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ABSTRACT
Title of Thesis: RANDOM GENETIC DRIFT DIFFUSION MODEL
AND
DETERMINISTIC AND STOCHASTIC MODELS

QF EPIDEMICS
NORM&SMN W, LONEY, Master of Science in Applied Math, 1398

Thesis directed by: Dr. Romasn VYaronka

In the Random Genetic Drift Diffusien model two
approaches are taken. First we examined a discrete
model that represent a relatively idealised version of
the phencomena. We further make the assumption that the

population reproduces it

I

elf and then dies, thus

i}

maitntaining a finite population size at a1l times. If
at @ given loccus there are two possible allele A and B
and if X{t) is the number of A tupe in the genetic pocl
of <size 2N, then 2N-X(t) is the number of B tupe. We
then proceed to obtain 3 probability density function
of ¥X({t) by an Exact methocd and the Monte Carlo method.
o

Based aon a.Xf for each genevation examined there are
ne significant difference between the results obtained
from eilther method. However , for large N (N > 20) the
Exact method is cumbersome. and as & result the Monte

Carlo i1c more appropriste for such M.

fAs a second approach, we approximated the Discrete

n

model for large N with & Diffusion model (& singular

parabelic partial differential equation) where % and t



are zscumed continuocus. By separation of variasbles we
obtained the Hypergeometric eguation which has an
infinite <series <olution. From this we obhtained the
probability density as a function of gene frequency and
compare these results with those of the previous
methods (Discrete model). We found that there 1s
favourable comparison between all three methode and 1n

particular between the Diffusion Approximation and the

Monte Carlo.

The Monte Carlo method wase also utilized 1n the
Stochactic models of Epidemics. The models we examined
are the Chain Binaomial models of Reed-Frost and
Greenwood. We confirmed that for a household of 2 and
zgmaller, both models are indistinguishable, whereas 3
household of 5 produced different chains based on the
inherent assumptione in each model.

Establicshing the existence of a thresheld population

i3]

ize, we used & continuous model{Determinicstic Theory).
Thie approcach resulted in a system of nonlinear ordinary
differential equations.The soclution of which using the
Runge—-Kutta {(order four) ectablished a relative removal
rate sbove which no epidemic seems to occur, as well as

demonstrate the exictence of a threshold population size.
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THE FISHER-WRIGHT MODEL OF RANDOM GENETIC DRIFT

In this stochastic model from mathematical genetics we
consider & diploid population whose size is N
individuals. Thus 1n the genetic pool at a given locus
there will be exsctly 2N genes. MWe wWwill asssume that the
population veproduces itself and then dies, so that the
populstion size is N at 3ll times. If we further assume
that at the gqiven locus there are two possible aslleles
A and B and if X{t) 1= the number of A type in the
genetic pool of si1ze 2N, then 2N - X(t) 1s the number

aof B type.” model dues to Wright sesumes that X(t) is s

random variable binomially distributed with parameter

XitiszN 3 thus if the value of X(t) = 1,then the
probability Pii that X{t+1l) = i is 3iven by

2 . - .
Po. o= Cirznyd (1 - qeenySTd (1)

b

Thiz model assumes that thervre is no mutation from A& to
B or B to & and that there are no selective pressurecs

faworing ane 3llele cuer snother . (Ewens)I

There arvre two wave in which we shall obtain the

probability density function (pdf) of X(t).

P



EXACT METHOD
The first will be an exact method in which time
measured In generations ic discrete. Since the

Markovian with P = {pii} the transition

praocess 1

i

matrix, we have

X{t+1) = X(t)P

wWwith X{t}) a row wvector giuving the probability
denslity function of the random variable X at time
tr X(t) = {X_(t), Xlit), . e XZNit)}

wWwhere X 0t) is the probability that the

frequency of A is 32N at time t.

Thus=s

X(t) = X[

ey
—
i)
—r
I

where X{0) is the initial
probability vector

For example if 2N = 4, then

1 8] a a a
U L4213 L2109 L4659 L0039
L0625 L2 375 25 LOe2S

L0039 L0469 .2109 -4219 . 3164

B ] 0 0 0 1 __J




If 3t time zero X = 3 then X({(0) = (0, 0, 0, 1, O
and X(1) =X(0)P= (.0039,.0489,.2109,.4219,.3164).
Here .04e% is the probsbility that at time 1

{ cne generation later )} the value of X = 1 and

0.3164 is the probhability that at time 1 the

value of ¥ = 4 (gene A is fixed).
1 0 0 Q o]
o LAE32 Z325 L1780 0sS23 . 0336
P
1550 2103 2451 L2108 1660
0226 0923 1780 .2329 L4632
L0 G Q ] 1 -
1 0] 0 ] 0
L o484 L1471 L1253 L9343 L1748
P = . 2490 L1604 .1812  .1604 Z4910
L0748 .0943 L1353 L1471 .5484
LP ] ] G 1 _J

where the powers of P corresponds to the 1

in question.

