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ABSTRACT

Title of Dissertation 

Mixing Effect on Chemical Reaction in Liquid Phase

Ming-Teh Hsu 

Doctor of Engineering Science, 1984

Dissertation directed by:

Dr. Ching-Rong Huang 

Professor and Assistant Chairman 

Department of Chemical Engineering & Chemistry

Mathematical models for the mixing phenomenon are proposed in this 

study. First model deals Newtonian and non-Newtonian fluid without chemical 

reaction. The new terminology " degree of mixing " is define in this 

model for the time-dependency of mixing toward its completeness. The 

velocity profile and boundary conditions are given, then the degree of 

mixing can be calculated by the mathematical model. The degree of mixing 

is influenced by fluid motion and it is function of time.

Second model deals with first-order reaction effected by mixing. A 

mean fractional conversion is defined to investigate the rate of chemical 

reaction. Results from numerical method indicate the rate of chemical 

reaction is greatly influenced by mixing , especially when the reaction 

rate is fast.



Finally, a mathematical model based on microscopic collision theory 

is developed for the estimation of chemical reaction rate constant in 

this study.
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CHAPTER I 
INTRODUCTION

The mixing phenomenon is one important factor in considering the
characterestics of chemical process equipment, and it covers a variety

(1)of coupled physical phenomena described by Ottino' fluid motion, 
diffusion, and chemical reaction. Mixing without reaction is important 
in the process of blending. Mixing with reaction is an essential part 
of reaction engineering analysis.

However, the mixing of fluids has lacked a sound theoretical 
description, due in large measure to the coupling of processes and the 
complex geometry and time dependency of the mixing in moving fluids. 
Understanding and modeling of the physical aspect of mixing has lagged 
far behind practical applications. Theories, models and experiments 
are needed to tie together to supply a quntitative understanding.

There are three different analytical approaches in investigating 
the mixing phenomenon: statistical model, residence time distribution 
theory, surface-extension model. However, only few have attempted to 
apply the concept with theoretical background, fluid mechanics and 
mass transfer, in the mixing phenomenon.

General limitations of the statistical model, well exemplified in 
( 21Murthy's book' consist of 1. simplified flow fields in order to 

have solvable numerical problems. 2. dimensionality to reduce complexity. 
The residence time distribution, well exemplified in Levenspiel's
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b o o k ^ >  uses simplified physical models and schemes of combinations
of these models. This theory did not even include fluid mechanics in

(41their models. The surface-extension model developed by Batchelor' ' 

only can be used in a simple geometry of the mixing equipment, due to 
complexity of the flow field.

The mixing is caused by the phenomenon of flow and diffusion When 
the mixing phenomenon is studied, three difficulties occur immediately.
The first problem which needs to be solved is to develop a quantitative 
and applicable definition for the state of mixing. The definition 
will have practical uses, and will relate to the concentration distribution 
of the mixing tank. The second problem is to determine the velocity 
profile for different types of impellers in different shapes of mixing 
tanks. Finally, the concentration distribution in the mixing tank 
needs to be determined.

The transient response method, for its simplicity, has been used
as a convenient technique to find the degree of mixing in a vessel by 

(5)Danckwerts' '. However, the manner of representing the degree of 
mixing becomes a serious problem of utmost importance in this type of 
investigation. B o u r n e ^  has made a general review of the existing 
models of the degree of mixing. He comments that"the topic of degree 
of mixing began to be divorced from reality due to lack of a physical 
(e.g. fluid mechanical) basis'.' Many studies have been made of this 
problem. However, up to now, no clear definition of the degree of 
mixing has been established.
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Mixing operations are influenced by the flow rates, velocity, and 

flow patterns of the fluid within an agitated vessel. There are three 
general types of impellers used in the mixing operations: The disk 
turbine, the pitched blade turbine, and the propeller. Different 
types of flow patterns were created by different types of impellers 
used in agitation. Nagata's b o o k ^  discussed the experimental measurement 
of the liquid velocity in mixing.

Desouza and P i k e ( 8 )  developed a two-dimensional model to calculate 
the velocity profile in a baffled tank with turbine impeller. However, 
this model described the flow in this region only qualitatively. Many 
researchers have made the same effort, but no satisfactory model has 
been found for the calculation of the velocity profile in a mixing 
v essel.

The basic relationship among the variables affecting uniformity 
of composition and rates of interfacial mass transfer are transient, 
partial-differential, material balance equations. When chemical changes 
are involved, reaction rate terms are included in the mass conservation 
equations for each molecular species involved. Similar energy balance 
equations provide the basic relationships among variables which influence 
heat transfer. Variables affecting fluid stress and fluid velocities 
are related by analogous equations for the conservation of momentum of 
fluids.



Detailed presentations of these basic equations in cyclindrical 
coordinates by Bird et al.(g ) are as follows:

4
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5
where vr, v e, vz are velocities in r,e, z direction, T is temperature,
C/\ is concentration, and R/\ is chemical reaction rate.

Because these partial differential equations are difficult to 
solve, the simple and practical approach will be developed in this 
study to explain the mixing phenomenon. The simple geometry of mixing 
equipment,mixing rolls, is presented for studying this subject.

There are three objectives of this study. First, to investigate 
the degree of mixing by solving the partial differential equation of 
concentration coordinate involving space and time, then define a more 
generally applicable degree of mixing which is related to the concentration 
profile in the mixing process. It is assumed that the chemical reaction 
does not occur in this part of study in order to simplify the mixing 
operation.

The second objective of this study is to investigate the rate of 
chemical reaction at different rotating speeds in the mixer, then 
define a new equation for mean fractional conversion which is related 
to the local concentration in the mixer. A first order reaction is 
assumed in this study for simplicity.

The last objective is to improve a microscopic model to predict 
the chemical reaction rate constant in the liquid phase without mixing. 
K a p r a l ^ ^  states that for short distance and time, the Smoluchowski 
type equations cannot be applied with confidence. A model involving 
collision rate, steric factor, and the activitation energy of chemical 
reaction will be developed to solve this problem.



CHAPTER II 
DEGREE OF MIXING

The basic concept for the representation of the state of mixing 
is most important for studying the mixing phenomenon. However, there 
is no easy way to define the quantity of the state of mixing, which is 
called the degree of mixing. Most of scholars did not use a realistic 
definition in their research. A realistic model for the degree of 
mixing is developed in this study.

In most existing definitions of the degree of mixing, methods
have been used to compare the variation of concentration distribution
of the discernible solute in the sample with that of the extreme
state, that is the final mixing state, or the complete separate state 

(13)of the two' '. But these traditional methods start to show their 
inadequacy when they are applied to practical problems, so a new definition 
of the degree of mixing is required from a practical point of view.

Considering that most factors relating to the mixing mechanism 
can be understood in term of concentration variance, it would be advisable 
to take up the mixing phenomenon from the standpoint of concentration 
variance. It is the purpose of this chapter to define a more generally 
applicable degree of mixing by making use of the idea of concentration 
variance.



A. Basic Concepts

When the concentration C at an arbitrary point in a liquid is 
equal to the average concentration C, the state of mixing is called 
homogenous. In order to represent the degree of mixing in a non-uniform 
state, a mathematical expression could be used to show the state of 
mixing.

Considering that a liquid in a cylindrical tank is stirred, at an 
arbitrary time t the concentration C is a function of r,e,z, t as follows

where r, 9 and z, are radial distance, angle, and axial distance in 
cylindrical coordinates.

According to the definition of homogeneity, as time approaches 
infinity, the concentration C can be expressed:

The general definition of the average concentration is the total 
moles of solute in the liquid phase divided by the total volume of the 
system. The average concentration can be represented as

C = f(r,e^,t) (2-1)

C(r, 6,z,t) = C ( t +  =°) (2-2 )

Ca  = /// CfldV
///dV

(2-3)
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where C^ is local concentration of solute A. If the system of mixing 
is a cylindrical tank, the volume change dV is equal to rdrcedz, the 
Equations 2-3 can be changed to

Ca  = /// CA rdrdedz (2-4)
/// rdrdedz

The average concentration in a batch system is independent of 
time. There is no input and output concentration in a batch system.
The conservation of mass will be used to prove that no matter what the 
progression of the time the average concentration for the system is 
constant. The mathematical equation is expressed as

C/\ (t=0) = C/\(t) = constant (2-5)

When the homogeneous state is attained in the system, the state 
of mixing is called perfect mixing. The state of perfect mixing is 
always assumed in solving chemical engineering problems. But the 
practical problem in chemical engineering is that the state of mixing 
is always between no mixing and perfect mixing. Therefore, it is 
very important to define a quantitative equation to express the state 
of mixing.

B. Definition for Degree of Mixing

To use a mathematical expression to display the state of mixing 
between no mixing and perfect mixing is a kind of art. The equation
should not only express quantitatively the state of mixing, but also
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should be applicable to practical problems of mixing. A novel defintion 
of the degree of mixing is in the following section based on a simple 
and practical point of view.

When a concentration C/\ at an arbitray point and time is in a 
cyclindrical vessel shown in Figure 1, the concentration variance a 
is defined by Equation 2-6.

where r,6and z are coordinates of the cyclindrical vessel, and Ca  is 
the average concentration. In this equation the average concentration 
is calculated only when time is approaching infinity.

At the initial time, t=0, the concentration C0 is injected into 
the system, and the concentration variance is

As a degree of mixing, Equations 2-6 and 2-7 which consist of a

a fc 2 = /// [fy\(r >9z,t)-CA]2 rdrdedz 
f f f  rdrdedz

(2-6)

0 o = / / / [ C 0 - C a ] 2 rdrdQdz 
f f f  rdrdedz

(2-7)

concentration variance of an arbitrary unmixed s t a t e  a ^ - 2  a n c j -that of
an initial time unmixed state a 0  ̂ can be used to form the following
d e f i n i t i o n :

(2-8)



Figure 1. General Type of Mixing Configuration.
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or

(Cn - C n ) rdrdedz
///(CA o - CA ) rdrdedz

(2-8a)

where H is called the degree of mixing which represents the quantification 
of a mixing state.

In accordance with the above definition, the degree of mixing 
varies from zero for the initial state to values approaching unity for 
the final mixed state.

When the time is zero, the initial state is called complete segregation 
or no mixing. At this state the degree of mixing is

2 2 
Oq " ao

The final state of mixing is called perfect mixing. This state 
is not easy to attain in the actual mixing phenomenon, but it can be 
achieved as time approach infinity. In this state, the variance of 
concentration is

0 <  H <  1 (2-9)

H (0) = 2 = 0 (2-10)

crj = / / / ( C/\ - C/\) 2 rdrded
= 0,

(2-11)
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and the degree of mixing is 

2 2

(2-12)
1

If the local concentrations at arbitrary point in the vessel are 
known, the degree of mixing can be determined by the Equation 2-8a at
a specific time. The local concentration can be measured either by
theoretical or by experimental methods. An experimental method is 
shown in the work of Ogawa and I t o ^ ^ ^ .  The theoretical approach 
will be presented in this study. The degree of mixing is a function 
of the local concentration of an arbitrary point at a specific time.
The procedure of determining the degree of mixing will be illustrated 
by the following two sections.

C. Simple Case for Determining the Degree of Mixing

For this case, consider that plate is put into the center of the 
cyclindrical tank to separate the two components A and B as shown in 
Figure 2; one half of the tank is full of liquid A, and liquid B is in
the other half of the tank. The plate is pulled suddenly out of the
tank. Then the two liquids start to mix due to the molecular diffusion.

When components A and B start to mix, the different concentrations 
in the system begin to achieve the homogeneous state. There are no 
concentration differences in this state. Therefore, attaining the 
homogenous state due to molecular diffusion is a spontaneous phenomenon 
in mixing.
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Figure 2. Mixing Due to Molecular Diffusion.
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If the degree of mixing can be determined by the Equation 2-8a, 

the average concentration and concentration variance shall be calculated 
first. Therefore, the average concentration defined in Equaiton 2-4 
for liquid A in this system is 

1-2^ R
I f f  C.rdrdedz—  o o o A ,

Ca '  fff  rdrdedz (2' 13)fofofo

where L is the height of the tank, and R is the radius of the tank.
Equation 2-13 can be divided into two terms according to the concentration 
distribution as follows:

L2.Tr R r rdrdedz—  fofofo Ao j. n . . .CA = - - - - - - - - - - - - - - - - - + 0 (2-14)it R^L

where C/\0 is the initial concentration of component A.

