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ABSTRACT 

Title of Thesis 	RANDOM GENETIC DRIFT DIFFUSION MODEL 

AND 

DETERMINISTIC AND STOCHASTIC MODELS 

OF EPIDEMICS 

NORMAN W. LONEY, Master of Science in Applied Math, 1985 

Thesis directed by: Dr. Roman Voronka 

In the Random Genetic Drift Diffusion model two 

approaches are taken. First we examined a discrete 

model that represent a relatively idealised version of 

the phenomena. He further make the assumption that the 

population 	reproduces 	itself and then dies, thus 

maintaining a finite population size at all 	times. 	If 

at a given locus there are two possible allels A and B 

and if X(t) is the number of A type in the genetic pool 

of size 2N, 	then 2N-X(t) is the number of B type. We 

then proceed to obtain a probability density function 

of X( t) by an Exact method and the Monte Carlo method. 

 
Based on a X2  for each generation examined there are 

no significant difference between the results obtained 

from either method. However, for large N (N > 20) the 

Exact method is cumbersome. and as a result the Monte 

Carlo is more appropriate for such N. 

As a second approach, we approximated the Discrete 

model for large N with a Diffusion model (a singular 

parabolic partial differential equation) where x and t 



are assumed continuous. By separation of variables we 

obtained the Hypergeometric equation which has an 

infinite series solution. 	From this we obtained the 

probability density as a function of gene frequency and 

compare these results with those of the previous 

methods (Discrete model). We found that there is 

favourable comparison between all three methods and in 

particular between the Diffusion Approximation and the 

Monte Carlo. 

The Monte Carlo method was also utilized in the 

Stochastic models of Epidemics. The models we examined 

are the Chain Binomial models of Reed-Frost and 

Greenwood. We confirmed that for a household of 3 and 

smaller, both models are indistinguishable, whereas a 

household of 5 produced different chains based on the 

inherent assumptions in each model. 

Establishing the existence of a threshold population 

size, we used a continuous model(Deterministic Theory). 

This approach resulted in a system of nonlinear ordinary 

differential equations.The solution of which using the 

Runqe-Kutta (order four) established a relative removal 

rate above which no epidemic seems to occur, as well as 

demonstrate the existence of a threshold population size. 
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CHAPTER I 
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THE FISHER-WRIGHT MODEL OF RANDOM GENETIC DRIFT 

In this stochastic model from mathematical genetics we 

consider a diploid population whose size is N 

individuals. Thus in the genetic pool at a given locus 

there will be exactly 2N genes. We will assume that the 

population reproduces itself and then dies, so that the 

population size is N at all times. If we further assume 

that at the given locus there are two possible alleles 

A and B and if X(t) is the number of A type in the 

genetic pool of size 2N, then 2N - X(t) is the number 

of B type.A model due to Wright assumes that X(t) is a 

random variable binomially distributed with parameter 

X(t)/2N ; thus if the value of X(t) = i,then the 

probability P
ij 

that X(t+1) = j is given by 

(2N) 
Pij =             (i/2N)j (1-i/2N)22N-j  (1) 

(j)    

This model assumes that there is no mutation from A to 

B or B to A and that there are no selective pressures 

favoring one allele over another . (Ewers) 

There are two ways in which we shall obtain the 

probability 	density 	function (pdf) 	of X(t). 
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1) 	 EXACT METHOD 

The first will be an exact method in which time 

measured in generations is discrete. Since the 

process is Markovian with P = {P=Pij} the transition 

matrix, we have 

X(t+1) = X(t)P 

with X(t) a row vector giving the probability 

density function of the random variable X at time 

t: X(t) = {x0 (t), X1(t) ... 	X2N(t)}  
	  

where X
j
(t) is the probability that the 

frequency of A is j/2N at time t. 

Thus 

X(t) 	= X(0) P
t 

where X(0) is the initial 

probability vector- 

For example if 2N = 4, then : 

1 	0 	0 	0 	 0 

.3164 .4219 .2109 .0469  .0039 
P =  [                                                   ] 

.0625   .25 	.375 	.25        .0625 

.0039  .0469 .2109  .4219 	.3164 

0         0       0         0          1  
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If at time zero X = 3 then X(0) = (0, 0, 0, 1, 0) 

and X(1) =X(0)P= (.0033,.0469,.2109,.4219,.3164). 

Here .0459 is the probability that at time 1 

( one generation later ) the value of X = 1 and 

0.3164 is the probability that at 	time 1 	the 

value of X= 4 (gene A is fixed). 

1 	0 	0 	0           0 

.4532 .2329 .1780   .0923     .0336    ] 
P2 = [  

 . 1660 .2109 .2461 	.2109     .1661  

	  .0336 .0923 .1780 .2329  .4632 

0         0        0         0         1 

	

1 	 0 	 0 	0 	 0 

.5484 	.1471 	.1353 	.0943 	.0749 

 
P3 = [ 	.2490 	.1604 	.1813   .1504 	.2490 ] 

.0748 	.0943 	.1353   .1471 	.5484 

	

0 	 0 	 0 	0 	 1 

wheree the powers of P corresponds to the generation 

in question. 

When 2N = 6, then : 



P= 

= 

1 

.3347 

0 

.4019 

0 

.2009 

0 

.0536 

0 

.0080 

Cl 

.0006 

 
0 

.00002 

.0879 .2634 .3292 .2195 .0823 .0165 .0014 

.0156 .0937 .2344 .3125 .2344 .0937 .0156 

.0014 .0165 .0823 .2195 .3292 .2634 .0878 

.00002 .0006 .0080 .0536 .2009 .4019 .334c3 

0 0 0 0 0 0 1 

 

1 

 0 0 0 0 0 

 
0 

.4880  .2196 .1601 .0242 .0351 .0110 .0021 

.2084 .2145  .2196 .1739 .1110 .0544 .0180 

.0728 .1326 .1893 .2106 .1893 .1326 .0728 

.0180 .0544 .1110 .1739 .2196 .2145 .2084 

.0021 .0110 .0351 .0842 .1601 

.2195 

 .4880  

0 0 0 0 0 0 1 

P
3 

= 

1 0 0 0 0 0 0 

.5769 .1329 .1195 .0815 .0494 .0243 .0103 

.3024 .1622 .1657 .1413 .1080 .0712 .0490 

.1.374 .126-1 .1550 .1631 .1550 .1261 .1374 

.0490 .0712 .1080 .1413 .1657 .1622 .3024 

.01074 .0243 .0484 .0E415 .1195 .1389 .5769 

0 0 0 0 0 0 1 



We used this exact method to examine cases  up to 

size 2N = 20 . The matrix representation for-

such population of size 10 is cumbersome 

( a 21x21 matrix ) . Histograms at 4 generations 

1,2,10 & 20) for the case 2N = 20 are included in 

figures 4-7. 

