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ABSTRACT

Title of Dissertation:

MATHEMATICAL SIMULATION OF
PROTEINS SEPARATION IN A PACKED BED

Jing James Huang

Doctor of Engineering Science, 1984
Dissertation directed by:

Dr. Ching-Rong Huang
Professor & Assistant Chairman

Department of Chemical Engineering & Chemistry

The generalized adsorption models are developed to
simulate the unsteady state mass transfer behavior in a
packed column. Based on the nature of adsorbent particles,
the adsorption models may be classified into two categories:
(1) +the surface adsorption model, (2) the pore diffusion
model. In the first model, it is assumed that the internal
diffusion is negligible, and the adsorption rate is determined
by external diffusion and surface adsorption. In the second
model, the effect of internal diffusion is considered as
significant as that of external diffusion. For both models,

the effect of axial dispersion in fluid phase is emphasigzed.



A total of four different kinds of adsorption models are

solved analytically- two 1n each category.

In the modelling of adsorption process with axial
dispersion (dispersion model), the boundary conditions
provided in published literatures are inadequate to describe
the real situations. In this study, a novel and rigorous
approach using the mass conservation law is employed to
set up the proper boundary conditions. Two different sets
of boundary conditions are used for the dispersion model;
one set is specified by the continuity equation of adsorbate
at the inlet of the column (at z=0), and the other set is
characterized by the total material balance of adsorbate
over the entire column. The analytic solutions are
presented as dimensionless effluent concentration (CA/CAO)
versus effluent volume or elapsed time in terms of the
variations of system parameters. These results provide
gquantitative information for the design and scale-up of
packed bed operations. Moreover, the proposed adsorption
models are verified experimentally with the system of
hemoglobin- albumin- CM sepharose- DEAE sepharose. The
theoretical predictions of concentration variations are

shown to be a good representation of experimental data.
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CHAPTER I

INTRODUCTION

Separation processes are of unique and fundamental im-
portance to the chemical process industries. The importance
of separation as a chemical engineering unit operation lies
in the fact that the main objective of most chemical pro-
cesses is to produce a product with a higher degree of puri-
ty, and this purpose could only be achieved by isolating the
impurities from the products. Therefore, separation may be
defined as an operation which isolates specific ingredients
from the mixture usually without a chemical reaction taking
place. In most separation processes, the concentration or
composition of mixture(solution) changes due to the mass
transfer of specific chemical species onto adsorbent and
back into solvent, which are also known as mass transfer

operations.

There are many chemical engineering processes that uti-
lize the unsteady state mass transfer operation in a packed
bed. The most common examples include the adsorption column,
the ion exchange column, and the chromatographic column. The
adsorption process could best be represented by a typical

packed bed operation. Usually, the equipment of adsorption
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process consists of a column packed with sollid particles that
have adsorbing characteristics. A fluid mixture is then
passed through the column and mass transfer occurs between
the fluid phase and the solid phase. Since the solid remains
stationary and the composition of solid phase changes with
time, the packed bed operation is an unsteady state mass
transfer process. The packed bed adsorption process has

the advantages of simple and convenient operation, and the
cost for its applications is relatively low compared to

other continuous processes (22,40). The range of convention-
al applications of packed bed operation has been found in
such diverse fields as the purification of gases, the re-
covery of valuable solvent from a waste effluent, the con-
centration of valuable solutes from liquid solutions, the

purification of water, and the waste water treatment.

The principles of packed bed adsorption operation have
also been adapted to cyclic separation processes such as
parametric pumping operation, cycling zone adsorption, and
the simulated moving bed operation. The basic ideas of
parametric pumping operation were first introduced by
Wilhelm and his coworkers (37,38). The operation of para-
metric pumping involves the reciprociating flow of a fluid
mixture to be separated through a fixed bed as shown in Fig.
1. One or more of the fluid components can be physically
or chemically adsorbed onto solid(adsorbent). The coupling

of flow reversal with a change of a thermodynamic intensive
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variables( i.e. temperature, pressure, electric field, ionic
strength, pH, or affinity) will induce the separation. The
parametric pumping operation was initially developed to sepa-
rate the organic compounds. Now, it is applied to separate
bilochemicals ( 7- 12 ). The cycling zone adsorption was
first developed by Pigford and his coworkers (27 ). This
process is very similar to the parametric pumping operation
except that it utilizes the unidirectional fluid flow. As
in parametric pumping, the separation of cycling zone ad-
sorption is caused by a peroidic alternation of the process
control variables in the column. Theoretical analyses of
cycling zone adsorption by Pigford et.al. indicated that the
separation attainable with N zones in series 1s the same as
that attainable after N cycles in parametric pumping. The
most important difference between parametric pumping oper-
ation and cycling zone adsorption is that the continuous
feed input and product withdrawal in the later process, and
low cost of design and operation in former process. The
process of simulated moving bed represents a method of sepa-
rating the species by selective adsorption from the liquid
solution in a fixed bed of adsorbents. This process is
generally used to simulate a countercurrent flow of liquid
and solid phases without actual movement of solids as shown
in Figure 2 (5). In this process, the bed is divided into

several zones( adsorption, desorption, regeneration, etc.)

by the position of external streams. By continuously shift-
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ing the position of external streams, the separation process
can be practiced in each zone. The simulated moving bed op-
eration has been commericalized by the company named Uni-
versal 0il Product(UOP) ( 2, 3, 31) for recovering paraxylene
from hydrocarbon mixtures, extracting normal paraffins from
kerosene, and separating the fructose from corn syrup. In
recent years, the principles of chromatographic separation
have been extended to modern liquid chromatography ( 4,35 )
for the separation of proteins, enzymes, and other blochemi-

cals.

The engineering design of fixed bed adsorption system
is closely tied to the column dynamics. The studies of
column performance of a packed bed adsorption involve par-
ticularly the breakthrough curve of effluent concentration,
or the variation in effluent concentration with respect to
time or the volume of effluent. Figure 3 ( 40 ) shows the
transient movement of the adsorption wave and its corre-
sponding changes in effluent concentration( breakthrough
curve). Consider the case in Figure 3, a binary fluid
mixture containing a strong adsorbate with concentration
Co 1s introduced into the upper end of the packed bed where
the bed is initially free of adsorbate. As the solution
continues to flow down, the adsorption zone moves downward

as a wave, at a rate which is much slower than the linear

velocity of the fluid through the bed. In the begining,
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the uppermost layer of solid adsorbs most adsorbate, so that
the effluent from the bottom of bed is free of adsorbate, as
shown in point a. At point b in the Figure 3, roughly half
of the bed is saturated with adsorbate but the effluent con-
centration of adsorbate is still substantially zero. At
point ¢, the lower portion of the adsorption zone just hits
the bottom of the bed, the concentration of effluent rises
to some value. At this point, the system is said to have
reached the break point. From Figure 3, it can be seen that
the effluent concentration at point d has nearly reached the
initial value Co. This point d 1s sometimes called as ex-
haustion point; it means that the bed is full of adsorbate,
and it must be regenerated to restore its adsorptive capaci-
ty and to recover the adsorbed materials. To deslgn and op-
erate a packed bed adsorption process, dynamic data in the
form of breakthrough curves are usually needed. In order

to avoid excessive laboratory work and pilot plant facili-
ties to obtain such data, adsorption models are used to pre-
dict component breakthrough curves based on the available

equilibrium relationship and mass transfer data.

A number of models have been developed to simulate the
adsorption and ion exchange separations in a packed bed.
These models are usually based on the assumption that the
rate of adsorption is controlled by one or a combination of

the following mechanisms: (a) the external resistance due



to the diffusion of adsorbate molecules through the stagnhant
film surrounding the solid particle, (b) the internal dif-
fusion of adsorbate molecules through the porous network of
solid particles, (c) the rate of adsorption onto the surface
of the adsorbent, (d) the axial dispersion of adsorbate mole-
cules in fluid phase. Referring to the adsorption process
described above, the adsorption models may broadly be classi-
fied into two types based upon the nature of adsorbent parti-
cles: (1) the surface adsorption model, and (2) the pore dif-
fusion model. In the models of first kind, the size of pores
inside solid particles is assumed extremely small than that
of adsorbate molecules, so that the internal diffusion phe-
nomena is disregarded. In the second type of models, all
mechanisms controlling the adsorption process are taken

into account.

Early in 1947, Hougen and Marshall ( 19 ) presented a
mathematical model to simulate an isothermal packed bed op-
eration. They neglected the effect of axial dispersion in
the fluid phase. In that proposed model, Hougen and Marshall
assumed that the equilibrium relationship between liquid
phase and solid phase is linear, and the adsorption process
is controlled by external diffusion and surface adsorption.
Similar work has been done by Lapidus and Amundson (23) to

investigate the effect of axial dispersion both in equilibri-

um case and non-equilibrium case. Chao and Hoelscher (6 )
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studied the simultaneous axial dispersion and surface ad-
sorption process in a packed bed, the method of moments was
proposed to correlate experimental results instead of ob-
taining an analytic solution. Zwiebel et. al. (41,42,43)
investigated the external diffusion transport mechanism and
attributed the difference between adsorption and desorption
to the nonlinearity of adsorption. Bird et. al. (1) and
Mickley et. al. (26) presented the surface adsorption model
as a case study by neglecting the axial dispersion term, and
obtained an analytic solution in integral form. The same
case was also investigated by Tien and Thodos (39) by
assuming the equilibrium isotherm in the form of Cz=k1+kZCX
where C: and CZ are the equilibrium concentration of solid
phase and liguid phase respectively. An analytic solution

in series form was obtained.

For modelling the adsorption process, the significance
of mass transfer in the pores of adsorbent particles may be
neglected in the case of very fine adsorbents such as those
found in most of chromatographic columns. However, fine
particles are not widely used in industrial applications, and
a comprehensive mathematical model 1s then needed to include
the internal diffusion phenomena. Due to the mathematical
complexities, most of the researcher neglected the effect
of axial dispersion. This assumption could only be valid

if the fluid velocity is kept high relative to dispersion.
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The adsorption process that is controlled by simultane-
ous external and internal diffusions was first considered by
Rosen (32). By assuming a linear equilibrium isotherm, unit
imposed surface concentration on solid phase, and negligible
axlal dispersion; Rosen obtained an analytic solution in the
form of a complicated infinite integral. In order to evalu-
ate that integral, Rosen furnished an approximation method(32),
and in addition carried out the integration by numerical method
(33). Rosen's solution has been applied by Colwell et. al.
(13,14) to determine the relative significance of diffusion
resistances in liquid-phase adsorption process. Kasten et.
al. (20) made an independent study of the same mechanism as
that of Rosen, and obtained an analytic solution including
the effect of axial dispersion. Deisler and Wilhelm (15)
studied all of the adsorption mechanisms by use of steady
state frequency response of a cosine concentration input.
They claimed that the axial dispersion does have a signifi-
cant effect on adsorption process. In serial studies of a
packed bed adsorption operation, Masamune and Smith (24,25)
developed a general method to analyze their experimental
data. From the results, they found that the internal surface
adsorption is a very rapid process and the internal diffusion
determines the overall adsorption rate. Furthermore, they
presented an analytic solution in integral form for the case

of adsorption process controlled by simultaneous external and

internal diffusions. Schneider and Smith (34) applied the
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method of moments to determine the equilibrium constant, the
adsorption rate constant, and internal diffusivities for light
hydrocarbons. Later, they used these constants to predict
breakthrough curves. Recently, the pore diffusion model has
been resolved analytically by Rasmuson et. al. ( 29,30), and

also been treated numerically by Raghaven and Ruthven ( 28).

In view of the work done by previous researchers, the
adsorption models of packed bed operation range in complexity
from that described by simplified equation of continulty to
that describing a detailed and complex situation where in
all the kinetic effects are taken into consideration. Most
of the investigators worked on the simplified models, while

some workers ( 15,23,28-30 ) dealt with the complex models.

Although various attempts have been made to extend the
simplified model to the complex model, there still are some
drawbacks in setting up the boundary conditions to fit the
specific system. The most important drawbacks as seen by
previous studies in solving the complex model surface
from the fact that the selection of boundary condition
can not be accepted as adequate to describe the real
situation. In this study, a novel and rigorous approach by
using the mass conservation law is employed to set up the
proper boundary conditions. The objective of this work is

to develop generalized mathematical models from different
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considerations, then utilizes these models to predict the un-

steady state mass transfer behavior in a packed bed.

The basic equations for designing a packed bed operation
are derived in chapter II and chapter III. These equations
consist of (i) the continuity equation describing the mass
conservation of adsorbate in fluid phase, (ii) the rate
equation of adsorption process upon solid phase, and (iii)
the equilibrium relationship to link the fluid phase and the
solid phase. Although the continuity equation is general,
the exact form of rate equation for adsorption process de-
pends deeply on the nature of adsorbent. Chapter IT deals
with the surface adsorption model, where the significance of
diffusion in the solid phase is assumed negligible (DS= 0),
and the rate equation for adsorption process is expressed in
terms of the rate of mass transfer of adsorbate from the
bulk flow of fluid across the stagnant film that around the
surface of solid particles. Chapter IIT presents the pore
diffusion model in which the resistance in solid phase 1is
assumed as significant as that in fluld phase, and the rate
equation for adsorption process 1s expressed as a second
order partial differential equation. In both chapter II &
III, two different cases are examined separately based on
the consideration of axial dispersion in fluid phase. For

the equilibrium isotherm, only the linear equilibrium re-

lationship is adopted due to the mathematical restrictions.
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Since most adsorption operations are conducted under the
circumstance of very dilute feed concentration, hence the
assumption of linear equilibrium between the fluid phase

and the solid phase is reasonable. In chapter IV, the
calculated breakthrough curves are presented as dimension-
less effluent concentration versus time or effluent volume

in terms of the variation of system parameters. Besides,

the proposed adsorption models are experimentally verified

by the system of hemoglobin- albumin- CM sepharose(R™ )- DEAE
sepharose(R+). Finally, some conclusions and recommendations

are drawn in chapter V.



CHAPTER II

SURFACE ADSORPTION MODEL

The study of adsorption and regeneration of adsorbents
in packed beds is of practical interest in process design.
Theories have been developed to explain the adsorption phe-
nomena, and a number of mathematical models have been pro-
posed. For a given fixed bed operation where the packed
materials are composed of very fine particles, the process
can be simulated by the surface adsorption model. The
surface adsorption model is a compact model. This model is
assumed that the rate of adsorption is determined by the se-
gquential couplings of fluid film resistance and surface ad-

sorption, where the internal solid diffusion is negligible.

In this chapter, two different cases of surface ad-
sorption model are examined individely. One case considers
the effect of axial dispersion in the fluid phase, the other
does not. Generally, in higher fluid velocity system, such as
gas chromatography, the effect of axial dispersion may be negli-
gible as compared to the contribution of convective flow of
fluid through the column. But under some situation, when the

fluid velocity is low, the effect of axial dispersion may be

15
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superimposed upon the convective flow and affect the per-

formance of the adsorption process.

The adsorption process which involves the mass transfer

between fluid phase and solid phase is usually complex. In

order to simplify the analytic treatment of a packed bed

operation, the following assumptions are usually made in the

mathematical modelling:

1-

The physical properties of fluid phase and solid
phase are constant.

There is plug flow across the bed, so that the con-
centration of adsorbate in mobile phase 1s inde-
pendent of the radial position at any cross section
of the Dbed.

The adsorption process is assumed under the con-
dition of isothermal and isobaric.

The adsorbent particles are perfectly spherical and

maintain uniform porosity across the bed.

A linear equilibrium relationship between the fluid

phase and the solid phase is assumed.

The rate of mass transfer can be approximated by a

linear driving force expression.
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A. Simple Model (neglecting axial dispersion)

Consider a packed bed operation as shown in Figure 1, in
which the column is filled with divided spherical adsorbents
(with radius ry), and pure solvent occupying the interparti-
cle volume initially. At time zero, a fluid mixture con-
taining an active component A (adsorbate A) at concentration
Cpo 1s introduced into one end of the column, say z=0. It
is required to find the concentration of adsorbate in the
fluid phase and on the solid phase at any time and at any

position.