The second term of the right hand side of Equation (2-14) is 
zero, because half of tank is full of liquid B. The final result of 
Equation 2-14 is

CAo
c a  = — - - - -  (2-15)

And the concentration variance at the initial time is 

°o = 111 (CA0 - V 2 dV (2-16)
Equation 2-16 has to be separated into

2
f f f  (Cao - Ca )2 dVA +■/■■/■/(Ca0 - CA )2 dVB (2-17)



where V/\ and VB is the volume occupied by liquid A and B. C/\o is 
equal to zero at the second term of rigth hard side of Equation 2-17. 
Then the final result of the Equation 2-17 is

2 C
ao

2
Ao

(2-18)

Therefore the degree of mixing at the initial time based on the average 
concentration and concentration variance is calculated as follows:

2 2

H (0) = g-° ■  ̂ g ° = 0 (2-19)
a

At any specific time, the average concentration is the same as 
Equation 2-15, and the concentration variance is

a t = /// (CA - CA)2 dV (2-20)

Then the Equation 2-15 is substituted into Equation 2-20. The Equation
2-20 is changed to

2 C
cr t = ///(Ca - - 2~)2 r dr de dz (2-21)

The degree of mixing is determined by Equation 2-8, 2-18 and 2-21 as

r rdrdedz
H ( t ) = 1 - /0/°/p ^  2 - - - - - - - - - - - -  (2-22)

rc



Liquid

Figure 3. Annular Cylinder for Evaluating 

the Degree of Mixing
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Modifying Equation 2-22 with V = TrR2L, and Equation 2-22 becomes

4 fill ( CA " rdrde

H(t) ■ 1 -  "  (2'23)o
The homogeneous state is obtained for the mixing of two different 

liquids at the time is approaching infinity. The average concentration 
is the same as Equation 2-15, and the concentration at this state of 
liquid A is

CA c o = - ^ Q   (2-24)

where C/\ is concentration of liquid A at infinite time. Then the 
concentration variance is determined by the Equation 2-6, 2-15, and 2- 
24 as follows:

a 2 = 0 (2-25)CO

and the degree of mixing in this state is equal to one.

In this case, the degree of mixing is in the range of zero to one. 
It is shown that the definition of degree of mixing can be applied in 
this simple and practical situation.

D. Complex Case for Determing the Degree of Mixing

Consider a fluid B contained in the annular region between a pair 
of long co-axial cylinders with radii KR and R as shown in Figure 3.



A concentration of liquid A is injected by an impulse into the annular 
region at the 0 =  0 .

The calculation of the degree of mixing is very similar to the 
section C. The only difference is the configuration of the mixing 
tank. Therefore, following the same procedure discussed in the section 
C, the degree of mixing is

///(C. - O  dV
H(t) = 1 - --- — ^ ^ - - - - - -  (2-26)

///( Ca o - V  dv

and the average concentration is

// rdrd0
CA = - - - - - - - - - - -  (2-27)M // rdrde

If the concentration distribution of the tank is known, the degree 
of mixing can be evaluated by Equations 2-26 and 2-27. The degree of 
mixing is a function of time. When time is increased to infinity, the 
distribution of concentration approaches uniformity. At this mixing 
state, the degree of mixing is equal to one. Therefore, determination 
of the concentration distribution is the most important factor in 
evaluating the degree of mixing. The next two chapters will focus on 
calculation of concentration distribution.



CHAPTER III 
MIXING PHENOMENAN FOR NEWTONIAN FLUID

There are two mechanisms in the the batch tank to promote mixing 
of a solute, one is the mass transfer caused by a convection flow and 
the other is that caused by molecular diffusion.

The blotches of solute are deformed, and divided into pieces, and 
the aggregation becomes smaller by the convection flow. The contact 
surface area between zones of high and low concentration of solute is 
increased or renewed, and the mixing and transport is promoted by 
molecular diffusion. The aggregation may not be changed by the convection 
only, but is influenced by the molecular diffusion.

Figure 4 shows the process of mass transfer of solute for a lump 
into the surrounding liquid by the action of convection and molecular 
diffusion.

Mixing is carried out in a laminar state and the molecular diffusion 
is very small in high viscosity liquids. In this case, we must make 
an effort to decrease the diffusion length which must be overpowered 
by molecular diffusion, by stretching and subdividing the lump into 
small pieces.

The mass balance equations are obtained by taking the diffusion 
in convection flow into consideration, and the well-known partial 
differential equation was derived based on the assumption of constant

19
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Z1/
/

Figure 4. Process of Mass Transfer of Solute in a Lump

 ^ Mass Flux by Convection

 -> Mass Flux by Diffusion



(q}density and diffusivity by Bird et al., '
2 2 2
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(3-1)
3C . „ 3C . „ 3C , „ 3C _ n ,3 C , 3 C , 3 C,
IT t x 33T + vy  a y  +  VZ a y  -  D ( a 3 F  +  W  + J2 P

Also the equation of continuity must be considered

9Vx + m .  + _ M l _ = o n  piax ay az u (3 _ 2 )

Solving equation 3-1 is essential to overcome the problem of 
mixing. The velocity profile must be solved first before the concentration 
distribution can be solved. After the concentration profile is solved, 
the degree of mixing can be calculated by the new definition, Equation
2-8 .

A. Velocity Profile

The equation of continuity and motion for the flow of a com-
(91pressible, isothermal fluid are' '

f t “ + (V*pV) = 0 (3-3)

a vP [“3 t  + (V-V) V] = - V p s + (v -t ) + pg (3-4)

in w h i c h p  is the fluid density, V is the local velocity, p s is the 
static pressure, g is the external body force per unit mass, t is the 
time and t is the stress tensor. The stress tensor is related to the
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velocity gradients for Newtonian flow thus(9):

T = - y[V V + ( W ) T] + f -  u (VV)5
(3-5)

in which y is the coefficient of shear viscosity, is the unit tensor, 
and C7 V)T in the transpose of (^V). The special case of the above 
equation in cylindrical coordinates is used as the starting point in 
the following developments.

The assumption above of isothermal flow implies not only that 
there is no impressed temperature field, but that in addition the 
viscous dissipation term (r:VV) in the energy balance equation is 
negligible.

A fluid is contained in an annular region between a pair of c o 
axial cylinders with radii KR and R (as shown in Figure 5). At time t <
0, the fluid within the annulus is at rest. At t > 0 ,  inner cylinder 
is rotated with constant angular velocitiy ftj, and the outer cylinder 
is stationary.

For an incompressible fluid this situation vr = vz = 0 and Vgis a 
function of r alone, so that Equations 3-4 and 3-5 become:

3V0 9 r I  bp 9t “y 9r £ r 9r { r V ]  (3-6)

This is to be solved with boundary and initial conditions: at r = 
KR, vQ = KR^-j; at r = R, ve = 0; at t < 0 ,  v,9 = 0. This problem has
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Figure 5. Annular Region in which Tangential 

Laminar Flow is Occurring
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been solved by Bird et a l . ( ^ )

In our case, the steady state condition is assumed, and Equation 
3-6 becomes:

I ' - V r 0 (3-7)

Equation 3-7 may be integrated with respect to r with the boundary 
conditions: at r = KR, v fi = KR/1; at r = R, v 0 = 0. The result is

O K2 r (3-8 )
1 - K

Once the velocity distribution is calculated, then the concen
tration distribution can be calculated from Equation 3-1. Therefore, 
the velocity distribution is the first step to calculate the concen
tration distribution in the mixing phenomenon.

B. Transition Reynolds Number

Laminar flow in this system is strongly stabilized by centrifugal 
forces. Thus a fluid particle from an outer layer opposed being moved 
inwards because the centrifuged force on it is greater than on particles 
nearer the axis of rotation. At the same time, its outward movement 
is resisted by the higher centrifugal force on particles it would have 
to replace. As a result, the transition to turbulent flow takes place 
at a much higher Reynolds number here than in the corresponding system



in which the inner cyclinder is rotating and in which the centrifugal 
force tends to introduce instability. Both systems have been investigated,!9 ) 
and their transition Reynolds numbers are found to be strongly dependent 
upon the ratio of annulus thickness to the radius of the outer cylinder 
(1-K). When the outer eyeliner is rotating, the transition Reynold 
number, defined as (ftoR^p/y)trans> reaches a minimum of about 50,000 
when (1-k) is about 0.05 as shown in Fig. 6. When the inner cylinder 
is rotating at an angular velocity fii (and the outer one is stationary), 
the transition Reynolds number may be expressed approximately as

, ai K R2 v 41.3
1 y tr im s ( 1 - K ) 3/ 2 ( 3 ‘ 9 >

C. Mathematical Modeling

After applying the law of conservation of mass of species i to a 
differential volume element fixed in space in a diffusion-reaction 
system, one obtains

9Ci
3t = - (V N i ) + Rj (3-10)

In order to obtain the equation which is generally used to describe 
diffusion molar flux, Ni is replaced by the appreciate expression 
which includes the concentration gradient. Thus leads to the following 
Equation (3-11) which describes the concentration profile of the species 
in a diffusing system. If there are no chemical changes occurring, 
then ri are all zero. Isothermal condition are assumed.
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Figure 6. Critical Reynolds Number for Tangential Flow in Annulus



= - (V-Ci V) + ( V'Di DC-j) 27(3-11)

If Dj is assumed to be constant, Equation 3-11 becomes

f £ i  = - C. (V-V) - ( w - c . )  + D. V2C.
(3-12)

For a constant density p, equation of continuity is
(3-13)

Applying Equation 3-13 into equation 3-12, then the Equation 3-12 
becomes

In Equation 3-14 the second term of the left hand side equation 
is due to the power of the stirrer and type of the impeller. This 
term in called mass transfer caused by convection flow. Different 
velocity profiles are caused by different types of impellers in the 
tank. Therefore, to choose a right impeller is a very important factor 
in designing a mixing tank. The right hand side term of Equation 3-14 
is the mass transfer caused by molecular diffusion. Molecular diffusion 
is caused by the concentration gradient in the system.

! £ -  + (V-VGj) = D. V 2C i (3-14)



Considering a binary liquid solution in an annular region between 
a pair of infinitey long co-axial cylinders with radii KR and R is 
shown in Figure 5. The component B is within the annulus at time t<0.
At t <0, the inner cylinder is rotated with constant angular velocity 

fi-j, and the outer cylinder is stationary. When the steady state velocity
V is reached as shown in Equation 3-8, the component A is injected by0
impulse into the annulus region at 0 = 0.

The steady-state flow, without chemical reaction and density 
change, of component A through an annulus which contains component B 
is assumed. In this physical situation, \J r and V r = 0, V is the 
function of r-direction only, and molecular diffusion in the z-direction 
is negligible. Therefore, the concentration of component A is a function 
of r,0 ,t. Then the Equation 3-14 is modified to

9CA + ^0 S  _ „ [ 1 _ 9 _ ( r - ^ ) ]  {3"15)T t  r 30 D L r ar lr ar J J

If the v Q in Equation 3-15 is replaced by Equation 3-8. Equation 3-15 
becomes
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where

A =

B =

Gj K2 R2

n1 K2
1 - K2

In this case, K is always less than 1, and ^  and R are always greater 
then zero. Therefore, A and B are always positive and real number.

Equation 3-16 shall be solved with the following boundary conditions 
and initial conditions:

I.C. at t = 0, C/\ = 0, KR_<r <R, 0 £  0 £  2u
B.C.l at r = KR, W "  = °» a11 0 i  9 i  2lT
B.C.2 at r=R = 0, all t, 0 £  0 £  2tt (3-17)
B.C.3 at e=0 CA = N 6 (t ) ’ KR< r< R

5 (t ) is a unit impulse function, and N is in units of mole* 
seconds/ cm^ .

D. Computer Simulation

The partial differential equation, Equation 3-16, with boundary 
conditions and initial conditions of Equation 3-17 has not been solved 
either analytically or numerically. The analytic method is too complex 
to apply in this case. Therefore, the numerical approach is applied 
to solve the partial differential equation. But this equation is 
still not so easy to solve even with special boundary conditions and 
three coordinates r , 0,t. The implicit alternating direction method 
(IAD),(16) discussed by Peaceman and Rachford, will be used to solve



30the partial differential equation with particular boundary conditions.

The IAD method avoids the disadvantages of a considerable amount 
of computation by other computer methods, and still manages to use a 
system of equations with a tridiagonal coefficent matrix for which the 
algorithm of Equation 3-20 affords a straightforward solution. This 
method will be discussed in the following section.

The solution of a system of equation resulting from the IAD method 
is discussed first. If the system of equation is

b^vi + c^V2 = di
a2Vi + b2V2 + C2V3 = d2

a3V2 +  b3 + C3 V4 = d3

ai v i _i + b-jv-j + c-jVi+i = di (3-18)
an-lvn-2 + bn-lvn-l + cn_i vn = d|\j_i

anvn_l + bnvn = d|\|

where ai, bj, Ci are coefficients of the equations, and vi are the 
unknown of the equations. The matrix of coefficients a, b, c alone is 
called a tridiagonal matrix.

The solution of Equation 3-18 can be solved by a Gaussian elimination 
m e t h o d U ? )  by Carnahan et a l .; with a maximum of three variables per 
equation. The complete algorithm for the solution of the Equation 3- 
18 is
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Vn = : VN

(3-19)C. V.
Vi = v t - "  ■1 .-1   1 = N " 2 ........  1

where the 's and 's are determined from the following recursion 
formulas

6 il = bi, V1 = d1/ B1
a ■ C •

h  = b i - - -- 1~-1- i = 2,3,...,N

, ^ , J
1 = Pi

The principle of the IAD method essentially is to employ two
different equations which are used in turn over successive time-steps
each of duration At/2. The first equation is implicit only in the r-
direction (i) and the second equation is implicit in the e-direction 

*
(j). Thus, if C-jaj is an intermediate value at the end of the first 
time-step, the partial differential equation, Equation 3-16, is transformed 
to

D
+ (Ar)i 6 C.*

and
*

C i - ^ r  °i 4  +  ̂ T a T T >2 + B1 S0cl,j,n+1 = (3-22)
0 c i >j + (SrJT £r C i ,j
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Written out in full and rearranged, Equations 3-21 and 3-22 become

Ai Ai % , 1̂ ^1 v *
< 4  - 4 >  c i-i.j - (xi+ 1 > c i , j + ( V - + c w , j  <3 -2 3 )

= - < X ' Y) c 1 . J - l , n + C f . i . n t l + «X - Y > C 1 . j + l . n
and

(3-24)

C i . j  + 'i - v < j  + ‘4 + w >  C u

-IX-V Ci , j - l , n  + Ci , j , n +l + <X- y ) Ci , j +l ,n

A t A

where
y = _ A  ( 1 ^2 At 4 M A r  1 A0B AtY 4 A0
\ = D

(4r)2
^  At ^ “ A0

The first equation is solved for the intermediate values C*, 
which are then used in the second equation, thus leading to the solution
r* • •i,j,n+l the end of the whole time interval A t.

