Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

RANDOM GENETIC DRIFT DIFFUSION MODEL AND
 DETERMINISTIC AND STOCHASTIC MODELS OF EPIDEMICS

NORMAN W. LONEY
A Thesis presented to the Faculty of the Graduate School at NJIT, in partial fulfillment of the requirements for the degree of Master of Science in Applied Mathematics.

APPROVAL SHEET

Title of thesis: Random Genetic Drift Diffusion Model and Deterministic and Stochastic Models of Epidemics

Name of candidate: Norman W. Loney Master of Science in Applied Mathematics May, 1985

Thesis and abstract approved:

> Rose Ann Dios

Roman Voronka - Thesis Supervisor
Professor
Department of Mathematics

VITA

Name: Norman W. Loney
Permanent address:
Degree and date to be conferred: Master of Science in Applied Mathematics, 1985

Date of birth:
Place of birth:
Secondary education: Excelsior, October 1970
Collegiate institutions attended Dates Degree Date of Degree

NJIT

Major: Mathematics
Positions held: Teaching Assistant in Mathematics Department New Jersey Institute of Technology Newark, New Jersey 07102

ABSTRACT

Title of Thesis: RANDOM GENETIC DRIFT DIFFUSION MODEL $A N D$

DETERMINISTIC AND STOCHASTIC MODELS
 OF EPIDEMICS

NORMAN W. LONEY: Master of Science in Applied Math, 1985 Thesis directed by: Dr. Roman Voranka

In the Random Genetic Drift Diffusion model two approaches are taken. First we examined a discrete model that represent a relatively idealised uersion of the phenomenヨ. We further make the छssumption that the population reproduces itself and then dies, thus maintaining a finite populationsize at all times. If at a giver locus there are twa possible allels A and E and if Xety is the number of A type in the genetic pool of size $2 N$, then $2 N-X(t) i s t h e$ rumber of B type. We then proceed to obtain a probability dersity function of $X(t)$ Ey an Exact method and the Monte Carlo method. Based on a X^{2} for eact, generatian examined there are no significant difference between the results ottained from either method. However, far large N (N) 20 the Exact method is cumbersome. and as a result the Monte Carlo is more appropri cote for such N.

As a second approach, we approximated the Discrete model for large N with a Diffusion model (a singular parabolic partial differential equation) where x and t
are sssumed continuous. By separation of yariables we ottained the Hypergeometric equation which has an infinite series solutian. From this we ontained the protability density as a function of gene frequency and compare these results with those of the previous methads (Discrete model). We found that there is favourable comparison between all three methods and in particular between the Diffusion Approximation and the Monte Carlo.

The Monte Carlo method was also utilized in the Stochastic models of Efidemics. The models we examined are the Chain Einomisl models of Reed-Frost and Greenwood. We confirmed that for a household of 3 and smaller, both models are indistinguishable, whereas a household of 5 produced different chains based on the inherent assumptions in each model.

Establishing the existence of a threshold population size, we used a continuous model(Deterministic Theory). This approach resulted in a systern of nonlinear ordinary differential equations. The solution of which using the Runge-Kutta (order four) established a relative removal rate above which no epidemic seems to occur, as well as demonstrate the existence of a threshold population size.

TABLE OF CONTENTS
Page
Chapter I Mathematical Genetics $1-25$
Chapter II
Epidemics 26-44
Appendix A1-A4

CHAPTER I

THE FISHER-WRIGHT MODEL OF RANDOM GENETIC DRIFT

```
In this stochastic model from mathematical genetics we
consider a diploid population whose size ig N
iridiuidualE. Thus in the genetic pool at a giuen locus
there will be Exactly 2N genes. We will assume that the
population reproduces itself and then dies. so that the
populstion size isN \Xit ヨll times. If we further assume
that at the giuen locus there are two possible alleles
A छnd B \Xind if X(t) is the numbuer of A type in the
genetic pool of size ZN, then ZN - X(t) is the number
of B type.A model due to Wright \Xiseumes that X(t) is a
random variatle tinomially distributed with parameter
X(t)/2N; thus if the uBlue of X(t) = i, then the
Probability Fig that xot+1)=j is given by
P

This model assumes that there is mo mutation from A to \(B\) or \(B\) to \(A\) and that there are no selective pressures fauring one Bllele ouer another * (Ewens)

There are two ways in which we shall obtain the pratatility density function (frif) of x(t).

\section*{EXACT METHOD}

The first will be an exact method in which time measured in generations is discrete. Since the process is Markouian with \(P=\left\{p_{i j}\right\}\) the transition matrix, we have
\[
x(t+1)=x(t) P
\]
with \(\times(t)\) a row vector giving the probability density function of the random variable \(X\) at time \(t: X(t)=\left\{X_{0}^{(t)}, X_{1}(t), \cdot X_{2 N}(t)\right\}\) where \(X_{j}(t)\) is the probability that the frequency of \(A\) is \(j / 2 N\) at time \(t\).

Tトus
\[
x(t)=x(0) P^{t} \text { where } x(0) \text { is the initial }
\]

Frabability vector
For example if \(2 N=4\), then:
\(F=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ .3164 & .4219 & .2109 & .0469 & .0039 \\ .0625 & .25 & .375 & .25 & .0625 \\ .0035 & .0469 & .2109 & .4219 & .3164 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]\)
```

