNF
    EGNV, EQNM, EGNW, EQNR, EQNU, EGNU2, EGNF
    DATA EGNV/'VANLAAR"/
    DATA EGNM /'MARGULES"/
    DATA EQNW /'WILSON*/
    DATA EQNR/-RENON*/
    DATA EGNU/OUNIZUAC\%/
    DATA EGNU2/®M-UNIQUC"/
    DATA EGNF/OUNIFAC\%/
    DATA OMA, EMS /0.42742, 0.03664/

c
c

0
```

NC NUMBER OF COMPDNENTS

```
NC NUMBER OF COMPDNENTS
IDLL LIQUIO PHASE CLASSIFICATION CODE
IDLL LIQUIO PHASE CLASSIFICATION CODE
                IDEAL
                IDEAL
                VAN LAAR
                VAN LAAR
                MARGULES
                MARGULES
                WILSON
                WILSON
                NRTL
                NRTL
                UNIQUAC
                UNIQUAC
                UNIQUAC ... MDOIFIED
                UNIQUAC ... MDOIFIED
                UNIFAC
                UNIFAC
                #ぁあれ#
                #ぁあれ#
                ぬあまれま
                ぬあまれま
                あれま##
                あれま##
                                BHR-F
                                BHR-F
                                PENG-ROBINSON (PR)
                                PENG-ROBINSON (PR)
IDLV VAPOR PHASE CLASSIFICATION CODE
IDLV VAPOR PHASE CLASSIFICATION CODE
    O IDEAL
    O IDEAL
        1 VIPIAL ... HAYDEN - O}CONNELL
        1 VIPIAL ... HAYDEN - O}CONNELL
                                    CORRELATION
                                    CORRELATION
                            2 VIRIAL ... TSONOPOULOS' CORRELATION
                            2 VIRIAL ... TSONOPOULOS' CORRELATION
                            3 REDLICH-KWONG (RK)
                            3 REDLICH-KWONG (RK)
                            4 SOAVE-REDLICH-KWONG (SPK)
                            4 SOAVE-REDLICH-KWONG (SPK)
            5 #れ#かれ
            5 #れ#かれ
            6 #$亠幺午
            6 #$亠幺午
            7 #####
            7 #####
            8 #れれれま
            8 #れれれま
            9 ##市市立
            9 ##市市立
            10 #れれみそれ
            10 #れれみそれ
            11 BWR-F
            11 BWR-F
            12 FENG-ROBINSIN (PR)
            12 FENG-ROBINSIN (PR)
IOH ENTHALPY CORRECTIGN
IOH ENTHALPY CORRECTIGN
            O CORRECT BOTH PHASES
            O CORRECT BOTH PHASES
    1 CORRECT VAPOR PHASE ONLY
    1 CORRECT VAPOR PHASE ONLY
    2 NO CORRECTION
    2 NO CORRECTION
LDOUG DEBUG CODE
LDOUG DEBUG CODE
    O MINIMUM PRINT QUT OF SEPARATION SYSTEM
    O MINIMUM PRINT QUT OF SEPARATION SYSTEM
    1 COMPDNENT DATA ANN FINAL CELUMN PRC-
    1 COMPDNENT DATA ANN FINAL CELUMN PRC-
                                    FILES PRINTED
                                    FILES PRINTED
        CODE 1 + INTERMEDIATE CCLUMN PRCFILES
        CODE 1 + INTERMEDIATE CCLUMN PRCFILES
            PRINTED
            PRINTED
IDATA DATA LISRAFY SWITCH
IDATA DATA LISRAFY SWITCH
    O READ VLE OATA FROM MCDATA"
    O READ VLE OATA FROM MCDATA"
    1 DETAIN DATA FROM "ZPVTEZNRTL"
    1 DETAIN DATA FROM "ZPVTEZNRTL"
NOIM EIMERIZATION COOE... VAPQR PHASE
NOIM EIMERIZATION COOE... VAPQR PHASE
    O NO OIMERIZATION IN VAPOR PHASE
    O NO OIMERIZATION IN VAPOR PHASE
    # COMPONENT NUMBER UNEERGCING DIMERIZATION
    # COMPONENT NUMBER UNEERGCING DIMERIZATION
NLIQ
NLIQ
    NUMBER OF LIQUID PHASES
    NUMBER OF LIQUID PHASES
    i GNE PHASE
    i GNE PHASE
    2 TW'S PHASES
    2 TW'S PHASES
IPSET PARAMETER SETS CORESSPONOING TO IELL
IPSET PARAMETER SETS CORESSPONOING TO IELL
    O GLJBAL SET CF PARAMETERS
    O GLJBAL SET CF PARAMETERS
    1 LNE SET GF PARAMETERS ... VLE VALUES
```

 1 LNE SET GF PARAMETERS ... VLE VALUES
    ```


```

INPUT RECORD *8
ANT VAPOR PRESSURE CONSTANTS
C1, C2,... C6
C1=a,C2=b,, C6=4
Atm versus DegK
ln(P) x a + b/(C + T) + d\& ln(T) +e\#t + f\#T^2
INPUT RECORD \#9 ... Optzonal Input --\infty Used Only If IDLV=1
IF THE VIRIAL EQUATION OF STATE IS USED MAYDEN-
O*CONNELL VERSION, THEN THE SOLVATION PARAMETERS MUST
BE DEFINSD: ETM(1,1), ETM(1,2), ETC.
INPUT RECORO *9 ... Optional Input --0 Used OnIy If IDLV=2
IF THË VIRIAL EQUATION OF STATE IS USED... HAYDEN-
O`CONNELL VERSION, THEN THE SOLVATION PARAMETERS MUST
BE DEFINED: ETM(1,1), ETM(1,2), ETC.

```

C
```

```
C
```