II) 	 MONTE CARLO METHOD 

When N is larger than 20, the exact method 

generates matrices of size ( 2N+1x2N+1 ) which is 

clearly cumbersome to manipulate. Thus we use 

another approach to model (1) ,a Monte Carlo method. 

In our scheme,given the population of size 2N which 

at a given time t is in state i, we calculate the 

transition probabilities ( a row in the matrix P). 

Here the transition probabilities are given by 

pij  = P{ x(t+1)=j|x(t)=i} 

To decide in what state will the population be at 

time t+1 ,we consider the interval 0 <= y <= 1 and 

divide it into 2N sub-intervals with lengths p 0' 

the coordinates of the 

division points will be 

	y  = P0, y = P0 + P1 ,  

 

	 y  = P0  + P1 + P2+...., 

	

y  = P0  + P1 +....+ P2N-1. 

 



We can further identify these subintervals with the 

numbers 0,1,...,2N as in the sketch below. 

At this stage we generate a random number 

0 <= ᴕ <= 1. 

If this number falls into the j-th subinterval of the 

partitioned line 0 <= 	<= 1 then we conclude that 

X(t+1) = j. 

In this method, the random variable Y is uniformly 

distributed in (0,1), the probability of 	lying 

within one of the sub-intervals is equal to the 

length of the sub-interval in question. Therefore: 

P{0 < ᴕ < P1 } = P1 ,  

P{  P1 < P1 + P2 } = P2 , ..............................., 

P{ P1 + P2 +...+ Pn-1 < ᴕ < 1 } = Pn , 

 

x(t+1) =j 

if  P1+ ... Pj-1 < ᴕ < P1 + ...Pj  

Shown below is the subroutine used in our analysis: 

Suppose that the numbers 0, 1. ...,2N are placed in 

succession in storage cells and the probabilities P0 , 

P0+P1, P0+P1+P2,...,1 also form 

a sequence in data storage. Then : 
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For example, to draw 10 values of the random 

variable with the distribution 

P(σ  = 0) = .58 , P(σ =1) = .42 

Select as values of ᴕ  ten pairs of numbers from a 

table of random numbers and multiply by .01. Thus 

suppose ᴕ = 0.8G,0.51,0.59,0.07,0.95,0.66 0.15, 0.56 

0.64,0.34 ( appendix A-4 table of random numbers ). 

Then based on our scheme the value σ = 0 corresPonds 

to the values of ᴕ  smaller than 0.58 and t'= 1, to 

the values of ᴕ  >= 0.58 i.e. ᴕ = 1, 0, 1, 0, 1, 1, 

0, 0, 1, 0. Note here that the order of enumerating 
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the numbers 0, 1,...,2N in the partition of 0 <= y <=1 

can be arbitrary,but it must be fixed prior to drawing. 

DIFFUSION APPROXIMATION 

III)When the population size N is large, model (1) 

(a discrete model) can be approximated by a model 

where both x = X(t)/2N and t are continuous. He 

consider the derivation of the diffusion model 

along the lines given in Crow and Kimura
3,and Ludwig4. 

Let x diffuse on [0,1]. Assume that ∆x  has the 

conditional probability density q(∆x ,x,s) if X(t)=x. 

Thus 

q(

∆t ,x,s)

∆s  = Prob[s <= ∆ x <= s + ∆s1 X(t) = x] 

with 

At,x,s)ds = 0 

Let Q(x,t) be the pdf of X at time t. Then Q(

t + ∆t,x)= ⌠Q(t, x-s) q(∆t, x-s,s)ds + o(∆t) 

Since 

Q(t,x) = Q(t,x) ⌠ q(∆t ,x,s)ds =⌠Q(t,x)q(∆ t,x,s)ds 

we have 

Q(t+∆

t

,x)- Q(t,x) = ⌠[Q(t,x-s)q(∆t,x-s,s) -Q(t,x)q(∆ t,x,s)]ds 

ExPanding the integrand about x 

Q(t+∆

t

,x)-Q(t,x)= ⌠t-s ∂/∂x(Q(t,x)q(∆t,x)s)) + 1/2S2∂2/∂x2(Qq)+...]ds 
	x 2-  

-∂/∂x⌠s (Qq)| t,x,sds +1/2 ∂2/ ∂∂c2  ∫s2  Qq | t,x,sds  	   

= — -∂0/∂x⌠sqds  + 1/2 ∂2/∂x2∫s2qds  
	 -  

We now make assumtions about the moments of q.  
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Let 

E[∆

x 

|x(t)= x]= ⌠sq(∆t,x,s)ds = b(x)∆t + 0(∆t) 

and 

E[(∆x)2|X(t)= x] = ⌠

s

2q(∆t,x,s)ds = a(x)∆t + 0(∆t). 

Thus 

Q(t+∆t ,x) -Q(t,x) = ∆

t

[-2/2x(Qb)+ 1/2 a2/a +Q(_t) 

or letting ∆ t ----> 0 

∂Q/∂∂t = 1/2 ∂/∂∂c2  [a(x)Q]- ∂/∂x[b(x)Q] 0 < x < 1 
 

a singular parabolic Partial differential equation. 

Since X(t) was the number of alleles of type A in 

model (1), let 

x = X(t)/2N. 

According to assumptions in (1), X(t+1) 	is 

binomially distributed, and given X(t) = 2Nx then 

E[X(t+1)] = 2Nx σ2[X(t+1)] = 2Nx(l-x) 

let 

∆X = x(t+1)-X(t) with ∆t = 1 

then 

E[∆X] = E[X(t+1)]-E[X(t)]= 2Nx-2Nx = 0 
 E[(∆X)2 = E[X(t+1)-2Nx)2} = [_X] = 2Nx(1-x) 

	

E[∆ x)2] 	= 	E[(∆x /2N)2] 

		  = E

[(∆

X)2 ]/4N2 =2Nx(1-x)/4N2 = x(1-x)/2N 

Thus in the diffusion model 

a(x) = x(1-x)/2N and b(x) = 0. 

If we rescale t by absorbing the factor 2N in t, 
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we obtain the following equation for the 

probability density function : 

Q(x0,x;t) = P{X/2N =x at t= t|  X = 2Nx0  at t=t0} 

∂Q/∂t = [x(1-x)Q]xx 	; 0 < x < 1 	(1) 
 

Q(x0 , x;0) = δ(x-x0 ) 	 (1A) 
	  

df(0,t)/dt = 1/2 Q(0,t) 
(1B) 

df(1,t)/dt 	= 1/2 Q(1,t) 

These last two equations(1B) describe the rate at 

which fixation occurs at the boundaries x = 0 and 

x = 1. 