HWhern 2N = &, then :




%}

1 0 a a a a Q
.3347 .401%  .2009 ,0536 .0080 .0006  .00002
0a7g Z634  .3292 .2195 .0823 .0165  .0014
0156 .0937  .2344 ,3125 .2344 .0937 0156
.0014 L0165  .0823 .2195 .3292 .2634 ag7a
.00002  .0006  .0080 .0S36 .2009 .4019  .3349
o 0 0 a 0 0 1
1 0 0 0 0 0 o
. 4880 .2136  ,1601  .0842 .0351 .011Q  .o002d
2084 2145  .2196 .1739 .1110 .0S44  .0180
.0728 1326 1893 .2106 .1993 1326 ares
L0180 .0544  .1110 .173% .2196 .2145  .2084
L0021 0110 L0351 .0242 .1601 .2196  .4880
| O a a a 0 a 1]
B 0 a 0 0 0 o |
5769 1389 1195 .0815 .0484 .0243 L0103
2024 1622 1657 .1413 .1080 .0712 0490
.1374 L1261 L1550 L1631 .1550 .1261 1374
. 0490 L0712 L1080 .1413 L1657 L1622 2024
L0103 .0243  .0p4B4 0815 .1195 .138% . 5769
a a o X 0 0 1
L ]

n




e used this exact method to examine cases up to

size 2N = 20 . The matrix representatiaon for

such population of size 10 is cumbersaome
( & 21x21 matrix ) . Histograms at 4 generations
( 1,2,10 & 20) for the case 2N = 20 sre included in
figures 4-7

MONTE CARLO METHOD

When N is larger than 20, the exact method

generates matrices of size { 2N4H1x2ZN+L1 ) which 1=

clearly cumbersome to manipulate, Thus wWwe use

anothesr approach to model (1),3 Monte Carlo method%
In cur =scheme,given the population of size 2N which
2t 3 gQluen time t 1s in state i

« We calculate the

trans=itiaon probabilities ( & rvrow in the matrix FP.

Here the tramsitiaon probabilities are Qiven by
Pij = PL XOt+1)=3X{tr=1 =

To decide in what state will the populatiaon be &t

time t+1 ,we consider the interwsl 0 (= y <= 1 and

divide it into 2N sub-interwals with lengths Py

PqgsPaos o oaPoy the coordinates of the

division points will be

Y= Pps ¥ T Py T oPg
o= p0+pl+p:_"+. ..y
y o= pD + pl + ... + Popg—1

[



e can fur ther

identify these subintervals with the

numberse 0,1,...,2N as in the sketch below.
, O fl 1 2 | ccl 2N )
— % T i 3 1
o o R+p Bbap, = !
A8t this stage we generate a random number '
0 <= ¥ <= 1.
If this number falls inte the j—th subinterval of the
partiticned line 0 <= y¢ <= 1 then we conclude that
X{t+1) = 3.

In this method, the random variable ¥ is uniformly
distributed in (0,1), the probability of ¥ 1lving
within one of the sub-intervals is equsl ta the
length of the sub-interwval in guestiocn. Thervefore:
F._"' L > X “ pl & = Dl s
FLpy, € ¥ Cpy +ops Fo=opgy
PLopg + Pa + . + Prq ¥ 1 r =p_
XKit+1l)y =3

if Py + .+p3~1 ¥ « Py + ...+ P
Shown below is the subroutine used inm ouv analuysis:
Suppose that the numbers 0, 1, ...,2N are placed in

suyccession 1In
pﬂ+p1, p0+p1+p7,...,1 gleao
5 sequence in data stovage

storage cells and the probabilities Fgs

form

. Then :

4



{ {
z ““““““ B '
! NQ {YES ‘
i i
s !
| :
¥ ; A 4 . -
1 ! oy
t b 1 TO E % ASSUME ¥ = Xiﬁl
ADDRESS OF | L : i
: CELLS FROM | ; !
; WHICH P, AND, — v S
j % WERE | [RESTORE ADDRESS | !
| RETRIEUED | ? OF py AND X
- _,,,“[ ; b P e < (
i S /4 J
VT T DT T 4 o o e e - - - __%_ SV B

Faor example, to draw 10 values of the random

varisble with the distribution

Select s walues of ¥ ten pairs of numbers from &
table of random numbers and multiply by .01, Thus=
suppose ¥ = (0.826,0.51,0.5%9,0.07,0.95,0.66 0.15, 0.5&
0.64,0.,39 ¢ appendixﬁgﬂtable of vandom numbers ).
Then based on ocur scheme the value O = 0 correspands
to the values of ¥ smaller than 0.58 and & = 1, ta
the values of ¥ »>= 0.58% i.e. & =1, 0, 1, 0, 1, 1,

o, 0, 1, 0. Note here that the order of enumerating

a1



the numbers 0, 1,...,2N in the partitian of 0 (= y <=1

can be arbitrary.but it must be fixed prior to drawing.

