Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

> Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.
$\begin{aligned} \text { Title of Thesis: } & \text { Stakility of Picomponent Polymeric Iiquics } \\ & \text { in Pciseuille Elow }\end{aligned}$

Chin-Chary Jeng, Naster of Science, 1984

Thesis directec zy: Ir. Wing I. Wone, Assistent Erofessor

Folymer processine, involving two or more components, has become more popular recently in incustrial plarits. However, product quality is affected very much ky the fluid stability. Some theoretical and experimentel results concerning Newtonian and nor-liewtorian flov: in rectangular coorcinates, have teen publishec, and the fluid-fluid interfaces were observed to be unatable by some researchers.

In this paper, the linear statility of bicomponent nonNewtoniar fluios flowing in a cylindrical tube was investigated by using the fllis model. Only the very long wave and the axisymmetric disturtances were considered. The Ellis zero-shear-rate viscosity ratio, $m\left(=\eta_{02} / \eta_{01}\right)$, was found to be destabilizing. The half-zero-shear-rate-viscosity stress ratio, $\mathcal{f}\left(=\tau_{01} / \tau_{02}\right)$, was shown to have a stabilizing effect. The power factor, α_{1} and α_{2}, have monotonous aestabilizing effects. Surface tension, in general, will play a stabilizing role at the fluici-fluid interfaces.

STABILITY OF BICOMPONENT POLYMERIC LIQUIDS IN POISEUILLE FLOW

By

CHIN-CHANG JENG

A THESIS

PRESENTED IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CHEMICAL ENGINEERING

AT

NEW JERSEY INSTITUTE OF TECHNOLOGY

This thesis is to be used only with due regard to the rights of the author. Bibliographical references may be noted, but passage must not be copied without permission of the college and without credit being given in subsequent written published work.

NEWARK, NEW JERSEY
1984

APPROVAL OF THESIS

STABILITY OF BICOMPONENT POLYMERIC LIQUIDS IN POISEUILLE FLOW

By
CHIN-CHANG JENG

FOR

DEPARTMENT OF CHEMICAL ENGINEERING

NEW JERSEY INSTITUTE OF TECHNOLOGY

By
FACULTK COMMITTEE

APPROVED

NEWARK, NEW JERSEY
1984
Name: Chin-Chang Jene
Femanert adcress: 514 Herilton Street, Farrison, N.J. U7029
Degree and cate to be conferred: Kaster of Science, 1984
Iate of birth:
Flace of birth:
Secondary ecucation:
Collegiate irstitutıons attended Iates
Degree Iate of Iegree
Nev Jersey Institute of TEchmology Jan., 1983 M.S. Oct., 1984
National Tsire Eua University Sep., 1976 E.S. May, 1980
Kajox: Chemical Encineerine
Fublications: Stability of Eicomponert Polymeric Iicuids in
Foiseuille Flow

The author would like to express his sincere appreciation to his advisor, Dr. W. T. Wong, whose assistance and patience were invaluable in completing this project. In addition, the author wish to express his especial gratitude to his wife, Christina, for help in a variety of ways.

TABLE OF CONTENTS

Page
(I) Introduction 1
(II) Time Independent Flow 3
(III) Differential System Governing Stability 8
(IV) Boundary and Interfacial Condition 20
(V) Solution for the Axisymmetric Case $(n=0)$ 30
(VI) Discussion 51
APPENDIX I AII-AI8
APPENDIX II AII2-AII4
APPENDIX III AIIII-AIII4
APPENDIX IV AIVI-AIV4
REFERENCE

Fr Froude number
Re Reynolds number
$V_{i} \quad$ interfacial velocity

We Weber number
$\alpha \quad$ wave number
\sim interfacial tension

Polymer processing involving two or more different polymers has become the subject of considerable interest in recent years. Examples of such flow are numerous. In plastic processing the conbination of two melt streams in coextrusion process has become a very economical method of producing materials with unique properties which can not be achieved by using the individual polymer alone. In pratical problems, scientists made a lot effort trying to optimize the products by using compositive materials instead of simple component system. In polymer processing, involving two or more components, fluid-fluid interface has been observed to be unstable and some theoretical and experimental results have also been published, though in much less details than those for Newtonian fluids.

By using a hydrodynamic stability analysis, Yih (l) has found that for simple plane couette flow, viscosity stratification alone is sufficient to cause instability no matter how small Reynolds number is. KHAN and HAN [2, 3], by studying stratified two-phase poiseuille flow between two parallel plates, pointed out that viscosity ratio and elasticity ratio of two super imposed fluids are important in determining the occurrence of interfacial instability, with the viscosity ratio predominant over the elasticity ratio. Schrenk and Bradley [4] confirmed that a wavelike distortion of the interface could arise under certain coextrusion conditions, implying the onset of instability. Li [5] has found that the presence of elasticity can not only destabilize simple flows but stabilize them for certain values of the parameters involved. Waters [6] studies two power-law fluids in plane couette flow and pointed out that the ratios of the power-law parameters for each layer can stabilize and destabilize the flow.

In 1971, HICKOX [7] studied the stability of a steady, axisymmetric, laminar, primary flow composed of two newtonian fluids flowing concentrically in a straight circular tube by using the method of small perturbations. He demonstrated that, regardless of the size of the Reynolds number, no situations are encountered for which the primary flow is stable to the asymmetric and axisymmetric disturbances, simultaneously. The primary cause of instability is found to be the difference in viscosities of the two fluids.

None of these analyses (or experiments) considered the concentric flow of bicomponent polymer melts in a cylindrical tube. This process is frequently observed in industrial plants like fiber spinning, extrusion (pipes forming) or injection molding. One of the main problems arises in this process is that the flow could become unstable, resulting in a product with irregular interface.

The rheological models most often used by experimentalists which predicts a shear-dependent viscosity is the so-called " Ellis-model " liquid. In this paper, the flow of concentric bicomponent polymer melts in circular pipe will be investigated by using this model. Only viscosity stratifications will be concerned.

In this investigation, the stability of an maxisymmetric, non-newtonian flow composed of two fluids flowing concentrically in a straight circular tube is considered. The fluids have different densities and viscosities and are incompressible and nondiffusive. An interface between the two fluids exists at some prescribed radial distance from the axis of symmetry.

The fluids with the interface perturbed is illustrated by the sketch in Fig 2-1.

g

Fig 2-1: Definition Sketch

At steady state, the only nonzero velocity in the flow is the axial velocity, V_{z}, which is a function only of the radial position r. The flow system should satisfy the Cauchy's equation which will reduce to

$$
\begin{gathered}
\frac{\partial \bar{p}}{\partial \frac{p}{r}}=0 \\
{\left[-\frac{\partial}{\partial z} \frac{p}{2-1}\right)} \\
(2 \cdot g]_{1,2}=\left[-\frac{1}{r} \frac{\partial}{\partial r}\left(r \tau_{r z}\right)\right]_{1,2}
\end{gathered}
$$

The subscripts 1,2 refer to fluid 1 (inner) and fluid 2 (outer) respectively. If the left side of Eq (2-2) is kept constant and is represented by ($\Delta \overline{\mathrm{p}})_{1,2}$, the solution of Eq (2-2) is

$$
\left[\tau_{\mathrm{r}, \mathrm{z}}=\Delta \overline{\mathrm{p} r / 2}+\mathrm{c} / \mathrm{r}\right]_{1,2} \quad(2-3)
$$

If each fluid can be approximated by the Ellis model, then:

$$
\frac{\eta_{0, i}}{\eta}=1+\left(\tau / \tau_{0 i}\right)^{\alpha_{i}-1} \quad i=1,2(2-4)
$$

Application of Eq (2-3) and Eq (2-4) to the inner and outer fluid regions seperately along with the requirements of zero velocity on the rigid boundary, finite velocity and shear stress on the axis of symmetry, and continuity
of velocity and shear stress across the interface will provide the complete solutions which are listed in Table 2-1.

The nondimensional forms for Table 2-1 can be derived by using the characteristic units as following:

$$
\begin{aligned}
& \text { length: } \mathrm{R}_{1} \\
& \text { density: } P_{1} \\
& \text { time } t^{*}=R_{1} / \mathrm{V}_{i} \\
& \text { velocity : } V^{*}=V_{i} \\
& \text { viscosity }: \eta_{o l}
\end{aligned}
$$

The results are shown in Table 2-2. The details of dervation were l isted on Appendix I.

Table 2-1 : Steady state solution for two fluids
Fluid 1
Fluid 2

Table 2-2 : Nondimensional forms of steady state solutions

Fluid 1

(III) Differential System_Governing_Stability

The stability of the fluids described in the previous section is to be investigated through use of the method of small perturbations. This method which was rigorously formulated by Yih [1] was simple and straightforward. Following Yih [l], we seek solutions which have the forms

$$
\varphi=\varphi_{0}+\alpha \cdot \varphi_{1}+\alpha^{2} \cdot \varphi_{2}+\ldots \ldots \ldots \ldots \ldots \ldots(3-1)
$$

which is a non-singular perturbation around $\alpha=0$ which corresponds to very long waves. " $\alpha \cdot \mathrm{R}_{\mathrm{e}}$ " is assumed small compared with unity and, as pointed out by Yih [1], no matter how large R_{e} is, there is a range of α for which the perturbation procedure is valid.

The complete cauchy's equations for each fluid are

$$
\begin{equation*}
\frac{\mathrm{Dv}_{2}}{\mathrm{Dt}}=-\nabla \overline{\mathrm{p}}_{1}+\nabla \cdot \underline{\tau}_{1}+\mathrm{g} \tag{3-2}
\end{equation*}
$$

for fluid 1, and

$$
\begin{equation*}
\frac{\mathrm{D} \mathrm{v}_{2}}{\mathrm{Dt}}=-\mathrm{b} \nabla \overline{\mathrm{p}}_{2}+\mathrm{b} \nabla \cdot \tau_{2}+\mathrm{g} \tag{3-3}
\end{equation*}
$$

for fluid 2.
The continuity equation is

$$
\begin{equation*}
\nabla \cdot v=0 \tag{3-4}
\end{equation*}
$$

for both fluid.
It should be noted that $\operatorname{Eq}(3-2) \& E q(3-3)$ were written in nondimensional forms, where b is defined as the ratio
of density ($\left.P_{2} / P_{1}\right)$.

It is now assumed that the flow system is disturbed slightly so that the velocities and pressure and relevant nonzero stress consist of their steady state valued in the main flow plus a small perturbation. Thus, they can be expressed as

$$
\begin{align*}
& v_{i}=\bar{v}_{i}+v_{i}^{*} \tag{3-5}\\
& \tau_{i j}=\bar{\tau}_{i j}+\tau_{i j} \quad i, j=r, \quad, \quad z \quad(3-5) \\
& p_{i}=\bar{p}_{i}+p_{i}^{*} \tag{3-7}
\end{align*}
$$

The barred quantities are steady values. The quantities with asterisks represent perturbations to the steady state flow and are assumed to be small enough so that second or higher order product of these perturbed quantities are negligible. Remember that only the axial velocity and pressure have initial values different from zero. Thus, the shear stress tensor can be written as

$$
\begin{align*}
{\underset{\sim}{\tau}}_{1} & =\underset{\approx}{\bar{\tau}}+\underset{\approx}{\tau}{ }_{1}^{*} \\
& =\left(\begin{array}{lll}
\tau_{1 r r}^{*} & \tau_{1 r \theta}^{*} & \tau_{i 1 z}^{*}+\bar{\tau}_{1 r z} \\
\tau_{1 r \theta}^{*} & \tau_{1 \theta \theta}^{*} & \tau_{1 \theta z}^{*} \\
\tau_{1 r z}^{*}+\bar{\tau}_{1 r z} & \tau_{1 \theta z}^{*} & \tau_{1 z z}^{*}
\end{array}\right) \tag{3-8}
\end{align*}
$$

for fluid 1. The corresponding second invariant is

$$
I_{\underset{\sim}{\tau} 1}=\sum_{i} \sum_{j} \mathcal{C}_{1 i j}^{2}=2\left(\bar{\tau}_{\operatorname{lrz}}+\mathcal{C}_{\operatorname{lrz}}^{*}\right)^{2}(3-9)
$$

The shear rate tensor can be expressed as

$$
\begin{aligned}
& \triangleq_{1}=\grave{\Delta}_{1}+\triangleq_{1}^{*} \\
& =-\mathrm{R} \frac{\tau_{1}}{\eta_{1}} \\
& =-\operatorname{Re}_{e}\left[1+\left(\frac{\left(\frac{1}{2} I I \tau_{e_{1}}\right)^{1 / 2}}{\tau_{01} / P_{1} V_{i}^{2}}\right)^{\alpha_{1}-1}\right] \tau_{1} \\
& =-\operatorname{Re}_{\mathrm{e}}\left[1+\left(\frac{\bar{\tau}_{1 r_{3}}+\tau_{1 r_{3}}^{*}}{\tau_{O_{1}} / p_{1} V_{c}^{2}}\right)^{\alpha_{1}-1} \quad\right] \underset{\approx 1}{\tau_{\tau}}(3-10)
\end{aligned}
$$

and $\left|\tau_{1 r z}^{*}\right| \ll \mathcal{T}_{1 r z}$, the absolute sign could be taken off from $\left|\bar{\tau}_{\text {Ir z }}+\mathcal{Z}_{1 r z}^{*}\right|$. Thus,

$$
\begin{aligned}
& \Delta_{1 r z}=-R_{e}\left[1+\left(\frac{\bar{\tau}_{12}+\tau_{1 \gamma_{z}}^{*}}{\tau_{01} / \rho_{1} V_{i}^{2}}\right]_{1 r i}^{*} \tau_{\operatorname{lr}} \quad(3-11)\right. \\
& =-\frac{\mathrm{R} e}{\eta_{1}} \tau_{\operatorname{lr}}^{*}
\end{aligned}
$$

Similarity**

$$
\begin{aligned}
& \Delta_{\mid \theta \theta}=-\mathrm{R}_{\mathrm{e}} \cdot \tau_{1 \theta \theta}^{*} / \bar{\eta}_{1} \quad(3-12) \\
& \Delta_{l_{z z}}=-R_{e} \cdot \tau_{\mathrm{lz}} \bar{z}^{*} / \bar{\eta}_{1} \\
& \text { (3-13) } \\
& \Delta_{1 \mathrm{r} \theta}=-\mathrm{R}_{\mathrm{e}} \cdot \tau_{1 \mathrm{r} \theta}^{*} / \bar{\eta}_{1} \\
& \Delta_{1 \theta z}=-R_{e} \cdot \tau_{1 \theta z}^{*}, \bar{\eta}_{1} \\
& \text { (3-15) } \\
& \Delta_{\operatorname{lr} z}=-R_{e}\left[\bar{\tau}_{1 r z}+\frac{\tau_{1 r z}^{\alpha_{1}}}{\left(1 v_{i}^{2}\right)}+\tau_{\operatorname{lrz}}^{*}+\right. \\
& \left.\alpha_{1} \cdot\left(\frac{\tau_{1 \mathrm{rz}}}{\tau_{01} / \rho_{1} v_{i}^{2}}\right)^{\alpha_{1}-1} \cdot \tau_{1 \mathrm{rz}}^{*}\right] \quad(3-16)
\end{aligned}
$$

Since,

$$
\Delta \sim=\left(\begin{array}{ccc}
2 \frac{\partial V_{r}^{*}}{\partial r} & \gamma \frac{\partial}{\partial r}\left(\frac{V_{\theta}^{*}}{r}\right)+\frac{1}{r} \frac{\partial V_{r}^{*}}{\partial \theta} & \frac{\partial\left(\bar{v}_{z}+V_{z}^{*}\right)}{\partial r}+\frac{\partial V_{r}^{*}}{\partial z} \\
r \frac{\partial}{\partial r}\left(\frac{v_{\theta}^{*}}{r}\right)+\frac{1}{r} \frac{\partial v_{r}^{*}}{\partial \theta} & 2\left(\frac{1}{r} \frac{\partial V_{\theta}^{*}}{\partial \theta}+\frac{V_{r}^{*}}{r}\right) & \frac{\partial V_{\theta}^{*}}{\partial z}+\frac{1}{r} \frac{\partial V_{z}^{*}}{\partial \theta} \\
\frac{\partial\left(\overline{v_{s}}+V_{z}^{*}\right)}{\partial r}+\frac{\partial v_{r}^{*}}{\partial z} & \frac{\partial v_{\theta}^{*}}{\partial z}+\frac{1}{r} \frac{\partial \dot{v}_{3}^{*}}{\partial \theta} & 2 \cdot \frac{\partial V_{z}^{*}}{\partial z}
\end{array}\right)(3-17)
$$

\therefore : : Detail derivation in Appendix II.