To solve (1) we assume a seParation of variables 

solution 

Q = X(x)T(t) 	 (2) 
then 

XT' = [x(1-x)X)xx T which can be reduced to : 
 

T'/T = -λi; [x(1-x)x]xx 	= -λix  
thus 

x(1-x)X" + 2(1-2x)X' -(2-λi)x = 0 	 (3) 

Equation (3) is the Hypergeometric equation : 

x(1-x)y" + [c-(a + b +1)x]y' - aby = 0 

whose solution is 

y = AF(a,b;c,x) + Bx1-cF(a-c+1,b+1-c;2-c,x) 

where 

F(a,b;c,x) = 1+ab/c(x)+a(a+1)b(b+1)/c(c+1)2!(x2)+... 

from (3) it is evident that c = 2 and since 
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Q is to be bounded at x= 0 we have B= 

further, comparing coefficients in (3) with those 

in the hypergeometric differetial equation we have 

b = 3-a and 	 a = 1/2[3+√1+4λi]  

for (3) 

X(x) = 1 + ab/2(x) + a(a+1)b(b+1)/3!2!(x2  + 

at x = 1, 

X(1) = 1 + ab/2 + a(a+1)b(b+1)/3!2! + ... 

We note that if either a or b or both are negative 

integers or zero then X is a polvnomial.To see for 

which values the series converges we use 

Raabe's  test : 

lim n(a
n 

 /a
n+1 

 -1) = L; for L < 1 diverge 
  

n-->00 	 L > 1 conv. 

Here 

a
n
/a

n+1 
= 1 + (3-a-b)/n + 0(1/n2). 

This implies that the series converges if 

3 - a - b > 1 .But in our problem 3-a -(3-a) = 0, 

and therefore the series diverges. We conclude that 

for solution to (3) to exist a ,b must be 

negative integers or zero. 

By letting 

a = -(i-1), i = 1, 2, 3, ... 

and 

b = 3-a = 2 + i 

we have the eigenvalues of the problem. 
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λi = (i+1) 

and 

Qi(x,t) = E F(1-i,2+1;2,x)e-i(i+1)t/4 

or
,  

Q(x,t) = ∑ CiF(1-i,2+i;2,x)e
-i(i+l)t/4 

(5)  

where F( 1-i ,2+i ;2, x ) is always a polynomial. 

To determine Ci  ,we apply the generalised Fourier 

series method together with equation (2) 

(normalization integral - orthogonal functions) 

giving : 

Ci = x0 	1-x0) i(i+1)(2i+1)F(1-i,2+i,2,x0) 

Thus the required solution that satisfies the 

singular diffusion equation (3) can be expressed in 

hypergeometric function as follows 

Q(x0 ; x ; t ) = ∑x0 (1 	-x0) i (i+1)( 2i+1)F(1-i,2+i,2,x0) 
 x F(1-i),2+i,2,x)e  

(6)  

the probability of fixation at x = 0 and x = 1 are 

given by 

f(0,t) = ( 1-x0) ∑ (2i+1)(1-

x

0 )x0F(i+2,1-i,2,1-

x0

) 

                          
X (-1)ie-i(i+1)t/4  

f(1,t) = 	+Z(2i+1)x0( 1-x,o )F( i+2,1-i,2,x0) 

X (-1) e-i(i+1)t/4  

we observe that at any time 

f(0,t) + ∫Q ( xo ,x;t )dx + f(l,t) = 1 

Based on equation (6) the process of change in  
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probability distribution of gene frequency when the 

population starts at x = 0.5, 0.1 and 0.3 is 

illustrated in figures 1, 2 and 3 respectively. 

DISCUSSION of RESULTS  

All 	of the models display (figures 1,2,3,4) 	the 

diffusion of genes through the population. 	Initially 

the graphs are very Peaked but with increasing time , 

the graphs flatten out. After 2N generations the graph 

is almost linear (uniform distribution) which 

confirmed by the solution given in (5). From this 

formula when we take the leading term we see that it 

 dominates for large t, i.e. Q(x, x0 ; t)~ Ce-t/2N for t--> 

For all cases the f Q(x, x0  ;t) dx decreases with 

time.This is due to the fixation occuring at x = 0 and 

x = 1. 

Figure 1 shows a maximum probability density at the 

same gene frequency as the initial gene frequency (0.5), 

with the first generation ( t = N/10 ) being the most 

pronounced. This is not unusual since Q( x0,x,t ) 

approaches zero as t approaches infinity,more directly 

a small t produces a large Q(t is measured in generations). 

For the generations beyond 2N; the curves are flat and all 

frequencies seem equally Probable. That is , fixation or 

loss of the allele in question proceeds at a constant 
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rate. For the smaller generations ( t<=2N ) the 

proportion of alleles lost is larger than the 

proportion of alleles fixed in a given population. 

Figures 2 and 3 are more suitable for use as comparison 

to figure 1. Here the initial gene frequency is 0.1 

( figure 2 ). Fixation occurs very rapidly at x = O. 

Figure 3 shows characteristics similar to figure 1 

( maximum Q occuring at initial gene frequency ). 

However in some generations ( t=N/2 ,N , and 2N ) the 

maximum seem to occur Prior to 0.3. Also at least 4 

generations are required before all gene frequencies 

become equally probable. 

Discrete Model  

Following the Monte Carlo simulation ( appendixA2) of 

model (1) figures 4, 5, 6, and 7 were prepared. 

Included in these are the results of the transition 

matrix at the indicated observation periods. Also 

included for comparison is the solution of the 

continuous model (previously discussed) for certain 

generation. 	Further the matrix results provide a 

standard for direct comparison with the Monte Carlo 

simulation. As seen in figure 4, that the simulations 

compare very favorably with the matrix result. A x2  for 

each generation examined does show that there are no 

significant difference between the two sets of results 
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obtained and indeed the Monte Carlo scheme used is 

reliable. For the generation displayed in figure 4 

(t = N/10) only 5 percent of the time this method will 

yield poor results. 

Even though there is good comparison between the exact 

and Monte Carlo results the matrix result is 

symmetric about the class mark 10 while there is some 

skewness in the Monte Carlo result. The absence of 

skewness is due in part to the underlying computations 

that produce the row vectors of the transition 

matrix 	(theoretical binomial density function).The 

continuous solution compares better with the matrix 

result ( area under the curve and symmetry ) than 

with 	the Monte Carlo result. 	In the 	case 	of 

figure 5 ( t = N/5 ) 

the 

 x2  indicates that 2 percent 

of the time the method may give poor result.However the 

standard 	deviation is larger here than in 	the 

previous case(σ2 =3.2 vs 2.3 for t = N/10 case ). 

