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ABSTRACT

Title of Thesis:

Decentralized Optimal Control with Application to 

Dynamic Routing in Computer Communication Networks

Ning Wang, Doctor of Engineering Science, 1984

Thesis directed by: Professor of Electrical Engineering, Marshall G  Kuo

This research considers the dynamic routing problem of computer communication networks in the 

framework of decentralized control theory. The routing dynamics are modeled in terms of a state 

equation with multiple controllers. Routing, or control of message flow, is formulated as an 

optimal control problem with multiple decision makers. Each decision maker may have access to 

different set of information and work cooperatively to optimize a common system performance 

index.

Necessary and sufficient conditions for optimality are derived for a system with a deterministic and 

a stochastic traffic patterns under a linear information structure and a quadratic performance 

index. The resultant control strategies are examined with two extreme information cases: (1) 

complete information where all state information are available to every local controller through 

measurement or perfect communication, and (2) partial information where there is no 

communication among controllers. A  three node network is used as a numerical example to 

interpret the results.
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1. INTRODUCTION

In the formulation of traditional control problems it is generally assumed that the 

decision making process is centralized. That is, a single controller or decision maker has 

access to all sensor measurements and generates all control commands for the entire 

system as shown in Figure 1-1. This assumption of centralization in traditional control 

represents a special case of classical information pattern or nested-information structure. 

This implies that in the mathematical formulation of the problem one implicitly assumes 

that the central controller has access to all past measurements and controls and has instant 

recall of them. This assumption suggests, furthermore, the processing or computation for 

the control decision is taking place at a unique location. The notion of centrality is 

inherited by both the classical servomechanism and modern control and estimation theory 

which have been the dominating subjects for control engineering during the last three or 

four decades. In spite of many successful theories and applications, numerous researchers 

have come to realize that many systems with complexity cannot be handled within the 

existing framework.

When considering a large-scale system with several controllers or decision makers, the 

presupposition of centrality is no longer valid W £2l  Consider in Figure 1-2, each local 

controller receives only a subset of the total measurements and generates only a subset of 

the total decisions. Such decentralized control problems are characterized by so-called 

non-classical information patterns or non-nested information structure. What this means is 

that each local controller ooes not have instantaneous access to the other’s measurements 

and decisions. The restriction on information transfer between certain groups of sensors 

and actuators is one of the basic characteristics in decentralized control.
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1.1 Decentralized Control of Large-Scale Systems

1.1.1 Characteristics o f Large-Scale Systems

The control of large-scale systems has been an active topic of research for the last

few years. Recent progress have been reported in urban traffic control and transportation 

systems, water resources management and river pollution control, socio-economic systems, 

power systems load dispatch and frequency control, and communications networks routing 

and congestion control.

These large-scale systems often share one or more of the following common attributes:

• topologically configured as a network 

® consisted of more than one controller

•  characterized by geographical separation

•  featured correlated but different information to different controllers.

The control problems in most of the large-scale systems such as economic and social 

systems are of great complexity and at present have no general theory to solve them. 

However, the computer communication networks are relatively simple in the sense that 

many problems in computer communication can be described by simple models. It seems 

therefore that joining decentralized control theory and problems in computer 

communication forms a good basis for new research.

1.1.2 Information Structure

The issue of information plays a central role in large-scale decentralized control 

problem. Information can be informally defined as a commodity that improves decisions 

PI. In study of decentralized control, two kinds of information are often involved:

•  Information about the system model; this includes system dynamics, performance



index, and statistics of environmental disturbance. This type of information will be 

given in advance in our discussions and hence is called a priori information.

•  Sensor (or state) information about the system response; this includes measurements 

and possible communication from other controllers. This class of information is also 

referred to as the coupling information for it represents the effects of external actions 

that are coupled into the local process.

As described in previous sections the information aspect is one of the most important 

factors in control of a large-scale system with multiple controllers or decision makers.

Information in a multi-controller environment was first studied by Rander M with a 

static team problem*. He has proved that with static information structures, a unique 

globally optimal solution exists for the linear quadratic Gaussian team problems. Ho and 

Chu PI extended these results to dynamic Linear Quadratic Gaussian (LQG) team 

problem with the concept of nested information structure. This extension, however, is 

only for this special class of information structure, and it is well known that in the general 

case the optimal solutions are non-linear and are too difficult if not impossible to 

determine PI.

We shall formalize the above discussion in terms of a general model for a multiperson 

optimal control problem. Let us consider a decentralized system composed of N  

controllers indexed by i =  with output y  obtained in some processes given by

y  = g (“ £ )
where u is the vector of manipulated input (control) or action, £ is a random vector which

« A team can be viBualized as the nodeB of a network working- together to 
optimize a common performance index.



represents all the environmental disturbance affecting the output. Each controller receives 

certain information z,- and controls the decision variable n,-. It is clear that the controller’s 

success in optimizing a selected system performance index J  will depend on the quality of 

the coupling information it receives. In the most general case, the set of state information 

z =  [zi Z2,” '>zn] is a function of controls including actions taken by other controllers and a 

random vector £ which represents all the uncertainties of the external world that are not 

controlled by any of the members.

Zi =  hi(u,g)

where /»,•(*) is defined as the information function, and the collection of h = \ h \ h 2 " '  ,h ^ \  

is called the information structure of the system. The problem may have multiple goals 

(performance index) such as the case of an N-person differential game. However, in this 

research we consider the system with only one criterion. We denote the performance 

index common to all the members as

J  =  •J('Yi,'Y2,"*>7w) 
where y ,• is the control strategy,

Mi =  7 i ( z . ) ,  ' Y i ^ r  £

and r ,  is the class of admissible control strategies for controller i.

In this model, the controllers require a priori information on process g(*) (e.g. system 

dynamics), goal J  (performance), and disturbance £ as well as the sensor information z,-. 

Some concepts and definitions on information structure must be introduced at this point:

•  A system has perfect recall or perfect memory if at time t, the controller remembers 

perfectly what it has known and what it has done before. That is, any information the 

controller had at some time remains available to it at any later time.

« An information structure is said to be classical if all controllers receive the same



information and have perfect recall

An information structure is called static if there is no explicit relation between the 

control and information of different members.

*i =  h i ( 0 -

In other words, z(- is only the function of £ but is independent of what other controllers 

have done. It is dynamic otherwise.

Zi = h i( i ,u )

An information structure is called partially nested (PN) ^  if each controller is 

informationally superior to all of its precedents. That is, for each controller i and all 

its precedent j  (which act preceding to i) the information z j  can be generated from z,- 

in the sense that knowing z,- implies knowing z j.

A system is causal if what happens in the future cannot affect what is observed now. 

In other words, if the control action of j  affects the information z/, then, in a causal 

system, M; cannot affect the information z j.

A  class of information structure is called linear if z,' can be expressed in terms of a 

linear function of £ and some of the control actions other members have taken, i.e.

zi = H& + J^DijUj, i = l ,  2 , - - f f
]

where Hi and D ,;- are matrices of appropriate dimensions and are known to all the 

members. Let the dimensions of § and hi be n and m  respectively. The dimension of 

Hi is, in general, m X n , 0 S m < n  and all rows of Hi are independent. The number m  

is called the rank of the information structure. If flj has a full rank n for all i,  the 

information is complete; when m = 0, the information is null. In general, the 

information structure lies between these two extremes and is classified as incomplete or 

partial information.



1.1.3 Value o f Information

Intuitively, we can state that better information for all controllers implies better 

performance for the entire system. Therefore, the achievable optimal performance 

depends upon the specific information structure chosen. In order to compare alternative 

information structures, it would be useful to introduce the concept of value o f information. 

The value of information is defined as the improvement in performance due to the 

information, or

Value of Information = The best the controller can do with the information 

— The best the controller can do without the information

Translated into mathematical form, this is

VI = Mip  E{/(£,-y(z))} -  Mjn E{/(£,'y(z))} 

where

r  is the class of admissible control strategies with z

r c is the class of admissible control strategies which are independent of z

E  is the expectation over £.

We have briefly described the optimal control problem with multiple controllers and 

associated issues on information structure. In the following section, we shall introduce the 

computer communication networks and formulate the routing problem into the framework 

of decentralized control.



1.2 Introduction to Computer Communication Networks

During the last decade and half, we have witnessed the merging of the two most 

important technologies in this information age. A new discipline of computer 

communication networks was started as result of the integration of telecommunication 

engineering and computers. A  computer network is a facility for interconnection of 

autonomous computer systems and terminals for the purpose of data transmission among 

them. In terms of geographic scope, there exist two kinds of computer communication 

networks: the long-haul networks which often span tens to thousands of miles for 

intercontinental transmission and the local area networks which span distances of a couple 

of miles within a building or cluster of buildings. Since the major function of computer 

communication networks is to provide data transport capability among computers and 

peripherals they are also referred to as data communication networks and transport 

networks in some of the literature.

The motivations for having computer networks and distributed systems are many. 

Computer networks allow geographically dispersed users to share expensive computing 

power, databases, software, and specialized hardware devices. Computer networks also 

provide high reliability of services to the user by offering alternative sources of supply. 

Another reason to have computer networks is the superior price/performance ratio of 

smaller mini/micro computers over a large main frame.

Installed in 1969, the Advanced Research Projects Agency Network (ARPANET) of 

the U. S. Department of Defence is generally recognized as one of the pioneering efforts 

in computer communication networking. Many computer networks of similar type have 

been developed and deployed since then and even more are being planned around the 

world. Public networks such as TELENET TYMNET ^  and BPSS ^  in the United



States, DATAPAC IU1 of Canada, TRANSPAC P2! and CYCLADES [13] in France, EDS

in German, and DDX t15] in Japan are examples of many networks in operation.

1.2.1 Computer Communication Network Elements

A computer communication network may be partitioned into a communication 

subnetwork or (subnet) and a user-resource subnetwork as shown in Figure 1-3. The 

communication subnet is a collection of switching nodes interconnected by a set of high 

speed communication channels or links. The switching nodes consist of special 

communication computers and interface for the host and communication concentrator for 

low speed terminals. The major function of the subnet is data transportation. All user 

oriented processing and storage are handled by the user-resource subnetwork. The user- 

resource subnetwork includes computers and terminals as well as applications which 

provide services to the users of the network.

Three switching techniques are used for the construction of computer communication 

networks. Circuit switching originates from the telephone (voice) network where a 

complete end-to-end path must be established prior to commencement of data 

transmission. The path is held for the duration of the call. One of the alternative 

switching technique is called message switching. In message switching networks, messages
ur

to be transferred are first stored in the source node and then forwarded later to the 

destination node one hop at a time through intermediate nodes. The third technique is 

packet switching. With packet switching, a message is divided (packetized) into smaller 

units called packets. Packet switching also utilizes store-and-forward concept but each 

packet may be transferred to the destination via different routes. At the destination node 

packets of the same message must be reassembled (depacketized) before being sent to the 

receiver.



Each node represents a decision point and it has to make real time decisions on how to 

direct the different classes of messages and/or packets over the available links to their 

desired destinations. Routing is the selection of the particular path which data will take 

while traveling through the network to its destination node.

communication
subnetwork

concentrator

channel
links

switching
node

terminals

Host

Figure 1-3. Elements of a Computer Communication Network
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1.2.2 Classification o f Routing Strategy

In the design and operation of computer communication networks, efficient routing

strategies must be employed in order to achieve optimal network performance. The

importance of routing in computer communication can best be described by the following

quotes t17].