Equations 3-23 and 3-24 can apply only to the inside points of 
the system. Other equations are needed to solve the boundary points of 
the system. The system of equations is divided into six different 
subsystems of equations due to the particular boundary and initial 
conditions.



The translation of boundary and initial conditions into finite 
difference equations depends on the particular boundary points which 
are applied. As an example, we deal with a typical boundary point 
such as (0,j), and the boundary condition is

f  = 0dx
and partial differential equation is

P o (3-25)
d C , d C _ dC
^  1? = *

dc d^c d^cand — ^  present no difficulty; — ^ is obtained from Taylor's expression
Z dy dX2

r r dc d^C (A x)^ q r/A x \3-i C1.J = C0,j + dX - A X  L(AX) JQA

that is

f-C = L ( C U  - q , , j - ^ A x ) + 0[(Ax)3].
d X (AX)2 dX

When the boundary condition is applied into the above equations, 
it yields

^  + OC(Ax)] (3-26)
dX 2 (AXP

When the above principle is applied to these boundary and initial 
conditions, then the system of finite difference equation is summarized 
into two time intervals. The first interval which calculated the 
intermediate value C* at the end of the half time step is divided into 
three zones. These three zones are divided according to the boundary



34conditions. The second interval is to calculate the final value C at 
the end of the whole time step. This interval also consists of three 
zones.

Let C and C* refer to concentration at the beginning and end of a 
half t i m e - s t e p A t / 2 .  The solution on transformation on Equation 3-16 
with Equation 3-17 into finite difference equations is summarized as 
fo l l o w s :

(1) At half time intervals
(l.a) General Zone (j = 2, . . . . , N-l)

- (1+Xj) C lsj. + C2jj. = dj

- ( i + M  C* + ( ^ + ^ - ) C *  = dl2 4i L1 J  U  V  2 , j '2 4i L3,j a2

X-i -\ -i* X** X«i
< r  - c i-i,j - (1 + 1> c i j  + <3- 2 7 >

c* = di______________________ _|+l,j_ _ _ _ _ _ _ _ _ _ _ _ _ _ 1

X1 X l\ * * X1 X li
(2 ‘ 4i^ CM - 2 ,j " ^1+V  CM - 1 ,j + ^2 + 41 ̂

*
CMjj = dM-l

X. C M . . + (1- X. ) CM . - d..1 M-l,j v 1 M,j M
with

d i - - < X - Y > C i , j - l ;n - C i , J , n  + <X - V > C i ,j+l »n 
for i = 1,2 , ..., M-l

dM = " CM ,j ,n (3.27a)
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where

= A / 1 x2 AtB 'iAr A0
B At

_ 4 A0
At 9 = (Ar) D
At2 = A0

A = _ U L  r 2
l - r

B = ° i K 2 
1-K2

(l.b) Boundary zone (at j=l)
This case is discussed at 0=0. The finite difference equation 

is the same as Equation 3-27 except Equation 3-27a. Therefore Equation
3-27a is changed to

di = - + (X - y ) C i 5j + l 5n f°r "* = 1>2,..., M-l (3-28)
d|v| = -

(l.c)Boundary Zone (at j=N)
This case is discussed at 0=2tt. The finite difference equation 

is the same as Equation 3-27, and the Equation 3-27a becomes

di = (X-Y) C i j _ i sn C i J ) n  for i=l, 2, M-l (3-29)

dM = - cM,j,N
"fcApplying these Equations 3-27 to 3-29, C j j  can be calculated at 

every point of the annulus.



36
(2) At whole time intervals

(2.a) General Zone (i =2, . M-l)
C l , l , n + 1  + (x-Y) C1i2>n+1
- ( X - Y )  C-j 91#n+1 +  C-j92,n=l + (X-Y) C-j 93̂ n +i

= di

- ( X - Y )  C-j,j _ l ,  n + l  + C j5j jn+i +  (X-Y) C j #j 5n+l - d
- ( X - Y )  C-js|\|_2sn + l  + C i5|\|-lsn + l  +  (X-Y) C-j,N,n+l - d|\j_ 1

- ( X - Y )  C-js|\j_ijn+i +  C i 5 [\|>n+i = d|\|

with

(3-30a)
for j = 1,2, ..., N

(2.b) Boundary Zone (at i=l)
This case is discussed at r=kR. The finite difference equations 

is the same as Equations 3-30 except Equation 3-30a. Therefore Equation
3-30a
is changed to

(2.c) Boundary Zone (at i=M)
This case is discussed at r=R. The finite difference equations

are

dj = (1-Xj) Cj j  + \  Cj +1 s j for j = l , 2  N (3-31)

Ci,l,n+l 
Ci,2,n+1

= di 
= d2

c i,j,n+l = d . 
J (3-32)

Ci,N-l,n+l =dN-l 
c i,N,n+l = dN
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with

dj = ^1 + (1— A i ) C-j}j for j = 1,2,..., N

The C i 9j 9n+i can be calculated by making use of the above equations 
at whole time step. If the concentration of the next time step is to 
be calculated, the values of C-j9j >n+i substitute into the original 
C i ,j ,n * Then the same procedure is repeated after the time limitation 
is reached.

After the concentration distribution is calculated, the degree of 
mixing can be calculated by Equations 2-26 and 2-27. The program of 
computer simulation for Newtonian fluid to evaluate the degree of 
mixing versus time is listed in Appendix B.

E. Stability of the IAD Method

The stability of this procedures is investigated by the von Neuman 
method. (17) Substitution of the term y(t)eJ'aX eJaY (j here denote- /-I) 
into the difference equations which derive from equation (3-25), and 
elimination of the intermediate function T ( t + A t / 2 ) ,  yields the following
expresisons for the amplification factor across a whole time-step.:

p ^ (t + At)
^ " ip (t) (3-33)

Clearly, | £| <\ for any value of At, and the procedure is unconditionally 
stable.



CHAPTER IV

THE MIXING PHENOMENON FOR NON-NEWTONIAN FLUID

In Chapter III, the mixing phenomenon of Newtonian fluids has 
been discussed. But many fluids used in the industry are non-Newtonian 
fluids. This chapter is devoted to the generalized Newtonian model, 
which can describe the shear rate dependence of the viscosity. There 
are several empirical models for non-Newtonian fluids(18). The use of 
this model is illustrated by going through the example in detail; an 
example deals with problems which are so complex that an analytical 
solution cannot be obtained. For solving these somewhat more complicated 
problems, a numerical approach is available, and it is described and 
illustrated in Chapter III. To avoid more complication we assume that 
the flow is isothermal.

In almost all industrial problems, the non-Newtonian fluid can be 
presented as a power-law model. The model has been widely accepted 
both by industry and by research. In the present study, the power law 
model is applied and the velocity profile is more complicated. The 
power law model for a rectangular coordinate expressed mathematically 
is

T - m i dVx .n -1 dVx , .yx - — m | dy dy (4-1)

For n=l, it reduces to Newton's law of viscosity with m=u; thus the 
deviation of n from unity indicates the degree of deviation from Newtonian

38



behavior. For values of n less than unity, the behavior is pseudoplastic, 
whereas for n greater than unity the behavior is dilatant. Approximate 
values of m and n for various fluids are given in Table! 1. Most 
macromolecular fluids are pseudoplastic and the value of n in the 
range of 0.15 to 0.6 are common.

A. Velocity Profile

The Newtonian law of viscosity has been discussed in somewhat 
more general form(9); the expressions in the Cartesian coordinate is 
also an analogous expression for cylindrical and spherical coordinates.
In this study the similar generalization of non-Newtonian models will 
be discussed. We restrict this discussion, however, to incompressible 
flow.

First the Newton's law of viscosity for an incompressible fluid
is

t  = - y A (4-2)

in which A i s  the symmetrical rate of deformation tensor with cartesian 
components

3 V • 3V.
A =  - + _ *____ij 3X. 3X,J 1 (4-3)

The coefficient of viscosity depends on the local pressure and temperature
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For non-Newtonian materials, the relation between T a n d A is not 

the simple proportional given in Equation 4-2. We can, however, write 
an equation for certain simple types of non-Newtonian fluids

T = _ n A (4-4)
in which the non-Newtonian viscosity rj, a scaler, is a function of 
(or a function o f t ) as well as of temperature and pressure. The 
assumption of various empirical functions to describe the dependence 
of ri on A (or o n t ) corresponds to the assumption of various models in 
Bird el at.(9).

The power-law model for non-Newtonian fluild is described in the 
following:

n"1 (4-5)T =- { m | / I  ( a  . A))' } A

in which
(4-6)A • A = E.Z. A . . A . .1 J

A is the rate of deformation tensor, and m and n are parameters of a 
power-law model (See Table 1). The Equation 4-5 is readily available 
in rectangular, cylindrical, and spherical coordinates. Equation 4-5 
is an empirical expression designed to approximate the actual behavior 
of various materials; the only thing we have done here is to write the 
expression in such a way that they transform properly in going from 
one coordinate system to another. Otherwise we could not be assured 
that parameter - m and n, for example - would be the same when determined 
in various geometrical arrangements.
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TABLE 1

POWER MODEL PARAMETERS FOR VARIOUS FLUIDS

Fluid Composition m n
(weight %) (lbf see11 ft-z ) (dimensionless)

1.5 % CMCain water 0.0653 0.554
3.0 % CMC in water 0.194 0.566

33 % lime in water 0. 150 0.171
10 % napalm in kerosene 0.0893 0.520
4 % paper pulp in water 0.418 0.575

a Carboxymethylcellulose



A polymeric liquid is being sheared in the annular region between 
two cylindrical surface of length L of radu KR and R (with K < 1 ) .  The 
inner cylinder is rotating with an angular velocity ^i, and the outer 
cylinder is fixed (Figure 5).

In steady-state laminar flow the non-Newtonian fluids move in a 
circular pattern, and the velocity components Vr and Vz are zero.
There is no pressure gradient in the Q-direction. In cylindrical 
coordinates, then, the only non-zero component of velocity will be 
We further postualate the V 0 as well as the components ^  ■ 0f the 
defomation tensor will depend only on the radial position r. Therefore 
all except A ^  are zero. With these assumptions, the equation of 
c o n t i n u i t y ( 9 )  as written in cylindrical coordinates is zero, and the 
equation of motion(9) reduces to

^  (i-2 Tre > = 0r (4-7)

The Equation 4-5 is rewritten for the system at x r . ;0
. - - - - - - -  n-1 (4-8)

T re ~ { \ a: A) I } r0

For the power-1 aw model, the analytical expression of Equation 4-8 to 
be used depends on the value of

i  ( A: A) = U  A A = (A )2 4 i j ij Ji re (4_g)

From Table 2 and the velocity Vr is zero at e-direction, we know



43

TABLE 2

COMPONENTS OF THE STRESS TENSOR FOR NEWTONIAN FLUIDS 
IN CYLINDRICAL COORDINATES

(A)

(B)

(C)

(D)

(E)

(F)

rr

■09 =

zz

- u [ 2 f £  - f  (?■»)]

- **[2 (i f | -  + |  ( W ) ]

- p[2 - |  (v-v)]9Z

T re = T er yr r L. ( +  I iVniL gr v r' r 30

T  -  Tzr rz

= _ y r 3 V _  + i.
*- A  -7 VI

1 sVz
a z r 86 ]

_ y r  aVz + 3Vr-, L 9 r 9 z J
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The Equations 4-8, 4-9 and 4-10 were substituted into Equation 4- 

7, and the equation was integrated with the boundary condition as 
follows:

B.C.l Vpf o at r=R

B.C.2 V 0= KR at r=KR
(4-11)

Then the result of velocity profile is
d 2/n( V  - 1 (4 “1 2 )

v e ‘ A  r ,1,2/n . j 
After the velocity profile is found, the concentration distribution 

can be derived by equation of continuity and Ficks law of diffusion.

B. Mathematical Modeling

The basic geometrical system used in this study is shown in Figure 
5. The component A is injected by an impluse into the annulus at 6 =
0, and the annulus filled with non-Newtonian fluid, component B. The 
flow is set at a steady state condition. The concentration of A, C/\, 
is function of r-direction, 0-direction, and time. Though these assumptions
the equation of continuity is reduced to

9Cfl V. 3Cfl t , 3Cfl
— — + —  — — = d E  ̂  —  (r — -  ) ]3t r 30 r 3 r u  3r ' (4-13)
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The velocity profile Equation 4-12 is substitued into Equation 4- 

13, and modifying the Equation 4-13 to
* i n * ri  3 _  (4-14)

3̂  + [ A  (i)n - B ] J -  - Dtr 9r <r 8r >]
where

n. K2/n* i n2/n
A = R

* ^  K2/nB =  L
(4-14a)

l-K27"

n is parameter of the power-1 aw model, shown on Table 1. When n=l, 
the liquid is Newtonian fluid, and the Equation 4-14 is similar to 
Equation 3-16. Most of the polymeric liquids are n <  1 and values of n 
are in the range of 0.15 to 0.6.