C
INTERNAL CODE VALUES FOR COMPONENT TYPE ... ALTERED BASED ON THE
INTERNAL CODE VALUES FOR COMPONENT TYPE ... ALTERED BASED ON THE
VALUE UEFINED CN RECORD \#2.
VALUE UEFINED CN RECORD \#2.
INPUT TYPE INTERNAL
INPUT TYPE INTERNAL
-1 NON-VOLATILE
-1 NON-VOLATILE
NON-CONDENSI3LE O
NON-CONDENSI3LE O
NORMAL 1
NORMAL 1
SUPERCRITICAL 2
SUPERCRITICAL 2
3010 I=1,2
3010 I=1,2
ISTORE(I)=0
ISTORE(I)=0
DO 7 J=1,150
DO 7 J=1,150
7 CSTORE(J,I)=0.0
7 CSTORE(J,I)=0.0
EO 10 K=1,45
EO 10 K=1,45
10 ASTERE(K,I)=0.0
10 ASTERE(K,I)=0.0
C
C
DO 110 I=1,NC
DO 110 I=1,NC
C
C
C *** INPUT RECORD WI ... A Format is used
C *** INPUT RECORD WI ... A Format is used
READ (NCR,30) (ZNAME(J,I),J=1,2)
READ (NCR,30) (ZNAME(J,I),J=1,2)
30 FORMAT (2A4)
30 FORMAT (2A4)
C
C
C \#\#\# INPUT RECORC \#2 ... Integer Values / Real Values are used
C \#\#\# INPUT RECORC \#2 ... Integer Values / Real Values are used
READ (NCR,*) L(I),W(I),TNBP(I),TC(I),PC(I),VC(I),IC(I),
READ (NCR,*) L(I),W(I),TNBP(I),TC(I),PC(I),VC(I),IC(I),
* VOL(I) = OMEGA(I)
* VOL(I) = OMEGA(I)
IF (W(I).LE.O.O) H(I)=1.0
IF (W(I).LE.O.O) H(I)=1.0
C
C
C कұ* INPUT RECORO \#3 ... ?eal values are used
C कұ* INPUT RECORO \#3 ... ?eal values are used
READ (NCR,\#) OA(I),OB(I),R(I),G(I),QP(I),AVAL(I),GVAL(I),
READ (NCR,\#) OA(I),OB(I),R(I),G(I),QP(I),AVAL(I),GVAL(I),
\# 2RA(I)
\# 2RA(I)
XL(I)=:0.0/2.0*(R(I)-0(I))-(R(I)-1.0)
XL(I)=:0.0/2.0*(R(I)-0(I))-(R(I)-1.0)
IF (QP(I).EG.O.0) QP(I)=O(I)
IF (QP(I).EG.O.0) QP(I)=O(I)
C
C
C \#w% INPUT RECORE \#4
C \#w% INPUT RECORE \#4
READ (NCR,\#) RD(I),OMU(I),ETA(I)

```
    READ (NCR,#) RD(I),OMU(I),ETA(I)
```

```
        IF (L(I)-1) 50,60,70
        50 L(I)=1
        GO TD 100
        60 L(I)=2
        GE TO 100
        70 IF (L(I)-3) 20,90,50
        \varepsilon0 L(I)=0
        GO TO 100
        90L(I)=-1
    100 CONTINUE
C
C
#亦# INPUT RECORD #5 ENTHALPY DATA
    READ (N(R,*) HVAP(I),TREF(I)
C
##% INPUT RECORD *6
    READ (NCR,*) (CPL(I,J),J=1,4)
C
### INPUT RECORD #7
    READ (NCR,*) (CPV(I,J),J=1,4)
C
C ¥ұ% INPUT RECURJ #8
    READ (NCR,&) (ANT(J,I),J ji,\sigma)
    110 CONTINUE
    IF (IDLV.EQ.1) GO TD 120
    IF (IOLV.EQ.2) GD TO 150
    GOTO 220
C
C IF THE VIRIAL EGUATION OF STATE IS USED ... HAYDEN-
C O'CONNELL VERSION, THEN THE SULVATION PARAMETERS MUST
C
### INPUT RECJRO #9 ... Optional Input --* Used Only If IOLV=1
120 00 130 I=1,NC
130 REAC (NCR,*) (ETM(I,J),J=1,NC)
    GO TO 220
C
C
### INPUT RECORJ #9 ... Cptional Input --- Used Only If IDLV=2
    150 00 160 I=1,NC
    160 REAU (NCR,*) (AK(I,J),J=1,NC)
C
    220 IF (LDSUG.EN.0) GO TO 430
C
C WRITE (NPRT,250)
250 FORMAT (*1*)
    WRITE (NPRT,251)
251 FURMAT (2(/))
    OU 425 J1=1,NC,5
    Format for the componential data was orioinally basod on full use
    of standard computer paper. using Jl and J2 the output width is
    reduced to standard lotter size --- which can be cut down if one
    uses the standard size computer paper. Outcut disclays five (5)
    components per block.
    J2=コI+4
```

IF (J2.GT.NC) J2=NC
c
WRITE (NPRT,260) (J,JxJ1, J2)
2ذO FORMAT (${ }^{\circ 1 C E M P O N E N T}$ NO', 21X, 9(I2,8X),I2)
WRITE (NPRT,270) ($(2 \operatorname{NAME}(I, J), I=1,2), J=J 1, J 2)$
270 FORMAT (${ }^{\circ}$ NAME', $\left.27 X, 9(2 A 4,2 x), 2 A 4\right)$
WRITE (NPRT,275) (L(J),J=J1,J2)
275 FORMAT (${ }^{(C O M P O N E N T ~ T Y P E \cdot}, 19 X$, $\left.9(I 2,8 X), I 2\right)$
c
WRITE (NPRT,280) (W(J), J= j1, J2)
230 FGRMAT (${ }^{\prime}$ OMGLECULAR WEIGHT', 15 X , $9(F 6.2,4 \mathrm{X}$),F6.2)
WRITE (NPRT,231) (TNBP(J),J=J1,J2)
281 FORMAT (${ }^{2}$ NGRMAL BOILING POINT (Deg K)', $2 X$,
\# \quad (F7.1,3X),F7.1)
c
WRITE (NPRT,285) (TC(J),J=J1, J2)
285 FORMAT (${ }^{\circ} O C R I T I C A L$ PROPERTIES*/IX.' TEMPERATURE (Deg K)', * \quad SX, $9(F 7.1,3 X), F 7.1)$

WRITE (NPRT,290) (PC(J),J=J1,J2)
290 FORMAT (1X, PRESSURE (ATm) •, 10X, 9(F7.1,3X),F7.1)
WRITE (NPRT,295) (VC(J),J=J1,J2)

WRITE (NPRT,297) (2C(J),J=J1,J2)
297 FORMAT (${ }^{\circ}$ COMFRESSIBILITY FACTCR*, 7X, 9(F7.3,3X),F7.3)
C
WRITE (NPRT,300)
300 FJRMAT (* LIQUID MOLAR VOLUME*)
C
C WRITE (NPRT,390) I, (VOL(J),J=J1,J2)
WRITE (NPRT,305) (VCL(j), J=J1,J2)
305 FORMAT ($\left.{ }^{\circ} \quad(c e / g-m o l)^{\circ}, 15 \mathrm{X}, 10 \mathrm{~F} 10.2\right)$
WRITE (NPRT,310) (OMEGA(J),J=J1,J2)
310 FJRMAT (${ }^{\circ}$ ACENTRIC FACTOR' 15X, 9(F7.3,3X),F7.3)
c
C IF (IDLL.NE.5 OR. IDLL.NE.6) GO TO 345
WRITE (NPRT,322) (R(J),J=J1,J2)
322 FQRMAT ($\operatorname{CONDRMALIZED~UNIQUAC~PARAMETERS",~}$

* 1X. ${ }^{\circ}$ VOLUME (R) $\left., ~ 19 X, ~ 9(F 7.4,3 X), F 7.4\right)$

WRITE (NPRT,323) (C(J),J=J1,J2)

WRITE (NPRT,324) (GP(J),J=J1,J2)
324 FGRMAT (IX, I INTERACTION AREA ($\left.\mathrm{a}^{\bullet \bullet}\right)^{\circ}$, BX, 9(F7.4,3X),F7.4)
C
345 IF (IDLV.NE.2) GO TO 350
WRITE (NPRT,346) (AVAL(J),J=J1,J2)
346 FDRMAT ('OVIPIAL EQUATION -- TSONOPOULOS',

* - Extension cevers pclar compound ${ }^{\circ}$,
\# 2X, ©AVAL', 25X, 9(F7.3,3X),F7.3)
WRITE (NPRT,347) (BVAL(J),J=J1,J2)

C
350 WRITE (NPRT,355) (ZRA(J),J=J1,J2)