Also the skewness is more pronounced. This increase in 

standard deviation is due in part to the wide variation 

at both the class marks 7 and 13 . As t gets large both 

ends of the fixed classes should have large proportion 

of 	the 	gene pool. Even though the continuous 

model(figure 6) does not show this,the Monte Carlo and 

matrix results do. Again relatively large variations 
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occur more frequently, resulting in even larger standard 

deviation 	than before,but the overall method is stil 

good. In figure 7 except for the fixed classes the 

matrix and Monte Carlo result in a flat profile.That is, 

for this generation (t = 2N) the gene frequency of 	the 

unfixed classes are becoming equally probable; but since 

there were some losses and fixations prior 	to 	this 

generation, there is a cumulative effect for both the 

fixed classes at x=0 and x = 1. 
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CHAPTER I I 

EPIDEMICS  
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Over 	the 	years , models of various 	degrees 	of 

mathematical complexities have been developed to study 

a variety of epidemics. Such studies are complicated 

for various reasons. The differing etiologies of the 

diseases lead to some difficult to analyse non-linear 

models. Nevertheless there exist some models of both 

deterministic and stochastic nature which possess 

characteristics associated with many diseases. We will 

examine some of these models. In both the deterministic 

and stochastic cases, we have the following: five 

assumptions : 

1) Following introduction of the disease into the 

community, the total population size remains fixed. 

2) Everyone in the community is initially suscePtible 

to the disease. 

3) Everyone who has contracted the disease and has 

recovered is immune. 

4) The disease is spread by direct contact between a 

susceptible Person (susceptible) and an infected 

person (infective) 

5) The infectives are introduced into the community 

independently. 

DETERMINISTIC THEORY 

The simplest deterministic model that we consider 

first, already possess a characteristic that plays a 

dominant role in most models. Unless the size of the 
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infective group reaches a certain "treshold" level, the 

disease is not likely to spread. 	We consider a 

community of N individuals, all susceptible, into which 

an infective is introduced. The population size remains 

fixed at N+1 ,  x is the number of susceptible, y is 

the number of infective and z those removed are all 

continuous variables as is t time. A relationship that 

holds for all time is : 

x +y+z=N+1 	 (1) 

On the basis of assumption (5) the following sketch 

shows the three classes to which an individual can 

belong. 

where S= susceptible  [x(t)] 

I = infective 	[y(t)J 

R = removed (isolated or immune) [z(t)] 

The length of time a member of this closed population 

belongs to one of these classes is not fixed. We assume 

the "law of mass action" where the rate at which new 

infectives are generated is proportional to the product 

of both the susceptible and infective population, 

diminished only by those that are removed. The removal 

class is increasing at the rate proportional to the 

infective class and the susceptible are diminished by 

the factor Bxy where x and y are as defined earlier . 

28 



 

Thus the following equations govern this process. 

dx/dt = -βxy                     (A) 

dy/dt = β xy-xy   (B) 

dz/dt = γy (C) 

where B is infection rate and is removal rate. To 

obtain a solution to the above system of differential 

equations we make the substitution 

 

ρ = γ/ β 

in (2) after dividing (2B) by (2A) thus : 

dy/dx = (βxy - γy)/βxy = ρ/x-1   

where P is the relative removal rate. Then 

dy = (ρ/x-1)dx +c 

reduces to 

y = ρlnx - x + c 

A relationship for c is deduced by noting that at t = 0 

x0  + y0 = N ;z = 0 	 

therefore 

y0  + x0 	ρlnx = n-ρlnx = c 
  

such that 

y = N - x - ρlnx0/x            (4) 

Substitution of (4) into (2A) gives 

dx/dt = -βx[N-x-Plnx0/x]            (4A) 

and the substitution of (4) into (2C) gives 

dz/dt = ρβy  = ρβ  (Pρlnx/x0-x-N) 

(4A) 

(40) 
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dT/dt = β = ᵧ/ρ  

 

We can rescale time by letting 

T = βt 

such that 

Thus T is the the new time scale. If each of equations 

4A, 48 and 4C is resealed we obtain 

dx/dT = - [Nx-x2-ρxln(x0/x)]     (5A) dy/dT = ρln(x0/x)(P-x)+ (N+ ρ-x) -ρN (5B) 
	) 

and           dz/dT = ρ(N-x-ρlnx0/x)(ρ-x) 	(5C) 

 

 

result. Equation (5C) provides an independent check on 

the results of (5A) and (58), since relation (1) must 

always be satisfied. Further, noting that each of 5A,58 

and 5C are of the form 

x' = f(x) 

y' =  g(x) z' 

= h(x) 

the system can be solved numerically. Since there is 

only one independent variable we can use Simpsons rule 

to integrate each of the equations. Figures 1 and 2 

were constructed with results from this integration 

technique. 

II 	STOCHASTIC THEORY - CHAIN BINOMIAL MODELS 

In the following models we assume that into a 

homogeneously mixing population of susceptibles an 

infective is introduced. We choose as a unit of time, 
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the 	mean length of 	the 	infectious period. 

Since at each stage of the epidemic there are 

susceptibles and infectives, we assume that at the 

next stage the new crop of cases is binomially 

distributed. Possible chains in a household of 3 

(2 susceptibles and one infective) are 

1, 12, 13, and 12. 

The case 1 is the case where at time 1 there is one 

 
infective and at subsequent times none, 12 is the case 

stage 1 , 1 infective and stage 2 also 1 infective , 

12 is the case of 1 infective at stage 1 and 2 

infectives at stage 2. We consider two different 

models, the Reed Frost and Greenwood models. We let 

It and S
t 

be the number of infectives and 

susceptibles at time t and p = 1-q is the probability,  

of adequate contact between any two members of the 

group at time t. 

To derive the binomial distribution we observe that 

since p is the probability of contact between any two 

members of the population ,q is the probability that 

these two members will not meet and q I  t the 

probability that a given susceptible will not meet 

with any of the 

It 

fectives. Thus the probability 

that a given susceptible will meet with at least one 
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of the I 	infectives is (1— qIt). Reed- Frost 

model is the following binomial chain : 

For the Greenwood model we asume that the chance of 

infection is not influenced by the size of the 

infectious population. We assume that the probability 

of a given susceptible being infected is p. Thus the 

Greenwood model is the binomial chain given by: 

The tables below show that the possible chain and 

probabilities for the Reed-Frost and Greenwood models 

are indistinguishable for the case of a small 

household (household of three) while there is a 

difference if the household is greater than three. 