The Equation 4-14 is solved with the following boundary and initial 
conditions:

I.C. at t = 0, CA = 0, KR l r  1R, 0 1  9 1  ^

8CB.C.l at r = K R = 0, all t, q  l e-  7r

B.C.2 at r=R, = 0, all t, 0 <0< tt 3r ’ ’ --

B.C.3 at =0, CA = N6(t), KR <r <R

6 ( t ) is the unit impulse function, and this function is

s(t) = j “  • t = 0 (4'16)
o , at t < 0 or t> 0



The numerical solution of the Equation 4-15 with the Equation 4-16 
will be discussed in the next section.
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C. Computer Simulation

The velocity profile of non-Newtonian fluid is more complicated 
than that of Newtonian fluid. But the transformation of the partial 
differential equation to the finite difference equations is similar to 
that described in Chapter III. The system of equations is divided to 
two time intervals according to the IAD method(16).

■kLet C and C refer to concentration at the beginning and end of a 
half time step At/2. And n, parameter of the power-law model, is 
assumed to be equal to 0.5. To summarize, the complete algorithm for 
the solution of the Equation 4-14 with Equation 4-15 is as follows:

(1) At half time intervals
The system of difference equations is divided into three zones as 

f o l lows:

(l.a) General Zone (j = 2, ... N- 1)

= d
(4-17)

M-l

wi th
(4-17a)
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for i = 1,2,..., n-1 

dM = CM,j,n

where
x l = -- ^  D(Ar)

A 2 = A6

K4 4  ~A~ R1-IC
|/4B 1 = -

1-K4

v. = A1 / _ L \ 4  _At 4 v iAr' A0

Y i H  _ A t  
4 A6

(l.b) Boundary Zone (at j = 1)
Equation 4-17

with
d i = - C i J > n  + (X'-Y1) C isj + i >n for i= 1,2, .. M-l
h  r (4 “ 1 8 )dM - - cM,j,n

(l.c) Boundary zone (at j=N)
Equation 4-17 with

with
d, = ( X ' - V )  C i 9j,l,n - C U ,n for i = 1,2 M-l (4-19)
dM = - cM,j,n
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(2) At whole time intervals
Three zones are divided as follows:

(2.a) General zone (i = 2,3,..., M-l)
Ci,l,n+1 + (X'-Y1) Cij2 ,n+1 = dl

-(X-Y) C-j}i jn+i + C-j}2,n+l + (X-Y) C - j ^ n + i  = d2
-(X-Y) Ci9n - l,n + l + , j ,n + l  + (X-Y) C i ,j+1,n+1 = d j 

-(X-Y) C i ^ j _ x 9n+1 + C i ,M - l ,n+1 + (X-Y) C i }|\|jn+i 
-(X-Y) C i 9N_i,n+l + Ci s m s n+1 = d N

with

for j = 1,2,-..., N

(2.b) Boundary Zone (at I = 1)
Equation 4-20

with
ic "k

dj = ( l - \ )  C i 9j + * i  C i+i 5j 
for j = 1,2, ..., N 

(2.c) Boundary Zone (at =M)
Ci,l,n+1 = d l

Ci,2,n+1 = d2

c i,j,n+l = dJ

Ci,n-l,n+l - d N-l
î,|\|, n+1 = d N

(4-20)

(4-21)

(4-22)

with
dj = ^  c i-l,j + (1- X l) c i.j
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The concentration distribution can be determined by Equations 4- 
17 to 4-22. Then the degree of mixing can be calculated by substituting 
the concentration into Equations 2-26 and 2-27. The computer program 
of this calculation is listed in Appendix C.



CHAPTER V 
FLUID MOTION AND CHEMICAL REACTION

It is useful at the outset to indicate why mixing is important in 
chemical reactions. In general two or more substances need to be 
mixed to make products, and this mixing must be sufficiently fine
grained that molecular transport becomes effective. Mixing is used 
also to provides uniformity of temperature and concentration in the 
chemical reactor; this uniformity is particularly important when 
selecting of the reaction is to be maximized. It is therefore important 
to know the positive or negative contributions which the mixing may 
contribute to reaction performance.

The general requirements for calculatinig the conversion in a 
chemical reactor are knowledge of the temperature and concentration 
fields in the reactor and kinetics and transport parameters of the 
reaction. A new fractional conversion is defined to study the reaction 
performance with mixing. Also in this study, the batch mixing process 
accompanied by a first-order reaction is investigated through solving 
a mathematical model relating to fractional conversion versus time by 
numerical method.

A. Fractional Conversion

A second-order reaction of two components is assumed and it is of 
the type:
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A + B products. (5-1)
51

and the chemical reaction rate is

RA = K CA CB . (5-2)

When a large excess of reactant B is used, then its concentration 
does not change appreciably (CB = Cg0 ) and the reaction approaches 
first-order behavior with respect to the limiting component A, or

- RA = K CA CB = (K CB o ) CA = K' CA (5-3)

Considering the tangential laminar fluid flow in a co-axial cylinders 
with radii KR and R (Figure 5). The component A is injected into the 
annulus by the following function:

CA = N <5(t) (5-4)

where <S (t) is an unit impulse function.

The fractional conversion XA of a given reactant A is defined as 
the fraction of reactant converted into product,

or Xa = NAt AV - / CA dV (5.5 )
N A t AV

= moles of A reacted at any time t 
total moles Of A at t = 0
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Fractional conversion is a convenient variable to represent the 

percentage of reactant which was consumed in the chemical reactor at 
a specific time.

B. Mathematical Modeling

As shown in Figure 5, the fluid B is in the annulus. When the 
inner rotating cylinder reaches the steady state velocity, the component 
A is injected by a function, Equation 5-4, into the annulus.

The simplification we adopt is to treat only simple reactions.
The simple reactions means essentially a one-step, first-order, irreversible 
reactions. These reactions have received most of the research attention 
in this subject. Also the laminar flow is assumed in this system to 
simplify the m o d e l .

A typical mass balance equation of species A in the reactive 
system described by Equation 5-1 can be written

9 C
t s t  * ' , , ca = d ’ 2 ca -  ra <5- 6 >

where C/\ is concentration of species A, V is the velocity field taken 
as incompressible, D is diffusivity, and R/\ is the reaction rate of 
species A.

The Equation (5-6) applied to this system with those simplifications 
can be modified to



3CA + ! i _ ^  = D i  ^ r ( r ^ )  - K CA (5-7) 533 t r 30

The Equation 5-7 is substituted by Equation 3-8 and is modified
to

! 5 & -  + A  (I)2 - B - D F  W -  <r F ? )  - K C - <5-8 )r ot)Uwhere
A = fli K2 R 2

1-K2
«i k2
1-K2

The Equation 5-7 is solved with the following initial condition 
and boundary conditions:

I.C. at t = 0, CA = 0, KR - r - R, 0 -9 -

3CB.C.l at r = K R ^ _ A  = 0, all t, 0 *  0^ 2 * (5-9)3 r

B.C.2 at r=R, = 0, all t, 0 - 0- 2 tt 3 r

B.C.3 at 0 =  0, CA = N6(t), KR< r <  R

C. Computer Simulation

The transformation of the Equation 5-8 with Equation 5-9 to a
finite difference equations is by making use of the implicit alternating

*- direction method described in the Chapter III. Let C and C refer 
to concentration at the beginning and end of a half time-step t/2.



Then an appropriate set of finite-difference equation corresponding to 
Equations 5-8 and 5-9 can be summarized as follows:

(1) At half time intervals
(l.a)General Zone (j=2, N-l)

* *
-(1+Ai) C-ĵ j + A l  C2,j

^ L ^ i )  Ci.ij - ( l + \ )  C i j  + C i+i 5j = d i

(A^-Ai) CM _2 j  - ( l + \ )  CM _ i j  + ( * a + U )  CM J
2  41  A „ *  t \ \  n* 2  411 CM-1, j + U^l) CM,j

with

= dM-i (5-10)
= dMM

d-j = - (X-Y) ^ i , j , n " (1-K) C i sj jn + (X-Y) C-j 9 j + 1 9 n (5—10a)
for i = 1,2,... , M-l 

d|vj = - (1-K) C|vi5j jn 
where
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(l.b) Boundary Zone (at j = 1)

Equation 5-10
with

d-j = (1-K) C-j 9j 9n + (X-Y) Ci,j+l,n (5-11)
for i = 1 , 2 , ,  M-l 

d|v] = - (1-K) C[vi,j ,n 
(l.c) Boundary Zone (at J=N)

Equation 5-10
with

d-j = (X-Y) C-j5j _ i jn - (1-K) C j 5j jn (5-12)
for i = 1,2,..., M-l 

d^ = - (1-K) C M sj jn

(2) At whole time intervals
(2.a)General Zone (i = 2 , 3  M-l)

(1+K) Ci,l,n+1 (X-Y) C i j2,n+1 = dl
-(X-Y) Ci 91 sn+1 + U + K) C i }2,n+1 + (X-Y) C i ,3 an+l = d2

-(X-Y) Ci 9j 9n+2 + (1+K) Ci 9 j 9n+i + (X-Y) C i ,j+1,n+l = dj (5-13)

-(X-Y) C M _ 2,n+1 + (1+K) Ci 9N - l #n+1 + (X-Y) Ci 9m 9n+1 =
-(X-Y) Ci,N-l,n+l, (1+^) C i 9m 9n+1 = d|\j

with



(2.b) Boundary Zone (at i = 1)
Equation 5-13

with
<lj =■ (1-Xl) C*,j + 1 c*+l,j) (5-14)

(2.c) Boundary Zone (at i=M)
(1+K) C-j91an+1 = di

(1+KL) Cj,2,n+1 = d2

(1+K) Cj^j^n+i = dj (5-15)

(1+K) Cj, N - ; n+l = di\|
(1+K) Cj,N,n+l = dj\j

with
dj = 1 c i-l,j + (!" l) c i 5j

The concentration distribution can be determined by Equations 5- 
10 to 5-15 with substituting into Equation 5-5 to obtain the relations 
between fractional conversion and time. This computer program is 
listed in Appendix D.



CHAPTER VI
MODELING ON CHEMICAL REACTION RATE CONSTANT WITHOUT MIXING IN LIQUID PHASE

This chapter studies the chemical reaction rate constant in a 
liquid phase without mixing. The kinetics of reactions in the liquid 
phase cannot be interpreted in terms of kinetic theory and statistical 
mechanism of gases. The interpretation of rates in the liquid phase 
is necessarily more complicated from a molecular viewpoint because of 
the much greater interaction between molecules. However, bimolecular 
reactions in solution cannot occur more rapidly than the reactant 
molecules can diffuse together, and this rate may be calculated from 
measured diffusion coefficients. A number of reactions in the liquid 
phase occur at diffusion-controlled rates, and special m e t h o d s ^ , 20,21) 
have been developed for studying the rates of these reactions.

The chemical reaction rate constant in the liquid phase derived 
in this study is based on collision theory in term of collision rate, 
steric factor and energy factor. The collision rate of the molecules 
which reactants can diffuse together in liquid phase may be calculated 
using the macroscopic theory of diffusion. This new model can resolve 
the disadvantage of Smoluchowski's theory(22) which has been widely 
accepted in chemical reaction engineering.

The basic assumptions of this model will be discussed first.
Then the molar flux of molecules in the collision rate is calculated 
by making use of the diffusion equation(^). The new model of chemical 
reaction rate constant will be developed by the diffusion equation 
with specific boundary conditions.
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A. Diffusion Equation

If a solution contains a non-uniform distribution of solute molecules 
there is a flux from the more concentrated to the less concentrated 
region. If n is the net excess of molecules passing in the negative 
direction through a plane surface of area A because of a concentration 
gradient along coordinate perpendicular to A,

f  - DV C (6-1)

where c is the concentration of solute in mole/cm^ and c=nA, and D is
2the dfiffusivity; usually reported in unit of cm /sec. The equation 

6-1 is known as Fick's first law of diffusion.

Assumed diffusivity, D, is regarded as constant, and Equation 6-1 
has been simplified by Bird et al.(^) to

9C = DV2C (6-2)

This equation is generally known as Fick's second law of diffusion or
the diffusion equation. This equation is used for diffusion in solids
or stationary liquids.

B. Collision Rate

Let us begin by considering that the molecules are rigid and non
attracting spherical particles of the radius of r/\ an(j rg } anc|
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radius of molecules A is much smaller than the radius of molecules B. 
Molecules B compared to modecules A are stationary. All molecules A 
are free to move all directions, and travel at same speed. The arrangement 
of all molecules is shown in Figure 7.

Assume that velocity v/\ for molecule A is same at all directions.
A molecule A in a direction may collide with a distance of its center, 
rA + rB- And in a time interval At, a molecule A in a direction 
sweeps out a volume ir(r/\ + rs)2 in cross section and u/\ At long. The 
volume which a molecule A swept out is

The number of collisions by the molecule A with molecules B is 
equal to the number of molecules B in the volume which molecule A 
sweeps out. Therefore the number of collisions of a molecule A and 
molecules B per molecule A in the time interval At is

which N0 is Avogardo's number, and Cgo is the concentration of molecules 
B, units is m °ie /cm3.

If the molar flux of molecules A, N/\, and the concentration of 
molecules, C/\ are known in liquid phase, the average velocity of molecules 
A can be presented as the ratio of the molar flux of molecules A to 
concentration of molecules A, or

VA = " (rA + re)2 %  A t (6-3)

Cbo N o "  (r/\ + rs)2 Tj \ A t (6-4)

—  A
VA=

(6-5)



Figure 7. Molecular Structure in Liquid Phase.