"... In the area o f complex data communication networks, such as the ARPANET, only about 

30 percent o f the network resources are used to transmit real information, while the remaining 

70 percent are used to transmit protocol (control) information. Sudden changes in demand and 

failures can set up dynamic instabilities ..."

The routing policies can be classified as static routing, quasi-static routing,and dynamic 

routing. A  pure static routing policy is time invariant, easy to analyze and simple to 

represent. Therefore, it is often used in the network planning stage. However, under 

heavy traffic fluctuation or component failures as is often the case in operation, a dynamic 

policy is required to cope with congestion and failure of the network. A quasi-static 

routing policy which may have some of the desired properties of both static and dynamic 

is also being used in many practical situations. With quasi-static routing policy, the routes 

are allowed to change only at given intervals of time or whenever the extreme conditions 

occur.

Based on whether the routes can be established centrally or locally, routing policies can 

also be distinguished as distributed and centralized policies. A  distributed policy can 

respond quickly to a local disturbance and need not rely solely on the availability of the 

control node. However because of the complexity of the problem, very little analytical 

work has been done so far.



1.2.3 Routing as a Control Problem

This section discusses the routing problem from a high-level control-theoretic point 

of view. Details of model and formulation are postponed until Chapter 2.

As described earlier, a computer communication subnetwork consists of a large 

number of nodes interconnected by communication links. Data, in the form of small 

packets, are entered into the source node by a user according to mutually agreed upon 

procedures called protocols These data packets are placed in temporary storage

(queue) and wait to be directed to their destinations via the intermediate nodes. At each 

node i, some routing decision must be made based upon the available local information so 

that the predefined network performance such as cost, delay, etc. can be minimized.

In the state space modeling of routing dynamics state variables are defined as the 

queue lengths at all nodes throughout the network, routing or decision variables are 

defined as the portion of the link capacity assigned for data transfer. From a 

decentralized control viewpoint, we let x  represent the state of the network, and u  denote 

the decision variables. The local information at the i ,h node has the pattern described by

zi =  ht(x ,u ) .

The collection of {h \,h 2 , " ‘,h ^}  is the information structure of the system. Because of the 

non-classical information pattern, the admissible routing strategies at the i th node are 

assumed to be of the form

ut =  yi[hi(x)].

The problem of finding the optimal routing strategies *y,-, may be loosely formulated as 

follows:

To find the routing strategies 'Y*€r,- for all i which minimizes the performance index 

of the network subject to constraints imposed by routing dynamics,



information structure and the form of the routing strategies.

In this research, we study the following two questions from the above formulation.

•  for a given information structure, what is the optimal routing strategy?

•  what is the impact of various information structure to a chosen network performance 

index?

1.3 Summary of Previous Work

1.3.1 Queuing Model

The best known existing analytical model for routing problems in computer 

communication networks is based on queuing theory In this model, several

assumptions are made on network status and traffic characteristics; the messages enter the 

node at a Poisson rate, the packet length is exponentially distributed, the storage at a node 

is infinite, and the network components are perfectly reliable. Under such assumptions, 

the average packet delay can be expressed as a function of average flow rates in the 

channels. The optimal routing policy is defined as the policy that minimizes the total 

delay. The problem of finding optimal routes in a packet-switched computer 

communication network can be formulated as a nonlinear multicommodity flow problem 

P°l This technique minimizes the total delay in the network in a steady-state sense and 

therefore the resultant optimum routing strategy is static and open-loop. In other words, 

the routing decision is constant in time and a function only of perfectly known average 

values of system and user parameters.

1.3.2 State Space Model

Segall ^  has introduced a model for message routing which is capable of rectifying 

the drawbacks of the queuing theory approach mentioned in the previous section. He



suggested a state space model to represent the flow of messages in a store-and-forward 

data communication network. The minimum delay dynamic routing problem is then 

formulated as a centralized optimal control problem. The solution for this centralized 

optimal control problem has been obtained in ^

A discrete version of the state-space model has been suggested by Meditch and a 

minimum-variance dynamic routing policy has been developed based on a stochastic 

control formulation. Such policies have the property of regulating queue lengths at all 

nodes throughout the network. Implementation of this algorithm requires instantaneous 

knowledge of the queuing error to a central routing authority. The routing strategy 

proposed is basically a centralized routing policy.

1.4 Thesis Overview

1.4.1 Objective o f thesis

The primary objective of this research is to study a class of linear decentralized 

control problems with a quadratic performance index and a forcing function. This problem 

can be viewed as the decentralized version of the classical servomechanism problem. We 

shall investigate the optimal control strategy for both deterministic and stochastic forcing 

functions with constraints on the information set.

The secondary objective is to consider the dynamic routing problem of computer 

communication networks in the framework of decentralized control theory. Based upon 

the concept of information structure, we shall exploit the optimal routing strategies.

1.4.2 Approach

Before getting to the discussion of our approach, it is necessary to give a high-level 

description of the model of the data flow in the network. (A detailed discussion will be
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given later in Chapter 2). It should be pointed out th/at the model introduced here is a 

variation of the original one suggested by Segall By following his definitions and 

notations, the state variables represent the quantity of data message (or queue length) 

stored at the nodes, distinguished according to the node of ultimate destination and the 

node of current residence. The control variables represent the flow of messages in the link, 

where each control represents that portion of a given link’s rate capacity which is denoted 

to transmission messages of a given destination. The inputs are the flow rates of messages 

entering the network from a user host or terminal. In this research we consider two types 

of traffic inputs; the first kind is a deterministic function of time and the second is a 

stochastic function with known statistics.

The dynamic equation of data flow can be represented by

i(0 =  +  r ( t ) ,  i = 1 ,2 ,. .^V

where x ( t ) ,  and r( t )  are the vectors of the state variables, control variables and

inputs respectively. In this context, the routing policy is the assignment of values for the 

Ui(t) which generally may be a function of external user demands r( t )  and queue length

*(/).

It is clear that all of the information required to make the routing decisions may not 

be available to the controllers due to lack of information channels or possible engineering 

or economic constraints.

Instead of the specific computer communication routing dynamics, in this research we 

shall consider a more general class of linear time-varying system which supersedes the 

original representation.

x ( t)  =  A (t)x (t)  +  +  r (0> i = l,2 ,..J N  ( 1 . 1 )
1= 1



Our approach is outlined as follows:

For the deterministic case, our approach is similar to that of Levine and Athans which 

was used for solving a centralized linear quadratic problem. We first transform the 

original performance, a function of both initial states and feedback controls (gain matrix), 

into a new performance criterion independent of initial states. The problem is therefore 

converted into a parameter optimization problem. Sufficient conditions for optimality can 

be acquired by solving the Hamilton-Jacobi-Bellman equation. Necessary conditions for 

optimality are derived with the Matrix Minimum Principle P5!.

Optimal control of network flow with stochastic input traffic can be posed as a 

decentralized servomechanism problem. We follow the approach used by Chong and 

Athans P6J who considered the control of a linear stochastic system with two controllers 

using a single performance index. The technical aspects of the extension is not 

straightforward. We have, in this research, a servomechanism problem with stochastic 

inputs. This additional input term causes a lot of complexity. We first transform the 

stochastic servomechanism problem into a deterministic problem with structure constraints 

on controls. Sufficient conditions for optimality are derived from the Hamilton-Jacobi- 

Bellman equation.

1.4.3 Summary o f Results

In this section we describe the highlights of our major results in this research.

Based upon the state space model of computer communication networks, we formulate 

the dynamic routing problem in the framework of decentralized control theory. The 

system dynamics is a continuous linear-time-varying differential equation as shown in 

(1.1). We have restricted ourselves to the special case that the information structure is 

static and a linear combination of the state variables (queue lengthes) and possible



observation noise.

Zi =  H ix(t)  +  © ,(0 , t = ( 1 . 2 )

where 0,- is a random noise with given statistics. The network performance is assumed to

be a quadratic functional of u and x .

J  =  E < x ( T ) , S x ( T ) >  + f [<*(0,G(̂ )*(0> + ̂  <«/(0A-(0“»(0>]*To 1 = 1
( 1 . 3 )

The necessary and sufficient conditions for optimal routing strategy are derived in Chapter 

3 for an iV-node network with deterministic traffic inputs. The conditions are summarized 

as Theorem 3.1 and Theorem 3.2. The optimal routing strategy for the i tfl controller 

requires the solution of a two point boundary value problem involving matrix differential 

equations. We demonstrate the computation of routing strategy by a simple three node 

example.

In Chapter 4, the routing problem under consideration is extended for the stochastic 

traffic inputs. Here, we impose the dimensionality and linear structure of the 

compensator. The necessary and sufficient conditions for the optimal routing strategy are 

summarized as Theorem 4.1 and Theorem 4.2 respectively. The same network is used as 

an example to interpret the results with stochastic traffic inputs.

1.5 Synopsis of the Thesis

The remainder of the thesis is organized as follows. In chapter 2 the state space 

model of routing dynamics for a data communication network is described. The dynamic 

routing problem is then formulated in the framework of decentralized optimal control 

theory.

In chapter 3 we give the solution to this optimal control problem for a system with 

deterministic input under a linear information structure. We begin by deriving the



sufficient conditions of optimality by the Hamilton-Jacobi-Bellman equation and claim that 

they are also necessary. The resultant control strategies are examined with two extreme 

information cases: (1) complete information where all state information are available to 

every controller through measurement or perfect communication, and (2) partial 

information where there is no communication among controllers. A three node network 

of ring structure is used as a numerical example to interpret the results.

In chapter 4 we investigate a system with stochastic input. Once again we derive the 

sufficient conditions of the optimal control and prove that they are also necessary as the 

case with deterministic input. The three node network example in chapter 3 is used to 

demonstrate the computation result.

In chapter 5 we summarize our results, present the specific contributions on our 

research and make suggestions for further work in the related area.



2. MODEL AND PROBLEM FORMULATION

2.1 Introduction

In this chapter, the state-space model of data flow in a stored-and-forward computer 

communication network is described in detail. This model for dynamic routing was first

introduced by Segall in t21L The model is based on a fundamental principle of

Conservation of Data Flow which can be stated as follows:

At any point of time, the rate o f change o f data accumulation at a node is the difference of

data flow entering to and departuring from that node.

The model does not consider individual pieces of data but rather considers the storage of 

data at each node broken down by destinations. The principle elements of the model are 

states, controls, and inputs which represent mathemaftically the three fundamentals of 

network operation: buffer storage, flow assignment and message input respectively. It has 

been shown that after appropriate normalization, the storage state (queue length) of the 

network at any time can be represented by an ordinary linear vector differential equation.

In this research, we consider two types of traffic inputs. The first type is a 

deterministic function of time representing a scheduled rate of demand. The second type 

of traffic is a random process with mean and covariance given. However, the knowledge 

of distribution is not required.

We begin with an introduction on the definitions and notations used in the following 

sections. Since we are discussing the network routing problem from the control system 

point of view, we shall use the term controller as a synonym of router. Our decentralized 

model can be seen as a direct modification of the model pioneered by Segall and Moss P2].
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2.2 Basic Elements of the Decentralized Control Model

We visualize communication networks graphically to consist of a collection of nodes 

connected by a set of links between various pairs of the nodes. The general functions of 

nodes and links have been discussed in Chapter 1. We shall formalize the definitions in 

this section.

Definitions

A network is a collection of nodes represented by N  =  (1 ,2 ,— ^V} together with a set of 

links between ordered pairs * of nodes. The link connecting node i to node j  is denoted 

by the symbol ( / j ) .  We assume that link ( i , j )  is a directed link and is thus different 

from link (j , i) .  Hence, a link is a simplex channel. We shall use two links for a 

bidirectional duplex transmission. Figure 2-1 illustrates the relationship of nodes and 

links in our model.