Application of Eq (3-11) - (3-17), we can rewrite the shear rate tensor as following:

$$
\begin{align*}
& \Delta_{1 r r} *=2 \partial v_{1 r} * / \partial r=-R_{e} \cdot \tau_{1_{r r}}^{*} / \bar{\eta} \tag{3-18}\\
& \Delta_{1 \theta \theta} *=2\left(\frac{1}{r} \frac{\partial v_{1}}{\partial \theta}+v_{1}{ }_{1}{ }^{*} / r\right)=-R_{e} \cdot \tau_{1 \theta \theta}^{*} / \bar{\eta}_{1} \tag{3-19}\\
& \Delta_{1 z z} *=2 \cdot \frac{\partial}{\partial z}\left(\bar{v}_{1 z}+v_{1 z}^{*}\right)=2 \frac{\partial^{v} \frac{v_{1 z}}{\partial}}{\partial} \\
& =-R_{e} \cdot \tau_{I z z} * / \bar{\eta}_{1}(3-20) \\
& \Delta_{1 \theta r}=\Delta_{\operatorname{Ir} \theta} *=r \frac{\partial}{\partial r}\left(\frac{v_{1 \theta}}{r}\right) *+\frac{1}{r} \frac{\partial^{v}}{\partial-\frac{1}{\theta} \underline{*}}=-R_{e} \cdot \tau_{\operatorname{lr} \theta}^{*} / \bar{\eta}_{1}
\end{align*}
$$

$$
\begin{align*}
& \Delta_{1 z \theta} *=\Delta_{1 \theta z}^{*}=\frac{\partial V_{1 \theta}^{*}}{\partial z}+\frac{1}{r} \frac{\partial}{\partial \theta}\left(\bar{v}_{I z}+v_{1 z}^{*}\right) \\
& =\frac{\partial{ }^{v}{ }^{*}{ }^{*}}{\partial z}+\frac{1}{r} \frac{\partial{ }^{v_{1 z}}{ }^{*}}{\partial \theta}=-R_{e} \cdot \tau_{1 \theta_{z}}^{*} / \bar{\eta}_{1} \tag{3-22}
\end{align*}
$$

$$
\begin{align*}
& =-\frac{R_{e}}{\mu} \tau_{1 r z}^{*} \tag{3-23}
\end{align*}
$$

Application of Eq ($3-2$), the r-component of the equation of motion is

$$
\begin{gathered}
\frac{\partial v_{1 r}^{*}}{\partial r}+v_{1 r}^{*} \frac{\partial v_{1 r}^{*}}{\partial r}+\frac{v_{1 \theta}^{*}}{r} \frac{\partial v_{1 r}^{*}}{\partial \theta}-\frac{v_{1 \theta}^{* 2}}{r}+\left(\bar{v}_{1 \beta}+v_{1 z}^{*}\right) \frac{\partial v_{1 r}^{*}}{\partial z} \\
=-\frac{\partial}{\partial r}\left(\bar{P}_{1}+p_{1}^{*}\right)-\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \tau_{1 r r}^{*}\right)+\frac{1}{r} \frac{\partial \tau_{1 r \theta}^{*}}{\partial \theta}-\frac{\tau_{1 \theta \theta}^{*}}{r}+\frac{\partial \tau_{1 r z}^{*}}{\partial z}\right]
\end{gathered}
$$

Neglecting the terms whose perturbed power greater than two, we get

$$
\frac{\partial v_{1 r}^{*}}{\partial t}+v_{1 z} \frac{\partial v_{1 r}^{*}}{\partial z}=-\frac{\partial P_{1}^{*}}{\partial r}-\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \tau_{1 r r}^{*}\right)+\frac{1}{r} \frac{\partial \tau_{1 r \theta}^{*}}{\partial \theta}-\frac{\tau_{1 \theta \theta}^{*}}{r}+\frac{\partial \tau_{1 r}}{\partial z}\right]
$$

for r-component. Similarity to θ, z components and continuity equation:

$$
\theta \text { - component }
$$

$$
\frac{\partial V_{1 \theta}^{*}}{\partial t}+\bar{V}_{1 z} \frac{\partial V_{1 \theta}^{*}}{\partial z}=-\frac{1}{r} \frac{\partial P_{1}^{*}}{\partial \theta}-\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \tau_{r \theta}^{*}\right)+\frac{1}{r} \frac{\partial \tau_{1 \theta \theta}^{*}}{\partial \theta}+\frac{\partial \tau_{\theta \dot{\theta}}^{*}}{\partial z}\right]
$$

z-component

$$
\frac{\partial V_{18}^{*}}{\partial t}+V_{1 z}^{\prime} \cdot V_{1 r}^{*}+\bar{v}_{1 z} \frac{\partial V_{13}^{*}}{\partial z}=-\frac{\partial P_{1}^{*}}{\partial z}-\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r \tau_{1 r z}^{*}\right)+\frac{1}{r} \frac{\partial \tau_{1 \theta j}^{*}}{\partial \theta}+\frac{\partial \tau_{1 z}^{*}}{\partial z}\right]
$$

Continuity equation

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(\mathrm{rv}_{1 r}^{*}\right)+\frac{1}{r} \frac{\partial v_{1} \dot{\theta}}{\partial \theta}+\frac{\partial v_{1} z}{\partial z^{*}}=0 \tag{3-28}
\end{equation*}
$$

for fluid l. It should be note that the starry sign indicated the purturbed values and the barred mean the steady (primary) values.

Following the procedure of Batchelor and Gill [3], the perturbation terms for the fluid are assumed to have the forms

$$
\begin{equation*}
\mathrm{v}_{\mathrm{r}}^{*}=\mathrm{iG}(\mathrm{r}) \operatorname{EXP} \tag{3-29}
\end{equation*}
$$

$$
\begin{equation*}
v^{*}=H(r) E X P \tag{3-30}
\end{equation*}
$$

$$
\begin{equation*}
v_{z}^{*}=F(r) \operatorname{EXP} \tag{3-31}
\end{equation*}
$$

and

$$
\begin{equation*}
p^{*}=p(r) \operatorname{EXP} \tag{3-32}
\end{equation*}
$$

Where $\operatorname{EXP}=\exp [i n \theta+i \alpha \cdot(z-c \tau)]$ and G, H, F, P are nondimensional functions of r,

$$
\begin{equation*}
r=R / R_{1} \quad ; \quad z=z / R_{1} \quad ; \quad \tau=t V_{i} / R_{1} \tag{3-33}
\end{equation*}
$$

and and c are the nondimensional wavenumber and speed repectively. The parameter can be zero or any integer value and is the means by which the angular dependence of the purturbation terms is expressed. The i is the imaginery number (-1$)^{\frac{1}{2}}$. In general, the wave speed c can be complex. It is the sign of its imaginary part Which will ultinately determine the stability or instability of the flow. If the imaginary part of c is positive, the perturbation terms will grow exponentially with time and the flow is considered unstable.

Application of $\operatorname{Eqs}(3-18)-(3-23)$ and Eqs (3-29) - ($3-32$) , the perturbed terms of shear stress tensor were determined, i.e.

$$
\begin{align*}
& \tau_{1 \theta \theta}^{*}=-i 2 \cdot \bar{\eta}_{1}\left(-\frac{\mathrm{nH}_{1}+\mathrm{G}_{1}}{\mathrm{r}}\right) \mathrm{EXP} / \mathrm{R}_{\mathrm{e}} \tag{3-35}\\
& \tau_{1 Z z}^{*}=-i \alpha \cdot 2 \bar{\eta}_{1} F_{1} E X P / R_{e} \tag{3-36}\\
& \tau_{1 \text { re }}^{*}=-\frac{\bar{\eta}_{I}}{R_{e}}\left[\frac{H_{1}^{\prime}}{H_{1}}-\frac{H_{1}}{r_{1}}-\frac{n G_{1}}{r}\right] \text { EXP } \tag{3-37}\\
& \tau_{1 \theta 2}^{*}=-i \cdot \frac{\bar{r}_{2}}{R_{e}}\left[\alpha_{H_{1}}+\frac{n}{r} F_{1}\right] \text { EXP } \tag{3-38}\\
& \tau_{1 г 2}^{*}=-\frac{\mu_{1}}{R_{e}}\left[F_{1}^{\prime}-\alpha \cdot G_{1}\right]_{\text {EXP }} \tag{3-38}
\end{align*}
$$

Substituting Eq (3-34) - (3-39) into Eq (3-25) - (3-28), the governing equations for fluid lyre readily written as following $* *$
r-component

$$
\begin{align*}
\alpha \cdot\left(\bar{v}_{1 z}-c\right) G_{1}= & p_{1}^{\prime}-\frac{i}{} \cdot \frac{\bar{\eta}_{1}}{R}\left[2 G_{1}^{\prime \prime}+2\left(\frac{r \bar{\eta}_{1}}{\bar{\eta}_{1}}+1\right) \frac{G_{1}^{\prime}}{\mathrm{r}}\right. \\
& -\left(\frac{n^{2}+\frac{2}{2}}{r^{2}}+\alpha^{2}-\frac{\mu_{1}}{\bar{\eta}_{1}}\right) G_{1}+n\left(\frac{H_{1}^{\prime}}{r}-3 \frac{H_{1}^{2}}{r^{2}}\right) \\
& \left.+\alpha \cdot \frac{\mu_{1}}{\bar{\eta}_{1}} F_{I}^{\prime}\right] \tag{3-40}
\end{align*}
$$

θ-component

$$
\begin{aligned}
& \alpha\left(\bar{v}_{1 z}-c\right) H_{1}=-\frac{n}{r} p_{1}-\frac{i}{R_{e}}\left[\bar{\eta}_{1}{ }^{\prime \prime}+\left(\frac{\mathrm{r} \bar{\eta}_{1}^{\prime}}{\bar{\eta}_{1}}+1\right) \frac{\mathrm{H}_{1}}{\mathrm{r}}\right. \\
& -\left(\frac{r \bar{\eta}_{1}^{\prime} / \bar{\eta}_{1}+1}{r^{2}}+2 n^{2}-\alpha^{2}\right) H_{I} \\
& \left.-n\left(\frac{G}{r}+\left(\frac{\mathrm{r}}{\mathrm{r}} \frac{\bar{\eta}_{1}^{\prime}}{\bar{\eta}_{1}}+3\right) \frac{\mathrm{G}_{1}}{\mathrm{r}}\right)-\alpha \mathrm{n} \frac{\mathrm{~F}_{1}}{\mathrm{r}}\right] \\
& \text { (3-41) }
\end{aligned}
$$

** Refer to Appendix III for detail.
z-component

$$
\begin{align*}
\alpha\left(\bar{v}_{1 z}-c\right) F_{1}+v_{1 z}^{\prime} \cdot G_{1}= & -\alpha p_{1}-\frac{i}{R_{e}} \cdot \bar{\eta}_{1} \\
& \frac{\mu_{1}}{\bar{\eta}_{1}}\left(1+\frac{\mu_{1}}{\bar{\eta}_{1}} F_{1}^{\prime \prime}+\right. \\
& \left.-\frac{\mu_{1}^{\prime}}{\mu_{1}}\right) \frac{\mu_{1}}{\bar{\eta}_{1}} \cdot \alpha \cdot\left(G_{1}^{\prime}+\left(\frac{\mathrm{n}^{2}}{r^{2}}+2 \alpha^{2}\right) \mathrm{F}_{1}\right. \\
& \left.-\frac{\mathrm{n} \cdot \alpha}{\mathrm{r}} \mathrm{H}_{1}\right] \tag{3-42}
\end{align*}
$$

Continuity equation

$$
\begin{equation*}
G_{1}^{\prime}+\frac{G_{1}}{r}+-\frac{n}{r} H_{1}+\alpha \cdot F_{I}=0 \tag{3-43}
\end{equation*}
$$

Applying the same procedure to fluid 2 , we can get the similar equation of motion and continuity equation as following **
r-component

$$
\begin{align*}
b \alpha\left(\bar{v}_{2 z}-c\right) G_{2}= & p_{2}^{\prime}-\frac{i \frac{\bar{\eta}_{2}}{R_{e}}\left[2 G_{2}^{\prime \prime}+2\left(\frac{r \bar{\eta}_{2}^{\prime}}{\bar{\eta}_{2}}+1\right)-\frac{G_{2}^{\prime}}{r}\right.}{} \\
& -\left(\frac{n^{2}+2}{r^{2}}+m \alpha^{2}-\frac{\mu_{2}}{\bar{\eta}_{2}}\right) G_{2}+n\left(\frac{H_{2}^{\prime}}{r}-3 \frac{H_{2}^{2}}{2}\right) \\
& \left.+m \alpha \cdot \frac{\mu_{2}}{\bar{\eta}_{2}} F_{2}^{\prime}\right] \tag{3-44}
\end{align*}
$$

[^0]θ-component
\[

$$
\begin{align*}
\mathrm{b} \alpha \cdot\left(\overline{\mathrm{v}}_{2 z}-\mathrm{c}\right) \mathrm{H}_{2}= & -\frac{\mathrm{n}}{\mathrm{r}} \mathrm{p}_{2}-\frac{\mathrm{i} \cdot \bar{\eta}_{2}}{\mathrm{R}_{\mathrm{e}}}\left[\mathrm{H}_{2}^{\prime \prime}+\left(\frac{\mathrm{r} \bar{\eta}_{2}^{\prime}}{\bar{\eta}_{2}}+1\right) \frac{\mathrm{H}_{2}^{\prime}}{\mathrm{r}}\right. \\
& -\left(\frac{\mathrm{r} \cdot \bar{\eta}_{2}^{\prime} / \bar{\eta}_{2}}{r^{2}+\frac{1}{2}+2 n^{2}}+\alpha^{2}\right) \mathrm{H}_{2} \\
& -\mathrm{n}\left(\frac{\mathrm{G}_{2}^{\prime}}{\mathrm{r}}+\left(\frac{\mathrm{r}^{\prime} \cdot \bar{\eta}_{2}^{\prime}}{\bar{\eta}_{2}}+3\right) \frac{\mathrm{G}_{2}}{\mathrm{r}^{2}}\right)-\alpha \mathrm{n} \frac{\mathrm{~F}_{2}}{\mathrm{r}} \tag{3-45}
\end{align*}
$$
\]

z-component

$$
\begin{align*}
b\left[\alpha \cdot\left(\bar{v}_{2 z}-c\right) F_{2}+v_{2 z}^{\prime} G_{2}\right]= & -\alpha p_{2}-\frac{i \cdot \bar{\eta}_{2}}{R_{e}}\left[\frac{m}{\bar{\eta}_{2}} \underline{\underline{\mu}}_{F_{2}}^{\prime \prime}\right. \\
& +\frac{m \mu_{2}}{\bar{\eta}_{2}}\left(1+\frac{r}{\mu_{2}} \mu_{2}^{\prime}\right) \frac{F_{2}^{\prime}}{r} \\
& -\left(\frac{n^{2}}{r^{2}}+2 \cdot \alpha^{2}\right) F_{2}-\frac{m \mu_{2}}{\bar{\eta}_{2}} \alpha . \\
& \left(G_{2}^{\prime}+\left(1+\frac{r \mu_{2}^{\prime}}{\mu_{2}}\right) \frac{G_{2}}{r}\right. \\
& \left.-\frac{n \cdot \alpha}{r} H_{2}\right] \tag{3-45}
\end{align*}
$$

Continuity equation

$$
\begin{equation*}
G_{2}^{\prime}+\frac{G_{2}}{r}+-\frac{n}{r} H_{2}+\alpha \cdot F_{2}=0 \tag{3-46}
\end{equation*}
$$

Thus, except for the factor b and m, these equations of motion for fluid 2 have the same forms as those for fluid 1 . The simultaneous solutions of these equations together with the appropriate boundary and interfacial conditions will provide information from which the instability of the bicomponent non-newtonian flow can be inferred.

(IV) Bounday and Interfacial Conditions

The boundary conditions expressing finiteness of velocity along the axis of symmetry and no slip at the rigid surface are

$$
\mathrm{G}_{1}(0), \mathrm{H}_{1}(0), \mathrm{F}_{1}(0) \quad---- \text { Finite }(4-1)
$$

and

$$
\begin{equation*}
\mathrm{G}_{2}(\mathrm{a})=\mathrm{H}_{2}(\mathrm{a})=\mathrm{F}_{2}(\mathrm{a})=0 \tag{4-2}
\end{equation*}
$$

Where $a=R_{2} / R_{1}$.