Type of 

TABLE I 

Frequency 
Reed-Frost Greenwood 

Introduction  
q

2 

 
 

q

2 

 

Single 2pq
2 2pq

2 

2p
2
q 

2p2q  p
2 

 
 

p
2 
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TABLE II 

Type of 

Introduction 

no 	of 	 Frequency 
cases 

Reed-Frost 	Greenwood 

1 	 q

2 

	 q

2 

 

Single 

2            2pq2 2pq2 

 

 
3 	 p

2

(1+2q) 	

p2(1+2q) 

In addition the last table shows one initial case 

followed by one new case (2pq
2). Like occurences are 

combined to facilitate examination of the total size 

 of an epidemic such as {13} and {12} In each case 

two new cases follow the initial case, thus a total 

of three , giving a frequency 

: 
p + 2pq

2 

= p

2

(1 + 2q). 

We used a Monte Carlo method to simulate epidemics 

in a population of sizes 2 and 4 into which an 

infective was introduced. The results are tabulated 

in tables 1 and 2. 

DISCUSSION OF RESULTS 

Following numerical integration of equations 5A and 5B, 

figures 1 & 2 were constructed. It is evident from 

figure 1 that there exists a relative removal rate (ρ) 
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below which epidemic occurs and above which epidemic 

does not occur. For our case (x(0) = 30), this relative 

removal rate is 20. It is reasonable to assume that no 

true epidemic will occur if the relative removal rate 

is larger than the initial available number of 

susceptibles. Therefore for an epidemic to occur the 

relative removal rate must be smaller than the initial 

number of susceptibles (i.e. p < x(0)). However it must 

be understood that eventhough we may know e relative to 

x at time zero we cannot directly predict e for a given 

population size analytically. Some factors preventing 

analytic prediction of r are the difference in types of 

diseases and the variability of e itself.Therefore as 

evidenced in figure 1 a small relative removal rate 

(ρ=.1) gives a pandemic whereas a large relative 

removal rate (ρ=40) gives no epidemic. Figure 2 

is a set of epidemic curves based on different 

relative removal rates. Again it is evident that a total 

epidemic will occur for the case ρ=1. Further, at 

this small relative removal rate, approximately 87 

percent of the susceptibles will become infected within 

a very small period of time following contact. What 

this means is that during the epidemic there will be a 

majority of infectives and a minority of susceptibles 

which is enough of a factor to guarantee a pandemic 
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eventhough there was only one initial case (infective) 

introduced. On the other hand a large relative removal 

rate (ρ=20) would have only 2 percent of the 

susceptibles becoming infected within the same time 

period ( as for the case 

(

ρ=1)  following contact. 

Tables 1 & 2 are the results of the simulation  of the 

Reed-Frost and Greenwood models. In these tables the 

frequencies listed in Bailey's book are used for 

comparison with the respective models result. As is 

clear from the tables a small probability of contact 

between infective and susceptible results in no true 

epidemic. This is expected, since small frequency of 

contact between individuals implies smaller contact 

frequency between infective and susceptible, and is 

similar in effect as a large relative removal rate 

(previously discused). As the intimacy is improved 

within the household ( p--> 1 ) total epidemic occurs as 

is indicated by both models.  

Comparison of Models  

For small population sizes (including infective) both 

the Reed-Frost and the Greenwood models are expected to 

produce identcal results. This is verified in table 2 

for a population size of 3.However, table 1 

demonstrates differences between the models which are 

due to the assumption concerning the influence of 
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chance infection due to the number of infectives 

available at a time t+1 (see introduction). Individual 

chains were crosschecked with those expected in 

Bailey's book 
1
and were found to be satisfactory. At 

this point -  only the chain type can be determined, for 

example a chain {1 2 1

2

} was generated (among others) 

for the household of 5 ( 4 susceptibles ). 

Since each of these chains occur with a definite 

frequency, depending on which model is examined, one 

may estimate the total frequency in a given number of 

trials by taking the sum of each type of chain 

generated. As art illustration , the household of three 

(Bailey
1
) gives 

no 	epidemic 	= q

2 

 (frequency) 

1 new case = 
 

2pq2 

 

2     " 	cases = 
2p

2
q 

total   epidemic = 
p
2 

Then in an experiment of 500 trials with n1 
single 

cases occurring this would yield n
1
/500 to be compared 

with 2pq
2 

, and so on. 

To statistically compare the experiments with the 

expected results we used the x

2 

goodness of fit 

test". Since there are eight sets of data for each 

model we try to decide on the two worst cases over the 

range of contact frequency for each model. For example 



at a p of 0.25 (low end) and at a p of 0.45 (high end). 

quantity  : 

fo

r the Greenwood model is determined ; where 0i is the observation 	(simulation) while ei is the expected 

(predicted). 

P 	= 0.25 

Greenwood 	 Model  

01 
 = 51 	 e1 = 49. 

 

02  = 102 	 e2 =94.5 
 

03  
 

= 108 	 e3 =109.5 
 

0
4 

= 89 
e
4 
=89, 05 

 = 150 	 e
5
=158. 

From the above values x2 is 1.102; and from 

statistical tables with a degree of freedom of 4 

 
x2   <<x2.95 = x2crit 	

 

This indicates no significant difference between the 

expected and predicted values. 

Similarly at p = 0.45, x2 = 8.6 ; no significant 

 

difference between the observed and predicted results. 

Below is the result of a similar analysis on the Reed-

Frost model 
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Reed-Frost model  

P x2 x2crit 	  
Deg of 

freedom 

0.35 2.65 	 9.4g 4 

0.45 2.30 	 9.49 n 

From the result presented in the above tables both 

models are well represented by their respective 

simulation. 

Conclusion 

The epidemic curve in figure 2 and the phase portrait 

in figure 1 both emphasize the influence of the 

relative removal rate. In our case (n = 31) the 

relative removal rate is 20 , above which no epidemic 

would seem to occur. These figures also demonstrate 

the existence of a treshhold population size. 