Also, if we know the concentration of molecules A in the system, the 
total number of molecules of A in a volume V is
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NA = V CA N0 (6-6)

The collision rate of molecules A and B in a volume V can be 
represented by combining the Equations 6-4, 6-5, and 6-6 as follows:

C b 0 N0 2 ^ A  + H3)2 NA V (6-7)

Therefore, the collision rate of molecules A and B in a unit volume is

Z = Cb q Nq 2 ^ ^  + rB ) 2 nA (6 “8 )

Where Z is the collision rate in number of collisions per cm8 per 
second.

C. Molar Flux

In order to find the molar flux let us consider the distribution 
of molecules A  diffusing toward molecules B as shown in Figure 7.
Asumme diffusivity D is constant. The concentration Ca  for molecules 
A satisfies the diffusion equation, Equation 6-2, in sperical coordinates

32Cn o 38 nD (— 4 . +  i  — i.) = —92r r 9 ^  9t (6_9)
The Equation 6-9 is solved with the following initial and boundary 

conditions:
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I.C. CA  = CA g j st t = 0
B.C.l. C/\ = 0 , at r=rA + rg (6-10)
B.C.2 3 C/\ = 0 , at r=d, t > o

F T ”
To solve the Equation 6-9 with 6-10, a new dimensionless qunatity 

is introduced as followings:

1  cA
r CAo (6-11)

The Equation 6-9 and 6-10 become 

3 2f 1 3 f
3r2 D 3 t (6-12)

I.C. at t = o, f = r
B.C.l at r = r/\ + rg, f = o (6-13)
B.C.2 at r=d3f

r 3r |p=(j - flr=d = o

In addition we introduce a new independent variable,

s = r - (rA + rg) (6-14)

the Equation 6-12 and 6-13 is modified to 
_3ff = !  3f
9S2 D 9t (6-15)
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I.C. at t = o, f = s+ r/\ + rg
B.C.l at s=o, f = o (6-16)
B.C.2 at s = d - (r/\ + rg)

d Is ls=d “ (rA + r B) = f|s=d - (rA + rB)

We present here the classical solution to the partial differential 
equation, Equation 6-15, for conditions, Equation 6-16, by the method 
of separation of variables. The solution for Equation 6-15 with 6-16 
is

r  ^  -  f  ■ E C e "082" *  s1n {8n [  r -<r A + r B) l  >

"=1 " (6-17)

where

C„ = 4 s1n 9n - 4 d en cos 8 n + 4 B n (rA  + rB>
2 sn en - e n s1n <2 V

% * 6 n [<l - (rA + r B) ]

There are an infinite number of eigenvalues 6 n , and B n is solved
by the following equation:

tan 3 n [d - (t a  + rB ) ] = d 3 n (6-18)

The molar flux of A can be computed from Equation 6-17:

NA = - D (6-19)dr

= - D CAo
uo P
2=1 Cn H f  cos Bn [<*- <r A + r B) ]  ‘  

g i s in  6n [ d -  ( r A + r B) ] }
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By introducing a new function,

f(d) = 2  c n { cos 0n - ^ 2  sin 9n } (6-20)
n=l

the Equation 6-19 can be simplified as follows:

NA = - D CAo f(d) (6-21)

After the equation of molar flux is determined, the collision 
rate for this system can be computed by combining the Equations 6-8 
and 6-21:

D. Reaction Rate Constant

If every collision between reactant molecules results in the
transformation of reactants into products, then the collision rate
gives the rate of bimolecular reaction. The actual rate is usually
much lower than predicted, and the indicates that only a small fraction
of all collisions result in reaction. This suggests that only the
more energetic and violent collisions, or more specially, only those
collisions that involve energies in excess of a given minimum energy E
and right effective collisions lead to reaction. Therefore, there are
three factors affecting the reaction rate, Z collision rate; energy

-E/RTfactor, the energy equation is e ' ; steric factor, p.

Z = - N0 irrZAB D f(d) CAo Cb 0 (6-22)



The equation of the reaction rate is represented as

'RA " - ?  = K Cfl Cb
= /collision rate\ (6-24)
\ mole/cm^ sec / (  energy factor) (steric factor)

. I  . e-E/RT . p _ i _
"o

where p is the steric factor, E is activation energy, and N0 is Avogardo' 
number.

Equation 6-22 substitutes into Equation 6-24, and modifiying the 
Equation gives

k = -Trr2AB N0 D f(d) exp (” E/RT). p (6-25)

where D is diffusivity, rAB = rA + rg, R is ideal gas law constant,

oo ^

f(d) “ fj C n{-dn  cos er ' h  Sln6n }

c = 4 sin e„ - 4 d en cos -h 4 en (rA  +  rB )
2 Bn 9n - s n s1n 2 e n

9i = 6 n [d - (rA + re) ],
and 8 n is calculated from Equation 6-18.

The chemical reaction rate constant is proporational to the diffusivi 
from Equation 6-25. f(d) is a negative value because the chemical 
reaction rate constant is positive.



CHAPTER VII 
RESULTS AND DISCUSSIONS

The output data generated by the programs, which are written in 
Fortran IV, are divided into three computer runs. Both runs were made 
on the UNIVAC system. A complete list of the programs is presented in 
the Appendix.

The input data for the comp .t.tr programs are listed in Table 3.
For the mixing phenomenon, the computer runs were made at different 
angular velocity from 5 to 20 radians per second, and the reaction 
rate constant is zero. The computer runs used to estimate the rate of 
chemical reaction were made at different angular velocity and different 
reaction rate constant in the range of 0.1 to 0.4. The chemical reaction 
is assumed to be first order.

A. Mixing

The numerical results of the mixing phenomenon for Newtonian and 
non-Newtonian fluids are shown in Figure 8 to 12. Figure 8 shows the 
most effective rate for the mixing occurs at time zero. After reaching 
almost perfect mixing, the mixing phenomenon will take approximately 
ten times to reach the perfect state. This means that the perfect 

mixing is the ideal state of mixing.

The degree of mixing for Newtonian fluid is influenced by the 
different rotating speed is shown in Figure 9. The degree of mixing
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TABLE 3
INPUT DATA FOR PROGRAMS OF MIXING PHENOMENON

1.0 x 10~7 - 1.0 x IQ"? cm^/sec
= 5 - 20 radians/sec 

k = 0.1 - 0.4 1/sec
K = 0.8
R = 10 cm
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Figure 8. Degree of Mixing verse Time for Newtonian 

Fluid .
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increased as the rotating speed accelerated at a specific time. It 
should be noted that it takes a long time to reach the perfect mixing 
at a low rotating speed. Therefore, the rate of the degree of mixing 
is greatly increased at a high rotating speed.

It is assumed that the flow pattern is similar regardless of 
rotating speed when the mixing is done in the laminar range. Then, 
there is some possibility that all of these data for different rotating

ikspeeds are related to dimenionless time, n t. the relationship expected
•kabove is confirmed clearly in Figure 10. In this study, n is the 

rotating speed in revolution per second.

The degree of mixing for non-Newtonian fluid was influenced by 
the different rotating speeds as shown in Figure 11. These curves are 
similar to Figure 9. The only difference is that different fluids 
have different velocity profiles. Therefore, the different rates of 
the degree of mixing are created by a different velocity profile in 
the mixing v e s s e l .

Similar to the Figure 10, Figure 12, shows a relationship between
*the degree of mixing versus dimensionless time n t, for non-Newtonian 

fluid compared to Figure 10. It also shows that the degree of mixing 
is decreased as viscosity of fluid increases.

It should be pointed out that a plot similar to Figure 9 was also 
obtained by Ogawa et al.(23)# Their experiments showed the same result 
as this study about the effect on the mixing is dependent on the velocity 
profile.
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Figure 9. Degree of Mixing vs. Time for Newtonian 

Fluid at Different Rotating Speeds.
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B. Reaction

Fractional conversion affected by different mixing speeds is 
shown in Figure 13. At a fixed diffusivity and reaction rate constant, 
the reactant consumed was increased as the rotating speed of the mixing 
rolls accelerated. Therefore, the mixing speed is one of the most 
important factors in control of extent of reaction conversion in design 
a chemical reactor for a specific application.

The reaction rate constant affected the fractional conversion as 
shown in Figure 14. At the same rotating speed, the high reaction 
rate constant means that more reactants were consumed in the reactor. 
Also a small change of reaction rate constant caused the fractional 
conversion to shift greatly. Therefore, the reaction rate constant is 
the most effective factor to control this system.

It should be pointed out that a plot similar to Figure 13 was 
also obtained by Takav et al.(24) Their experiments showed the same 
result as this study: that mixing has a signifcant effect on chemical 
reaction.



CHAPTER VIII 
CONCLUSIONS

(1) A new definition of the degree of mixing is presented for studying
the mixing phenomenon. According to this definition, the degree
of mixing varies from zero for the complete separate state to 
values approaching unity for the final mixing state or the complete 
mixing state.

(2) It is made clear that there is a definite basic relationship
•kbetween the degree of mixing and dimensionless time, n t. Also 

it become possible to estimate the degree of mixing at an arbitrary 
time and rotating speed.

(3) The fact that mixing has a significant effect on chemical reaction
in the liquid phase is confirmed in this study.

(4) This is the first attempt applying theoretical background, fluid 
mechanics and mass transfer, to the study of mixing phenomenon.

(5) This work presents a mathematical foundation for the mixing pheonomenon 
which is often claimed to be understand only in a qualitative
sense. Although attaining the goal of full understanding of 
mixing lies in the future, this treatment should provide a rational 
setting for future developments.
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APPENDIX A

PRECALCULATAION FOR THE COMPUTER PROGRAMS OF MIXING PHENOMENON
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Laminar flow is assumed in this study to avoid the complexity of 
turbulent flow. The criterion of the fluid in the area of laminar 
flow is that the Reynolds number obeys the following equation:

"Re -  V *  P -  <A-1)u (1-K)

Data shown in Table 4 are substituted into the Equation A-l. Equation 
A-l is simplified to:

0  < ±i = 5 . 7 9  P (A-2)

The value of for Newtonian fluid is in the range of 0.1 - 10
square centimeters/second. In this study, the value of —  is assumedP
to be 5 square centimeters/second. Therefore, the criterion of angular 
velocity for laminar flow is as follows:

=< 28.85 radians/second (A-3)

After the angular velocity is known, the velocity profile of the 
fluid inside the anulus is calcualted by the following equation:

V 1 9_o = A ( 4 r  - B (A-4)r

where
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TABLE 4

DATA FOR THE NEWTONIAN FLUIDS IN COMPUTATION

R = 10 cm
9 = 360 = 2v

D = l.OX 10-5 c m 2 /sec 
K = 0.8
C0 = 1 mole/cm^ 
hr = 0.2 cm 
A0 = 0.1256 
u/p = 5 cm^/sec
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Equation A-4 is essential in calculation of the concentration 

distribution and the degree of mixing. The degree of mixing is defined 
as

fS f (CA - CA ) dv
H(t) = 1 - - - - - - - - - -- - - - - - - - - -  (A-5)

f f f  (CAo - Ca) dv/jy/dv

The average concentration can be calculated by the following 
e q u a t i o n :

f f f  C AdVCA = "fff dV (A ~6 )

The local concentrations are zero except 0=0 at initial time. Equation 
A-6 and 2-5 can be modified 
to

CA - £ CA o r i A r V 6  (A-7)
i = l  ( t tR  -  tt r ^ )

The value of average concentration is calculated by substitating data 
in Table 4 into Equation A-7, and is as follows:

CA = 0.02 (A-8)

Similarly, the value of the concentration variance is as follows:

a = 0.0196o (A-9)



Equation a-5 is substituted by Equations A-8 and A-9, and is 
simplified into:

f f f  (Ca - 0.02) dv/ff&v

H ( t ) = 1 -   (A-10)
0.196

Equation A-10 can save considerable amount of computation time than 
Equation A-5.