If at time zero }X=3\mathrm{ then X(0) = (0, 0, 0, 1, 0)
and X(1) =X(0)P=(.0039,.0469,.2109..4219..3164).
HEre .0469 is the pratability that at time l
(one generation later) the value of }X=1\mathrm{ and
0.3164 is the probability that at time 1 the
Ualue of X = 4 (gene A is fixed).

```
\(\mathrm{P}^{2}\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ .4632 & .2329 & .1780 & .0923 & .0336 \\ .1560 & .2109 & .2461 & .2109 & .1660 \\ .0336 & .0923 & .1780 & .2329 & .4632 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]\)
\(p^{3}=\left[\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ .5484 & .1471 & .1353 & .0543 & .0748 \\ .2490 & .1604 & .1813 & .1604 & .2490 \\ .0748 & .0943 & .1353 & .1471 & .5484 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]\)

Where the powers of \(P\) carresponds to the generation in question.

When \(2 N=5\), then:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{7}{*}{\(P=\)} & 1 & 0 & 0 & 0 & 0 & 0 & 0 - \\
\hline & . 3347 & .4019 & .2009 & . 0536 & . 0080 & . 0006 & . 00002 \\
\hline & . 0878 & . 2634 & . 3292 & . 2195 & 5.0823 & 3.0165 & . 0014 \\
\hline & . 0156 & . 0937 & . 2344 & .3125 & 5.2344 & 4.0937 & . 0156 \\
\hline & . 0014 & . 0165 & . 0823 & .2195 & - 3292 & 2.2634 & . 0878 \\
\hline & .00002 & .0006 & . 0080 & . 0536 & . 2009 & 3.4019 & .3349 \\
\hline & 0 & 0 & 0 & 0 & 0 & 0 & 1 - \\
\hline \multirow{7}{*}{\(p^{2}=\)} & [1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & . 4880 & .2196 & .1601 & . 0842 & . 0351 & . 0110 & .0021 \\
\hline & . 2084 & .2145 & .2196 & . 1739 & .1110 & . 0544 & . 0180 \\
\hline & . 0728 & . 1326 & . 1893 & . 2106 & . 1893 & . 1326 & .0728 \\
\hline & . 0180 & . 0544 & .1110 & .1739 & .2196 & .2145 & .2084 \\
\hline & .0021 & . 0110 & .0351 & .0842 & .1601 & . 2196 & .4880 \\
\hline & 0 & 0 & 0 & 0 & 0 & 0 & 1 ] \\
\hline \multirow{7}{*}{\(P^{3}=\)} & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & . 5769 & .1389 & . 1195 & . 0815 & . 0484 & . 0243 & .0103 \\
\hline & . 3024 & . 1622 & . 1657 & .1413 . & .1080 & . 0712 & . 0490 \\
\hline & . 1374 & . 1261 & .1550 & .1631. & .1550 & .1261 & . 1374 \\
\hline & . 0490 & . 0712 & . 1080 & .1413 . & . 1657 & .1622 & . 3024 \\
\hline & . 0103 & . 0243 & . 0484 & .0815 & .1195. & . 1389 & . 5769 \\
\hline & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\hline
\end{tabular}

We used this exset method to examine cases up to size \(2 N=20\) ．The matrix representation for suct populstion of size 10 is cumbersome （ a 2lx2l matrix）．Histograms at 4 generations〔 \(1,2,10 \& 20\)（ for the \(-35 e 2 N=20\) gre included in figures \(4-7\) ．

\section*{II）}

MONTE CARLO METHOD

When \(N\) is larger than 20 ，the exact method generates matrices of size（ 2N＋1xこN＋1 ）which is clearly cumbersome to manipulate．Thus we use another apprasch to model（l），ज Monte carla method． In our scheme，given the population of size zN which छt \(\Xi\) given time \(t\) is in transition probabilities（ ヨ rona in the matrix f）． Here the transition probatilities are giver，by
\[
P_{i j}=F-\times(t+1)=j \mid \times(t)=i
\]

To decide in what state will the population be at time the we consider the interusl \(0<=y<=1\) and divide it into zN sub－iritervals with lengthe po，
 division points will te
\[
\begin{gathered}
y=F_{0}, y=F_{0}+F_{1}, \\
y=F_{0}+F_{1}+P_{2}+\ldots, \\
y=F_{0}+F_{1}+\ldots+F_{2 N-1} .
\end{gathered}
\]

We can further identify these subinteruals with the numbers \(0,1, \ldots, 2 N\) as in the sketch below.


At this stage we generate a random number,
\[
0 \leqslant=\gamma \leqslant=1 .
\]

If this number falls into the \(j\)-th subinterval of the
partitioned line \(0<=\varphi<=1\) then we conclude that
\[
x_{(t+1)}=j .
\]

In this method, the random variable \(\gamma\) is unifarmly dietributed in \((0,1)\), the probability of \(\gamma\) lying within one of the sub-interuals is equal ta the length of the sub-interval in question. Therefore:
\[
\begin{gathered}
\left.F \in 0<\gamma<P_{1}\right\}=P_{1}, \\
\left.P_{i} P_{1}<\gamma<P_{1}+P_{2}\right\rangle=P_{2}
\end{gathered}
\]
\[
\mathrm{F}: \mathrm{F}_{1}+\mathrm{F}_{2}+\ldots+\mathrm{F}_{n-1}<\gamma<1 \geqslant=\mathrm{P}_{n}
\]
\[
x(t+1)=j
\]
if \(\mathrm{P}_{1}+\ldots+\mathrm{F}_{j-1}<\gamma<\mathrm{F}_{1}+\ldots+\mathrm{P}_{j}\)

Shown below is the subroutine used in our analysis: Suppose that the numbers \(0,1, \ldots, 2 N\) are placed in succession in starage cells and the probatilities Fo,

a sequence in data storage. Then:


For exarriple, to dran 10 values of the random ysristle with the distribution
\[
P(\theta=0)=.58, P(\theta=1)=.42
\]

Select as values of \(\gamma\) ten pairs of numbers from a table of random numbers and multiply by . 01. Thus suppose \(\gamma=0.86,0.51,0.59,0.07,0.95,0.660 .15,0.56\) 1.64,0.34 (appendixA-1table of randam numbers).

Then based on our scheme the value \(\theta=0\) corresparide to the values of \(\gamma\) smaller than 0.58 and \(\theta=1\), to the values of \(\gamma>=0.58\) i.e. \(\theta=1,0,1,0,1,1\), 0. 0, 1, 0. Note here that the order of enumeratirig
the numbers \(0,1, \ldots, 2 N\) in the partition of \(0<=y<=1\)
can be arbitrary, but it must be fixed prior to draming.

\section*{DIFFUSION APPROXIMATION}