DIFFUSION APPROXIMATION
I11yWhen the population size N is large, madel (1)
(a discrete model) can be spproximated by a model

where hoth x = X{(t)- 2N and t are coantinuous. e

arnsider the deriwvation of the diffusion model

Af

. . . . 3 .
long the lines given in Crow and Kimura,and Ludwig.

i3

let x diffuse on [0,1]. Assume that ax has the
conditional probability density glat,x,s) if X{t)=x.

Thus
With

Let Qix,t) be the pdf of X st time t. Then
it + pAt.x) = f&(t, ®x—s) qiaAt, x—-=,83ds + o(At)
Since

Ort,x) ,®ysids =‘[ﬁ(t,x) qipat,x,s)ds

!
o)
~t
A
"

D

S
D
-

e have
QCt + At x) — Q{t,x) =j}Q(t,x—s)q(At,x—5,5) - Q(t,x)glat,x,s)1ds
Expanding the integrand about x

EA X
G t+AL,x) =0t x) =f[—5 R YOt XxIGIAL s % yS)) +~é‘52§§1(mq)+--.]d5_

2
3 . - 2
=-2f (Qadi, , _d= +1/2 ;Q;&ﬁ (o)1, o ds

e now make assumtions about the moments of q.

o



Elax IX(t) = x1 = f%q(&t,\ss\ds = hix)IAt + 0Oat)
and
E[(AX)Z§X(t) = x] =‘(s qiatsx,.s)ds = aixlat + Q{at).

Thus
S > -
Ot + At,x)-Q(t,x) = ftl- =7 Ox(Ub) + 172 ¥ xTQa)] + 0(_t)
ar letting At ————> @

1 i~ -
S ot = ELLa0A - o x[b(x)Q] 0 < x <1

a sinqular parabolic partial differential equation.
Since X{t) was the number of alleles of tvype A in
model (13, let

v o= X{t)s2N.
According  to  assumptions  in (1), X{t+1l) is
Finemially distributed, and given X{t) = 2ZNx then

2
Erxet+1)] = 2Nx O [X(t+1)] = 2Nx({1-x)

let
Ax = X(t+12=xX({t) with ot = 1
then
ELAX] = EIX{t+1)]1-E[X{t)] = 2Nx-2Nx = 0
E[(AX)2] = E[K(t+1)—2wx)2} = [ ®] = ZMx({l-x)
E[(Ax)gl = ELC AX/EN)QJ
= E[(AX)Z1/aN% =2Nx(1-x)/aN% = x(1-x)/2N
Thue in the diffusion model
{x) = ®x({1-w3) 2N and b(x) = 0.

If we rescale t by absorbing the factor 2N in t,



We abtain the following equatiaon for

probability density function @

Qix,x5t) = POCEN =x &t t= t] X = 2Nxg at t=tgd}
JdADt = [x(l—x)Q]Yx s 0 < x < 1 (12
Qg x50 = §Cxmxy) (14)

df (O,t) dt = 1-2 Q{O0,t)

gf{l,t) dt = 1,2 Q{1.,t)

These last two equations({lB) describe the rate at

Wwhich fixation occurs at the boundaries x = (0

¥x = 1.

Te salve (1) we assume a <eparation of variabkles

solutiaon

0 = X{x)XT(t)
then

XT7 = [udl-x3X] T which can be reduced to :

T /T = = As [x(1-x)xX] = ~AX
thus= i

MO1=x X" + 201-2x)X7 =(2=-M)X = 0
Fquation (3) is the Hypergeometric equation :
Xx(1l-x)yw" + [c—f{a + b +1)xJv” — abv = 0

whose solution i

i

C

w = AF(a,bic,x) -+ Exi—

X

Fila-ctl B+l ~-ci2-c,x)

where

and

o~

Fiz,bsc,x) = 1+abfc(x)+a(a+1)b(b+1)ﬁc(c+1)2!(xd)+...

from (3) it is evident that c = 2 and since

11

the

M

St

0

(1B)



0 is to be bounded at x = 0 we hsve B = 0
fur ther, comparing ceoefficients in (3) with those

in the hypergeometric differetial equatiaon we have

B = 3-3 and a = 1-2[3+V1+3 M.
for (32
X(x) = 1 + ab/2(x) + ala+tldib(b+1)/3121x" + ...