In order to describe the system in a simpler way, one
may think of the fluid phase and the solid phase as continu-
ous and existing side by side as shown in Figure 4a. If
one examines an element of length Az and cross sectional
area S of a column (Figure 4b), the material balance of the
adsorbate A in the fluid phase and on the solid phase can
be derived as follows: The rate at which the adsorbate

enters the element at z by convective flow is
(VSCA)Z

and the rate at which it leaves the element SaAz can be

given by the same expression evaluated at z+Az, where v
is the superficial velocity of flow and Cp is the local
concentration of adsorbate A. If the rate at which ad-

sorbate transfer from the fluid phase to the surface of
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In Liquid Phase

Figure 4, Schematic diagram of a packed bed operation
(a) a packed bed unit '
(b) material balance for simple model

(¢) material balance for dispersion model
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an adsorbent particle is
*
- b xS Kp, ( Ca - Cy)

where CZ is the adsorbate concentration at interface, and
K; 1is the effective mass transfer coefficient in the fluid
phase. Then the total mass transfer rate at which adsorbate
transfer to all solid particles in element SAz is

SAz(1-€) > %
= T3 4 wrg K1, ( Cp- Ca )

where € is the bed porosity. After equating the rate of
inflow minus that outflow to the rate of accumulation in

the element SAz for adsorbate A, there results

Saz (3Cp/t) = ( vSCp)y - (VSCp) g +Ag

Shz(1-€) > %
§ 0 I‘o

As Az — 0, the above equation reduces to

3¢
T - )R - (B (G- Op) (22-1)

where the symbol a is the interfacial contact area, defined
as the wetted surface area of adsorbent per unit volume of
the bed, its mathematical expression may be written as
saz(1-6)] [ 4w x5
S e I vl B

§ TTI"O
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Next, let us consider the material balance of adsorbate
on the solid phase. The rate of adsorption that imposed on
the solid phase is equal to the rate of adsorbate accumu-
lated on the solid phase. This rate is also equal to the
rate of mass transfer of adsorbate from the bulk flow of
fluid across the stagnant film around the solid particles.
Hence, the material balance of adsorbate on the solid phase

can be expressed as

3C
2 As _ 2 *
L T ST = 4 mrd KL (CA— CA)
or
dC
As _ ~F
3T = KL (CA- CA) (2A-2)

where CAS is the concentration of adsorbate A on the solid

phase based on the unit surface area of adsorbent particles.

Although the analytic solution of simultaneous partial
differential equations, egs. (2A-1) and (2A-2), is strongly
depended upon the form of equilibrium relationship between
fluid phase and solid phase, only the linear relationship
is adopted here due to mathematical restrictions. The

linear equilibrium isotherm is expressed as

= m C (2A-3)

where m is an area based equilibrium constant. The initial



and boundary conditions for solving equations (2A-1) and

(2A-2) with (2A-3) are chosen as

CA (z, t=0 )= 0 (2A-4a)
CAS( z, t=0 )= 0 (2A-4D)
c, (2=0, £ )=0¢C, U(t) (2A-4c)

The first condition states that the bed 1s free of adsorbate

at t=0 , and the second one states that no adsorbate ad-

sorbed on solid particles initially. The third condition

indicates that at entrance(z=0), a step input in adsorbate

concentration CAo is introduced into the column, here U(t)

is the step function of time.
If the dimensionless variables are defined as
X = CA/ CAOU(t)
X'= G,/ G, U(E)
Yg= acAS/CAOU(t)
n'= ZKLa/ v
T'= thL

Then equations (2A-1) through (2A-4) become
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oX _ (23X _ (_a X -
dY¥g 5
a - -
o= ()X -X) (2A-6)
* a
X = - ) Yy (2A-7)
with the initial and boundary conditions,
X (1,rt'=0 )= 0 (2a-8a)
Ys(7 ,7'=0 )= 0 (24-8D)
X (1=0, ")=1 (2A- 9)

The analytic solution of simultaneous partial differential
equations, eqs. (2A-5),(2A-6) and (2A-7), can be obtained
by means of Laplace transformation. With Laplace transform,

one may obtain

—_— _ QX _ — _ 3¢ _
YpX = - an (X -X ) (2A-10)
— — 3
Ly, = x-% (24-11)
-3
= (5 1 (2A-12)
and
X (1=0,p )=% (2A-13)
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where y= (m€/a), and the Laplace transformation is defined

as

f(p) = 1L {f(n‘,r’)}-—-Je'PTf(n',T’) ar’

After grouping equations (2A-11) and (2A-12),

% 3
P = X -
or
* 1 -
X = §IT X (2A-14)
Hence
%
T _ 5 - P ¥ -
X X ) X (2A-15)

Introducing equation (2A-14) into equation (2A-12) will
result

1541?1' % (2A-16)

7 = (£

Y, = (Y) (
If one substitutes equation (2A-15) into equation (2A-10),
then the following first order ODE is obtained

dx _ P % -
d,ql - "( YP"" p+1 ) X (ZA 17)

With the aid of boundary condition, equation (2A-13), the

complete solution for equation (2A-17) is

1

X(7,p) = = exp{ - (yp+ 5‘%) 7 (2A-18)
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From equation (2A-16), the concentration of adsorbate on

solid phase is

- / _ € _
T (e )= ey exp - (Yp+p+1) " 3 (24-19)

The direct inversions of equations (2A-18) and (2A-19)
are tedious. Here two kinds of simple methods are used to

carry out the inverse Laplace transformation for equations

(2A-18) and (2A-19).
Method 1.
Let b= yﬂ'

viy_ 4 n
F'p)= i1 exp(5y)

Then equations (2A-18) and (2A-19) can be rewritten as

X(1,p)= e™°P L exp(- Bp)
= e—(bp+ﬂ'){ % exp(p+1)J
= o= (bp+ ){ E%I (p+1) _(p+1eXp(p+l))}
= P ¢ pip)s Lrr(p) ) (24-20)

and the expression for ?s can be reduced as
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§S(ﬂ',p)=(-§,—)e—bp{pj'lla+—17 exp(- p+1) 3

~( % ) o= (PPF)¢ %( E%T eXp(ng ) }
=(%) e~ (PPH1) ¢ % F'(p) } (2A-21)

Referring to the second shifting theorem of Laplace

transform,

1 e PPr (p)3

[}
(@]
[a

A
o

1

f'(z'"-b) ; T > b

and the integral theorem,

1

T

17 2 Frp))= § £1(c') dr

(-4

Also, from the standard table of inverse Laplace transform

(26),

-1 1 kK \vq. -7 ’
L {Gipew(gipl= e Il [Hkr’ )

The inverse Laplace transforms of equations (2A-20) and

(2A-21) are then solved. The final solutions are:
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X('Y]',T‘)': 0 - T’<b
‘ T !
- e—<”+T>IO<M>+j e'(“é)lo(ﬂﬂ'—é )ds ; b
(2A-22)
and
YS(’)'(,,T.): 0 ; T’<b
TJ’
= (%_)f o~ (178) IO(,JM@ )ds ;5 T>Db
(28-23)

It is also important to know the analytic solution of
a model with pulse input in concentration, because 1t is
applicable to the system in which the chromatographic column
sequence consists of a series of adsorption-desorption
processes, or to cyclic separation processes such as para-
metric pumping operations. If one defines the pulse input

in concentration as

c,(t) = €, LU(t) - U(t-t)}; at z=0 (28-24)

Then the concentration of adsorbate in the fluid phase and

on the solid phase are



X(n,7)=0

H, (v)

1]

Hl(f) - Hl(f—r*)

and
Ys(n','r')= 0
= H, (1)
= Hz(f) - Hz(f—f*)
where

Tl

.
’
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(24-25)

(2A-26)

H, (1)= e_(nkf)lo(ﬂhffr') " S o~ (1+0) I, (J575 )as

o

T

H, (c)= i e~ ()1 ([Bf5 ) o

Ei3
T =1t mK
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Method 2.

Let b = y7

1

. 1 i

21 _pn

Then equations (2A-18) and (2A-19) reduce to

%(,p)= e F, (p) (28-27)
= ;.. .\_ ¢ € -(bp+1) 1 -,
Y (n',p)= (—;-) e\ OPTL 5 F'(p)} (24-28)

If one defines a function Fz(p) as

nl
N R _ by -
Fz(p)—k§ o1 exp(- i) du (24-29)
By means of partial integration, the right hand side of

equation (2A-29) becomes

1

1! —
j e H g eXp(E%T))

"
|t (- B

! L
exp(—-%f%)—1+~§exp(— E%T) dp

o

Hence

exp(- —2—) (2A-30)
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If the expression of Fl(p) is rewritten as

1 11
Fi(p)= 5 - 15 - 5 exn(- p+1) 3
1 T
=3 {j ey exp(- p+1)du} (2A-31)

Equation (2A-27) becomes

X(1,p)= ePPr 1 Jkp+l) exp(- '%%T) dp (24-32)

With the experience from Method 1, the inverse Laplace
transform of equation (2A-32) is made. The final solution

is
X(7q,7)= 0 i T < Db

.
=1 - j e_(T+“) IO(Jufp ) dp 5 T > D
‘ (24-33)

It can be proved that the result expressed in the form of
equation (2A-33) is the same as that of equation (2A-22).
More detailed discussions of the results are given in

chapter IV.



30

B. Dispersion Model

The effect of axial dispersion in fluid phase in a
packed bed operation was first considered by Glueckauf et.
al. (16), and extensively studied by Lapidus and Amundson
(23 ). Referring to Figure 4c, the material balance of

active component A (adsorbate) in the fluld phase is de-

rived
BCA
€ Saz 5= = ( vSCu)z - ( vSCp)gipg
aC dC
A A
(GSDL dz’' 7 + €SDL az)z+Az
- 3
_ EAZ(% 1y wr? K (C,-C))
= nr
3 0
or
, 2
.aiA. = - (_Y) aCA _( KLa) (C _C*) + D .a__S'A_
3t €’ 3z € A A L aZ2 (2B-1)

Equation (2B-1) is very similar to equation (2A-1) except
for the axial dispersion term, where DL is the effective
axial dispersion coefficient of adsorbate. The material

balance of adsorbate on the solid phase and the equilibri-

um relationship are the same as that in the Simple Model,
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3C
AS * )
5t - Kp( €y~ Cy ) (2B-2)
3%
CA = m CAS (2B-3)

Since equation (2B-1) is a second order partial dif-
ferential equation, it needs two sets of boundary conditions
to obtain the complete soultion. Generally, there are three
types of homogeneous boundary conditions that are used to
solve the second order linear partial differential equation
Vzu =0 (23):

(a) The Dirichlet boundary condition, which prescribes
the value of u at boundaries,

(b) The Neumann boundary condition, which prescribes
the value of normal derivatives du/dn of the
function u at boundaries,

(¢c) The Robin boundary condition, which prescribes
the value of ku+(du/dn) at boundaries.

The first set of boundary condition in this study belongs
to the third type, it is also named the Danckwerts boundary
condition. This boundary condition is derived as follows:
In the entrance section, the material balance of adsorbate

in fluid phase can be expressed as

BCA 3C
3t

= _ : _A
VSCAOU(t) (VSCA)AZ+(ESD )

€Saz L 3z

Az

_SAZ 1") 2 %
L3 | Ty K (G- Cy)

S mr

3 o]
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as Az—0, the above equation reduces to

EDL BCA
CaoUt) = Cplzm0 *(F7) 55 |20 =0 (2B-4)

The second boundary condition can be set up by means
of total material balance of adsorbate across the packed

column, that 1s

L L
_ 2
SE-iCA dz +~§CAS Ly r {E%Ziifélﬂ (2B-5)
0 § i o

Here, the left-hand side of equation (2B-5) represents the
accumulation of total adsorbate in the packed column during
time period t; the first term in the right-hand side of
equation (2B-5) is the total amount of adsorbate present

in the fluid phase while the second term represents the
total amount of adsorbate deposited on the solid phase.
After introducing the interfacial contact area a into

equation (2B-5), it becomes

N

L
ﬁ CAOU(t)—CAlz=L)dt= (%) BLC dz *+(Z) JCASd (2B-6)

The initial conditions are the same as those in the Simple

Model,
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N
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=3
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N
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(2B-7a)
(2B-7b)

If the dimensionless variables are defined as

X = CA/CAOU(t)
3% 3*

X = CA/CAOU(t)
Y = aCAS/CAOU(t)

N = z/L

A
!

2
= tDL/L

1en the governing equations with initial and boundary

nditions are normalized as

luid Phase
K aL2 2
o et 2
L L Y
r
23X _ _ 43X _ . (xxy » 2%
3T N « anz
here
2
A= vL ; OC:ELEL_

(2B-8)
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Solid Phase

2Y a1’ N
3T ( EDL) (X-X")
or
dY
s _ _*
al € a(X-X)

Equilibrium relationship

*
X = (y/€) Y, ; where

Initial Conditions

X ("l ,T=O)

H
(@)

1
@]

YS(71,7=O)

Boundary Conditions

(1) the entrance condition:

1
L= Xt @ 3|eo

(1i1) total material balance:

T

1
A S'(l - Xh=1 Ydr = J‘( X +

me/a

Y
s

€

) 41
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(2B-9)

(2B-10)

(2B-11a)

(2B-11D)

(2B-12)

(2B-13)
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Taking Laplace transform for equation (2B-8) through (2B-13)

will result

e 2
F dX G T d X
pX = - A= -a (X-X ) + —5 (2B-14)
an dnz
— = —3*
pY = €a (X-X) (2B-15)
— 3 —
X = ( Y/E ) YS (2B—16)

with boundary conditions,
- X}FO + (K) —ﬂ n=0 = 0 (2B—17)

Y
A(£- Fpog) =7 ji (Z+ =2 ) an (2B-18)

Combining equations (2B-15) and (2B-16),

— - —-—x—
P YS €a ( X c Ys )
or
Ev R <o S N
Ys ( pray ) X (2B-19)

By substituting equation (2B-19) into equation (2B-15) gives

S & -
X ( p+ow) X (2B-20)
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and

T -% = (—B—) X -
X-X% = (g ¥ (2B-21)

Substituting equation (2B-21) into equation (2B-14) and re-

arranging it, the result equation is

d°X aX PO =
=L A == + X =0
dnz d Lp ptay ]
Let
F(p) = p + =% (2B-22)

ptroy

Then the above differential equation becomes

=3 - A 5, - F(p) X= 0 (2B-23)

Equation (2B-23) is a second order linear ordinary differ-
ential equation with constant coefficients. There are two
kinds of expression for its general solution which depend
upon the value of A2+4F(p) . No matter what type of
general solution is adopted initially, the complete solution
should be in the same form. ILet us assume that the general

is expressed as

Nl

1

X (7M,p) { ¢, sinn —%—W]+c

]
o

\
, cosh — 1}

where V=JA2+4F(p) (2B-24)
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In order to determine the coefficlents cq and Coo the bounda-
ry conditions, equations (2B-17) and (2B-18), are employed.
It is obvious that equation (2B-18) can be simplified with

the aid of equation (2B-19),

1 _ 5 - B aX
Lo =0 | (T
1
= F(p) j— X dn (2B-25)
o
From equation (2B-24), one may have
XIW=0 = c, (2B-26)
A
_ .2 . v v _
X[ﬂ=1 = e {cl sinh —5— + ¢, cosh — 3 (2B-27)
dx - A v -
njn=0 =2 %2 * T °1 (2B-28)
1 A
("2 an =170 e, sinn T vc, cosn 77 a
] N = i e c, sin 5 N 2 > Y| n
1 A A
= C 3-eznsinh Yy dm +c ezncosh —Z*n dn
19 2 19 T2 ) 2
c A A
A e L e S
c A A
- Fg[ % e2cosh —%— - —%—ezsinh —%— - % 1
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Applying equations (2B-26) and (2B-28) to equation (2B-17),

1 1, A {A2+LF _
- Ctr(Zer—F 0 ) =0
or
_ 2 NAZ+LF
c, = 5 T oy (2B-30)

By substituting equations (2B-27) and (2B-29) into equation
(2B-18). With the aid of equation (2B-30), the constant cy

is obtained

‘ 2 ’ 23
AP+LF + JAZHLF sinh——A————;Lp-E

A cosh >
c:—
1 re 2 [p=
pLVAZ+4F cosh A ;4F +(A XZF)sinh-é—%&E ]
(2B-31)

Substituting equation (2B-31) into equation (2B-30) for

02,

’ 2 ’ 2
JA2+4F cosh—é—EEE + A sinh—é—%&E

€2

p[JA2+4F coshig_gﬁﬁ + (A XZF)sinhiK_gzﬁ ]

(2B-32)

Finally, resubstituting the constants cy and o into

equation (2B-24) and applying the addition formula of

hyperbolic function, the complete solution results.
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A T
=l A +4F —A
_ o2 [coshr——z——(l-n)+ (a2+LF sinh————
X (n!p)— 1
[ lrJA2+LPF +(A2+2F) inh
P cosn > A JAz'I'L}»F Sinmn

fjA2+ LF }
2

(2B-33)

Equation (2B-33) is an expression in Laplace transform, it
is desired to inverse this Laplace transform i(n,p) to get
the final solution. The expression of X(1,p) is so compli-
cated that the discussions of branch point and singularities
are necessary before processing the inverse Laplace trans-

formation.