II) When the population size \(N\) is large, model (1) (a discrete madel) can be appraximated by a model where both \(x=X(t) / 2 N\) and \(t\) are continuous. We consider the derivation of the diffusion model along the lines given in Crow and Kimura, and Ludwig \({ }^{4}\). Let \(x\) diffuse on \([0,1]\). Assume that \(\Delta x\) has the conditional probability density \(q(\Delta t, x, s)\) if \(X(t)=x\).

Thus
\[
q(\Delta t, x, s) \Delta s=\operatorname{Prob}[s<=\Delta x<=\equiv+\Delta s 1 \times(t)=x]
\]
with
\[
\int q(\Delta t, x, \Delta) d E=0
\]

Let \(O(x, t)\) be the pdf of \(X\) at time \(t\). Then
\[
Q(t+\Delta t, x)=\int Q(t, x-\equiv) q(\Delta t, x-s, s) d s+O(\Delta t)
\]

Sirice
\[
Q(t, x)=Q(t, x) \int q(\Delta t, x, s) d s=\int Q(t, x) q(\Delta t, x, s) d s
\]
we have
\(Q(t+\Delta t, x)-Q(t, x)=\int[Q(t, x-s) Q(\Delta t, x-s, s)-Q(t, x) q(\Delta t, x, s)] d s\) Expanding the integrand about \(x\)
\(Q(t+\Delta t, x)-Q(t, x)=\int\left[-s \partial \partial x(Q(t, x) q(\Delta t, x, s))+\frac{1}{2} S^{2} \frac{\partial^{2}}{\partial x^{2}}(Q q)+\ldots\right] d s\)
\(=-\left.\frac{\partial}{\partial x} \int(Q q)\right|_{t, x, s} d s+1 /\left.2 \frac{\partial^{2}}{\partial x^{2}} \int s^{2}(Q q)\right|_{t, x,} d s\)
\(=-\frac{20}{\partial x} \int \operatorname{sqds}+1 / 2 \frac{\partial^{2}}{\partial x^{2}} \int s^{2} q d s\)
We now make sssumtions atout the maments of \(q\).

Let
\(E[\Delta x \mid X(t)=x]=\int \operatorname{sq}(\Delta t, x, s) d s=b(x) \Delta t+O(\Delta t)\)
and
\(E\left[(\Delta x)^{2} \mid x(t)=x\right]=\int s^{2} Q(\Delta t, x, s) d s=a(x) \Delta t+Q(\Delta t)\).
Thus
\(Q(t+\Delta t, x)-Q(t, x)=\Delta t\left[-\partial / \partial x(Q t)+1 / 2 \partial^{2} \partial x(Q a)\right]+Q(t)\) or letting \(\Delta t--->0\)
\[
\partial 0<\partial t=1<2 \frac{\partial^{2}}{\partial x^{2}}[a(x) 0]-\partial \partial x[b(x) Q] \quad 0<x<1
\]
a singular parabolic partial differential equation. since \(\times(t)\) was the number af alleles of type \(A\) in model (1), let
\[
x=x(t) / 2 N
\]

According to assumptions in (1), \(X(t+1)\) is binomially distributed, and given \(x(t)=2 N x\) then
\[
E[x(t+1)]=2 N x \quad \sigma^{2}[\times(t+1)]=2 N \times(1-x)
\]
let
\[
\Delta \times=X(t+1)-X(t) \text { with } \Delta t=1
\]
then
\[
E[\Delta X]=E[X(t+1)]-E[X(t)]=2 N x-2 N x=0
\]
\[
\begin{aligned}
& E\left[(\Delta x)^{2}\right]= E[x(t+1)-2 N x)^{2} y=[-x]=2 N \times(1-x) \\
& E\left[(\Delta x)^{2}\right]=E\left[(\Delta x / 2 N)^{2}\right] \\
&= E\left[(\Delta x)^{2}\right] / 4 N^{2}=2 N x(1-x) / 4 N^{2}=x(1-x) / 2 N
\end{aligned}
\]

Thus in the diffusion model
\[
a(x)=x(1-x) / 2 N \text { and } t(x)=0 .
\]

If we rescale \(t\) by absorbing the factor \(2 N\) in \(t\),
we otatain the following equation for the probatility density function:
\(Q\left(x_{0} ; x ; t\right)=F\left\{x<2 N=x\right.\) at \(t=t \mid x=2 N x_{0}\) at \(\left.t=t_{0}\right\}\)
\(\partial Q<\partial t=[x(1-x) \square]_{x x} \quad ; 0<x<1\)
\[
\begin{align*}
Q\left(x_{0}, x ; 0\right) & =\delta\left(x-x_{0}\right)  \tag{1A}\\
d f(0, t) / d t & =1 / 2 Q(0, t)  \tag{1~B}\\
d f(1, t), d t & =1 / 2 Q(1, t)
\end{align*}
\]

These 1 ast two equations(le) describe the rate at whicti fixation occurs at the boundaries \(x=0\) and \(x=1\).

Tの Eolve (l) we ヨssume aseparation of yariaties solutian
\[
\begin{equation*}
\square=x(x) T(t) \tag{2}
\end{equation*}
\]
then
\[
x T^{\prime}=\left[x(1-x y \times]_{x x} T \text { which } \sigma \equiv n\right. \text { te reduced to: }
\]
thus
\[
T^{\prime} T=-\lambda_{i}[\times(1-x) \times]_{\times \times}=-\lambda_{i} \times
\]
\[
\begin{equation*}
x(1-x) \times n+2(1-2 x) \times-\left(2-\lambda_{0}\right) \times=0 \tag{3}
\end{equation*}
\]

Equation ( 3 ) \(i=\) the Hypergeometric equation:
\[
x(1-x) y^{\prime \prime}+[a-(a+b+1) x] y^{\prime}-\exists b y=0
\]
whose solution is
\[
y=A F(a, E ; C, x)+E x^{1-C_{F}}(\exists-a+1, E+1-C ; 2-a, x)
\]
where
\(F(\exists, b ; \subset, x)=1+a b\left(\sigma(x)+a(a+1) b(t+1), c(c+1) 2!\left(x^{2}\right)+\ldots\right.\)
from (3) it is euident that \(c=2\) and since

Q is to tie bounded at \(x=0\) we have \(\mathrm{B}=0\) further，comparing coefficients in（3）with those int the hyfergeometric differential equation we have
\[
\begin{aligned}
& t=3-3 \text { and } \quad a=12\left[3+\sqrt{1+4 \lambda_{\mu}}\right] \text {. } \\
& \text { for (3) } \\
& X(x)=1+a b\left(2(x)+a(3+1) b(b+1) / 3!2!\left(x^{2}+\ldots\right.\right. \\
& \text { at } x=1 \text {, } \\
& X(1)=1+a t / 2+3(a+1) \operatorname{tat}+1) \neq 3!2!+\ldots \\
& \text { We note that if either a ar tor both are negative } \\
& \text { integers or zero then } x \text { is a folynamial. Ta see far } \\
& \text { which } y \text { blues the series converges we use } \\
& \text { Rコラちぼ }
\end{aligned}
\]
Here
\(a_{n}^{\prime} a_{n+1}=1+(3-\Xi-b) \neq n_{1}+0\left(1 \% r_{2}\right)\).
This implies that the series converges if
\(3-a-t>1\) ．But in our protium \(3-\Xi-(\Xi-\Xi)=0\) ，
arid therefore the series diverges．We coriclude that
for solution to（Sc to Exist \(B\) ，trust te
riegative integers or zero．
By letting
\(a=-(i-1), i=1,2,3, \ldots\)
and
\(b=3-a=2+i\)
we have the eigenvalues af the problem．
\[
\begin{align*}
& \lambda_{i}=i(i+1) \\
& \text { and } \\
& Q_{i}(x, t)=F(1-i, 2+1 ; 2, x) e^{-i(i+1) t / 4} \\
& \text { or } \\