{1y = 1 + ab 2 + al(atlib(b+12-7312 + ...
We note that if either & or b ar both are negative
integers or zervo then X i< & palvnomial.To see faor

Wwhich wvalues the serles converges we dUse

limm nia_ =3 -1y = L for L < 1 diverge
- n rn+1 ! N
n——2 L » 1 conv.
Here

- ? - — e _— R - o
& & 44 = 1 + {3~a~b) n + Dglfng).
This implies that the <ceries converges if
T - a -k » 1 .But in aour problem 22— —(3—-3) = 0,

and therefore the ceries diverges. We conclude that

BN

far sclution

—~+
'-
Eand
2]
-t
Q
m
[
i
~+
]

s must bhe

<

negative integers or ZTero.

we Fauve the eigenuslues of the problem.

ot
P



A = iCi+1)

and
Qi(x,t) = F(l_i32+1;2,X}e—i(i+1)tf4
ar
Qix,td = 0.70—, CiF(l-i,2+ija,x)e P (IFLIE78 .
is

where F¢ 1-i ,2+i 2, x ) is alwavs & polynomial.
To determine G ,we apply the generalised Fourier
series method together with equation (22
(normalization integral — orthoegeonal functions)
giving :

Co = %l 1-xg2 1(i+1)(Z2i+13F(1-1,2+1,2,%5)
Thus the requirved sclution that scatisfies the
zinqular diffusion equaticn (3) can be expressed in
hypergecmetric function as follows

Qix, yx3t) = 3\0 { 1-xg)iCi+1)¢2i+10F(1-1,2+i,2,x%0)

.=
. . . — g - ‘ t;-"‘" o
¥ OFil-i,2+i,2,x2e 10141 4 &)
the probability of fixation at x = 0 and x = 1 are
91'-.15'1"1 t‘fyx
=4
FEO,t) = ( 1-xp) +3 (2i+11(1-x0)xeF(i+2,1-1,2,1-%0)
A
% (-1)le tlitlIES4
fll,t) = g +EC2i+1>><oC 1-%)FC i+2,1-1,Z,x%,)
A=)
i _—i(i+lyres
R 1)1 ifi+lye/ 4

we obserwve that at any time
Fea,t) +fcn: e X3t dedx + F(l,t) = 1

Baszed on equatian (6) the process of change 1in
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bility distribution of gene frequency when the
ation starts at x = 0.3, 0.1 and 0.3 is
trated in figqures 1, 2 and 3 respectively.
DISCUSSION of RESULTS
the models display (figqures 1,2,32,4) the

cf genes through the population. Initially

he 3re very peaked but with increasing time s

& flatten out. &fter 2N generaticons the graph

t linear (uniform which 1s

distribution)

by the solution given in (S, Fraom this

when we take the leading term we see that 1t

: -t 2
for large t, i.e. Q{x ¥y st~ Ce -~ M -0,

Ccaces the f Qix, ®, 312 dx decreases wWwith

1s =

due to the fixation ccoccuring st X and

showe 5 maxirmum probability density at the

freguency as the initial gene fregquency (0.35),

first genervation { t NAsLO ) being the most

d. This i€ not unusual since 0O( x,,x,t 2

€ zevo as t approschee infinity,move directly

produces a large Q(t is measured in generatians).
enerations bevond 2N; the curves are flat and all
es ceem equally probable. That 1 , fixation or
the allele in qQquestion proceeds at a constant

14



rate. For the smaller generations  t=2N ) the
proportion of alleles lost 1s larger than the

proportion

[}

f alleles fixed 1in & given populsation.

Figures 2 and 3 are more suitable for use as comparison
to figqure 1. Heve the initial gene frequency i1is 0.1
{ figure £ ). Fixatian occurs wvery rapidly at x = 0.

Figqure 2 shows characteristics similar to figure 1

{ maximum 0 cccuring 3t initial gene fregquency ).

Howeuver 1n

11

ame generations ( t=NS2 , N, and 2N ) the
maximum Sseem to occuy prior to 0.32. Also at least 4
generationse are required before 311 gene fregquencies

become equally probable.

Diccrete Model

Following the Momte Carleo simulaticn | appendix A2)  of

model (1) figures 4, 35,

M

, and 7 were preparved.
Included in theee are the recultse of the transition
matrix at the indicated observation perviocds. Aleo

included for compavison is the colutien of the

in
in

continuous model (previcusly discussedy for certain
generaticn. Further the matrix results provide 3
standard for direct comparison with the Monte Carlo
simulstion. &< seen in figure 4, that the simulstions
compare wvery favorably with the matrix result. A.XF for

gach generation examined does chow that there are no

significant difference betuween the twoe sets of results



obtained and indeed the Monte Carlo scheme wused is
reliable. For the generation displayed in figure 4
(t = N/10) only S percent of the time this method will

yield poor results.