C
HRITE (NPRT, 356) (RD(J), J=J1, J2)
356 FGRMAT (' RADIUS OF GYRATIDN, A., $9 \mathrm{X}, 9(F 7.3,3 \mathrm{X}), \mathrm{FT} .3$)
WRITE (NPRT,357) (RMU(J),J=J1,J2)
357 FORMAT (${ }^{\circ}$ CIPGLE MCMENT, DEBYES', $9 X$, $9(F 7.4,3 X)$,FT.4)
WRITE (NPRT, 35) (ETA (J), J=J1,J2)
358 FORMAT (* ASSOCIATICN PAPAMETER', ©X, $9(F 7.4,3 X), F 7.4)$

```
C
            WRITE (NPRT,360) (HYAP(J),J=J1,J2)
        360 FORMAT ('OENTHALPY CONSTANTS"/
        # - LATENT HEAT (cals/g) *, 8X, 9(F7.1,3X),F7.1)
            WRITE (NPRT,370) (TREF(J),J=J1,J2)
        370 FORMAT (2X,' TEMP (DEg K)', 16X, G(F7.1,3X),F7.1)
        WRITE (NPRT,380)
        380 FORMAT (* LIQUID SP. HEAT CONSTANTS"/
        * - (cals/g vs Deg K) ')
            OO 385 I=1,4
        355 HRITE (NPRT,390) I,(CPL(J,I),J=J1,J2)
        390 FORMAT ( }2\textrm{X,}\cdot\textrm{C
C 390 FJRMAT (2X,* C(',I1,')', 21X, 1P10!10:23)
            WRITE (NPRT,410)
        410 FORMAT (* VAPOR SP. HEAT CONSTANTS%/
        * - (cals/gmol vs Deg K) ')
            DO 415 I=1,4
    415 WRITE (NPRT,390) I,(CPV(J,I),J=J1,J2)
C
        WRITE (NPRT,321) (ANT(1,J),J=\1,J2)
C 321 FORMAT ('OVAPOR PRESSURE CONSTANTS*/2X," (mmHg and Deg K)"/
    321 FORMAT ('OVAPOR PRESSURE CONSTANTS'/2X,* (Atm and Deg K)"/
        * - (C(1)0, 24X, g(F7.4,3X),F7.4)
            00 325 I=2,6
    325 WRITE (NPRT,330) I,(ANT(I,J),J=J1,J2)
    330 FORMAT (2X,* C(',I1,*)', 21X, 10F10.3)
C
        IF (J2.EQ.NC) GO TO 430
    425 CONTINUE
c
C convert all data to mglar units and then generate the
C ENTHALPY PGLYNOMINAL COEFFICIENTS ... FOR GOTH THE
VAPOR AND LIQUID PHASES
    430 DJ 440 I=1,NC
The following statement converts mm Hg to atm.
CC ANT(1,I)=ANT(1,I)-ALDG(760.0)
C Convert specific heat data and enthalpy data where necessary to
C molar units.
    HVAP(I)=HVAP(I)*W(I)
    DO 435 J=1,4
    435CFL(I,J)=CPL(I,J)#W(I)
C 435 CPV(I,J)=CPV(I,J)*W(I)
    ENP(I,5)=CPL(I,4)/4.0
    ENP(I,4)=CPL}(I,3)/3.
    ENP(I,3)=CPL(I,2)/2.0
    ENP(I,2)=CPL(I,1)
    Tर=TREF(I)
            ENP(I,1)=-(C(ENP(I,5)#TR+ENP(I,4))#TR+ENP(I,3))#TR+ENF(I,2))*
        #
                                    TR
            ENP(I,10)=CPV(I,4)/4.0
            ENF(I,O)=CPV(I;3);3.0
            ENP(I,8)=\operatorname{CPV}(I,2)/2.0
            ENP(I,7) =CPV(I,1)
            ENP(I,6)=HVAP(I)-(C(SNP(I,10)*TR+ENP(I,G))*TR+ENP(I,9))*TR+
            # ENP(I,7))#TR
    440 CONTINUE
C
        WRITE (NPRT,250)
        IF (IJLV.EG.O) GO TC 455
c
```

```
    IF (IDLV.EQ.1) WRITE (NPRT,431)
431 FGRMAT G'OSCLVATIJN PARAMETERS FOR THE VIRIAL EGUATION CE*/'
    * * STATE -.. HAYDEN-O* CSNNELL VERSION*)
        IF (IDLV.EG.2) HRITE (NPRT,432)
432 FORMAT ('OCHARACTERISTIC BINARY CONSTANTS FOR THE VIRIAL*/
    # * EこUATION OF STATE ... TSONQPOULOS VERSION'S
    IF (IDLV.GE.3) GO TO 455
C
    DO 450 I=1,NC
    DO 450 J=1,NC,4
    IF (J.LE.g) ID(1)=10*I+J
    IF (J.GE.10) ID(1)=100%I+J
    IF (J+1.GT.NC) GO TO 442
    IF (J+1.LE.g) ID(2)=10%I+J+1
    IF (J+1.GE.10) ID(2)=100kI+J+1
    IF (J&2.GT.NC) GO TO 444
    IF (J+2.LE.9) IO(3)=10#I+J+2
    IF (J+2.GE.10) ID(3)=100*I+J+2
    IF (J+3.GT.NC) GO TO 446
    IF (J+3.LE.9) IO(4)=30%I+J+3
    IF (j+3.GE.30` ID(4)=200%I+J+3
    GJ T0 448
    NOTE: SOLVATION PARAMETERS AND CHARACTERISTIC BINARY
                CONSTANTS SHARE THE SAME STGRAGE SPACE •. - ETM(*,*)
                ANO AK(#,れ).
442 WRITE (NPRT,443) ID(1),AK(I,J)
443 FORMAT ( }3\textrm{X},(\mp@subsup{}{}{*}K*,j4,F9.4,3X)
        GU TO 450
444 WRITE (NPRT,445) (ID(IJ),AK(I,IJ),IJ=1,2)
445 FORMAT (3X, 2(***,I4,F9.4,3X))
        GO TO 450
445 WRITE (NPRT,447) (ID(IJ),AK(I,IJ),IJ=1,3)
447 FORMAT ( 3X, 3(***,I4,F9.4,3X))
    GO TO 450
448 WRITE (NPRT,449) (IC(IJ),AK(I,IJ),IJ=1,4)
449 FORMAT ( }3\times,4(\mp@subsup{}{}{\circ}K*,I4,F9.4,3X)
450 CONTINUE
    WRITE (NPRT,451)
451 FORMAT (//////)
    LIQUID-LIQUID BINARY INTERACTION PARAMETERS ...
    ... IDLL DEFINES THE ACTIVITY COEFFICIENT MCDEL
        IDEAL
        VAN LAAR
        MARGULES
        WILSON
        NRTL
        UNIQUAC
        UNIQUAC...MODIFIED
        UNIFAC
        あれあ##
        #市市市辛
        #あまも゙
        3WR-F
        PENG-2OBINSON (PR)
        RENON ALOHA PARAMETERS
        ALPHA NRTL CONSTANTS
```

C
455 If (IOLL.EQ.O) GO TO 520
460 DC 461 I=1,NC
$A(I, I)=0.0$
$461 \mathrm{G}(I, I)=1.0$
$J=N C \neq N C M 1 \neq 2$

$$
\mathrm{c}
$$

C \#\#\# INPUT RECDRD *10... ACTIVITY COEFFICIENT CODE --- Used

$$
c
$$

$$
\text { Only If Iolt }>1 \text { and for the second set of data. }
$$

IF (NREAD.NE.O) READ (NCR.*) IDLLIF (NKEAD.NE.O .ANO. ICLL.EQ.0) IDLL=ISTDRE(1)
C \#\#\# INPUT RECJRD \#11 ... ACTIVITY COEFFICIENT PARAMETERS --- Used
C 후추 Only If IDLL >1
00465 I1=1, J, 3
12 $=11+7$
IF (I2.GT.J) I2=J
465 READ (NCR,*) (C(I),I=I1,I2)
c
467 IF (LDBUG.EQ.0) GO TO 495
IF (IDLL.EQ.1) WRITE (NPRT,470) EGNV
IF (IDLL.EG.2) WRITE (NPRT,470) EQNM
IF (IDLL.EQ.3) WRITE (NPRT,470) EQNW
IF (IDLL.EQ.4) WRITE (NPRT,470) EGNR
IF (IDLL.EQ.5) WRITE (NPRT,470) EGNU
IF (IOLL.EQ.6) WRITE (NPRT,470) EENU2
IF (IDLL.ËC.7) WRITE (NPRT,470) EGNF
470 FORMAT (0°, A $^{\circ}$, CONSTANTS (cals/g-mol)')
$K=0$
$00490 \quad 1=1, N C M 1$
$I I=I+1$
DO $490 \mathrm{~J}=\mathrm{II}, \mathrm{VC}$
$K=K+4$
IF (J.LE.9) ID(1)=10\#I+J
IF (J.GE.10) ID(1)=100\%I+J
IF (I.LE.S) ID(2) $=10 * J+I$
IF (I.GE.10) ID(2) $=100 * J+I$
WRITE (NPRT,480) ID(1),C(K-3),IL(1),C(K-2),ID(2),C(K-1),ID(2),
*
$C(x)$