By expanding the hyperbolic functions in terms of

infinite series,

coshﬁg&-}: - T (a2+up)? {_1_@_._}
n=0 Zn) |
, w 2n
cosh™=—=— Az*“ Fi1on) = % (Asz)n{[(l-n)/z]
n=0 ( 2n )!
EN G2 G € /7D b
o e < E e -G )

, 2n+1
JK5%EF sinn A (4 _y) n% (A2+4F)n{[(%£$l{2%! }

Thus, equation (2B-33) can be reduced to



Lo

Po n 2n 2n+1
By 2 (A2+4F){[(1E”){?] N E(t—n)/f]
X(M,p)= e? { n=0 2n) ! on+1) ! }
n=0

(2n)1 (2n+1)!

(2B-34)

If one expands the terms of AS+4F and (A%+2F)/A as

2
a _p°+a, pta
A2+[+F= A2+L|’(p+ ’EOL )= O 1 2
bray p+D
o)
2 1 p?+1. p+l
A +2F= A+ 2 (p jojed )_ 1 2
A A pray p+b

Then, equation (2B-34) can be reformed as

0 Ca-m/el  Laan/zer
4 > (a p? 1-1)/2 1-1)/2
R, p)e eg” { niéaop +a1p+a2)(p+bo){ (gnfj + A G 1 }
2n+1

2n
o n
2 (12) 2 1/2
px E(a p+a pray)l (p+d )50 +(1p +11p+12)i—{é%;3y]

n=0

(2B-35)

From equations (2B-34) and (2B-35), it is obvious that there
are no branch points and no essential singularities. There-

fore, the results deduced from equation (2B-33) are:
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(1) there exists one simple pole at p=0,

(2) there exist many simple poles Py which satisfy

JAZ +LF + (A2+2F)( 1

2 A 7 [a24ur

_______‘wzo

cosh )sinh >

(2B-36)

In general, there are two ways to implement the inverse
Laplace transformation. One way 1s by using the standard
tables of special Laplace transform with the existing theo-
rems as shown in part A (Simple Model). The other method
which is employed here, is by applying the complex inversion
formula and the calculus of residues. Let the Laplace trans-

form X(1,p) can be expressed as

X(,p)= J(p)/L(p) (2B-37)

where the power of p in L(p) is greater than that in J(p).
Then by using the residues theorem, the inverse Laplace

transform is

-1
X(Le)= L {X(L,p)} = I Resl " X(M,p)3p,]}

k

where the points pk's are the poles of X(7,p) and L'(p):i%ggl-



The residues of X(7,p) are evaluated as follows:

(1) Residue at p=0

Let X(7,p) be expressed as

- _J )
X(d! ’p)" L p
where
A
>N e [n2
J(p)= e2 {cosh-é—gﬂﬂ(l—n)+-——é—— sinh—é—%EE(l—n)}
' JARZ+4F
JA2+4F AR+2F 1 . JA2+4F
L(p)= p = + ( ) ( Ysinh&——
P p {_ cosh 2 A Jm 2
At p=0, F(p)=0; so that
Ay A
J(p=0)= e? {cosh %(1—ﬂ) + sinh %(1—n)} = &2
A
L'(p=0)= cosh % + sinh % = e2

Therefore, the residue evaluated at p=0 is

J(p)
Res 1 = Lim —— = 1 (2B-39)

p—>0 L'(p) )

L2

}
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(2) Residues of X(1,p) at p=p, 'S

There are many simple poles which satisfy equation
b Py

(2B-36). Equation (2B-36) may be rewritten as

A2 Lp A NAZ+LF

tanh ——— = - S———— (2B-40)
AR+ 2F

Two cases will be discussed below in terms of the values

values of (AR+L4F): (a) AR+4F >0, (b) A®+4F< O.

Case a.: A®+4F >0

Let A2+4F=g; s wheregrl may be positive or negative real

numbers. Thus equation (2B-40) reduces to

fn  2Akn
=t = - (2B-41)

2 2
A +En

tanh

It can be shown that there are no sultable solutions for

equation (2B-41) except the trivial solution £n=0.

Case b.: AP+4F<0

Let A2+4F=-Bi, where B may be positive or negative

real numbers. Thus equation (2B-40) reduces to

tan (Bﬁ/2)= - ZABn/(A2 - 82) (2B-42)
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Equation (2B-42) is a transcendental equation, there are many
eigenvalues Bn which satisfy this eigenfunction as shown in
Figure 5. These Bn can be obtained by graphic method or
numerical method. Since graphical solution is time consuming,
a computer program 1ls developed to search these eigenvalues
B, for equation (2B-42). This computer program is given in
Appendix A. The first twenty eigenvalues Bn are shown in
Table 1. Knowning the values of By the values of Py can

then be calculated from the relationship, AZ+4F= —B; .

If one defines & = (A®+ B;)/M, then

ap A2+BE
F(p)= p* Pk+§Y T, = (2B-43)

Solving equation (2B-43) for P, .+ One may obtain

p,= - .gj. ¥ _____W (2B-k4k)

where
G,= &+ ay+ «

Gg= day
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tan(x/2)= - 2Ax/(A®-x?)

Sketch of eigenfunction,
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Table

1.

Eigenvalues of tan

#% For the case of

"
(@] (@] (@] (@] (@)

1
o (@]

I
@]

n
(@)

]
o o (@) (@]

(B,/2)= -288_/(A-82)

A= 13.3333

. 487981
. 999360
.154184
.211035
.269693
329538
451313
.512829
. 574607
. 636577
. 698693
.760921
.823237
.885623
. 948067
.101056
.113565
119824
.126085

. 132349

E01
EO1
E02
E02
E02
E02
E02
E02
E02
E02
E02
E02
E02
E02
E02
EO03
EO03
EO03
E03

EO3

46
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By applying the residues theorem, the residues of i(’f{,p) at

p=p, can be expressed as

Res 2 = Lim { I(p) Pt 3 (2B-45)
p—p, L' (p)

where

:]>

J(p)= e—z_ { cosh—=—— A +}+F(1 1) +J,A___F +LPF === (1-1)}
+4

A2 +LF +( A2+2F JAZ+LF }
2 2

) JTLLF— sinh

L(p)= p» {cosh

Differentialting L(p) with respect to p,

JAP+LF +(Az+2F>

JA2+4F 3
2

L'(p)= {cosh m sinh ————

. NAZ+LF
2 2(a2+2F) ST 3

A+ 2F JAZ+LF 2 _
+p*( o) Eaamagmy Jeost ———_++[1 2 a(az+uF)” AP+ 4F
(2B-46)

and

L L (pr

1SS U a®y (2B-47)
dp dp

proy (pray )

AT PPy AR+4F= -B2 and [aZ+4F= ig, 5 so that
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nfi=

1 B B
J(p)= e {cos—=(1-1)+ g*-ksin—é-k-(l_n)} (2B-48)

By+a®B Br A28k Bk
L' (p, ) =Py*[ 1+ 15*:§§7 Ja{[A k%A £sin— [ZAB Jeos—3~)
k

(2B-49)

Substituting equations (2B-48) and (2B-49) into equation

(2B-45) results in:

By By %ﬂ TPy T
. , :f: L Bkcos—g—(l—n) + A sin—g—(l—ﬂ)]* e
es 2=
k=0 2 2 BQ 82 B 5 B B
Loy cAS+APKk+P kK . k A k k
pk*[l'(p +ay)zj*£[ Isin— -L Jeos— 1
k B% ZABK
(2B-50)

After combining equations (2B-39) and (2B-50), the complete

final solution 1s obtained

A
, =M +p, T
9 B Bkcos—%g(l—n)+ A sin—%g(l—ﬂ)]* e? k

X{ny7)= 1- ;O

Py 14 (p +dv)

2 2 2
2 -
;*£[A Bkjcos P _ rA +Bk+§8k_jsin By
Bk 2 A By

(2B-51)
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Equation (2B-51) describes the local concentration of ad-
sorbate at any position 1 and at any time v in the packed
column. Hence, from equation (2B-51), the effluent con-

centration of adsorbate (71=1) is

A
00 B. % o 2 PyT
X(1,7)= 1- Z k
k=1 o 2_52 8 - 2
pk*[1+7591§§723*£[A Elcos—= (AT PRk zk}
k ZABi A BY
** o= 0 (2B-52)

Similarily, for a pulse input in adsorbate concentration

such as
SF
Cy(t)=C, 0 U(t) - U(%-t") 3

The effluent concentration of adsorbate in dimensionless

form is
3%
X(1,7)= 1- V(1,7) s 0 <7 <T
= A 3 3
= V(1,7) - V(1,t-7 ) ;T > T*

where

» (2B-53)
T¥= tDL/L
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2 Py

ket B,.* e
V(1,0)= D £

k=1

2 2 2
By A®-Bx Bk AP+Bk+ABk+ . Bk
pk*[l.(Pk+aY)z]*{[ ZABz]cos 5 L a2 Jsin—=}
k

The calculated results of equations (2B-52) and (2B-53) are

given in Chapter IV.



CHAPTER TIII

PORE DIFFUSION MODEL

The adsorption processes in a packed bed are generally
characterized by the diffusion transport of adsorbate mole-
cules and the interactions between the adsorbate molecules
(fluid phase) and the adsorbent particles (solid phase).
Although the interaction between the adsorbate molecule and
adsorbent depends on the nature of adsorbent and the chemical
properties of adsorbate, it can usually be expressed in terms
of the equilibrium isotherm. For the sake of simplicity, a

linear equilibrium isotherm is assumed throughout this study.

Apart from the axial dispersion in fluid phase, the dif-
fusion rate processes of a given adsorbate molecule in a
packed bed operation may be divided into two categories:

(i) the external diffusion of adsorbate in fluid phase, (ii)
the internal diffusion of adsorbate molecule within porous
adsorbent particles. The significance of internal dif-
fusion has been neglected in the previous chapter where it
was assumed that the adsorbate molecules are adsorbed on the
outer surface of adsorbent particles. In this chapter, the

pore diffusion model is assumed that the resistance of in-

51
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ternal diffusion is as significant as that in fluid phase.
As in Chapter II, two different cases of pore diffusion models
are considered; one with axial dispersion and the other with-

out it.

It is assumed that the porous adsorbent particles in the
packed bed may be treated as homogeneous media in which the
diffusion process within particles follows the Fick's first
law. In addition to the assumptions stated in Chapter II,
the following assumptions are made:

(1) The diffusional transport within adsorbent parti-
cles is radial, there is no variation in con-
centration with angular position.

(2) The concentration of adsorbate within adsorbent
particles is zero initially, and the concentration
of adsorbate at the center of adsorbent particle
is specified at any time.

(3) The fluid film resistance is specified at the
surface of adsorbent particle, and 1t 1is equal to
the mass flux of adsorbate diffusing into the ad-
sorbent particle.

As illustrated in Figure 6, the rate equation of adsorbate A
within a single particle can be derived from the shell mass
balance of adsorbate. The mass balance for adsorbate A over
a spherical shell of thickness Ar at a distance r from the
center of particle can be expressed as

3C

2 . 2 - 7S
bnr® N LA Urnr?ar ST (3-1)

Ar!r - 4n(r +Ar)2NAr|
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(a)
* Interface

C Fluid Phase

A,

— — —— — — — —— — t— o—

Solid Phase, CS

(b)

Figure 6. (a) Schematic description of diffusion process
within solid particle,

(b) Concentration profile of adsorbate A in
the neighborhood of a liquid-solid inter-

face.
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where NAr r is the number of moles of adsorbate A passing in
the r-direction through an imaginary spherical surface at a
distance r from the center of sphere. The source term
erﬁAr%%§ gives the number of moles of adsorbate A being
accumulated in a shell of thickness Ar where CS is the local
concentration of adsorbate A in solid phase expressed as moles
of adsorbate per unit volume of packed bed. Dividing equation

(3-1) by 4mAr and letting Ar—> 0, gives

Lim Ar r‘*‘lgr Ar’r _ _ 2 = (3-2)
Ar—0 r
or
dC
1 23 ( 12 _ S
g N ) - —_—
® 3r Ar 3t (3-3)
The Fick's first law is defined as
3C4
Npap™ - Dg dr (3-4)

where Dg is the effective diffusivity for adsorbate A in
the porous adsorbent particle. The effective diffusivity
Ds must be measured experimentally; it generally depends on
pressure, temperature, pH, or other control variables of
the specific system. In this study, the effective dif-

fusivity DS is assumed constant. After substituting equation
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(3-4) into equation (3-3), it results

3C D 3C
8 _-._8 8 ( ,2__8 -
3t e ar( 37 ) (3-5)
or
acs azcs > acs
s = Dy ( 2 % 57 ) (3-6)

The solution of equation (3-6) is generally subjected to the

following two boundary conditions:

BCS
(1) 55 =0 0
o BCS %
(11) Ds dr |r=ry =K ( CA - CA )

The first boundary condition states that the concentration
of adsorbate A at center of adsorbent particle is constant,
so that the rate change with respect to radial position is
zero. The second boundary condition indicates that the rate
of mass transfer of adsorbate A from the bulk fluid of flow
to the particle surface(r=ry) is equal to the mass flux of

adsorbate A at which it diffuses into the adsorbent particle.
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A. Simple Model (neglecting axial dispersion)

The governing equations of simple model with pore dif-

fusion are formulated as

dC dC K.a
A v A L " opr _
aCS aecs 5 30
5t -0 (T trsy ) (34-2)
* — —

with initial and boundary conditions,

CA (z, t=0) =0 (3A-4a)
CS (r, z, t=0) =0 (3A-4D)
CA (Z::O’ t) = CAO U(t) (BA—_S)
acs
5 |r=0 = 0 (34-6)
3C, N
s 5T |r=r = Xp(Ca=Cp ) (34-7)

o
Introducing the dimensionless variables as follows

X= cA/ CAOU(t)
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3* *
X = CA/CAOU(t)

Y CS/CAOU(t)
R= r/rO
M= z/L

- 2
= tDS/ro

Then the governing equations become

3X _ 3X _ _ Y -
5t = ~0 3p - oX-X7) (3A-8)
QY %Y 2 3Y
= = + = == ) (34-9)
AT aRg R 3R

3*

X =xY(R=1, %, T) (3A-10)

with initial and boundary conditions,

X(n, t=0)= 0 (3A-11a)
Y(R,M, t=0)= 0 (3A-11D)
X(M=0,7)= 1 (34-12)
YIR=O = finite (34-13)
%1,R=1= B: (X-X) (3A-14)

where
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vr
6= 9
GLDS
2
. = KLaro
€D
S
B. = KL%
i D
s

The simultaneous differential equations, egs. (3A-8) to
(3A-10) can be solved by means of the Laplace transformation.
With the definition of Laplace transform stated in Chapter

II, equations (3A-8) through (3A-14) become

pX = - eg—i_ﬁ - o (3-X) (34-15)
oT = ( :;Z_ + %-—g—% ) (34-16)
¥ = X ¥(R=1, 1, p) (34-17)
with boundary conditions,
X(1=0, p)= -1-10- (34-18)
‘Y‘,Rzo = finite (3A-19)
Dy %l = B3 (X-X) (34-20)
R=1

To solve equation (3A-16), it may be assumed that Y
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is a function of R only for some specific position 7 in the
lapacian domain p.