APPENDIX B

COMPUTER PROGRAM OF MIXING FOR NEWTONIAN FLUID
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1.0000 C ♦♦..♦THIS PROGRAM IS TO STUDY ABOUT MIXING PHENOMENA.
2.0000 C.....THE NON-NEWTONIAN FLUID I ASSUMED IN THIS SYSTEM.
3.0000 C . ....PARTIAL DIFFERENTIAL EQUATION IS SOLVED BY IAD METHOD
4.0000 C  WHEN TIME IS Z E R O * CONCENTRATION ARE ZERO EXCEPT AT CITA=0
5.0000 C  READ AND CHECK INPUT PARAMETER
6.0000 DOUBLE PRECISION A < 10 1 ) ,B<10 1 ) ,E<1 0 1 ) ,D<101),CP<101)
7.0000 DOUBLE PRECISION C P S <21,101>,C <21,101)
8.0000 DOUBLE PRECISION X,Y,XA,YA,Z
9.0000 D T A U = 0 .5

10.0000 RV=30
11.0000 M=50
12.0000 R=10
13.0000 DI-1.OE-7
14.0000 FM=M
15.0000 DR=10/FM
16.0000 D C = 6 »282/FM
17.0000 RATI = < DTAU*DI)/< D R * D R )
18.0000 RAT2=DTAU/DC
19.0000 XK=0.8
20.0000 C
21.0000 C  SET INTIAL AND BOUNDARY VALUES
22.0000 N=M
23.0000 M = 1 1
24.0000 DO 2 1=1,M
25.0000 C<I,1>=1.
26.0000 DO 2 J=2,N
27.0000 2 C<I,J>=0.
28.0000 C
29.0000 C . ....PERFORM CALCULATIONS OVER SUCCESSIVE TIME STEPS
30.0000 TAU=0.
31.0000 C
32.0000 C . .. . .COMPUTE CONCENTRATION AT END OF HALF TIME INCREMENT
33.0000 Y1=XK**4
34.0000 Y=<RV*Y1)/<1-Y1>
35.0000 X=Y#<R**4>
36.0000 1 T AU=T AU+DT AU
37.0000 DO 21 J = 1 ,N
38.0000 DO 22 1 = 1, M
39.0000 K=I+39
40.0000 A <I ) = < RA T 1/2)-< R A T I / (4#K >)
41.0000 B < I >=-<1+RAT1)
42.0000 E < I ) = <R'ATl/2) + <R'ATl/<4 # K ) )
43.0000 A (1)=0
44.0000 A<M)=RAT1
45.0000 E (1)=RAT1
46.0000 E<M)=0.
47.0000 X A = (RAT 2 * X )/((D R # K )* * 4 # 4 )
48.0000 YA=<RAT2*Y)/4
49.0000 Z=<XA-YA)
50.0000 ZZ=Z*2
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51.0000 IF< I*EG»M)G0 TO 61
52.0000 IF < J .N E ♦1)GO TO 24
53.0000 d <i >=-c <i »j >+z *c <i , j+i)
54.0000 GO TO 22
55.0000 24 I F (J ♦E Q ♦N )GO TO 25
56.0000 D < I ) =-Z)ieC <I » J- l )- C (I » J> +Z*C < I » J + l )
57.0000 GO TO 22
58.0000 25 D <I )=-Z*C <Is> J - 1)- C (I > J )
59.0000 22 CONTINUE
60.0000 61 D<M)=~C<M»J)
61.0000 CALL TRIIiAG<l»M»AyB>E»Il!.CP)
62.0000 DO 21 1= 1 *M
63.0000 I F (CP(I).LT.O.IE-3)GO TO 26
64.0000 CPS<I*J)=CP<I>
65.0000 GO TO 21
66.0000 26 CPS(IfJ)=0.
67.0000 21 CONTINUE
68.0000 C
69.0000 C. ►COMPUTER CONEENTRATION AT END OF WHOLE TIME INCREMENT
70.0000 L=M— 1
71.0000 DO 27 1 = 1 »L
72.0000 DO 28 J=1»N
73.0000 K=I+39
74.0000 XA= < RAT2*X)/< < DR*K)**4*4)
75.0000 YA=<RAT2*Y>/4
76.0000 Z = (X A - Y A )
77.0000 ZZ=Z*2
78.0000 A<J)=-Z
79.0000 B<J)=1.0
80.0000 E(J)=Z
81.0000 A < 1 )=0
82.0000 E<N)=0.
83.0000 IF<I.NE.1)G0 TO 30
84.0000 D< J ) = <1-RAT1)*CPS(I » J)+RAT1*CPS(1 + 1» J)
85.0000 GO TO 28
86.0000 30 XXX=1
87.0000 TA=RATl/2-RATl/(4 * K )
88.0000 TB=RATl/2+RATl/(4*K)
89.0000 D < J )= TA*CPS(1-1» J ) + <1-RAT1)* C P S <I »J)+TB*CPS<1+1» J )
90.0000 28 CONTINUE
91.0000 CALL TRIDAG< 1 »N»A»B»E»Di»CP)
92.0000 DO 27 J=1»N
93.0000 IF<CP(J).LT.O.1E-3)G0 TO 32
94.0000 C(I»J)=CP<J)
95.0000 GO TO 27
96.0000 32 C<I»J)=0.
97.0000 27 CONTINUE
98.0000 DO 3 J = 1 »N
99.0000 D<J)=RAT1*CPS<M-1»J)+<l.-RATl)#CPS<MfJ)

100.0000 IF(D<J).LT.O.1E-3)G0 TO 4
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101*0000 C<MyJ)=D(J>
102*0000 GO TO 3
103*0000 4 C(MyJ)=0
104*0000 3 CONTINUE
105*0000 PRINT 112* TAU
106*0000 112 FORMAT <2X y'TIME = ' yF5,2>
107*0000 C
108*0000 C, ►CALCULATE THE DEGREE OF MIXING
109*0000 SUM=0.
110*0000 DO 11 J=1 y N
111*0000 DO 12 I=lylO
112.0000 K=I+39
113.0000 AVG=<C<IyJ)+C<I+lyJ>>/2
114*0000 VAR=<AVG-0.02>#*2
115.0000 SUM=VAR# < K # D R )#DR*DC+SUM
116.0000 12 CONTINUE
117.0000 11 CONTINUE
118.0000 SUM=SUM/<3.141*36)
119.0000 D M = 1 .O-SUM/O.0196
120.0000 PRINT 13yDM
121.0000 13 FORMAT<2Xy'DEGREE OF MIXING='yFI1♦6y/)
122.0000 I F <TAU.LT,20.0)GO TO 1
123*0000 STOP
124.0000 END
125.0000 C. ►SUBROUTINE FOR SOLOING A SYSTEM OF LINEAR SIMULTANEOUS
126,0000 C, ►EQUATIONS HAVING A TRIDIAGONAL COEFFICIENT MATRIX
127.0000 SUBROUTINE TRIDAG<IFyLyAyBrCyDyV)
128.0000 DOUBLE PRECISION A <101)yB(101)yC<101)yD(101)yV<101)
129.0000 DOUBLE PRECISION BETA<101)yGAMMA<101)
130.0000 BETA<IF)=B<IF >
131.0000 GAMMA <IF > =D <IF >/BETA <I F )
132.0000 IFP1=IF+1
133.0000 DO 1 1 = 1 FF' 1 y L
134.0000 BETA <I > =B <I )-A <I )*C <I-1)/BETA < I -1)
135.0000 1 GAMMA <I ) = < D <I )-A <I )*GAMMA <I-1))/BETA(I )
136.0000 C< .COMPUTE FINAL SOLUTION VECTOR V
137.0000 V(L)=GAMMA<L)
138.0000 LAST=L-IF
139.0000 DO 2 K=1yLAST
140.0000 I=L-K
141.0000 o

Am V(I)=GAMMA<I)-C<I)*V<1 + 1 )/BETA<I)
142.0000 RETURN
143.0000 END
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1.0000 C ♦♦.♦♦THIS PROGRAM IS TO STUDY ABOUT MIXING PHENOMENA.
2.0000 C.....THE NEWTONIAN FLUID I ASSUMED IN THIS SYSTEM.
3.0000 C .....PARTIAL DIFFERENTIAL EQUATION IS SOLOED BY IAD METHOD
4.0000 C .....WHEN TIME IS Z E R O »CONCENTRATION ARE ZERO EXCEPT AT CITA=0
5.0000 C . » *..READ AND CHECK INPUT PARAMETER
6.0000 DOUBLE PRECISION A < 10 1 ) ,B<10 1 > *E<101>»D<101>»CP<101>
7.0000 DOUBLE PRECISION C P S <21»101)»C <21,101)
8.0000 DOUBLE PRECISION X>YrXArYA>Z
9.0000 C

10.0000 C.....DATAS INPUT
11.0000 D T A U = 0 .5
12.0000 RV=20
13.0000 M=50
14.0000 R=10
15.0000 DI = 1 .OE-5
16.0000 FM=M
17.0000 DR=10/FM
18.0000 DC=6.282/FM
19.0000 R A T 1 = < D TAU*DI)/< D R * D R )
20.0000 RAT2=DTAU/DC
21.0000 XK=0.8
22.0000 C
23.0000 C.....SET INTIAL AND BOUNDARY VALUES
24.0000 N=M
25.0000 M=i 1
26.0000 DO 2 1 = 1 fM
27.0000 C<I»1>=1.
28.0000 DO 2 J=2»N
29.0000 2 C<I,J>=0.
30.0000 C
31.0000 C .....PERFORM CALCULATIONS OVER SUCCESSIVE TIME STEPS
32.0000 T A U = 0 ♦
33.0000 C
34.0000 C  COMPUTE CONCENTRATION AT END OF HALF TIME INCREMENT
35.0000 Y1=XK**2
36.0000 Y=<RV*Y1)/<1-Y1>
37.0000 X=Y*<R*#2>
38.0000 1 TAU=TAU+DTAU
39.0000 DO 21 J=1 r N
40.0000 DO 22 1=1»M
41.0000 K=I+39
42.0000 A <I ) = <RAT1/2)-< R A T I / (4 # K ))
43.0000 B < I )=-<1+RAT1)
44.0000 E(I)=(RATl/2)+(RATl/(4*K))
45.0000 A ( 1 )=0
46.0000 A<M)=RAT1
47.0000 E < 1 )=RAT1
48.0000 E<M)=0.
49.0000 XA= < RAT2*X)/(< D R * K )#*2*4)
50.0000 YA=<RAT2#Y>/4
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51*0000 
52*0000
53.0000
54.0000 
55*0000
56.0000 
57*0000
58.0000
59.0000
60.0000 
61.0000 
62.0000
63.0000
64.0000
65.0000
66.0000
67.0000
68.0000
69.0000
70.0000
71.0000
72.0000
73.0000
74.0000
75.0000
76.0000
77.0000
78.0000
79.0000
80.0000 
81.0000 
82.0000
83.0000
84.0000
85.0000
86.0000
87.0000
88.0000
89.0000
90.0000
91.0000
92.0000
93.0000
94.0000
95.0000
96.0000
97.0000
98.0000
99.0000 
100.0000

25
22
61

26
21

30

28

32
27

Z= < X A - Y A )
ZZ-Z*2
IF(I»EG.M)GQ TO 61 
IF<J.NE.1 )G0 TO 24 
D< I)=-C<I»J)+Z#C<I»J + l )
GO TO 22
I F (J.EG »N)GO TO 25
D(I>=-Z*C<I>J-l)-C(IyJ)+Z*C(l7J+l)
GO TO 22
D(I)=-ZHfC(I,J-l)-C(I,J)
CONTINUE 
D<M)=-C<M>J)
CALL TRIEiAG< 1»Mr A» B» E* D»CP )
DO 21 1=1 * M
IF<CP<I).LT.O.1E-3)G0 TO 26 
CPS<I,J)=CP<1>
GO TO 21 
CPS<I»J>=0.
CONTINUE

.COMPUTER CONEENTRATION AT END OF WHOLE TIME INCREMENT 
L=M— 1
DO 27 1=1 * L  
DO 28 J=1»N 
K=I+39
XA=<RAT2*X>/< <DR#K>**2#4>
YA=<RAT2#Y>/4
Z=(XA-YA)
ZZ=Z#2 
A < J )=-Z 
B< J > = 1 .0 
E<J)=Z 
A <1)=0 
E < N )=0♦
I F <I. N E ♦1)G0 TO 30
D < J ) = <1-RAT1)*CPS < I , J >+R A T 1* C P S (1 +1> J >
GO TO 28 
XXX=1
TA=RATl/2-RATl/<4*K>
TB=RATl/2+RATl/<4*K>
D<J)=TA*CPS<I-lrJ>+<1~RAT1)*CPS<I,J>+ TB*CPS<1+1>J > 
CONTINUE
CALL TRIDAG<1 tN»A»B tE»D»CP)
DO 27 J = 1 »N
IF<CP<J).LT.O.1E-3)G0 TO 32 
C < I * J >=CP < J )
GO TO 27 
C<I»J)=0.
CONTINUE 
DO 3 J=1>N
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101.0000 D < J )=RAT1*CPS < M - l *J ) + <1,-RATI)*CPS < M * J )
102.0000 IF<D<J).LT.O.IE-3)GO TO 4
103.0000 C<M*J)=D(J)
104,0000 GO TO 3
105.0000 4 C<M» J)=0
106.0000 3 CONTINUE
107.0000 PRINT 112* TAU
108.0000 112 FORMAT <2X*'T I M E = '*F 5 .2)
109,0000 C
110.0000 C. .CALCULATE THE DEGREE OF MIXING
111.0000 SUM=0.
112.0000 DO 11 J = 1 *N
113.0000 DO 12 1=1*10
114.0000 K=I+39
115.0000 AVG=<C <I *J)+C(1 + 1 * J))/2
116.0000 VAR=<AVG-0.02)**2
117.0000 SUM=VAR* < K * D R )*DR*DC+SUM
118.0000 12 CONTINUE
119.0000 11 CONTINUE
120.0000 SUM=SUM/(3.141*36)
121.0000 D M = 1 .O-SUM/O.0196
122.0000 PRINT 13*DM
123.0000 13 FORMAT(2X*"DEGREE OF MIXING="* F I 1.6 */)
124.0000 IF(TAU.LT.20.0)GO TO 1
125.0000 STOP
126.0000 END
127.0000 c
128.0000 c. ► SUBROUTINE FOR SOLVING A SYSTEM OF LINEAR SIMULTANEOUS
129.0000 c. ►EQUATIONS HAVING A TRIDIAGONAL COEFFICIENT MATRIX
130.0000 SUBROUTINE TRIDAG<IF *L *A *B *C *D *V )
131.0000 DOUBLE PRECISION A ( 101)*B(10 1 ) *C<10i)*D(101)*V< 101>
132.0000 DOUBLE PRECISION BETA<101)*GAMMA<101)
133.0000 BETA<IF)=B<IF)
134.0000 GAMMA<IF)=D<IF >/B E T A <IF)
135.0000 IFP1=IF+1
136.0000 DO 1 I=IFP1* L
137.0000 B E T A (I)=B(I )- A (I )#C <1-1)/B E T A (1-1)
138.0000 1 GAMMA(I)=<D<I)-A(I)*GAMMA(I- 1 ) )/BETA<I)
139.0000 c. ►COMPUTE FINAL SOLUTION VECTOR V
140.0000 V<L)=GAMMA<L)
141.0000 LAST=L~IF
142.0000 DO 2 K = 1 * LAST
143.0000 I=L-K
144.0000 2 V <I )=GAMMA <I )- C (I )#V <1 +1)/ B E T A (I )
145.0000 RETURN
146.0000 END
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1.0000 C. ....THIS PROGRAM IS TO STUDY ABOUT MIXING PHENOMENA WITH
2.0000 C. ♦♦♦.CHEMICAL REACTION. THE NEWTONIAN FLUID IS ASSUMED
3.0000 C. ....IN THIS SYSTEM.
4.0000 C. ..♦♦PARTIAL DIFFERENTIAL EQUATION IS SOLOED BY IAD METHOD
5.0000 C. ....AT TIME=0 THE CONCENTRATION IS ZERO EXCEPT AT CITA=0
6.0000 r .♦..READ AND CHECK INPUT PARAMETER
7.0000 DOUBLE PRECISION A <101)yB<101)*E (101),D (101)* C P <101)
8.0000 DOUBLE PRECISION C P S (21>101>»C <21»101)
9.0000 DOUBLE PRECISION X»Y*XA>YA*Z