The interfacial conditions require continuity of velocities, shear stress and normal stress. These conditions must be evaluated carefully, becasuse, strictly speaking, they are to be applied at the interface of: the disturbed flow, $r=1+\delta$, and not at the original interface, $r=1$.

Because of the periodic disturbance, we can assume a wavy form described by the equation

$$
r=1+\delta=1+\delta_{0} \cdot \exp [i n \theta+i \alpha(z-c \tau)](4-3)
$$

where δ_{0} is the amplitude of the fluctuation of the interface from its mean position at $r=1$ and is an infinitesimal quantity to be determined by the interface conditions. Thus, the substantial derivative of δ with
respect to time must be equal to the radial component of the perturbed velocity, ie.

$$
\begin{equation*}
\left(\frac{D \delta}{D t}\right)_{r=1+\delta}=v_{r}^{*}=i G(1+\delta) E X P \tag{4-4}
\end{equation*}
$$

rearrange above equation, we can find

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+v_{I_{z}} \frac{\partial}{\partial z}\right) \cdot \delta=v_{r}^{*}=i G(1+\delta) E X P \tag{4-5}
\end{equation*}
$$

or

$$
\begin{equation*}
-i \alpha c \delta+i \alpha\left(\bar{v}_{1 z}\right)_{r=1+\delta} \cdot \delta=i G(1+\delta) \operatorname{EXP} \tag{4-6}
\end{equation*}
$$

recalling that $v_{1 z}$ is equal to $v_{2 z}$ at the interface. Expanding Eq (4-6) in Taylor series around $r=1$

$$
\begin{align*}
& -i \alpha c \delta+i \alpha \bar{v}_{I z}(1) \cdot \delta+i \alpha\left(\bar{v}_{1 z}^{\prime}\right)_{r=1} \cdot \delta^{2} \\
& =i\left[G(1)+G^{\prime}(1) \cdot \delta\right] \operatorname{EXP} \tag{4-7}
\end{align*}
$$

and neglecting terms above second order in infinitesimal quantities, we have

$$
\begin{equation*}
\delta=\frac{G(1)}{\alpha \cdot\left[\overline{\bar{v}}_{1 z}(1)-c\right]} \quad \operatorname{EXP} \tag{4-8}
\end{equation*}
$$

Continuity of v_{r} across the interface requires that

$$
v_{1 r}(1+\delta, \theta, z, t)=v_{2 r}(1+\delta, \theta, z, t)(4-9)
$$

i.e.

$$
\begin{equation*}
v_{1 r}^{*}(1+\delta)=v_{2 r}^{*}(1+\delta) \tag{4-10}
\end{equation*}
$$

or

$$
\mathrm{v}_{1 \mathrm{r}}^{*}(1)+\mathrm{v}_{1 \mathrm{r}}^{*}(1) \cdot \delta=\mathrm{v}_{2 \mathrm{r}}^{*}(1)+\mathrm{v}_{2 \mathrm{r}}^{*}(1) \cdot \delta(4-11)
$$

Since both $v_{1 r}^{*}$ and $v_{2 r}^{*}$ are infinitesimal quantities, we can get

$$
v_{1 r}^{*}(1)=v_{2 r}^{*}(1)
$$

by eliminating all the second order terms. Equation (4-12) is equivalent to

$$
\begin{equation*}
G_{1}(1)=G_{2}(1) \tag{4-13}
\end{equation*}
$$

Similary, the continuity of v accross the interface will result in

$$
\begin{equation*}
\mathrm{v}_{1}{ }^{*}(1)=\mathrm{v}_{2}^{*}(2) \tag{4-14}
\end{equation*}
$$

or

$$
\begin{equation*}
\mathrm{H}_{1}(\mathrm{I})=\mathrm{H}_{2}(\mathrm{l}) \tag{4-15}
\end{equation*}
$$

Continuity of v_{z} requires a more careful formulation because there is a gradient of axial velocity in the mean
flow which is discontinuous at the interface. The condition requires that

$$
v_{1 z}(1+\delta, \theta, z, t)=v_{2 z}(1+\delta, \theta, z, t)(4-16)
$$

or

$$
\begin{aligned}
\overline{\mathrm{v}}_{1 z}(1+\delta)+\mathrm{v}_{1 z}^{*}(1+\delta, \theta, z, t)= & \overline{\mathrm{v}}_{2 z}(1+\delta)+ \\
& \mathrm{v}_{2 z}^{*}(1+\delta, \theta, z, t)
\end{aligned}
$$

Expanding in Taylor's series around $r=1$

$$
\begin{align*}
& \bar{v}_{1 z}(1)+\bar{v}_{1 z}(1) \cdot \delta+v_{1 z}(1)+v_{1 z}^{*}(1) \cdot \delta \\
= & \bar{v}_{2 z}(1)+\bar{v}_{2 z} \cdot \delta+v_{2 z}^{*}(1)+v_{2 z}^{*}(1) \tag{4-18}
\end{align*}
$$

and neglecting terms above second order, we have

$$
\begin{equation*}
\bar{v}_{1 z}^{\prime}(1) \cdot \delta+v_{1 z}^{*}(1)=\bar{v}_{2 z}^{\prime}(1) \cdot \delta+v_{2 z}^{*}(1) \tag{4-19}
\end{equation*}
$$

Since $\bar{v}_{1 z}(1)=\bar{v}_{2 z}(1)$, we rearrange above equation by applying Eq (4-8) and Eq (3-18)

$$
\begin{align*}
& \text { at } r=1 \\
& \text { Continuity of stresses across the interface can be } \\
& \text { expressed as } \\
& T_{i j}{ }^{l} \cdot \hat{n}_{j}=T_{i j}{ }^{2} \cdot \hat{n}_{j} \tag{4-21}
\end{align*}
$$

at $r=1+\delta$ and $i=r, \theta, z$. Where \hat{n} is the unit normal vector of the interface given by

$$
\begin{equation*}
\hat{n}=-\frac{\nabla(r-1-\delta)}{|\nabla(r-\mid-\delta)|}=\frac{\nabla(r-\delta)}{|\nabla(r-\delta)|} \tag{4-22}
\end{equation*}
$$

where

$$
\begin{align*}
\nabla(r-\delta)= & {\left[\frac{\partial}{\partial r}(r-\delta)\right] \cdot \hat{u}_{r}+\left[\frac{1}{r} \frac{\partial}{\partial \theta}(r-\delta)\right] \cdot \hat{u}_{\theta} } \\
& +\left[\frac{\partial}{\partial z}(r-\delta)\right] \cdot \hat{u}_{z} \\
= & \hat{u}_{r}+\left[-\frac{i n}{r} \delta\right] \cdot \hat{u}_{\theta}+[-i \alpha \delta] \cdot \hat{u}_{z} \tag{4-23}
\end{align*}
$$

$\hat{U}_{r}, \hat{U}_{\theta}, \hat{U_{z}}$ are unit vectors in the $r, \theta, \quad z$ directions respectively. So,

$$
n_{r}=\frac{1}{|\nabla(r-\delta)|} ; \quad n=\frac{-\frac{i n}{r} \cdot \delta}{|\nabla(r-\delta)|}
$$

$$
\begin{equation*}
n_{z}=\frac{-i \alpha \delta}{|\nabla(r-\delta)|} \tag{4-24}
\end{equation*}
$$

Since δ is an infinitesimal quantity, the components of \hat{n} in the θ and z directions are small compared to that in the r direction. Expanding Eq (4-21), we get

$$
\begin{align*}
T_{r r}^{1} \cdot \hat{n}_{r}+T_{r \theta}^{1} \cdot \hat{n}+T_{r z}^{1} \cdot \hat{n}_{z}= & T_{r r}^{2} \cdot \hat{n}_{r}+T_{r \theta}^{2} \cdot \hat{n}_{\theta} \\
& +T_{r z}^{2} \cdot \hat{n}_{z} \tag{4-25}\\
T_{\theta r}^{1} \cdot \hat{n}_{r}+T_{\theta \theta}^{1} \cdot \hat{n}+T_{\theta z}^{1} \cdot \hat{n}_{z}= & T_{\theta r}^{2} \cdot \hat{n}_{r}+T_{\theta \theta}^{2} \cdot \hat{n}_{\theta} \\
& +T_{\theta z}^{2} \cdot \hat{n}_{z} \tag{4-26}\\
T_{z r}^{1} \cdot \hat{n}_{r}+T_{z \theta}^{1} \cdot \hat{n}+T_{z z}^{1} \cdot \hat{n}_{z}= & T_{z r}^{2} \hat{n}_{r}+T_{z \theta}^{2} \cdot \hat{n}_{\theta} \\
& +T_{z z}^{2} \cdot \hat{n}_{z} \tag{4-27}
\end{align*}
$$

at $r=1+\delta$. Where 1 and 2 represent inner and outer fluid, respectively. However, for primary flow

$$
\begin{aligned}
& \bar{\tau}_{r r}^{i}=0 \\
& \bar{\tau}_{r \theta}^{i}=\bar{\tau}_{\theta r}^{i}=0 \\
& \bar{\tau}_{\theta \theta}^{i}=0
\end{aligned}
$$

$$
\begin{align*}
& \bar{\tau}_{\theta z}^{i}=\bar{\tau}_{z \theta}^{i}=0 \\
& \bar{\tau}_{\mathrm{zz}}^{i}=0 \quad i=1,2 \tag{4-28}
\end{align*}
$$

everywhere and everytime. The equation of state tells us that

$$
\begin{equation*}
\underset{\sim}{T}=-p I-\underset{\sim}{\tau} \tag{4-29}
\end{equation*}
$$

where p is a function of z direction only. Thus, equations (4-25) - (4-27) result in

$$
\begin{aligned}
& \tau_{r r}^{*, 1} \cdot \hat{n}_{r}+\tau_{r \theta}^{*, 1} \cdot \hat{n}_{\theta}+\left({\overline{\tau_{r z}}}^{\prime}+\tau_{r z}^{*, 1}\right) \hat{n}_{z} \\
= & \tau_{r r}^{*, 2} \hat{n}_{r}+\tau_{r \theta}^{*, 2} \cdot \hat{n}_{\theta}+\left(\bar{\tau}_{r z}^{2}+\tau_{r z}^{*, 2}\right) \hat{n}_{z} \\
& \tau_{\theta r}^{*, 1} \cdot \hat{n}_{r}+\tau_{\theta \theta}^{*, 1} \cdot \hat{n}_{\theta}+\tau_{\theta z}^{*, 1} \cdot \hat{n}_{z}=\tau_{\theta r}^{*, 2} \cdot \hat{n}_{r}+\tau_{\theta \theta}^{*, 2} \cdot \hat{n}_{\theta}+\tau_{\theta z}^{*, 2} \cdot \hat{n}_{z} \\
& \left(\bar{\tau}_{z r}^{1}+\tau_{z r}^{*, 1}\right) \cdot \hat{n}_{r}+\tau_{z \theta}^{*, 1} \cdot n+(p-30) \\
= & \left.\left(\bar{\tau}_{z r}^{2}+\tau_{z r}^{*, 2}\right) \cdot \hat{n}_{r}+\tau_{z \theta}^{*, 2} \cdot \hat{n}_{\theta}+\left(\tau_{z z}^{*, 1}\right) \cdot \hat{n}_{z}+\tau_{z z}^{*, 2}\right) \cdot \hat{n}_{z} \quad(4-32)
\end{aligned}
$$

at $\quad \mathrm{r}=1+\delta$. Expanding $\bar{\tau}_{\mathrm{rz}}^{1}$ and $\bar{\tau}_{\mathrm{rz}}^{2}$ about 1 and neglecting all terms over second order, Eq (4-30) becomes

$$
\begin{align*}
\tau_{r I}^{*}, 1 & \hat{n}_{r}+\left[\bar{\tau}_{r Z}^{1}(1)+\left(\frac{d}{} \frac{\bar{\tau}_{r z}^{l}}{d r}\right)_{r=1} \cdot \delta\right] \cdot \hat{n}_{z}=\tau_{r r}^{*, 2} \cdot \hat{n}_{r} \\
& +\left[\bar{\tau}_{r Z}^{2}(1)+\left(\frac{d \bar{\tau}_{r z}^{2}}{d r}\right)_{r=1} \cdot \delta\right] \cdot \hat{n}_{z} \tag{4-33}
\end{align*}
$$

or

$$
\tau_{r r}^{*, 1} \cdot \hat{n}_{r}+\bar{\tau}_{r Z}^{1}(1) \cdot \hat{n}_{z}=\tau_{r r}^{*, 2} \cdot \hat{n}_{r}+\bar{\tau}_{r z}^{2}(1) \cdot \hat{n}_{z}
$$

Using the fact that $\tau_{r z}^{1}(1)=\tau_{r z}^{2}(1)$, we have

$$
\begin{equation*}
\tau_{\mathrm{rr}}^{*, 1}=\tau_{\mathrm{rr}}^{*, 2} \quad \text { at } \mathrm{r}=1 \tag{4-35}
\end{equation*}
$$

Similar procedure applied to the second and third equation above yields

$$
\begin{equation*}
\tau_{\theta r}^{*, 1}=\tau_{\theta r}^{*, 2} \quad \text { at } \quad r=1 \tag{4-36}
\end{equation*}
$$

and

$$
\begin{gather*}
\left(\frac{\mathrm{d} \bar{\tau}_{Z}^{l} \underline{r}}{\mathrm{dr}}\right)_{\mathrm{r}=1} \cdot \delta+\tau_{\mathrm{zr}}^{*, 1}=\left(\frac{\left.\mathrm{d} \overline{\mathcal{T}}_{\underline{Z} \underline{r}}^{2}\right)_{\mathrm{r}=1} \cdot \delta+\tau_{z r}^{*, 2}}{\text { at } \mathrm{r}=1}\right.
\end{gather*}
$$

Application of $\mathrm{Eq}(3-27),(3-41)$ and (4-8), Eq (4-37) reduces to

$$
\begin{aligned}
& \frac{\beta_{1}}{2} \cdot \frac{G_{1}}{\alpha\left(\bar{v}_{1 z}(1)-c\right)}-\frac{\mu_{1}}{R_{e}}\left(F_{1}^{\prime}-\alpha \cdot G_{1}\right) \\
= & \frac{\beta_{2}}{2}\left(1-\frac{\hat{c}_{2}}{r_{2}}\right)-\frac{G_{2}}{\alpha \cdot\left(\bar{v}_{2 z}(1)-c\right)}-\left(F_{2}^{\prime}-\alpha \cdot G_{2}\right) \frac{m}{R_{e} \underline{\mu}_{2}}(4-38)
\end{aligned}
$$

$$
\text { at } \quad r=1
$$

Application of Eq (3-25), Eq (3-40) and Eq (4-36), Eq (4-36) reduces to

$$
\begin{equation*}
\bar{\eta}_{1} \cdot\left(\mathrm{H}_{1}^{\prime}-\frac{\mathrm{H}_{1}}{\mathrm{r}}-\frac{\mathrm{nG}_{1}}{\mathrm{r}}\right)=\bar{\eta}_{2} \cdot\left(\mathrm{H}_{2}^{\prime}-\frac{\mathrm{H}_{2}}{\mathrm{r}}-\frac{\mathrm{nG}}{\mathrm{r}}\right) \tag{4-39}
\end{equation*}
$$

at $r=1$.