2 An ordered pair (0 ,b ) is an ordered arrangement of two elements CL and b .  
{a,b)  and \jb,a) are two different ordered pairs.
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Figure 2-1. Model of Traffic Flow 
Let the collection of all links actually existing in the network be

L  =  { ( j j )  , such that / N and there exists a directed link connecting i to j }

With respect to L,  we need for each i€ N  two index sets. Let E (i)  be the collection of 

exit links from node i, and I( i)  be the collection of incoming links to node i.

Symbolically,

E (i)  B  {/(IN : (t J )€ L }  

/ ( / )  s  { K N  : (l , i)ZL}

The user at each node in the network may input messages whose ultimate destination is 

any of the other nodes in the network. We characterize this message traffic as external 

traffic or inputs of the network.

The message traffic once entered into the associated node will be either immediately



transmitted on an outgoing link or stored for eventual transmission. Each node in the 

network may serve as an intermediate storage area for message entering on incoming links 

enroute to their destinations. Once a message reaches its destination node, it is 

immediately forwarded to the appropriate user without further storage. Hence at each 

node i € N  of the network at any point in time we may have message in residence whose 

destinations are all nodes other than i.

Let us imagine that at each node i'€N, we have (N-l) distinct storage space. In each 

of these places we place messages whose destination is a particular node in the network 

regardless of its origin. We also select the bit to be the unit of data stored at each space. 

However, the model presented in this chapter and the analysis followed in next two 

chapters are equally valid for other units such as bytes, messages, or packets.

We consider a situation where the capacity of the link is unlimited. That is, no rate 

capacity constraint on each transmission link is concerned. We shall also assume the 

storage areas containing messages corresponding to the state variables are infinite in 

capacity.

We define the basic network variables

Xj$t) = num ber o f  m e ssag e  b i t s  a t  node  i

w hose d e s t i n a t i o n  i s  node j .

r fo )  = e x t e r n a l  m e ssag e  a r r i v a l  r a t e  a t  n o d e  i 

w hose d e s t i n a t i o n  i s  node  j .

wi{(0 = m e ssa g e s  d e p a r t u r e  r a t e  a t  node i

th r o u g h  l i n k  ( i ,k )  w hose d e s t i n a t i o n  i s  node  j .

2.2.1 System Dynamics

We are now ready to describe the state-space dynamic equation for data flow within

a network.
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From the conservation of flow, at any node i the time rate of change of the number of 

the messages, with destination to node j ,  can be expressed as follows:

*fc) = rfc) -  y  « i(0 +  S  “jKO (2.1)
kfE(i) /«70)

for all nodes i and destinations j ,  where

E (i)  and / ( / )  have been defined in the last section.

The state of the network is represented by x f  which is the amount of data (queue 

length) at each node waiting to be transferred. The queue lengths are then the solution to 

the differential equations (2.1).

Through a simple transformation, the system dynamics can be rewritten in vector 

forms as

* ( 0  =  +  r(t)  ( 2 . 2 )
i = l

where, vector r  represents all the external traffic from network users. It is clear that the 

system equation (2.2) contains multiple controllers

2.2.2 Information Structure

The routing decision to be made at node i for a packet with destination j & i  is an 

assignment of the packet to one of the links exit from i. The routing decision generally 

depends upon the states of the network x  which represent the amount of traffic being held 

at all nodes. However, because our network is geographically distributed, to obtain a 

complete set of states is not always possible. In this research, we consider a situation 

where a local router has access to only a linear combination of a partial state information.

Taking into consideration possible noise corruption in the measurement process, we 

have
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Zi(t) = C i( t)x ( t) + 0 ,(0 ( 2 . 3 )

where z,- represents the information that the controller i can access and 0,- is the stochastic 

process for measurement noise. The dimension of 0; is equivalent to that of zt and the 

matrix Ct may not be full rank. Here, we have assumed implicitly the instantaneous 

availability of the state information to the measurement process. In designing many of the 

large-scale systems, additional information requires additional communication cost and 

likely also additional structure complexity.

2.2.3 Performance Index

Many criteria have been proposed for measuring the performance of a computer 

communication network. Typical performance criteria can be expressed in terms of 

average packet time delay, network throughput, queuing error, shortest path or, in some 

case, the cost of transmission.

The specific cost criterion used differs among the networks. Some networks used a 

fixed cost for each link in the network. We shall introduce a number of performance 

criteria for demonstrating the concept and models. However, our major concern in this 

research is a quadratic form of cost functional as discussed below in C.

A. Minimum Time Delay -

If x ( t )  is the amount of traffic in some buffer at time t, then

some period of interest [ fo ^ ] where T  is the final time such that the buffer is

to

denotes the total time spent in this buffer by the traffic that passed through it during

empty.
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The total delay across the network during \tQ,T\ is given by

D  =  f  f | ^ 0
To

dt  ( 2 . 6 )

where T is the time at which all buffers are empty. This performance index has 

been used in Segall’s formulation.

B. Minimum Queue Length

Another performance index used is the mean-square error of the queue length 

against a pre-determined reference queue length. It may be stated as follows:

Let

e( t)  =  x ( t ) - x  ( 2 . 7 )

where x ( t )  denotes the collection of which is the amount of data (queue length)

at node i whose destination is j .  x  is the desired queue length vector under a given

input traffic conditions. The criterion of performance to be minimized is the

covariance of (c (r)}

P ( t ) =  E[e(t)e '(t)]  ( 2 . 8 )

where E  is the expectation.

C. Minimum Cost - The performance index functional in this research is assumed to be 

in quadratic form as follows:

J  = E
T

< x ( T ) ,S x ( T ) > + J  [< *(0 ,G (fM 0>  +  iS  < « i ( 0 ^ / ( 0 « / ( 0 > ] *to 1 = 1
( 2 . 9 )

although we can argue that the cost for operating such a network is tariffed through 

the regulation agency. The quadratic functional is not necessarily exclusive. 

However, we must admit the choice is purely of academic interest.



2.3 Problem Formulation

We now have all the elements to state our decentralized optimal control problem. 

The dynamic routing problem of computer communication networks can be expressed as:

Find the routing strategies y * Cl"1,- for all i which minimizes the performance index of 

the network (2.9) subject to constraints imposed by traffic dynamics (2.2), information 

structure (2.3) and the form of the routing strategies.

We shall assume a linear structure for admissible control strategies. Details will be given 

in Chapter 3 and Chapter 4.
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3. DECENTRALIZED OPTIMAL CONTROL WITH DETERMINISTIC TRAFFIC

3.1 Introduction

The dynamic routing problem of computer communication networks has been 

formulated in the framework of decentralized optimal control in Chapter 2. In this 

chapter, we derive the optimal routing strategies for each controller and discuss the 

information structure under which the routing strategy can be synthesized.

We consider a specific situation that the traffic entering to the network is a 

deterministic function of time. The routing decision is then based on a priori information 

on network topology, the performance index, the statistics of initial state of congestion at 

a reference time to as well as the measurements obtained on-line. The information 

structure under study is assumed to be linear and static. Therefore, information available 

to a local controller is a linear combination of all or some of the network states. We 

further assume that the measurement can be obtained by each controller free of noise 

corruption. The network performance considered is a quadratic functional of states and 

controls with appropriate weight assigned.

We are concerned with the case that the control signal of each controller is generated 

via feedback from the local measurements. The structure of the feedback compensator is 

assumed to be linear and time-varying. With these assumptions, we are now ready to 

solve the deterministic decentralized control problem.

We begin by transferring the system dynamic equation to a closed-loop representation 

in section 3.2. The associated performance index is then modified accordingly to an 

explicit function of the control strategies. Thus, the original control problem is converted 

into a constrained deterministic optimization problem. In section 3.3, this constrained 

optimization problem is solved via the Matrix Minimum Principle and results are given in



Theorem 3.1 as the necessary conditions. We then derive the sufficient conditions for 

optimality by the Hamilton-Jacobi-Bellman equation in section 3.4.

traffic arriving to the network. This is a linear quadratic regulator problem with multiple 

controllers. We intend to provide the answer to the question of what control actions 

should be employed to clear a congested network? We examine the control strategy for 

two information structures: with full information and with only partial information 

available to a local controller. A  numerical example is given to demonstrate the 

computation and interpret the results.

3.2 Problem Statement

Consider a special case of linear routing decision and a network with N  routers which 

are represented by a set of differential equations

with states controls Ui(')€Rm‘, and outputs z/(‘)€J?*y. If A (t) =  0 in (3.1) then

Ct(f) are continuous function of time t  and the components of B[(t) are continuously 

differentiable functions of time t. The vector r ( t ) € R n is a deterministic traffic pattern 

entered to the network. It is assumed here that the ith controller has access only to the 

information zt- through measurement and possibly communication from other nodes 

regarding to the state x  at time t. The information matrix, C ,^ C y  when ii=j, may not be 

full rank.

The controller i makes decisions based on the available information by a linear time- 

varying feedback control law.

The subsequent discussion is restricted to the special situation that there is no external

( 3 . 1 )

* /(0  =  &(*)*(*) ( 3 . 2 )

the routing dynamics reduce to the form provided by t21l  The components of A (t)  and



Ui(t) =  Gi(t)zi(t), i = l , 2 , . . . ,N

where the gain G, (/) is a miXfq  matrix.

( 3 . 3 )

The performance index for all the controllers is assumed to be

7o 1 = 1
( 3 . 4 )

\

where te\tQT\, the initial state x (fo )~  xq is a random variable with Gaussian distribution

expectation; and < a ,b >  is the inner product of two vectors of a and b. Without loss of 

generality, we assume that the matrices Q (t) and /?,•(#) are symmetric and semi-positive 

definite. However, R i(t)  matrix may not be full rank.

The decentralized control problem can be stated as follows:

Given the dynamic constraint (3.1), information structure (3.2), and the mean and 

variance of the random variable x q ,  find the time-varying feedback gain G*(f) such that 

the network performance index J  specified in (3.4) is minimum.

Using equation (3.1) to (3.3), the closed-loop decentralized system is governed by

whose mean and variance are given by E{xq} = b* and E{xqXq} = 5<), respectively; E  is the

( 3 . 5 )

The solution of x ( t ) is given as

x ( t )  = O (f ,/0)x0+  fO(r,T)r(T)c?T ( 3 . 6 )

or

x ( t )  = <£(/,/0)x o + ^ M O

where

F ‘r ( t ) = f f p ( t  ,T )r (r )d j ( 3 . 7 )

<I>(f,fo) is the fundamental transition matrix which satisfies



■dt

i = 1
The performance index can be rewritten as

r

J = E J<  (Oxo+F'r),(D$x0+DFfr)
To

w h e r e  v

G  =  (Q + ^ C iG iR iG iC i ) .

After taking the expectation (3.8) is reduced to the following form:

( 3 . 8 )

( 3 . 9 )

/  =  tr jJ & D ® ^ + D ® m (F r)+ D & m (F r )+ D (F r ) (F r ) ]d t ( 3 . 1 0 )

where tr{*} denotes the trace of { }. Substituting (3.9) into (3.10), the performance index 

can be expressed as a function of G ,(f)

=  tr (i,i0) ( 2  (o+^  c ; ( i ) G ; ( t ) R ,( , ) c ,  <t)c, (<))<t(i,<0)s0 ( 3 . 1 1 )

1 =  1

+

+

( G ( 0 + i c / ( O G / W ( O G i ( O C i ( 0 ) ^ ^ ^ o ) m ( F V )
i =  l

]U

where F {r{t)  has been defined in (3.7).