Both the Reed-Frost and Greenwood stochastic models 

 are well represented (x2-goodness of fit ) when the 

Monte Carlo method is used. The models indicate that 

in order for serious epidemic to occur the frequency of 

contact between susceptibles and infective must be 

relatively large . 
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No. of      P         Reed-Frost Reed-Frost Greenwood                     cases 

Model Prediction  Model Prediction  

Table 1 

15.7 15.6 3 0.25 

28.7  28.1 2 

55.3 56.3 1 22.9 

21.6  3 0 20 21.8 21.6 

29.5  29.4 2 31.8 
29.4 

47.3 49.0 1 46.4 49.0 

31.7 28.2 3 0.35 28.2 28.2  

28.7 29.6 2 28.4 29.6 

39.3 42.2 1 43.4 42.2  

34.7 35.2 3 0.40 36.8 35.2 

32.7 28.8 2 29.6 28.8 32.3 

36.0 1 33.6 36.0 

43.7 42.5 3 0.45 47.4 42.5 

26.3 27.5  2 24.2  7.2 

29.7 30.3 1 28.4 30.3 

47.1 50.0 

3 

 0.50 48.8 50.0 

26.5 25.0 2 27.6 25.0 

26.1 25.0 1 

23.6 

25.0 

10.5 10.4 3 0.20 10.0 10.4 

22.5 25.6 2 27.8 25.5 

66.7 64.0 1 62.2 64.0 

Household of 3 - Monte Carlo simulation of the models  
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Model Prediction Model Prediction 

Table 2  

Greenwood                    no of          P        Reed-Frost  cases  

2.0 1.98 5 0.15 2.4  
3.3  

7.2 7.5 4 6.4  8.2 

15.8 15.7 .2. 16.2 13.7 

19.6 22.6  2 22.2 22.6 

55.4 52.2 1 52.8 52.2 

10.2 9.8 5 0.25 13.4 15.8 

20.4 18.9 4 19.0 18.1 

21.6 21.9 3 18.2 16.7 

17.8 17.8  18.4 17.8 

30.0 31.5 1 31.0 31.5 
 25.0 23.8 

5 

 0.35 39.0 37.0 

28.0 27.4 4 23.0 21.8 

20.5 20.3 3 10.8 12.7 

11.2 10.5 2 10.4 10.5 

15.2 17.9 1 16.8 17.9 

31.8 32.3 5 0.40 46.2 48.9 

31.2 29.4 4 21.2 20.8 

15.8 17.8 3 9.8 9.9 

8.4 7.5 2 8.4 7.5 

12.8 12.9 1 14.4 12.9 

38.0 41.2 5 0.45 53.4 60.6 

33.8 29.9 4 15.2 18.2 

17.0 14.8 3 7.4 7.0 
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Table 2 	- cont'd 

4.2 4.9 2 4.6 4.9 

7.0 9.2 l 8.4 9.2 

51.0 50.0 5 0.50 72.8 71.1 

26.8 28.9 4 14.0 14.8 

12.4 11.7 3 5.2 4.6 

4.0 3.1 2 3.4 3.1 

5.8 6.3 1 4.5 6.3 

60.2 58.4 5 0.55 81.4 80.0 

25.4 26.8 4 11.2 11.2 

8.4 8.8 3 2.0 2.9 

2.4 1.8  2.4 1.8 

3.6 4.1 1 3.0 4.1 

61.4 66.2 5 0.60 86.8 87.0 

25.8 23.9 4 8.0 7.8 

8.6 6.2 3 1.6 1.6 

1.6 0.98 

2 

 1.0 0.98 

2.6  2.6 1 2.6 2.6 

Household of 5 - Monte Carlo simulation of the models  
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ØØ), D(5ØØ) ,E (5ØØ) 
15 FOR I = Ø TO 5ØØ                           
16 A(I) = Ø:BB(I) = Ø:C(I) = Ø              
17  E(I) = Ø:D(I) = Ø 
2Ø N1 = N2N / 6:TIME = I 
21 PRINT 
25 TRIAL = TRIAL - 1 	

     6Ø65  RETURN 

3Ø MR = NI / N2                            6Ø9Ø FOR I=Ø TO N2N 
4Ø J = Ø:P = 

MR                             61ØØ IF (RAN  I)=Ø THEN BB(I) 

42 IF TRIAL = Ø THEN 2Ø7                        = BB(I)+1                                     

45   GOSUB 5Ø1Ø            61ØØ NEXT    	
 

5Ø B(1) = PRBTO N2N                      6115 RETURN          

7Ø J = L:P= MR                        612Ø FOR I=Ø TO N2N   71 GOSUB 5Ø1Ø                             613Ø IF (RAN-I)=Ø THEN C(I)=  8Ø D(L+1) = B(L) + PRB                         C(I)+1 1ØØ NEXT L                                  614Ø NEXT  11Ø X = RND (1)                            6145 RETURN  12Ø REM COMPARE                          515Ø FOR I=Ø TO N2N  13Ø FOR LL = 1 TO N2N + 1              616Ø  IF (RAN-I)=Ø THEN D(I)= 14Ø IF X < B(LL) GOTO 165                      D(I)+1 16Ø NEXT LL                                 617Ø NEXT 165 PRINT "  ";LL - 1;                     6175  RETURN 168 RANVARX = LL -1                       618Ø  FOR I=Ø TØ N2N   17Ø R = TIME                                 619Ø  IF (RAN-I)=Ø THEN E(I)= 176 IF ((R=1) OR (R = 2) OR (R)                 E(I)+1 =3)) THEN GOSUB 6ØØØ            62ØØ NEXT 177 IF ((R=4) OR (R=5)) THEN          621Ø RETURN GOSUB 6ØØØ                            178  IF ((LL=1) or LL-N2N + 1)) THEN 2Ø 18Ø TIME = TIME +1 2ØØ NI =LL-1 2Ø5 GOTO 3Ø 2Ø7 BB(N2) = A(N2) +BB(N2):C(N2) = C(N2) + BB(N2):D(N2) =D( N2)+C(N2):E(N2)=E(N2)+ D(N2)  2Ø8 BB(Ø)= BB(Ø) + A(Ø):C(Ø) =C (Ø) + BB(Ø):D(Ø) = D(Ø) + C( Ø):E(Ø)=E(Ø)+D(Ø)  21Ø PRINT A(Ø),BB(Ø),C(Ø),D(Ø),E (Ø) 211 FOR I=4 TO N2N-1             5ØØØ REM A:ARRAY OF N/1Ø OCCURE       212 PRINT A(I),BB(I),C(I),D(I),E  NCES:BB:N/5 OCCURENCES.C:N/2 (I)                                  OCCURENCES 215 NEXT                             5ØØ5 REM D:3N/2OCCURENCES:E:2N 216 PRINT                                  OCCURENCES A(N2),BB(N2),C(N2),D(N      6Ø1Ø IF R=1 THEN 6Ø6Ø 2),E(N2)                          6Ø2Ø IF R=2 THEN 6Ø3Ø 217 DATA 6,501                       6Ø3Ø IF R=3 THEN 612Ø 218 END                                 6Ø4Ø IF R=4 THEN 615Ø 5ØØØ REM BINOMIAL PROB(J:N,P)       6Ø5Ø IF R=5 THEN 618Ø 5Ø1Ø F N2N+2*J (Ø THEM 5Ø7         6Ø6Ø FOR =        TO N2N Ø                                         6Ø7Ø IF /RAN -3) =IF Ø 5Ø2Ø J= (1-P) * P:N=N2N-2                J:BBB= 5Ø21 IF J  5Ø23 5Ø3Ø 5Ø4Ø NEXT K 5Ø55 PRB = PRB * R 5Ø6Ø RETURN 5Ø7Ø J=N2N-J:P-1-P 5Ø8Ø GATE 5Ø2Ø  
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  200 READ X0 TIME,X 205 PRINT "X0, SUM,X,I"          L530: X.= X + 0.1 