Hence equation (3A-16) reduces to

R® &2+ 2r & - pRPY = 0 (3a-21)
dR
Introducing a new variable f as
f = RY (3A-22)
Then substituting equation (3A-22) into equation (3A-21), it
results
2
&L _pr=o0 (38-23)
dR
The general solution of equation (3A-23) is
T = clsithiR + czcoshﬁﬁR (3A-24)

where cq and c, are arbitary constants.

By substituting
equation (3A-24) into equation (3A-23), one may obtain

_ C4 c
Y=<§- sinh VPR +

== coshifBR (3A-25)

By applying the second boundary condition, eq.{3A-19), the

coefficient Co has to be equal to zero; otherwise Y will be
undefinited at R=0.

Thus equation (3A-25) reduces to
c

—= ginh /PR
R Y

(3A-26)



Differentiating equation (3A-26) with respect to R,

s C c
da¥_ ‘14 %1
an = cosh {pR R2 sinh /PR
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(3A-27)

The constant c1 can be determined with the aid of third

boundary condition, eq.{(3A-20). Substituting equations

(34-27) and (3A-17) into equation (3A-20) and letting R=1,

it results

c,¥b coship - c,; sinh(p= Bi[i— N sinh [p) ]

or

Bi X

L D cosh[p +(XBi—1)sith§

c

Thus, the complete solution for Y is

g _ BiRlsinnmR X
{P cosh{p +(ABj-1)sinh,P

From equation (3A-29), one may have

X*ﬁ ABi sinh{p X
{pcoshlP + (AB;-1)sinh [P

and

% - 3 =_(fPcoship - sinhip ) X
Jp cosh[p +(ABj-1) sinh/P

(3A-28)

(34-29)

(34-30)

(3A-31)
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Putting equation (3A-31) into equation (3A-15) results in:

e +[w(4§coshJ§— sinhdJp) 1% =0

d (38-32)
1 fpcoshi® +(\B;-1)sin P
The general solution of equation (3A-32) is
X= cq exp{—(%)[p+ o(Peosh/p- sinh{p ) 13 (34A-33)

Jpcosh/p +(AB3-1)sinhlp

The constant 03 can be determined with the aid of equation

(BA—18) ’

Therefore, the complete solution for X is

X= exp{—(%)[p+ o(Jpcosh/P- sinhdp ) 7

L (38-34)
p Pcoshd + (AB;-1)sinh(p

The final solution of equation (3A-34) may be obtained
by applying the technique of inverse Laplace transformation.
In order to find out all the residues, equation (3A-34) is
rewritten as a series expression. By introducing the defi-

nition of hyperbolic function, equation (3A-34) becomes

2k 2k+1
< %112) K %1[2) k)
— b - 1 b
X= L exp{-(Hp + -2 k — k 2k 13

p 1/2)%EK (1/2)2K1 ¢
> zm; P OrOB-LE 13y, P

(34-35)
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From equation (3A-35), it is obvious that there are no branch
points, but there are a simple pole at p=0 and many simple

poles Py which satisfy

{P cosh/p + (AB;-1) sinh{p = 0 (34-36)

From the results of Chapter II, we knew that there are only
the negative values of Py which satisfy equation (3A-36).
Let p= - B;, where Bn may be positive or negative real numbers.

Then, equation (3A-36) reduces to

tan B = -(——Eﬂh—) (3A-37)
n ABi-1

Equation (3A-37) 1s a characteristic equation of Bn’ there

are many Bn which satisfy this equation.

The expression of f(n,p) may be rewrlitten as

-($)p
X(7,p)=e G(1,p) (3A-38)

where

_ 1 B1 (dpcoship- sinhip
G(1,p)= P exp (' pcosh P+ (Bi-1)sinh [P ) (3A-392)

e (3A-39D)

Applying the shifting theorem of Laplace transform results

in:
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X(n,7)= 0 LT < -”é—
- o n
- g(n! T= e) ;T > )

where (34-k0)

g, 7)=L_1{G(ﬂ,p)}=L~l % expl - Bn(dpcoship- sinh/p )]
Jdpcosh{p+(AB;.-1)sinh|D

(3A-41)

To solve equation equation (3A-41), the exponential function
G(n,p) is expanded into a series and then by applying the

residues theorem to carry out the inversion term by term.

_ 1 1 Jp coshdp - sinhvp
¢p)= 5 - - Beosnip +(A\B1-1)Sinhip 1 (M)
+ Ir__JD coship - sinhip ]Q(B‘n)2
P~ dP cosh{p +(ABj-1) sinh(p 21
1 Jp cosh/p - sinhi{p ]3 (Bm)=
p "p coship +(A\B3j-1) sinh/p 3
o ,ete

l

() 2y (18) B+ ey(n, eGP - G3<n,p>5§7)3

S , etc (3A-42)
k
= £ (-1)¥, (n, pHEL- (38-43)
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The residues of G(1M,p) are evaluated as follows:

(1) Residue of G(1,p) at p=0,

By applying the residues theorem,

Res[G_(1,p) P’y p=0] = 1
Res[ G, (1,p) 'y p=0] = 0
Res[GZ(ﬂ,p) P p=0] =0

o,

a
g
1]
O

L1

n
(@]

ReSEGB(%.p) et ;

thus,

Res [G(%,p) eP'; p=0 I= 1 (3A-4L4)

(2) Residues of G(7,p) at p=p = B;

n
Res{G(%,p)epT;p=pn}= Res{g(—l)nGn(”,p)igg%— ePT;P=Pn}

(3A-45)
** (2a) Res{Gl(n,p) P, p:pn}
PnT
. {(P"Pn)(Jﬁcoshrﬁ— sinhfﬁ)epT} -5 e" ™74 (py)
=L Lim \ "p(Tpcosh o+ (A\Bi -1)sinh[D n dh(p,)

P=>Pn
(3A-46)
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where

Jl(p)=(I§ cosh[P- sinhdp)/p

L(p) =[p coshdpt (AB;-1)sinh/p

and
J1(pn)= :%_(BnCOSBn— sin Bn)
n
_daL _ =1 . .
dL(pn)_—aéEl p=pn_ EE;(RBlcos B~ B,Sin Bn)
Hence,
bt 2 e~BiT(Bncoan— sin Bn)
Res{ Gy (7,p) e sp=ppl= i B,(*Bicos B -B sin B )
(38-47)
PT
#* (2b) Res {G, (7,p) e ; p=p}
o (p-p,) % Bcosh /- sinhp)2ePT
= 3 Lim g {—= 5
0 p-p P" o(Jp coship+(ABi-1)sinh(p)
(p-p, )T, (p) &7
=3 Lim { %—[ n___2 5 13
n p—»pn P ( L(P) )
P.T P T 2
; - {e nr Jj(pn) dJB(pn)] ) e 1 J3(pn)d L(pn) }
el [aL(p,)]? [ au(p,) 1
where (3A-48)

2
J,(p)=(Jp cosh/p- sinh{®) " /p

L(p) ={p cosh{p +(AB;-1)sinhlp
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and

J2(pn)= (Bncos B~ sin Bn)z/ an

_ dL(p) _ =i;a. _ .

dL(pn)— ap pzpn_ Bn(kBlcos B~ B,sin Bn)

2 .
dZL(pn)=—Q;L%El = Zfig—[(sﬁ-XBi)cos Bn—XBianin Bn]

P p=p, 48,

a7, (p) -1 :
dJ, (p )= ap = ——(B,cos B -sin B )¥
p=p, B,

2\ .
#[ (1+87)sin B, - B cos 8]
Substituting the above relations into eq.(3A-48), it results

Res{GZ(n.p)epﬁ;p=pn}

2. . ‘Bif
o (Bncos By~ sin Bn)[(1+Bn)31n B,,~B,CO0S Bn] e

n=1 Bi(kBi cos Bn—anin Bn)2

2
_BT
(Bncos Bn— sin Bn)2 Te n

(\Bjcos B _-B sin Bn)z
2
. 2r (82-2B-) N . . ®n
Z(Bncos B,,~sin Bn) [(Bn—xBi cos B -AB3iB sin Bde

Bﬁ (ABj cos B - sin Bn)3

(3A-49)
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* % (Zc)
Res £G3(4,p) epf;p=pn}

(p-pn)B(Iﬁcoshfﬁ— sinhjE)BepT
p[JﬁcoshJ§+(XBi—1)sith§]3

2
=2 Lim L 4 g

n p-p, 2! dp2

= EZIdﬂl—%Tg[§%§7]3d [ePTa5(p) 146 [—7—7] "L (p)]d[—r—y]
n p—>pn .

42 P-P,
v 6 P (o) T a ()] #3L %0 () Tl o2 i

DT
e ™ [+27,(p )+2r AT, (p )*+a%d,(p )]
n=1 2 [aL(p,) T

3 d?L(p ) &P
p,) e [t J5(p )+dT (p,)]
2 [an(p,)]"

P.T 2 > T 3
, 3o " Iy(eLaTLp )" e "I (p ) L(p,)

2L dL(p, )7’ 2Lav(p )]

(34-50)

where

J3(p)=(I§coshf§— Sinhjﬁ)B/p

L(p)=D coshf§+(kBi-1)sinhf§

and
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J (p Y= —gE (Bncos B~ sin Bn)3

n

dJB(p E;ﬁ B cosB ,-Sing ) [B ,CcosB +6%— i -1)sian]}

dZJB(pn)= g%—{[Bi(Bncoan—sian)Zjﬂg-Bncoan+sian]}
n

- EZ(Bncoan—sian)2+Bisin6n(ﬁncossn—sin8n)] *

x [8_cosg +(2 82-1)sin 8, T}

_ -1 .
dL(Pn)- EE;(XBicos B, - B, sin Bn)

dZL(pn)— 83 [(B -xBi)cos B,,- MB;B, sin Bn]

PL(p, )= g?g ([p2(rB,-1)-378_cos B_- [8 +3B;62 Jsin 8,)

n

If we group the first four terms only for g(#,7), then the
final solution for effluent concentration of adsorbate(1=1)

is

|

X('nzls T):O H T <

@

=g(”l=1,’r—%); T >

where (3A-51)
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00 'BnT
J
(1=1,7) 1 - B e 1(p,)
n=1 dL(pn)
. -
. : BZ){ e Lo, (p )+ a7, (p, )]
n=1 2’ [ dL(pn)] 2
2
...B T
e M Jz(pn)dZL(pn)}
L dL(p,) 12
o0 _BflT[ 2 + )+ 2 ( )]
i Z (_gz){e T JL(pn) 2T dJB(pn d°J 4 (p,
!
n=1 ' 2 [dL(pn)]3
_BZT >
. 3¢ % g L(pn)[TJB(pn)+dJ3(pn)]
2 [dL(pn)]LL
2
_B T
_3e Paie)lefnp)]?
2 [dL(pn)]5
_Bif ,
e J3(pn) d’L(p,) } L
I
2 [dL(pn)]
(3A-52)

where the elgenvalues Bn‘are calculated from the character-

istic equation

- B
_ n
tan B, = ( AB; - 1)



B. Dispersion Model
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The governing equations of dispersion model with pore

diffusion may be formulated as below:

) 2
3C, L 26, (KLa)(c . 3%,
3t €’ 3% € A A L 2

3%
2
BCS _ d CS 2 BCS
3t Ds( 5 T 7 37 )
3r
¢l = aC_( r= £ )
A - Abgl rEr, 2

with initial conditions,

Ca (2, t=0)= 0

CS (r, z, t=0)=0

and boundary conditions,

(i) solid phase:

BCS ( )
— =0 3 or C_(r=0, z, t)=0
3T | .o S
3C
s _ _AF
D 57 | =K (Cy- Cy)
S r=r

(ii) fluid phase:

(3B-1)

(3B-2)

(3B-3)

(3B-4a)

(3B-4b)

(3B-52)

(3B-5Db)



(:) at entrance, 2z=0

\ 3C,
VSCAOU(t)— VSCA‘z=O + ESDL T 0 = 0
or
€D aC
Ly “7A | -
CpU(t)- CAlz=O (=57 53 o 0

C) total material balance of adsorbate,

L

..b
vS 5‘(CAOU(t)— CA’z=L) at = sej- C, dz
o

o

L r4
= \g g ili§l§§gﬁ CS uﬂrg dr
= wr
0 0 3 0

or

.
(§)~5(CAOU(t)-CA‘Z=L)dt

L L r,
= ¢, dz + (—25) c rzdr dz
A s
0 0

2
[ EI'O

Introducing the dimensionless variables as

X = C,/C, U(%)

¥* ¥*
X' = CA/CAOU(t)

]
1

= CS/CAOU(t)

R = r/rO

71

(3B-6a)

(3B-6b)



2
X oX * 9y 37X
22 = _g £2 - o(X- X ) +(3) =5
3T 3 A anz
2
_a_.z = ( ...__a Y + _2.. é:i )
aT BRZ R 9R

X" = AY(R=1,17, 1)

with initial conditions,

X (7, t=0)= 0

Y (1, v=0)= 0

and boundary conditions,

(1) solid phase:
Y(R=0, 1, )= 0

Y

o/

|

3

v}

-

(ii) fluid phase:

3X =
5”!n=o °

[

L - X}ﬂ=o *
T 1 11 5
ej: (1-)%_1)@7:[ X dn +(—%£)££YR dRd

(3B-7)

(3B-8)

(3B-9)

(3B-10a)

(3B-10Db)

(3B-112)

(3B-11D)

(3B-12a)

(3B-12b)
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where
vL
A= —
EDL
vr2
o= —=2
€LDS
e KLaro
€D
_ KLro
B:=
S
a= 3(1—6)/ro

The simultaneous differential equations, egs.(3B-7) to (3B-9)
with initial and boundary conditions can be solved by means

of the Laplace transformation.

With the definition of Laplace transform, one may obtain
the model equations in terms of Laplace transform:

Fluid Phase

%= 03X _ 4 (%- 1 5 4y a7X _
p X= -0 an o (X- X7) + (A ) dnz (3B-13)
with boundary conditions,
1 1, dX
= _ X + ( ) == =0 (3B-14a)
e

11
% ( %— % :)ajl)’c an + (%—-)j y ¥ R%dRa (3B-14Db)



Solid Phase

2

il

p¥= 2
3R

Y
+
=
QJ!O/
el 5]

with boundary conditions,

Y(R=0, M ,p)= finite

Equilibrium Relationship At Interface

—* =
X = AY(R=1,7,p)

7l

(3B-15)

(3B-16a)

(3B-16D)

(3B-17)

For some specific position 7 , Y may be thought of as a

function of R only.