& Q(x, t)=\sum_{i=1}^{\infty} \sigma_{i} F(1-i, 2+i ; 2, x) e^{-i(i+1) t / 4}  \tag{5}\\
& \text { where } F(1-i, 2+i ; 2, x) \text { is always a polynomial. } \\
& \text { To determine } \mathcal{C}_{\mathcal{L}} \text {, we apply the generalised Fourier } \\
& \text { series method together with equation (2) } \\
& \text { (normalization integral - orthogonal functions) } \\
& \text { giving : } \\
& \underline{c}_{i}=x_{0}\left(1-x_{0}\right) i(i+1)(2 i+1) F\left(1-i, 2+i, 2, x_{0}\right) \\
& \text { Thus the required salution that satisfies the } \\
& \text { singular diffusion equation (3) can be expressed in } \\
& \text { hypergeometric function as follows } \\
& Q\left(x_{0}, x ; t\right)=\sum_{i=1}^{\infty} x_{0}\left(1-x_{0}\right) i(i+1)(2 i+1) F\left(1-i, 2+i, 2, x_{0}\right) \\
& \times F(1-i, 2+i, 2, x) e^{-i(1+i)+/ 4} \\
& \text { the probability of fixation at } x=0 \text { and } x=1 \text { are } \\
& \text { given ty } \\
& f(0, t)=\left(1-x_{0}\right)+\sum_{i=1}^{\infty}(2 i+1)\left(1-x_{0}\right) x_{0} F\left(i+2,1-i, 2,1-x_{0}\right) \\
& x(-1)^{i} e^{-i(i+1) t / 4} \\
& f(1, t)=x_{0}+\sum_{i=1}^{\infty}(2 i+1) x_{0}\left(1-x_{0}\right) F\left(i+2,1-i, Z, x_{0}\right) \\
& x(-1)^{i} e^{-i(i+1)+/ 4} \\
& \text { we observe that at any time } \\
& f(0, t)+\int 0\left(x_{0}, x ; t\right) d x+f(1, t)=1 \\
& \text { Based on equation (6) the process of change in }
\end{align*}
\]
probability distribution of gene frequency when the population starts at \(x=0.5,0.1\) and 0.3 is illustrated in figures 1,2 and 3 respectively.

\section*{DISCUSSION OF RESULTS}

All of the models display (figures \(1,2,3,4\) ) the diffusion of genes through the population. Initially the graptis ヨre very feaked tut with increasing time, the graphs flatten out. After 2N generations the graph is almost linear (uniform distritution) which is confirmed by the solution given in (5). From this formula when we take the leading term we see that it dominates for lerge t, i.e. D(x, \(x_{0}\), t) Cer For all cases the \(\int Q\left(x_{y} x_{0} ; t\right) d x\) decreases with time. This is due to the fixstion occuring at \(x=0\) and \(x=1\).

Figure 1 stiows \(\exists\) maximum protatility density at the same gene frequency as the initial gene frequency (0.5), with the first generation ( \(t=N / 10\), being the most pronounced. This is not unusual since Q( \(x_{0,}\), , t approacties zero as t afproactes infinity,more directly a small t produces a large \(Q(t\) is measured in generations). For the generatians beyond zN; the curves areflat and all frequencies seem equally probable. That is, fixation or lose of the allele in question proreeds at a constant

\begin{abstract}
rate：For the smaller generations（ \(\langle<=2 N\) ）the proportion of alleles lost is larger than the proportion of alleles fixed in a given populstion．

Figures 2 and 3 are more suitable for use as comparisan to figure 1 ．Here the initial gene frequency is 0． 1 （figure \(\mathcal{\text {（ }}\) ）Fixatior occurs very rapidly at \(x=0\) ． Figure 3 shows characteristics similar to figure （maximum 0 occuring \(\overline{\text {（ }}\)（ initial gene frequency）． However in some generations（t＝NZ，N，and 2N，the maximum seem to occur prior to 0． 3. Also at least 4 generations قre required before all gene frequencies become equally probable．
\end{abstract}

\section*{Discrete Model}

Following themoritecarlo simulation appendixat of model（1）figures 4，5，6，ヨnd 7 were prepared．

Included in these are the results af the transition matrix at the indicated observation periads．Also included for comparison is the solution of the continuous model（previously discussed）for certain generstion．Further the matrix results frouide ヨ Etヨndard for direct comparison with the monte Garlo simulstion．As seen in figure 4, that the simulations compare very favorably with the matrix result．A \(\mathcal{X}^{\boldsymbol{z}}\) for each generation examined does show that there are no significヨnt difference tutheen the twa sets of results
obtained and indeed the Monte Carlo scheme used is reliable. For the generation displayed in figure 4 \((t=N / 10)\) only 5 percent of the time this method will yield poor results.

Euen though there \(i s\) good comparison between the exact and Monte Carlo results, the matrix result is symmetric about the class mark 10 while there is some skewness in the Monte Carlo result. The absence of skewness is due in part to the underlying computations that produce the row vectors of the transition matrix (theoretical binomial density function). The continuous solution compares better with the matrix result (area under the curve and symmetry) than with the Monte Carlo result. In the case of figure \(5(t=N / 5)\) the \(X^{2}\) indicates that 2 percent of the time the methodmay give poor result. However the standard deviation is larger here than in the previous case( \(\sigma^{2}=3.2\) vs 2.3 for \(t=N / 10\) case). Also the skewness is more pronounced. This increase in standard deviation is due in part to the wide variation at both the class marks 7 and 13 . As \(t\) gets large both ends of the fixed classes should heve large proportion of the gene pool. Even though the continuous model (figure 6) does not show this, the Monte Carlo and matrix results da. Again relatively large variations
```