The original problem may be restated as follows:

Given the dynamic constraint,



<i>(f,T) =  (A (0 +  f  BiCOGiCOC/CO)®^), ^ ( t,t) = /  ( 3 . 1 2 )
1 =  1

find the time-varying feedback gain G*(t) such that the network performance index J  

specified in (3.11) is minimum.

3.3 Necessary Conditions for Optimality

We shall derive the necessary conditions of optimality by employing the Matrix 

Minimum Principle. Let A(f) be an n X n  costate (or Lagrange multiplier) matrix 

associated with Then the scalar Hamiltonian function H  for the optimization

problem is given by

H  = E { <  ( # x 0+F'r),(D <I>x0+ D F 'r )  > }  +  tr{ <  F4>,A > }  ( 3 . 1 3 )

where D  is defined in (3.9), and

E  = A  + j^B iG iC i  ( 3 . 1 4 )
i = i

Since E{x0} ~  HJ and E{xqx0}=So, respectively; using the trace operator tr{ }, the 

Hamiltonian H  can be expanded into the following expression.

H  =  t r |  +  D<&m(Fry +  D<f>'m'(Fr) +  D(Fr)(Fr)'J j- ( 3 . 1 5 )

+  t r |F 4 > A '|

We are interesting in determining the optimal control strategy G*(t)  for all *. Equation 

(3.15) must be expressed as the function of G,-. Substituting (3.7), (3.9) and (3.14) into 

equation (3.15) yields



+  ( G + j t  C iG iR iGiCiy t> m ( r r y  
1 =  1

+(G + j t f ' i G ' i R i G i C d & m i F ' r )

+ (Q + f  Ci GiR iGiCi) (F 'r ) {F ’'r)  j

(
i - i  \  J

A'(A + _^BI-Gl-CI- ) o l

A necessary condition that Gi(t)  minimizes H  is that the following gradient matrix 

vanishes:

-^-1* = RiG*(Ci<&̂<S>‘Cl)+RiG:(Ci(Fr){<S>myCi) (3.17)

+ R iG !(C i ^ m ) ( F r y C i ) + R iG !(C i(F r ) (F ry c ; )

+^fi/A <E> C, = 0.

The optimal control strategy for the i tfl controller is

G* (0= - “R i ( t ) - 'B l ( t ) A ( t ) & ( t , to ) C l ( t ) y r x(t)  (3.18)
where,

¥f(0 = C,$2o$ C, + C,(FTr)(<E>m) C/ (3.19)

+ Ci (4>m) (F rr )  C /+ C,- (Frr )  (F7r )  C i .

The existence of \P'~1 will be discussed in section 3.5. Using the necessary conditions of

the Matrix Minimum Principle we obtain

Jg-|, = - A  (?) (3.20)
= -  -|gj-[ tr{<I)'D%^> + D*<Pm(Fry + <PD*'(Fr)m 

+ D*(Fr)(Fr)' + A F*0} ]

In order to attempt to determine a closed-loop control, we assume

A(f) = [FO+F'4> + Tfl]. (3.21)
Then,
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A (/) =  [PO +  P ' O  +  Tl]. ( 3 . 2 2 )

We substitute this relation into canonical equations (3.20) and determine the requirements

for a solution. The resultant equation is a second order equation of O . By setting the

coefficient of the same degree equivalent, we obtain

~ P (t )  =  D * (t)2 o + P (t)E * (t)+ E * (t)P (/), F (T )= 0  ( 3 . 2 3 )

- ir](t)= m (F ryD *(t)+ D *'(t)(F rym + 'r](t)E *(t), 'T|(7’) = 0  ( 3 . 2 4 )

where

■(,)= U o + J S s / W G r w c . w j

( 3 . 2 5 )

E '( t ) =  |A ( 0 +  Y B i( t)G K t)C i{ t) \  ( 3 . 2 6 )

and

<P(t,r) =  ( A ( 0 + ^ B i ( 0 ^ ( 0 Q ( 0 )  S ^ t) ,  4>(t ,t) = / .  ( 3 . 2 7 )

We shall summarize the conditions for optimality in the following Theorem.

Theorem 3.1 (Necessary)

The matrices G /(f), 4>((,fo)» and P (t),  T](/), £, where l€ [fo ,r]  defined by equations 

(3.18), (3.27), and (3.23) to (3.24) satisfy the necessary conditions for optimality provided 

by the Matrix Minimum Principle for the decentralized control problem under 

consideration.

It must be noted that the conditions listed here are only necessary to the optimal 

control. It is entirely possible that there are several solutions of these necessary conditions 

which are not optimal. We shall next prove that the conditions given here satisfy the



Hamilton-Jacobi-Bellman sufficient conditions for optimality.

3.4 Sufficient Conditions for Optimality

Define

=  tr ]  [<J>* (t ,0 « 2 ( t)+  j t  Ci(t)G /(t)F ,(t)G ,(t)C /(t) ) $ ( t ,*)£§ •
' L i = 1

28)

+ (GOO +  j t C i ( j ) G i ( j } R i  (t)G , (t)C;(t))<&* ( t ,0 » J  (F Tr ) '

+  (G 0 0  +  X l  C i i f iG i  ( t  )R{ (t)G , (t)C,- ( t) )  <I>*' ( t  , t )m ' (F Tr )
1= J

+  ((2(T) +  |c / (T )G /(T )F I(T)GJ(T )C i(T ))(F >)(F -r)']|r/t

Applying the Hamilton-Jacobi-Bellman equation gives

d V * m , t ) ,0  =  — min tr
dt Gt L  +

-  n̂ n trlo'CG+lc/G/FiGiQ)^

+ (Q + j t  CiG'iRiGiCi)<S>m(F'r)'
i = l

+ (G + i)  C ' i G ' i R i G i C i W m X F ' r )
i = l

+ (G + ̂  C/GiFfGiC.OCF^CFV)'
i = l

f dV* }+  l ^ - l  (A +  X fl.G iC i)®  

with the terminal condition

( 3 . 2 9 )

v*(<f>(7»,:r) -  o. ( 3 . 3 0 )

Since we have assumed that G*(t) achieves the minimum in Hamilton-Jacobi-Bellman

equation, we obtain from equation (3.29)



RiGiiQQZ0$  Ci) +RiG*(Ci(Fr)(<f>m) Ci) ( 3 . 3 1 )

+RiG*(Ci(^ m )(F ryc;)+ R iG;(Ci(Fr)(Fr)'Ci)

The optimal gain for the i,fl local controller is

g * ( o  =  - u R r  1b ; jj£-< t>  c ; v r 1 0 . 3 2 )

where

V i  = 'C i+ Ci (F7r)(<S>m)Ci ( 3 . 3 3 )

+ C i( p m ) ( F tr) 'C i  +  C ;(F Tr ) ( F Tr) 'C /’.

To solve for (3.29) with G* gain in (3.32) we assume the solution has the form

V*(<I>(f,T),f) =  tr[^ > 'F $  +  $ 7 l +  ̂ ] ( 3 . 3 4 )

Then, the optimal gain in (3.32) can be expressed as

G* = - u-Ri-lB i ( P ® + P '® + T ] ) ® C i V r 1 ( 3 . 3 5 )

It follows from (3.7) and (3.33) the matrix 'P j(f) in integral form is given by

V t( t )  = Ci(t)<t>* ( t,t0)^0 ^* '( t , to )C i( t )  ( 3 . 3 6 )

+ f Q ( t ) & ( f ts)r(s)m&*(t,to)Ci(t)ds
to

+J’C; (()**(». <o)mr'(i)®*(/,s)C/(0*

+ f S C i( t)< P \t ,s ) r ( !!y W ( t , z ) C : ( t ) d s d z
to to

Substituting (3.34) into (3.29) and equating the coefficient of <I> of the same degree, it 

implies that P(t), T](() and £(f) satisfy the following equations.

- P ( 0  = D * (t)2 0+ P (t)E * ( t)+ E * (t)P ( t) ,  P (T )  = 0 ( 3 . 3 7 )

- 'n ( 0 = w ( F r ) 'D * ( 0 + i > * '( ^ ) '* + ,n ( ^ * ( 0 .  'n ( ? > o ( 3 . 3 8 )
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-U t)= D * ( t) (F r )  (Fr)', i (T )= 0 ( 3 . 3 9 )

where D * (<) = |e (0+J  c; (<)G?' (<)R, Wo; (<)C; (<) j

and £•(()=  U(«)+ |;S ,W G ’(0C,(I)

Hence we can make the following conclusion:

Theorem 3.2 (Sufficient)

The sufficient conditions for optimality for the decentralized deterministic optimal 

control problem defined in equation (3.1) through (3.4) are given by (3.35) and (3.36) 

where <P(t,to), P ( t) ,  T|(/), and £(/) are the solution of equations (3.27), and (3.37) to 

(3.39).

It is noted that the necessary conditions for optimality given in Theorem 3.1 are also 

sufficient. However, equation (3.39) is only sufficient but not necessary.

3.5 Discussions

In this section, we consider the decentralized optimal control with different 

information structures. If the traffic input r —0, then the original problem becomes a 

decentralized Linear Quadratic Regulator problem. G* is reduced to

Gift) = -'iKr1(OSi(')(f(0'i1'('.'o)+f(<)'i>'('.'o))<i,'(<.<o)c,(()' 0 .40)

[ c , ( / ) 4. - ( I ,r tl) 2o < f ( ( , < o ) C , ( r ) ] ' 1

where P  must satisfy the Riccati equation (3.37). The results agree with the previous 

work by Levine and Athans P4h Conditions (3.38) and (3.39) are not required. The 

value of optimal performance index can be evaluated by



= tr[<l>*'(t,t0)P(t)<P* (/,f0)] ( 3 . 4 1 )

where P (t)  is computed from (3.34).

1. For the complete information case, every controller has access to all the state 

information at time t. The information matrix C; has full rank £,• for all i and 

therefore the inverse matrix Q -1 exists. The matrix G* is further reduced to

G i( t)  =  -  U Rr  1 (t)Bi (1)P (0 $ * ' 0  ,t0) C r 1 ( 3 . 4 2 )

2. For the partial information case, the information structure C; has a rank

Furthermore if /?,■ is not full rank, the gain matrix can be expressed as

G*(t) = - u - R t ( t ) B i ( t )  { p ( t ) ^ ( t , t o )  +  + TiCr))- ( 3 . 4 3 )

& X t , t o ) c i ( 0 W ( 0 + ( w - X i ( 0 +M Q w V i ( t ) v ? ( t ) )

where and /f,+ are the Moore-Penrose pseudoinverse of the matrices and Rj 

respectively and W is an arbitrary matrix with appropriate rank P7l

We have demonstrated here that the computation requirements for the optimal gain G* 

can be greatly reduced if every controller has complete information over the entire system. 

It is expected that, in general, a system of full information structure will achieve a better

system performance than that of partial information structure. We will verify this claim

by the following example.

3.6 Numerical Example

A  simple three node network given in P1! is used hfere. The network, as shown in the

Figure 3-1, has a single destination, node 2. We consider a special situation that there is

no external traffic involved. For simplicity of the notation, we drop the superscript 2. 