206 PRINT X0 	 535 X0 = 0.5 
210 DIM P(20)                    540 IF X < 1.1GOTO 230 

   220 DIM Q(20)                   550 DATA 0.5,0.05.0 
222 DIM C(20) 	 560 END 
224 DIM CT(20)                 5000 FOR N = 1 TO (I - 1) 
226 DIM FX0(20)                 5010 P(N) = ((N - I) *   
228 DIM FFX(20) 	 ) * X0) / (N * (N + 1)) 
229 DIM SUM(20) 	 5020 NEXT N 
230 FOR J = 1 TO 20 	 5030 RETURN 
231 P(J) = 0 	 6000 0(1) = P(1) 
232 Q(J) = 0 	 6005 QSUM = 0.(1) 
233 C(J) = 0 	 6010 FOR M = 2 TO N 
234 CT(J) = 0 	 6020 Q(M) = P(M) * Q(M - 1) 
235 FX0(J) = 0                   6030 	QSUM = QSUM + Q(M) 
236 FFX(J) = 0 	 6040 NEXT M 
237 SUM(I) = 0 	 6050 RETURN 
238 NEXT J 
240 K = X0 * (1 - X0) 
245 CT(1) = EXP ( - 2 * TIME) 
250 FX0(1) = 1 
260 FFX(1) = 1 
270 C(1) = 6 
275 I = 1 
280 SUM(1) = C(1) * K * CT(1) 
285 PRINT. SUM(I),X,I, TIME 
290 FOR I = 2 TO 20 
295 X0 = 0.5 
300 C(I) = I * (I + 1) * (2 * I + 

1) 
310 CT(I) = EXP ( - I * (I + 1) * 

TIME) 
320 GOSUB 5000 
330 FC = P 
340 IF I > 2 THEN GOTO 410 
350 FX0(I) = FX0(I - 1) + P(I - 1 

,) _ 
360 X0 = X 
370 GOSUB 5000 
375 FC = P 
380 FFX(I) = FFX(I - 1) + P(I - 1 

390 SUM(I) = SUM(' - 1) + C(I) * 
CT(I) * FX0(I) * FFX(I) * K 

395 PRINT SUM( I ) X, I, TIME  
400 NEXT I 
410 GOSUB 6000 
420 FC = QSUM 
430 FX0(I) = QSUM + 1 
440 X0 = X 
450 GOSUB 5000 
460 FC = P 

470 GOSUB 6000 
480 FC = P   480 FC(I)= QSUM 
490 FFX(I)= QSUM + 1 

500 SUM(I)=  SUM(I-1) + C(I) + SUM(I)* 
CT(I) * FX0(I) * FFX(I) * K 

510 PRINT SUM(I),X,I, TIME 
520 NEXT T 
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200 READ A.B.N.LPHA LPHA, PEOP, RHO 
210 H = (B - A) / N 
230 H = LPHA 
232 YI = 1 
234 DTAU = 0 
240 PRINT "H, X, Y, DTAU" 
250 PRINT H, X, Y, DTAU 260 FOR I = 1 TO N / 9 

 
270 FX0 = (X - PEOP + LOG  

290 TWDK = (X + H / 2) * (X + H /  

2) - PEOP * (X + H / 2) + RH 
0*(X + H/ 2) * LOG (LPHA 

/ (X + H / 2) ) 
295 IF X + H < = 0 GOTO 370 
300 THREK = (X + H) * (X + H) - P 

EOP * (X + H) + RHO * (X + H 
) * LOG (LPHA / (X + H) ) 

320 X = X - (H / 6) * (FX0 + 4) * 	 
TWOK + THREK) 

322 YF0 = RH0 * LOG (LPHA / X)
* (RHO - X) + X * (PEOP + RHO -  

X) - RHO*PEOP 
324 YTWOK = RHO * LOG (LPHA / (X 

+ H /2)) *  ) (RHO - ( X + H / 
2) ) + ( X + H / 2) * ( PEOP + 
RHO - (X + H / 2) ) - RHO * P 
EOP 

325 IF X+H = 0 GOTO 370 
326 TYHRK = RHO * LOG (LPHA / (X 

+ H) ) * (RHO - ( X + H) ) + ( 
X + H) * (PEOP + RHO - (X + 

H) ) - RHO*PEOP 	 
328 YI = YI - (H / 6) * (YF0 + 4 * 

YTWOK + TYHRK) 
330 D0TAU = -1 / (PEOP * X-X* 

X - X * RHO * LOG (LPHSA / X 

) ) 
332  D2TAU = -1 / (PEOP* X-X+H 

/2) - (X+H /2) * (X+H   

/2) - (X+H /2)* RHO* 
LOG (LPHA / ( X+H / 2) ) ) 

334 D3TAU 

= - 1 / ( PEOP * (X + H 
) - (X+H) * (X+H) - (X+ 
H) * RHO * LOG (LPHA / ( X+ 

H) ) ) 
336 DTAU = DTAU + (H / 6) (D0TA 	 

U+4 * D2TAU + D3TAU) 
340 PRINT X, Y I , DTAU 
350 NEXT I 
360 DATA 9, 0, 180, 9, 10, 3 

370 END 

 

 

 



20 1 "SSPTBL=SUSCEPTIBLE,P=ASSUME   

D MIXING FREQUENCY"           

202 "PEOP=TOTAL POPULATION SIZE"  203 " PSRSS=PROBABILITY OF SUCCESS 

S" 

204 " PRBFL=PROBABILITY OF FAILURE 

" 

20 5 "RNVARX=PROBABILITY INTERVAL 

WITH WHICH GENERATED RANDOM NUMBERS ARE COMPARED205"RNVA RX=PROBABIL. INT ER VAL WI THWHICHGENER AT EDR AND OMNU MBERSARECOPARED" 