occur more frequently,resulting in even larger standard
deviation than before,but the overall method is stil
good. In figure }7\mathrm{ except for the fixed classes the
matrix and Monte Carlo result in a flat profile.That is,
for this generatian (t = 2N) the gene frequency of the
unfixed classes are tecoming equally probable; but since
there were some losses and fixations prior to this
generation, there is a cumulative effect for both the
fixed classes at }x=0\mathrm{ and }x=1

```

PROBABILTT DENSITY AS A, FUNCTION gene frequency (at t=0 frequency is 0.5)


F/GURE 2



GENE FREQUENCY
FREQUENCY HISTOGRAM OF ONE ALL
IN ATWO-ALLELE POPULATION(2O)
OBTAINED FROM \(50 O\) TRIALS OF AN
EXPERIMENT (SC GENERATIONXC TbA
-
 \(\cdots\)
\(\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right.\)



\(-172, \longrightarrow\) MONTE CARLO




\section*{References}
```

1.Ewens,W. J. "Paulation Genetics" London Metheu(19E9)
2.Sobol, I.M. "The Monte Carlo Method" University of
Chicago Press.
3.Crow,y .F. and Kimura,M. "An Introduction to
Population Genetics" Harper and Row (1970).
4.Ludwig.D. (1974).

```

\section*{CHAFTER II}

\section*{EPIDEMICS}

Ouer the years , models of warious degrees of mathematical complexities have been developed to study a variety of epidemics. Such studies are complicated for various reasons. The differing etiologies of the diseases lead to same difficult to analyse non-linear madels. Nevertheless there exist some madels of both deterministic and stochastic nature which possess characteristics associated with many diseases. We will examine some of these models. In both the deterministic and stochastic cases, we have the following five assumptions:
1) Following intraduction of the disease into the community, the total population size remains fixed.
2) Eueryone in the community is initislly susceptible to the disease.
3) Eueryone who has contracted the disease and has recovered is immune.
4) The disease \(i s\) spread by direct contact between a susceptitie person (susceptible) and an infected person (irifective)
5) The infectives are introduced into the community independentiy.

\section*{DETERMINISTIC THEORY}

The simplest deterministic model that we consider first, already possess a charseteristic that plays a dominarit role in most models. Unless the size of the
infective group reaches a certain "threshold" level, the disease is not likely to spread. We consider a community of \(N\) individuals, all susceptible, into which in infective is introduced. The population size remains fixed at \(N+1\), \(x\) is the number of susceptible, y is the number of infective and \(z\) those removed are all continuous variables as is t time. A relationship that holds far \(=11\) time \(i s\) :
\[
\begin{equation*}
x+y+z=N+1 \tag{1}
\end{equation*}
\]

On the basis of assumption (5) the following sketch shows the thees classes to which an individual can belong.

where \(S=\) Eusceptitule \([x(t)]\)
\[
\begin{aligned}
& I=\text { infective }[y(t)] \\
& R=\text { removed }(i s o l a t e d \text { or immune) }[z(t)]
\end{aligned}
\]

The length of time a member of this cased population belongs to one of these classes is riot fixed. We assume the " law of mass action" where the rate at which new infectives gre generated is proportional to the product of bott the susceptible and infective population. diminished aridly by those that are removed. The removal Glass is increasing at the rate proportional to the infective class and the susceptible are diminished by the factor \(\beta \times y\) where \(x\) and \(y\) are as defined earlier.

Thus the following equations govern this process.
\[
\begin{array}{ll}
d x / d t=-\beta x y & \text { (A) } \\
d y / d t=\beta x y-\gamma y & (B) \\
d z / d t=\gamma y & \text { (C) }
\end{array}
\]
where \(B\) is infection rate and is remoual rate. To obtain a solution to the aboue system of differential equations we make the substitution
\[
\begin{equation*}
\rho=\gamma_{\beta} \tag{3}
\end{equation*}
\]
in (2) after deviding (2B) by (2A) thus:
\[
d y / d x=(\beta x y-\gamma y)-\beta x y=P x-1
\]
where \(P\) is the relative removal rate. Then
\[
d y=(\rho, x-1) d x+c
\]
reduces to
\[
y=P_{\ln x}-x+\sigma
\]

A relationship for \(c i s\) deduced by noting that at \(t=0\)
\[
x_{0}+y_{0}=N ; z=0
\]
therefore
\[
y_{0}+x_{0}-P_{1 n x_{0}}=n_{1}-\rho_{l n} x_{0}=c
\]
such that
\[
\begin{equation*}
y=N-x-\ln _{\ln x_{0}} x \tag{4}
\end{equation*}
\]

Sutstitution of (4) into (2A) gives
\[
\begin{equation*}
d x / \Delta t=-\beta \times\left[N-x-\rho_{r_{1}} x_{0} \times x\right] \tag{4A}
\end{equation*}
\]
and the substitution of (4) into (20) gives
\[
\begin{equation*}
d z<d t=\rho \beta y=\rho \beta\left(\rho \operatorname{lr}_{1} x / x_{0}-x-N\right) \tag{40}
\end{equation*}
\]

We cen rescale time by letting
\[
T=\beta t
\]
such that
\[
d T / d t=\beta=\gamma / \rho
\]

Thus \(T\) is the the new time scale. if each of equations 4A, 4 B and 4C is rescaled we obtョin
\[
\begin{equation*}
d x / d T=-\left[N x-x^{2}-\rho x \ln \left(x_{0}-x\right)\right] \tag{5A}
\end{equation*}
\]
\[
\begin{gather*}
d y / d T=P \ln (x, \theta)(P-x)+(N+P-x)-P N  \tag{58}\\
d z / d T=P\left(N-x-\rho \ln x_{0}(x)\right. \tag{5C}
\end{gather*}
\]
result. Equation (5c) prouides an independent check on the results of (5A) and (SB), sincerelation (1) must always be satisfied. Further, noting that each of 5A, 5B and 5 C are of the form
\[
\begin{aligned}
& x^{\prime}=f(x) \\
& y^{\prime}=g(x) \\
& z^{\prime}=H(x)
\end{aligned}
\]
the system can be solved numerically. Since there is only one independent variable we can use simpsons rule to integrate each of the equations. Figures 1 and 2 were constructed with results from this integration technique.
\(I\) STOCHASTIC THEORY - CHAIN BINOMIAL MODELS

In the following models we assume that into a homogeneously mixing population of susceptibles an infective is introduced. We choose as a unit of time,
the mear length of the infectious period． Since at each stage of the epidemic there are susceptibles and infectiues，we assume that at the next stage the new crop of cases is binomially distrituted．Fossible chains in a household of 3 （2 susceptibles and one infective）are：
\[
1,1^{2}, 1^{3}, \text { and } 12
\]

The case 1 is the case where at time l there is ane infective and at subsequent times none， \(1^{2}\) is the case stage 1 ， 1 infective and stage 2 also 1 infective 12 i引 the ajse af 1 infectiue at stage 1 and 2 infectives at stage 2 ．We consider two different models，the Reed Frost and Greenwood models．We let It and \(I_{t}\) be the number of infectives and susceptities at time tand \(F=1\)－q is the probability of 三dequate contact tetweer any two members of the group ヨt time \(t\).

To derive the binomial distritution we oteerve that since pis the pratatility of contact betueen any two members of the pofulation， q is the pratability that these two members will not meet and \(q\) it the probability that a given susceptible will not meet with any of the I infectives．Thus the probability that a giuen susceptible will meet with at least one
of the It infectives is (1- \(\left.g^{I_{t}}\right)\). Reed-Frost model is the following binomial chain :
\(P\left(I_{t+1} / S_{t}, I_{t}\right)=\frac{S_{t}!}{I_{t+1}!S_{t+1}!}\left(1-q^{I_{r}}\right)^{I_{t+1}}\left(q^{I_{t}}\right)^{S_{t+1}}\)
For the Greenwood model we asume that the chance of infection is not influenced by the size of the infectious population. We assume that the probability of a given susceptible being infected is p. Thus the Greenwood model is the binomial chain given by:
\[
P\left(I_{t+1} / S_{t}, I_{t}\right)=\frac{S_{t} /}{I_{t+1}!S_{t+1}!} p^{I_{t+1}(1-p)^{S_{t+1}}}
\]

The tables below show that the possible chain and probabilities for the Reed-Frast and Greenwood models are indistinguishable for the case of a small household (household of three) while there is a difference if the household is greater than three.

\section*{TABLE I}

Type of
Introduction

Single

Frequency Reed-Frost Greenwood \(\begin{array}{cc}q^{2} & q^{2} \\ 2 p q^{2} & 2 p q^{2} \\ 2 p^{2} q & 2 p^{2} q \\ p^{2} & p^{2}\end{array}\)
\[
2 p^{2}
\]
\[
2 p^{2} q
\]
\[
p^{2}
\]

TABLE II
Type of
no of
cases
Frequency
Introduction
Single
1
2
3
\begin{tabular}{cl} 
Reed-Frost & Greenwood \\
\(q^{2}\) & \(q^{2}\) \\
\(2 p q^{2}\) & \(2 p q^{2}\) \\
\(p^{2}(1+2 q)\) & \(p^{2}(1+2 q)\)
\end{tabular}