The dynamic equation in decentralized form is:
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*1
x 3 o - «  +

“ 31 
“ 32 I

( 3 . 4 4 )

*t = Ci- Xl I i =  1 3X3l,  i ( 3 . 4 5 )

Assume the cost of routing or the performance index for all the controllers to be 

minimized is

J  = E j ( x } + x % + u }  + u%)dt ( 3 . 4 6 )

The initial conditions E{xo}= 0  and E.{xqXq}=1  are given.

The algorithm developed for the output feedback centralized problem in could be 

extended for the computation of G* . This algorithm has the property that the cost 

decreases at each interaction. Part of the computation has been performed by using the 

LINPACK software package P®1. The procedures are summarized as follows:

Step 0:

Step 1:

Step 2:

Step 3:

obtain an initial value of G o(0 by setting Po(t) = 0  and 

<&()(*,to)= /  *n equation (3.37).

compute P n + i( /)  by integrating the Riccati equation (3.37) 

backwards in time with the terminal condition P n + i( /)  =  0 and 

Gn(t)  from Step 0.

compute + i(f»fo) by integrating equation (3.27) forward in time 

with initial condition ^>n + i(^Oj^o)= ^-

compute Gn(t) as in Step 0.

A. Full Information Case -

Z[ — l-x
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In this case, C,=/, the available information are same at node 1 and node 3. This 

is a centralized or classical inform ation structure.

The computer results of optimal gain are given by

GT
0.444  0 .543 
0 .543  0 .592

and

0.155  0 .690  
0 .690  0 .172G  3 =  -  

where the optimal control are

Ml =  

and

m3 =

Ml 2 
Ml3

M31
M32

=  G\

=  G*y

x 1 
* 3

* 1
* 3

The associated optimal performance J* =  0 .402.

( 3 . 4 7 )

( 3 . 4 8 )

( 3 . 4 9 )

( 3 . 5 0 )

B. A  Partial Information Case - No communication on the state variables is allowed in 

this case. The information available to the node i is its own state value. That is

*1 =  [ 1 0 ] *1
* 3

( 3 . 5 1 )

* 1
* 3

* 3  =  [  0  1  ]

where C\ =  [ 1 0  ] and C 3 =  [ 0  1 ].

The computer results of optimal gain for the partial information case are given

by

GT 0.099  0 .032 
0 .032  0 .097 ( 3 . 5 2 )

and
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0 .046  0 .025  
3 “  "  0 .025  0 .047

where the optimal control are

( 3 . 5 3 )

u i =  

and

u3 =

“ 12
“ 13

“31
“ 32

G \ x  i ( 3 . 5 4 )

-  G 3'X2. ( 3 . 5 5 )

The optimal performance for this case is J * =  0.857.

It is interesting to note from Figure 3-2 that the perform ance of the network is 

improved as more information available to every controllers.
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U13

«31

Figure 3-1. A Three-Node Network with Single Destination

J

u
.277 .302

u} u;

Figure 3-2. Plot of the Performance vs. Control
variables with full information (o) 
and partial information (A) structures.

Jp= optimal performance for partial information 
J}= optimal performance for full information
u£a total control for partial information 
u}= total control for full information

( m= V uJ+ m3 )



4. DECENTRALIZED OPTIMAL CONTROL WITH STOCHASTIC TRAFFIC

4.1 Introduction

It is well known that in centralized deterministic optimal control there is almost no 

difference between a control program and control strategy. A control program represents 

an open loop system where the control signal is determined only from a priori data 

irrespective of how the process develops. However, a control strategy represents a closed 

loop system where the control signal at time t  depends on the state of the process at time 

t. They are equivalent in the sense that they will give the same value to the system 

performance index. This is mainly due to the fact that disturbances are approximated by 

a deterministic function which is known a priori in modeling the systems. The optimal 

feedback in this case is simply a function which maps the state space into the space of 

control variables as we have developed in Chapter 3. There is no dynamics involved in 

the feedback.

When considering the problem of controlling of stochastic linear systems, the dynamics 

of the feedback arise because the state is not known and must be reconstructed from 

measurements of output signals. The process of reconstruction of state variables from 

noise-corrupted output measurements is called filtering. The problem of optimal linear 

filtering for linear dynamic system was first solved by Kalman and Bucy and was 

applied to find an optimal feedback control for stochastic linear systems with a quadratic 

performance criterion. The optimal control strategy under above conditions has been 

shown containing two distinct procedures: (1) find a state estimator which produces the 

best estimate of the state vector of the system from the measured outputs, and (2) find the 

optimal feedback law which gives the control signal as a linear function of the estimated 

state. This is referred to as the certainty equivalence principle, which emphasizes the fact



that the optimal feedback will treat the estimated state as the true state, or the separation 

theorem, which indicates that the control problem is solved via two separate procedures: 

estimation and control.

The deterministic decentralized control problem in Chapter 3 can be generalized to 

have a stochastic forcing input and noisy information measurements. As the case in 

decentralized deterministic formulation, the routing of a computer communication network 

may be characterized by multiple controllers each controlling different routing decisions 

and having access to different congestion information of the network.

Our problem is to find the optimal decision rules for all controllers such that the 

chosen network performance index is minimized. Due to the limited information 

exchange in a large-scale network, we cannot expect the optimal control strategy is linear 

as has been shown by Witsenhausen. However, we must constrain the admissible control 

strategy to be linear in order to obtain an answer to the optimization problem.

We now consider the network routing problem and include the following conditions in 

our formulation.

•  Traffic entering to the network from each node is a random process with known 

statistics. In many network problem formulations, it is often assumed that the 

incoming traffic to a node under consideration is Poisson. However, in this research, 

we relax the requirement such that the distribution of the process is not assumed.

® In chapter 3, the information structure is defined to be a linear combination of 

network states which perfectly describe the traffic congestion of the network. 

However, the measurement of on-line information considered in this chapter is 

subjected to noise corruption.



• We further impose constraints on the structure of l!he compensators that can be used 

by each controller. The reason is that the optimal compensator may be infinite 

dimensional under the limited information structure. We shall use an n ,fl order linear 

dynamic compensator driven by its own measurements for each controller H.

In section 4.2 the original problem of selecting the optimal parameters for the 

compensator is transformed into a deterministic optimal control problem involving matrix 

differential equations. The necessary conditions for optimality are deduced from the 

Matrix Minimum Principle in section 4.3. We shall derive the sufficient conditions of 

optimality through the stochastic Hamilton-Jacobi-Bellman partial differential equation in 

section 4.4.

It is noted that when the controllers have different information sets, the resultant 

optimal controls are not given by the separation theorem as pointed out by many 

researchers. Hence the controls are not obtained by applying the deterministic optimal 

control strategies on the state estimates. This inseparable property of the optimal control 

problem from optimal estimation can also be verified from the coupling of state and 

costate equations as indicated in Section 4.3 and Section 4.4.

4.2 Problem Statement

Consider a particular iV-Node network which is described by

x ( t )  =  A (r)x(r) +  ^ B i ( t ) u i ( t )  + r ( t )  ( 4 . 1 )
1 = 1

Zi(t) =  C i(t)x (t)  + 0 ,(0  ( 4 . 2 )

where state variables x (-)€ /?w, control variables « , ( • ) € and output or information

variables The continuity requirement on matrices A (t) ,  2?;(/) and C/(/) are

same as that in (3-1) and (3-2). It is assumed that the traffic entering to the network

r ( t ) € R n now is a random process with zero mean and variance given by
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ca v{r ( t) ,r ( t)}  =  % ( t ) S ( f - T )  ( 4 . 3 )

e i ( t ) e R k' , i = i , 2 , - j v  are mutually independent noise processes with zero mean and

covariances given by

c0v{0,-(;)>0i(t)} =  ® ,(/)8 (/-t) (4 .4 )

The matrix ®,- is assumed to be symmetric and positive definite. Assume that the initial

state x (to )—Xo is Gaussian with mean

E {r(/0)} =  m  ( 4 . 5 )

and covariance

tt>v{x(r0),x(fo)} =  2 o (0  ( 4 . 6 )
The information structure for ith controller consists of a priori information as well as the

on-line measurements. That is,

y,(r) =  Z ,(/)( j{  a  p r i o r i  information } 

where

Zi(t) = f e ( j )  ; fo ^ jssr}  ( 4 . 7 )

This equation indicates that the controller i has perfect recall on its measurement from to

up to time t. We furthermore assume that the system is causal. We claim a control

function is admissible if

« t(0  = y d * ,  Z /(0J ( 4 . 8 )
and 'y,’s satisfy the Lipshitz condition*. Our problem is to determine an admissible 

control u*(t) of the form (4.8) for all i such that the following performance criterion is 

minimized.

• The function sa tis f ie s  the Lipschitz condition if
where f ,  g ( : C r , the class of continuous functions 

defined in [ tO , t ] , and Ot is a constant.



J  =  E  < x (T ) ,S x (T )>  + f  [<x(t),e(t)x(0> + £ < « i ( 0 M 0 « i ( 0 > ] d t  ■ ( 4 . 9 )
to 1 =  1

We assume that the matrices S, Q ( t) and /?;(/) are symmetric and semi-positive definite 

Matrix /?/(f) may still not be full rank.

The dynamic routing problem is now formulated as a stochastic decentralized control 

problem where each controller makes a routing decision based upon its information on 

traffic congestion together with a priori information such as traffic statistics, performance 

criterion, network topology {A(f) ,B (f)) etc..

We shall constrain the control functions of i to a linear transformation of the outputs 

of linear filters driven by the measurements.

where J?,• is the state of n-dimensional filters and D ,(f), E[(t), G ,(/), H i(i)  are matrices 

of appropriate dimensions that are to be determined. Our problem is to determine the 

gain matrices D /(f), Ei(0> G ,(/), Hi(t),  and initial filter states x,-(fo), where 

1 =  1 ,2 , such that the controls given by these constraints are optimal. We shall 

reformulate this problem in terms of a deterministic problem. Substituting equation (4.2) 

and (4.10) into the state equation (4.1) and filter equation (4.11), we obtain

Ui(t) = D i(t)£ i(t) , i =
The filter equation is assumed to be the form of

( 4 . 1 0 )

( 4 . 1 1 )

( 4 . 1 2 )

X i i t ) = £K0xt( 0 + G t(0CK0^(0+^(0A(0^(0+^(0e/(0-
The estimation error is then given by

( 4 . 1 3 )
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i - i ,  = {A -E t+ f B p r G,Pt)x -  f B p f x - x ] )
Jj*\ f t i

+ Ei(x—£i) +  (Bi~Hi)DiXi — GiQi + r , i= 1 ,2 ,.. .J f

We further require x ,(0  to be unbiased estimates of Jt(/) for all i.e., 

’E { x { t ) - x i( t ) \Z f t ) }  = 0, i =  l ,  2, ...JSl

E { i ( 0 - i / ( 0 lZ X 0 }  =  0,

for all t. Taking the conditional expectation of (4.14) yields 

Ei(t)  =  A ( t )  +  £  B { t ) D { f )  -  G ,(»)C,(t)

H,(t) -  i=l,2,-^r i * j

Also the initial conditions become

Xi(t0) =  m , i =  l , 2 ,•••,# .