The normal stress condition at the interface is the most complicated because the difference in normal stress across the interface is counterbalanced by the action of surface tension between the two fluids. It must also be remembered that the normal stress includes a derivative of the radial velocity, i.e., $\tau_{r r}^{*}$ in addition to the pressure. Hence, the difference of the quantity is evaluated for the inner and outer fluids by the following form

$$
\begin{equation*}
-\left(\bar{p}+P^{*}\right)-\tau_{r r}^{*} \tag{4-40}
\end{equation*}
$$

and this quantity must be equivalent to

$$
\begin{equation*}
-\frac{1}{\mathrm{~W}_{\mathrm{e}}}\left(\frac{1}{\mathrm{R}_{/ /}}+\frac{1}{\mathrm{R}_{\perp}}\right) \tag{4-41}
\end{equation*}
$$

where \bar{p} is the mean pressure, $W e$ is the Weber number defined in section(II), and $R_{/ /}$and R_{\perp} are the nondimensional principal radii of curvature of the interface. A radius of curvature is positive if the center of curvature lies in region 1 (inner fluid). The radius of curvature $R_{\|}$is evaluated in a plane which contains the axis of symmetry while R_{\perp} is the radius of curvature in a plane taken perpendicular to the axis. The radius of curvature are given by

$$
\begin{equation*}
\frac{1}{R_{/ /}}=\frac{\partial^{2} \delta}{\partial_{z}^{2}}=-\alpha^{2} \cdot \delta \tag{4-42}
\end{equation*}
$$

and

$$
\begin{equation*}
-\frac{1}{R_{\perp}}=1+\left(n^{2}-1\right) \cdot \delta \tag{4-43}
\end{equation*}
$$

Application of Eq (3-24), (3-37), (4-40), (4-42) and (4-43), the normal stress condition at the interface can be written as

$$
\begin{array}{r}
\left(p_{I}-i \frac{2 \bar{\eta}_{1}}{R_{e}} G_{I}^{\prime}\right)-\left(p_{2}-i \frac{2 \cdot \bar{\eta}_{2}}{R_{e}} G_{2}^{\prime}\right)= \\
\left(\frac{\alpha^{2}+1-n^{2}}{W_{e}}\right) \cdot \\
\frac{G_{1}\left(\bar{v}_{1 z}(1)-c\right)}{} \\
(4-44)
\end{array}
$$

The results of this section were summarized in the Table 4-1. They were used in conjunction with the governing differential equations to provide a solution to the stability problem. Since six constants arose in the solution of each set of governing equations, there were a total of tweleve constants to be determined from the tweleve boundary and interfacial conditions.

The differential system represents an eigenvalue since c must take an specific value in order that the solution not be identically zero. The flow will be unstable, neutrally stable, or stable accordingly as the imaginary part of c, c_{i}, is positive, zero, negative.

$$
\begin{aligned}
& G_{1}(0), \quad \mathrm{F}_{1}(0), \quad \mathrm{F}_{1}(0) \text { finite } \\
& G_{2}(a)=H_{2}(a)=F_{2}(a)=0 \\
& G_{1}(1)=G_{2}(1) \\
& \mathrm{H}_{1}(1)=\mathrm{H}_{2}(1) \\
& F_{1}+\frac{\overline{\mathrm{V}}_{1 z}^{\prime} G_{1}}{\alpha\left(\bar{v}_{1 z}^{-c)}\right.}=F_{2}+\frac{\overline{\mathrm{V}}_{2 z}^{\prime} G_{2}}{\alpha\left(\bar{v}_{2 z}-c\right)} \\
& \text { at } r=1 \\
& \frac{\beta_{1}}{2} \frac{G_{1}}{\alpha(\bar{v}} \frac{\left.\mu_{z}-c\right)}{}-\frac{\mu_{1}}{R_{e}}\left(F_{1}^{\prime}-\alpha G_{1}\right)=\frac{\beta_{2}}{2}\left(1-\frac{\hat{c}_{2}}{r^{2}}\right) \frac{G_{2}}{\alpha\left(\overline{v_{2 z}}\right.} \\
& -\frac{m \mu_{2}}{R_{e}}\left(F_{2}^{\prime}-\alpha G_{2}\right) \text { at } r=1 \\
& \bar{\eta}_{1} \cdot\left(H_{1}^{\prime}-\frac{\ddot{H}_{1}}{r}-\frac{n G_{1}}{r}\right)=\bar{\eta}_{2} \cdot\left(H_{2}^{\prime}-\frac{H_{2}}{r}-\frac{n G_{2}}{r}\right) \quad \text { at } r=1 \\
& \left(E_{1}-i \frac{2^{\eta_{1}}}{R_{e}} G_{1}^{\prime}\right)-\left(P_{2}-i \frac{2 \bar{\eta}_{2}}{R_{e}} G_{2}^{\prime}\right)=\left(\frac{\alpha^{2}+1-n^{2}}{W_{e}}\right) \frac{G_{1}}{\alpha\left(\bar{v}_{1 z^{-c}}^{-c}\right.} \\
& \text { at } r=1
\end{aligned}
$$

(V) Solution for the Axisymmetric_Case ($n=0$)

The differential governing equations in section III will now be solved by the regular perturbation procedure described in section III. The series expansions given in Eq (3-1) will be substituted into the governing differential equations and boundary conditions. Then terms of the same power of α will be equated separately in each equation. This procedure will allow a solution to be built up step-by-step from the first approximation to any degree of accuracy required. In order to determine the first approximation to the onset of instability, it will be necessary to proceed only as far as the second approximation.

When $n=0$, the equation of motion associated with the θ coordinate, $(3-26)$ and $(3-45)$, express only a relationship governing circumferential velocity and may, if required, be solved after the other three equations in the differential system have been solved. In order to determine the stability of the flow, it will not be necessary to solve $(3-26)$ at all. Thus, the order of the differential system is reduced by 2 , and there will be a total of eight constants to be determined instead of tweleve.

Omitting H_{1} and H_{2} from consideration and taking $n=0$, yields

$$
\begin{align*}
\alpha \cdot\left(\bar{v}_{1 z}-\mathrm{c}\right) G_{1}= & P_{1}^{\prime}-\frac{i \cdot \bar{\eta}_{1}}{R_{e}}\left[2 G_{1}^{\prime \prime}+2\left(\frac{r \cdot \bar{\eta}_{1}^{\prime}}{\bar{\eta}_{1}^{\prime}}+1\right) \frac{G_{1}^{\prime}}{r}\right. \\
& \left.-\left(\frac{2}{r^{2}}+\alpha^{2} \frac{\mu_{1}}{\bar{\eta}_{1}}\right) G_{1}+\alpha \cdot \frac{\mu_{1}}{\bar{\eta}_{1}} F_{1}^{\prime}\right] \tag{5-1}
\end{align*}
$$

$$
\begin{align*}
\alpha \cdot\left(\overline{\mathrm{v}}_{1 \mathrm{z}}-\mathrm{c}\right) \mathrm{F}_{1}+\overline{\mathrm{v}}_{1 \mathrm{z}}^{\prime} G_{1}= & -\alpha \cdot \mathrm{p}_{1}-\frac{\mathrm{i} \cdot \bar{\eta}_{1}}{R_{\mathrm{e}}}\left[\frac{\mu_{1}}{\bar{\eta}_{1}} \mathrm{~F}_{1}^{\prime \prime}+\frac{\mu_{1}}{\bar{\eta}_{1}}\right. \\
& \left(1+\frac{r \cdot \mu_{1}^{\prime}}{\mu_{1}}\right) \frac{F_{1}^{\prime}}{r}-2 \alpha^{2} \cdot \mathrm{~F}_{1}-\frac{\mu_{1}}{\bar{\eta}_{1}} \alpha \cdot\left(\mathrm{G}_{1}^{\prime}\right. \\
& \left.\left.+\left(1+\frac{\mathrm{r} \cdot \mu_{1}^{\prime}}{\mu_{1}}\right) \frac{\mathrm{G}_{1}}{\mathrm{r}}\right)\right] \tag{5-2}
\end{align*}
$$

and

$$
\begin{equation*}
G_{1}^{\prime}+G_{1} / r+\alpha \cdot F_{1}=0 \tag{5-3}
\end{equation*}
$$

Eliminating p between Eq (5-1) and (5-2), and combining Eq (5-3) provides the solution of F_{1} and G_{1}. The procedure of solutions for fluid 2 is similar to that for fluid 1 .

A. First Approximation

$$
\text { If Eq }(3-1) \text { is used in Eqs }(5-1)-(5-3) \text {, we get the }
$$ first approximation

$$
\begin{aligned}
F_{1,0}= & A_{1}\left(\frac{r^{2}}{4}+\frac{\alpha_{1} D_{1}}{2\left(\alpha_{1}+1\right)} r^{\alpha_{1}+1}\right)+A_{2}\left(\ln r+\frac{\alpha_{1} D_{1}}{\left(\alpha_{1}-1\right)} r^{\alpha_{1}-1}\right) \\
& +A_{3} \\
G_{1,1}= & -A_{1}\left(\frac{r^{3}}{16}+\frac{\alpha_{1}}{2\left(\alpha_{1}+1\right)} \cdot \frac{D_{1}}{\left(\alpha_{1}+3\right)} \quad r^{\alpha_{1}+2}\right)-
\end{aligned}
$$

$$
\begin{aligned}
& A_{2}\left(\frac{1}{2} r \ln r+\frac{\alpha_{1} D}{\left(\alpha_{1}-1\right)} \frac{1}{\left(\alpha_{l}+1\right)} r^{\alpha_{l}}+\frac{r}{4}\right) \\
& -\frac{A_{3}}{2} r+\frac{A_{4}}{r}
\end{aligned}
$$

for fluid l. And

$$
\begin{align*}
F_{2,0}= & B_{1}\left(\frac{1}{4} r^{2}-\frac{\alpha_{2} D_{2}}{2} \phi_{1}(r)\right)+B_{2}\left(\ln r-\alpha_{2} D_{2} \cdot \phi_{2}(r)\right) \\
& +B_{3} \\
G_{2,1}= & B_{1}\left(\frac{-1}{16} r^{3}+\frac{\alpha_{2} D_{2}}{4} r \phi_{1}(r)-\frac{\alpha_{2} D_{2}}{4} \cdot \frac{\phi_{3}(r)}{r}\right)+B_{2} \\
& \left(-\frac{r}{2} \ln r+\frac{r}{4}+\frac{\alpha_{2} D_{2}}{4} r \cdot \phi_{2}(r)-\frac{\alpha_{2} D_{2}}{4} \frac{\phi_{1}(r)}{r}\right) \\
- & \frac{r}{2} B_{3}+B_{4} / r \tag{5-7}
\end{align*}
$$

where the first subscript of F and G means fluid region and the second subscript indicate the degree of approxmation. The all coefficients at right side of equation are integral constants. And

$$
\begin{aligned}
& \phi_{1}(r)=\int_{r}^{a} r\left(r+\frac{\hat{c}_{2}}{r}\right)^{\alpha_{2}-1} \cdot d r \\
& \phi_{2}(r)=\int_{r}^{a_{1}} \frac{1}{r}\left(r+\frac{\hat{c}_{2}}{r}\right)^{\alpha_{2}-1} d r \\
& \phi_{3}(r)=\int_{r}^{a} r^{3}\left(r+\frac{\hat{c}}{r}\right)^{\alpha_{2}-1} d r
\end{aligned}
$$

Application of the boundary and interfacial conditions result in

$$
\begin{aligned}
& A_{2}=A_{4}=0 \\
& \left(\frac{a^{2}}{4}\right) B_{1}+(\ln a) B_{2}=-B_{3} \\
& \left(\frac{a^{4}}{16}\right) B_{1}+\left(\frac{a^{2}}{4}\right) B_{2}=-B_{4}
\end{aligned}
$$

$$
\left[\frac{1}{16}+\frac{\alpha_{1} D_{1}}{2(+1)} \frac{(+3)}{1+A_{1}}+\frac{A_{3}}{2}+\left[\frac{-1}{16}+\frac{\alpha_{2} D_{2} \cdot \phi_{1}(1)}{4}\right.\right.
$$

$$
\left.-\frac{\alpha_{2} D_{2} \cdot \phi_{3}(1)}{4}+\frac{a^{2}}{8}-\frac{a^{4}}{16}\right] B_{1}+\left[\frac{1}{4}+\frac{\alpha_{2} D_{2} \cdot \phi_{2}(1)}{4}\right.
$$

$$
\begin{equation*}
\left.-\frac{\alpha_{2} D_{2} \cdot \phi_{1}(1)}{4}+\frac{\ln a}{2}-\frac{a^{2}}{4}\right] B_{2}=0 \tag{5-11}
\end{equation*}
$$

$$
\left[-\left(\beta_{1}-\frac{\left.\beta_{2}+\beta_{2} \hat{C}_{2}\right)}{2 \cdot \pi}\left(\frac{1}{2}+\frac{\alpha_{1} D_{1}}{\left(\alpha_{1}+1\right)}\right)+1\right] A_{1}+\left[\frac{\beta_{1}-\beta_{2}+\beta_{2} \hat{C}_{2}}{\pi}\right] A_{3}\right.
$$

$$
+\left[\frac{m}{2}-\frac{\left(\beta_{1}-\beta_{2}+\beta_{2} \hat{C}_{2}\right)}{2 \cdot \pi}\left(\frac{1}{2}-\alpha_{2} D_{2} \cdot \phi_{1}(1)+\frac{a^{2}}{2}\right)\right] \mathrm{B}_{1}
$$

$$
\begin{equation*}
+\left[m+\frac{\left(\beta_{1}-\beta_{2}+\beta_{2} \hat{C}_{2}\right)}{2 \cdot \pi}\left(2 \alpha_{2} D_{2} \cdot \phi_{2}(1)+2 \ln a\right)\right] B_{2}=0 \tag{5-12}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{A}_{1}+0 \cdot \mathrm{~A}_{3}-\mathrm{B}_{1}+0 \cdot \mathrm{~B}_{2}=0 \tag{5-13}
\end{equation*}
$$

Taking $A_{3}=1$, the constants A_{1}, B_{1}, B_{2} can be solved by solving Eqs (5-11) - (5-13) simultaneously. Then B_{3} and B_{4} can be readily determined by using Eqs (5-9) - (5-10). Thus, c_{0} can be derived by using Eq (4-20) which will yield

$$
\begin{equation*}
c_{0}=\bar{v}_{1 z}(1)+\frac{\left(\bar{v}_{z 1}^{\prime}-\bar{v}_{z 2}^{\prime}\right)}{\left(-\frac{F_{10}}{10}-\bar{F}_{20}\right)} G_{11} \tag{5-14}
\end{equation*}
$$

at $r=1$. Since c_{0} is real, no instability will be manifested at this stage of approximation. It is thus necessary to proceed to next approximation.

B. Second Approximation

Starting from Eq (5-1) to (5-3) with the same procedure described in first approximation, the solution for this stage can be redily written as following

$$
\begin{align*}
F_{1 I}= & i \cdot\left[S_{1}(r)+*_{A_{1}}^{*}\left(\frac{r^{2}}{4}+\frac{\alpha_{1} D_{1}}{2\left(\alpha_{1}+1\right)} r^{\alpha_{1}+1}\right)+*_{A_{2}^{*}}^{*}[\ln r\right. \\
& \left.\left.+\frac{\alpha_{1} D}{\left(\alpha_{1}-1\right)} r^{\alpha_{1}+1}\right]+{ }^{*} A_{3}^{*}\right] \tag{5-15}
\end{align*}
$$

$$
\begin{align*}
& G_{12}=i\left[S_{2}(r)-{ }_{A_{1}}^{*}{ }_{1}^{*}\left(\frac{r^{3}}{16}+\frac{\alpha_{1}{ }^{D} 1}{2\left(\alpha_{1}+1\right) \cdot\left(\alpha_{1}+3\right)} r^{\alpha_{1}+2}\right)\right. \\
& -\#_{A_{2}}^{*}\left(\frac{r}{2} \ln r-\frac{r}{4}+\frac{\alpha_{1} D_{1}}{\left(\alpha_{1}-1\right)}-\frac{\left.\alpha_{1}+1\right)}{r^{\alpha}} \quad\right) \\
& -\frac{A_{3}^{*}}{2} \text { r } \quad \text {] } \tag{5-16}
\end{align*}
$$

where

$$
\begin{aligned}
s_{1}(r)= & -\xi_{1}\left[\frac{r^{2 \alpha_{1}+4}}{\left(2 \alpha_{1}+4\right)}+\frac{\alpha_{1} D_{1}}{\left(3 \alpha_{1}+3\right)} r^{3 \alpha_{1}+3}\right]+\xi_{1}\left[\frac{r_{1}+5}{\left(\alpha_{1}+5\right)}\right. \\
& \left.+\frac{\alpha_{1} D_{1}}{\left(2 \alpha_{1}+4\right)} r^{2 \alpha_{1}+4}\right]+\xi_{3}\left[\frac{r_{1}+3}{\left(\alpha_{1}+3\right)}+\frac{\alpha_{1} D_{1}}{\left(2 \alpha_{1}+2\right)} r^{\left.2 \alpha_{1}+2\right]}\right. \\
& -\xi_{4}\left[\frac{r^{6}}{6}+\frac{\alpha_{1} D_{1}}{\left(\alpha_{1}+5\right)} r_{1}^{\alpha_{1}+5}\right]+\xi_{5}\left[\frac{r^{4}}{4}+\frac{\alpha_{1} D_{1}}{\left(\alpha_{1}+3\right)} r^{\alpha_{1}+3}\right] \\
\xi_{1}= & 2 Q_{1} \cdot R_{e} \cdot \alpha_{1} D_{1}^{2} A_{1} /\left[\left(\alpha_{1}+1\right)^{2}\left(\alpha_{1}+1\right)\left(2 \alpha_{1}+4\right)\right] \\
\xi_{2}= & Q_{1} R_{e} D_{1} A_{1}\left(-\frac{\alpha_{1}}{\left(\alpha_{1}+1\right) \cdot\left(\alpha_{1}+3\right)}-\frac{3}{8}\right) \\
\xi_{1}= & Q_{1} D_{1} A_{3}\left(\alpha_{1}-1\right) /\left(\alpha_{1}+1\right)+R_{e} \cdot A_{1} \alpha_{1} D_{1}\left[Q_{1}\left(1+\frac{2 D_{1}}{\alpha_{1}+1}\right)\right. \\
+ & \left.1-C_{0}\right] /\left[2\left(\alpha_{1}+1\right)\right] \\
\xi_{4}= & Q_{1} \cdot R_{e} \cdot A_{1} / 8 \\
\xi_{5}= & R_{e} \cdot A_{1} \cdot\left[Q_{1}\left(1+\frac{2 D_{1}}{\alpha_{1}+1}\right)+1-c_{0}\right] / 4
\end{aligned}
$$