Even though there is good comparison between the exact
and Monte Carlo results the matrix result 1is
symmetric about the class mark 10 while there is some
skewness in the Monte Carlo result. The absence of
cskewness 1s due in part to the underlying computations
that produce the row vectors of the translition
matrix (theoretical binomial dencity function).The
continucus sclution compares better with the matrix
result ( area wunder the curve and symmetry ) than
with the Monte Carlo result. In the case of
figure 5 ( t = N/5 ) the,x2 indicates that 2 percent

of the time the method may give poor result.However the
standard deviation 1is larger here than in the
previoué case(G‘=3.2 ve 2.3 for t = N710 case ).
Alsao the cskewnese 1s more pronounced. This increase in
standard deviation is due in part to the wide variation
at both the class marke 7 and 13 . Acs t gets large both
ends of the fixed classes should have large proportion
of the gene pool. Even though the continuous
model(figure &) does not show this,the Monte Carlo and

matrix resultse dao. Agaln relstively large variations

16



cccuy move Trequently,resulting in even larger standard
deviation than before,but the osverall method is <stil
good. Inm figure Y except for the fixed classes the
matrix and Monte Carla result in a flat profile.That is,
for this generaticon (t = 2N) the gene freguency of the
unfixed classes are becoming equally probable; but since
there were some losses and fixations prior ta this

generation, there is 3 cumulative effect for baoth the

fixed classes &t % = {0 and x = 1.

17
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CHAPTER 11

EPIDEMICS



Quer the vears , models of various degrees af
mathematical complexities have been developed to study
a wvariety of epidemics. Such studies are complicated
for wvarious reasons. The differing eticleogies of the
diseases lead to come difficult to analyse nan-—linear

maodels. Neuwver theless there exist some moedels of both

i
it

deterministic and stochastic nature which po ess
characteristics associated with many diseases. We will
examine some of these models.In both the deterministic
and stochastic cases, we have the following five
assumptions 3

1 Following tintroduction of the disease 1nta the

community, the total population size remains fixed.

P2
St

Evervone in the community is initislly susceptible

to the disease.

(A
"t

Evervone who has contracted the disease and has
recovered is immune.

4) The disesse is spread by direct contact between a
sucsceptibkle person (susceptible) and an infected

pereon (infective)

in

The infectives are intrceduced into the community
independentliy.,

DETERMINISTIC THEOQORY
The simplest deterministic model that we cansider
firet, aslready possess & charscteristic that plavs a

dominant role Iin most models. Unless the size of the

fd
!



infective group reaches a certain *treshold” level, the
disease 1is not likely ta spread. We consider a
community of N individuals, all susceptiblie, intoe which
an i1nfective i1s introduced. The population size remalns
fixed at N+ 1 | x 1e the number of susceptible, v is
the number of infective and z those removed are all

s © time. A relatiaonship that

continuous variabhles acs S T
holds for a3ll time 1s
o+ v+ z =N+ 1 (1)

On the basis of assumption (S) the feollowing sketch

showe the three classes tao which an individual can

belong.
| T R
wWwhere S = succeptible [=€t)]
I = infective [wit)]
R = removed (isolated or immune) [z{t)]

The length of time & member of this closed population

i

belorngs to one of these classes ic not fixed. We acssume
the " law of mass action " where the rate at which new

propaorticnal to the preoduct

"

infectives are generated 1
of both the susceptible and infective population,
diminisehed anly by those that are rvemoved. The removsal

. 1= increasing st the rate propartional to the

i

clas
infective class and the susceptible are diminished by

the factor By where x and v are az defined earlier

%)
0



Thus the following

dx - dt = —ﬁ
dysdt = Bx
dzsdt = Y
where B is infection r
obtain a solution to t

equations We make the

in (2) after deviding ¢

Cp xy

dy s dx

where € i=

dy =
reduces to
)}‘l.:
& relatienship for o is
xo + w
therefore
pD + XD - Plnxa
such that
vo= N
Substitution of (4) int
dx dt =

and the substitution of

- 06

dz.dt

the relative removal

equations govern this process.