In addition the last table shows one initial case followed by one new case \(\left(2 \mathrm{pq}^{2}\right)\). Like occurences are combined to facilitate examination of the total size of an efidernic such as \(\left\{1^{3}\right\}\) and \(\langle 12\rangle\). In each case two new cases follow the initial case, thus a total of three, giving a frequency:
\[
p^{2}+2 p^{2} q=p^{2}(1+2 q)
\]

We used a Monte Garlo method to simulate epidemics in a population of sizes 2 and 4 into which an infective was introduced. The results are tabulated in tables 1 and 2 .

\section*{DISCUSSION OF RESULTS}

Following numerical integration of equations \(5 A\) and \(5 B\), figures \(1 \quad \& 2\) were constructed. It is euident from figure 1 that there exists a relative removal rate ( \(p\) )
below which epidemic occurs and above which epidemic does rot occur. Far aur abse \((x)(0)=30)\), this relative removal rate is 20. It is reasonable to assume that no true epidemic will accur if the relative remoual rate is larger than the initisl auailable number of susceptibles. Therefore for an epidemic to ocour the relative remousl rate must be Emaller than the initial number of susceptibles (i.e. \(P<x(0)\) ). However it must te understaod that eventhough we may know \(\rho\) relative to \(x\) at time zero we cannot directly predict p for a given population size analytically. Some factors preventing ヨnalytic prediction of \(\rho\) are the difference in types of disesses and the uariability of pitself. Therefore as Evidenced infigure 1 a small relative remoual rate ( \(\rho=1\), gives a pandemia whereas a large relative removal rate \(\rho=40\) y gives no epidemic. Figure \(Z\) \(i s\) a set of epidemir vuryes bssed on different relative remousl rates.Agヨin it is evident that a total epidemic will accur for the cese \(P=1\). Further, at this small relative removal rate, approximately 87 percent of the susceptibles will become infected within a very small period of time following contact. What this means is that during the epidemic there will be a majority of infectives and a minority of susceptibles which is enough of sfactor to guarantee a pandemic

\begin{abstract}
eventhough there was anly ane initial case (infective) intraduced. On the other hand a large relative removal rate ( \(\rho=20\) ) would have only 2 percent af the susceptibles becoming infected within the same time feriod ( 35 for the case \(P=1\) ) following contact. Tables \(1 \& 2\) are the results of the simulation of the Reed-Frost and Greenwood models. In these tables the frequencies listed in Bailey's book are used for comparison with the respective models result. As is clear from the tables a small probability of contact between infective and susceptible resulte in no true epidemic. This \(i s\) expectedssince small frequency of contact between indiuidusle implies smaller cantact frequency between infective and susceftible, and is similar in effect as a large relative remoual rate (previously discused). As the intimacy is improved within the household \((\beta \rightarrow 1\) ) total epidemic occurs \(\bar{a}\) is indicated by toth models.
\end{abstract}

\section*{Comparisen of Models}

For small population sizes (including infective) both the Reed-Frast and the Greenwood models are expected to produce identcal results. This is verified in table 2 for a papulation size of 3. However, table 1 demonstrates differences between the models which are due to the aseumption concerning the influence af
chance infection due to the number of infectives available at a time t+1 (see intraduction). Indiuidual chains were crosschecked with those expected in Bailey's book \({ }^{1}\) and were found to be satisfactory. At this point only the chain type can be determinedyfor example a chain \{ \(1 \quad 21^{2}\), was genersted (among others) for the household of 5 ( 4 susceptibles).
since each of these chains occur with a definite frequency: depending on which model is examined, ane may estimate the total frequency in a given number of triヨls by taking the surn of each type of chain generated. As an illustration, the household af three (Bailey \({ }^{1}\) ) gives:
\[
\begin{aligned}
\text { no epidemic }= & q^{2}(f r e q u e n c y) \\
1 \text { new case } & =2 p q^{2} \\
2 " \text { cases } & =2 p^{2} q \\
\text { total epidemic } & =p^{2}
\end{aligned}
\]

Then in an experiment of 500 trials with \(n_{1}\) single cases occurring this would yield \(n_{1}\) fon to be compared with \(2 p q^{2}\), and so on.

To statistically compare the experiments with the expected results we used the " \(x^{2}\) gaodress of fit test". Since there are eight sets of data for each model we try to decide on the two worst cases over the range of contact frequency for each madel. For example
at a F of 0.25 (law end) and at a \(p\) of 0.45 (high end). The quantity :
\[
X^{2}=\sum_{i=1}^{n}\left(0_{i}-e_{i}\right)^{2} e_{i}
\]
for the Greenwood model \(i s\) determined; where \(O_{i}\) is the observation (simulation) while \(e_{i}\) is the expected (predicted).
\[
E=0.25
\]

Greenwood Model
\[
\begin{array}{ll}
a_{1}=51 & e_{1}=49 . \\
a_{2}=102 & \Theta_{2}=94.5 \\
a_{3}=108 & e_{3}=109.5 \\
a_{4}=89 & e_{4}=89 . \\
a_{5}=150 & \Theta_{5}=158 .
\end{array}
\]

From the above values \(X^{2}\) is 1.102 ; and from statistical tables with a degree of freedom of 4
\[
x^{2} \ll x^{2} \cdot 9=x^{2} \text { crit }
\]

This indicates ro significant difference between the expected and predicted uslues. Similarly at \(\mathrm{F}=0.45, \quad \chi^{2}=\) E.G; ro Eignificant difference between the observed and predicted resulte.

Eelow \(i s\) the result of a similar analysis on the ReedFrost model

Reed-Frost model
p \(x^{2}\)
2.65
9.49
0.45
2.30
9.49

4
Deg of freedom
"

From the result presented in the above tables both models are well represented by their respective simulation.

\section*{Conclusion}

The epidemic curve in figure 2 and the phase portrait in figure 1 both emphasize the influence of the relative removal rate. In our case (n \(=31\) ) the relative removal rate is 20 , above which no epidemic would seem to occur. These figures also demonstrate the existence of a treshhold population size.

Both the Reed-Frost and Greenwood stochastic models are well represented ( \(X^{2}\)-gogdness of fit ) when the Monte Carlo method \(i s u s e d\). The models indicate that in arder for serious epidemic to occur the frequency of contact between susceptibles and infective must be relatively large.

\section*{Table 1}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Greenwood
Model & diction & no. of cases & F & \begin{tabular}{l}
Reed-Frost \\
Model IFre
\end{tabular} & ctian \\
\hline 15.7 & 15.6 & 3 & 0.25 & & \\
\hline 28.7 & 28.1 & 2 & & & \\
\hline 55.3 & 56.3 & 1 & & & \\
\hline 22.9 & 21.6 & 3 & 0.30 & 21.8 & 21.6 \\
\hline 29.5 & 29.4 & 2 & & 31.8 & 29.4 \\
\hline 47.3 & 49.0 & 1 & & 46.4 & 49.0 \\
\hline 31.7 & 28.2 & 3 & 0.35 & 28.2 & 28.2 \\
\hline 28.7 & 29.6 & 2 & & 28.4 & 29.6 \\
\hline 39.3 & 42.2 & 1 & & 43.4 & 42.2 \\
\hline 34.7 & 35.2 & 3 & 0.40 & 36.8 & 35.2 \\
\hline 32.7 & 28.8 & 2 & & 29.6 & 28.8 \\
\hline 32.3 & 35.0 & 1 & & 33.6 & 36.0 \\
\hline 43.7 & 42.5 & 3 & 0.45 & 47.4 & 42.5 \\
\hline 26.3 & 27.2 & 2 & & 24.2 & 27.2 \\
\hline 29.7 & 30.3 & 1 & & 28.4 & 30.3 \\
\hline \(4 \overline{7.1}\) & 50.0 & 3 & 0.50 & 48.8 & 50.0 \\
\hline 26.5 & 25.0 & 2 & & 27.6 & 25.0 \\
\hline 26.1 & 25.0 & 1 & & 23.6 & 25.0 \\
\hline 10.5 & 10.4 & 3 & 0.20 & 10.0 & 10.4 \\
\hline 22.5 & 25.6 & 2 & & 27.8 & 25.6 \\
\hline 66.7 & E4.0 & 1 & & 62.2 & 64.0 \\
\hline
\end{tabular} Household of 3 - Monte Carlo simulation of the models

Table 2


Table \(2-\) cont'd
\begin{tabular}{|c|c|c|c|c|c|}
\hline 4.2 & 4.9 & 2 & & 4.5 & 4.9 \\
\hline 7.0 & 9.2 & 1 & & 8.4 & 9.2 \\
\hline 51.0 & 50.0 & 5 & 0.50 & 72.8 & 71.1 \\
\hline 26.8 & 28.9 & 4 & & 14.0 & 14.8 \\
\hline 12.4 & 11.7 & 3 & & 5.2 & 4.6 \\
\hline 4.0 & 3.1 & 2 & & 3.4 & 3.1 \\
\hline 5.8 & 5.3 & 1 & & 4.6 & 6.3 \\
\hline 60.2 & 58.4 & 5 & 0.55 & 81.4 & 50.0 \\
\hline 25.4 & 26.8 & 4 & & 11.2 & 11.2 \\
\hline 8.4 & 8.8 & 3 & & 2.0 & 2.9 \\
\hline 2.4 & 1.8 & 2 & & 2.4 & 1.8 \\
\hline 3.6 & 4.1 & 1 & & 3.0 & 4.1 \\
\hline 61.4 & 66.2 & 5 & 0.60 & 86.8 & 87.0 \\
\hline 25.8 & 23.9 & 4 & & 8.0 & 7.8 \\
\hline 8.6 & 6.2 & 3 & & 1.6 & 1.6 \\
\hline 1.6 & 0.98 & 2 & & 1.0 & 0.98 \\
\hline 2.6 & 2.6 & 1 & & 2.6 & 2.6 \\
\hline
\end{tabular}

Household of 5 - Monte Carlo simulation of the models