$4 \ni 0$ CONTINUE
C
495 IF (IOLL.NE.4) GO TO 517
WRITE (NPRT,476)
496 FJRMAT (*)

```
C
C ### INPUT RECORE w12 ... NRTL ALPHA PARAMETERS m- Used COly If IDLL = 4
    J=NC%NCM1/2
        DO 497 II=1,J,8
        I2= I1+7
        IF (I2.GT.J) I2=J
    497 REAO (NCR,#) (ALPHA(I),I=II,I2)
C
    IF (LOSUG.EG.O) GO TO 517
        K=1
        KK=1
        OO 510 I=1,NCM1
        II=I+1
        DO 510 J=II,NC
        EK(KK)=ALPHA(K)
        IF (J.LE.9) ID(KK)=10%I+J
        IF (J.GE.10) ID(KK)=100%I+J
        KK=KK+1
        K=K+1
        IF (KK.LT.5) GO TO 510
        WRITE (NPRT,500) (ID(KK), EK(KK),KK=1,4)
    500 FORMAT ( }3X,4(*ALPHA*,I4,* =*,F7.4,4X))
        KK=1
    510 CONTINUE
        IF (KK.EQ.1) GO TO 517
        KK=KK-1
C WRITE (NPRT,500) (ID(I),EK(I),I=I,KK)
        IF (KK.EG.1) WRITE (NPRT,512) IC(1),EK(1)
    512 FORMAT ( }3\textrm{X},(\mp@subsup{}{}{*}ALPHA*,I4,* =`,F7.4,4X)
        IF (KK.EQ.2) WRITE (NPRT,514) (ID(I), EK(I),I=I,2)
    514 FORMAT ( 3X, 2(*ALPHA*,I4,* ב*,F7.4,4X))
        IF (KK.EQ.3) WRITE (NPRT,516) (ID(I),EK(I):I=1,3)
    51G FORMAT ( }3X,3(*ALPHA*,I4,* =',F7.4,4X))
C
    517 IF (IPSET •LT. 1) GO TO 520
        NREAD=NREAD+1
C
        ISTORE(NREAD)=IOLL
        OO 518 I=1,190
    518 CSTORE(I,NREAD)=C(I)
        DO 51% I=1,45
    513 ASTGRE(I,NREAD)=ALPHA(I)
        IF (IPSET .EG. 1) GO TO 520
C
C
C
    GN EXIT FRCM "CDATA` GAMMA PARAMETERS IN MZCATA" ARE THE FIRST
    FARAMETERS REACO
    IF (NREAD EEQ. 2) THEN
        IPSET=1
        CALL SWITCH
        GOTO 520
        ENO IF
C
    GD TC 460
    DEFINE THE MJDIFIED R-K CONSTANTS
    520 IF (IDLV.EQ.O) GO TC 600
    DO 530 I=1,NC
        If (OA(I).NE.O.O) GOTO 550
        OA(I)=OMA
    550 IF (OB(I).NE.O.O) GOTO 5?0
```



```
C INPUT FOR UNIFAC
C 1. REAC DATA BANK FROM THE TAPE/DISK
C 2. REAC COMPONENT AND NO. OF GROUPS PER COMP.
        * ONE RECORO FOR EACH COMP. (NC<11)
        NGMCL = NO.OF DIFFERENT GROUPS IN THE MCLECULE, (<=6)
        MCL = NAME OF THE COMPONENT.
        * BLANK RECERJ AFTER THIS SET OF INPUT.
    3. READ GRQUP SPECIFICATION RECORDS
        # FOR EACH CDMPONENT
        * A SEPERATE RECORD FGR EACH MOLECULE
        NOGP = NO. OF TIMES THE GROUP APPEARS IN THE MCLECULE
        IDGP = ID NO. DF THE GROUSP (SECONDARY GROUP ND. FOUND
                IN the table iv IN the reference stateo below)
    REF: 1. GHEMLING, J. ,ET AL , IND. ENG. CHEM. PROCESS DES.
                                DEV. 21,118-127(1982).
        2. COMMUNICATIONS,IEC PROCESS DES. DEV. ,22,678-681(1983).
    READ DATA BANK.
    LUD=10
C
    1
    READ DATA BANK ...FILE LUD=10
        NMG = OF MAIN GROUPS
        NSG = OF SECONDARY GROUPS
        QQ = GRQUP AREA PARAMETER
        RR = GROUP VOLUMNE PARAMETER
        NKTAB = MAIN GROUP : TO WHICH THE SECONDARY GRGUP ËELONGS
        GNAM = GROUP NAME
        KODE = CJOE FOR SOURCE OF OATA
        PARAM = GRGUP INTERACTIDN PARAMETERS
            READ (LUS,4000) CARO
        466 READ (LUD,4001) NMG,NSG
C READ (LUO,4002) (QG(I),RQ(I),NKTAB(I),GNAM(I),I=I,NSG))
        READ (LUD,4002) (QQ(I),RR(I),NKTAB(I),(GNAM(J,I),J=1,3),I=1,NSG)
        WRITE (6,1)
        1 FGRMAT (* '1')
        WRITE (6,*) NSG
        OU 10 I=1,NSG
        WRITE (6,5) I,G\in(I),RR(I),NKTAB(I),(GNAM(J,I),J=1,3)
        5 FORMAT (I5,5X,2F10.4,I10,10X,2A4,A2)
        10 CONTINUE
            WRITE (6,1)
            WRITE (6,*) NMG
            DU 15 I=1,NMG
            WRITE (6,*) I
            READ (LUD,4003) (KDDE(I,J),PARAM(I,J),J=1,NMG)
            OO 14 J=1,NMG
        14 WRITE (6,*) J,KIDE(I,J), PARAM(I,J)
        15 CENTINUE
4000 FORMAT (2044)
```

```
    4001 FORMAT (2I2)
C4002 FORMAT (3(2F7.4,I2,A10).2X)
    4002 FORMAT (3(2FT.4,I2,2A4,A2),2X)
    4003 FORMAT (7(I1,F9.2),10X)
c
C READ COMPONENTS AND NUMEER DF GROUPS PER CDMPONENT.
C LNK = 1OH
    J = 1
C 30 READ (5,1001) MOL(1,J),MOL(2,J),NGMOL(J)
    33 REAO (5,1001) NGMOL(J),(MOL (K,J),K=1,5)
C İF (MOL(1,J).EQ.LNK) GO TO 35
    IF (NGMOL(J) .EG. O) GO TO 35
    J=J + 1
    GO TO 33
    35 IF (J.EG.1) STOP
    NSPS = J - 1
    DO 40 J=1,NSPS
    NN = NGMOL(J)
C 40 READ (5,1002) (NOGP(I,J),IOGP(I,J),I=1,NN)
    40 READ (5,*) (NGGP(I,J),IJGP(I,J),I=1,NN)
    NGPT = O
    DO 60 J=1,NSPS
        NN = NGMOL(J)
        DO 55 I=1,NN
        IF (NGPT.EQ.O) GOTO 53
        OO 45 K=1,NGPT
        IF(IDGP(I,J).NE.IID(K)) GO TO 45
        IDGP(I,J)=K
        GOTO 55
    45 CONTINUE
    53 NGPT = NGPT + 1
        IID(NGPT) = IDGP(I,J)
        IOGP(I,J) = NGPT
    55 CONTINUE
    60 CONTINUE
C
C O3 REAO (5,1003) NMIX
C O3 READ (5,*,END=999) NMIX
C PRINT UNIFAC INPUT BLOCK
C PRINT SUMMARY OF INPUT DATA.
    492 WRITE (O.,2001)
        DO 62 J=1,NSPS
    C WRITE (0,2002) MCL(1,J),MOL(2,J)
        WRITE (ó,2002) (MCL(K,J),K=1,5)
        K = NGMCL(J)
        O0 61 I=1,K
        LI=IDGP(I,J)
        LI=IID(LI)
        M=NKTAB(LI)
        NUM = NOGP(I,J)
    C 61 WRITE (6,2003) GNAM(LI),M,LI,NUM,QQ(LI),RRCLI)
        61 WRITE (0,2003) (GNAM(LL,LI),LL=1,3),M,LI,NUM,GQ(LI),RR(LI)
        6 2 \text { CONTINUE}
C IF (NMIX.EQ.O) NMIX = 1
```

```
            DO 65 I=1,NGPT
            K=IIO(I)
            K = NKTAB(K)
            DU 65 J=1,NGPT
            LI=IID(J)
            LI=NKTAB(LI)
            IF (LI.EQ.K) GO TO 65
            IF (KODE(K,LI).EQ.O) GOTO 64
            WRITE (6,200`)
            IF (KODE(K,LI).EQ.I) WRITE (E,2010) K,LI,IID(I),IIO(J)
            IF (KODE(K,LI).EQ.2) WRITE (6,2011) K,LI,IIC(I),IID(J)
            IF (KUDE(X,LI).EQ.3) WRITE (5,2012) K,LI,IID(I),IID(J)
        O4 CONTINUE
            IF (ABS(PARAM(K,LI)),GT.I.E-3) GO TO 65
            WRITE (6,3001) K,LI
    3001 FORMAT (1X,*INTERACTION PARAMETER FOR THE*,I2,*-*,I2,
        1 * NOT AVAILABLE*)
            STOP
    65 PARM(I,J) = PARAM(K,LI)
C
C
C
    PRINT GRDUP INTERACTION PARAMETER DATA.
    OO 70 I=1,NGPT
    K=IID(I)
    DO 70 J=1,3
        70 TNAM(I) = GNAM(K)
        70 TNAM(J,I)=GNAM(J,K)
            WRITE (6,2004) NMIX
    WRITE (6,2005) (TNAM(I),I=i,NGPT)
    WRITE (6,2005) ((TNAM(J,I),J=1,3),I=1,NGPT)
    OC }75I=1,NGP
C 75 WRITE (6,2006) TNAM(I),(PARM(I,J),J=1,NGPT)
    75 WRITE (E,2006) (TNAM(J,I),J=1,3),(PARM(I,J),J=I,NGPT)
C1001 FORMAT (2A10,I2)
    1001 FORMAT (I2,5A4)
C1002 FORMAT (16I5)
C1003 FORMAT (F10.0,I5)
C1004 FGRMAT (8F10.0)
    2001 FJRMAT (IHI, UUNIFAC CALCULATION OF ACTIVITY COEFFICIENTS*)
```



```
    1 *C',9X,*R*/)
C2003 FORMAT (6X,A1O, '(*,I2,*)*,1X,*'(*,I2,*)',4X,I2,4X,F6.4,4X,F6.4)
```



```
    2005 FORMAT (14X,11(2A4,A2))
    2006 FORMAT (/1X,2A4,A2,11F10.5)
    2009 FORMAT(/,5X,*:.-PARAMETER BACKGRDUND NOTE*)
    2010 FORMATC7X, "PARAMETERS FGR TME *,I2,*-*,I2,* INTERACTION HAVE EEEN
    IOBTAINEO FROM METHANEL DATA, SEE REF. 3',',
    27X, "THESE PARAMETERS ARE USEO FOR THE *,I2,*-*,I2,* SECCNDARY GROU
    3P INTERACTION*,/)
    2011 FGRMATCTX,'PARAMETERS FOR THE ',I2,'-`,I2,' INTERACTION MAY NOT BE
        1 RELIABLE IN WHOLE CONCENTRATION RANGE, SEE REF. 3','!
        27X, THESE PARAMETERS ARE USED FOR THE*,I2,*-*,IZ,* SECCNDARY GROU
        3P INTERACTION*,/)
    2012 FORMATC7X, PARAMETERS FER THE *,I2,*-*,I2, INTERACTION WERE OBTAI
        INED FROM GAS CHRIMATOGRADHIC UATA, SEE REF. 4%,/,
        27X, "THESS PARAMETERS ARE USED FDR THE*,I2,*-*,I2,* SECCNDARY GROU
        3P INTERACTICN*,/)
C
        RETURN
```

```
    END
    SUBROUTINE SWITCH
C
    SUBROUTINE IS USED BY SETTING IPSET TO EITHER 1 OR 2
    ANO THEN CALLING SWITCH.
    IF IPSET=1 LQAD FIRST SET OF DATA (VLE PARAMETERS)
    IF IPSET=人 LOAD SECOND SET OE DATA (LLE PARAMETERS)
    THIS SUBROUTINE LOADS AND UNLOADS PROPER PARAMETERS
    RESTORE VLE PARAMETERS IN THE C ARRAY
    LOAD LLE PARAMETERS IN THE C ARRAY
    COMMON /BLANK/ NCR, NPRT, NSTART, KUNITS, TITLE(2O)
    COMMON /CMPRO/ NC, NCMI, NCPI, IOLL, IDLV, IOH, LDSUG, ISW,
    NDIM, ZNAME(2,10), L(10), NTCOMP(10), NLIQ, IPSET
    CPL(10,4), CPV(10,4), ENP(10,10), ANT(E,10),
    W(10), AX, 8X, OMEGA(10), AVAL(10), EVAL(10),
    AK(10,10), R(10), (10), QP(10), XL(10),
    VCL(10), C(180), ALPHA(45), VC(10), TC(10),
    PC(10), 2C(10), TNSP(10), IA(10), 03(10),
    A(10,10),G(10,10), 2RA(10), RC(10), DNU(10),
    ETA(10)
    COMMON /SWITCH/ CSTORE(180,2), ASTORE(45,2), ISTORE(2)
C
C
C IPSET = O ... NO ENTRY TO THIS SUEROUTINE
C IPSET = 1 ... VLE PARAMETERS TD BE LOADED
C IPSET = 2 &LLE PARAMETERS TO BE LOADED
IPSET = ? ... NGT YET DEFINED
    IF (IPSET =EQ = 0 =ORE IPSET -GE. 3) RETURN
    IF (ISTCRE(1) .EQ. O .AND. ISTORE(2) .EQ. O) RETURN
    IF (ISTORE(2) .EQ. 0) IPSET=1
C
C ISTORE PRESERVES VALUES OF IOLL.
C CSTORE AND ASTORE KEEP THE C ANO ALPHA valuES IN the vectors
C CORRESPONDING TO THE IPSET VALUE AS CQLUMN NUMBER.
C
    IOLL = ISTORE (IPSET)
C
    600 J=NC*NCM1*2
    DJ 620 II=1,J,8
    IZ=II+7
    IF(I2.GT.J) I2=J
    OG 610 I=I1,I2
    610 C(I)=CSTDRE(I,IPSET)
    6 2 0 ~ C O N T I N U E ~
        IF (IOLL -NE.4) GO TO 650
        J=NC#NCM1/2
        O[ 650 II=1,J,3
        I2=II+7
        IF (I2.GT.J) I2=J
        DO ©30 I=I1,I2
        530 ALPHA(I)=ASTORE(I,IPSET)
        650 CONTINUE
        RETURN
        END
        SUSRIUTINE VIRFGI (T,P,Y,VD,FUG,OהV)
C
```

```
C VIRIAL Equation of state using the hayoen - o`Connell method
C
    COMMON /CMPRO/ NC, NCM1, NCP1, IOLL, IDLV, IDH, LDSUG, ISW,
    * NDIM, 2NAME(2,10), L(10), NTCOMP(10), NLIO, IPSET
    COMMON /IDATA/ CPL(10,4), CPV(10,4), ENP(10,10), ANT(E,10),
    # W(10), AX, EX, OMEGA(10), AVAL(10), BVAL(1C),
    # AX(10,10), R(10), G(10), QP(10), XL(10),
    # VGL(10), C(180), ALPHA(45)- YC(10), TC(10),
    # PC(10), ZC(10), TNBP(10), OA(10), OB(10),
    * A(10,10),G(10,10), 2RA(10), RD(10), OMU(10).
    * ETA(10)
    REAL Y(1), VO(1), FUG(1), B(10,10)
    DATA RPVT/82.055/, EXPN/0.333333/
C
C.......................................................................................
    OBTAIN THE VIRIAL CCEFFICIENTS FROM 'BCALC*
    CALL BCALC (T,B)
C
C OBTAIN B-MIX
C
    RT=RPVT#T
    PORT=P/RT
    SUMY =0.0
    BMIX=0.0
    OO 15 I=1,NC
    SUMY=SUMY +Y(I)
    OD 10 J=1,NC
    10 BMIX=BMIX+Y(I)#Y(J)*B(I,J)
    15 CONTINUE
    SMIX=EMIX/SUMY##2
c
    SQARG=0.25+BMIX#PJRT
    IF (SQARG) 22,25,25
    OBTAIN THE fUGACITY CDEFFICIENT
    if bMIX#p/r/t is more negative than 0.25, tine pressure series
    EQUATION MUST BE USED ... FTN STM *22. THE ALTERNATE IS TOO USE
    the volume SERIES ... FTN STM "25.
    PRESSURE SERIES FORM DF THE VIRIAL EQUATION OF STATE
    22 VMIX=EMIX+1.0/PORT
    ZMIX=PORT*VMIX
    DO 24 I=1,NC
    SLMM3=0.0
    OC 23 J=1,NC
    23 SUME=SUME+Y(J)#B(I,J)
    SUMB =SUMB/SUMY
    phi is the fugacity of the vapor & phis is the fugacity of
    the Saturated liquid evaluated at the vapor presSure
    PHI=EXP((2.0*SUMB-8MIX)*?ORT)
    PHIS=EXP(o(I,I)#VP(I)/RT)
    PCNTY=EXP((P-VP(I))#VCL(I)/RT)
    FUG(I)=PHIS#OONTY/PHI
    PRINT 30O,I,PHIS,PONTY,PHI,FUG(I),Y(I),VP(I)
24 CONTINUE
```