$$
\begin{aligned}
& Q_{I}=\beta_{i} R_{e} / 4 \\
& s_{2}(r)=-\frac{1}{r} \int r s_{1}(r) d r
\end{aligned}
$$

for fluid 1. Similarity to fluid 2 , the solutions are

$$
\begin{align*}
\mathrm{F}_{21} & =\mathrm{i}\left[\mathrm{~S}_{3}(\mathrm{r})+\#_{\mathrm{B}_{1}^{*}}^{*}\left(\frac{\mathrm{r}^{2}}{4}-\frac{\alpha_{2} D_{2}}{2} \phi_{1}(\mathrm{r})+\#_{\mathrm{B}_{2}^{*}}^{*}(1 \mathrm{nr}\right.\right. \\
& \left.\left.-\alpha_{2} \mathrm{D}_{2} \phi_{2}(\mathrm{r})\right)+ \text { B }_{3}^{*}\right] \tag{5-17}
\end{align*}
$$

and

$$
\begin{align*}
G_{22}= & i\left[S_{4}(r)+*_{B_{1}}^{*}\left[\frac{-1}{16} r^{3}+\frac{\alpha_{2} D_{2}}{4} r \cdot \phi_{1}(r)-\frac{\alpha_{2} D_{2}}{4} \cdot \frac{\phi_{3}(r)}{r}\right]\right. \\
& +*_{B_{2}}^{*}\left[-\frac{r}{2} \ln r+\frac{r}{4}+\frac{\alpha_{2} D_{2}}{4} r \phi_{2}(r)-\frac{\alpha_{2} D_{2}}{4} \cdot \frac{\phi_{1}(r)}{r}\right] \\
& \left.\left.-\frac{r}{2} *_{B_{3}}^{*}+\frac{B_{4}}{r}\right]\right] \tag{5-18}
\end{align*}
$$

Those eight integral constants are determined by applying the boundary and interfacial conditions listed in section (IV). The eigen value, c_{1}, is thus calculated by

$$
c_{1}=\frac{\left(\bar{v}_{1 z}-c_{0}\right)}{\left(\bar{F}_{10}-\bar{F}_{20}\right)}\left(F_{11}-F_{21}\right)+\frac{\left(\bar{v}_{1 z}^{\prime}-\bar{v}_{2 z}^{\prime}\right)}{\left(\bar{F}_{10}-\bar{F}_{20}\right)} G_{12}
$$

The results were carried out for a variety of situations by using the Univac 90/80-3 computer. The influences of zero-shear-rate viscosity ratio (m), shearstress ratio (γ), power parameter $\left(\alpha_{1}, \alpha_{2}\right)$ and surface tension on axisymmetric disturbances for unidirectional flow are exhibited in the graphs.

Fig 5-1

Fig 5-2

Fig 5-3

- 40 -

Fig. 5-4

- 41 -

Fig 5-5

Fig 5-6

- 43 -

Fig 5-7

- 44 -

Fig 5-8

- 45 -

Fig 5-9

Fig 5-10

- 47 -

Fig. 5-11

Fig 5-12

Fig 5-13

```
(VI) Discussion
```

In the present work, numerical analyses were performed for the axisymmetric case. The parameters were chosen in ranges typically found for some common non-Newtonian fluids. Owing to the large number of parameter combinations, the actual eigenvalue, c_{1}, of each particular case must be found by using the computer program listed on the Appendix IV.

From Fig (5-1) and Fig (5-12), the viscosity ratio is shown to be destabilizing, i.e. the larger the value of m, the larger the wave growth rate. On the contrary, the shear rate ratio was found to stabilize the flow as its value increased (Fig (5-3) and Fig (5-9)). From Figs (5-5) and (5-9), the factor α_{1} seems to have monotonous destabilizing effects. The same monotonous destabilizing effect of α_{2} could be seen from Figs (5-7), and (5-10). For γ larger than l, the surface tension would play a stabilizing role as seen from Fig (5-1l), while its effect is negligible for $\mathcal{1}<1$, as seen from Figs (5-2), (5-4), (5-8) \& (5-11). From Fig (5-12), the effect of D_{1} is seen to be stabilizing for lower value of m (<10) and destabilizing for higher value of m (>10). For m smaller than 10 , the surface tension will play a stabilizing role, as shown by comparing Figs (5-4), (5-6) and (5-13).

The most important conclusion to be drawn from the numerical results of the previous section is that the cause of instability is the difference in zero-shear-rate viscosity (m), shear streee (ν), and power parameter $\left(\alpha_{1} ; \alpha_{2}\right)$. Surface tension, in general has a stabilizing effects.

Hickox (7) studied the stability of both axisymmetric and asymmetric disturbance for Newtonian fluids with the same geometry. He pointed out that the surface tension would have a negligible effect for $m=20$ (which was also found for nonNewtonian fluids). He also indicated that an increasing viscosity ratio has a stabilizing influence on asymmetric disturbances, but has a destabilizing effects on axisymmetric disturbances. From our work, the increasing zero-shear-rate viscosity ratio was also found to have a destabilizing effect in the axisymmetric case. Comparing the results for Newtonian and non-Newtonian fluids with axisymmetric disturbances, we find the there is a range of interfacial stability for Newtonian fluids which can not be seen in non-Newtonian systems.

Since only long waves are considered, and since instability is manifested for any Reynolds number however small, turbulence is not expected as an end result of the instability. The long waves considered in this analysis will experience an initial growth rate which is exponential in time. But once the wave amplitude becomes finite, nonlinear effects will become important and must be accounted for.

In the analyses we have assumed the fluid to be nondiffusive. From the physical point of view, this is not unrealistic since, for example, there are many polymers which are not mixed together.

APPENDIX I

The only nonzero velocity of steady state flow is the axial velocity, $\stackrel{\rightharpoonup}{v}_{z}$, which is a function of r. The Cauchy's equation will be reduced to

$$
\begin{align*}
& 0=-\partial \overline{\mathrm{p}}_{1} / \partial \mathrm{r} \\
& 0=-\partial \overline{\mathrm{p}}_{1} / \partial \theta \\
& 0=-\partial \overline{\mathrm{p}}_{1} / \partial \mathrm{z}-\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{r}}\left(\mathrm{r} \cdot \bar{\tau}_{\mathrm{r} \mathrm{z}}\right)+\rho_{1} g \tag{AI-1}
\end{align*}
$$

for fluid 1 , and

$$
\begin{aligned}
& 0=-\partial \bar{p}_{2} / \partial r \\
& 0=-\overline{\mathrm{p}}_{2} / \theta \theta
\end{aligned}
$$

for fluid 2. The axial velocity, thus, can be found by applying Eqs (AI-1), (AI-2) with two boundary conditions and one interfacial condition which are

$$
\begin{array}{ll}
\overline{\mathrm{v}}_{1 z}(0) & \text { finite } \\
\overline{\mathrm{v}}_{2 z}\left(\mathrm{R}_{2}\right)=0 & (\mathrm{AI}-3) \\
\overline{\mathrm{v}}_{1 z}\left(\mathrm{R}_{1}\right)=\overline{\mathrm{v}}_{2 z}\left(\mathrm{R}_{2}\right) & (\mathrm{AI}-4) \\
\end{array}
$$

Equation (AI-1) result in

$$
\begin{equation*}
\bar{\tau}_{1 \mathrm{rz}}=\frac{\Delta \overline{\mathrm{p}}_{1}}{2} \mathrm{r}+\frac{\mathrm{c}_{1}}{\mathrm{r}} \tag{AI-6}
\end{equation*}
$$

where $\Delta \bar{p}_{1}=P_{1} g-\partial \bar{p}_{1} / \partial z$. The integral constant, ${ }^{c}{ }_{1}$, must be zero for fitness of Eq (A I-3).
Now

$$
\begin{aligned}
\bar{v}_{1 z} & =-\frac{{\overline{\tau_{l}^{1 r}}}^{\bar{\eta}_{1}}}{\bar{\eta}_{01}} \\
& =-\frac{1}{\eta_{01}}{\overline{\tau_{l r z}}}\left[1+\left(\frac{\left|\tau_{l \underline{ }}\right|}{\tau_{01}}\right)^{\alpha_{1}-1}\right] \quad \text { (AI-7) }
\end{aligned}
$$

Since

$$
v_{1 z}^{\prime}<0, \text { for } 0<r<R_{1}
$$

ie.

$$
\bar{\tau}_{1 r z}>0, \quad \text { for } \quad 0<r<R_{1}
$$

Thus

$$
\begin{aligned}
\overline{\mathrm{v}}_{1 \mathrm{rz}}^{\prime} & =-\frac{1}{\eta_{01}}\left[\bar{\tau}_{1 \mathrm{rz}}+\frac{\tau_{1 \mathrm{rz}}^{\alpha_{1}}}{\tau_{01} \alpha_{1}-1}\right] \\
& =-\frac{1}{\eta_{01}}\left[\frac{\Delta \bar{p}_{1}}{2} \mathrm{r}+\left(\frac{\Delta \bar{p}_{1}}{2 \tau_{01}}\right)^{\alpha_{1}} \tau_{01}{ }^{\alpha_{l}}\right] \\
\Rightarrow \quad \bar{v}_{1 z} & =-\frac{1}{\eta_{01}}\left[\frac{\Delta \bar{p}_{1}}{4} r^{2}+\left(\frac{\Delta \bar{p}_{1}}{2 \bar{\tau}_{01}}\right)^{\alpha_{1}} \cdot \frac{\tau_{01}}{\alpha_{1}+1} r^{\alpha_{1}+1}+B_{1}\right]
\end{aligned}
$$

Similarity, the equation (AI-2) will have the solution form as following:

$$
\begin{align*}
\overline{\mathrm{v}}_{2 \mathrm{z}}= & -\frac{1}{\eta_{02}}\left[\frac{\Delta \overline{\mathrm{p}}_{2}}{2} \mathrm{r}^{2}+\mathrm{c}_{2} \ln \mathrm{r}+\frac{1}{\tau_{02} \alpha_{2}-1}\right. \\
& \left.\int_{*}^{r}\left(\frac{\Delta \overline{\mathrm{p}}_{2}}{2} \mathrm{r}+\frac{c_{2}}{\mathrm{r}}\right)^{\alpha_{2}} \mathrm{dr}+\mathrm{B}_{2}\right] \tag{AI-9}
\end{align*}
$$

Application fo Eq (AI-4), (AI-5), (AI-8) and (AI-9), we can solve those three integral constants as

$$
\begin{aligned}
& B_{1}=-\frac{\Delta \bar{p}_{1}}{4} R_{1}^{2}-\left(\frac{\Delta \bar{p}_{1}}{2 \bar{\tau}_{01}}\right)^{\alpha_{1}} \cdot \frac{\tau_{01}}{\alpha_{1}+1} R_{1}^{\alpha_{1}+1}-\eta_{01} v_{i} \\
& B_{2}=-\frac{\Delta \bar{p}_{2}}{4} R_{2}^{2}-c_{2} \cdot \ln R_{2}-\frac{1}{\tau_{02} \alpha_{2}-\Gamma} \int_{*}^{R_{2}}\left(\frac{\Delta \bar{p}_{2}}{2} r+\frac{c_{2}}{r}\right)^{\alpha_{2}} d r
\end{aligned}
$$

and

$$
c_{2}=\left(\frac{\Delta \overline{\mathrm{p}}_{1}-\Delta \overline{\mathrm{p}}_{2}}{2}\right) \mathrm{R}_{1}^{2}
$$

where V_{i} is the interfacial velocity which has the expression as

$$
\begin{aligned}
\mathrm{v}_{\mathrm{i}}= & \frac{1}{\eta_{02}}\left[\frac{\Delta p_{2} \mathrm{R}_{2}^{2}}{4}\left(1-\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)^{2}\right)-c_{2} \ln \left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)\right. \\
& \left.+\frac{1}{\tau_{02}} \frac{1}{\alpha_{2}-1} \int_{R_{1}}^{R_{2}}\left(\frac{\Delta \overline{\mathrm{p}}_{2}}{2} \mathrm{r}+\frac{c_{2}}{\mathrm{r}}\right)^{\alpha_{2}} \mathrm{dr}\right]
\end{aligned}
$$

The equations of steady - state flow could be nondimensionalized by using the characteristic units as

$$
\begin{array}{lll}
\text { length } & : & R_{1} \\
\text { time } & : & R_{1} / V_{i} \\
\text { velocity } & : & V_{i} \\
\text { stress } & : & V_{i}^{2} \\
\text { density } & : & P_{1} \\
\text { viscosity } & : & \eta_{01}
\end{array}
$$

Thus

$$
\overline{\mathrm{p}}_{1}=\left(\frac{\mathrm{g}}{\mathrm{v}_{i}^{2}}-\frac{\Delta \overline{\mathrm{p}}_{1}}{\rho_{1} v_{i}^{2}}\right) \mathrm{R}_{1} z=\left(\frac{1}{\mathrm{~F}} \bar{r}^{2}-\beta_{1}\right) z_{z}
$$

and

$$
\begin{aligned}
\bar{p}_{2} & =\left(\frac{\rho_{2}}{\rho_{1}}-\frac{\mathrm{v}}{2}-\frac{\Delta \stackrel{\rightharpoonup}{\mathrm{p}}_{2}}{\rho_{1} v_{i}^{2}}\right) \mathrm{R}_{1} z-\frac{\rho}{\rho_{1} v_{i}^{2} R_{1}} \\
& =\left(\frac{\mathrm{b}}{\mathrm{Fr}}-\beta_{2}\right) z-\frac{1}{\mathrm{~W}_{\mathrm{e}}} \\
& =\overline{\mathrm{p}}_{1}-\frac{1}{\bar{W}_{\mathrm{e}}}
\end{aligned}
$$

where $F r=V_{i}^{2} / g R_{1} \quad ; \quad \beta_{i}=\Delta \bar{p}_{1} R_{1} / \rho_{l} v_{i}^{2} ;$

$$
\beta_{2}=\Delta \bar{p}_{2}^{R_{1}} / \rho_{1} v_{i}^{2} \quad ; \quad b=\rho_{2} / \rho_{1} ; \quad w_{e}=\rho_{1} \cdot v_{i}^{2} R_{1} / \sigma
$$

and

$$
a=R_{2} / R_{1}
$$

The axial velocities will be

$$
\begin{aligned}
\overline{\mathrm{v}}_{1 z}= & \frac{1}{\eta_{01} \bar{v}_{i}}\left[\frac{\Delta \overline{\mathrm{p}}_{1} \mathrm{R}_{1}^{2}}{4}\left(1-\mathrm{r}^{2}\right)+\frac{\tau_{0} R_{1}}{\alpha_{1}+1}\left(\frac{\Delta \overline{\mathrm{p}}_{1} \mathrm{R}_{1}}{2 \tau_{01}}\right)^{\alpha_{1}}\right. \\
& \left.\left(1-\mathrm{r}^{\alpha_{1}+1}\right)\right]+1 \\
= & \frac{\beta_{1} \mathrm{R}_{\mathrm{e}}}{4}\left[1-\mathrm{r}^{2}+\frac{2 \mathrm{D}_{1}}{\alpha_{1}+1}\left(1-r^{\alpha_{1}+1}\right)\right]+1
\end{aligned}
$$

and

$$
\begin{aligned}
\stackrel{\rightharpoonup}{v}_{2 z}= & \frac{1}{\eta_{02} V_{i}}\left[\frac{\Delta \bar{p}_{2} R_{2}^{2}}{4}\left(1-\left(\frac{r}{R_{2}}\right)^{2}\right)-c_{2} \ln \left(\frac{r}{R_{2}}\right)\right. \\
& \left.+\frac{\tau_{02}}{\tau_{02}} \bar{\alpha}_{2}-T \int_{r}^{R_{2}}\left(\frac{\Delta \bar{p}_{2}}{2} r+\frac{c_{2}}{r}\right)^{\alpha_{2}} d r\right] \\
= & \frac{1}{\eta_{02} v_{i}}\left[\frac{\Delta \bar{p}_{2} R_{1}^{2}}{4}\left(a^{2}-r^{2}\right)-c_{2} \ln \left(\frac{r}{a}\right)\right. \\
& \left.+\frac{R_{1}}{\tau_{02}} \alpha_{2}-T\left(\frac{\Delta \bar{p}_{2} R_{1}}{2}\right)^{\alpha_{1}} \cdot \int_{r}^{a}\left(r+\left(\frac{2 \bar{p}_{2}}{\Delta \bar{p}_{2} R_{1}^{2}}\right) \frac{1}{r}\right)^{\alpha_{2}} d r\right] \\
= & \frac{R_{e} \beta_{2}}{4 m}\left[\left(a^{2}-r^{2}\right)-2 \hat{c}_{2} \ln \left(\frac{r}{a}\right)+2 D_{2} \int_{r}^{a}\left(r+\frac{c_{2}}{r}\right)^{\alpha_{2}} d r\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathrm{D}_{1}=\left(\Delta \overline{\mathrm{p}}_{1} \mathrm{R}_{1} / 2 \tau_{01}\right)^{\alpha_{1}-1} ; \mathrm{D}_{2}=\left(\Delta \overline{\mathrm{p}}_{1} \mathrm{R}_{1} / 2 \tau_{02}\right)^{\alpha_{2}-1} ; \\
& \mathrm{m}=\eta_{02} / \eta_{01} \text { and } \hat{\mathrm{c}}_{2}=2 \mathrm{c}_{2} / \Delta \overline{\mathrm{p}}_{2} \mathrm{R}_{1}^{2}
\end{aligned}
$$