```

 References
 1.Sobol: I. M. "The Monte Carlo Method" University of
Chicago Fress.
2.Esiley, N. T. "Mathematical Theory of Epidemics"

```

APPENDIX

```

$15 F O R I=2 T 0500$
$1 E A(=)=D: B E(I)=0: C(I)=0$
$17 E(I)=\square: D(I)=0$
$20 \mathrm{~N} 1=\mathrm{N} 2 \mathrm{~N} / \mathrm{E}: T$ TME $=1$
21 PRINT
25 TRIAL $=$ TRIAL -1
$30 \mathrm{MR}=\mathrm{NI} / \mathrm{NE}$
$40 J=\square: P=M R$
42 IF TRIAL $=0$ THEN 207
45 GOSUB 5O10
$50 \mathrm{~B}(1)=\mathrm{PRE}$
ED FOR L L TO NEN 1 .
$7 \mathrm{O}=\mathrm{J}: \mathrm{P}=\mathrm{MR}$
$7 \div$ GOSUR 5010
PO OCL + 1) = E(L) + PRE
100 AEXT L
$110 \times=$ RND (1)
120 REM COMPARE
$130 \mathrm{FOR}: 1=1 \mathrm{TO} \mathrm{NON}+1$
140 IF X : EM, GOTO $1 E S$
1EO NEXT LL
165 PRINT " ":LL-1:
IES RANUGRX $=$ L -1
$170 \mathrm{R}=\mathrm{TIME}$
$\therefore 7 E$ IF ($(R=1) \quad O R \quad \therefore=2) \quad O R(R)$
$=\square)$ THEN GOCuS EODO

```

```

$=E E$
E130 NE:
EIIE RETURY

```

```

E:
5140 40:5
E:-E TGUn
5150 שOR $\because \quad 9 \quad 9 \quad \because 2$.
5נ60 $\because \because \because!$
$\therefore-90$
$5 \cdot 7$

```

```

$\underset{1}{1}$
$E=00$ जE ${ }^{2}$
EEIO RETUPN:

```

```

GOELE EDOD

```
IVE. \(\because=i(L L=1) \quad O R(L L=N=1:\)
1) TYEN 20
\(\because \mathrm{OD}\) TIME \(=\mathrm{YME}+1\)
\(\cdots B N=!2-1\)
玉ZE GOTO OD

                \(=\mathrm{CCHO}+\mathrm{DO}-\mathrm{DCNa}=\mathrm{DC}\)

DNZ


\(\therefore=\mathrm{O}(\mathrm{Q})=E(\Delta)+D(\theta)\)



-,\(\ldots 6\)
- -5 :

200
205
205
210
220
222
224
225
228 DIM FFX(20)
229 DIM SUM (20)
230 FOR J = 1 TD 20
\(231 P(J)=\square\)
\(232 Q(J)=0\)
\(233 C(J)=\square\)
\(234 \mathrm{CT}(J)=\square\)
235 FXD(J) \(=\square\)
23E FFX(J) \(=0\)
237 SUM (J) \(=0\)
238 NEXT J
240K= XD*(1-XD)
\(245 \mathrm{CT}(1)=\operatorname{EXP}(-2\) * TIME)
\(250 \mathrm{FXD}(1)=1\)
\(2 E 0 \mathrm{FFX}(1)=1\)
\(270 \mathrm{C}(1)=E\)
275 I = 1
\(280 \operatorname{SUM}(1)=C(1) *: K * \operatorname{CT}(1)\)
285 PRINT. SUM(I), \(X\), I, time
290 FOR I \(=2\) TD 2ロ
\(295 \times 0=0.5\)
\(\leq 00 C(I)=I *(I+1) *(2 * I+\) 1)
```

\Xi10 CT(I) = EXP(-I * (I + 1) *:

```
        TIME)
320 GOSUB 5000
\(\mathrm{SSDFE}=\mathrm{F}\)
340 IF I \(>2\) THEN GOTO 410
\(350 F X D(I)=F X D(I-1)+P(I-1\)
        ,
SED \(X \square=x\)
370 GOSUB 5000
\(375 F C=p\)
\(\mathrm{BE} \operatorname{FFX}(I)=F F X(I-1)+P(I-1\)
        )
390 SUM(I) \(=\) SUM(I - \(19+C(I) *:\)
        CT(I) * FXDCI) : F: FFX(I) : K
395 PRINT SUMCI), X, I, Time
400 NEXT I
410 GOSUE EDOO
\(420 \mathrm{FC}=\) QSUM
\(43 D F X D(I)=\) QSUM +1
\(440 \times 0=X\)
4.50 COSUB 5000
\(4 E D F C=P\)
470 ODSUE 5000
\(4 \mathrm{ED} \mathrm{FE}=\mathrm{OE}\) OM
\(4005 F X(\%)=05 U M+1\)
EQQ SUM (I) = SUM(I - 1) + CCI) +
        CT(I) * FXOCI) * FFX(I) * K
510 PRINT SUMCI \(, X, I\), Time
E2D NEXT T
```

200 READ A,B,N,LPHA, PEOP,RHO
210H=(B - A)/N
230 X = LPHA
232 YI = 1
234 DTAU = 0
240 PRINT "H , X, Y, DTAU"
250 PRINT H,X,YI,DTAU
2E0 FOR I = 1.TON/S
270 FXO = X * (X - PEOP + RHO * LOG
(LPHA / X))
290 TWDK = (X + H/2) *:(X+H/
2) - PEOP * (X + H/2) + RH
O * (X+H/2) % LOG (LPHA
/(X+H/2))
295 IF X + H < = 0 GOTD S70
SOD THREK = (X + H)* (X + H) - P
EDP *: (X + H) + RHO *: (X + H
) * LOG (LPHA / (X + H3)
320 X = X - (H/E) *: (FXO + 4*:
TWOH + THREFK)
S2 YFD = RHO *: LOG (LPHA / X) *: .
(RHO - X) + X *: (PEOP + RHO -
X) - RHO *: PEDP
324 YTWOK = RHO * LOG (LPHA / CX
+H/2)) H: (RHO - (X + H /
2)) + (X + H / Z) * (PEOP +
RHO - (X + H/2)) - RHO * P
EOP
225 IF X + H < = O GOTD उ70
Z2E TYHRK = RHO :* LOG (LPHA / (X
+H)) *: (RHO - (X + H)) + (
X + H) * (PEOP + RHO - (X +
H)) - RHO :* PEDP
32\Omega YI=YI - (H/E) * (YFD + 4 *
YTWOK + TYHRK)
SSQ DOTAU = - 1/ GPEOP : F X - X *
X - X *: RHO it LDG \LPHA / X
3)
S2 D2TAU = - 1 / CPEDP * < X + H
/2)-(X+H/2)* (X + H
(Z)-(X+H/Z) *:RHO *:
LOG (LPHA ((X + H/2)))
SS4 DSTAU = - 1/CPEOP *: (X + H
)-(X+H)*(X+H)-(X+
H) :: RHO *: LOO (LPHA / (}X
H) 3)
SSE DTAU = DTAU + (H / E) *: (DOTA
U + 4 * D2TAU + DETAUS
S40 PRINT X,YI,DTAU
S50 NEXT I
SEO DATA 9,0,1.90,9,10,5
E70 END