Thus equation (4.14) has the form

i - i i  = -  f B p / x - x )  +  E i ( x - x i )  -  + r
/*}

=  -  f s p j ( x - x j )  + ( A + E i + £ B p r G iC i) (x -X i)
JZ\ IZ.X-ji=i

-  GiQi +  r > i =  l ,2 , . . .^ V

Combining equations (4.1) and (4.19) into a matrix form, gives

1(0 = A(t)l(t) -  B(0«(0 + r(0
where

( 4 . 1 4 )

( 4 . 1 5 )

( 4 . 1 6 )

( 4 . 1 7 )

( 4 . 1 8 )

( 4 . 1 9 )

( 4 . 2 0 )
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X X• A X—X] X—Xi Oi
X-X2 A 02
X-X3 X-X3 ®3

/  = • / = • 0 =
.

x -i/v x - x N 0/v

All - S i D i — B 2D 2 ............... -  B nD n

0 A22 —  B 2D 2 .. .
-  B nD n

0 - f i j D , A33 ...
-  B nD n

0 — b 2d 2 A44 •
• - f l l D j — b 2d 2 — S 3D 3 ••

:

0 - B P  1 -  ^ 2 ^ 2
: : :  :: A m

where

=  A + i t B P j
j= i

A 2 2 =  A + ^ B p  j - G \C \

A 3 3  =  A + ^ B p  j—G 2C2
fA

A44 = A+jj^ BpJ-G3C3
1 A

A m  =  B P j ~ G N - \ C N- \
;= i
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0 0 • • 0
G  i 0 • • 0
0 g 2 • • 0

0 0 ■ * Gn -

Define the second moment matrix ^ / ( f )  as E { /(f) / (f)}. We shall derive M*/ (f) by 

first solving /(f)  from equation (4.20).

/(f)  =  <I>(f,fo)/(fo) +  J ® ( t , T )  +  [r( t )  -  B ( t ) 0 ( t ) ] < / t
to

where

4>(f,f0) =  A (f)O (f,f0), ^ (fo ^o ) =  /•

Then

( 4 . 2 4 )

( 4 . 2 5 )

m  I 'm
to

( 4 . 2 6 )

<S>(f,f0)/(fo) +  / ^ ( f ,t2)[ r ( t 2 )  -  B ( t 2) 0 ( t 2)  ]dr2
to

Expansion of (f) is given in APPENDIX 4A.

Since r(f )  and 0 (f) have zero mean, and r ( f ) ,  /(f) , and 0(f) are mutually 

independent, taking expectation of (4A-1) gives

¥ i(t) =  4 > (f,fo )^ /(fo )^ (f^ o ) +  j ^ ( f , T l ) ^ r (T1)8 (T l-T 2)0 '( f ,T 2)rfTl<iT2(4 .2 7

LL  ~ a . .

)

+ ||< t> (f ,T i)B (T l)^ 0(T i)8 (T i-T 2)B'(T2)4>'(f,T2)rfTi£/T2

where
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¥/(*) -  E {/(0  /'(/)}
^ ( / - t )  =  E{r(f) r'(f)} = cov{r(f)r'(0} 
¥ 9(f) -  E{0(f)0 (t)}  =  cov{0(O0'(t)}.

The components of are

0 !  0 0
0 @2 0
•  •  0

0 0 0

0
0
0

©'N

From the property of 8(f) functions,

/ / ( T ) 8 ( T - c ) r f T  =  / ( c ) ,  t \< C < t2

the second term of (4.27) yields

( 4 . 2 8 )

j* JT^ (f ,Tl ) ^ r ( t i  ) 8( t  1 -  T2) ' (f ,T2)rfTl C?T2
t o w

=  / < K f , T 2) % ( T 2) <I> '( f ,T 2)< /T2

= J $  (f , t )  ̂  (t)^* (t , t )  d r
to

Similar property is applied to the third term of (4.27). Thus (4.27) can be written as

¥ / ( 0  =  Q i M V i f y W M  +  S ^ t »Ty9 r ( 'd ^ i ( t ir)dT
to

Differentiation of (4-29) with respect to t (details see APPENDIX 4B) yields

'i '/W  =  A ( t )% ( t )  +  V i( t)A '( t)  +  B ( t ) V 0(t)B '( t)  +  ¥ r (f)

On the other hand (f) may be expressed as

( 4 . 2 9 )

( 4 . 3 0 )
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¥ /  =  E{M'} = E  {

X
X X

X -X ] X -X i
x - i 2 X -X 2

•  A A
X - X 3 X - X 3

• •
• •
. •

x - i / v

£iH

( 4 . 3 1 )

The outer product of (4.31) can be expanded into a matrix.

x x ' x ( x  — x j )

( x - i , y  ( x - x O C x '- i i )
( x - x 2) x ' ( x - x 2) ( x ' - x i )

( x - x N) x  ( x - x N) ( x - x \ )

x ( x ' - x N)
(x - X jKx - X w)

( x - x N) ( x - x N)

( 4 . 3 2 )

Taking the expectation of the matrix (4-32) gives

¥ , ( ( ) «

moo moi niQ2 m03 ••• mow
m\o mu m]2 m13 ••• mw
m20 m21 m22 m23 — m2Ar

m/\o m/vr] /n/v2 mw3 m m

( 4 . 3 3 )

The initial condition of 'P / is then
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¥/(*o) =

So+ m m '  So So 2o *•* 2o
So So So So -  So
S q So S q S q ■" S q

So So S q So *" So

Here we note that

moo +  m u  ~  mio -  moi =  * i* i' 
moo +  m 22 ~  m20 ~  mo2 =  X2 X2

moo +  m,-,- -  ntio -  mQi = X&'

moo + m N N  ~  m m  ~  m QN =

Let us introduce a new matrix 0 ( f )

Q =

0  +  y D iR iD i — D \R \D \

D \R \D \
D 2R 2 D 2

D 2R 2 D 2

— d nr nd n

D \R \D \
0
0

—  D 2 R 2 P 2

0
— D2R2D2

0

0

-  D nR nD n

0 
0 
0 
0 
0 
0

-  d nr nd n

( 4 . 3 4 )

( 4 . 3 5 )

( 4 . 3 6 )

A

Multiplying matrix Q  with 'P/ and taking the trace, we have



= tr{0m oo+^ moo+D\R\D\m\\+D2R2D2m22H------

-D\R\D\m\Q—D2R2D2nt2Q—D2fi.->P2m3/o------- D'̂ R^m^o

—D\R\D\mQ\—D2R2D2niQQ.~D:sR?PimVi DN^NmON}

= tr{0moo+ j j^ D iR iD i [moo+mZI- -  mt0 ~  m0l]}
A

Multiplying matrix S  with M') and taking the trace, we have

( 4 . 3 7 )

tr{5 - tr{S moo}

=  tr{S E [ x ( t ) x ( t ) ] }

=  E{x ( t )  S  x ( t ) }

We have shown that J  defined in (4.9) can be written in the following form:

( 4 . 3 8 )

J  = t r [ 5 ^ / ( r ) ]  +  tr jf  [Q (t)% (t) \d t
to

where

( 4 . 3 9 )

S  =

S  0 0 
0 0 0 
0 0 0 
0 0 0

0 0 0 0

Details of the proof is given in APPENDIX 4C.

The original problem has been transformed into a deterministic problem and may be 

stated as follows:

Find the matrices D *(t), and G*(t), where z =  1 ,2 ,...^V subject to the constraints

¥ / ( / )  =  A ( f ) ^ / ( 0  +  ¥ /( / )A '( f )  +  B ( t ) V Q(t)B '(t)  + V r (t) ( 4 . 3 0 )

with ^ / ( / 0) defined in (4.34) such that the performance criterion (4.39) is minimized.



4.3 Necessary Conditions for Optimality

The necessary conditions for optimality and associated two-point boundary value 

differential equations for a stochastic linear quadratic regulator with two controllers have 

been given by Chong and Athans However, the problem considered in this chapter 

includes an additional forcing term r  (input traffic) in the system equation as seen in (4.1) 

and the total number of controllers is generalized to N . Thus, in this chapter we are 

investigating an N-person servomechanism problem.

Let A(f) be the 3nX3« costate matrix associated with The Hamiltonian

function for this problem is

H = tr [g ^ /]  +  tr[ (AVi +  ¥ ,A' +  BVqB + ^ r)A' ]. ( 4 . 4 1 )

Using the Matrix Minimum Principle t25! the necessary conditions for D(- and Gt- to be

optimal can be derived as follows:

'i'i(l) =  +  * l W r W  +  fl( /)'P 9(t)B (/)  +  ¥ , ( , )  ( 4 . 4 2 )

= ^l(< o).

Assume that the Lagrange Multiplier has the form of

A (0  = p ( 0 ^ i ( 0  + p (0  

Then,

-  P (f) =  Q (t) +  P (t)A (t)  +  A ( 0 * ( 0 .  P (T ) =  S  ( 4 . 4 3 )

-  p ( 0  =  P '( t ) B ( t ) V e( t ) B ( t )  + P '( t ) V r (t) , P(T ) = 0 ( 4 . 4 4 )

The conditions for optimality are:

Condition 1:

0 =  "UgH* =  ~  2 l iP'^lIiCi +  1 =  1 ,2 , ( 4 . 4 5 )

Condition 2:
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0 =  l ^ - l *  =  ^ A ( / 0  -  / , ) > / ( / ;  -  /,)  +  X ^ ^ / C 7; -  *)> (4 .4 6 )

i = l , 2 , ~ J f
We shall summarize the results into the following Theorem.

Theorem 4.1 (Necessary)

The optimal control matrices to the optimization problem specified by equations 

(4.30), (4.34), and (4-39) are given by the following expressions:

D,(<) =  -  f f f ' M i S i W A ' W X ' ; - / , ) '  [ ( / o - / , ) ' 'P l ( 0 ( f - 4 ) ] ‘ l , ( 4 .4 7 )

i=1 ,2 ,- A

Gi(t) =  1= 1 ,2 , . . . , #  ( 4 . 4 8 )

where ^ / ( f )  is the solution of equation (4.30) with M^(fo) given

V i ( t )  =  A ( 0 % ( 0  + +  B ( t ) V Q( t ) B ' ( t )  +  ¥ r(f)
and P (f)  is the solution of equation (4.49) with terminal condition P (T )

-  P ( t )  =  < 2 ( 0  + P ' ( t ) A ( 0  +  A ‘( 0 P ' ( 0 ,  P ( T )  = s  ( 4 . 4 9 )

-  p( 0  =  P ' ( 0 B ( 0 V e ( 0 B ' ( 0  +  P ‘( 0 V r ( 0 ,  P( T )  =  0. ( 4 . 5 0 )

These are only necessary conditions, and it is possible that there are several solutions of 

these necessary conditions which are not optimal. We shall derive the sufficient 

conditions for optimality in next section.

4.4 Sufficient Conditions for Optimality

Let

= j ( % ( 0 , 0  =  t r [S > ,( r ) ]  +  trj* [ Q (0 % (0 )d t  

The Hamilton-Jacobi-Bellman equation then implies that

( 4 . 5 1 )
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+ tpig, t r |e « W ( 0  + (J £ - ) '  M W O  + ^(<)A « )

+  B (O 0 (O B (O  +  'M O l !  =  #

with V(^/(r),r) =  tr[SV{(T)].