The viscosities of fluids will be

$$
\bar{\eta}_{1}=-\ldots \frac{1}{1+\left(\mathbb{D}_{1} \mathrm{r}\right)^{\alpha_{1}-1}}
$$

and

$$
\begin{aligned}
\bar{\eta}_{2} & \left.=\cdots \frac{\overline{\bar{p}}_{2} R_{1}}{2}\right)^{\alpha_{02}-1} \cdot\left(r+\frac{\hat{c}_{2}}{r}\right)^{\alpha_{2}-1} \\
= & -\frac{m}{1+D_{2}\left(r+\frac{c_{2}}{r}\right)^{\alpha_{2}-1}}
\end{aligned}
$$

The shear stress tensors will be

$$
\overline{\tau_{\tau}^{c}}={\overline{\tau_{1}}}_{1} / P_{1} v_{i}^{2}=\left(\begin{array}{lll}
0 & 0 & D_{1} r \\
0 & 0 & 0 \\
D_{1} r & 0 & 0
\end{array}\right)
$$

and

$$
\underset{\underset{z}{z}}{\bar{\tau}}=\bar{\tau}_{2} / \rho_{1} v_{i}^{2}=\left(\begin{array}{ccc}
0 & 0 & \frac{\beta_{2}}{2}\left(r+\frac{\hat{c}}{r}\right) \\
0 & 0 & 0 \\
\frac{\beta_{2}}{2}\left(r+\frac{\hat{c}_{2}}{r}\right) & 0 & 0
\end{array}\right)
$$

The corresponding shear rate for each fluid will be

$$
\bar{\Delta}_{1}=-\bar{\tau}_{2} / \bar{\eta}_{1}=\frac{R_{e}}{\bar{\eta}_{1}}\left(\begin{array}{ccc}
0 & 0 & -\frac{\beta_{1}}{2} \mathrm{r} \\
0 & 0 & 0 \\
-\frac{\beta_{1}}{2} & 0 & 0
\end{array}\right)
$$

and

$$
\begin{aligned}
& 0 \quad 0 \quad-\rho_{i} v_{i}^{2} \frac{\beta_{3}}{2}\left(r+-\frac{\hat{c}_{2}}{r}\right) \\
& \bar{\Delta}_{2}=-\bar{\tau}_{\approx 2} / \bar{\eta}_{2}=\left(\frac{R_{1}}{\bar{v}_{i}}\right) \cdot \frac{1}{\bar{\eta}_{2}}\left(. \begin{array}{ccccc}
& 0 & 0 & 0
\end{array}\right) \\
& -P_{i} v_{i}^{2} \frac{\beta_{2}}{2}\left(r+\frac{\hat{c}_{2}}{r}\right) \quad 0 \\
& 0 \quad 0 \quad \frac{\beta_{2}}{2}\left(r+\frac{\hat{c}_{2}}{r}\right) \\
& =\frac{R_{e}}{\bar{\eta}_{2}}\left(\begin{array}{ccc}
0 & \sim_{c} & 0
\end{array} \quad 0\right. \\
& \rangle
\end{aligned}
$$

The following function groups can be rewritten as

$$
\begin{aligned}
\frac{\beta_{1} R_{e}}{4} & =Q_{1}=\frac{1}{4} \frac{\Delta \overline{\mathrm{p}}_{1}^{R} 1}{\rho_{1} v_{i}^{2}} \cdot \frac{\rho_{1} v_{i}^{R} 1}{\eta} \\
& =\frac{m}{a^{2} k} \cdot \frac{1}{\left[1-\frac{1}{a^{2}}+\frac{2 \hat{c}_{2}}{a^{2}} \cdot \ln a+2\left(\gamma_{k}\right)^{\alpha_{2}-1} \cdot D_{1}^{\frac{\alpha_{2}-1}{\alpha_{1}-1}} \int_{1}^{a}\left(r+\frac{\hat{c}_{2}}{r}\right)^{\alpha_{2}} \cdot d r\right]}
\end{aligned}
$$

where $k=\Delta \bar{p}_{2} / \Delta \bar{p}_{I} \quad$ and $\quad \gamma=\tau_{0.1} / \tau_{02}$

$$
\begin{aligned}
& \frac{\beta_{2} \mathrm{R}}{\mathrm{e}} \\
& 4 \mathrm{~m}=Q_{2}=\frac{1}{4 \mathrm{~m}} \frac{\Delta \overline{\mathrm{p}}_{2} \mathrm{R}_{1}}{\rho_{1} \mathrm{v}_{\mathrm{i}}^{2}} \frac{\rho_{1} \mathrm{v}_{i} \mathrm{R}_{1}}{\eta 01} \\
&=\frac{1}{a^{2}}-\frac{1}{\left[1--\frac{1}{a^{2}}+\frac{2 \hat{c}_{2}}{a^{2}} \cdot \ln a+2\left(\gamma_{k}\right)^{\alpha_{2}-1} \cdot \mathrm{D}_{1} \frac{\alpha_{2}-1}{\alpha_{1}-1} \cdot \int_{1}^{a}\left(\mathrm{r}+\frac{\hat{c}_{2}}{\mathrm{r}}\right)^{\alpha_{2}} \cdot \mathrm{dr}\right]}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{D}_{2} & =\left(\frac{\Delta \overline{\mathrm{p}}_{2} \mathrm{R}}{2} \frac{1}{\tau_{02}}\right)^{\alpha_{2}-1} \\
& =(\gamma \mathrm{k})^{\alpha_{2}-1} \cdot \mathrm{D}_{1}^{\frac{\alpha_{2}-1}{\alpha_{1}-1}}
\end{aligned}
$$

APPENDIX II

The shear rate for fluid 1 can be calculated by

$$
\Delta_{1}=\bar{\Delta}_{1}+\stackrel{\star}{\triangleq}_{\triangleq}=-R_{e} \frac{\stackrel{\tau}{\approx}^{\approx}}{\eta_{1}}
$$

Since

$$
1 / \bar{\eta}_{1}=\left(\frac{1}{2} \mathrm{II}_{{\underset{\sim}{\tau}}_{1}}\right)^{\frac{1}{2}}=\left|\bar{\tau}_{1 \mathrm{r} \mathrm{z}}+\tau_{1 \mathrm{r} \mathrm{t}}^{*}\right|
$$

It should be noted that $\bar{\tau}_{\text {lr z }}$ is greater than zero for $0 \leq r \leq R_{1}$ and $\left|\tau_{1 r z}^{*}\right|$ is negligible compared with $\bar{\tau}_{1 r z}$. We can get

$$
\left|\bar{\tau}_{1 r z}+\tau_{1 r z}^{*}\right|=\bar{\tau}_{1 r z}+\tau_{1 r z}^{*}
$$

Thus

$$
\begin{aligned}
& \diamond_{1}=-R_{e} \frac{\overline{\tau_{1}}}{\eta_{1}} \\
& =-R_{e}\left[1+\left(\frac{\left(\frac{1}{2} I I_{\tau_{1}}\right)^{\frac{1}{2}}}{\tau_{01} / \rho_{1} v_{i}^{2}}\right)^{\alpha_{1}-1}\right] \cdot \tau_{i} \\
& =-R_{e}\left[1+\left(\frac{\bar{\tau}_{1 r z}+\tau_{\underline{1 r z}}}{\tau_{01} / \rho_{1} v_{i}^{2}}\right)^{\alpha_{1}-1}\right] \cdot \frac{\tau_{1}}{1}
\end{aligned}
$$

ie.

$$
\Delta_{1 r r}=-R_{e}\left[1+\left(\frac{\bar{\tau}_{1 r z}+\tau_{1 r z}^{*}}{\tau_{01} / \rho_{1} v_{i}^{2}}\right)^{\alpha_{i}-1}\right] \cdot \tau_{\operatorname{lrr}}^{*}
$$

$$
\begin{aligned}
& =-\frac{\mathrm{R}_{\mathrm{e}}}{\bar{\eta}_{1}} \tau_{r r}^{*} \\
& V_{1 \theta \theta}=-R_{e}\left[1+\left(\frac{\bar{\tau}_{\underline{1 r z}}+\tau_{1 \underline{ }}^{*}}{01}{\hat{v_{i}^{2}}}^{*}\right)^{\alpha_{1}-1}\right] \cdot \tau_{1 \theta \theta}^{*} \\
& =-\frac{\mathrm{R}_{\mathrm{e}}}{\bar{\eta}_{1}} \cdot \tau_{1 \theta \theta}^{*} \\
& \Delta_{l z z}=-R_{e}\left[1+\left(\frac{\bar{\tau}_{1 r z}+\tau_{l r z}^{*}}{\tau_{01} / \rho_{1} v_{i}^{2}}\right)^{\alpha_{1}-1}\right] \tau_{1 z z}^{*} \\
& =-\frac{{ }^{R}}{\overline{\eta_{1}}} \tau_{1 z z} * \\
& \Delta_{l \mathrm{r} \theta}=-\mathrm{R}_{\mathrm{e}}\left[1+\left(\frac{\tau_{\underline{1 r} \underline{ }}+\tau_{\operatorname{lr} \underline{z}}^{*}}{\tau_{0 I} / \rho_{1} \mathrm{v}_{\mathrm{i}}^{2}}\right) \quad\right] \tau_{\operatorname{lr} \theta}^{*} \\
& =-R_{e} \frac{\tau_{1 r}{ }^{*}}{\bar{\eta}_{1}} \\
& \Delta_{1 \theta z}=-R_{e}\left[1+\left(\frac{\bar{\tau}_{1 r z}+\tau_{1 r z}^{*}}{\tau_{01} / \rho_{1} v_{i}^{2}}\right)^{\alpha_{1}-1}\right] \quad \underset{I z}{*} \\
& 1 r z=-R_{e}\left[1+\left(\frac{{\overline{\tau_{1 r z}}}+\tau_{\tau_{1 r z}}^{*}}{\tau_{0 I} / \rho_{1} V_{i}^{2}}\right)^{\alpha_{1}-1}\right]\left(\bar{\tau}_{1 r z}+\tau_{1 r z}^{*}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =-R_{e}\left[\bar{\tau}_{1 r z}+\tau_{1 r z}^{*}+\frac{\tau_{1 r z}^{*}}{\left(\tau_{01} / \rho_{1} v_{i}^{2}\right)^{\alpha_{1}-1}}\left(1+\alpha_{1} \frac{\tau_{1 r z}}{\tau_{1 r z}}\right)\right]
\end{aligned}
$$

Similarity to fluid 2.

Since

$$
\frac{\eta_{02}}{\eta_{2}}=1+\left(\frac{\left(\frac{1}{2} I I \bar{\tau}_{2}\right)^{\frac{1}{2}}}{\tau_{02}}\right)^{\alpha_{2}-1}
$$

ie.

$$
\frac{m}{\eta_{2}}=1+\left(\frac{\left|\bar{\tau}_{2 r z}+\tau_{2 r z}^{*}\right|}{\tau_{02} / \rho_{1} v_{i}^{2}}\right)^{\alpha_{2}-1}
$$

So

$$
\Delta_{2}=-\frac{R_{e}}{m}\left[1+\left(\frac{\bar{\tau}_{2 r z}+\tau_{2 r z}^{*}}{\tau_{02} / \rho_{1} v_{i}^{2}}\right)^{\alpha_{2}-1}\right] \cdot \tau_{\approx}
$$

Thus, the shear rate tensor for fluid 2 were shown as following

$$
\begin{aligned}
& \Delta_{2 r r}^{*}=-\frac{R_{e}}{\overline{\zeta_{2}^{2}}} \tau_{2 r r} * \\
& \Delta *=-\frac{R_{2}}{\bar{\eta}_{2}} \tau{ }_{2 \theta \theta}^{*} \\
& \Delta_{2 z z}^{*}=-\frac{R_{e}}{\bar{\eta}} \tau_{2 z z}^{*} \\
& \Delta_{2 r \theta}^{*}=-\frac{R_{e}}{\bar{\eta}_{2}} \tau_{2 r \theta}^{*} \\
& \Delta_{2 \theta z}^{*}=-\frac{R_{e}}{\bar{\eta}} \cdot \tau_{2 \theta z}^{*} \\
& \Delta_{2 r z}^{*}=-\frac{R e}{m}\left[1+\left(\frac{\bar{\tau}_{2 r z}+\tau_{2 r z}^{*}}{\tau_{02} / \rho_{1} v_{i}^{2}}\right)^{\alpha_{z}-1}\right]\left(\bar{\tau}_{2 r z}+\tau_{2 r z}^{*}\right) \\
& =-\frac{R_{e}}{m}\left[\bar{\tau}_{2 r z}+\frac{\bar{\tau}_{2 r z}^{\alpha_{2}}}{\left(\tau_{02} / \rho_{1} v_{i}^{2}\right)^{\alpha_{2}-1}}+\tau_{2 r z} *\right. \\
& \left.+\alpha_{2}\left(\frac{\bar{\tau}_{2 r z}}{\tau_{02} / \rho_{1} v_{i}^{2}}\right)^{\alpha_{2}-1} \cdot \tau_{2 r z}^{*}\right]
\end{aligned}
$$

APPENDIX III

The governing equation of fluid can be derived from Cauchy's equation by applying Eq (3-34) - (3-39).
For fluid 1 :
r-component

$$
\begin{aligned}
& \left.-\frac{\tau_{1 \theta \theta}^{*}}{r}+\frac{\partial \tau_{1 r z}^{*}}{\partial z}\right]
\end{aligned}
$$

\Longrightarrow

$$
\begin{aligned}
-i \alpha c\left(i G_{1}\right)+\bar{v}_{1 z} i \alpha\left(i G_{I}\right)= & -p_{1}^{\prime}+\frac{i}{R_{e}}\left[\frac{2}{r} \frac{\partial}{\partial r}\left(r \bar{\eta}_{l}^{\prime}{ }_{I}^{\prime}\right)\right. \\
& +\frac{n \bar{\eta}_{1}}{r}\left(H_{1}^{\prime}-\frac{H_{1}}{r}-\frac{n G_{1}}{r}\right) \\
\Rightarrow & \left.-2 \bar{\eta}_{1} \frac{\left(n H_{1}+G_{1}\right)}{r^{2}}+\alpha \cdot \mu_{1}\left(F_{1}^{\prime}-\alpha_{1} G_{1}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
\alpha \cdot\left(\bar{v}_{1 z}-c\right) G_{1}= & p_{1}^{\prime}-\frac{i \cdot \bar{\eta}_{1}}{R_{e}}\left[2 G_{1}^{\prime \prime}+2\left(\frac{r^{\prime} \bar{\eta}_{1}^{\prime}}{\bar{\eta}_{1}}+1\right) \frac{G_{1}^{\prime}}{r}\right. \\
& -\left(\frac{n^{2}}{r^{2}}+\frac{2}{r^{2}}+\alpha^{2}-\frac{\mu_{1}}{\eta_{1}}\right) G_{1}+n\left(\frac{H_{1}^{\prime}}{r}-3-\frac{1}{2}\right) \\
& \left.+\alpha \frac{\mu_{1}}{\eta_{1}} F_{1}^{\prime}\right]
\end{aligned}
$$