$$
A-3
$$

```
200 READ SSPTBL, TIME,
201 "SSPTBL=GUSSCEPT:SLE,P=RSSUME
    D MIXING FRERUENCY"
202 "PEOP=TUTA POPLLATION SIZE"
203 "pSRESE=PROBABMLTY OF SUCCES
        s"

        "
205 "RNVARX=PROBRBILITY INTERVAL
    WYTH WHICH GENERATED RFNOOM
    NUMBERS RRE COMPAREDCOE"RAVA
    RX \(=\) PCOBABLL INT ER VAL WI
    THWHICHGEMER AT EDR AND DMNU
    MEEREARECOPARED"
2DE "TTME \(=0\) ORLY AT START OF RUN
        )"
210 Trata \(=\) :
210000 =
\(2201049=0\)
2.4 OQCUR \(=0\)
25 E ITCUR \(=0\)
218 D4Cur \(=8\)
\(212 \mathrm{MET}= \pm\)
\(20 \mathrm{FOR} N=\mathrm{TO} 10\)
23 RINARA(N) \(=0\)
240 RMVARX (N) \(=0\)
250 NEXT N
W \(n=1\)
\(200200=2995+1\)

        IM등

-20 gocus 3000
\(\square \mathrm{FD}=\mathrm{C}\)
2L0 PEROE \(=0\) \% PGRESS 4 PREFL
OG RIWQRXCN = TME
TEO RNURRKCN = PEROE
\(\square\) THE \(=\) TMME + \(:\)
\(2 \pi \because=\because+\)


an Gon \(A=2\) - PEQP

        !
440 MEX

\(5=\)


\(\pm \times\)
0
        \(\because\)
    \(\therefore\)
        ....-
        \(\because \because\) !
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline 510 & IF RINVARXCK \(=0\) OOTO SE0 \\
\hline 520 & SSPTEL = SSPTEL - RINVARX (K) \\
\hline 558 & IF SSPTEL = 0 GOTO 560 \\
\hline 540 & TIME \(=\) ? \\
\hline 550 & Suro 220 \\
\hline 560 & SSPTRL \(=4\) \\
\hline 562 & \\
\hline SEE & IF (PEOP - NET) \(=\square\) THEN DOC UR \(=\) DOCUR +1 \\
\hline 567 & \multirow[t]{2}{*}{IF (PEOP - NET) \(=1\) THEN OID UR = OICUR \(+:\)} \\
\hline & \\
\hline 5 Ee & IF (PEOP - NET \(=2\) THEN O2C \\
\hline & UR = O2CUR + 1 \\
\hline 5 ES & \multirow[t]{2}{*}{IF (PEQP - NET) \(=\) T THEN DSC UR \(=\) QUEUR + :} \\
\hline & \\
\hline 570 & \multirow[t]{2}{*}{IF (PEQP - NE: \(=\therefore\) THEO \(3 \angle C\) \(U R=\) Q4CUR +1} \\
\hline & \\
\hline 575 & TIME \(=0\) \\
\hline 500 & \(p=0.15\) \\
\hline 590 & TRIAL = TPIAL + 1 \\
\hline 591 ; & \multirow[t]{2}{*}{\begin{tabular}{l}
NET =: \\
IF TRIAL \(\leqslant=500\) GOTO 200
\end{tabular}} \\
\hline E00 & \\
\hline 605 & Prent "frnal sizes of Eprdem \\
\hline & Ics" \\
\hline EDE & Print pegr, dacur"times" \\
\hline 607 & PRINT PEOP - 1.OICUR"TMMES" \\
\hline 508 & PRINT PEOP - z, QzCUR"TMES" \\
\hline 609 & PRINT FEOP - \(\quad\) - OSCUR"TMMEE" \\
\hline 610 & PRINT PEOP - 4 , OLCUR"times* \\
\hline 611. & \multirow[t]{2}{*}{PRINT "TOT TRIRL="TRIAL,"P-G UESS="O, "COESEEE="OEDP} \\
\hline & \\
\hline E: & DATA \(4,0,0.75\) \\
\hline E20 & END \\
\hline 5000 & IF TYME \(=1\) OQT0 5070 \\
\hline 5010 & \multirow[t]{2}{*}{\[
0=\operatorname{SSPTE} L \text { /TME }
\]} \\
\hline 5020 & \\
\hline 5020 & \begin{tabular}{l}
M = TME - : \\
FOR \(y=1\) TOM
\end{tabular} \\
\hline 5045 & \[
\square=0 \text { a sepre - I) (ThE }
\] \\
\hline 5090 & HESE y \\
\hline 50en & RETURN \\
\hline 5070 &  \\
\hline soed & \[
0=1
\] \\
\hline 9090 & Refura \\
\hline Enuc & \(\square=959+\) \\
\hline 31.0 & 9504\% \\
\hline \multicolumn{2}{|r|}{GREENWUOD} \\
\hline \multicolumn{2}{|r|}{MODEL} \\
\hline
\end{tabular}
\[
A-4-1
\]
```

LDE READ ESFTBL, TMME:%
20S NFCTUE = 1
210 TRIAL = 1
211 OOCUR = D
212 OICUR = 0
214 O2CUR = Z
216 OSCUR =0
218 OUCUR = 0
213 NET = 1
220 FOR N = 1 TO 10
230 RINUARX(N) = O
240 RNVARX(N) = 0
250 NEKT N
2e0 N == 1
290 PEOP = SEPTBL + 1
235 NQ = (1 - P) ^ NFCTVE
SOO PREFL = NO ` SSSPTEL - TIME:
J10 PSRESE = (1. - NQ) % TMME
320 OOSUB 5000
~Q FC=Q
340 PBROE = Q * PGRESS % PREFL
ZSO RINVARX(N) = TIME
SEO RINARX(N) = FEROB
370 TMME = TMME + 1
200N=N+1
TOQ IF N : = PEOP GOTD -OQ
410 BUMC1) = RNVARX(1)
420 FOR N = 2 TD PEDP
430 SUM(N) = RNVARX(N)+ SUMCN-
1)
440 NEXT N
4EO FOR I = T TO PEOD
GEE NEXT I
4ECO=FND :1%
470 FOR K = : TO PEOF
400 IF (G- Sum(K); =a OnTa
5 0 5
490 MEXT K
495 PRINT " "
S00 pRINT RINVGRXOS,"-RIAL ", -R
\#F-

```


```

5ab bermbu = cevrmb oumpak<
60 %F %5"\#L = 0 OOTQ 500

```

```

Ean +am=0
\#50 60 % %-6
TG4 55PME= =
SER PEOP = SGPYR +
FEE MTOリ= =
EE= =-g
\# - -4%"%
--\cdots --->
$\%$ \% \ldots

```
```