The solution of equation (3B-15) with

equations (3B-16) and (3B-17) has been practiced in part A

of this chapter,

_ B, R''sinnpR X
Y =I§coshI§+(KBi—1)sinhIp

(3B-18)

Substituting equation (3B-18) into equation (3B-17), it

results

o A B;sinh{D X
X =I§coshJ§+TXBi—1)sith§

and

7. z* . (fDeoshiP- sinhip) X

Jﬁcosh[§+(XBi—1)sith§

(3B-19)

(3B-20)
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Putting equation (3B-20) into equation (3B-13) and arranging

it, a second order ODE is resulted

d°X dX 5 _
E;E - A an - F(p) X =0 (3B-21)
where

({pcoshdp- sinhip)
fﬁcoshfﬁ+(kBi-l)sith§

F(p)= () {p+

Equation (3B-21) can be solved with the ald of boundary
conditions given by egs.(3B-14a) and (3B-14b), its general

solution is

N

X(Mm,p)= e ! ( Cq sinh %41+ c), cosh %41 )

v= rJA2+4F(p)

From equation (3B-22), one may derive the following

relations,

dX _ A JAZ L LF
a!q}_—_o = 3¢y + — 03 (3B-23)

1 A
~{ X dn = _(%){03 [% sinh 2

0

g
N

A vV _ VvV 73 .Y A
+04[ 5 cosh > 5 e sinh > 2] 3
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From equation (3B-22),

X =c

bl
|
N —

=1 = g (casinh % + cqcosh %) (3B-26)

Inserting equations (3B-23) and (3B-25) into equation (3B-14a)

results in:

JA R
cy= % + _é_%ﬂﬂ cq (3B-27)

From equation (3B-18), it follows that

1 1 1t _
J’ j _ (L Rsinh /PR dR) B, X d
Y R“4RAY =
A oJicoshf§+(kBi—1)sinhIﬁ

B. (/Pcosh/P- sinh[P) I
= & jﬁ X d7
p-DﬁcoshJ§+(KBi-1)sinhI§] A

Hence, equation (3B-14b) Dbecomes

1
Al = =X )= ( %)[p+ ({pcoshdp- sinhdp) ]_( Xd"
P 1=1 fpcoshp+(AB,-1)sinhiT

1
- F(p)\y X dn (3B-28)

Substituting equations (3B-24) and (3B-26) into equation
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(3B-28), the constant cy is solved

IQ ’2
A cosh—--f“i—-;—&E + [A®+LF coshré;%;ﬂi-

3 l A3+ L7
p [{A®+LFcosh AQEQF +(A2Z2F)sinhféiiggj

2

(3B-29)

Also, the constant ¢, can be obtained by substituting

equation (3B-29) into equation (3B-27),

[pn2 JAZ2 i Lm
NAR+4F cosh—é—i&E- +A sinh—é—iﬂg

c 2 2
L o=
, 2 , 2
pLJA=+4Fcosh AZZMF +(A XZF)sinh—é—%&E—]
(3B-30)

Inserting the constants 03 and c) into equation (3B-22) and
by applying the addition formulae of hyperbolic functions,

the complete solution for X is

A
51 e A NGNS
- e [eosh™ 321 1)+ T sinn B2 (1 )]
‘2 2 ,2
p Lcosh A ;4F + (B XZF) L sinhré~%&E-]
NAZ+LF

(3B-31)
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It is necessary to employ the technique of inverse
Laplace transformation for equation (3B-31) to obtain a
final solution for X(1,7). In order to find out all the
residues, 1t is an important concern to examine the analytic
properties of X(n,p) for eq.(3B-31). As in part B of Chapter
II, we knew that there are no branch points in eq.(3B-31), but
there exist a simple pole at p=0 and many simple poles P=Py

which satisfy the characteristic equation:

Ja2+LF A®+2F 1 . NAP+LF _
cosh™=——— + ( Z ) O sinh=—— = 0
(3B-32)
Let
X(M,p)= J(p)/L(p) (3B-33)
where
A
J(p)= ezn{co JY e T e HATEAE (1))
e
I 2 , 2
L(p)= p* { cosh AzzﬂF .+ (B XZF)JA2+4F sinhré—éﬂg 3
By applying the residues theorem,
-1 = br_
X(M,7)= LT{X(n,p)} == Res {e X(M,p); Py ]}
k
(Lo /L (e e )
= ¥ Li J L' e _
ol ou P (3B-34)

where p, are the poles of X(n,p) and L'(p)= dL(p)/dp.
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The resiues of X(H,p) are evaluated as follows:

(1) Residue of X(1,p) at p=0,

At p=0, F(p=0)=0 and JA®+LF = A. Hence

A
51
J(p=0)= o2 { cosh %(1—U)+ sinh %(l—ﬂ)}

ST b=

o
N
]
vl

L'(p=0)= cosh 7 + sinh 3

and,

Res 1 = J(p=0)/L'(p=0)= (3B-35)

-

(2) Residues of X(n,p) at P=P,

As stated in part B of Chapter II, we knew that there
are only the negative values for the term A®+4F are
satisfied with equation (3B-32). Let A®+4F = - B;, then

equation (3B-32) is reduced to

B - 2AB
tan Zn = e (3B-36)
AQ_ 82
n

There are many eigenvalues By which satisfy eq.(3B-36) as
shown in Figure 5 before. The values of Py can be calcu-
lated from the relation A®+4F= - B; after the values of

Bn were found.
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Since
A o( Ppcoship- sinhip ) A®+82
F(p)= (gHp + PCOSAID=- S D)3 - ny
fPecosh Bt (AB; -1) sinhiD 4
so that,
O (Pcoship- sinh/D) 6 A2+B;
Pt b= (@2 )

Jﬁcosh{§+(XBi—1)sinhI§

Let p= - §°

nom then equation (3B-37) is simplified

2
)= — Sp,mSn,m” © ~ %y )

tan (Sn m (3B-38)

]

2
(Sn’m—<bn)(XBi—1)+ o

where
2+2

Op= (2) (—2)

There are also many eigenvalues Sn - which satisfy eq.
H
(3B-38) with respect to different values of B Table 2
lists the first five eigenvalues of Sn m[from eq. (3B-38)]
?

along with the first ten eigenvalues of Bn[from eq. (3B-36)1.

By applying the residues theorem, the residues of

X(n,p) may be expressed as

pT ,
Res 2 = I Lim {J(p)e /L'(p)}=ZZ Lim {1
k p->Dy - N p-s



ABSTRACT

EXPLOITATION OF INFRARED POLARIMETRIC
IMAGERY FOR PASSIVE REMOTE SENSING APPLICATIONS

by
Joédo Miguel Mendes Romano

Polarimetric infrared imagery has emerged over the past few decades as a candidate
technology to detect manmade objects by taking advantage of the fact that smooth
materials emit strong polarized electromagnetic waves, which can be remotely sensed by
a specialized camera using a rotating polarizer in front of the focal plate array in order to
generate the so-called Stokes parameters: Sy, S1, S», and DoLP. Current research in this
area has shown the ability of using such variations of these parameters to detect smooth
manmade structures in low contrast contrast scenarios.

This dissertation proposes and evaluates novel anomaly detection methods for
long-wave infrared polarimetric imagery exploitation suited for surveillance applications
requiring automatic target detection capability. The targets considered are manmade
structures in natural clutter backgrounds under unknown illumination and atmospheric
effects. A method based on mathematical morphology is proposed with the intent to
enhance the polarimetric Stokes features of manmade structures found in the scene while
minimizing its effects on natural clutter. The method suggests that morphology-based
algorithms are capable of enhancing the contrast between manmade objects and natural
clutter backgrounds, thus, improving the probability of correct detection of manmade
objects in the scene. The second method departs from common practices in the
polarimetric research community (i.e., using the Stokes vector parameters as input to

algorithms) by using instead the raw polarization component imagery (e.g., 0°, 45°, 90°,
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where
éﬂ e [AZ+LT
_ 2 AR+LF A . AR +4F
J(p) = e {cosh———ﬁ——(l—ﬂ)+ fX;:ZE 81nh———§——(1-n)}
_ {AR+4F AR+2F 1 . NAPHLF
L(p) = p { cosh 5 +( % T sinh—— 3

Differentiating L(p) with respect to p, it results

JAZ+LF _ AP+2Fy 1 .. [AP¥LF
L' =dL dp= h +( ) IR sinh
(p) (p)/dp {cos 5 n = .
’ 2
D (%E){[__éiigﬁ__ ]cosh—-‘g—%EE
AP A(AR+uF)
. JARP+LF
+ [1+ 2 _ 2(AP+2F) ] sinh™ 5 %
A pA(a+uF) JAR+LF
(3B-40)
where
OAB. 2 2 1
(——)[sinh Jp- cosh(p +J='sinhI§coshJ§]
dF _ Ay g4 2 D
dp 0 5
[ cosh/p +(AB,-1) sinh.p]
(3B-41)
At p=py= -85, AT+4F= -87. So that
2 B 8
_ 2 Pnea_ A (1 _
IS, p= e {cos—g—(l n)+ 5 sin— (1-1)3 (3B-L42)

n



AP+B2+ABR2 B A®-g2 B
L'(s )= -8 *DF*% 8 B7 gin—= - L n cos—5"
n,m y AB3 ABE
n n
(3B-43)
and
dF
DF= —&—
dp _ 2
P =>pm
oA B. 3 cos(S Ysin(S )
(—55)sin (s )+cos®(S, [)- 1.1 n,m
A n,m n,m Sn n
=(5) | 1+ o
[Sn,mcos(Sn,m) +(KBi—1)31n(Sn’m)]

(3B-44)

Inserting equations (3B-42) and (3B-44) into equation (3B-39),

the residues of X(1,p) at p= -82 = are
H

8 B "
[Bncos—ag(l—n)+Asinf§£(1—ﬂ)] e? n,m

Res 2= - T
n m

AR+82+Ap2 B, A®-BZ B
s2  #DFx[ ( 2 _—Tysin—= - ( 2)cos—5~ ]
n,m ABa 2A82
n n
(3B-45)

Therefore, the final complete solution for X(n,t) is

A 2
B B 5N -8 T
0o 00 [Bncos—gg(l—n)+ Asin—?g(l—ﬂ)] e2 n,m
X(H,T)=1-~ 2,824AB82 2 2
— A+B I+ -
n=1m=1 g* ppel ( Bng 0y sin °n _(A Bn)cco 2%
n’m 2 - P- 4 2
n AABn
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The effluent concentration of adsorbate (at 1 =1) is

A 2
S
p W 8 x e2 n,m
= E z n
T A® B2 Ag? B A®-g2 B
n=1m=1 * n “Pa. . n > | 0
Sp,mt DF*L( )sin—— -( ) cos—— ]
’ ABS 2482
(3B-47)
where
A B; cos(S. )sin(S_ _)
( 5 l)[sing(sn m)+cosz(sn m)_ n,g n,m’
& ’ ' n,m
DF= (F){1+ .

) +0uB;-1)sin(s, )]

[Sn mcos(Sn -

s b

the eigenvalues Bn and Sn o are evaluated from equations
’
(3B-36) and (3B-38) respectively. The calculated results

of equation (3B-47) are discussed in Chapter IV.



CHAPTER IV

RESULTS AND DISCUSSIONS

The central problem in designing the packed bed ad-
sorption processes is the dynamic response of the adsorption
column to a step change or a pulse change in i1nput concen-
tration of adsorbate. These dynamic behaviors of an ad-
sorbent fixed bed are usually studied from the breakthrough
curves which are expressed as dimensionless effluent concen-
tration of adsorbate versus effluent volume or elapsed time

in terms of different operation conditions.

For a given adsorbent-adsorbate system, the shape of
breakthrough curves depends on the rate and mechanism of ad-
sorption process, on the nature of adsorption equilibrium,
on the physical properties of system such as the bed length
and the cross-sectional area of column, on the effective
interfacial contact area, and on the transport parameters
related to the flow of fluid (i.e. fluid velocity, axial

dispersion, etc.).

In this chapter, the equations developed in chapter II
and III, namely, eqs(2A-22), (2A-25), (2B-52), (2B-53), and

(3B-47) are employed to calculate the breakthrough curves
85
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in terms of different system parameters. Breakthrough curves
of two different models are studied. Finally, the proposed
models are verified by experimental data of the system of

hemoglobin- albumin- CM sepharose- DEAE sepharose.

A, Surface Adsorption Model

Based on equation (2A-22), the calculated breakthrough
curves of simple model with surface adsorption in response
to a step change in input are shown in Figures 7 to 12.
Figure 7 shows the effect of flow rate on the performance
of a packed column. As expected, high flow rate was re-
sponsible for earlier breakpoint, because the time provided
for the contact of adsorbent and adsorbate is reduced at
high flow rate and exhausted the bed more rapidly. The
effects of bed length and cross-sectional of column on the
calculated breakthrough curves are illustrated in Figures
8 and 9 respectively. From these figures, it is shown that
the adsorption capacity (loading) can be enhanced by in-
creasing the bed length or the cross-sectional area of
column. Figure 10 represents the effect of mass transfer
coefficient on predicted breakthrough curves. This figure
shows that by increasing the mass transfer coefficient will
cause an increase in mass transfer rate and result in in-
creasing the rate of adsorption. The rate of adsorption
can also be increased by increasing the effective contact

area of adsorbent particles, this phenomenon is shown in
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Figure 11. Figure 12 represents the effect of equilibrium
constant on calculated breakthrough curves. The equilibrium
constant 1s an important factor in adsorption process, be-
cause this factor might affect the reversibility of ad-
sorption/desorption process. The equilibrium constant is
generally governed by the thermodynamic intensive variables
(such as temperature, pressure, ionic strength, affinity,
PH, electric field, etc.). Figure 12 shows the system per-
formance is highly sensitive to the variation in equilibrium

constant.

For a pulse change in input concentration of adsorbate,
the effects of some system parameters on the predicted break-
through curves are studied. Based on eq.(2A-25), the results
are shown in Figures 13 to 16. Referring to Figures 13 and
14, it can be seen that the breakthrough curve has higher
peak for larger mass transfer coefficient,K; and the break-
point is delayed for larger contact area,a. This phenomenon
implies that the larger Ky and a posses higher mass transfer
rate and larger adsorption capability to load the finite
amount of adsorbate for the case of pulse input. Figure 15
shows the effect of mass transfer rate (KLa) on calculated
breakthrough curves. Figure 16 represents the effect of
distribution ratio (m€/a) on calculated breakthrough curves.
It is evident that the larger distribution ratio has less
adsorption capability, thus the curve has higher peak and

smears out the column earlier than the others.
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Figure 7. Effect of flow rate Q on predicted
greakthrough curves ( simple model
with surface adsorption)
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Condition: Q=0.5, L=10., K1=6.0% 10_4

m=300., a=3(1-€)/r,=400.

0 20 40 60 80 100
Effluent Volume (ml)

Figure 9. Effect of cross-sectional area of column
S on predicted breakthrough corves ( simple
model with surface adsorption)
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Figure 11. Effect of interfacial contact area a on
predicted breakthrough curves ( simple
model with surface adsorption)
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Condition: Q=0.5, L=10., S=2.0, m=300
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Condition: Q=0.5, L=10., $=2.0,
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Figure 15. Effect of mass transfer rate Kr#a on
predicted breakthrough curves

( simple model with surface adsorption )
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Condition: Q=0.5, L=10., S5=2.0,
Kixa=0.12, AT= 80 min
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Figure 16. Effect of (m€/a) on predicted breakthrough
curves ( simple model with surface adsorption )
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Figures 17 to 23 represent the calculated breakthrough
curves [based on eq.(2B-52)] for the case of dispersion
model with surface adsorption in response to a step change
in input concentration of adsorbate. Figure 17 shows the
influence of axial dispersion on adsorber performance. A
comparison with the simple model (DL= 0) shows that the
break time decreases by increasing the axial dispersivity
D1,. From the definition, it is known that the axial dis-
persion is the result of eddy diffusion and molecular dif-
fusion. Hence, an increase in axial dispersion will result
in a superimposition on the convective flow of fluid and

then decrease the column efficiency.

Among the considerations in designing the packed bed
adsorber, the most important features of a breakthrough
curve are the position of break point, the adsorption ca-
paclty of the packed bed, and the steepness of the curve.

By comparing the illustrations in Figures 18 to 23 with that
in Figures 7 to 12, it can be found that both cases display
the same trends of the effects of system parameters Q, L, S,
K;, a, and m on calculated breakthrough curves. However, the
appearance of axial dispersion as shown in Figures 18 to

23 causes the curves to have earlier breakpoints, less ad-
sorption capability and less steepness. These phenomena

are also noticed in Figures 24 to 28 for the case of dis-
persion model with surface adsorption in response to a

pulse change in input concentration of adsorbate.
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( dispersion model with surface adsorption )
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Figure 19. Effect of bed length L on predicted

breakthrough curves
( dispersion model with surface adsorption )
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Condition: Q=0.5, Dy=1.0, L=10., KL=3.O*1O_4
m=300, a=3(1-¢)/ro=400
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Figure 20. Effect of cross-sectional area of column
S on predicted breakthrough curves

(dispersion model with surface adsorption)
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on predicted breakthrough curves
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Condition: Q=0.5, L=10., S=2.0, D;=1.0
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Condition: Q=0.5, DL=1'O’ I=10., S=2.0,
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Figure 23. Effect of the area based eqiulibrium constant
m on predicted breakthrough curves
(dispersion model with surface adsorption)
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Condition: Q=0.5, L=10., §=2.0, K;=1.0% 107
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( dispersion model with surface adsorption )
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Condition: Q=0.5, Dp=1.0, L=10., S$=2.0,
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on predicted breakthrough curves
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Condition: Q=0.5, DL=1.O, L=10., S=2.0,
me/a =0.5, oT=80 min
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Figure 27. Effect of mass transfer rate Kyxa on
predicted breakthrough curves
( dispersion model with surface adsorption )
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Condition: Q=0.5, DL=1.O, L=10., S=2.0,
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B. Pore Diffusion Model

Based on equation (3B-47), Figures 29 to 35 illustrate
the effects of some basic parameters on calculated break-
through curves for the case of dispersion model with pore
diffusion in response to a step change in input adsorbate
concentration. As compared with the surface adsorption
model, it can be seen that the breakthrough curves shown
in Figures 29 to 35 have steeper slope at the early stage.
This phenomenon is probably due to the effect of internal
diffusion, so the bed can be saturated rapidly as the ad-

sorption wave passes through the bed.