θ-component

$$
\begin{aligned}
& \frac{\partial v^{1 \theta}}{\partial t}+\bar{v}_{1 z} \frac{\partial v_{1 \theta}^{*}}{\partial z}=-\frac{1}{r} \frac{\partial p_{1}^{*}}{\partial \theta}-\left[\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \tau_{1 r \theta}^{*}\right)\right. \\
& \left.+\frac{1}{r} \frac{\partial \tau_{1 \theta \theta}^{*}}{\partial \theta}+\frac{\partial \tau_{1} \tau^{*}}{z}\right] \\
& \Rightarrow \\
& -i \alpha c H_{1}+i \alpha \bar{v}_{1 z} H_{1}=-\frac{i n}{r} p_{1}+\frac{i}{R}-\left[\frac { 1 } { r ^ { 2 } } \frac { \partial } { \partial r } \left(r ^ { 2 } \overline { \eta } _ { 1 } \left(r \frac{d}{d r}\left(\frac{H_{1}}{r}\right)\right.\right.\right. \\
& \left.\left.-\frac{n}{r} G_{1}\right)\right)+\frac{2 n \cdot \bar{\eta}_{1}}{r}\left(\frac{n}{r} H_{1}+\frac{G_{1}}{r}\right) \\
& \left.+\alpha \overline{\eta_{1}}\left(\alpha H_{1}+\frac{\mathrm{n}}{\mathrm{r}} \mathrm{~F}_{1}\right)\right] \\
& \Rightarrow \quad \alpha\left(\bar{v}_{l z}-c\right) H_{1}=-\frac{n}{r} p_{1}+\frac{i \cdot \frac{\bar{\eta}_{1}}{R}}{\underline{e}_{e}}\left[H_{1}^{\prime \prime}+\left(\frac{\mathrm{r} \bar{\eta}_{1}^{\prime}}{\bar{\eta}_{1}}+1\right) \frac{\mathrm{H}^{\prime}}{\mathrm{r}}\right. \\
& -\left(\frac{\mathrm{r} \bar{\eta}_{1}^{\prime} / \bar{\eta}_{1}+1+2 \mathrm{n}^{2}}{\mathrm{r}^{2}}+\alpha^{2}\right) \mathrm{H}_{1}-\mathrm{n}\left(\frac{\mathrm{G}^{\prime}}{\mathrm{r}}\right. \\
& \left.+\left(\frac{\mathrm{r} \cdot \bar{\eta}_{1}^{\prime}}{\bar{\eta}_{1}}+3\right) \frac{\mathrm{G}}{\mathrm{\eta}^{\prime}}\right)-\alpha \mathrm{n} \frac{\mathrm{~F}}{\mathrm{r}} \quad \mathrm{l}
\end{aligned}
$$

z-component

$$
\begin{aligned}
& \left.+\frac{1}{r} \frac{\partial \tau_{1 \theta z}^{*}}{\partial \theta}+\frac{\partial \tau_{1 z} z_{z}^{*}}{\partial}\right] \\
& \Rightarrow \quad-i \alpha c F_{1}+i \bar{v}_{1 \dot{z}}^{\prime} \dot{G}_{1}+i \alpha \bar{v}_{1 z} \dot{F}_{1}=-i \alpha p_{1}+\frac{I}{R_{e}}\left[\mu_{1}\left(\frac{\mathrm{~F}_{1}^{\prime}}{\mathrm{r}}-\alpha \frac{G_{1}}{\mathrm{r}}\right)\right. \\
& +\left(\mu_{1}\left(F_{I}^{\prime}-\alpha G_{1}\right)\right)^{\prime} \\
& +n \bar{\eta}_{1}\left(\frac{\alpha{ }^{H} 1}{r^{1}}+\frac{n}{r^{2}} F_{1}\right) \\
& \left.+2 \cdot \bar{\eta}_{1} \cdot \alpha^{2} \cdot \mathrm{~F}_{1} \quad\right] \\
& \Rightarrow \\
& \alpha\left(\bar{v}_{I z}-c\right) F_{I}+{\overline{v_{I z}}}_{I_{1}} G_{1}=-\alpha p_{1}-\frac{i \cdot \bar{\eta}_{1}}{R_{e}}\left[\frac{\mu_{1}}{\bar{\eta}_{1}} F_{1},\right. \\
& +\frac{\mu_{1}}{\bar{r}_{1}}\left(1+\frac{\mathrm{r} \mu_{1}^{\prime}}{\mu_{1}}\right) \frac{\mathrm{F}_{1}^{\prime}}{\mathrm{r}} \\
& -\left(\frac{\mathrm{n}^{2}}{\mathrm{r}^{2}}+2 \alpha^{2}\right) \mathrm{F}_{1}-\frac{\mu_{1}}{\bar{\eta}_{1}} \alpha\left(\mathrm{G}_{1}{ }^{\prime}\right. \\
& \left.+\left(1+\frac{\mathrm{r} \mu_{1}^{\prime}}{\mu_{1}}\right) \frac{\mathrm{G}}{\mathrm{r}}-\frac{\mathrm{n} \alpha}{\mathrm{r}} \mathrm{H}_{1}\right]
\end{aligned}
$$

Continuity equation

$$
\begin{aligned}
& \frac{1}{r} \frac{\partial}{\partial r}\left(\mathrm{rv}_{1 r}^{*}\right)+\frac{1}{r} \frac{\partial^{v} 1 \theta}{\partial \theta}+\frac{\partial^{v_{1}} \frac{1 z}{\partial} \frac{*}{z}=0}{\Rightarrow} \quad \\
& \Rightarrow \quad G_{1}^{\prime}+\frac{G_{1}}{r}+\frac{n}{r} H_{1}+\alpha F_{1}=0
\end{aligned}
$$

The governing equations for fluid 2 are similar to those for fluid lexcept the density ratio, b, and characteristic viscosity ratio, $m=\eta_{02} / \eta_{01}$. We shall omit the derivation procedures for them.
1.0000
$2+0000$
3.0000
4.0000
5.0000
6.0000
7.0000
8.0000
9.0000
10.0000
11.0000
12.0000
13.0000
14.0000
15.0000
16.0000
17.0000
18.0000
$19+0000$
20.0000
21.0000
22.0000
23.0000
24.0000
25.0000
26.0000

27．0000
28.0000
29.0000
30.0000
31.0000
$32+0000$
33.0000
34.0000
35.0000
36.0000
37.0000
38.0000
39.0000
40.0000
41.0000
42.0000
43.0000
44.0000
$45+0000$
46.0000
47.0000
48.0000
49.0000
50.0000
51.0000
52.0000
53.0000
54.0000
55.0000
56.0000
57.0000
58.0000
59.0000
60.0000
61.0000
62.0000
63.0000

SUBROUTINE SSS（S3，S4，AU，A，CO，E，E1，E2，E3，Q2，FF2，FM， 112．E4（
$\mathrm{M}=\mathrm{Fi} \mathrm{H}$
WO＝6＊Q2＊FF2＊M2／M
WI＝A＊＊（2＋＊FF2＋4＊）／（2，＊FF2＋4．）＋FF2＊H2＊A＊＊
$1(3+* F i F 2+3+) /(3+* F F 2+3+)$
W2＝A＊＊（2＋＊FF2＋2＋）／（2＋＊FF2＋2＋）＋FF2＊L2＊A＊＊
$1(3+* \mathrm{FF} 2+1) /.(3+* \mathrm{FF} 2+1$＋）
$\mathrm{W} 3=\mathrm{A} * *(\mathrm{FF} 2+5+) /(\mathrm{FF} 2+5)+.\mathrm{FFF} 2$＊M2＊A＊＊（2，＊FF2 $1+4$＋）／（2＊＊FF2＋4＋）
$W 4=A * *(F F 2+3+) * A L O G(A) /(F F 2+3+)-2+* A * *(F F 2+3+) /()$
 $1(2+* F F 2+2) /,(2+* F F 2+2+)-A * *(2, * F F 2+2+) /(F F 2+3+))$ 1／（2＊＊FF2＋2＋）

$1 * F F 2+2$ ）／（2，＊FF2＋2＋）
$W 6=A * *(F F 2+1+) /(F F 2+1+)+R F 2 * M 2 * A * *(2+* F F 2$
1）$/(2, * F F 2)$
$W 7=A * A * A L O G(A) / 4+-A * A / 4++F F 2 * D 2 *(A * *(F F 2+1+) * A L O G$

$E 23=W 0 * E 1 / \mathrm{FF} 2 * W 3 /(2+*(\mathrm{FF} 2+1+) *(\mathrm{FF} 2+5+))$
$\mathrm{E} 24=2$＊＊WO＊E2／FF2＊W4／（（FF2＋1＋）＊（FiF2＋3．））
$\mathrm{E} 25=2$＊＊WO＊E3／FF2＊W5／（（FF2＋1＋）＊（FF2＋3＋））
$\mathrm{E} 26=\mathrm{WO} * \mathrm{E} 1 *(\mathrm{CO} / \mathrm{Q} 2-\mathrm{A} * \mathrm{~A}+\mathrm{E} 2 / \mathrm{E} 1) * W 5 /(2+*(\mathrm{FF} 2+1+) *(\mathrm{FF} 2+3+))$
E28＝－WO＊上2＊E1＊W1／（2＋＊（FF2＋1，）＊（2＊＊FF2＋4＋））
$E 30=W 0 * \mathrm{H} 2 * \mathrm{E} 2 * W 2 /(2+*(\mathrm{FF} 2+1+) *(2+* \mathrm{FF} 2+2+))$
$\mathrm{E} 31=\mathrm{WO} * \mathrm{~B} 2 *(\mathrm{CO} / \mathrm{Q} 2-\mathrm{A} * \mathrm{~A}) * W 6 /((\mathrm{FF} 2-1+) *(\mathrm{FF} 2+1+))$
E32＝W0＊B2＊W5／（2＊＊（FF2－1＊）＊（FF2＋3，））

E34＝WO＊E1＊W3／（2＋＊（FF2＋3＋）＊（FF2＋5＋））
E35＝WO＊I2＊E1＊W1／（2，＊（FF2＋3＋）＊（2＊＊FF2＋4＋））
E3 $6=W 0 * B 2 *(A * A-C O / Q 2) * W 7 /(F F 2 * I 2)$
$E 37=W 0 * \mathrm{~B} 2 / \mathrm{RF} 2 * W 4 /(\mathrm{FF} 2+3+$ ）
E38＝WO＊E1／FF2＊W3／（8．＊（FF2＋5．））
E39＝WO＊（2＊＊ 3 3－B2）／FF2＊W5／（2＊（FF2＋3＊））
E40 $=-2$－＊WO＊B4／FF2＊W $6 /(\mathrm{FF} 2+1+)$
E41＝－E＊Q2＊E1＊（A＊＊ $6+$ ）／6．FFF2＊以2＊A＊＊（FF2＋5＋）／（FF2
$1+5+)) /\left(48+\right.$＊i $\left._{1}\right)$
$E 42=\mathrm{E} * \mathrm{Q} 2 * \mathrm{E} 1 *(\mathrm{~A} * \mathrm{~A}-\mathrm{CO} / \mathrm{Q} 2-2+* \mathrm{~B} 2 / \mathrm{E} 1) *(\mathrm{~A} * *(4 *) / 4,+\mathrm{FF} 2$
$1 *[2 * A * *(\mathrm{FiF} 2+3+) /(\mathrm{FF} 2+3+)) /(16+* \mathrm{H})$
$53=E 21+E 22+E 23+E 24+E 25+E 26+E 28+E 3 O+E 31+E 32+E 3 Z+E 34$
$1+E 35+E 36+E 37+E 38+E 39+E 40+E 41+E 42$

1＊以2＊A＊＊（3．＊FF2＋4．）／（（3．＊FF2＋3．）＊（3＋＊FF2＋5．））
WW2 $\left.=-\mathrm{A} * *\left(2+* \mathrm{FFF}^{2}+3+\right) /(2+* \mathrm{FF} 2+2+) *(2+* \mathrm{FF} 2+4+)\right)-\mathrm{FF} 2$
1＊口2＊A＊＊（3．＊FF2＋2．）／（（3．＊FF2＋1，）＊（3．＊FF2＋3．））
WW3 $=-\mathrm{A} * *(\mathrm{FF} 2+6+) /($（FF2＋5．）＊（FF2＋7＋）$)-\mathrm{FF} 2 * 12 * A * *($
12．＊FF2＋5．）／（（2，＊FF2＋4．）＊（2，＊FF2＋6．））

$1 /($（FF2＋3＋）＊（FFF2＋5，）＊＊（2＋））
$\mathrm{Z2}=\mathrm{A} * *(2+* \mathrm{FF} 2+3+) * \mathrm{ALOG}(\mathrm{A}) /(2, * \mathrm{FF} 2+4+)-\mathrm{A} * *(2, * \mathrm{FF} 2$
$1+3.) /((2, * F F 2+4) * *,(2))-,A * *(2+* F F 2+4) /,(2, * F F 2+2 *$
 WWA $=Z 1-F F 2 *[2 * Z 2 /(2+* F F 2+2+)$
 12．＊FF2＋3．）／（（2＊＊F2＋2＋）＊（2＋＊FF2＋2＋）＊（2＊＊FF2＋4＊））
 $1+1+) /(2+$＊（2，＊FF2＋2＋））
$Z 3=A * *(F F 2+2) * A L O G,(A) /(F F 2+3)-,A * *(F F 2+2) /,((F F 2$

66.0000
67.0000 68.0000 69.0000 70.0000 71.0000 72.0000 73.0000 74.0000 75.0000 76.0000 77.0000 78.0000 79.0000 80.0000 81.0000 82.0000 83.0000 84.0000 85.0000
86.0000
87.0000 88.0000 89.0000 90.0000 91.0000 92.0000 93.0000 94.0000 95.0000 96.0000 97.0000 98.0000 99.0000 100.0000
101.0000 102.0000 103.0000 104.0000 105.0000
106.0000 107.0000
108.0000
109.0000
110.0000
111.0000
112.0000
113.0000
114.0000
115.0000
116.0000
117.0000
118.0000
119.0000
120.0000

121． 0000
122.0000
123.0000
124.0000
125.0000
126.0000
127.0000
128.0000
129.0000
$\left.1 *\left(\mathrm{FF}_{2}+1,\right)\right)$
S4＝E21＊WW1／W1＋E22＊WW2／W2＋E23＊WW3／W3＋E24＊WW4／W4＋E25
1＊WW5／W5＋E26＊WW5／WS＋E28＊WW1／W1＋E30＊WH2／W2
$54=54+E 31 * W W 6 / W 6+E 32 * W W 5 / W 5+E 33 * W W 2 / W 2+E 34 * W W 3 / W 3$
$1+$ E $35 * W W 1 / W 1+E 36 * W W 7 / W 7+E 37 * W W 4 / W 4$
$54=54+E 38 * W W 3 / W 3+E 39 * W W 5 / W 5+E 40$＊WW $6 / W 6$

$1 /((\mathrm{FF} 2+5$.$) ＊（ \mathrm{FF} 2+7).) /(48+* \mathrm{M})$
$\mathrm{E} 44=-\mathrm{B} * \mathrm{Q}^{2} * \mathrm{~B} 1 *(\mathrm{~A} * \mathrm{~A}-\mathrm{CO} / \mathrm{Q} 2-2, * \mathrm{~B} 2 / \mathrm{B} 1) *(\mathrm{~A} * *(5) / 24+.\mathrm{FF} 2$
$1 * \mathrm{O} 2 * A * *(\mathrm{FF} 2+4) /.((\mathrm{FF} 2+3+) *(\mathrm{FF} 2+5+)) /(16 . * \mathrm{M})$
$54=54+E 43+E 44$
$\mathrm{A} U=\mathrm{E} 21 / \mathrm{W} 1+E 22 / \mathrm{W} 2+E 23 / W 3+E 24 / W 4 *(-1+/(\mathrm{EF} 2+3+))+E 25$
1／W5＋E26／W5＋E28／W1＋E30／W2＋E31／W6＋E32／W5＋E33／W2＋E34／