Xy (A
v — Y (B)
v CC)

1 remouval rate. To

ate and

he above system of differential

substitution

P = ig (@)

2B} by (2A) thus

- ¥y 2 Bxy = ex - 1
rate. Then

(Crx~-13rdx +c

Elnu

- X + =

deduced by noting that at t = 0
g = M3 z =0

= n—@lnxo = c

- ® - elnxefx (4D
o (28) gives
—ﬂx[N—&—fﬁnﬁfo] C4a)

(4) into (2C) gives
Y= PB(Flnx/xn—x—N) (4C)

W



We can rescale time by letting
T = ﬁt

such that

dT/dt = B = ¥p.
Thus T is the the new time scale. If each of egquations

4, 4B and 4C 1s rvecscaled we obtain

=l
dxsdT = - [Nx -~-x° —Fxln(xofx)] {580
dy/dT = fln(x /x3(P =x) + (N+P—-x) —€ON {SR)
and dz.-dT = P(N—x—?lnxofx) {50

o)

result. Equatiaon (5C) provides an independent check n
the results of (SA) and (5B, since relation (1) must
alwave he satisfied. Further, noting that each of S5A,0B

and SC are of the form

x7 = fix)
vooo= gixd
7 = hix)

the system can be solved numerically. Since there 1s

only oneg independent wvarisble we can use Simpsons rule
to integrate each of the equations. Figures 1 and 2
were canstructed with vesulte from this integration
technigque.

Il STOCHASTIC THEORY - CHAIN BINOMIAL MODELS

In the following models e assume that intoe &
homogeneously mixing population of susceptibles an

infective is introduced. We choose 35 & unit of time,



the mean length of the infectious period.
Since at each stage of the epidemic there are

susceptibles and infectives, we assume that at the

next s tage the new crop of cases is binomially

ey

distributed. Fossible chains in a househeld of 3

(2 csusceptibles and one infective) are :

The cacse 1 1is the case where at time 1 there is ane

- . . = _
infective and at subsequent times none, 1 is the csce

stage 1 ., 1 infective and stage 2 also 1 infective .

1 iz the case of 1 infective &t stage 1 and =2

ro

infectives at stage 2. We consider tiwa different
modele, the Reed Frost and Greenwood models. We let

I,r and Rt e the number of infectives and

gt time t and p = 1-g is the probability

bt

e

susceptible
of adeguate contact hetwsen any two members  of the

group at time €.

To derive the birnomial distribution we observe that
cince p 1= the probability of contact between any two
members of the population ,q is the probability that
these two members will net meet and th the
probability that a given susceptible will not meet
wWwith =anyvy of the Itinfectiveg. Thus the probability

that & given susceptible will meet with at least one

0]
o



of the It infectives is |- g J. Reed—- Frost

model ie the following hinomial chain :

RO /%0 T)= Bl (- 997 (179

>

For the Greenwoocd model we asume that the chance of
infection is not influenced by the size of the
infectious populstion. ke assume that the probability
of &8 given susceptible being infected is p. Thus the

Greenwocod model is the binomial chain given by:

(p(l_.f*, /St,It)._.__ &/ p-rfw(/__lb)gtﬂ
I-tw-/Stﬁc}

The tables below show that the possible chain and

probabtilities for the Reed-Frost and Greenwood models
are indistinguishable for the case of a small
houcsehold <(household of three) while there ise a3

difference if the household is greater than three.

TABLE 1
Type of Frequency
Reed—-Frost Greenwood
Introduction > >
q q
2 2
Single 2pq 2pq
-2
2p q 2pq
2 2
p p

32



TABLE I1

Tupe of no of Fregquency
cacses
Introduction Reed—-Frest Greenwood
2 o
2 2
Single 2 Zpq 2pg
2 Z.
32 p-(1+2q) p (1+2aq2

In addition the last table shows one initial case

. 2 .
followed by one new case (2pg ). Like occocurences ave
combined to facilitate examination of the total size

. . a3 < q -
of an epidemic such as {17F and {12%. In each <ase

-t

tio new cases follow the initial case, thus a total
of three |, giving 3 frequency :

2 z 2. ;
o+ 2pTqg = p {1 + 2q3i.
We wused a Monte Carlo method to simulate epidemics
in 2 populsticen of sizes 2 and 4 into which an

infective was introduced. The resultes are tabulated

in tables 1 and 2.

DISCUSSION OF RESULTS

Following numerical integration of equaticons 54 and SR,

g

figures 1 & were constructed. It is evident from

figure 1 that there exicsts a relative removal rate (@)

ol
W



below which epidemic occcurse and above which epidemic

o1

does not occur. For our case (x{0) = 230), this relative

20, It is reasonable to assume that no

i

remouval rate 1
true epidemic Wwill occcur if the relative remauval rate
is larger than the irnitisl available number of
susceptibles. Therefore for an epidemic ta cccuy the
relative removal rate must be smaller than the initial
number of susceptibles (i.e. € < x{0)). However it must
be understood that eventhough we may know @ relative to
¥ at time zero we cannot directly predict f for & given
population size analytically. Some factors preventing