Figure 29 shows that the column performance decreases
with increasing the axial dispersion. As illustrated before,
Figures 30 to 32 show that an increase in flow rate, Q de-
creases fhe adsorption rate, and increasing the bed length,
L or the cross-sectional area of column, S will cause an
increase in adsorption capacity. Figure 33 illustrates the
effect of equilibrium constant, X on the calculated break-
through curves. In dealing with the pore diffusion model,
it seems that the system parameters, Kr,, a, and DS are in-
terrelated, because the adsorption rate is first controlled
by the fluid film resistance and then controlled by internal
diffusion resistance. Figures 34 and 35 represent the ef-

D
fects of mass transfer rate, KLa and internal diffusion, ;%
o)

on the breakthrough curves. From these figures, 1t can be
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Condition: @=0.5, L=10., $=2.0, K = 321072
A=0.75, D_=3x10"C, r =2x1072
S 0
1.0
0.8}
016"'
0.4% . Curve DL
/3 ) 1 10.
5 2 1'
3 0.6
0.2} L 0.4
5 0.2
0.0 1 1 i L
0 20 L0 60 80 100

Effluent Volume (ml)

Figure 29. Effect of axial dispersivity DL
breakthrough curves
(dispersion model with pore diffusion)

on predicted



Condition: L=10., $=2.0, D =1.0, KL=3*1O_2

A=0.75, DS=3*10“6, r0=1*1o‘2
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| 1 L L

Figure

30.

20 Lo 60 80

Time (min)

Effect of flow rate Q on predicted
breakthrough curves

(dispersion model with pore diffusion)

100
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Condition: Q=0.5, §=2.0, D =1.0, KL=3*1O_2

\=0.75, D _=3x10"°, r =1x10"%
1 ] O S — O —

.0 l
0 20 40 60 80 100

Effluent Volume (ml)

Figure 31. Effect the bed length L on predicted
breakthrough curves

(dispersion model with pore diffusion)
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Condition: Q=0.5, L=10., D;=0.6, Kr=1.2%107 %

Lo A=0.5, D_=3%10"", r =1x10

O.@h
Curve

1 1.

2 2.
0.2}

3 5.
0.0 | 1 1

0 20 Lo 60 80 100

Effluent Volume (ml)

Figure 32. Effect of cross-sectlonal area of column
S on predicted breakthrough curves

(dispersion model with pore diffusion)



Condition: Q=0.5, $=2.0, L=10., D .= 0.4

L
_ -2 _ -6 _ -2
KL—3*10 ’ DS—B%lO , rO—Z*IO

1.0 —
0.8}
0.6}
X
0.4}~
Curve
1 100.
2 10
3 2
4 1.
0.2} 5 0.5
6 0.2
V4 0.1
0.0 I
0 20 40 €0 80 100

Effluent Volume (ml)

Figure 33. Effect of equilibrium constant A on
predicted breakthrough curves
(dispersion model with pore diffusion)
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Condition: Q=0.5, L=10., S=2.0, Dr=0.4

= = -6
1.0 A=0.5, D =1.5#10
6
5
0.8} /
0.6}
1
2
o.ubL ; Curve K1a
" 1 0.072
2 0.18
3 0.72
0.2 L 1.80
5 2.40
6 18.00
0.0 L ] | |
0 20 Lo 60 80 100

Effluent Volume (ml)

Figure 34. Effect of the mass transfer rate Kra on
breakthrough curves

(dispersion model with pore diffusion)
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Condition: Q=0.5, L=10., S=2.0, D=0.4,
)\.=Ol75, KLa= 1-4}4‘

1.0
0.8 1 //
3
0.6 I
5 D
Curve ;§*103
0.4 6 °
1 0.06
2 0.12
3 0.30
0.2 L 0.60
5 1.20
6 3.00
0.0 ] l ]
0 20 40 60 80 100

Effluent Volume (ml)

Figure 35. Effect of internal diffusion rate DS/roz2
on predicted breakthrough curves

(dispersion model with pore diffusion)
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found that an increase in mass transfer rate or internal
diffusion rate could improve the performance of adsorption

processes.

C. Experimental Verifications

The adsorption of agueous protein mixture (hemoglobin
or albumin) by a fixed bed packed with CM-sepharose cation
exchanger or DEAE-sepharose anion exchanger were experi-
mentally investigated. The detailed description of ad-
sorption system is given in Appendix B. Three sets of ex-
perimental data were obtained (36). These experimental
data are first verified with the surface adsorption model
as shown in Figures 36 to 44, and then verified with the
pore diffusion model as shown in Figures 45 to 47. The
operation conditions used in the experimental verifications
are: the flow rate, Q is 1 cm®/min, the bed length, L is
8 cm, the cross-sectional area of column, S is 2 cm®, the
average radius of resin particles, ry 1s 50 um (dp = 40~
160 pm), and the area based equilibrium constant, m is
chosen as 150 em™ 1 (or A=0.75) for lower pH level and 200
cm_l (or A=1.0) for higher pH level. Some parameters such
as axial dispersivity, Dy, the mass transfer coefficient,
K7, and the internal diffusivity Dg are not fixed and
treated as variables. The trial values of Ky, and Dy are

adopted form the literatures (17,21).
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Figures 36 to 41 represent the verifications of surface
adsorption model with the experimental breakthrough data of
hemoglobin on CM-sepharose at pH=4.0 and at pH=6.5. The
results indicate that the axial dispersion has more signifi-
cant effect on the column performance at higher pH level
than that at lower pH level. This phenomenon is probably
due to the adsorption capability of CM-sepharose to hemo-
globin is stronger at pH=4.0 than that at pH=6.5, where the
isocelectric point of hemoglobin is pI=6.7 (10). As shown in
Figures 38 and 41, the good agreement between the predicted
breakthrough curves and the experimental data can be obtained
if the interaction of axial dispersion and mass transfer rate
is taken into account. However, there is a little deviation
between the predicted breakthrough curves and the experi-
mental data at the early stage. This phenomenon is
probably due to the fact that the assumption of linear
velocity profile can not be effectively used to simulate the
adsorption process. For the case of albumin adsorbed onto
DEAE-sepharose at pH=6.5, the verifications of surface ad-
sorption model with the experimental breakthrough data are
shown in Figures 42 to 44. It can be seen that the dis-
agreement between the predicted breakthrough curves and the
experimental data is more noticeable than that in the case

of hemoglobin.

With the consideration of internal diffusion, the ver-

ifications of pore diffusion model with the experimental
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data are shown in Firures 45 to 47. From these demonstra-
tions, it can be seen that the fitting of experimental data

is improved a little by the pore diffusion model.
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*
0 experimental data

0.4 Curve D, K1,
1 0.0 1.0%107°
2 O|5 n
0.2
3 1.0 "
0.0 o ] i ]
0 20 40 60 80 100

Effluent Volume (ml)

Figure 36. The verification of experimental breakthrough
data with surface adsorption model
( Hemoglobin on ClM-Sepharose at pH= 4.0 )

Condition: Q=1.0, S=2.0, L=8.0, m=150.

€=0.75, ro=50.
«Ref. (36) © we
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1.0
0.8l
0.6|-
O experimental data*
0.4
Curve DL KL
1 0.0 1.051077
0.2L 2 0.5 0.6%1077
3 1.0 0.6%1072
0.0 A 1 i 1
/7
0 20 %, %0 80 700

Effluent Volume (ml)

Figure 37. The verification of experimental breakthrough
data with surface adsorption model
( Hemoglobin on CM-Sepharose at pH= 4.0 )

Condition: Q=1.0, S=2.0, L=8.0, m=150.

€=0.75, r,=50pm
xRef. (36)
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1.0
0.8—
0.6

0 experimental data”
O'Ltb.

Curve D1, K1,

1 0.0 1.0%1072
0.2k 2 0.5 4.0%1072

3 1.0 b.0x1072

0 20 40 60 80 100

Effluent Volume (ml)

Figure 38. The verification of experimental breakthrough
data with surface adsorption model
( Hemoglobin on CM-Sepharose at pH= 4.0 )

Condition: Q=1.0, S=2.0, L=8.0, m=150.
€=0.75, r = 50 um
%Ref. (36)
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1.0 """-U_@
008—
0.6}
. ¥*
O experimental data
Ol“’_
Curve DL K7,
1 0.0  1.0%1077
020 2 0.5  1.0%1077
3 1.0  1.0%1077
)
!
0.0bweldb g . ' '
0 20 L0 60 80 100

Effluent Volume (ml)

Figure 39. The verification of experimental breakthrough
data with surface adsorption model
( Hemoglobin on CM-Sepharose at pH= 6.5 )

Condition: Q=1.0, S=2.0, L=8.0, m=200.

€=0.75, ry= 50 pm
*Ref. (36)
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1.0
O L] 8 -
0.6
/ : *

0 eXxperimental data

0.4
Curve DL KL

1 0.0 1.0%1077
0.2 2 0.5 0.6%1072

3 1.0 0.6%1072
0.0 L ] |

0 20 40 60 80 100
Effluent Volume (ml)

Figure 40. The verification of experimental breakthrough

*Ref. (36)

data with surface adsorption model
( Hemoglobin on CM-Sepharose at pH= 6.5 )

Condition: Q=1.0, S=2.0, L=8.0, m=200.

€=0.75, r = 50 um
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1.0

0.8}

0 experimental data*

O'L"
Curve DL KL

1 0.0 1.0%1077

2 0.5  h.ox1072
0.2

3 1.0  L4.ox1072
0.0 | ! |

0 1O 60 80 100

Effluent Volume (ml)

Figure 41. The verification of experimental breakthrough
data with surface adsorption model
( Hemoglobin on CM-Sepharose at pH= 6.5 )

Condition: Q=1.0, S=2.0, L=8.0, m=200.

=0.75. ro= 50
*Ref. (36) €20.75. ro= 50 pm
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0.8 |-

0 experimental data*

OOLL
Curve DL KL
1 0.0 2.0%1077
0.2 2 0.5 "
3 1-0 "
0.0 | | I
0 20 Lo 60 80 100

Effluent Volume (ml)

Figure 42. The verification of experimental breakthrough
data with surface adsorption model
(Albumin on DEAE-Sepharose at pH= 6.5)

Condition: Q=1.0, S=2.0, L=8.0, m=150.

€=0.75, = 50
#Ref. (36) 5» To™ 50 um
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1.0
o
0.8}
0'6-
X
. 3%
O experimental data
O.L"
Curve Dy, K7,
1 0.0 2.0%1077
2 0.5 1.0%1073
0.2
3 1.0 1.0%107°.
0.0 ! [ !
0 20 40 60 80 100

Effluent Volume (ml)

Figure U43. The verification of experimental breakthrough
data with surface adsorption model
(Albumin on DEAE-Sepharose at pH= 6.5)

Condition: Q=1.0, S=2.0, L=8.0, m=150.
*Ref. (36) €=0.75, r = 50 um
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0.8}

0.6

¥*
experimental data

0.4
Curve DL KL

1 0.0 2.0%107

2 0.5 L.0x10
0.2

3 1.0 4.0o%1072
0.0 N | )

0 20 50 %0 80 700

Effluent Volume (ml)

Figure 44 . The verification of experimental breakthrough
data with surface adsorption model
(Albumin on DEAE-Sepharose at pH= 6.5)

Condition; @=1.0, S=2.0, L=8.0, m=150.

«Ref. (36) €=0.75, r,= 50 um
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1.0
008 -
0-6 P
1, %
// O experimental data
0.4} !
Curve DL KL DS
1 0.0 1.%107° 0.0
2 0.5 L4.x1072 0.0
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Figure 45. The verification of experimental breakthrough
data with pore diffusion model(curve 3)
( Hemoglobin on CM-Sepharose at pH= 4.0 )

Condition: Q=1.0, S8=2.0, L=8.0, €=0.75

A=0.75(or me/a=0.75), r = 50 um
#Ref. (36)
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Figure W46. The verification of experimental breakthrough
data with pore diffusion model(curve 3)
( Hemoglobin on CM-Sepharose at pH= 6.5 )

Condition: Q=1.0, S=2.0, L=8.0, €=0.75

#Ref. (36) r=1.0(or me/a=1.0), r = 50 pm.
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1.0
0-8 =
0.64-
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/, O experimental data
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Figure U47. The verification of experimental breakthrough

data with pore diffusion model{curve 3)
(Albumin on DEAE-Sepharose at pH= 6.5)
Condition: Q=1.0, S=2.0, 1L=8.0, =0.75

A=1.0(or m¢/a=1.0), r_ = 50 um.
#Ref. (36)



CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Two adsorption models have been developed to simulate
the unsteady state mass transfer behavior in a packed bed.
One is called the surface adsorption model in which the sig-
nificance of internal diffusion is neglected, and the ad-
sorption process is assumed to be determined by external
diffusion and surface adsorption. The other is called
pore diffusion model in which the resistance of internal
diffusion is considered as significant as that of external
diffusion. In both models, the effect of axial dispersion
in fluid phase was studied. A total of four cases have
been solved analytically. The correlations developed for

each case are summarized in Table 3.

A novel and rigorous approach by use of the conser-
vation law was employed to set up the proper boundary con-
ditions for adsorption models. Two different sets of bounda-
ry conditions were used in dispersion models; one set is
specified by the continuity equation of adsorbate at the
entrance of column (z=0), and the other set is character-

ized by the total material balance of adsorbate over the
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Table 3

Summary of Adsorption Models

SURFACE ADSORPTION MODEL

PORE DIFFUSION MODEL

SIMPLE MODEL|DISPERSION MODEL
(D1,=0)

SIMPLE MODEL |DISPERSION MODEL
(D1,=0)

dC
0%

A—

K:
(=22 (¢ -cp)

32C
+DL ,

A

&) m
g
- O
£
o &
> S
o ol
U ]

Solid
Phase

Equilibrium
Relationship

Analytical
Solution

EQ. (24-22)| EQ.(2B-52)

EQ. (3A-52) EQ. (3B-47)

GET
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entire column. The analytic solutions are presented in the
form of breakthrough curves in terms of the variations of
system parameters. Referring to the simulated results, it
is concluded that:
(1) The adsorption capability can be enhanced by in-
creasing the bed length, L or the cross-sectional
area of column, S.
(2) The efficiency of adsorption column can be im-
proved by decreasing the flow rate, Q or in-
creasing the effective contact area, a.
(3) The progress of adsorption is sensitive to the
mass transfer coefficient, K; and the internal

diffusivity, D.. It 1s found that adsorption

s
rate increases with increasing the mass transfer
rate, Kja or the internal diffusion rate, Ds/rg.

(4) The axial dispersivity does have an effect on the
adsorption process; 1ts effect 1s more significant

at lower flow rate and is less noticeable as the

flow rate is increased.

The proposed adsorption models were verified experi-
mentally with the system of hemoglobin- albumin- CM sepharose
and DEAE sepharose. It was shown that the theoretical pred-
ictions are in good agreement with the experimental data.
Through the experimental verifications, the following re-

commendations are drawn:



(2)
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In this study, it is assumed that the pressure is
constant and there is plug flow across the column.
However, the pressure may not be constant and there
exists some velocity gradient in most practical
cases. Therefore, it is suggested that the para-
bolic type velocity profile should be used in
further study.