20 6  "TIME=0 (ONLY AT START OF RUN 

)"  

210 TRIAL = 1   211  OOCUR = 0 212  O1CUR = 0 214  O2CUR = 0 216  O3CUR = 0 218  O4CUR = 0 219  NET = 1 220  FOR N=1 TO 10 230  RINVARX(N)=0 240  RNVARX(N)=0 250  NEXT N 280  N=1 

290   PEOP=SSPTBL+1 300   PRBFL = (1-P) ^ (SSPTBL-T) IME) 310   PSRBSS=P^ TIME 320   GOSUB 5000 330   FC=Q 340   PBROB = Q * PSRBSS * PRBFL 350   RINVARX(N) = TIME   360   RNVARX(N) = PBRDB 370   TIME = TIME + 1 380   N = N + 1 390    IF N < = PEOP GOTO 300 410   SUM(1) = RNVARX(N) + SUM(N - 1) 420   FOR N = 2 TO PEOP 430   SUM(N) = RNVARX(N) + SUM(N- 1) 440   NEXT 450   FOR I=1 TO PEOP 455   NEXT I 460   G = RND (1) 470   FOR K = 1 TO PEOP 480   IF (G-SUM(K)) < = Q GOTO 505 490   NEXT K 495   PRINT 500   PRINT RNVARX(K) "TRIAL" 

505 NET = RINVARX(K)+NET 

510  IF RINVARX(K)= 0 GOTO 560 520   SSPTBL = SSPTBL - RINVARX(K)    530   IF SSPTBL = 0 GOTO 560   540   TIME = 0 550   GOTO 220 560   SSPTBL = 4 562   PEOP = SSPTBL + 1 566   IF (PEOP - NET) = 0 THEN O0C  UR = O0CUR + 1 567   IF (PEOP - NET) = 1 THEN O1C  

UR = O1CUR + 1 568   IF (PEOP - NET) = 2 THEN O0C UR = O0CUR + 1 569   IF (PEOP - NET) = 3 THEN O0C  UR = O0CUR + 1 570   IF (PEOP - NET) = 4 THEN O4C  UR = O0CUR + 1 

575  TIME = 0   

580  P = 0.15 

	

590  TRIAL = TRIAL + 1  

591  NET = 1  
600  IF TRIAL < = 500 GOTO 220  

605  PRINT "FINAL SIZES OF EPIDEM ICS" 606  PRINT PEOP, O0CUR"TIMES" 607  PRINT PEOP - 1, O1CUR"TIMES" 608  PRINT PEOP - 2, O2CUR"TIMES" 609  PRINT PEOP - 3, O3CUR"TIMES" 610  PRINT PEOP - 4, O4CUR"TIMES" 611  PRINT "TOT TRIAL="TRIAL,"P-G UESS="P,"POPSIZE="PEOP 612  DATA  4,0,0.15 620  END 5000  IF TIME < = 1 GOTO 5070 5010  Q = SSPTBL / TIME 5020  M = TIME - 1 5030  FOR J = 1 TO M   5040  Q = Q * (SSPTBL-J) / (TIME - J) 5050 	NEXT J 5060 	RETURN 5070 	IF TIME > 0 GOTO 5100 5080 	Q = 1 5090  RETURN 5100 	Q = SSPTBL 5110 	RETURN  GREENWOOD MODEL A-4-1  

 



200 READ SSPTBL, TIME  200 NFCTVE = 1 
210 TRIAL = 1 	 . 211 O0CUR = 0 212 O1CUR = 0 214 O2CUR = 0 216 O3CUR = 0 218 O4CUR = 0 219 NET = 1 220 FOR N = 1 TO 10 
230 RINVARX(N) = 0 240 RNVARX(N) = 0 250 NEXT N 280 N=1 290 PEOP = SSPTBL + 1 295 NQ = (1-P) ^ NFCTVE 300 PRBFL = NQ ^ (SSPTBL - TIME 310 PSRBSS = (1 - NQ) ^ TIME 320 GOSUB 5000 330 FC = Q 340 PBROB = Q * PSRBSS * PRBFL  350 RINVARX(N) = TIME 360 RNVARX(N) = PBROB 370 TIME = TIME + 1 380 N = N + 1 390 IF N < = PEOP GOTO 300 410 SUM(1) = RNVARX (1) 420 FOR N = 2 TO PEOP 430 SUM(N) = RNVARX(N) + SUM(N- 1) 440 NEXT N 450 FOR I = 1 TO PEOP 456 NEXT I 460 G = RND (1) 470 FOR K = 1 TO PEOP 480 IF (G - SUM(K))  ( = 0 GOTO 505 490 NEXT K 495 PRINT " "  500 PRINT RINVARX(K), "TRIAL ", TR   IAL  505 NET = RINVARX (K) + NET 510 IF RINVARX(K) = 0 GOTO 560 535 NFCTVE = RINVARX(K)  540 TIME = 0 550 GOTO 220 560 SSPTBL = 4 562 PEOP = SSPTBL + 1 565 NFCTVE = 1 566 IF (PEOP - NET) = 0 THEN O0C UR = O0CUR + 1 567 IF (PEOP - NET) = 0 THEN O1C UR = O1CUR + 1 568 IF (PEOP - NET) = 0 THEN O2C UR = O2CUR + 1 569 IF (PEOP - NET) = 0 THEN O3C UR = O3CUR + 1 570 IF (PEOP - NET) = 0 THEN O4C UR = O4CUR + 1 575 TIME = 0 580 P = 0.4 590 TRIAL = TRIAL + 1 591 NET = 1 600 IF TRIAL < = 500 GOTO 220 605 PRINT "FINAL SIZES OF EPIDEM ICS" 606 PRINT PEOP, O0CCURENCES" 607 PRINT PEOP - 1, O1CCURENCES" 608 PRINT PEOP - 2, O1CCURENCES" 609 PRINT PEOP - 3, O1CCURENCES" 610 PRINT PEOP - 4, O1CCURENCES" 611 PRINT "TOT TRIAL="TRIAL - 1, "P-ENTERED="P,"POPSIZE="PEOP 612 DATA 4, 0, 0, 4 620 END 5000 IF TIME < = 1 GOTO 5070 5010 Q = SSPTBL / TIME 5020 M = TIME - 1 5030 FOR J = 1 TO M 5040 Q = Q * (SSPTBL - J) / (TIME  - J) 5050 NEXT J 5060 RETURN  5070 IF TIME > 0 GOTO 5100 5080 Q = 1 5090 RETURN  5100 Q = SSPTBL  5110 RETURN  REID-FROST MODEL A-4-2  
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