1E38／W3＋E $39 / \mathrm{WF}+\mathrm{E} 40 / \mathrm{W} 6+\mathrm{E} * \mathrm{O2} 2 \mathrm{~B} 1 *(-1 . / 12+$（A＊A－CO／Q2
1－2，＊E2／E1）／4．）／（4，＊M）
RETURN
END
SUBROUTINE GAUSS（X，Y，N，EFS）
IIMENSION $X(5,5), Y(5)$
no $1 \quad I=1, N$
$\mathfrak{K}=\mathrm{I}$
IF（I－N）21，7，21
IF（ABS（X（I，I））－EFS）6，6，7
バードけ1
$Y(I)=Y(I)+Y(K)$
no $23 \quad J=1, N$
$X(I, J)=X(I, J)+X(K, J)$
GO TO 21
MIV $=X(I, I)$
$Y(I)=Y(I) / \mathrm{IIIV}$
po $9 \mathrm{~J}=1, \mathrm{~N}$
$X(I, J)=X(I, J) / \mathrm{LIV}$
$101 \mathrm{M}=\mathrm{I}, \mathrm{N}$
DELTM $=X(M, I)$
TF（ABS（DELT）－EFS）1．1．16
IF（M－I） $10,1,10$
$Y(M)=Y(M)-Y(I) *$ LIELT
no $11 \mathrm{~J}=1 \mathrm{~N}$
$X(M, J)=X(M, J)-X(I, J) *$ IIELT
CONTINUE：
RETURN
ENI
C EIGEN UALUE，CI，FOR AXISYMMETRTC CASE BY USING
C ELLIS MODEL
C
C
RIMENSION $X(5,5)$ Y $Y(5)$
FEAL MiK
FFI＝：
$\mathrm{FFF} 2=4$ ．
$\mathrm{GR}=0.1$
$M=100$ ．
$\square 1=10$ ．
WRITE（2，301）RF1，FFF2，GFyM，DI
301 FORMAT（／／＇FF1＝＇F5．1＇RF2＝＇F5．1＇GR＝＇F5．1

$k=1$ ．
FF $12=($ FF2 -1,$) /($ FFI－1．$)$
$\mathrm{F} 1=0.0079$
$\mathrm{R} 2=0.079$
$\mathrm{FLI}=(\mathrm{R} 2-\mathrm{R} 1) / 9$ 。
410 A $=\mathrm{FL} 2 \mathrm{Fi}$
$B=1$ ．
$132+0000$
133.0000 134.0000 135.0000
136.0000 137.0000
138.0000
139.0000
$140+0000$
141.0000
142.0000
143.0000
144.0000
145.0000
146.0000
147.0000
148.0000
149.0000
150.0000
151.0000
$152+0000$
153.0000
154.0000
155.0000
156.0000
157.0000
158.0000
159.0000
160.0000
161.0000
$162+0000$
163.0000
164.0000
165.0000
166.0000
167.0000
168.0000
169.0000
170.0000
171.0000
172.0000
173.0000
174.0000
$175+0000$
176.0000
177.0000
178.0000
179.0000
180.0000
181.0000
182.0000
183.0000
184.0000
185.0000
186.0000
187.0000
188.0000
189.0000
1.90 .0000
191.0000
192.0000
193.0000
194.0000
195.0000
$\left.1 * 11 * *(E F 12) * A * *\left(F F_{2}^{2+1,}\right) /(\mathrm{FF} 2+1+)\right)$
Q2=01*K゙/M
U1U2=2+*(Q2*(1+ CL 2$)-\mathrm{Q} 1-\mathrm{Q} 1 * \mathrm{~L} 1)$
$X(1,1)=1+/ 16+$ FFF1*M1/(2,*(FiF1+1,)*(FiF1+3+))
$X(1,2)=\cdots(A * *(4+)+1+) / 16++A * A / 8+-F F 2 *[2 * A * *(F F 2+3) /,(4+*$

$1+1+$)*(FF2+3+))

$1 * A * *(F F 2+1+) /(2+* F F 2+2+)-F F 2 * \mathrm{H} 2 /(F F 2 * F F 2-1+)+A L O C(A) / 2 *$ E1=-2+*(Q1-M*Q2)/V1U2
$X(2,1)=E 1 *(1, / 4+\operatorname{FF} 1 * 11 /(2+*(F F 1+1+)))-1+/ 2+$
$X(2,2)=M / 2+E 1 *((A * A-1+) / 4++F F 2 * I 2 *(A * *(F F 2+1+)-1+) /$
1(2.*(FiF2+1*)))
$X(2,3)=M+E 1 *(A L O G(A)+R F 2 * H 2 *(A * *(F F 2-1)-1+) /,(F F 2-1)$,
$X(3,1)=1$.
$X(3,2)=-M$
$x(3,3)=0$.
$A 2=0$.
A $3=1$.
$Y(1)=-A B / 2$.
$Y(2)=-E I * A B$
$Y(3)=0$.
$E F S=0.000001$
$N J=3$
CALIL GALISS (X,Y,NJ,EFS)
AI $=Y(1)$
EI $=\mathrm{Y}(2)$
$B 2=Y(3)$

$\mathrm{BA}=-\mathrm{BI}$ * (A** (4.)/16+FF2*M2*A** (FF2+3+)/(4**(FF2+3.)))

F1F2=A1* (1./4+ +FF1*M1/(2** (FF1+1,))) +A3+B1* ((A*A
 1 (ALDG (A) +FF $2 *$ H2* (A** (FF2-1+)-1+)/(FF2-1+))
$\mathrm{CO}=1+\mathrm{CV} 1 \mathrm{~V} 2 *(-\mathrm{A} 1 *(1+/ 16+\mathrm{FF} 1 * \mathrm{Fi} /(2+*(\mathrm{FF} 1+1+) *(\mathrm{FF} 1$
$1+3+$)) $-A 3 / 2+$)/F1F2

SI2=Q1*[1*A1* (FF1/(FF1+1,)*1,/(FF1+3.)-3*/8.)
ST3=Q1*11*A3* (FF1-1.) /(FF1+1+) +A1*FF1*M1*(Q1* (1.
$1+2 * *[1 /(F F 1+1+)-\mathrm{CO}) /(2+*(\mathrm{FF} 1+1+))$
SI4 $=01 * A 1 / 8$.
$5 \mathrm{~S}=\mathrm{A} 1 / 4+*(Q 1 *(1+2+* \mathrm{H} 1 /(\mathrm{FF} 1+1))-\mathrm{CO}$,
V1CO $=1,-\mathrm{CO}$
$E 4=5 I 1 *(1+/((2+* F F 1+4+)$ * $(2+* F F 1+6+))+F F 1 * M 1 /((3+$
$1 * F F 1+3+) *(3+* F F 1+5+)) /(2+* F F 1+4 *)$

1) * (2, *FFI+4,)) / (FFI. $+3+$)

$S 2=E 4-E E-E 6+E 7-E 8$
$E 9=5 \mathrm{I} 1 *(1+/(2+* F F 1+4+)+\mathrm{FF} 1 * 11 /(3+* F F 1+3+)) /(2+* F F 1$ 1+4.)
$E 10=S I 2 *(1+/(\mathrm{FF} 1+5+)+\mathrm{FF} 1 * \mathrm{~F} 1 /(2+* \mathrm{FF} 1+4+)) /(\mathrm{FF} 1+5+)$
$E 11=5 I 3 *(1+/(\mathrm{FF} 1+3+)+\mathrm{FF} 1 * \mathrm{H} 1 /(2+* \mathrm{FF} 1+2+)) /(\mathrm{FF} 1+3+)$
$E 12=514 *(1+/ 6+\operatorname{FF} 1 *[1 /(F F 1+5+)) / 6+$
E13=SI5* (1. $/ 4+$ +FFI *II/(FF1+3+))/4+
S1=-E9+E1O+E11-E12+E13
$\mathrm{A} 3 \mathrm{~S}=0$.
$X(1,1)=0$.

$X(1,3)=A L O G(A)+F F 2 * H 2 * A * *(F F 2-1+) /(F F 2-1+)$
198.0000
199.0000 200.0000
201.0000
202.0000 203.0000 204.0000 205.0000 206.0000 207.0000 $208+0000$ 209.0000 210.0000 211.0000 212.0000 213.0000 $214+0000$ 215.0000 216.0000
217.0000
218.0000
219.0000
220.0000
221.0000
222.0000
223.0000
224.0000
225.0000
226.0000
227.0000
228.0000
229.0000
230.0000
231.0000
232.0000
233.0000
234.0000
235.0000
236.0000
237.0000
238.0000
239.0000
240.0000
241.0000
242.0000
243.0000
244.0000
245.0000
246.0000
247.0000
248.0000
249.0000
250.0000
251.0000
252.0000
253.0000
254.0000
255.0000
256.0000
257.0000
$x(2,1)=0$.

1* ($\mathrm{FF} 2+3$.$))$
$X(2,3)=A * A L O G(A) / 2,-A / 4+F F 2 * \operatorname{L} 2 * A * *(R F 2) /((R F 2$
1.1, $) *($ FF2+1.))
$X(2,4)=A / 2$.
$x(2,5)=-1, / A$
$\mathrm{X}(3,1)=1, / 16+\mathrm{FF} 1 * \mathrm{M} 1 /(2, *(\mathrm{FF} 1+1+) *(\mathrm{RF} 1+3)$,
$\mathrm{X}(3,2)=-1+16,-\mathrm{FF} 2 * \mathrm{D} 2 /(2+*(\mathrm{FF} 2+1+) *(\mathrm{FF} 2+3)$.
$X(3,3)=1, / 4,-\mathrm{FF} 2 * \mathrm{H} 2 /((\mathrm{FF} 2-1) *,(\mathrm{FF} 2+1+))$
$x(3,4)=-1,12$.
$x(3,5)=1$.
$x(4,1)=1$.
$X(4,2)=-m$
$X(4,3)=0$.
$x(4,4)=0$.
$x(4,5)=0$.
$E E=A 1 / 2+A_{2}-M *(B 1 / 2+B 2)$
$X(5,1)=(E E *(1, / 4,+F F 1 * D 1 /(2+* F F 1+2)),) / F 1 F 2-1+/ 2$.
$1+(1+/ 16,+\mathrm{FF} 1 * \mathrm{H} 1 /(2, *(\mathrm{FF} 1+1+) *(\mathrm{FF} 1+3+))$) (-EEEVIV2
1/(F1F2*U1V2))

$X(5,3)=\mathrm{M}-\mathrm{EE} * \mathrm{FF} 2 * \mathrm{D} 2 /(\mathrm{F} 1 \mathrm{~F} 2 *(\mathrm{FF} 2-1, ~))$
$X(5,4)=-E E / F 1 F 2$
$x(5,5)=0$.
FM=M
CALL SSS(S3,SA, AU, A, CO, B, B1, E2, $\mathrm{B} 3, \mathrm{Q} 2, \mathrm{FF} 2, \mathrm{FM}, \mathrm{D} 2, \mathrm{B4}$)
$53 A=53$
$54 A=54$
$A A=1$.

$531=53$
$541=54$
$Y(1)=-53 \mathrm{~A}$
$Y(2)=-54 \mathrm{~A}$
$Y(3)=52-541$
$Y(4)=A 3 *(Q 1 *(1++2+* \operatorname{H1/(RF1+1.)})-\mathrm{CO})-\mathrm{B} * Q 2 *(\mathrm{~EB} *(\mathrm{~A} * \mathrm{~A}$ 1-CO/Q2-2.*B4))
$Y(5)=E E *(S 31-51-U 1 U 2 * S 2 / V 1 C 0) / F 1 F 2-M * A V-S I 1 /(2$.
 $N 2=5$
CALL GAUSS (X,Y,N2,EFS)
$A 15=Y(1)$
$\mathrm{B} 15=\mathrm{Y}(2)$
$\mathrm{ERS}=\mathrm{Y}(3)$
$\mathrm{B} 3 \mathrm{~S}=\mathrm{Y}(4)$
$\mathrm{E} 4 \mathrm{~S}=\mathrm{Y}(5)$
$\mathrm{CC}=\mathrm{V} 1 \mathrm{CO} *(\mathrm{~S} 1+\mathrm{A} 1 \mathrm{~S} *(1, / 4+\mathrm{FF} 1 * \mathrm{H} 1 /(2+* \mathrm{FF} 1+2+))-\mathrm{S} 31-\mathrm{B} 1 \mathrm{~S}$

$\mathrm{C} 1=\left(\mathrm{CC}+\mathrm{V}_{1} \mathrm{~V} 2 *(\mathrm{~S} 2-\mathrm{A} 15 *(1+16+\mathrm{FF} 1 * \mathrm{Hi} /(2+*(\mathrm{RF} 1+1\right.$ 。) * $1(\mathrm{FF} 1+3+)))) / \mathrm{F} 1 \mathrm{~F} 2$
$\mathrm{BB}=\mathrm{F} \mathrm{I} / \mathrm{R} \mathrm{C}$
WFITE(2,4000) M, BE,CI
FORMAT(, M='F5.1'
Fi/R2=/F5.1'
C1/RE:…
1F30.6)
IF (BB. GE.0.9) GO TO 5000
$\mathrm{F} 1=\mathrm{F} 1+\mathrm{FI}$
60 TO 410
5000 CALL EXIT
ENA

REFERENCES

[1]. C.S.Yih,"Stability of Parallel Laminar Flow with a Free Surface", Proceedings of the Second U.S. National Congress of Applied Mechanics (American Society of Mechanical Engineerings, New York, 1955). PP.623-628
[2]. A.A.Khan, C.D.Han,"A Study on the Interfacial Instability in the Stratified Flow of Two Viscosity Fluids Through a Rectangular Duct", Trans. of the Society of Rheology, PP.101-129, 1977
[3]. A.A.Khan, C.D.Han,"On the Interfacial Deformation in the Stratified Two-Phase Flow of Viscoelastic Fluids", Trans. of the Society of Rheology, PP.595621, 1976
[4]. W.J.Schrenk, N.L.Bradley,"Interfacial Flow Instability in Multilayer Coextrusion", Polymer Engr. and Sci., June, 1978, Vol.18, No. 8.
[5]. C.H.Li,"Stability of Two Superposed Elasticoviscous Liquids in Plane Coeutte Flow", Mech. of Fluids, Vol.12, No.3, Mar.,1969
[6]. N.D.Waters,"The Stability of Two Stratified Power Law Liquids in Coette Flow", J. of Non-Newtonian Fluid Mech. 12, PP.85-94, 1983
[7]. C.E.Hicox,"Instability Due to Viscosity and Density Stratification in Axisymmetric Pipe Flow", Phy. of Fluids, 14, PP.251-262, 1971

[8]. C.S.Yih,"Stability of Liquid Flwo Down an Inclined
Plane", Phy. of Fluids, Vol.6, No.3, PP.321-334, 1963
[9]. D.L.Harris, W.H.Reid,"On the Stability of Viscous Flow Between Rotating Cylinders", J. Fluid Mech.,Vol.20, PP.95-101, 1964
[10]. A.P. Hooper, W.G.Boyd, "Shear-Flow Instability at The Interface Between Two Viscous Fluids", J. Fluid Mech., Vol.128, PP.507-528, 1982
[11]. G.S.Strumolo,"Perturbed Bifurcation \#heory for Poiseuille Annular Flow", J. fluid Mech., Vol.130, PP.59-72, 1983
[12]. J.L.White, B.L.Lee,"Theory of Interface Distortion in Stratified Two-Phase Flow", Trans. of the Soci. of Rheology, PP.457-470, 1975
[13]. G.K.Batchelor and A.E.Gill, J. Fluid Mech. 14, 529, 1962
[14]. A.E.Everage, Jr."Theory of Stratified Bicomponent Flow of Polymer Melts", Trans. of the Soci. of Rheology, PP.629-646, 1973
[15]. C.K.Wang, J.J.Seaborg,"Instability of Multi-Layered Liquid Films", Phys. Fluids 2l(10), Oct.,1978
[16]. R.B.Bird,"Dynamics of Polymeric Liquids, Vol.l", PP. 207, John Wiley \& Son, Inc., 1977

[^0]: ** Refer to Appendix III for detail