The equilibrium isotherm is assumed to be a linear
relationship between the fluid phase and the solid
phase in this study. The equilibrium isotherm is
usually sensitive to the thermodynamic control
variables such as pressure, temperature, ionic
strength, electric field, pH, or affinity. It is
found that the equilibrium isotherm may not be
linear in some situations even at low concentration
of adsorbate (17). Therefore, it is recommended
to investigate the nonlinearity of equilibrium

isotherm in further study.
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APPENDIX A

COMPUTER PROGRAM IN SEARCH OF EIGENVALUES
OF FUNCTION: TAN (X/2)= - 2AX/(A%- X?)
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APPENDIX A

COMPUTER PROGRAM IN SEARCH OF EIGENVALUES
OF FUNCTION: TAN (X/2) = -2AX/(A%- X?)

ok ok ok 2k ok ok ok ok ke 20K oK 2Kk oK oK 3K K sk ok KK KKK K KKK KO K Kk Kok K

b 3 L& ¢
X% MATHEMATICAL SIMULATION OF FROTEINS X%
XX SEFARATION IN A FACKED RED *XK
*X xX

X% THIS FROGRAM IS USING THE SECANT kX
¥k METHOD TO SEARCH THE EIGENVALUES OF XX

% FUNCTIONG: XX
*% TAN(X/2)= —-2AX/(AXA-XXX) XX
¥k ¥k

20K 2k ok Kk ok ok ok ok K k3K Kk K sk ok 3K K KKk kKKK KK KoKk KRk KKK
IMPLICIT REALX8(A-H»0-2)
DATA AsMAXyERROR/.133333302+460,1.0-10/
FI=3.,141592600

EX=1.,0-1

STEP=FIX2.00
I=(A-STEF/2.110)/8TEF+1.00
I2=I+1

I3=12+1

IN=1

¥¥% THE FIRST ROOT IS X=0.00 XXX
X0=FI+EX

XS=(I-1)¥STEF+X0
IF(I.EQ.0)GO TO 19
IF(I.GT.MAX) I=MAX

Na 10 L=IN»1I
IF(L.GE.I3)X0=X8

LL=L~-IN

DN=DFLOAT(LL)?
X1=IONXSTEF+X0

XF=X1+EX

AD=F (X1)

J=1

BO=F (XF)

N=1

S=XF

T=R0O

IF(AOXROI29 254
U=XF-ROX(XF-X1)/(R0O~-A0)
N=N+1
IF(DARS(U-XF)~ERROR)S 556
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X1=XF

A0=R0

XF=U

BO=F (U)
IF(N-400)2y245

AD=T

X1=8

XF=X1+EX

J=J41

GO TO 93

WRITE (695000 sLsU
FORMAT(SX»I3y5Xs "RETAC v 1357 )=/ 33Xy [116.9)
CONTINUE
IF(I.GE.MAX)GO TO 30
X0=A+EX

IN=I2

I=MAX

GO TO 90

STOR

ENI

THE EIGENFUNCTION 2
TAN X = —2AX/ (AXA-X%xX)

FUNCTION F{X)

IMFLICIT REALX8(A-Hs0~Z)

DATA A/ .133333302/
F=DTAN(X/2.00)+2 . DOXAXX/ (AXA-XXX)
RETURN

ENI
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APPENDIX B

EXPERIMENTAL STUDY OF PROTEINS
SEPARATION IN A PACKED COLUMN
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APPENDIX B

EXPERIMENTAL STUDY OF PROTEINS
SEPARATION IN A PACKED COLUNMN

Preparation of Buffer Solutions

Two kinds of buffer solutions were used in the experi-
ment and for preparing the feed solutions. One buffer em-
ployed is a mixture of acetic acid and sodium acetate; the
other buffer is a mixture of tris(hydroxylmethyl)aminomethane
(ChHllNOB) and maleic acid (cis-HOOCCH=CHCOOH). The summa-
rized procedures of buffers preparation are listed in Tables
4 and 5 for acetate buffer and Tris-maleate buffer re-

spectively.

In the preparation, the selected amounts of each salt
solution were combined to provide a buffer mixture at re-
quired pH level, and the NaCl solution was used to provide
the needed ionic strength. For the acetate buffer at pH=4.0,
the 0.10 M NaCl solution was used, and the 0.05 M NaCl so-

lution was used for the Tris-maleate buffer at pH=6.5.

Preparation of Feed Solutions

Worthington human serum albumin and hemoglobin were
selected for the experiment, some of their properties are

shown in Table 6.

The feed solutions were prepared by mixing 0.02 wt% of
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Table 4

Preparation of Acetate Buffer

Stock Solutions:

A. 0.15 M solution of acetic acid.

B. 0.15 M solution of sodium acetate.

x ml. of A + y ml. of B, diluted to a total

of 100 ml.

X v pPH
Lhé6.3 3.7 3.6
Li,o 6.0 3.8
41.0 9.0 4.0
36.8 13.2 L.2
30.5 19.5 b.ob
25.5 24,5 4,6
20.0 30.0 4.8
14.8 35.2 5.0
10.5 39.5 5.2

8.8 41.2 5.4
L.8 Lhg,2 5.6

#Reference: Colowick, S.P. and N.O0. Kaplan,
Methods in Engzymology, NY, Academic
Press, pl138 (1955).
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Table 5*

Preparation of Tris-maleate Buffer

Stock Solutions:

A. 0.10 M solution of Tris acid maleate (12.1 g
of tris(hydroxymethyl)aminomethane + 16.6 g
of maleic acid).

B. 0.10 M NaOH.

50 ml. of A + x ml. of B, diluted to a total

of 200 ml.

X pH X pH

7.0 5.2 48,0 7.0
10.8 5.4 51.0 7.2
15.5 5.6 54.0 7.4
20.5 5.8 58.0 7.6
26.0 6.0 63.5 7.8
31.5 6.2 69.0 8.0
37.0 6.4 75.0 8.2
42.5 6.6 81.0 8.4
45,0 6.8 86.5 8.6

# Reference: Colowick, S.P. and N.0O. Kaplan, Methods

in Enzymology, NY, Academic Press (1955)

Table 6 (10)

Properties of Protein

Isoelectric Diffusivity in
Protein M. W. Point(pl) free solution (21)
Hemoglobin 63000 6.7 '7.6%10_.7 cmz/sec

Albumin 67000 L.7 '7.0*10_7 cmz/sec
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protein (hemoglobin or albumin) with the prepared buffer
solutions, the corresponding concentration of protein in the

feed solutions is almost equal to 1.0%1072 M.

System Description

The experimental apparatus is shown in Figure 48. The
column (1.6 cm ID and 40 cm length) was packed with CM-
sepharose cation exchanger or DEAE- sepharose anlon exchanger
and ajusted the bed length to 8 cm. The system was main-
tained at a constant temperature of 288 °K by circulating the
cooling water through the Jacket of the packed column and
the jacket of reservoir. The feed solution was introduced
into the system from the bottom of column by a P-3 peri-
staltic pump (manufactured by Pharmacia Fine Chemicals).

The effluent from the top of column was taken as samples.
Throughout the experiment, the flow rate was set at 1.0

ml/min.

Samples were analyzed by the spectrophotometer (Bausch
& Lomb spectronic 400-3). The concentration of hemoglobin
was determined directly from the absorbance at a wavelength
of 403 nm. The Bio-Rad protein assay was used to determine
the total concentration of proteins from the absorbance at
a wavelength of 595 nm. The concentration of albumin was
then calculated as the difference between the total concen-

tration of proteins and that of hemoglobin.
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Figure U48. The Experimental Apparatus of Proteins
Separations in A Packed Bed
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APPENDIX C

COMPUTER PROGRAM FOR THE CALCULATION OF
BREAKTHROUGH CURVES BASED ON EQ. (2A-22)
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APPENDIX C

COMPUTER GROGRAM FOR THE CALCULATION OF
BREAKTHROUGH CURVES BASED ON EQ. (2A-22)

K 3K KOk K ok 3k K oK 3k 3 3K ok 2K 3k 3k oK 2K 5K KOk KK K KoK Kok ok K K K KKK KKK XK

%k XX
¥k MATHEMATICAL SIMULATION OF FROTEINS XX
Xk SEFARATION IN A FPACKED ERED *%
Xk XX
Xk SURFACE ADSORFTION Xk
Xk SIMFPLE MODEL: STEP INFUT ¥k
X X

2Kk 40 ek koK K Kk K K K K sk s okKOK kK sk KOk sk ok sk K KK KKK KKK XK

IMFLICIT REAL¥8(A-H»0-2Z)

DIMENSION H(25) +X(S01)yTAP(S501)» TH(S01)yF1(501)
DIMENSION F2¢501)F3(501)sHF (501)ySUM(S01)
DIMENSION TSUM(S01)»V0L(501)

INFUT THE DATAy MASS TRANSFER COEFFICIENT KL»
INTERFACIAL CONTACT AREA Ay VOID FRACTION Es AREA
BASED EQUILIRRIUM CONSTANT MsRBED LENGTH Ls VOLU-
METRIC FLLOW RATE Q» CROSS-SECTIONAL AREA Sy
ELAFSED TIME T

DATA FReSAYEFSsSMeZ/2.0-352. 02y .75300,3,02y.801/
DATA QsS»T/1.N0,2.0051.802/

DEFINE THE DIMENSIONLESS TIME TAU» DISTANCE
ZETA AND EVALUATE EFFECTIVE TIME TFy
DISTRIBUTION RATIO GAMMA

TP=T—-(ZXEFS%S)/Q
TAU=TFXFK*SM
ZETA=(ZXSXFKXSA) /Q
GAMA=SMXEFS/SA
WRITE(6279)
79 FORMATC(10Xy “X%%X SURFACE ADSORFTION XXX’y /10Xy
$/THE SOLUTION IS FOR SIMFLE MODEL! STEF INFUTY)
WRITE(6y80)TF s TAU ZETA»GAMA
80 FORMAT(/+10Xs”’ TP=’50113.6+/10Xs’ TAU="yD13.6>»
/10Xy ZETA='sN13.65/7Xy “XXX GAMA='»1113.,6+/)
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100

10

30

40

60

WRITE(éy100)
FORMAT(1H»8Xy "EFFL VOL‘s6Xy " TIMEsMIN’ y3X>»

$'STEF CHANGE X(T)’+5Xy ‘SOLII CONCN‘)

DIVIDE THE DIMENSIONLESS TIME INTO 50 INTERVALS

H(1)=1.D00

[0 10 I=2+15
H(I)=H(I-1)XI
OT=TAU/S5.02

0o 20 J=1,501
X(Jr=(J-1)r%0T
TAFCD =X /SM/FK
THC D =TAF (D) +{(ZXEFSXS) /Q
VOLC D) =QXTHCDD
El=X{(1)+ZETA

F1{ D =DEXF(~E1)
E2=X()¥ZETA%X4.1010
F2(J)=NSART(E2)

EVALUATE THE MODIFIED RESSEL FUNCTION IO(X)

SUM1=1.00

K=1

KR=K%2

SUMI=SUMI+ ((F2(J)/2. D0)¥XKK)/(H(K>X¥X%2,110)
K=K+1

IF(K~-15)30,30+40

F3(J)=8UM1

HF () =F1 (J)%F3(0)

CONTINUE

EVALUATE THE INTEGRAL TERM FOR CONCENTRATION
FROFILE

SUM(1)=0.10

TSUMC1)Y=HF (1)+5UM(1)

D0 40 L=2,501
SUML)Y=SUM(L-1)+0TX( (HF (LY +HF (L-1))/2,.10)
TSUM (L) =HF (L) +SUM(L)

CONTINUE

FPRINT QUT THE LIQUID CONCENTRATION TSUM AND
SOLID CONCENTRATION SUM

WRITE(6y200) (JyVOLC(J) s THCI) » TSUMCI) »SUMC D) »

$J=15501,25)
200 FORMAT(I4,2Xy012,5,2X,I112.5y2X,015.823X»015.8)

STOF
END
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APPENDIX D

COMPUTER PROGRAM FOR THE CAILCULATION OF
BREAKTHROUGH CURVES BASED ON EQ. (2B-52)
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APPENDIX D

COMPUTER PROGRAM FOR THE CALCULATION OF
BREAKTHROUGH CURVES BASED ON EQ. (2B-52)

K OKKOK KK K kK kK K K koK kK XOKOK stk kokok ok skl kokok Xokokkok

X% %%
X% MATHEMATICAL SIMULATION OF FROTEINS XX
%k SEFARATION IN A FACKED RED X%
X% *X
L $ 4 SURFACE ADSORFTION *X
L & 3 ODISFERSION MODREL: STEF INFUT %%
Xk XX

KOROROROROKOK KK K oK ok koK K K Sk kK Kok 30K 30Kk KoK K kK kkokok Kok
IMPLICIT REAL%8(A-H-,0-2)

DIMENSION SN1<(200)»8N2(200)»VA(200)sVR(200)
$TM(S00) s VOL(S00) » TAUCS00) » X(S00) » XSTEF (500)

INFUT THE DATA?: VOLUMETRIC FLOW RATE Q»
CROSS-SECTIONAL AREA OF COLUMN S» VOID
FRACTION E» AXIAL DISFERSIVITY DLs EED
LENGTH Ly AREA BASED EQUILIEBRIUM CONSTANT
Ms CONTACT AREA A» MASS TRANSFER COEFF. KL

DATA Q:RyEFSED/.250052.110y . 7501051 . 110/
DATA HsSMsB8AYFRK/1.0115,3. 024,023, 01-4/

DATA FISsEXsERROR/3.1415926001.0-1+1.0-10/
DATA MAXsMTDT/180220052.00/

DEFINE THE DIMENSTIONLESS FARAMETERSy Ay
FPELECT NUMRER FEL» ALFHAs» AND GAMA

A=0%H/ (RXEFSXED)

FEL=0Q%H/ (RXED)

ALFHA=FKXSAXHXH/ (EFSXEID)

GAMA=SMXEFS/S5A
WRITE(S65s49)FKyEDNsHyFEL»ALFHAY GAMA

49 FORMAT(/s10Xy 'FK='s013.6y/10Xs "El=" 91113+ 6+ /

$10Xy 'H="' 013,646y /10Xy "%X FELECT NUMBER='s013.6+
$/10Xy ALFHA='1I013.6+ /10Xy ' GAMA="»1113.6)
ET=A/2.110

STEF=FIX2.00

I=(A-STEF/2.00)/STEF+1.110

I2=1+1

I3=I2+1

IN=1

152



oo

55 FORMAT(/910Xs "I=/yI5s/10Xs ‘A= 015,77 /10Xy 'SM="»
$015.79 /10Xy 'SA='y115.7» /10Xy “R="»1015.7)

60 FORMAT(3Xs ‘L="92Xy ‘N=/y4Xs’J=' 34Xy "BRETA(L)="y
$8Xy /SNI(L)="y@Xy ‘SN2(L)="92 /35Xy ‘VAL)="910X>
$/VRL)=")

?0

@3

P QO

]

WRITE(6,S55)1»A2SMrSAYR

WRITE(S260)

e ot 400t moe e saes Sest S04 Seve ars eeh Sos Amse ety waws Sest Seks Sess Semm S005 Foes SHNS Beew Amet Mese et Pet Tins TS HiSs bies Peem Feve Hean heie e 0ee Emve Seve

RY USING THE SECANT METHOD

EIGENVALUES OF FUNCTION:

TAN(X/2)= 28X/ (AXA-X¥X)
AND THEN CALCULATE THE VALUES FK OR

B S S R e e L el

%% THE FIRST ROOT IS X=0.I0 XXX

XO=FI+EX
XS=(I-1)XSTEF+X0
IF(I.EQ.0)GO TO 19
IF(I.GT.MAX)> I=MAX
N0 10 L=INsI
IF(L.GE.I3)X0=X8
LL=L-IN

IN=DFLOAT (L.L)
X1=DONXSTEF+X0
XF=X1+EX

A0=F (X1)

J=1

BO=F (XF)

N=1

S=XF

T=R0
IF(ADXBOI2+25 4
U=XF-RBOX (XF-X1)/(B0O-A0)
N=N+1
IF(DARS(U-XF)-ERROR)S #3596
X1=XF

A0=R0O

XF=U

BO=F ()
IF(N-400)2:2+5
AD=T

X1=8

XF=X14+EX

J=J+1

GO TO 93
FHI=(AXA+UXU)>/4.110

TO SEARCH THE
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BY USING THE EIGENVALUES U*S TO
EVALUATE THE VALUES AT FOLES SN'S
ANt THE CORRESFONDING FUNCTION VARVE