GOTO 50

```
C
    25 VMIX=(0.5+SGRT(SQARG))/PORT
        ZMIX=POKT*VMIX
        DO 40 I=1,NC
        SUMB=0.O
        DO 30 J=1,NC
    30 SUMB=SUMB+Y(J)#B(I,J)
        SUMB=SUMB/SUMY
C PHI IS the fugaCITY of the vapor & phis is the fugacity gf
C the saturated liquid evaluated at the vapor pressure
        PHI=EXP(2.0#SUME/VMIX)/IMIX
        OHIS E EXP( (B(I,I) &VP(I))/RT)
        PONTY=EXP((P-VP(I))*VOL(I)/RT)
        FUG(I)=PHIS%PONTY/PHI
C PRINT 300,I,PHIS,PONTY,PHI,FUG(I),Y(I),VP(I)
C 300 FORMAT(15,6G15.6)
    4O CONTINUE
C
C evaluate the vapor phase enthalpy departure (negative value)
    50 CHV=1.9872#(2MIX-1.0)
C PRINT 400, DHV,T,P
C 400 FORMAT (5X,'DHV=',G15.6,'TEMP=',G15.6,'PRESS=',G15.6)
C
    RETURN
    END
    SUBRDUTINE ZVIR& (T,F,i,imí)
c
C
    virial equation of state using the hayden - o`connell method
    COMMON /CMPRO/ NC, NCM1, NCP1, IDLL, IDLV, IDH, LDBUG, ISW,
    *COMMEN /ZDATA/
    *
    *
    # VOL(10), C(180), ALPHA(45), VC(10), TC(10),
    * PC(10), ZC(10), TNAP(10), CA(10), OS(10),
    # A(10,10),G(10,10), LRA(10), RC(10), DMU(10),
    # ETA(10)
C
    REAL Y(1), B(10,10)
    DATA RPVT/82.055/: EXPN/0.333333/
c
c
c
    OBTAIN the virIAL CGEfFICIENTS from *bCalC*
    CALL BCALC (T,B)
    OBTAIN B-MIX
    RT=RPVT#T
    PORT=P/RT
    SUMY=0.0
    BMIX=0.0
    OO }15\textrm{I}=1,N
    SUMY=SUMY+Y(I)
    DJ 10 J=1,NC
```