analytic prediction of @ are the difference in tuvpes of

i

diseases and the variability of @€ itself.Therefore a

suvidenced in figure 1 & small relative remcoval rate

t€= .1 ) gives a pandemic whereas a large relative
removal rate (@ = 40 ) gives no epidemic. Figure 2
ie & <cet of epldemic curves based oan different

relative removal rates.Again it ie evident that a total
epidemic will accur for the case £ = 1. Fur ther, at
this emall relative removal rate, approximately 87
percent of the susceptibles will become infected within
a wery small periocd of time following contact. khat
this means it that during the epidemic there will be a2
majority of infectiuves and & minority of susceptibles

wWwhich i enough of & factor to guarantee a pandemic



even though there was only ane initial case (infective)
introduced. On the other hand a large relative removal
rate ( £ = 20) would have only 2 percent of the
susceptibles becoming infected within the same time

-

period ( as for the case € = 1 ) following contact.

o

£ are the rezsults of the simulation of the

N

v

Tables i
Reesd-Frast and Greenwaeod models. In these tsbles the

fregquencies listed in Bailey’s book are uysed for

i

comparison wWith the respective models rvesult. As 1
clear from the tables a small probability of contact
between infective and succeptible results in  no true
epidemic. This 1= expected,since small frequency of
contact between individuzsls implies smallevy contact

frequency between infective and susceptible, and is

-

similayr in effect 35 a large rvelative removsl rate
(previcusly discused). As the 1ntimacy is improved

within the househaold ( P*» 1 > total epidemic occure as

iz indicated by both models.

Caparison of Models

Faer =mall population sizes (including infective) both
the Reed-Frost and the Greenwood models are expected ta
produce identcal results. This is verified in table Z
for & population <size of 3. However , table 1
demonstrates differences between the models which are

due to the assumption concerning the influence of

35



chance infection due to the number of infectives
available at a time t+1 (see introduction). Individual

chains were crocsschecked with those expected in

-

Bailev’s book 1 and were found to be satisfactorw. At
this point only the chain type can be determined,for
example a chain £ 1 2 17 was generated (among others)
for the household of 5 ( 4 susceptibles ).

Since each of these chains accur with a3 definite
frequency, depending on which model is examined, ane
may estimate the total frequency in 3 given number of
trials by taking the sum of each type of chain

generated. As an itllustration , the houcsehold of three

) 1 .
(Bailey ™) gives :

A

no epidemic = q {frequency)
2
1 new case = 2pqg "
2 " cases = Zp g "
L . . _ 2 N
total epidemic = o]

Then in an experiment of 00 trialse with ny single
casecs occurring this would vield nl/SUD to be compared

e
with 2pg”~ , and so on.

Ta ststistically Compayr e the experiments with the
2 .

expected resulte we used the " X goodness of fit

test”. Since there are eight sets of data for each

SEeS aver the

[}

model we try to decide on the two worset o

vange of contact frequency for each model. For example

oy
]



o

t & p of 0.25 (low end) and at a p of 0.45 (high end).

The quantity

{ 1 1

Ae!
for the Greenwood model (s determined ; where Di is the
abservation (simulation) while e is the expected

(predicted).

p = 8.25
Greenwood Moedel

= =) = S
Gl 51 €y 49,
a_ = 102 e = 94.%5

= 15 =, =103.5
D3 108 € 10%

= 29 = =
04 2 e4 87
05 = 1530 e5=158.

From the above valuese X° i 1.102; and from

statistical tables with a degree of freedom of 4

2 =2
x® ¢ xF = X~

.35 crit

This indicates no significant difference between the

expected and predicted values.

[N
!

Similarly a3t p = 0.4%, X~ = 8.8 ; na <significant

difference between the chserved and predicted results.

Eel ow 3 the v

1

M

sult of 5 similar snalvsis on the Reed-

Froset model

Y
™,



Reed-Frost model

p X X" it Deg of
freedom

0.35 2 .63 G.49 3

.45 2.30 .49 .

From the result presented in the above tables bhoth
models are well represented by their respective

simulation.

Conclusion
The epidemic curwe in figure 2 and the phase portrait
in figure 1 bothh emphasize the influence af the
relative removal rate. In our case {(n = 31 the
relstive vemovsl rate is 20 | above which no epidemic
woeuld seem to gCcur. These figures alsce demonstrate

the existence of a treshhold population size.

Borth the Reed-Frost and Greenwood stochastic models are

well reprecented { xz—goadnese af fit ) when the

Monte Carlo method ie used. The models indicate that

in crder for seriocus epidemic to cccury the frequency of
contact be tween susceptibles and infective must bhe

relatively large .