F=ALFHAX (GAMA+1 .D0)+FHI

QC=FPHIXALFHAXGAMA

SNLU)Y=(-P+DSART (FXF—-4,D0%QCY) /72 .10

SN2 (L)=(~-F-DSQART (FXF—-4.00%QRC))/2.10
AG=ALFHAXGAMA
DELL1=1,00+(ALFHAXAG) / ((SN1(L)+AG)%X%X2.110)
DEL21=1.00+ (ALFHAXAG) / ((SN2(L)+AG)*%X2,.10)
COFF1=(A%A-UXxU)/ (2.00%A%XU)
COFF2=(AXA+UXU+AXUXU) 7/ (AXUXU)
NEL2=COFF1xDCOS(U/2.00)-COFF2%XDSIN(U/2.00)
VAL)=U/(SN1(LIXDEL11XDEL2)
VR(L)=U/ (SN2 (LY XDEL21XDELZ)

WRITE(SyS0IL s Ny JsUsSNL (L) s SN2(L) sVACL) »VR(L)

S0 FORMAT(1Xs2(1XsI3)s3XsI39y3(3Xs013.6)/31Xy
$2(3X013.6))
10 CONTINUE
IF(I.GE.MAX)GOD TO 30
19 XO0=A+EX
IN=I2
I=MAX
GD 7O 90

30 WRITE(&6531)
31 FORMAT(//+9Xy 'EFFL VOL‘#7Xs TIMEyMIN’ »8Xy»
$'TIMEyTAU’ »6X» “STEF CHANGE X(T) ")
no 20 Li1=1MT
DL=DFLOATC(L1)
TML1)=0LXDOT
VOL.(L1)y=a%XTM(L1)
TAUL1)=THM(L1)XED/H/H
SUMA=0.110
SUME=0.I10
no 40 K=1sMAX
SNT1=8N1(K)XTAUC(L1)+ET
IF(SNT1.LE.-1.702)G0 TO 35
SUMA=SUMA+VA (K) XDEXF (SNT1)

35 SNT2=8N2(KIXTAUCLIYHET
IF(SNT2.LE.-1.702)G0 TO 45
SUME=SUMR+VR (K)XDEXF (SNT2)

40 CONTINUE

45 SUM=SUMA+SUMER
X(L1)=1,00-SUM
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IF(X(L1),LE. 0.D00) X(L1)=0.10
WRITECSy700L1yVOLCLLY s TM(L1) s TAUCLL) » X(L1)
FORMAT(1XyI4,2(3X012.5)»2(3Xs0115.8))
CONTINUE

STOF

END

mae tete ment me amte save i wroe S Gee hove Shie Sime e Swet Shes Shms Sevs bews Fete Siee Sel Sese Sewe Sher e ot

THE EIGENFUCTION?
TAN(X/2)= -28X/ (AXA—XXX)

FUNCTION F(X)

IMFLICIT REAL%X8(A~H-,0-2)

DATA QrRyEFSEN/ 250052, 00y 750021 .00/
LDATA H/7L.D1/

A=AXH/ (RXEFSXED)
F=IUTAN(X/2.D10)+2. DOXAXX/ (AXA—XX%XX)
RETURN

END
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APPENDIX E

COMPUTER PROGRAM FOR THE CALCULATION OF
BREAKTHROUGH CURVES BASED ON EQ. (3B-47)
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APPENDIX E

COMPUTER PROGRAM FOR THE CALCULATION OF
BREAKTHROUGH CURVES BASED ON EQ. {3B-47)

KK KKK ok KOk K ok 3 K 30Kk K K 3k 30K K 3K KK K0k 30K K0k oK K Kok koK ok

XX *k
XX MATHEMATICAL SIMULATION OF FROTEINS XX
L $ 4 SEFARATION IN A FACKED RED XX
XX 8 4
* % DIFFUSION IN FORES b $ 3
L 9 8 OISFERSION MODEL:! STEFP INFUT XX
XX XX

KKK kK ok 3K K 2K 3K K K K K 30K 3K K K K KK K 3K K K K K K 30K K oK 3 K K K K K kK
IMFLICIT REALX8B(A-H»0-2)

ODIMENSION BETAC(180)5UMA(180)sSN(180+20)
DIMENSION RT(180520)sVA(180,20)VER(180+20)
DIMENSION TM(S00)» TAUCS00) yVOL (5002 » X(500)

INFUT THE DATA! VOLUMETRIC FLOW RATE Q» CROSS
SECTIONAL AREA OF COLUMN S» VOIDIN FRACTION

Er AXIAL DISFERSIVITY DLs BED LENGTH L
VOLUME BASED EQUILIEBRIUM CONSTANT LAMDA»

MASS TRANSFER COEFFICIENT KL» RADIUS OF

RESIN FARTICLE ROs INTERNAL DIFFUSIVITY IS

DATA QsRyEFSYEN/1.D022.00 7500y SN0/

ODATA HeSMsFRK/8.0051.00+5.0-3/

DATA FISEXXyERROR/3.141600y1.0-251.0-10/
DATA MAXsMINsMTyEXyDNT/8052051001.0-152. 010/
DATA RFsSI/S.D-3+2,40-7/

DEFINE THE DIMENSIONLESS FARAMETER: Ay
FELECT NUMRERs CONTACT AREA SAs THETA»
FSI» RIOT NUMRER RI

A=QXH/ (RXEFSXED)

FEL=Q%H/ (RXELD)

SA=3.00%(1.010-EFS) /RF
THETA=(Q¥RFXRF )/ (EFSXR¥HXSL)
FSI=(FRXSAXRFXRF)/ (EFSXSD)

EBI=FKXRF/SD
WRITE(46549)FKsSAsHsSIyRFYFEL s THETAYySMyRI»FSI

49 FORMAT(/»10Xy 'FK='9013.69/10Xy’SA="y1113.6+/10X>»

$/ H=/yD13.65 /10Xy ’S0="9N13.6+/10Xy "RF=/s1113.6>»
$/10Xy k%% FELECT NUMRBER='+I13.6+/10Xy  THETA="y
$013.62/710Xy “SM="y D13, 6+/10Xy "%X%X BIOT NUMRER=’»
$013.6s/10Xy “X%%X COMFETITION FARAMETER=‘,D13.6)
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ET=A/2.10

STEF=FI%X2.00

I=(A-8TEF/2.D0)/STEF+1.110

I2=1+1

I3=12+1

IN=1

WRITE(6»55)1I+A
FORMAT(/y10Xs “I=" 915y /10Xy "A=" s 11579 ////)

e e e D o T T eI p—

BY USING THE SECANT TD SEARCH THE
EIGENVALUES OF FIRST EIGENFUNCTION?
TAN(X/2)= -2AX{(AXA-X¥X)
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X0=FI+EX
XS=(I~-1)XSTEF+X0
IF(I.EQ.0) GO TO 19
IF(I.GT.MAX) I=MAX

0 10 L=INsI

IF(L.EQ.I3) XO0=X8S
LL=L-IN

ON=DOFLOAT (LL)
X1=IDNXSTEF+X0O

XF=X1+EX

AD=F (X1)

J=1

EO=F (XF)

N=1

S=XF

T=RO

IF(ADXR0)2+254

U=XF-ROX (XF-X1)/(RO-AD)
N=N+1
IF(DABS(U-XF)—-ERROR)S»5v 6
X1=XF

AO=R0

XF=U

RO=F (U)

IF(N~-400)2+255

AO=T

X1=8

XF=X14EX

J=J+1

GO TO 93

RETA(L)=U
COEF1=(AXUxU+AXA+UXU) / (AXU)
COEF2=(AXA~-UXU) /(2. 00XA)
NEL=COEF1%USIN(U/2,.00)-COEF2%XDCOS(U/2,.110)
FHI=(AXA+UXU)>/4.10
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BY USING THE EIGENVALUES ORTAINED FROM
FIRST EIGENFUNCTION TO EVALUATE THE
EIGENVALUES OF SECOND EIGENFUNCTION?

- S(SXS5-FHI-FSI)

oo bae 4e0s cere rese bees batm Sems bioe Gase Semt Sese Sevs eee Seee Seme Seee Seee Smce vee eve Sees Gee Sebn Sene Beeh evs Mevs TEes Seet Gew Swt ewe G0s Sesn Mome Bewd Sees Sres

WC=(FHIXTHETA/A)-(FSI/(SMXRI-1.010)})
IF(WC.EQ.0.DI0) GO TO 299
WC=DARG(WC)

WH=DSART (WC)
IH=(WH-FI/2.00)/FI+1.00
IH1=IH+1

IH2=TH+2

THN=1

XHO=FI/2.00+EXX
XHS=(IH-1)Y¥FI+XHO
IF(IH.EQ.0) GO TO 69
IF(IH.GT+MIN) IH=MIN

DO 110 M=IHN»IH
IF(M.GE.TH2) XHO=XHS
MH=M-TIHN

IM=TFLOAT (MH)
XH1=IMXFI+XHO
XHF=XH1+EX

AHO=RF (XH1 )

JH=1

EHO=RF (XHF s U)

NH=1

SH=XHF

TH=RHO

8 IF(AHOXBRHO)>S52+52+54
2 RU=XHF-BHOX (XHF-XH1)/ (BHO-AHO)

NH=NH+1

IF(DARS (RU-XHF ) ~ERROR) 655 65 66
XH1=XHF

AHO=EHO

XHF=RU

EHO=RF (RUsU)
IF(NH-400)32+y52565
AHO=TH

XH1=8H

XHF=XH1+EX

JH=H+1

GO TO 143
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&5 RT(L+M)=RU
SN(L sy M) =RUXRU
VAL + M) =TIF (RU)
UR(L M) =(UXU) / (RUXKRUXDELXDF (RU)Y)
110 CONTINUE
IF(IH.GE.MIN)Y GO TO 120
69 XHO=WH+EXX
IHN=IHI1
IH=MIN
GO TO 140
120 WRITE(SySOILsLeyBETAL) y (SN(LsyM)oM=1+S)»
VAL M) s M=19S)y (VR(L¢yM) sy M=1v3)
SO FORMATC(IXsI3Zv2Xy ‘EIGENVALUE (7 9I3s %) ='42Xy113.6»
/19Xy “dKdkkkK ROOTS. .+ 5 TERMS Xkkkk/1X»
S ESIX 13,60y /1 X SCIX I3, 6 v /1 Xy SC1Xy 1113.6))
10 CONTINUE
IF(I.GE.MAX)> GO TO 30
19 X0=A+EX
IN=IZ2
I=MAX
GO 70 90
299 WRITE(42300)
300 FORMAT(//+5Xs’ XkXX THE SYSTEM IS WRONG XXX “s//)
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30 WRITE(69235)
35 FORMAT(//10Xs EFFL VOL‘+7Xy TIME MIN’»8Xy'TIMEsTAU
$7Xy STEF CHANGE X(T))
O 20 Li=1sMT
DL=DOFLOAT(L1)
TM(L1)=DLXDT
TAUCL1)=TM(L1)X801/ (RFXRF)
VOLL1)=0%THM(LL)
SUM=0.110
no 40 R=1sMaX
SUME=0.10
0 41 KK=1sMIN
SNT=ET-(SN(KyKK)XTAUCL1))
IF(SNT.LT.-1.02) GO TO 45
IF(DAES(VR(KyKK)) .LE.ERROR) GO TO 45
SUMBR=SUME+VE (K y KK) XIEXF (SNT)
41 CONTINUE
45 SUMA(K)=SUME
IF (SUMR—-ERROR) 47547946
446 SUM=SUM+SUMA(K)
40 CONTINUE
47 X(L1)=1.D0-SUM
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IF(X(L1).LE. 0.10) X(L1)>=0.00
WRITE(&6270)L1VOLCLL) »y THMCL1) yTAUCLL) » X(L1)
FORMAT (1X»14,2(3XyD12.5),2(3X,015.8))

CONT INUE

STOP

END
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THE FIRST EIGENFUNCTION?:
TAN(X/2)= -2AX{AXA-XXX)
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FUNCTION F(X)

IMPFLICIT REALX8(A~-Hy0~-Z)

DATA QsRIEFSYED/L1. 002,010y . 7500y SN0/
naTa H/8.00/

A=Q%H/ (RXEFSXEL)
F=DTAN(X/2.00)+4+2 . D0XAXX/ (AXA-X¥X)
RETURN

END

THE SECOND EIGENFUNCTION:Z

- S{(S*S-FHI-FSI)

FUNCTION RF(YO»XU)

IMFLICIT REAL%8(A-Hs0-Z)

DATA QsRYEFS,EDN/L1.00»2,00y 7500y 500/
DATA HsySMsFK/8.01021.00,5.1-3/

DATA RFySI/S.0-3+2.40-7/

A=QXH/ (RXEFSXED)
SA=(1.,00~-EFS)%3.N0/RF

THETA= (QXRFXRF) /7 (EPSXRXHXSI)
FSI=(FKXSAXRFXRF)/ (EFSXSD)
RI=FRKXRF/8D

FHIN=(AXA+XUXXU)/4.110
CH1=YOX(YOXYO—(FHINXTHETA/A)-FSI)
CH2=(YOXYO~(FHINXTHETA/A) )X (SMXEI-1.00)+FSI
RF=CH2XDTANC(YO)+CH1

RETURN

ENT
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THE DIFFERENTIATION OF CHARACTERISTIC
EQUATION?
F(P)= (A%A+UXU) /4

Same comn e oeat e s et e S oee b v e e Gate 4eee Soee Gews Seme e Saoe et Sem wead Sad Beve Sots Seve Svw Geet Soon Seee Sse Sae Saes Seee Sede Gedn wme

FUNCTION DF(YOQ)

IMPLICIT REALX¥8(A-Hy0-Z)

ODATA QsRYyEFSYER/1.D02.005.7500y .500/
DATA HsySMyFK/8.01051.00,5.0-3/

DATA RF8I/5.0-352.40-7/
SA=(1.00-EFS)%¥3.D0/RF

A=Q%H/ (RXEFSXED)
THETA=(QXRPXRF )/ (EFSXRXHXED)
FEI=(FKXSAXRFXRF)/ (EFSX8D)
BI=FKXRF/8I

Y2=YOXDCOS(YD)+ (SMXRI-1.DOXXDSINCYO)
YE=NCOS(YO)

YO=FPSIXSMXEI/2.00

YF=NSIN(YO)

TERM=( (YFXYF+YRXYR)~(YFXYR/Y0) )XYL/Y2/Y2
DF=A%(1.00+TERM) /THETA

RETURN

END
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NOMENCLATURE

dimensionless parameter = vL/€Dj

effective contact area = 3(1—6)/ro, cm?/ enm®
dimensionless parameter = KLaL/v

Biot number = KLro/Ds, dimensionless

local concentration of adsorbate in fluid phase,
g-mole/ cc

step input in concentration of adsorbate,
g-mole/ cc,min

equilibrium concentration of adsorbate in fluid
phase, g-mole/ cc

local concentration of adsorbate on solid phase,
g-mole/ cm®

local concentration of adsorbate in solid phase,
g-mole/ cm®

diameter of solid particle, cm

effective axial dispersivity of adsorbate in
fluid phase, cm®/ min

effective internal diffusivity of adsorbate in
solid phase, cm®/ min

a function of p

effective mass transfer coefficient of adsorbate
in fluid phase, cm/ min

bed length, cm
area based equilibrium constant, cm®/ cm®

mass flux of adsorbate A in r-direction within
solid particle, g-mole/ cm®,min

image of Laplace transformation, dimensionless
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Q = superfacial flow rate, cc/ min

r = radial distance from the center of solid particle,
cm

r, = radius of solid particle, cm

R = dimensionless radial distance from the center of

the solid particle

S = cross-sectional area of column, cm®

t = elapsed time, min

U(t) = step function in time, min

v = superfacial fluid velocity, cm/ min

X = dimensionless local concentration of adsorbate
in fluid phase

%

X = dimensionless equilibrium concentration of
adsorbate in fluid phase

Y = dimensionless local concentration of adsorbate
in solid phase

YS = dimensionless local concentration of adsorbate
on solid phase

Z = distance in the flow direction, cm

Greek Letters

€ = void fraction of the packed bed, dimensionless
1 = dimensionless distance in flow direction

a = dimensionless parameter = KLaLz/eDL

B, = eilgenvalues of function tan(x/2)=-2Ax/(A%- x®)
Y = distribution ratio = m€/a, dimensionless

= eigenvalues of function tanh(x/2)=-2Ax/(A%- %)
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dimensionless time

film resistance parameter = KLarz/EDS, dimensionless
bed length parameter = Vrz/ELDS, dimensionless
volume based equilibrium constant, dimensionless

dimensionless parameter = (A®+ B;)/ﬁ
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