A A

Expression of A, Q , and B  in terras of identity matrices. Define

/ 0 0 0
0 I 0 0
0 0 I 0

.
h  =

.
h  =

•

IIA

•

0 0 0 /

Then the matrix

A 0 0 • • 0
0 A 0 • • 0
0 0 A  • • 0

0 0 0

( 4 . 5 2 )

( 4 . 5 3 )

can be expressed as
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7  0  0  - 0 7  0  0  - 0

0  7  0  - 0 0  7  0  - 0

0  0  7  - 0 0  0  7  - 0
......................... A •  •  •  •  •  •  •

0  0  0  - 7 0  0  0  - 7

=  ( 70  +  /  1 + I 2 +  -  +  In )  A  ( 70  +  /1  +  12+  -  +  /a t ) '

A
The matrix A  of (4.22) can be expressed as

A  =  (/o +  I \  +  h  + — +  /w) A (/o + I \  + h  + — +  /w)
+  IqB \D \[Io ~  ^1] +  “  ^1] +  1 [^3 ~  7j]

+  745 iD 1[74 — / 1] +  — +  InB \D \[In  -  / 1]
+  IqB2D2[Io — Z2] +  I \^ 2 ^2 [ I \ ~  I ’A  +  I 3B 2 D 2 U3  ~  ^2]

+  I 4B 2 D 2 U4  ~  h ]  +  * • +  Inb 2d 2Un ~  ^2]
+  IqB 3D 3[Iq -  73] +  IiB sD silx -  73] +  I2B^D2[I2 — 73]

+  74fl3D 3[/4 -  73] +  — +  InB 3D 3[In  -  73]

+  I qB nD h[Iq -  IN] +  I \B ^D ^[I\ -  7/v] +  I2B nD n [I2 — In ] 
+  I^BnDn IU ~  J/v] +  "• +  In - iBnD n [In - i ~  In ]

-  I \G \C \I \  -  I 2 G 2 C2 I 2  ~  InG nC nIn

A  =  (70 +  7i +  72 +  — +  In) A  (70 +  I\ +  72 +  — +  IN)

+ f ' P i D i V j  ~  ' i l  +  f j f t M L i i  -  h \  +  • •
S?  IS

+ f  i p M h  -  /»]' -  2 'P f / i
0

A  — (Iq + I \  + I 2  + " '  + In ) A  (7 o  +  I \  +  I 2  +  ■" +  In )

+  2 . J L ' m V i -  ' J  -  i ' p p / i
i f f - 1 i - i

By using the same technique, we have

(4.54)

(4.55)
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Q =  IoQIo + IoD iR iD M o ~  / j ]  +  h D ^ D x{Ix -  70]

+  7oD27?2D 2[70 — 72] +  72D2/?2D 2[/2 ~  / 0] 

+  7oD3^30 3[7o -  73] +  73D 3/?3D 3[73 -  7o]

+  •••

+  IcP nR nD n Uo ~  In] +  InD nR nD n Un  ~  ^o]

Q  =  IoQIo + I0 f D j R p { I 0 "  / J  “  ^ i p p p j j o  ~  q
j=\ r=i

or

Q = IoQIo +  I j ) D p p j ( I o  -  I j ) ‘■
r  i

We can express ^ e ( f )  in the following form:

M*e(0 =  E{8 0 } = E  {

0 , ®i
e2 ®2
e3

•
®3

e e

E(OiOj) 0 0
0 E(0!02) 0
o o E(e!03)

0 0 0

0
0
0

E(® i Oa0

( 4 .5 6 )

( 4 .5 7 )

where 0 j, 02. » 0/v are independent.



- 59 -

®! 0 0 
0 ®2 0 
0  0  © 3

0 0 0 "  0;

0
0
0

w

Then,

0 0 0 
0 G 2®2G2 o 
0 0 G 303G 3

0  0 0

0
0
0

Gn &nGn

-  I\Gi®\G\I\ + I2G2&2G2I2 + + InGn®nGnIn ~ j t 1 P P P /  j
y=i

In order to get a closed-loop control strategy, we let

V (¥ /(0 ,0  = tr[p (0^ /(0  +  p (o ]

where P  is symmetrical. Then

(w r] = p ( i )

From equation (4.52)

T T  +  S ’® * 1 Q ( t ) v t (t)  +  p '( t)[A (? y 9 i( t)  +  ¥ , ( o a ' ( 0

+ + Vr(t)] |  = 0

To find G t, we let =  0

( 4 .5 8 )

( 4 . 5 9 )

( 4 . 6 0 )

( 4 . 6 1 )
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a|r a {/>■(- $j p p w > -  'Ht/pi'G'/]) + f / p p p nUKri j= 1 j- 1 j= i
or

-  IiPViliCi -  liP  ViIiC'i +  + W tG i& i =  0

Since P , SP) and ®, are symmetric matrices, equation (4.62) reduces to

-  2 IiP^iIiC;  +  2 1'i9lIiGi®i =  0  

From which we get

Condition 1.

G iit)  =  *‘= 1,2 , . . . a .

To find D*,

5 tr3D, ^ ( / 0 -  I j ) D j R p p 0  ~  + P l f j t i p D p j  -  I i ) ' ^ l

r l  /**'*

+ W B i q
F 0 ' = i

RiDi(Io -  Ii)'ViVo -  /«) +  R pi(10 -  / / ) '^ i ( /0 -  //)

+ ^ ' / ^ ' ( / y  -  / ,)  +  |)B ,7 } P  ¥ , ( / ,  -  / ,)  =  0.

Since /?,•, *P/ and P  are symmetric, we have

2 *,D ,(/0 -  Ii) V lQ j ~  /,) + 2 £ 5 ,7 y P ^ (/y  -  /,) = 0, i = l,2 ,- 

Condition 2

)f=Q

o , ( 0  =  -  k t  ’(>) r h )-  [ ( /0- / , )  I ' / W t f - A ) ] "

j*  7
i =  1 ,2 ,---TV.

Taking the partial derivative of (4.59) with respect to t, we have

( 4 . 6 2 )

( 4 . 6 3 )

( 4 . 6 4 )

( 4 . 6 5 )

JV. ( 4 . 6 6 )

( 4 . 6 7 )
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The right hand side of (4.68) is equal to the right hand side of (4.45). This is a first 

order equation of M*/ (t). By utilizing the property of trace operation

( 4 . 6 9 )

The optimal control must satisfy the following conditions:

-  Ht) =  &(t) +  n ¥ ( t)  +  Mo'nt), ht) =  s
-  p(<) =  />'(<)S(0’5'e(')B (0  +  P(T )  =  0 ( 4 . 7 1 )

( 4 . 7 0 )

The sufficient conditions for optimality are summarized as Theorem 4.2.

Theorem 4.2 (Sufficient)

Equations (4.64), (4.67) and (4.70), (4.71) are also sufficient conditions for the 

decentralized optimal control problem defined by equations (4.1) to (4.9).

We have proved that the conditions for optimality are necessary and sufficient.

4.5 Discussions

In this chapter the dynamic routing problem is considered in the framework of linear 

stochastic decentralized optimal control of cooperative type. That is, all controllers 

(routers) in the network work together as a team to optimize the same network 

performance.

We have assumed that the on-line communication between routers is prohibited so that 

the information structure is limited to the static type. However, we must emphasis the 

fact that the information sets of any two controllers are different, i.e.

This is true even when the C,s are identity matrices (or states are fully observable) and 

the measurement noises have the same statistics, z; and Zj are in general different, since



01 and 02 are assumed independent. Thus, the problem we consider here has a 

decentralized and non-classical information structure.

As proved in P61, the matrices (T/1?//,-) and [(/o—/,■) M/,/( /o —̂//)] are both positive 

definite* hence they have inverses. However, if the matrix R{ is not full rank, the optimal 

Di is expressed as

n , ( o  - -  « ,+ ( o i f l ; ( < y > ’( o ^ i( 0 ( / / - / i) - [ ( / o - / 1) ^ ( o ( /
/*«

where /?,+ is once again the pseudoinverse of matrix /?,.

It should be noted that the implementation of the optimal routing strategies can be 

carried out in two phases: the parameter optimization (to find D*, G*) can be performed 

off-line in advance for all routers in a centralized manner, but the transformation of 

measurements into control signals (to compute u*) must be done on-line locally in real 

time.

4.6 Numerical Example

We use the same network given in chapter 3 to demonstrate the computation and 

numerical procedures. The network under consideration is shown in Figure 4-1, has a 

single destination node 2. We once again remove the superscript 2 for simplicity of the 

notation. The stochastic dynamic equation in decentralized form is:

*1
*3 o ~l][;“ 12

“13 + 1 0 “31 + n
- 1 - 1 “32 >2 ( 4 . 7 3 )

A real, symmetric matrix ia positive d e fn ite if for all real vectors JC^O we
have x  % x > 0 .
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*t = cr X\
X3 + 63 , i = 1,3.

We assume additional information on incoming traffic and measurement noise.

cov{r(f),r(-r)} =
1 0 
0  1 ■ S ( f - T )

( 4 . 7 4 )

( 4 . 7 5 )

cov{6i (O ,03(t)}  =
1 0 
0 1 •8(f—r)

The initial state x(tQ) is Gaussian with

E{x(f0)} =  [1, 0]'

( 4 . 7 6 )

( 4 . 7 7 )

cov{x(f0),x(fo)} =
1 0 .

0 1  8 ( t - r ) .  ( 4 . 7 8 )

Assume the cost of routing or the performance index for all the controllers to be 

minimized is

J  = E ( 4 . 7 9 )

We can obtain the optimal gain matrices D \ ,D 2  and G j, G2 by solving the two-point 

boundary value differential equations using the method as the one in Chapter 3. The 

procedures are summarized as follows:

Step 0: To obtain an initial value of Gjo(0» A o (0  by setting P o(t)= S  and 

substitute ^ i 0(to) in equations (4.64) and (4.67).

A A A

Step 1:

Knowing G;o,Ujo» we compute A , Q , B  and then find Pn + \ by 

Step 1.

To compute Pn + \ (t)  by integrating the equation (4.70) backwards 

in time with the terminal condition Pn + i( t)= S  and Gn(t) from
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Step 0.

Step 2:

Matrix pn + i(f) can be solved by equation (4.71) with po(f)=0 .

To compute M*4,+1(f) by integrating equation (4.40) forward in time 

with initial condition *P/n+1(f0).

Step 3: compute Gn (t) and Dn(i)  as in Step 0.

We once again examine the cases with full information and partial information. The 

computer results of optimal gain are given by

A. For Full Information Case, C i~ I ,  then z,=0,'. Each controller can access to all the 

noise corrupted state variables. The optimal control matrices are:

G l
2 .371  1.148 
1.148  2 .272

and

( 4 . 8 0 )

G \ = -
2 .2 0 2  1.095 
1 .094  2.331 ( 4 . 8 1 )

D \ = -
1.777 1.841 
1 .842  2.016

and

2 .155  1.690 
1 .690  2 .172D l = -  

where the optimal control are

and

m 12
m13 D \ • x\

A*3

( 4 . 8 2 )

( 4 . 8 3 )

( 4 . 8 4 )

*
M3 = M31

M32
=  D*y x\

A

X3
(4.85)



The associated optimal performance J*  =  1.47.

B. Partial Information Case - W e let

Wz, = [1  0 ]
*3  I

+* 3  =  [ 0  1  1 |*3 j

where C\ =  [ 1 0  ] and C 3  =  [ 0  1 ]. The optimal control matrices are:

( 4 . 8 6 )

( 4 . 8 7 )

<77 =  -

and

G*3 = ~

0 .552  0 .188  
0 .188  0 .793

0 .702  0 .195  
0 .194  0 .831

( 4 . 8 8 )

( 4 . 8 9 )

D ,  =

and

D l =

1 .012  0 .236  
0 .237  0 .473

0.098  0 .334  
0 .334  0 .797

where the optimal control are

«i =

and

*«3 =

A

“ 12
“ 13

= D*y * 1
A

x 3

«31
“ 32

= D*y X\
A

X3

The associated optimal performance J * = 2 .66.