(J
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Table 1

Greenwood no. of P Reed-Frost
cases o

Model |Prediction Model | Prediction
15.7 13.6 3 G.=29

28.7 28.1 2

55.3 S6.3 1

2z.9 21.6 3 0. 20 1.8 21.6
2. 28.4 2 31.8 29.4

1.7 28.2 3 0.35 28.2 28.2
28.7 23.6 z 28.4 29.8
23.3 42.2 1 432 .4 42.2
4.7 35.2 3 0. 40 36.8 35.2
2.7 28.8 P 29.6 28.8
32.3 F5.0 1 33.6 3&.0

N
03
~J
sy
)
£

)
[
e
[
Lo
~J
Py
L
2
I

ZE.32 27.2 2 24.2 27.2
29.7 30.3 1 28.4 20,32
47.1 50.0 i .50 48.2 0,0
26.3 23.0 2 27 .6 25.0
Z&.1 25.0 1 23.6 25.0

[
531
~J
]
I
L]
JES
[
Pa
na
A3
By
::)

Household of 3 - Mante Carlo simulation of the models

)
L



Greenwood noe of p Reed-Frost
cases
ModeliPrediction Model |Prediction
2.0 1.38 S 0.15 Z.49 3.3
7.2 7.5 4 6.4 .2
15.8 153.7 3 16.2 13.7
19.¢ 22.6 2 22.2 22.6
55.4 a2.2 1 S2.8 532.2
ig.2 9.8 3 .25 12.4 15.8
20.4 18.9 4 1%.0 18.1
21.6 21.9 3 18.2 16.7
17.8 17.8 2 18.4 17.8
0.0 21.6 1 31.0 231.6
25.0 23.8 b’ 0.3% 39.0 27.0
28.0 27.4 g 23.0 21.8
0.6 £0.3 a 10.8 1z.7
11.2 1¢.6 2 16.4 1.6
15.2 17.5 1 1.8 17.3
31.8 2.3 ] 0.40 de.2 48.9
2i.z2 25.4 4 21.2 20.8
15.8 17.8 3 3.8 5.9
8.4 7.9 2 8.4 7.5
12.8 12.9 1 14.4 12.9
zg.0 41 .2 ) 0.45 £2.4 a0 .6
3.8 29.59 4 15.2 18.2
172.0 14.2 2 7.4 7.0



Table 2 - cont’d

4.2 4.9 2 4,6 4.9
7.0 9.2 1 8.4 g.2
51.0 S0.0 3 a.5a 72.8 71.1
Z26.8 28.9 4 14.0 14.8
12.4 11.7 3 5.2 4.6
4.0 2.1 P 2.4 2.1
5.8 5.2 1 4.6 6.3
&0, 2 S58.4 3 0.395 81.4 a0.0
25.4 26.8 4 11.2 11.2
2.4 g.a 3 2.0 2.9
2.4 1.8 2 2.4 1.8
3.6 4.1 1 2.0 4.1
61.4 L6, 2 5 0.&0 8.8 a7.0
25.8 23.9 g 8.0 7.8
8.6 5.2 2 1.6 1.6
1.6 0.38 2 1.0 0.98
2.6 2.6 1 2.6 2.6
Household of & — Monte Carle simulstion of the models

41
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b v}
285
206
210
=220
222
224
22

-
228

223
220
23
232
233
23
235
236
23

—
o

=240
245
2506
260
270
275
=80

F285
290

295

00

10

-
bl

IZP
340
I50

36D

7@
I75

Ie0
3=l

RA= b
428
41@
420
438
44
428
4el
L4789
LE0
0.2348

it

510
20

READ XB, TIME. X
PRINT “X@.,S8UM, X
PRINT X@&
DIM P(2@)
DIM Q28>
DIM E2@)
DIM CT (2@
DIM FXQA(Z0>
DIM FFX(2B)
DIM suM2@)
FOR J 1 70
PCID
a3
g4I
CTdJy = 0@
FX@CI>
FFX{I)
SUMCT)
NEXT J
K = XB # (1
Tl =

=28

0w
SRS

nonon
S RN

- X@

I =1
SUMMLY = Cd1)y =
PRINT. SUMCI, Xs
FOR I = 2 7O 20
X2 = @.5
C{I) = 1 =+
12
CTCI) =
TIME?
GOSUR S0008
FC = P
IF 1>
FX@(I) =
P R
X@ = X
GOEUR
FC = P
FEXCI) =
3
SUMCIy = 8UMCT -~
CT(Iy % FXBCID
PRINT SUMCIY, X,
NEXT I
COBUER 204
FC = O3UM
FXedlr =
X@ = X
GoSuR

(I +

EXP ¢ -

FX@C(I -

pieatrlvd

FFX(I —

asum +

sl tatudvi;
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