10.0000 DOUBLE PRECISION F(50)
11.0000 C
12.0000 C. ..♦♦DATAS INPUT
13.0000 RK=0 * 5
14.0000 RSUM=0
15.0000 RV=5
16.0000 D T A U = 0 .5
17.0000 M=50
18.0000 R=10
19.0000 DI = 1 ♦OE-5
20.0000 FM=M
21.0000 DR=10/FM
22.0000 D C - 6 .282/FM
23.0000 RAT1=<DTAU*DI)/< DR*DR >
24.0000 RAT2=DTAU/DC
25.0000 XK'=0 . 8
26.0000 C
27.0000 C. ....SET INTIAL AND BOUNDARY VALUES
28.0000 N=M
29.0000 M=ll
30.0000 DO 2 1 = 1 »M
31.0000 C(I»1)=1.
32.0000 DO 2 J=2 f N
33.0000 2  C(I»J)=0.
34.0000 C
35.0000 C. ...PERFORM CALCULATIONS OVER SUCCESSIVE TIME STEPS
36.0000 TAU=0.
37.0000 C
38.0000 C. ....COMPUTE CONCENTRATION AT END OF HALF TIME INCREMENTR
39.0000 Y1=XK*#2
40.0000 Y=<RV#Yl>/(i-Yl>
41.0000 X=Y*<R**2>
42.0000 1 TAU=TAU+DTAU
43.0000 DO 21 J = 1 r N
44.0000 DO 22 1 = 1»M
45.0000 K=I+39
46.0000 A < I ) = < RATI/2)-(RATI/< 4 # K ))
47.0000 B < I >=-<1+RAT1)
48.0000 E ( I ) = < RATI/2) + (RATI / < 4>KK) )
49.0000 A < 1 )=0
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50.0000 A<M)=RAT1
51.0000 E <1)=RAT1
52.0000 E< M ) = 0 .
53.0000 X A = <RA T 2 # X )/< <D R # K )**2*4)
54.0000 YA=<RAT2*Y)/4
55.0000 Z= < X A - Y A )
56.0000 ZZ=Z*2
57.0000 IF<I.E0*M)G0 TO 61
58.0000 I F (J »N E ♦1)GO TO 24
59.0000 D<I)=-<l-RK)*C<IyJ)+Z*C<IyJ+l)
60.0000 GO TO 22
61.0000 24 IF<J.EQ.N)GO TO 25
62.0000 D < I ) =-Z*C (1 1- J- 1) - (1 -RK ) *C < IyJ ) +Z*C < I y J + 1)
63.0000 GO TO 22
64.0000 25 D <I )= ~ Z * C (IyJ-1>-<1- R K )* C <Iy J )
65.0000 22 CONTINUE
66.0000 61 D<M>=-<i-RK>*C<MyJ>
67.0000 CALL TRIDAGtlyMyAyByEyDyCP)
68.0000 DO 21 1=1
69.0000 IF<CP<I).LT.O,1E-3)G0 TO 26
70.0000 CF'S ( I y J ) =CP (I )
71.0000 GO TO 21
72.0000 26 CPS(IyJ)=0.
73.0000 21 CONTINUE
74.0000 C
75.0000 C. >COMPUTER CONEENTRATION AT END OF WHOLE TIME INCREMENT
76.0000 L=M-1
77.0000 DO 27 1= 1 yL
78.0000 DO 28 J = 1 y N
79.0000 K=I+39
80.0000 X A = (RAT2*X)/((D R * K )**2*4)
81.0000 YA=(RAT2*Y)/4
82.0000 Z=(XA-YA)
83.0000 ZZ=Z*2
84.0000 A (J)=~Z
85.0000 B(J)=l.0
86.0000 E < J )=Z
87.0000 A (1)=0
88.0000 E (N )=0»
89.0000 IF(I.NE.1)G0 TO 30
90.0000 IK J) = (1“RAT1-RK)#CPS(Iy J)+RAT1*CPS<1 + 1 yJ)
91.0000 GO TO 28
92.0000 30 XXX=1
93.0000 TA=RATl/2-RATl/(4*K)
94.0000 TB=RATl/2+RATl/<4*K)
95.0000 D < J )=TA*CPS(I- 1 y J ) + <1-RAT1- R K )*C P S <Iy J )+TB*CPS(I + 1 y J )
96.0000 28 CONTINUE
97.0000 CALL TRIDAG(lyNyAyByEyDyCP)
98.0000 DO 27 J=1y N
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99*0000 IF<CP<J).LT.0.1E-3)G0 TO 32
100*0000 C<I*J)=CP(J)
101*0000 GO TO 27
102.0000 32 C <Ir J )=0.
103.0000 27 CONTINUE104.0000 DO 3 J=1rN
105*0000 D  < J ) =RAT1 #CPS (M-l»J) + ( 1-RAT1 -RK ) #CPS (Ms-J)106.0000 IF<B<J).LT.O.1E-3)G0 TO 4107.0000 C<MrJ)=B<J)/(1+RK>
108.0000 GO TO 3
109.0000 4 C ( M » J ) —0110.0000 3 CONTINUE
111.0000 WRITE(6 r112)TAU
112.0000 112 FORMAT < 2X r'TIME='tF5.2)
113.0000 C •
114.0000 C, ►CALCULATE THE EFFECTIVENESS FACTOR
115.0000 SUM=0.
116.0000 no n  j=ijn
117.0000 no 12 i=i>10
118.0000 K=I+39
119.0000 AVG=< C< I»J)+C(I + li»J) )/2
120.0000 SUM=AVG* ( K*EiR ) *nR*HC+SUM
121.0000 12 CONTINUE122.0000 11 CONTINUE
123.0000 SUM=SUM/< 3.141*36)
124.0000 REL=i-(SUM/O * 02)
125.0000 XT=EXP<-RK*TAU>
126.0000 THE=1.O-XT
127.0000 WRITE<6»500)THErREL
128.0000 500 FORMAT(2Xf2Fl1.5)
129.0000 IF(TAU♦LT »10♦0)G0 TO 1
130.0000 STOP
131.0000 ENO
132.0000 C
133.0000 C, ►SUBROUTINE FOR SOLVING A SYSTEM OF LINEAR SIMULTANEOUS
134.0000 C< ►EQUATIONS HAVING A TRIHIAGONAL COEFFICIENT MATRIX.
135.0000 SUBROUTINE TRIDAG(IF»L»A»B»C»B»V)
136.0000 BOUBLE PRECISION A <101)fB(101),C (101)rD<101)rV<101>
137.0000 BOUBLE PRECISION BETA<101>*GAMMA<101)
138.0000 BETA<IF)=B<IF)
139.0000 GAMMA(IF)=B<IF)/BETA<IF)
140.0000 IFP1=IF+1
141.0000 BO 1 I=IFP1»L
142.0000 BETA(I)=B(I)-A(I)*C<1-1)/BETA(1-1)
143.0000 1 GAMMA (I) = < Ii < I ) -A < I) *GAMMA < 1-1) ) /BETA < I )
144.0000 C
145.0000 C, ►COMPUTE FINAL SOLUTION VECTOR V
146.0000 V(L)=GAMMA<L)



147.0000
148.0000
149.0000
150.0000
151.0000
152.0000

LAST=L-IF 
DO 2 K=1 •> LAST 
I=L-K
V< I )=GAMiiA< I )-
RETURN
ENEi

-C < I )* V (1 + 1)/BETA ( I )
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1.0000 C .....THIS PROGRAM IS TO STUDY ABOUT MIXING PHENOMENA WITH
2.0000 C . ....CHEMICAL REACTION. THE NON-NEWTONIAN FLUID IS ASSUMED
3.0000 C ..... IN THIS SYSTEM.
4.0000 C  PARTIAL DIFFERENTIAL EQUATION IS SOLVED BY IAD METHOD
5.0000 C.....AT TIME=0 THE CONCENTRATION IS ZERO EXCEPT AT CITA=0
6.0000 C .....READ AND CHECK INPUT PARAMETER
7.0000 DOUBLE PRECISION A <101>yB<101)*E <101)>D (101)>CP(101)
8.0000 DOUBLE PRECISION C P S <21,101),C (21r101)
9.0000 DOUBLE PRECISION X»Y»XA*YA*Z

10.0000 DOUBLE PRECISION F<50>
11.0000 C
12.0000 C  DATAS INPUT
13.0000 R K = 0 .02
14.0000 RSUM=0
15.0000 RV=30
16.0000 DT A U = 0 ♦5
17.0000 M=50
18.0000 R=10
19.0000 DI = 1 .OE-7
20.0000 FM=M
21.0000 DR=10/FM
22.0000 D C = 6 .282/FM
23.0000 RATI = < DTAU*DI)/(DRftDR)
24.0000 RAT2=DTAU/DC
25.0000 X K = 0 .8
26.0000 C
27.0000 C.....SET INTIAL AND BOUNDARY VALUES
28.0000 N=M
29.0000 M=ll
30.0000 DO 2 1 = 1 rM
31.0000 C<I»1)=1.
32.0000 DO 2 J = 2 1 N
33.0000 2 C(I?J)=0.
34.0000 C
35.0000 C....PERFORM CALCULATIONS OVER SUCCESSIVE TIME STEPS
36.0000 TAU=0.
37.0000 C
38.0000 C  COMPUTE CONCENTRATION AT END OF HALF TIME INCREMENTR
39.0000 Y1=XK*#4
40.0000 Y=<RV*Y1>/(1-Y1>
41.0000 X=Y*<R**4>
42.0000 1 TAU=TAU+DTAU
43.0000 DO 21 J=1>N
44.0000 DO 22 1= 1 »M
45.0000 K=I+39
46.0000 A < I >=<RATI/2)-<RATI/(4*K>)
47.0000 B < I )=-<1+RAT1)
48.0000 E<I>=<RATl/2>+<RATl/<4*K>)
49.0000 A ( 1 )=0
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50.0000
51.0000
52.0000
53.0000
54.000055.0000
56.0000
57.0000
58.0000
59.0000
60.0000 
61.0000 
62.0000
63.0000
64.0000
65.0000
66.0000
67.0000
68.0000
69.0000
70.0000
71.0000
72.0000
73.0000
74.0000
75.0000
76.0000
77.0000
78.0000
79.0000
80.0000 
81.0000 
82.0000
83.0000
84.0000
85.0000
86.0000
87.000088.0000
89.0000
90.0000
91.0000
92.0000
93.0000
94.0000
95.0000
96.0000
97.0000
98.0000

A<M)=RAT1 
E < 1 )=RAT1 
E<M)=0.
XA=<RAT2*X>/< <DR*K>**4*4>
YA=<RAT2*Y>/4
Z=(XA-YA>
ZZ=Z*^
I F <I ♦E Q ♦M )GO TO 61 
IF < J .N E ,1)GO TO 24 
D < I )=-<1-RK)* C (Iy J )+ Z * C (Iy J + l )
GO TO 22

24 IF<J.EQ.N)GO TO 25
D < I > =~Z*C <Iy J - l >-< l-RK ) *C < I y J ) +Z*C < I y J+l )
GO TO 22

25 D< I > =—Z3#tC< I y J-l )-( 1-RK)*C< I y J)
22 CONTINUE
61 n<M>=-<l-RK)*C<MyJ>

CALL TRIDAG(lyMyAyByEyliyCP)
DO 21 1 = 1 yM
IF (CF' (I).LT.O. IE-3 ) GO TO 26 
CPS(IrJ)=CP(I)
GO TO 21

26 C P S (Iy J )=0.
21 CONTINUE

...COMPUTER CONEENTRATION AT END OF WHOLE TIME INCREMENT 
L=M-1
DO 27 1=1y L 
DO 28 J=1y N 
K=I+39
X A = < RAT2*X)/< < D R * K )**4*4)
YA=<RAT2*Y)/4 
Z= < X A - Y A )
ZZ=Z*2 
A < J )=-Z 
B ( J ) = l .0 
E (J )=Z 
A <1)=0 
E < N > =0.
IF(I.NE.1)G0 TO 30
D < J ) = (1-RATl-RK)* C P S (Iy J )+RAT1*CPS <1 + 1» J )
GO TO 28 