The sulvaifon parameters betwe ne a GIVEN I $=1, N C-1$ AND ALL $J=I+1, N C$

```
    IN=NCM1
    DO 11 I=1,IN
    I = I +i
    OO 11 J=IIgNC
11 ETM(J,I)=ETM(I,J)
    DO 12 I=1,NC
12 ETM(I,I)=EETA(I)
    N=2
    OO 32 I=1,NCM1
    II=I+I
    DO 32 J=II,NC
    K=1
    M=I
23 PPC(K)=PC(M)
    RRO(K)=RD(M)
    DOMU(K)=OMU(M)
    EETA(K)=ETA(M)
    TTC(K)=TC(M)
    ZZC(K)=ZC(M)
    IF (K.EQ.2) GO TO 24
    K=2
    M=J
    GO TO 23
24 ETA(3)=ETM(I,J)
    CALL SVIR (N,T,BS,PPC,RRD,DDMU,EETA,TTC,ZZC)
    B(I,I)=EB(1)
    S(J,J)=3B(2)
    B(I,J)=BB(3)
32B(J;I)=8(I,J)
    RETURN
    END
    SUBRDUTINE SVIR (N,TEMD,BB,PC,RD,OMU,ETA,TC,ZC)
    CALCULATION DF PURE COMPDNENT AND CROSS VIRIAL COEFFICIENTS
    FOR TWD COMPONENTS AT TEMPERATURE T FROM HAYDEN ANO GOCENNELL
    ...IEC PRCC.CES.DEV.14(3)209(1975)
        N = NUMSER DF COMPONENTS (1 DR 2)
        BF = BFREE
        BB= STCTAL
        NC = OF COMPONENTS
        PC = CRITICAL PRESSURE, ATM
        RD = MEAN RADIUS DF GYRATION, A
        OMU = OIPCLE MOMENT IN DEBYE
        ETA(1) AND ETA(2) = ASSDCIATION PARAMETERS (PURE COMPDNENTS)
        ETA(3) = SOLVATIUN PARAMETER (CROSS INTERACTIDN)
        TC = CRITICAL TEMPERATURE, UEG K
        ZC = CRITICAL COMPRESSISILITY FACTOR
    REAL SF(3), BE(3),W(3), EDSI(3), ROMU(3),SIGM3(3),
*
                                RDMM(3), A(3), DELH(3), D(3), BO(3)
```



```
    20 THETS=0.0
        THETPS=0.0
        PHS =0.0
        XLS =0.0
        DO 30 I=I,NC
        THETS=THETS+Q(I)&X(I)
        THETPS=THETPS+QP(I)#X(I)
        PHS=PHS+R(I)#X(I)
    30 XLS =XLS+XL(I)#X(I)
        0040 I=1,NC
        THETA(I)=Q(I)#X(I)/THETS
        THETAP(I)=QP(I)#X(I)/THETPS
    40 PHI(I)=X(i)#R(I)/PHS
    TAU(I,J)=G(I,J)=EXP((A+&*T)/T)
    DO 50 Im1,NC
    THS(I)=0.0
    DO 50 J=1,NC
    50 THS(I)=THS(I)+THETAP(J)#G(J,I)
    DO 70 I=1,NC
        GA=ALOG(R(I)/PHS)+5.0#G(I)*ALOG(Q(I)/R(I)#PHS/THETS)+
        # XL(I)-R(I)/PHS*XLS
        GB=1.0-ALOG(THS(I))
        DC 60 J=1,NC
    60 G8=GB-THETAP(J)*G(I,J)/THS(J)
    70 GAM(I)=EXP(GA+QP(I)#GB)
        RETURN
        END
        SUBROUTINE XHUNQ2 (T,X,XSH)
    THIS RDUTINE USES THE MODIFIED UNIQUAC EQUATION AS DEVELOPED
    BY ANOERSON (1978). EQUATIJN USES MOLECULAR PARAMETERS R,
    Q, AND Q', FLUS BINARY COMPONENTIAL PARAMETERS A(I,J) AND
    A(J,I).
    REFERENCE: "COMPUTER CALCULATIONS FOR MULTICOMPGNENT
    V-L AND L-L SYSTEMS" ... BY J. PRAUSNITZ ET. AL. (1990)
        COMMON /CMPRO/ NC, NCM1, NCPI, IDLL, IDLV, IDH, LDSUG,ISW,
    * NOIM, ZNAME(2,10), L(10), NTCOMP(10), NLIQ, IPSET
    COMMON /LOATA/ CPL(10,4), CPV(10,4), ENP(10,10), ANT(5,10),
    # W(10), AX, BX, OMEGA(10), aVAL(10), SVAL(10),
    # AK(10,10), R(10), (10), OP(10), XL(10),
    # VOL(10), C(180), ALPHA(45), VC(10), TC(10),
    # PC(10), ZC(10), TNEP(10), OA(10), CZ(10),
    # A(10,10),G(10,10), ifA(10), fC(10), DMU(10),
    # ETA(10)
    REAL X(1), THETAP(10), HFAC(10); HHFA(10), HM(10)
C
c
    IF (ISW.NE.O) GO TO 2O
C
    RGC=1.9872
    K=0
    OO 10 I=1,NCM1
    IPI=I+1
```

```
        DO 10 J=IPI,NC
        K=K+4
        G(I,J)=EXP(-CC(K-3)+C(K-2)*T)/T)
        G(J,I)=EXP(-(C(K-I)+C(K)#T)/T)
    10 CUNTINUE
C
    20 XSH=0.0
    THETPS=0.0
    OO 30 I=1,NC
    30 THETPS=THETPS+QP(I)*X(I)
    DO 40 I=1,NC
    40 THETAP(I)=GP(I)*X(I)/THETPS
C
C
C
    ARG=TAU(I,J)=G(I,J)=EXP((A+B&T)/T)
    DO 50 I=1,NC
    HFAC(I)=0.0
    HHFA(I)=0.0
    DO 50 J=1,NC
    ARG=G(J,I)
    HFAC(I)=HFAC(I)+THETAP(J)*ARG&ALOG(ARG)
    50 HHFA(I)=HHFA(I)+THETAP(J)&ARG
    DO 60 I=1,NC
    OO HM(I) =OP(I) #X(I) #HFAC(I)/HHFA(I)
        DO 70 I=1,NC
    70 XSH=XSH-RGC&HM(I)
C
        RETURN
        END
        SUBROUTINE UNIFAC (T,X,GAM)
C
        2
        COMMON /UNFAC/ XMOL(11),COMLN(11),RESLN(11),ALGAC(11),
        2 RI(11),QI(11),GGPI(S,11),QGP(11),P
        3 COMMON/UNFAC1/
        *
        GNAM(3,80),QQ(80),RR(80),PARAM(42,42),NKTAB(80),
                                KCDE(42,42), NGPT, NSPS
C
    REAL X(1), GAM(1)
    CHARACTER*4 MCL(5,11)
C
C
        OO 10 J = 1, NSPS
        XMCL(J) = X(J)
    10 CONTINUE
        DE 65I = 1,NGPT
        K=IID(I)
        K=NKTAB(K)
        DO 65 J = 1,NG=T
        L=IID(J)
        LINKTAB(L)
        PARM (I,J)= EXP (-PARAM (K,L)/T)
    65 CONTINUE
    CEMPUTE COMSINATORIAL PORTISN AND RELATED SUMS.
    RSUM = 0.
    QSUM = 0.
    DO 80 I=1,NGPT
```

```
    80 2FP(I) = 0.
    DD 95 J=1,NSPS
    ₹I(J) = 0.
    OI(J) = 0.
    K = NGMCL(J)
    OO }85\textrm{I}=1,\textrm{K
    A = NOGP(I,J)
    L=IDGP(I,J)
    M = IID(L)
    RI(J) = RI(J) + AtRR(M)
    QI(J) = QI(J) + A#QC(M)
    QGPI(I,J) = A#QG(M)
S5 QGP(L) = GGP(L) + OGPI(I,J)*XMCL(J)
    RSUM = RSUM + RI(J)*XMOL(J)
    QSUM = GSUM + QI(J)#XMOL(J)
    OG 90 I=1,K
    9O QGPI(I,J) = QGPI(I,J)/QI(J)
    Y5 CONTINUE
    DO 100 I=1,NGPT
100 OGP(I) = 2GP(I)/QSUM
    SUML = 0.
    DO 105 J=1,NSPS
    AL(J) = 5.#(RI(J) - QI(J)) - RI(J) + 1.
105 SUML = SUML + AL(J)#XMCL(J)
    OO 12C J=1,NSPS
    CON1 = RI(J)/RSUM
    CON2 = OI(J)/QSUM
120 COMLN(J) = ALOG(CON1) + 5.#QI(J)#ALOG(CON2/CON1)
    1 + AL(J) - CON1#SUML
    COMPUTE RESIDUAL PORTION.
    DC 125 I=1,NGET
    GSUM(I) = 0.
    DO 125 K=1,NGPT
125 GSUM(I) = GSUM({) + PARM(K,I)#QGP(K)
    DO 135 I=1,NGPT
    SUM = 0.
    DO 130 K=1,NGPT
130 SUM = SUM + QGP(K)#PARM(I,K)/GSUM(K)
135GG(I) = 1. - ALOG(GSUM(I)) - SUM
    OU 155 J=1,NSPS
    RESLN(J) = 0.
    K = NGMOL(J)
    OC 140 I=1,K
    M = IDGP(I,J)
    GSUM(I) = 0.
    0. 140 N=1,K
    L = IDGP(N,J)
140 GSUM(I) = GSUM(I) + PARM(L,M)*QGPI(N,J)
    DO 150 I=1,K
    SUM = 0.
    M = IDGP(I,J)
    DO }145\textrm{N}=1,\textrm{K
    L = IDGP(N,J)
145 SUM = SUM + QGDI(N,J)&PARM(M,L)/GSUM(N)
    JJ = IID(M)
    CONST = FLCAT(NOGP(I,J))#QQ(JJ)#(GG(M) - (1.-ALOG(GSUM(I))-SUM))
150 RESLN(J) = RESLN(J) + CONST
    ALGAC(J) = COMLN(J) + RESLN(J)
```

```
    155 ACTCF(J) = EXP(ALGAC(J))
        JO 157 J = 1,NSPS
    157 GAM(J)=ACTCF(J)
    CC PRINT RESULTS OF MIXTURE CALCULATICNS.
    CC WPITE (6,2007)
    C OO 160 J=1,NSPS
CC 160 WRITE (6,2008) MOL(1,J),MCL(2,J),XMCL(J),ALGAC(J),ACTCF(J)
C 150 WQITE (6,2008) (MCL(K,J),K=1,5),XMOL(J),ALGAC(J),ACTCF(J)
CC
C Y99 CALL EXIT
C STOD
    RETURN
    END
```