( 4 . 9 0 )

( 4 . 9 1 )

( 4 . 9 2 )

( 4 . 9 3 )

The performance depends critically on the amount of information available at the time the 

value of the control signal should be determined. W e claim that better information make 

better decisions. This is proved to be true even in a stochastic environment.
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«32

«31

Figure 4-1. A Three-Node Network with Single Destination

J
2.66

47

1.27 1.55
4

Figure 4-2. Plot of the Performance vs. Control
variables with full information (o) 
and partial information (A) structures.
b optimal performance for partial information 

JJsa  optimal performance for full information
«po total control for partial information 
«/=> total control for full information

( u=V u?+u2 )



APPENDIX 4A

® (t,to ) l( t0) + /<£(f,T)[r(Ti) - fi(Tl)0(Ti)]rfTi
to

<t>(t,tQ) l ( tQ) +  |<I>(f,T2)[ r(t2) - B(t2)0(t2) ]<*t2

(4A.1)

Multiplying (4A.1) item by item, yields

= <z>(t,t0)i(t0) i ( t0)<t>'(t,t0) (4A.2)

+  / [ $ ( * , fo ) f (* O y (T )< E > '( f ,T 2)  -  <J>(f,t0) l ( t o ) 0 ' ( t 2 ) B  ( t 2 ) o ' ( / ,T2) ] r fT 2
*0

+ fP to M T O lX to m V o ) -  *(^Ti)fl(Ti)e(Ti)l’(̂ o)«*'(̂ 'o)]rfTi
'0 t /

+ / / | ^ >(f >Tl)® (Tl)®(Tl) r  (T2)^,(^T2) -  4>(/,T l)r(T l)e'(T2)fi'(T2)<I>'(l,T2)
to to v \

-  ( t 2)0 >  ( l ,T 2 )  +  W T ]rfT 2
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APPENDIX 4B

¥ ,(1 )  =  6 ( M o )^ ( fo )0 '(M o )  +

+ f$ ( t ,T ) 'ty r(T )& (t,T )dT  + f& ( t ,7 ) 'P r(7 )& (t,7 )d 7
to to

+ ® ( t ,t )V r( t) & ( t , t )  +  j6 ( f ,T ) B ( T ) ¥ e(T)<l>'(f,T)r/T
to

+  ^ ( M j B W 'I 'e C T ^ ^ T ) *  +  4 > (f,f)B (f)^ 0 (f)B '(O ^ '(^ O

V / ( 0  =  A (t)
<0

+ f&(t,7)*Fr(7)<P(t,7)d7
to

+ '(*,*()) + / o (t,7)B(t)'I'0(t)$'0,t)d7

+ J ,7) ^ ( 7)$ (i,t)c?t A (f)
to

With the aid of (4.29), equation (4B.2) reduces to (4.30)

% (t)  =  * (? )% (* )  +  ^ ) A ' ( t )  +  B ( t )V s ( t )B '( t )  + % (t)

( 4B. 1)

( 4B. 2)

( 4 . 3 0 )
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APPENDIX 4C

u'iRiUi =  tr [/?,!<,«,■] =  tx^DjjCjjc^D,]

=  tr A  E { x , i }]

= trfD/BjD̂ moo + mu -  mi0 -  m0l}]

From the property of trace 

x Q x  =  tr[Qxr ]

E{x Qx} = tr[0E{jor }] -  tr[emoo]

Then, from equation (4-28), we have

=  f t r [ Q m m  + DiRiDiimm + mu -  mi0 ~  moi)]dt
to ; = 1

=  tr{(2  m x t ) }

(4C.1) 

(4C.2)

(4C.3)

(4C.4)

(4C.5)

Follows from equations (4-28), (4-29) and (4-31) that 

J  =  t r [ s > , ( r ) ]  +  t r |  [Q W 'M O l*



5. CONCLUSIONS

5.1 Discussion

As stated in Chapter 1, the objective of this research is to study the dynamic routing 

problem in the framework of decentralized control theory. The routing of a computer 

communication network can be modeled by a differential equation with multiple 

controllers. Each of the controllers has access to only a limited amount of traffic 

information and makes routing decisions so as to minimize a common network 

performance functional. This approach gives a distributed routing strategy which can 

adapt dynamically to the observed traffic situation. This formulation also suggests a 

methodology to analyze the traffic measurement and routing strategy design from 

information theoretic points of view.

In this chapter, we attempt to review in perspective the accomplishments of the 

preceding chapters. In Chapter 1, we provide a brief overview of the theory of 

decentralized control and an introduction to computer communication networks. We 

highlight the information structure which is the major difficulty encountered while solving 

a decentralized control problem. As the first step toward deriving the distributed optimal 

routing strategy a linear dynamic state space model is described in Chapter 2 which is a 

variation of Segall’s model with multiple controllers. We associate with the model a 

quadratic performance functional which may be considered as the tariff artificially 

imposed to the network users. The traffic measurement seen by a specific controller is a 

linear combination of network states with possible noise corruption. But not all the states 

are available to every controller. The desired minimization of the performance functional 

results in a decentralized linear optimal problem with constraints on the form of feedback 

control strategy, information structure, and network dynamics. The model is sufficiently



general to represent both a deterministic and a stochastic demand environment.

We now digress a moment to discuss the meaning of the so-called optimal solution of a 

control problem. In the context of centralized control, it is known that the optimal 

feedback control for a linear quadratic system can be constructed directly from a complete 

set of state variables. This represents the case of optimal state feedback. The control 

strategy that minimizes the performance functional is called the optimal control. 

Frequently the state variables of a linear system are not available for feedback purposes 

and one must generate the control signals from output measurements which may contain 

only a limited number of state variables and are often corrupted by measurement noise. 

This situation is referred to as the optimal output feedback and the resultant control 

strategy is called suboptimal control in some of the control literature. In general, the 

output feedback strategy causes a degraded yet acceptable system performance.

Having formulated the decentralized optimal problem, the remainder of the 

dissertation is devoted to developing a technique for finding the feedback solution for the 

cases in which the inputs are deterministic functions of time and stochastic processes 

representing the random demand of the network users.

The optimal control strategy under the deterministic formulation is developed in 

Chapter 3. We utilize the Matrix Minimum Principle to derive the necessary conditions for 

optimality. The procedure is complicated and non-trivial due to the appearance of the 

forcing term in the system dynamic equation. These conditions have been proved to be 

also sufficient by the Hamilton-Jacobi-Bellman partial differential equation.

We modify our formulation to the stochastic environment in Chapter 4. The traffic 

pattern now is modeled by a stochastic process with known mean and variance and the 

traffic measurement is subjected to the disturbance of Gaussian noise. We employ an n-



dimensional filter with a simple structure to generate the estimates of the state variables, 

which is then operated on by gains to produce the control variables. The stochastic 

control problem with multiple controllers is converted to a deterministic control problem 

and then solved by the Matrix Minimum Principle. We derive the sufficient conditions 

with specified information structure for stochastic setups. We also confirm that the 

optimal controls are not given by the separation theory.

Throughout the development we have exploited the linearity in system dynamics, 

information structure, admissible control and the structure of the filter to obtain many of 

our results. However, the conditions we have derived for both deterministic and 

stochastic formulations involve the solution of non-linear two point boundary value 

problems with matrix differential equations.

5.2 Summary of Results

In this section we describe briefly the primary results of the dissertation in the order 

in which they appear.

In Section 3.2 we transform the open-loop representation of the original decentralized 

control problem into a closed-loop form and pose the optimal control problem as the 

parametric optimization problem. In Section 3.3 we develop the necessary conditions of 

optimality associated with the decentralized optimal control problem with a general linear 

and static information structure. We also prove the important result that the necessary 

conditions are also sufficient. This is usually true only in a centralized environment with 

classical information structure but not in decentralized environment in general *. Section

• Another known exception ia the ayatem with partially neated information 
atructure such aa with one-atep delay information.



3.5 discusses the issue of the information structure using a special case where no external 

traffic is entering to the network. This is corresponding to the mode of network operation 

where one desires to relieve the network congestion by inhibiting the external user traffic 

and getting rid of the current message backlogs stored in the nodes. We use a small 

network of ring structure to illustrate the computation results. This example has been used 

in Segall’s work. This is considered to be a purely academic example and is not chosen to 

prove the utility of this approach to a real life design.

Chapter 4 is devoted for the solution of the stochastic decentralized case. The 

approach is very close to the work done by Chong and Athans. We have, however, 

generalized the two persons regulator problem into an N  person decentralized 

servomechanism problem. We reformulate the stochastic control problem to a 

deterministic problem and look for the conditions for optimality. We present the 

necessary conditions in Section 4.3 and sufficient conditions in Section 4.4. We use the 

same network example to illustrate results for the stochastic case.

5.3 Contributions

In this dissertation we present a study of the dynamic routing problem of computer 

communication networks in the framework of decentralized control theory. Unlike the 

work done previously in state-space modeling and control theoretic solutions to the routing 

problems, our approach yields a distributed routing strategy. The resultant routing 

strategy in both deterministic and stochastic cases has dynamic and closed-loop properties. 

In addition, we suggest a methodology to study the area of information structures and the 

optimal routing strategies. This leads to a very important subject of signaling channel 

design for many communication networks particularly the integrated voice-data networks.

From the decentralized control point of view, it is generally believed that the sufficient



conditions for optimality are not available or very difficult to find. This is particularly 

true for problems involving non-classical information structures. The difficulty arises, in 

the decentralized case, from the lack of precise understanding of the meaning of principle 

o f optimality which is the basic tool for deriving the sufficient conditions. We find a 

complete set of feedback solutions to a meaningful linear decentralized control problem 

for both deterministic and stochastic cases. Of particular interest is that our solutions 

satisfy both necessary and sufficient conditions for optimality.

The essential contributions of this research may be summarized as follows:

• We have introduced a new analytical model for problems of dynamic routing in 

computer communication networks. It is a modification of Segall’s with multiple 

routing controllers. This model allows us to formulate and investigate the routing 

problems in the framework of decentralized control theory.

• We have derived the optimal feedback for a class of decentralized optimal control 

problems with deterministic forcing inputs (decentralized servomechanism). This 

achievement was considered to be a significant contribution to the decentralized 

optimal control literature.

•  We have extended our formulation to have stochastic forcing inputs. The conditions 

(necessary and sufficient) for optimality were established by extending the work of 

Chong and Athans to N  controllers.

5.4 Suggestions for Future Work

We view this work as an initial investigation into the application of decentralized 

control theory to problems of dynamic routing in communication networks. The 

decentralized formulation is particularly useful in analyzing a large-scale network spanning 

nationwide and even worldwide. We have made a number of idealized assumptions in the



process of formulation of the problem: for instance, quadratic performance index, 

instantaneous state information to reduce the complexity of the problem. The routing 

decisions at each node still require an extensive computation effort. Further 

simplifications must be made and efficient algorithms must be obtained for any practical 

applicability. However, the results we have obtained can provide valuable insight into the 

dynamic routing problems.

We can extend our work in two directions. In the context of computer communication 

networks, we may modify the model to include the transmission delay of state 

information. A more realistic cost functional such as the total packet delay can be used for 

the evaluation of network performance. Based upon our model, we can formulate a 

multi-level structure in terms of hierarchical decentralized control which will provide the 

so-called delta-routing strategy P°l.

The possible extension in the decentralized control is seen as an open end. Although 

many successful stories have been reported in decentralized control with non-classical 

information structure, the problem with dynamic information structure generally is still 

unresolved. An associated problem arisen during our investigation is the issue of stability 

and controllability of the network and their relationship with various information 

structures.
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