30 XXX=1
TA=RATl/2-RATl/C4*K)
TB=RATl/2+RATl/<4*K)
D< J)=TA*CPS<I-lyJ) + <l-RATl-RK)*CPS<Iy J)+TB*CPS(1 + 1 y J) 

28 CONTINUE
CALL TRIDAG(lyNyAyByEyDyCP)
DO 27 J=1y N



99.0000 IF(CP<J).LT.O.1E-3)G0 TO 32
100.0000 C < I »J ) =CF' < J )
101.0000 GO TO 27
102.0000 32 C<I>J>=0.
103.0000 27 CONTINUE
104.0000 DO 3 J=1>N
105.0000 D < J ) =R AT 1 #CPS (M - 1 » J ) + (1 -RAT 1 - R K ) *CPS (Mr J)
106.0000 IF<D<J).LT.O.1E-3)GQ TO 4
107.0000 C<M»J)=D<J)/<1+RK>
108.0000 GO TO 3
109.0000 4 C<M»J)=0
110.0000 3 CONTINUE
111.0000 WRITE <6*112)TAU
112.0000 112 F ORMAT(2X » 'TIME='»F5.2)
113.0000 C
114.0000 C. .CALCULATE THE EFFECTIVENESS FACTOR
115.0000 SUM=0♦
116.0000 DO 11 J = 1 9 N

117.0000 DO 12 1=1,10
118.0000 K=I+39
119.0000 AVG=<C(I»J)+C<I+1 kJ))/2
120.0000 SUM=AVG* < N * D R )*DR*DC+SUM
121.0000 12 CONTINUE
122.0000 11 CONTINUE
123.0000 SUM=SUM/(3.141*36)
124.0000 K=TAU/DTAU
125.0000 K=K+1
126.0000 F ( 1 )=0.02
127.0000 F <K)=SUM
128.0000 RSUM=RSUM+ < < F < K - 1)+ F (K >)/ 2 )*0♦5
129.0000 XT=EXP<-RK*TAU)
130.0000 XX=<0.02*<1-XT))/RK
131.0000 EFF=RSUM/XX
132.0000 WRITE < 6 r 500)RSUM » X X >EFF
133.0000 500 FORMAT(2X r 3 F 1 1♦5)
134.0000 WRITE<6»13)EFF
135.0000 13 FORMAT<2X»'DEGREE OF MIXING='*F I 1.6 y //)
136.0000 IF < T A U .L T .20»0)GO TO 1
137.0000 STOP
138.0000 END
139.0000 C
140.0000 C, ► SUBROUTINE FOR SOLVING A SYSTEM OF LINEAR SIMULTANEOUS
141.0000 C. ►EQUATIONS HAVING A TRIDIAGONAL COEFFICIENT MATRIX.
142.0000 SUBROUTINE TRIDAG(IF>L,A»B,C»D,V)
143.0000 DOUBLE PRECISION A <101)»B < 101),C <101)>D<101),V < 101>
144.0000 DOUBLE PRECISION BETA(101)*G A M M A (101)
145.0000 BETA<IF)=B<IF)
146.0000 GAMMA<IF)=D<IF)/BETA<IF)



147.0000 IFP1=IF+1
148.0000 HO 1 I=IFP1fL
149.0000 BETA<I)=B<I)-A(I>*C<1-1)/BETA(1-1)
150.0000 1 GAMMA <I)=<D(I)-A <I>#GAMMA<1-1))/BETA < I )
151.0000 C
152.0000 C.....COMPUTE FINAL SOLUTION VECTOR V
153.0000 V(L)=GAMMA<L)
154.0000 LAST=L-IF
155.0000 DO 2 K=1»LAST
156.0000 I=L-K
157.0000 2 V <I)=GAMMA(I)-C<I)*V < 1 + 1 >/BETA <I)
158.0000 RETURN
159.0000 END
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APPRENDIX F

DERIVATION OF EQUATION 6-17 FROM EQUATION 6-15



Solving Equation 6-15 by seperation of variables.
2 f  i _ f  ( F - l )

S 2 - D  t

the initial and boundary conditions are 
I.C. at t = 0, f = s + r^ + rg
B.C.l at s=0, f = 0 (F-2)
B.C.2 s = d - (r/\ + rg)

d -|p |s = d- (rA + rB ) = f| s = d - (rA + r$)

The separation of variables is introduced as the following: 

Let f (s j t ) = S(s)-T(t) (F-3)

Equation F-3 substitutes inot Equation F-l gives

T 52S _ I  <ST_ c
1 '6s—  " D dt (F-4)

Equation F-4 divided by TS gives

S" I T 1 2
r s n s - e (p -5 )

Equation F-5 yields the two ordinary linear differtial equations
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= - D 32T (F-6 )
and

2 (F-7)
^ - 4  + 82s = 0 ds

Case (1): 82 “ 0
The solution is

T = c' and S = C2 s + C3

Case (2): 3 2 = negative
this case is physically impossible

Case (3): B 2 = positive
the solution is

T = C4 e D32t

S = C5 sin es + C6 cos 3 S

so the general solution of Equation of (F-l) by combining the solutions 
of three cases is

f = Ci + C2 + e -D3 t (C3 sin 3S + C4 cos 3s) (F-8 )

By applying the B.C.l, at s = 0, f = 0, in Equation (F-8 ) gives 
Ci = 0, C4 = 0

and
-D32tf = C2 s + C3 e sin 8 s (F-9)

By applying the B.C.2 at s = d - (rA + rs) 
d | s  = fis



d {C2 + C3 6C-D262t coss [d- (rA  + rB )]}

-DS2t= C2 [d- (rA + rB )] + C3 e sing [d- (rA + rB )]

which gives
C2 = 0

and
d 3cos B[d- (rA + rB )] = sin g[d- (rA + rB )]

or
tan {p[d- (rA + rB )] }= da (F-10)

Engenvalues can be calculated from Equation F-10.
Then the Equation F-9 becomes

n 82 . (F-ll)f = Z Cn e “D p nt sin 3nsn=l
By applying I.C. at t = 0, f = s + rA + r B , the Cn can be determined 
as follows:

s + rA + rB = 2 cn sin B n s (F-12)n=l

Since this is a Sturm-Liouville system, multiply both side of Equation 
F-12 by sin (0ms) ds and integrate from s=0 to s=d - (rA + rB ).

s=d-(rA + rB )
(s + rA + r B ) sin (3ms ) ds = 2 Cn / sin (3n s) sin (3m s) dsn=l 0

(F-13)

since
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Figure 15. Location of Eigenvalues for tan
»ld - ( r A +  r B'J

= d.
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I  sin^ (ax) dx = 2x - 4a sin(2ax),

cos ax 
/ sin ax dx = - a

The left hand side of equation F-13 is

s=d - <rA + r B )
L.H.S. = f (s h r/\ + rB ) sin ( ms) ds

u .J.
= 3j^2 sin [d-(rA + rB )] - g “  cos 3 m [d-(rA + r B )] +  £

m
+

The right hand side of equation F-13 is equal to zero when n=m, and

s = d _ (rA + rB^ R -H 's = f0 {sin (Bm s) }2ds w h e " n=m
: _ 1 sjn{ 2 ^  d_ {r^  }

m
Therefore Cn is

c . 4 Sln {Bn d- ( rA'frB ) } - 4 d Sn c 0 $ J B n d - < y rB ) H  4 6n (V rB> 
2 B2 d-(rA +rB ) - B„ sin { 2 B„ d- (rfl+ r B ) }

Simply the equation
Cn = 4 sin en - 4d Bn cos en + 4 Bn ( y r B ) (F‘1 4 ^
" 2 B„ e„ - Bn sin 20n

where 0 n = 3 n  [d- (rA + rB )]

The final solution of the Equation (F-l) is

I C e'D *1" B„ [-(rA+rB)] >
Ao n=l " <F -1 5 >

where Cn is in Equation F-14.



APPENDIX G

COMPUTER PROGRAM FOR CHEMICAL REACTION RATE CONSTANT
WITHOUT MIXING



1.0000 C
2.0000 c . . . .♦THIS PROGRAM IS FOR CHEMICAL REACTION RATE CONSTANT
3.0000 DIMENSION B (50)» RC(50)» C (50)
4.0000 c
5.0000 c.  ♦ ♦..DATAS INPUT
6.0000 D=1* 77E-5
7.0000 R=4♦3E-8
8.0000 AR=4.5
9.0000 DAB=4.OE-5

10.0000 Z=D-R
11.0000 c
12.0000 c . . . .♦CALCULATE THE EIGENVALUES
13.0000 DO 1 1=1,10
14.0000 CALL EG( AR i»ZfD»BA)
15.0000 B<I> =BA
16.0000 RC(I)=B<I>*Z
17.0000 YA=4*SIN<RC<I>)-4*n*B(I)*C0S(RC<I))
18.0000 YB=2#B<I)*B<I>*RC<I>-B<I>*SIN<2*RC<I>)
19.0000 C (I)=<YA+4*B<I)*R)/YB
20.0000 AR=RC<I)+3.141
21.0000 1 CONTINUE
22.0000 V=0
23.0000 DO 2 1=1,10
24.0000 V=V+C( I)#( <B< I )/D)*CQS<RC( I) )-(SIN(RC< I ) )/<D#D) ) )
25.0000 2 CONTINUE
26.0000 C
27.0000 C. . ...CALCULATE THE RATE CONSTANT
28.0000 RA=6.02E23*3.141*R*R*DAB*V
29.0000 PRINT 20
30.0000 20 FORMATClOXr'DIF'»1IX»'FD'»12X>'K' )
31.0000 PRINT 1 0 DAB » V » RA
32.0000 10 FORMAT < 2X r3E13.3 >
33.0000 STOP
34.0000 END
35.0000 C
36.0000 C. . ...SUBROUTINE FOR DETERMINATING THE EIGENVALUES
37.0000 SUBROUTINE E6(AR»Z,D»BA)
38.0000 BA=AR/Z
39.0000 3 FB=SIN(AR)/COS(AR)~BA#D
40.0000 DFB=< Z/(COS(AR)**2))-D
41.0000 XA=FB/DFB
42.0000 BB=BA-XA
43.0000 ERR=ABS<(BA-BB)/BA)
44.0000 BA=BB
45.0000 AR=BA*Z
46.0000 IF <ERR«GT♦1♦OE-4)GO TO 3
47.0000 RETURN
48.0000 END



NOMENCLATAURE

Symbol Definition

A: iK^R^/l-K^, defined by Equation 3-16

fl.k2/nA*: — I—  __  R2 / n5 defined by Equation 4-15.

a ^ 4
A 1 _ _ _ _ _  R^, defined by Education 4-17.

1-k4A-,- Coefficient of the equations, defined by Equation

B* , defined by Equation 4-15.
1-k

ft.k4

^ .k2

f^.k2

3-18.

B , defined by Equation 3-16.

^4 , defined by Equation 4-17.

bi Coefficient of the equation, defined by Equation
3-18. 3-18.

C Concentration, 9m ole/c m3.
C Average concentration, gmole/cm2,
C* Concentration at the end of the first half time
C/\ Concentration of component A, 9m °le /cm3.



Initial concentration of component A, 9m o ^e /cm3.
Concentration of component A at infinite time, 
gmole/c m 3.
Concentration of component B, 9m o1e/cm3.
Initial concentration of component B, 9m ole/cm3, 
Initial concentration, 9m ole/cm3>
Coefficeint of the equaitons, defined by Equation 
3-18.
Defined by Equation 6-17.
Heat Capacity.
Diffusivity
Average distance between molecules A and B. 
Gravitational acceleration.
Degree of mixing.
Ratio of radius of inner cylinder to that of 
outer cylinder.
Chemical reaction rate constant.
Height of annulus.
Parameter of power-law model.
Defined by Equation 3-17.
Number of molecules A.
Parameter of power-1 aw model.
Rotating speed, rps.
Steric factor, defined by Equation 6-24.
Static pressure.
Radius of cylinder, cm.
Reaction rate of species i



Ill
r/\ Radius of molecules A, cm.
rg Radius of molecule B, cm.
T Temperature, °C.
t time, second.
V Velocity, cm/sec.
u Average velocity, cm/sec.

Vr , Vv Vz : Velocity in r-direction, O-direction and
z-direction, cm/sec.

X: Defined by Equation 3-24
X 1 Defined by Equation 4-17
X/\ Defined by Equation 4-17 Fractional conversion.
Y Defined by Equation 3-24.
Y 1 Defined by Equation 4-17.
Z: Collision rate, defined by Equation 6-8 .



Greek Symbol Definition
3.1: Eigenvalue, defined by equation 6-18
5 Unit tenor.
<5r Central-difference operator in term of
<Sq Central-difference operator in term of
5 (t) Unit impulse function.

Defined by Equation 3-24 
^2 Defined by Equation 3-24
6 Cylindrical coordinates
e n Defined by Equation 6-17.
u Viscosity
P Fluid density, cm^/sec.
2 Initial concentration variance.
2^  Concentration variance.

T Shear Stress
A Rate of deformation
n Angular velocity, radians/second.
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