Abrams, D.S., and Prausnitz, J.M., Journal of the American Institute of Chemical Engineers, Vol. 21 , No. 1, January 1975, pp. 116-128.

Anderson, T.F., Abrams, D.S., and Grens, E.A.II, "Evaluation of Parameters for Nonlinear Thermodynamic Models", AIChE Journal, Vol. 24, No. 1, 1978, pp. 20-29.

Anderson, T.F.. and Prausnitz, J.M., "Application of the UNIQUAC Equation to Calculation of Multicomponent Phase Equilibria. 1. Vapor-Liquid Equilibria", Industrial and Engineering Chemistry Process Design and Development, Vol. 17, October 1978, pp. 552-567.

Anderson, T.F., and Prausnitz, J.M., "Application of the UNIQUAC Equation to Calculation of Multicomponent Phase Equilibria, 2. Liquid-Liquid Equilibrian", Inde Enge Chem. Process Des. Dev. Vol. 17, No. 4, 1978, pp. 561567.

Berg, L., "Selecting the Agent for Distillation", Chemical Engineering Progress, Vol. 65, No. 9, 1969, pp. 52-57.

Black, C., "Distillation Modelling of Ethanol Recovery and Dehydration Processes For Ethanol and Gasohol", Chemical Engineering Progress, Sept. 1980, pp. 7885.

Black, C, and Ditsler, D.E., "Extractive and Azeotropic Distillation", Adyanced Chemical Series, Vol. ll5. 1972. pp. 1-15.

Black, C., Golding, R.A., and Ditsler, D.E., "Extractive and Azeotropic Distillation", Advanced Chemical Series, voí. II5, 1972, pp. 64-92.

Fabries, J.F. and Renon, H., "Method of Evaluation and Reduction of Vapor-Liquid Equilibrium Data of Binary Mixtures", AIChE Journal, Vol. 2l, No. 4, July l975, pp. 735-743.

Fredenslund, A., Jones, R.L., and Prausnitz, J.M.,"GroupContribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures", AIChE Journal, Vol. 21, No. 6, Nov., 1975, pp. 1086-1099.

Fredenslund, A., Gmehling, J., and Rasmussen, P., VaporLiquid Equilibria Using UNIFAC, Elsevier Scientific publishing Company, Amsterdam, The Netherlands, 1977.

Gmehling, J. and Onken, U., Vapor-Liquid Equilibrium Data Collection, Vol. I, Part l, DECHEMA, Frankfurt,
W.Germany, 1977.

Gmehling, J., Rasmussen, P., and Fredenslund, A., "VaporLiquid Equilibria by UNIFAC Group Contribution. Revision and Extension. 2^{n}, Ind. Eng. Chem. Process Des. Deve. Vol. 21, 1982, pp. 118-127.

Hayden, J.G. and O^{\prime} Connell, J.P., Industrial and Engineering Chemistry Process Design and Developmentr Vol. 14, No. 3, 1975, pp. 209.

Holland, C.D., Fundamentals of Multicomponent Distillation, McGraw-Hill Book Co., New York, 1981.

Keister, W., "Computer Simulation of Ethanol Dehydration by Azeotropic Distillation with Benzene", Paper No. 2ld, presented at the winter AIChE Meeting, Feb. 28-March 3, 1982, Crlanda, Florida.

Knox, D., and Van Ness, H. C.,"A Model for Representation of ${ }_{G}{ }^{\text {E }}$ and $H^{E n}$, Eluid Phase Equilibria, 15, 1984, pp. $267-$ 285.

Magnussen, T.r Rasmussen, P., and Fredenslund, A., "UNIFAC Parameter Table for Prediction of Liquid-Liquid Equilibria", American Chemical Society, Vol. 20, No. 2, 1981, pp.331-409.

Magnussen, T., Sorensen, J.M., Rasmussen, P. and Fredenslund, Aā, "Liquid-Liquid Equilibrium Data: Their Retrieval, Correlation and Prediction. Part III: Prediction", Fluid Phase Equilibria, 4, 1980, 151-163.

Marquardt, D. W., "An Algorithm for Least-Squares Estimation of Nonlinear Parameters", Je Soce Indust. Apple Mather Vol. ll, No. 2, June, 1963, pp. 431-441.

Naphtali, L.M., and Sandholm, D.P., "Multicomponent Seperation Calculations by Linearization", Journal of the American Institute of Chemical Engineers, Vol. 17, No. 1, January, 1971, pp. 148-153.

O'Connell, J.P., and Prausnitz, J.Mo, Industrial and Engineering Chemistry, Process Design and Development. Vol. 6, No. 2, April 1967, pp. 246-250.

Prausnitz, J.M., Molecular Thermodynamics of Eluid Phase Equilibria, Prentice-Hall, Inc.r Englewood Cliffs, New Jersey, 1969.

Prausnitz, J.M., Anderson, T.F.r Grens, E.A.r Eckert, C.A., Hsieh, R., and O'Connell, J.P., Calculations for Multi Component Vapor-Liquid and Liquid-Liquid Equilibria, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1980.

Prokopakis, G.J., Seider, W.D., and Rcss, B.A., "Azeotropic Distillation Tower with Two Liquid Phases", in Proceedings of Engineering Foundation Conference entitled Foundations of Computer-Aided Process Design, Hennike, N.H., July, 1980, Vol. 2, pp. 239-269.

Rasmussen, P. and Fredenslund, Aa, "Vapor-Liquid Equilibria by UNIFAC Group Contribution. Revision and Extension. 2", Ind. Enge Cheme Process Des. Deyer Vol. 21, 1982, pp. 118-127.

Reid, R.C., Prausnitz, J.M., and Sherwood, T.K., The Properties of Gases and Liquids, McGraw-Hill Book Company, New York, N.Y., 3rd Edition, 1977.

Renon, $H . r$ and Prausnitz, J.M., Journal of the American Institute of Chemical Engineers, Vol. 14, No. l, January 1968, pp. 135-143.

Renon, H., and Prausnitz, J.M.r Industrial and Engineering Chemistry. Process Design and Development, Vol. 8, No. 3, July, 1969, pp. 413-419.

Roche, E.C., Unpublished Work on Rigorous Multicomponent Distillation Calculation, 1978.

Roche, E.C., Unpublished Work on Nonideal Liquid Flash Calculations, 1977.

Siverman, N. and Tassios, D., "Prediction of Multicomponent Vapor-Liquid Equilibrium with the Wilson Equation: Effect of the Minimization Function and of the Quality of Binary Data", Ind. Enge Chem. Process Des. Deve, 23, 1984, 586-589.

Sorensen, J.M., et al., Liquid-Liquid Equilibrium Data Collection, Vol. V, Part $1 \& 2$, DECHEMA, Frankfurt, W. Germany, 1979.

Sorensen, J.M., Magnussen, T., Rasmussen, P.and Fredenslund, Aa., "Liquid-Liquid Equilibrium Data: Their Retrieval, Correlation and Prediction. Part I: Retrieval", Fluid Phase Equilibria, Vol. 2r 1979r pp. 297-308.

Sorensen, J.M., Magnussen, T., Rasmussen, P.and Fredenslund, Aa., "Liquid-Liquid Equilibrium Data: Their Retrieval, correlation and prediction . Part II: Correlation", Fluid Phase Equilibria, Vol. 3, 1979, pp. 47-82.

Tsai, C.M., and Roche, E.C. Jr., "The Entrainer Effect on Azeotropic Distillation Column Design", Paper presented at summer AIChE meeting, May 21-23, 1984, Anahein, California.

Venkatesh, C. K., Paper presented at summer AIChE meeting, May 21-23, 1984, Anahein, California.

Weast, R. C., Handbook of Chemistry and Physics, CRC Press Inc., Cleveland, Ohio, 56 th edition, 1975-1976.

Yaws, C.L.r Physical Properties, McGraw-Hill Book Company, New York, N.Y., 1977.

[^0]: * Base case

[^1]: * Base Case

[^2]: * $\left(x_{\operatorname{iexp}^{-1}} \mathrm{x}_{\text {ical }}\right) / \mathrm{x}_{\text {iexp }}{ }^{* 100}$

[^3]: $\left(x_{i \exp ^{-}} \mathrm{x}_{\text {ical }}\right) / \mathrm{x}_{\text {iexp }}{ }^{* 100}$

[^4]: * $\left(x_{i e x p} x_{i c a 1}\right) / x_{i e x p} 100$

[^5]: $\left(x_{i \exp ^{-x}}{ }^{\text {ical }}\right) / x_{i \exp } * 100$

[^6]: Initial Binary Interaction Parameters in deg K

 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | -57.02 | 351.70 | -151.47 | 961.51 | 1.0 | 1.0 |
 | -57.02 | 351.70 | -151.47 | 961.51 | 375.24 | 892.72 |
 | dev in $T=\left(T_{e x p}^{\left.-T_{C a l}\right)}\right.$ | and dev in $Y_{i}=\left(Y_{i \exp }-Y_{i c a l}\right) * 100$ | | | | |

 25

[^7]: @ Predicted ternary VLE, diff. in T's (deg C) VLEFN \# 21

 * Predicted ternary VLE, VLEFN \# 21

[^8]: @ Predicted ternary VLE, diff. in T's (deg C) VLEFN \# 21

 * Predicted ternary VLE, VLEFN \# 21

[^9]: 21
 $\#$
 2
 2
 4
 5
 5
 \circlearrowleft

 | 0 |
 | :--- |
 | 0 |
 | 0 |
 | - |

 VLEFN \# 21
 号

 * Predicted ternary

[^10]: e Fredicted ternary VLE, diff. in T's (deg C) VLEFN \# 21

 * Predicted ternary VLE, VLEFN \# 21

[^11]: @ Predicted ternary VLE results, diff. in T's (deg C) and VLEFN \# 21
 $*$ Predicted ternary VLE results, VLEFN \# 21

